diff --git a/Interactive_Aggregate_Uncertainty.ipynb b/Interactive_Aggregate_Uncertainty.ipynb index 91cb407..037f833 100644 --- a/Interactive_Aggregate_Uncertainty.ipynb +++ b/Interactive_Aggregate_Uncertainty.ipynb @@ -214,7 +214,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -231,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -286,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -373,9 +373,17 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X extents [0.0,1000.0] and Y entents [0.0,1000.0]\n" + ] + } + ], "source": [ "csiz = 100; xmn = csiz * 0.5; nx = 10; ymn = csiz * 0.5; ny = 10 \n", "xmin = xmn - csiz * 0.5; xmax = xmin + nx * csiz\n", @@ -398,7 +406,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -417,7 +425,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -597,7 +605,7 @@ "\n", "# plot the distribution of the simulated values \n", " plt.subplot(1,3,3)\n", - " plt.hist(metric,bins = np.linspace(0,.30,60),alpha=0.2,color=\"red\",edgecolor=\"black\", normed = True)\n", + " plt.hist(metric,bins = np.linspace(0,.30,60),alpha=0.2,color=\"red\",edgecolor=\"black\", density = True)\n", " plt.xlim([.0,.30]); plt.ylim([0,nreal])\n", " plt.title('Spatial Aggregate Uncertainty')\n", " plt.xlabel('Spatial Aggregate'); plt.ylabel('Frequency')\n", @@ -643,7 +651,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 12, "metadata": { "scrolled": false }, @@ -651,7 +659,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a9f04b3e44db41f8ad790d46c3d7cc54", + "model_id": "640f35fb10244ae98a8192d07ffc4868", "version_major": 2, "version_minor": 0 }, @@ -665,12 +673,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f59b7b4e083f49519e317023fa428979", + "model_id": "2804cf118e1e412580e4431d05e7f936", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Output(outputs=({'output_type': 'display_data', 'data': {'text/plain': '
', 'i…" + "Output(outputs=({'output_type': 'display_data', 'data': {'text/plain': '
', 'i…" ] }, "metadata": {}, @@ -744,7 +752,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/Interactive_Spatial_Aggregate_Uncertainty.ipynb b/Interactive_Spatial_Aggregate_Uncertainty.ipynb index cbc5094..8fc2ba5 100644 --- a/Interactive_Spatial_Aggregate_Uncertainty.ipynb +++ b/Interactive_Spatial_Aggregate_Uncertainty.ipynb @@ -604,7 +604,7 @@ "\n", "# plot the distribution of the simulated values \n", " plt.subplot(1,3,3)\n", - " plt.hist(metric,bins = np.linspace(0,.30,100),alpha=0.2,color=\"red\",edgecolor=\"black\", normed = False)\n", + " plt.hist(metric,bins = np.linspace(0,.30,100),alpha=0.2,color=\"red\",edgecolor=\"black\", density = False)\n", " plt.xlim([.0,.30]); plt.ylim([0,nsim/2])\n", " plt.title('Spatial Aggregate Uncertainty')\n", " plt.xlabel('Spatial Aggregate'); plt.ylabel('Frequency')\n", diff --git a/Interactive_Spatial_Aggregate_Uncertainty_Pad.ipynb b/Interactive_Spatial_Aggregate_Uncertainty_Pad.ipynb index 0de2793..2b1cf4f 100644 --- a/Interactive_Spatial_Aggregate_Uncertainty_Pad.ipynb +++ b/Interactive_Spatial_Aggregate_Uncertainty_Pad.ipynb @@ -599,13 +599,13 @@ "\n", "# plot the distribution of the simulated values \n", " plt.subplot(1,3,3)\n", - " plt.hist(metric,bins = np.linspace(0,.30,30),alpha=0.2,color=\"red\",edgecolor=\"black\", normed = True,label=\"spatial\")\n", + " plt.hist(metric,bins = np.linspace(0,.30,30),alpha=0.2,color=\"red\",edgecolor=\"black\", density = True,label=\"spatial\")\n", " plt.xlim([.0,.30]); plt.ylim([0,nreal])\n", " plt.title('Spatial Aggregate Uncertainty')\n", " plt.xlabel('Spatial Aggregate'); plt.ylabel('Frequency')\n", " \n", " standard_samples = np.random.normal(np.average(metric),math.sqrt(tvar / nsim_loc),1000)\n", - " plt.hist(standard_samples,bins = np.linspace(0,.30,30),alpha=0.2,color=\"black\",edgecolor=\"black\",normed = True,label=\"non-spatial\")\n", + " plt.hist(standard_samples,bins = np.linspace(0,.30,30),alpha=0.2,color=\"black\",edgecolor=\"black\", density = True,label=\"non-spatial\")\n", " plt.legend()\n", " \n", " ax = plt.gca()\n", diff --git a/environment.yml b/environment.yml index 1504c48..2cbef3a 100644 --- a/environment.yml +++ b/environment.yml @@ -7,8 +7,10 @@ dependencies: - scipy - matplotlib - ipywidgets - - pandas + - pandas<2.0 + - seaborn<0.11.0 - scikit-learn + - tqdm - numba - statsmodels - pip