diff --git a/aufgaben/1/10000002.tex b/aufgaben/1/10000002.tex index e9c1376..931d2f2 100644 --- a/aufgaben/1/10000002.tex +++ b/aufgaben/1/10000002.tex @@ -31,10 +31,10 @@ \] The general solution of the differential equation now becomes \[ -y(x)=\frac12x^2+Ax+B, \text{\quad mit\quad} y'(x)=x+A. +y(x)=\frac12x^2+Ax+B, \text{\quad with \quad} y'(x)=x+A. \] The values and derivatives of the solution at the interval ends are -\begin{center} +\begin{center} \begin{tabular}{|c|cc|} \hline &0&1\\ diff --git a/aufgaben/2/20000002.tex b/aufgaben/2/20000002.tex index 9180399..75cce42 100644 --- a/aufgaben/2/20000002.tex +++ b/aufgaben/2/20000002.tex @@ -16,7 +16,7 @@ This is a half plane that includes the $y$-axis. The points on the $y$-axis are boundary points, any small neighborhood of these points has points in $\Omega$ and points outside of it. -So $\Omega$ ist not open and therefore not a domain. +So $\Omega$ is not open and therefore not a domain. (figure \ref{20000002:fig} left). \item $\Omega$ consists of all points except the origin. @@ -41,7 +41,7 @@ \includeagraphics[]{graphs-2} \end{center} \caption{Subsets $\Omega\subset\mathbb R^2$ for problem \ref{20000002} a) -(left) +(left) and b) (right)\label{20000002:fig}} \end{figure} \end{loesung}