3636
3737<!-- tocinfo
3838{'highest level': 2,
39- 'sections': [('Plans for the week of April 15-19 ',
39+ 'sections': [('Plans for the week of April 21-25 ',
4040 2,
4141 None,
42- 'plans-for-the-week-of-april-15-19'),
43- ('QFT', 2, None, 'qft'),
44- ('In terms of arbitrary states',
45- 2,
46- None,
47- 'in-terms-of-arbitrary-states'),
48- ('Unitarity', 2, None, 'unitarity'),
49- ('Binary representation', 2, None, 'binary-representation'),
50- ('Rewriting the QFT', 2, None, 'rewriting-the-qft'),
51- ('Short hand notation', 2, None, 'short-hand-notation'),
52- ('Four qubit system', 2, None, 'four-qubit-system'),
53- ('QFT acts as follows', 2, None, 'qft-acts-as-follows'),
54- ('Quantum circuits', 2, None, 'quantum-circuits'),
55- ('Rotation gates', 2, None, 'rotation-gates'),
56- ('Using the Hadamard gate', 2, None, 'using-the-hadamard-gate'),
57- ('Algorithm', 2, None, 'algorithm'),
58- ('Binary fraction', 2, None, 'binary-fraction'),
59- ('Controlled rotation gate', 2, None, 'controlled-rotation-gate'),
60- ('Applying to all qubits', 2, None, 'applying-to-all-qubits'),
61- ('Plans for the week of April 22-26',
62- 2,
63- None,
64- 'plans-for-the-week-of-april-22-26')]}
42+ 'plans-for-the-week-of-april-21-25')]}
6543end of tocinfo -->
6644
6745< body >
68-
69-
70-
71- < script type ="text/x-mathjax-config ">
72- MathJax . Hub . Config ( {
73- TeX : {
74- equationNumbers : { autoNumber : "AMS" } ,
75- extensions : [ "AMSmath.js" , "AMSsymbols.js" , "autobold.js" , "color.js" ]
76- }
77- } ) ;
78- </ script >
79- < script type ="text/javascript " async
80- src ="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML ">
81- </ script >
82-
83-
8446<!-- Bootstrap navigation bar -->
8547< div class ="navbar navbar-default navbar-fixed-top ">
8648 < div class ="navbar-header ">
9658 < li class ="dropdown ">
9759 < a href ="# " class ="dropdown-toggle " data-toggle ="dropdown "> Contents < b class ="caret "> </ b > </ a >
9860 < ul class ="dropdown-menu ">
99- <!-- navigation toc: --> < li > < a href ="#plans-for-the-week-of-april-15-19 " style ="font-size: 80%; "> Plans for the week of April 15-19</ a > </ li >
100- <!-- navigation toc: --> < li > < a href ="#qft " style ="font-size: 80%; "> QFT</ a > </ li >
101- <!-- navigation toc: --> < li > < a href ="#in-terms-of-arbitrary-states " style ="font-size: 80%; "> In terms of arbitrary states</ a > </ li >
102- <!-- navigation toc: --> < li > < a href ="#unitarity " style ="font-size: 80%; "> Unitarity</ a > </ li >
103- <!-- navigation toc: --> < li > < a href ="#binary-representation " style ="font-size: 80%; "> Binary representation</ a > </ li >
104- <!-- navigation toc: --> < li > < a href ="#rewriting-the-qft " style ="font-size: 80%; "> Rewriting the QFT</ a > </ li >
105- <!-- navigation toc: --> < li > < a href ="#short-hand-notation " style ="font-size: 80%; "> Short hand notation</ a > </ li >
106- <!-- navigation toc: --> < li > < a href ="#four-qubit-system " style ="font-size: 80%; "> Four qubit system</ a > </ li >
107- <!-- navigation toc: --> < li > < a href ="#qft-acts-as-follows " style ="font-size: 80%; "> QFT acts as follows</ a > </ li >
108- <!-- navigation toc: --> < li > < a href ="#quantum-circuits " style ="font-size: 80%; "> Quantum circuits</ a > </ li >
109- <!-- navigation toc: --> < li > < a href ="#rotation-gates " style ="font-size: 80%; "> Rotation gates</ a > </ li >
110- <!-- navigation toc: --> < li > < a href ="#using-the-hadamard-gate " style ="font-size: 80%; "> Using the Hadamard gate</ a > </ li >
