diff --git a/class12/Class12_OptControl.pptx b/class12/Class12_OptControl.pptx new file mode 100644 index 0000000..edcbf80 Binary files /dev/null and b/class12/Class12_OptControl.pptx differ diff --git a/class12/Figures/FourierDiagram.png b/class12/Figures/FourierDiagram.png new file mode 100644 index 0000000..4f04dce Binary files /dev/null and b/class12/Figures/FourierDiagram.png differ diff --git a/class12/Figures/PlotHighRes.png b/class12/Figures/PlotHighRes.png new file mode 100644 index 0000000..ec2e2f6 Binary files /dev/null and b/class12/Figures/PlotHighRes.png differ diff --git a/class12/Figures/PlotLowRes.png b/class12/Figures/PlotLowRes.png new file mode 100644 index 0000000..299bfe0 Binary files /dev/null and b/class12/Figures/PlotLowRes.png differ diff --git a/class12/Figures/diagram.png b/class12/Figures/diagram.png new file mode 100644 index 0000000..e9d318d Binary files /dev/null and b/class12/Figures/diagram.png differ diff --git a/class12/Figures/unetvspca.png b/class12/Figures/unetvspca.png new file mode 100644 index 0000000..70bc3c1 Binary files /dev/null and b/class12/Figures/unetvspca.png differ diff --git a/class12/class12.md b/class12/class12.md index 069e99a..482892f 100644 --- a/class12/class12.md +++ b/class12/class12.md @@ -4,7 +4,267 @@ **Topic:** Neural operators (FNO, Galerkin Transformer); large-scale surrogates +# Foundations of Neural Operators + +## Notations and definitions +Let's start by setting up some notations: +- Derivatives $\dfrac{\partial}{\partial t}$ are going to be written as $\partial_t$, and, in the case of derivatives **w.r.t. time**, they could be written as $\partial_t x=\dot x$. +- Integrals $\int \{\cdot\} \ \mathrm dt$ are going to be written as $\int \mathrm dt \ \{\cdot\}$. + +And having some definitions: +- **Vectors** are *lists of numbers*, i.e., a vector $v$ lives in $\mathbb R^{d_v}$, and can be thought as a list of $d_v$ numbers, all in $\mathbb R$. More generally, vectors could live in a generic *vector space* $V$, so we would have $v\in V$. +- **Functions** are vector-to-vector mapping, i.e., a function $f$ brings a $v \in \mathbb R^{d_v}$ to a $w \in \mathbb R^{d_w}$, and we define that as $f: \mathbb R^{d_v} \rightarrow \mathbb R^{d_w}$. More generally, functions could operate on a generic *vector space* $V$ and $W$, so we would have $f: V \rightarrow W$. +- **Operators** are function-to-functions mapping, i.e., an operator $A$ brings an $f:\mathbb R^{d_{v1}} \rightarrow \mathbb R^{d_{w1}}$ to a $g: \mathbb R^{d_{v2}} \rightarrow \mathbb R^{d_{w2}}$. More generally, operators could operate on generic *function spaces*, so we would have an operator $A$ bringing an $f:V_1 \rightarrow W_1$ to a $g:V_2 \rightarrow W_2$. + +Key differences: +- A vector is *naturally* discrete. Therefore, the input-output pair for functions are also *naturally* discrete. +- A function is *naturally* continuous. Therefore, the input-output pair for operators are also *naturally* continuous. + +It is said that Neural Networks (NN) are **universal function approximators** [1,2], in this section we're going to create the idea of **universal operator approximators**, that map functions to functions, using something called **Neural Operators**. + +A NN $\mathcal N$ can be thought as a general **function** $\mathcal N: X \times \Theta \rightarrow Y$, where $X$ and $Y$ are vector spaces, and $\Theta$ is the parameter space. So we take elements $x \in X$ and we *learn* how to map those onto $y\in Y$, by means of changing the parameters $\theta \in \Theta$. That way, we can approximate any function (that's where the "universal function approximator" comes from) that maps $X \rightarrow Y$. +In a similar way we can think about a Neural Operator $\mathcal G^\dagger: \mathcal X \times \Theta \rightarrow \mathcal Y$, where $\mathcal X$ and $\mathcal Y$ are function spaces, and $\Theta$ is the parameter space. Now, instead of learning how to map *vectors*, we're going to learn the mapping of *functions*. This general idea will be expanded further. + +**Why are functions important?