diff --git a/wasp_faces/Denoise b/wasp_faces/Denoise new file mode 100644 index 0000000..ea7a5c8 --- /dev/null +++ b/wasp_faces/Denoise @@ -0,0 +1,27 @@ +import numpy as np +import os +import cv2 +from pathlib import Path +from matplotlib import pyplot as plt + +dir = #r"file path" + +for filename in os.listdir(dir): + if filename.endswith(".jpg"): + #read image + path = (dir + '\\' + filename) + print(path) + src = cv2.imread(path, cv2.IMREAD_UNCHANGED) + + #denoise + dst = cv2.fastNlMeansDenoisingColored(src, None, 10, 10, 7, 21) + plt.subplot(121), plt.imshow(src) + plt.subplot(122), plt.imshow(dst) + plt.show() + + #save image + file_no_ext = Path(dir + "\\" + filename).stem + cv2.imwrite(#fr"directory where images will be saved/{file_no_ext}_nobg.jpg" ,dst) + + else: + continue diff --git a/wasp_faces/Grabcut.py b/wasp_faces/Grabcut.py new file mode 100644 index 0000000..3fcc307 --- /dev/null +++ b/wasp_faces/Grabcut.py @@ -0,0 +1,186 @@ +#adapted from https://github.com/opencv/opencv/blob/master/samples/python/grabcut.py +''' +=============================================================================== +Interactive Image Segmentation using GrabCut algorithm. +This sample shows interactive image segmentation using grabcut algorithm. +USAGE: + python grabcut.py +README FIRST: + Two windows will show up, one for input and one for output. + At first, in input window, draw a rectangle around the object using the +right mouse button. Then press 'n' to segment the object (once or a few times) +For any finer touch-ups, you can press any of the keys below and draw lines on +the areas you want. Then again press 'n' to update the output. +Key '0' - To select areas of sure background +Key '1' - To select areas of sure foreground +Key '2' - To select areas of probable background +Key '3' - To select areas of probable foreground +Key 'n' - To update the segmentation +Key 'r' - To reset the setup +Key 's' - To save the results +=============================================================================== +''' + +# Python 2/3 compatibility +from __future__ import print_function + +from pathlib import Path +import os + +import numpy as np +import cv2 as cv + +import sys + +class App(): + BLUE = [255,0,0] # rectangle color + RED = [0,0,255] # PR BG + GREEN = [0,255,0] # PR FG + BLACK = [0,0,0] # sure BG + WHITE = [255,255,255] # sure FG + + DRAW_BG = {'color' : BLACK, 'val' : 0} + DRAW_FG = {'color' : WHITE, 'val' : 1} + DRAW_PR_BG = {'color' : RED, 'val' : 2} + DRAW_PR_FG = {'color' : GREEN, 'val' : 3} + + # setting up flags + rect = (0,0,1,1) + drawing = False # flag for drawing curves + rectangle = False # flag for drawing rect + rect_over = False # flag to check if rect drawn + rect_or_mask = 100 # flag for selecting rect or mask mode + value = DRAW_FG # drawing initialized to FG + thickness = 2 # brush thickness + + def onmouse(self, event, x, y, flags, param): + # Draw Rectangle + if event == cv.EVENT_RBUTTONDOWN: + self.rectangle = True + self.ix, self.iy = x,y + + elif event == cv.EVENT_MOUSEMOVE: + if self.rectangle == True: + self.img = self.img2.copy() + cv.rectangle(self.img, (self.ix, self.iy), (x, y), self.BLUE, 2) + self.rect = (min(self.ix, x), min(self.iy, y), abs(self.ix - x), abs(self.iy - y)) + self.rect_or_mask = 0 + + elif event == cv.EVENT_RBUTTONUP: + self.rectangle = False + self.rect_over = True + cv.rectangle(self.img, (self.ix, self.iy), (x, y), self.BLUE, 2) + self.rect = (min(self.ix, x), min(self.iy, y), abs(self.ix - x), abs(self.iy - y)) + self.rect_or_mask = 0 + print(" Now press the key 'n' a few times until no further change \n") + + # draw touchup curves + + if event == cv.EVENT_LBUTTONDOWN: + if self.rect_over == False: + print("first draw rectangle \n") + else: + self.drawing = True + cv.circle(self.img, (x,y), self.thickness, self.value['color'], -1) + cv.circle(self.mask, (x,y), self.thickness, self.value['val'], -1) + + elif event == cv.EVENT_MOUSEMOVE: + if self.drawing == True: + cv.circle(self.img, (x, y), self.thickness, self.value['color'], -1) + cv.circle(self.mask, (x, y), self.thickness, self.value['val'], -1) + + elif