111- <!-- navigation toc: --> < li > < a href ="#algorithm " style ="font-size: 80%; "> Algorithm</ a > </ li >
112- <!-- navigation toc: --> < li > < a href ="#binary-fraction " style ="font-size: 80%; "> Binary fraction</ a > </ li >
113- <!-- navigation toc: --> < li > < a href ="#controlled-rotation-gate " style ="font-size: 80%; "> Controlled rotation gate</ a > </ li >
114- <!-- navigation toc: --> < li > < a href ="#applying-to-all-qubits " style ="font-size: 80%; "> Applying to all qubits</ a > </ li >
115- <!-- navigation toc: --> < li > < a href ="#plans-for-the-week-of-april-22-26 " style ="font-size: 80%; "> Plans for the week of April 22-26</ a > </ li >
61+ <!-- navigation toc: --> < li > < a href ="#plans-for-the-week-of-april-21-25 " style ="font-size: 80%; "> Plans for the week of April 21-25</ a > </ li >
11662
11763 </ ul >
11864 </ li >
@@ -130,281 +76,36 @@ <h1>Quantum Computing, Quantum Machine Learning and Quantum Information Theories
13076
13177<!-- author(s): Morten Hjorth-Jensen -->
13278< center >
133- < b > Morten Hjorth-Jensen</ b > [1, 2]
79+ < b > Morten Hjorth-Jensen</ b >
13480</ center >
135- <!-- institution(s) -->
81+ <!-- institution -->
13682< center >
137- [1] < b > Department of Physics, University of Oslo</ b >
138- </ center >
139- < center >
140- [2] < b > Department of Physics and Astronomy and Facility for Rare Isotope Beams, Michigan State University</ b >
83+ < b > Department of Physics, University of Oslo, Norway</ b >
14184</ center >
14285< br >
14386< center >
144- < h4 > April 17 </ h4 >
87+ < h4 > April 23 </ h4 >
14588</ center > <!-- date -->
14689< br >
14790
14891<!-- potential-jumbotron-button -->
14992</ div > <!-- end jumbotron -->
15093
15194<!-- !split -->
152- < h2 id ="plans-for-the-week-of-april-15-19 " class ="anchor "> Plans for the week of April 15-19 </ h2 >
95+ < h2 id ="plans-for-the-week-of-april-21-25 " class ="anchor "> Plans for the week of April 21-25 </ h2 >
15396
15497< div class ="panel panel-default ">
15598< div class ="panel-body ">
15699<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
157100< ol >
158- < li > Quantum Fourier transforms (QFT), reminder from last week</ li >
159- < li > Implementing QFTs</ li >
160- < li > Quantum phase estimation (QPE) and computation of eigenvalues</ li >
161- < li > Reading recommendations: Hundt's text < b > Quantum Computing for Programmers</ b > , sections 6.1-6.4</ li >
162- < li > < a href ="https://youtu.be/gNKJ_sBrPuE " target ="_self "> Video of lecture at</ a > </ li >
163- < li > < a href ="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2024/NotesApril17.pdf " target ="_self "> Whiteboard notes</ a > </ li >
164- < li > Discussion of project 2</ li >
101+ < li > TBA</ li >
102+ < li > < a href ="https://youtu.be/ " target ="_self "> Video of lecture TBA</ a >
103+ <!-- o <a href="https://github.com/CompPhysics/QuantumComputingMachineLearning/blob/gh-pages/doc/HandWrittenNotes/2024/NotesApril17.pdf" target="_self">Whiteboard notes</a> --> </ li >
165104</ ol >
166105</ div >
167106</ div >
168107
169108
170- <!-- !split -->
171- < h2 id ="qft " class ="anchor "> QFT </ h2 >
172-
173- < p > The Quantum Fourier Transform (QFT) has mathematically the same equation as starting point
174- but the notation is generally different. We generally compute the
175- quantum Fourier transform on a set of orthonormal basis state vectors
176- \(|0\rangle, |1\rangle, ..., |N-1\rangle\). The linear operator defining
177- the transform is given by the action on basis states
178- </ p >
179-
180- $$
181- |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi ijk/N}|k\rangle.
