diff --git a/.github/workflows/scheduled_test_cpu.yml b/.github/workflows/scheduled_test_cpu.yml index c774f6c493e..305ecdc27cf 100644 --- a/.github/workflows/scheduled_test_cpu.yml +++ b/.github/workflows/scheduled_test_cpu.yml @@ -64,4 +64,4 @@ jobs: docs: uses: kornia/workflows/.github/workflows/docs.yml@v1.10.1 with: - python-version: "3.11" + python-version: '["3.11"]' diff --git a/kornia/feature/matching.py b/kornia/feature/matching.py index 81c736bfbb4..4b55d88ab2e 100644 --- a/kornia/feature/matching.py +++ b/kornia/feature/matching.py @@ -353,26 +353,24 @@ class DescriptorMatcherWithSteerer(Module): >>> device = K.utils.get_cuda_or_mps_device_if_available() >>> img1 = torch.randn([1, 3, 768, 768], device=device) >>> img2 = torch.randn([1, 3, 768, 768], device=device) - >>> dedode = KF.DeDoDe.from_pretrained( - >>> detector_weights="L-C4-v2", descriptor_weights="B-SO2" - >>> ).to(device) + >>> dedode = KF.DeDoDe.from_pretrained(detector_weights="L-C4-v2", descriptor_weights="B-SO2").to(device) >>> steerer_order = 8 # discretisation order of rotation angles >>> steerer = KF.steerers.DiscreteSteerer.create_dedode_default( - >>> generator_type="SO2", steerer_order=steerer_order - >>> ).to(device) + ... generator_type="SO2", steerer_order=steerer_order + ... ) + >>> steerer = steerer.to(device) >>> matcher = KF.matching.DescriptorMatcherWithSteerer( - >>> steerer=steerer, steerer_order=steerer_order, steer_mode="global", - >>> match_mode="smnn", th=0.98, - >>> ) + ... steerer=steerer, steerer_order=steerer_order, steer_mode="global", match_mode="smnn", th=0.98 + ... ) >>> with torch.inference_mode(): - >>> kps1, scores1, descs1 = dedode(img1, n=20_000) - >>> kps2, scores2, descs2 = dedode(img2, n=20_000) - >>> kps1, kps2, descs1, descs2 = kps1[0], kps2[0], descs1[0], descs2[0] - >>> dists, idxs, num_rot = matcher( - >>> descs1, descs2, normalize=True, subset_size=1000, - >>> ) - >>> print(f"{idxs.shape[0]} tentative matches with steered DeDoDe") - >>> print(f"at rotation of {num_rot * 360 / steerer_order} degrees") + ... kps1, scores1, descs1 = dedode(img1, n=20_000) + ... kps2, scores2, descs2 = dedode(img2, n=20_000) + ... kps1, kps2, descs1, descs2 = kps1[0], kps2[0], descs1[0], descs2[0] + ... dists, idxs, num_rot = matcher( + ... descs1, descs2, normalize=True, subset_size=1000, + ... ) + >>> # print(f"{idxs.shape[0]} tentative matches with steered DeDoDe") + >>> # print(f"at rotation of {num_rot * 360 / steerer_order} degrees") """ def __init__(