-
Notifications
You must be signed in to change notification settings - Fork 87
Description
Hi,
I used this tool in the past in an older version of R and Python (3.6.2 and 3.6.3 respectively), and it worked like a charm, and thanks for your input to my imbalanced marker set question.
Given the times I'm trying a new install of CellAssign in R 4.1.0 with Python 3.8.3. I originally tried the TF/TF probability install with default versions in a fresh conda environment, but got the below error, so I started a new conda environment and went with an older TF/TF probability 2.1.0. That didn't change the error, below.
I start the session as follows, and check tf:config() to a warning about TensorRT but otherwise successful load, proceed with the workflow below, and include my sessionInfo().
My SCE object is 2449 cells and 157 genes after marker filtering. I used the same 157 markers on a 6k cell object previously to no issues.
Any help or pointers you could provide would be greatly appreciated. Thanks!
library(reticulate)
use_virtualenv("r-reticulate3")
library(tensorflow)
tensorflow::tf_config()
2021-11-22 14:57:53.202921: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory; (LD_LIBRARY_PATH...)
2021-11-22 14:57:53.203874: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory; (LD_LIBRARY_PATH...)
2021-11-22 14:57:53.203963: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
Loaded Tensorflow version 2.1.0
TensorFlow v2.1.0 (~/.conda/envs/r-reticulate3/lib/python3.7/site-packages/tensorflow)
Loaded Tensorflow version 2.1.0
TensorFlow v2.1.0 (~/.conda/envs/r-reticulate3/lib/python3.7/site-packages/tensorflow)
Python v3.7 (~/.conda/envs/r-reticulate3/bin/python3)
fit <- cellassign(exprs_obj = sce[rownames(sce.marker),],
+ marker_gene_info = sce.marker,
+ s = sce.s,
+ learning_rate = 1e-2,
+ shrinkage = TRUE,
+ verbose = T,
+ min_delta=0.25,
+ num_runs = 10)
Error in py_call_impl(callable, dots$args, dots$keywords) :
ValueError: Tried to convert 'shape' to a tensor and failed. Error: Cannot convert a partially known TensorShape to a Tensor: (1, ?)
Detailed traceback:
File "/n/home06/USER/.conda/envs/r-reticulate3/lib/python3.7/site-packages/tensorflow_core/python/ops/array_ops.py", line 193, in reshape
result = gen_array_ops.reshape(tensor, shape, name)
File "/n/home06/USER/.conda/envs/r-reticulate3/lib/python3.7/site-packages/tensorflow_core/python/ops/gen_array_ops.py", line 7443, in reshape
"Reshape", tensor=tensor, shape=shape, name=name)
File "/n/home06/USER/.conda/envs/r-reticulate3/lib/python3.7/site-packages/tensorflow_core/python/framework/op_def_library.py", line 486, in _apply_op_helper
(input_name, err))
In addition: Warning message:
In cellassign(exprs_obj = sce[rownames(sce.marker), ], marker_gene_info = sce.marker, :
You have specified 157 input genes. Are you sure these are just your markers? Only the marker genes should be used as input
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS: /usr/lib64/libblas.so.3.4.2