182- $$
183-
184-
185- <!-- !split -->
186- < h2 id ="in-terms-of-arbitrary-states " class ="anchor "> In terms of arbitrary states </ h2 >
187-
188- < p > This can be written on arbitrary states,</ p >
189- $$
190- \sum_{j=0}^{N-1}x_j|j\rangle \mapsto \sum_{k=0}^{N-1} y_k|k\rangle
191- $$
192-
193- < p > where each amplitude \(y_k\) is the discrete Fourier transform of
194- \(x_j\).
195- </ p >
196-
197- <!-- !split -->
198- < h2 id ="unitarity " class ="anchor "> Unitarity </ h2 >
199-
200- < p > The quantum Fourier transform is unitary. Taking \(N = 2^n\),
201- for \(n\) qubits gives us the orthonormal (computational) basis
202- </ p >
203- $$
204- |0\rangle, |1\rangle, ..., |2^{n}-1\rangle.
205- $$
206-
207-
208- <!-- !split -->
209- < h2 id ="binary-representation " class ="anchor "> Binary representation </ h2 >
210-
211- < p > Each of the computational basis states can be represented in binary</ p >
212- $$
213- j = j_1j_2 \cdots j_n
214- $$
215-
216- < p > where each \(j_k\) is either \(0\) or \(1\), and the corresponding
217- binary vector is \(|j_1j_2 \cdots j_n\rangle\).
218- </ p >
219-
220- <!-- !split -->
221- < h2 id ="rewriting-the-qft " class ="anchor "> Rewriting the QFT </ h2 >
222-
223- < p > The quantum Fourier
224- transform on one of these \(n\)-qubit vectors can be written as,
225- </ p >
226-
227- $$
228- \begin{align*}
229- |j_1j_2 \cdots j_n \rangle = \frac{\left(|0\rangle +e^{2\pi i0.j_n}|1\rangle\right) \otimes \left(|0\rangle +e^{2\pi i0.j_{n-1}j_n}|1\rangle\right) \otimes \cdots \otimes \left(|0\rangle +e^{2\pi i0.j_1j_2 \cdots j_n}|1\rangle\right)}{2^{n/2}}
230- \end{align*}
231- $$
232-
233-
234- <!-- !split -->
235- < h2 id ="short-hand-notation " class ="anchor "> Short hand notation </ h2 >
236-
237- < p > In the above, we use the notation</ p >
238-
239- $$
240- 0.j_lj_{l+1} \cdots j_n = \frac{j+l}{2} + \frac{j_{l+1}}{2^2} + \cdots + \frac{j_n}{2^{m-l+1}}
241- $$
242-
243-
244- <!-- !split -->
245- < h2 id ="four-qubit-system " class ="anchor "> Four qubit system </ h2 >
246- < p > The basis states are</ p >
247- $$
248- |j_1j_2j_3j_4 \rangle
249- $$
250-
251- < p > where \(j_k\) is either \(0\) or \(1\). We have</ p >
252-
253- $$
254- \begin{align*}
255- 0.j_3 &= \frac{j_3}{2} \\
256- 0.j_2j_3 &= \frac{j_2}{2} + \frac{j_3}{4} \\
257- 0.j_1j_2j_3 &= \frac{j_1}{2} + \frac{j_2}{4} + \frac{j_3}{8} \\
258- 0.j_0j_1j_2j_3 &= \frac{j_0}{2} + \frac{j_1}{4} + \frac{j_2}{8} + \frac{j_3}{16} \\
259- \end{align*}
260- $$
261-
262-
263- <!-- !split -->
264- < h2 id ="qft-acts-as-follows " class ="anchor "> QFT acts as follows </ h2 >