** Everything in the real world is a function! If we want to predict the airflow around a car, the stress caused by deforming a metal bar, the temperature of a reactor, the weather (and the list goes on), we would need to use functions. +When putting into a computer we are going to need to mesh our function, otherwise we'd not be able to process it. But we're going to think about functions when designing the architecture of these Neural Operators. + +**Why approximate operators?** Let's start with a parallel with image processing. Imagine that I have a Convolutional NN (CNN) that take as an input a (discrete) $256\times256$ image (let's imagine it in grayscale for simplicity). The input to this CNN would then be a $v \in \mathbb R^{256 \times 256}$, where each element $v_i \in \mathbb R \ ; v_i \in [0,1]$. Although this is a typical architecture for image processing [3], and it has been around since 1989 [4], it has a couple of limitations: +- The input **has to** be $256\times256$, the need of different dimension leads to a new NN and a new training. +- In case of regression, the output **has to** a fixed dimension, the need of different dimension leads to a new NN and a new training. +For the case of image processing, where there's no trivial underlying function behind the image, we cannot take advantage of the use of Neural Operators, but in the case of distributions of physical quantities, e.g., temperature, where there's a underlying function behind it, we can leverage the use of Neural Operators to understand distribution function, and make predictions/controls based on it, decoupling the parametrization $\Theta$ from the discretization of the data. [5] *et al.* compared the errors of two networks: U-Net (NN topology) and PCA-Net (Neural operator topology), that were trained on different discretizations of the *same underlying function*, and the result is shown below: + +![Alt text](Figures/unetvspca.png) + +This brings a concept (that we'll try to keep with our definition of Neural Operators) called **Discretization Invariance**: +- When we have Discretization Invariance we de-couple the parameters and the cost from the discretization, i.e., when changing the discretization the error doesn't vary. +- If our model is Discretization Invariable, we can use information at different discretizations to train, and we can transfer parameters learned for one discretization to another, that leads to something called "zero-shot super-resolution", that basically consists of training into a smaller discretization and predicting into a bigger one, due to the Discretization Invariance. This concept, together with its limitations, will be discussed in the "Fourier Neural Operator" section. + +# Operator basics +Let the operator $\mathcal G: \mathcal X \rightarrow \mathcal Y$, where $\mathcal X$ and are separable Banach spaces (mathematical way of saying that $\mathcal X$ and $\mathcal Y$ are spaces of functions) of vector-valued functions: +```math +\begin{align} +\mathcal X=\{x: D\rightarrow \mathbb R\}, \ \ \ D \subseteq\mathbb R^d +\\ +\mathcal Y=\{y: D\rightarrow \mathbb R\} +\end{align} +``` +For example, $D$ is a cut plane of a biological tissue ($D \subseteq\mathbb R^2$) under the application of electric fields, and $x\in\mathcal X$ and $y\in\mathcal Y$ are temperatures before and after the application of said fields. The operator $\mathcal G$ is given by: +```math +\rho c_p\partial_tT =\nabla \cdot(k\nabla T) + \sigma|E|^2-Q +``` +where +```math +\begin{align} +\rho \text{ is the tissue's density} +\\ +c_p \text{ is the tissue's heat capacity} +\\ +T \text{ is the temperature distribution on the tissue} +\\ +k \text{ is the tissue's thermal conductivity} +\\ +\sigma \text{ is the tissue's electrical conductivity} +\\ +E \text{ is the electric field distribution} +\\ +Q \text{ is the heat transfer, from blood/metabolism} +\end{align} +``` +This is one specific case of an operator, but any PDE can be thought as an operator. + +## Approximations + +Imagine that I want to approximate this operator $\mathcal G$ by means of an $\mathcal G^\dagger: \mathcal X\times\Theta \rightarrow \mathcal Y$, a first idea could be to find two linear mappings, here