diff --git a/Summer-Schools/README.md b/Summer-Schools/README.md new file mode 100644 index 00000000..b320425d --- /dev/null +++ b/Summer-Schools/README.md @@ -0,0 +1,18 @@ +# Summer School Resources + +Here, we share resources from ARM Summer School events! + +## 2024 ARM Open Science Summer School +- [Main Landing Page](https://arm-development.github.io/arm-summer-school-2024/) +- [Github Repository](https://github.com/ARM-Development/arm-summer-school-2024) +- [Project Cookbooks](https://arm-development.github.io/arm-summer-school-2024/projects/project-list.html) + +## 2025 CAPE-k Student Workshop +- [Main Landing Page](https://arm-development.github.io/cape-k-student-workshop-2025/) +- [Github Repository](https://github.com/ARM-Development/cape-k-student-workshop-2025) +- [Project Cookbooks](https://arm-development.github.io/cape-k-student-workshop-2025/projects) + +## 2025 BNF Summer School +- [Main Landing Page]() +- [Github Repository](https://github.com/ARM-Development/arm-summer-school-2025) +- [Project Cookbooks]() diff --git a/Tutorials/ACT-Python-Tutorial/1-jupyter_intro.ipynb b/Tutorials/ACT-Python-Tutorial/1-jupyter_intro.ipynb index 370a5be1..20724c21 100644 --- a/Tutorials/ACT-Python-Tutorial/1-jupyter_intro.ipynb +++ b/Tutorials/ACT-Python-Tutorial/1-jupyter_intro.ipynb @@ -11,9 +11,7 @@ }, { "cell_type": "markdown", - "metadata": { - "id": "3rIfwtTKpQLf" - }, + "metadata": {}, "source": [ "---" ] @@ -44,7 +42,7 @@ "## Prerequisites\n", "| Concepts | Importance | Notes |\n", "| --- | --- | --- |\n", - "| [Getting Started with Jupyter](getting-started-jupyter) | Helpful | |\n", + "| [Getting Started with Jupyter](https://foundations.projectpythia.org/foundations/getting-started-jupyter.html) | Helpful | |\n", "| [Installing and Running Python: Python in Jupyter](https://foundations.projectpythia.org/foundations/jupyter.html) | Helpful | |\n", "\n", "- **Time to learn**: 30 minutes" @@ -600,6 +598,13 @@ "- [Markdown Guide](https://www.markdownguide.org/)\n", "- [Xdev Python Tutorial Seminar Series - Jupyter Notebooks](https://youtu.be/xSzXvwzFsDU)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -624,7 +629,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/Tutorials/ACT-Python-Tutorial/2-Python-Basics.ipynb b/Tutorials/ACT-Python-Tutorial/2-Python-Basics.ipynb index f6af68b5..970ae1cf 100644 --- a/Tutorials/ACT-Python-Tutorial/2-Python-Basics.ipynb +++ b/Tutorials/ACT-Python-Tutorial/2-Python-Basics.ipynb @@ -424,6 +424,14 @@ "- [Official Python tutorial (Python Docs)](https://docs.python.org/3/tutorial/index.html)\n", "- [ProjectPythia](https://foundations.projectpythia.org/landing-page.html)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a07e3574-4f6d-4ee3-97bb-e290895b9a9a", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -442,7 +450,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/Tutorials/ACT-Python-Tutorial/2a-scientific_libraries_numpy.ipynb b/Tutorials/ACT-Python-Tutorial/2a-scientific_libraries_numpy.ipynb index 61c66e3e..9d168efc 100644 --- a/Tutorials/ACT-Python-Tutorial/2a-scientific_libraries_numpy.ipynb +++ b/Tutorials/ACT-Python-Tutorial/2a-scientific_libraries_numpy.ipynb @@ -2,11 +2,17 @@ "cells": [ { "cell_type": "markdown", - "id": "89266885", + "id": "a6432f38-cba9-4df0-8915-21f1545d509c", + "metadata": {}, + "source": [ + "# Working with Numpy" + ] + }, + { + "cell_type": "markdown", + "id": "2bfdfc40-5ef5-44e6-b74d-f89a06a34973", "metadata": {}, "source": [ - "# Working with Numpy\n", - "\n", "From the [NumPy documentation](https://numpy.org/doc/stable/user/whatisnumpy.html):\n", "\n", "> NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation, and much more.