265-
266- < p > The quantum Fourier transform acts as follows:</ p >
267-
268- $$
269- \begin{align*}
270- |j_1j_2j_3j_4 \rangle \mapsto \frac{1}{\sqrt{2^{4/2}}}
271- \left(|0\rangle + e^{2 \pi i 0.j4}|1\rangle \right) \otimes
272- \left(|0\rangle + e^{2 \pi i 0.j_3j4}|1\rangle \right) \otimes
273- \left(|0\rangle + e^{2 \pi i 0.j_2j_3j4}|1\rangle \right) \otimes
274- \left(|0\rangle + e^{2 \pi i 0.j_1j_2j_3j4}|1\rangle \right)
275- \end{align*}
276- $$
277-
278-
279- <!-- !split -->
280- < h2 id ="quantum-circuits " class ="anchor "> Quantum circuits </ h2 >
281-
282- < p > To compose a quantum circuit that calculates the quantum Fourier
283- transform we use the operators
284- </ p >
285-
286- $$
287- \begin{align*}
288- R_k =
289- \begin{bmatrix}
290- 1 & 0 \\
291- 0 & e^{2\pi i/2^k}
292- \end{bmatrix}.
293- \end{align*}
294- $$
295-
296-
297- <!-- !split -->
298- < h2 id ="rotation-gates " class ="anchor "> Rotation gates </ h2 >
299-
300- < p > In this example, the \(R_k\) gates are:</ p >
301- $$
302- \begin{align*}
303- R_1 = \begin{bmatrix}
304- 1 & 0 \\
305- 0 & e^{2 \pi i /2^0}
306- \end{bmatrix} =
307- \begin{bmatrix}
308- 1 & 0 \\
309- 0 & 1
310- \end{bmatrix}, \quad
311- R_2 = \begin{bmatrix}
312- 1 & 0 \\
313- 0 & e^{2 \pi i /2^2}
314- \end{bmatrix}, \quad
315- R_3 = \begin{bmatrix}
316- 1 & 0 \\
317- 0 & e^{2 \pi i /2^3}
318- \end{bmatrix}, \quad
319- R_4 = \begin{bmatrix}
320- 1 & 0 \\
321- 0 & e^{2 \pi i /2^4}
322- \end{bmatrix}.
323- \end{align*}
324- $$
325-
326-
327- <!-- !split -->
328- < h2 id ="using-the-hadamard-gate " class ="anchor "> Using the Hadamard gate </ h2 >
329- < p > The Hadamard
330- gate on a single qubit creates an equal superposition of its basis
331- states, assuming it is not already in a superposition, such that
332- </ p >
333-
334- $$
335- H\vert 0 \rangle = \frac{1}{\sqrt{2}} \left(\vert 0 \rangle + \vert 1\rangle\right), \quad H\vert 1\rangle = \frac{1}{\sqrt{2}} \left(\vert 0 \rangle - \vert 1\rangle\right)
336- $$
337-
338- < p > The \( R_k \) gate simply adds a phase if the qubit it acts on is in the state \( \vert 1\rangle \)</ p >
339- $$
340- R_k\vert 0 \rangle = \vert 0 \rangle, \quad R_k\vert 1\rangle = e^{2\pi i/2^{k}}\vert 1\rangle
341- $$
342-
343- < p > Since all this gates are unitary, the quantum Fourier transfrom is also unitary.</ p >
344-
345- <!-- !split -->
346- < h2 id ="algorithm " class ="anchor "> Algorithm </ h2 >
347-
348- < p > Assume we have a quantum register of \( n \) qubits in the state \( \vert j_1 j_2 \dots j_n\rangle \).