LAPACK: /usr/lib64/liblapack.so.3.4.2
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] forcats_0.5.1 stringr_1.4.0
[3] purrr_0.3.4 readr_1.4.0
[5] tidyr_1.1.4 tibble_3.1.5
[7] ggplot2_3.3.5 tidyverse_1.3.1
[9] dplyr_1.0.7 scran_1.20.1
[11] scuttle_1.2.1 cellassign_0.99.21
[13] SingleCellExperiment_1.14.1 SummarizedExperiment_1.22.0
[15] Biobase_2.52.0 GenomicRanges_1.44.0
[17] GenomeInfoDb_1.28.4 IRanges_2.26.0
[19] S4Vectors_0.30.2 BiocGenerics_0.38.0
[21] MatrixGenerics_1.4.3 matrixStats_0.61.0
[23] SeuratObject_4.0.2 Seurat_4.0.4
[25] tensorflow_2.7.0 reticulate_1.22
loaded via a namespace (and not attached):
[1] readxl_1.3.1 backports_1.2.1
[3] plyr_1.8.6 igraph_1.2.7
[5] lazyeval_0.2.2 splines_4.1.0
[7] BiocParallel_1.26.2 listenv_0.8.0
[9] scattermore_0.7 tfruns_1.5.0
[11] digest_0.6.28 htmltools_0.5.2
[13] fansi_0.5.0 magrittr_2.0.1
[15] ScaledMatrix_1.0.0 tensor_1.5
[17] cluster_2.1.2 ROCR_1.0-11
[19] limma_3.48.3 globals_0.14.0
[21] modelr_0.1.8 spatstat.sparse_2.0-0
[23] colorspace_2.0-2 rvest_1.0.2
[25] rappdirs_0.3.3 ggrepel_0.9.1
[27] haven_2.4.1 crayon_1.4.1
[29] RCurl_1.98-1.3 jsonlite_1.7.2
[31] spatstat.data_2.1-0 survival_3.2-11
[33] zoo_1.8-9 glue_1.4.2
[35] polyclip_1.10-0 gtable_0.3.0
[37] zlibbioc_1.38.0 XVector_0.32.0
[39] leiden_0.3.9 DelayedArray_0.18.0
[41] BiocSingular_1.8.1 future.apply_1.8.1
[43] abind_1.4-5 scales_1.1.1
[45] DBI_1.1.1 edgeR_3.34.1
[47] miniUI_0.1.1.1 Rcpp_1.0.7
[49] viridisLite_0.4.0 xtable_1.8-4
[51] spatstat.core_2.3-0 dqrng_0.3.0
[53] rsvd_1.0.5 metapod_1.0.0
[55] htmlwidgets_1.5.4 httr_1.4.2
[57] RColorBrewer_1.1-2 ellipsis_0.3.2
[59] ica_1.0-2 pkgconfig_2.0.3
[61] dbplyr_2.1.1 uwot_0.1.10
[63] deldir_1.0-6 locfit_1.5-9.4
[65] utf8_1.2.2 here_1.0.1
[67] tidyselect_1.1.1 rlang_0.4.12
[69] reshape2_1.4.4 later_1.3.0
[71] cellranger_1.1.0 munsell_0.5.0
[73] tools_4.1.0 cli_3.1.0
[75] generics_0.1.1 broom_0.7.10
[77] ggridges_0.5.3 fastmap_1.1.0
[79] goftest_1.2-3 fs_1.5.0
[81] fitdistrplus_1.1-6 RANN_2.6.1
[83] pbapply_1.5-0 future_1.22.1
[85] nlme_3.1-152 sparseMatrixStats_1.4.2
[87] whisker_0.4 mime_0.12
[89] xml2_1.3.2 rstudioapi_0.13
[91] compiler_4.1.0 plotly_4.9.4.1
[93] png_0.1-7 spatstat.utils_2.2-0
[95] reprex_2.0.1 statmod_1.4.36
[97] stringi_1.7.5 lattice_0.20-44
[99] bluster_1.2.1 Matrix_1.3-4
[101] vctrs_0.3.8 pillar_1.6.3
[103] lifecycle_1.0.1 spatstat.geom_2.3-0
[105] lmtest_0.9-38 RcppAnnoy_0.0.19
[107] BiocNeighbors_1.10.0 data.table_1.14.2
[109] cowplot_1.1.1 bitops_1.0-7
[111] irlba_2.3.3 httpuv_1.6.3
[113] patchwork_1.1.1 R6_2.5.1
[115] promises_1.2.0.1 KernSmooth_2.23-20
[117] gridExtra_2.3 parallelly_1.28.1
[119] codetools_0.2-18 MASS_7.3-54
[121] assertthat_0.2.1 rprojroot_2.0.2
[123] withr_2.4.2 sctransform_0.3.2
[125] GenomeInfoDbData_1.2.6 hms_1.1.0
[127] mgcv_1.8-35 grid_4.1.0
[129] rpart_4.1-15 beachmat_2.8.1
[131] DelayedMatrixStats_1.14.3 Rtsne_0.15
[133] lubridate_1.8.0 shiny_1.7.1
[135] base64enc_0.1-3