\n", @@ -816,7 +822,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/Tutorials/ACT-Python-Tutorial/2b-scientific_libraries_pandas.ipynb b/Tutorials/ACT-Python-Tutorial/2b-scientific_libraries_pandas.ipynb index 9a489f7d..8c2a899d 100644 --- a/Tutorials/ACT-Python-Tutorial/2b-scientific_libraries_pandas.ipynb +++ b/Tutorials/ACT-Python-Tutorial/2b-scientific_libraries_pandas.ipynb @@ -2,11 +2,17 @@ "cells": [ { "cell_type": "markdown", - "id": "9c628dc9", + "id": "00d29a93-adb8-481b-9d93-bcc5c9f780d8", + "metadata": {}, + "source": [ + "# Working with Pandas" + ] + }, + { + "cell_type": "markdown", + "id": "75582b00-36b1-4fba-b23c-2348788cbf5e", "metadata": {}, "source": [ - "# Working with Pandas\n", - "\n", "From the [Pandas Documentation](https://pandas.pydata.org/docs/getting_started/overview.html)\n", "> pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real-world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis/manipulation tool available in any language. It is already well on its way toward this goal. \n", "\n", @@ -515,7 +521,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/Tutorials/ACT-Python-Tutorial/2c-scientific_libraries_xarray.ipynb b/Tutorials/ACT-Python-Tutorial/2c-scientific_libraries_xarray.ipynb index 355f3287..10ee21ab 100644 --- a/Tutorials/ACT-Python-Tutorial/2c-scientific_libraries_xarray.ipynb +++ b/Tutorials/ACT-Python-Tutorial/2c-scientific_libraries_xarray.ipynb @@ -2,11 +2,17 @@ "cells": [ { "cell_type": "markdown", - "id": "2adeb708", + "id": "ac7f7e4a-b762-4392-811f-0b9ddc51f841", + "metadata": {}, + "source": [ + "# Working with Xarray" + ] + }, + { + "cell_type": "markdown", + "id": "2b8ee587-5e1d-4ca8-9c6b-0da1600fa932", "metadata": {}, "source": [ - "# Working with Xarray\n", - "\n", "From the [Xarray Documentation](https://docs.xarray.dev/en/stable/getting-started-guide/why-xarray.html)\n", "> Multi-dimensional (a.k.a. N-dimensional, ND) arrays (sometimes called “tensors”) are an essential part of computational science. They are encountered in a wide range of fields, including physics, astronomy, geoscience, bioinformatics, engineering, finance, and deep learning. In Python, NumPy provides the fundamental data structure and API for working with raw ND arrays. However, real-world datasets are usually more than just raw numbers; they have labels which encode information about how the array values map to locations in space, time, etc.\n", "\n", @@ -647,7 +653,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/Tutorials/ACT-Python-Tutorial/3-ACT-Basics-BNF.ipynb b/Tutorials/ACT-Python-Tutorial/3-ACT-Basics-BNF.ipynb index 806c7b02..cab0ecc3 100644 --- a/Tutorials/ACT-Python-Tutorial/3-ACT-Basics-BNF.ipynb +++ b/Tutorials/ACT-Python-Tutorial/3-ACT-Basics-BNF.ipynb @@ -5,6 +5,8 @@ "id": "950099de-bfc3-4e1d-85a4-0184030e85a8", "metadata": {}, "source": [ + "# ACT Basics with BNF\n", + "\n", "
| \n",
@@ -563,7 +565,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.12.3"
+ "version": "3.11.4"
}
},
"nbformat": 4,
diff --git a/Tutorials/ACT-Python-Tutorial/3-ACT-Basics.ipynb b/Tutorials/ACT-Python-Tutorial/3-ACT-Basics.ipynb
index 4e174404..1e016df8 100644
--- a/Tutorials/ACT-Python-Tutorial/3-ACT-Basics.ipynb
+++ b/Tutorials/ACT-Python-Tutorial/3-ACT-Basics.ipynb
@@ -2,7 +2,15 @@
"cells": [
{
"cell_type": "markdown",
- "id": "950099de-bfc3-4e1d-85a4-0184030e85a8",
+ "id": "2131a83e-9bcf-4943-a3a9-9c362ca3d92e",
+ "metadata": {},
+ "source": [
+ "# ACT Basics with TRACER"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3fb29e94-a430-4eb8-bd45-105b77f30277",
"metadata": {},
"source": [
" |