349- Applying the Hadamard gate to the first qubit
350- produces the state
351- </ p >
352-
353- $$
354- H\vert j_1 j_2 \dots j_n\rangle = \frac{\left(\vert 0 \rangle + e^{2\pi i 0.j_1}\vert 1\rangle\right)}{2^{1/2}} \vert j_2 \dots j_n\rangle.
355- $$
356-
357-
358- <!-- !split -->
359- < h2 id ="binary-fraction " class ="anchor "> Binary fraction </ h2 >
360-
361- < p > Here we have made use of the binary fraction to represent the action of the Hadamard gate </ p >
362- $$
363- \exp{2\pi i 0.j_1} = -1,
364- $$
365-
366- < p > if \( j_1 = 1 \) and \( +1 \) if \( j_1 = 0 \).</ p >
367-
368- <!-- !split -->
369- < h2 id ="controlled-rotation-gate " class ="anchor "> Controlled rotation gate </ h2 >
370-
371- < p > Furthermore we can apply the controlled-\( R_k \) gate, with all the other qubits \( j_k \) for \( k> 1 \) as control qubits to produce the state</ p >
372-
373- $$
374- \frac{\left(\vert 0 \rangle + e^{2\pi i 0.j_1j_2\dots j_n}\vert 1\rangle\right)}{2^{1/2}} \vert j_2 \dots j_n\rangle
375- $$
376-
377- < p > Next we do the same procedure on qubit \( 2 \) producing the state</ p >
378-
379- $$
380- \frac{\left(\vert 0 \rangle + e^{2\pi i 0.j_1j_2\dots j_n}\vert 1\rangle\right)\left(\vert 0 \rangle + e^{2\pi i 0.j_2\dots j_n}\vert 1\rangle\right)}{2^{2/2}} \vert j_2 \dots j_n\rangle
381- $$
382-
383-
384- <!-- !split -->
385- < h2 id ="applying-to-all-qubits " class ="anchor "> Applying to all qubits </ h2 >
386-
387- < p > Doing this for all \( n \) qubits yields state</ p >
388-
389- $$
390- \frac{\left(\vert 0 \rangle + e^{2\pi i 0.j_1j_2\dots j_n}\vert 1\rangle\right)\left(\vert 0 \rangle + e^{2\pi i 0.j_2\dots j_n}\vert 1\rangle\right)\dots \left(\vert 0 \rangle + e^{2\pi i 0.j_n}\vert 1\rangle\right)}{2^{n/2}} \vert j_2 \dots j_n\rangle
391- $$
392-
393- < p > At the end we use swap gates to reverse the order of the qubits</ p >
394-
395- $$
396- \frac{\left(\vert 0 \rangle + e^{2\pi i 0.j_n}\vert 1\rangle\right)\left(\vert 0 \rangle + e^{2\pi i 0.j_{n-1}j_n}\vert 1\rangle\right)\dots\left(\vert 0 \rangle + e^{2\pi i 0.j_1j_2\dots j_n}\vert 1\rangle\right) }{2^{n/2}} \vert j_2 \dots j_n\rangle
397- $$
398-
399- < p > This is just the product representation from earlier, obviously our desired output.</ p >
400-
401- <!-- !split -->
402- < h2 id ="plans-for-the-week-of-april-22-26 " class ="anchor "> Plans for the week of April 22-26 </ h2 >
403-
404- < ol >
405- < li > Summary of algorithms and discussion of project 2</ li >
406- < li > Discussion of physical realizations of quantum computers</ li >
407- </ ol >
408109<!-- ------------------- end of main content --------------- -->
409110</ div > <!-- end container -->
410111<!-- include javascript, jQuery *first* -->
0 commit comments