event == cv.EVENT_LBUTTONUP: + if self.drawing == True: + self.drawing = False + cv.circle(self.img, (x, y), self.thickness, self.value['color'], -1) + cv.circle(self.mask, (x, y), self.thickness, self.value['val'], -1) + + def run(self): + + dir = #r"directory of images to segment" + print(dir) + + for filename in os.listdir(dir): + if filename.endswith(".JPG"): + # read image + path = (dir + '\\' + filename) + print(path) + + self.img = cv.imread(path, cv.IMREAD_UNCHANGED) + + self.img2 = self.img.copy() # a copy of original image + self.mask = np.zeros(self.img.shape[:2], dtype = np.uint8) # mask initialized to PR_BG + self.output = np.zeros(self.img.shape, np.uint8) # output image to be shown + + # input and output windows + cv.namedWindow('output', cv.WINDOW_NORMAL) + cv.namedWindow('input', cv.WINDOW_NORMAL) + cv.setMouseCallback('input', self.onmouse) + cv.moveWindow('input', self.img.shape[1]+10,90) + + print(" Instructions: \n") + print(" Draw a rectangle around the object using right mouse button \n") + + while(1): + + cv.imshow('output', self.output) + cv.imshow('input', self.img) + k = cv.waitKey(1) + + # key bindings + if k == 27: # esc to exit + break + elif k == ord('0'): # BG drawing + print(" mark background regions with left mouse button \n") + self.value = self.DRAW_BG + elif k == ord('1'): # FG drawing + print(" mark foreground regions with left mouse button \n") + self.value = self.DRAW_FG + elif k == ord('2'): # PR_BG drawing + self.value = self.DRAW_PR_BG + elif k == ord('3'): # PR_FG drawing + self.value = self.DRAW_PR_FG + elif k == ord('s'): # save image + bar = np.zeros((self.img.shape[0], 5, 3), np.uint8) + res = np.hstack((bar, self.output)) + file_no_ext = Path(dir + "\\" + filename).stem + cv.imwrite(#fr"directory where images will be saved/{file_no_ext}_nobg.jpg" ,res) + print(" Result saved as image \n") + elif k == ord('r'): # reset everything + print("resetting \n") + self.rect = (0,0,1,1) + self.drawing = False + self.rectangle = False + self.rect_or_mask = 100 + self.rect_over = False + self.value = self.DRAW_FG + self.img = self.img2.copy() + self.mask = np.zeros(self.img.shape[:2], dtype = np.uint8) # mask initialized to PR_BG + self.output = np.zeros(self.img.shape, np.uint8) # output image to be shown + elif k == ord('n'): # segment the image + print(""" For finer touchups, mark foreground and background after pressing keys 0-3 + and again press 'n' \n""") + try: + bgdmodel = np.zeros((1, 65), np.float64) + fgdmodel = np.zeros((1, 65), np.float64) + if (self.rect_or_mask == 0): # grabcut with rect + cv.grabCut(self.img2, self.mask, self.rect, bgdmodel, fgdmodel, 1, cv.GC_INIT_WITH_RECT) + self.rect_or_mask = 1 + elif (self.rect_or_mask == 1): # grabcut with mask + cv.grabCut(self.img2, self.mask, self.rect, bgdmodel, fgdmodel, 1, cv.GC_INIT_WITH_MASK) + except: + import traceback + traceback.print_exc() + + mask2 = np.where((self.mask==1) + (self.mask==3), 255, 0).astype('uint8') + self.output = cv.bitwise_and(self.img2, self.img2, mask=mask2) + + print('Done') + + else: + continue + +if __name__ == '__main__': + print(__doc__) + App().run() + cv.destroyAllWindows() diff --git a/wasp_faces/SIFT b/wasp_faces/SIFT new file mode 100644 index 0000000..086fd9f --- /dev/null +++ b/wasp_faces/SIFT @@ -0,0 +1,24 @@ +import numpy as np +import matplotlib.pyplot as plt +import cv2 as cv +import skimage.segmentation +import skimage.color as color + +img = cv.imread(#r'file path', cv.IMREAD_UNCHANGED) + +img_fz = skimage.segmentation.felzenszwalb(img) +img_fz_col = color.label2rgb(img_fz, img, kind='avg') +plt.imshow(img_fz_col) + +img_slic = skimage.segmentation.slic(img_fz_col, n_segments=200, compactness=10) +#label2rgb replaces each discrete label with the average interior color +img_av = color.label2rgb(img_slic, img_fz_col, kind='avg') +plt.imshow(img_av) +plt.show() + +gray= cv.cvtColor(img_av, cv.COLOR_BGR2GRAY) +sift = cv.xfeatures2d.SIFT_create() +kp = sift.detect(img_av,None) +img_sift = cv.drawKeypoints(img_av,kp,None) +plt.imshow(img_sift) +plt.show()