called $K_\mathcal W$ and $L_\mathcal W$ such that $K_\mathcal WL_\mathcal W \approx I$, where $I$ is the identity operator (i.e., by applying $K_\mathcal W$ and $L_\mathcal W$ to *all* $w \in \mathcal W$ we will return to the same $w$), and that by applying $K_\mathcal W$ to a $w\in\mathcal W$ we can project this $w$ onto a non-infinite space $\mathbb R^{d_\mathcal W}$ (one example of such operator is the FFT family, we're we approximate every function to a finite set of coefficients that represent the original functions' sines and cosines). By doing this to both $\mathcal X$ and $\mathcal Y$, we're going to have two non-infinite representations of $\mathcal X$ and $\mathcal Y$, on $\mathbb R^{n}$ and $\mathbb R^{m}$, respectively, and we can map this two representations using a non-linear function $\varphi$. + +A general diagram is shown below: + +![Alt text](Figures/diagram.png) + + +In this case, we can see that our $\mathcal G^\dagger$ can be given by $\mathcal G^\dagger = K_\mathcal X \circ \varphi\circ L_\mathcal Y$, where $K_\mathcal X$ and $L_\mathcal Y$ are the operators that project $\mathcal X$ and $\mathcal Y$ to the non-infinite dimension spaces $\mathbb R^{n}$ and $\mathbb R^{n}$, respectively, and $\varphi$ is a non-linear function that maps $\mathbb R^{n}$ to $\mathbb R^{m}$. Different selections of the set {$K_\mathcal W$, $L_\mathcal W$, $\varphi$} generate different classes of Neural Operators. + +We can, from this, see the first limitation of this technique: we're limited by how well is the approximation of $K_\mathcal WL_\mathcal W \approx I$. It turns out that, as described by [5], this is approximation is fairly general: +Universal approximation: +Let: +- $\mathcal X$ and $\mathcal Y$ be separable Banach spaces. +- $\mathcal G: \mathcal X \rightarrow \mathcal Y$ be continuous. +For any $U\subset \mathcal X$ compact and $\epsilon > 0$, *there exists* continuous, linear maps $K_\mathcal X:\mathcal X \rightarrow \mathbb R^n$, $L_\mathcal Y:\mathcal Y \rightarrow \mathbb R^m$, and $\varphi: \mathbb R^n \rightarrow \mathbb R^m$ such that: +```math +\sup_{u\in U} \| \mathcal G(u)-\mathcal G^\dagger(u)\|_\mathcal Y < \epsilon +``` +Average approximation: +Let: +- $\mathcal X$ be separable Banach spaces, and $\mu \in \mathcal P(\mathcal X)$ be a probability measure in $\mathcal X$. +- $\mathcal G \in L_\mu^p(\mathcal X;\mathcal Y)$ for some $1\leq p < \infty$ +If $\mathcal Y$ is separable Hilbert space, and $\epsilon > 0$, *there exists* continuous, linear maps $K_\mathcal X:\mathcal X \rightarrow \mathbb R^n$, $L_\mathcal Y:\mathcal Y \rightarrow \mathbb R^m$, and $\varphi: \mathbb R^n \rightarrow \mathbb R^m$ such that: +```math +\| \mathcal G(u)-\mathcal G^\dagger(u)\|_{L_\mu^p(\mathcal X;\mathcal Y)} < \epsilon +``` +Let's start by giving two classes of Neural Operators, the Principal Component Analysis Network (PCA-NET) and the Deep Operator Network (DeepONet). + +## PCA +First proposed by [6], we're going to define the PCA-NET approximation by analyzing our input and output spaces using a PCA-like technique. +Let: +- $\mathcal X$ and $\mathcal Y$ be separable Banach spaces, and let $x\in K\subset\mathcal X$, with $K$ compact. +- $\mathcal G$ (the operator that we're trying to approximate) be continuous. +- $\varphi_j:\mathbb R^n \times \Theta \rightarrow \mathbb R^m$ be multiple neural networks. +- $\xi_1,\text{...},\xi_n$ be the PCA basis functions of the input space $\mathcal X$. + - The operator $K_\mathcal X$ for a given $x\in \mathcal X$ would then be $K_\mathcal X(x) :=\mathrm Lx = \{\langle\xi_j,x\rangle\}_j$. +- $\psi_1,\text{...},\psi_m$ be the PCA basis functions of the output space $\mathcal Y$. + +The final approximation $\mathcal G^\dagger_{\text{PCA}}:\mathcal X \times \Theta \rightarrow \mathcal Y$ is then given by: +```math +\begin{align} +\mathcal{G}^\dagger_{\text{PCA}}&(x;\theta)(u)=\sum_{j=0}^m\varphi_j(\mathrm Lx;\theta)\psi_j(u) \ \ \ \ \forall\ x\in\mathcal X \ \ \ \ u\in D_u +\end{align} +``` +That is, the output is the *linear combination* of the PCA output basis functions {$\psi_j$}, weighted by NN coefficients $\varphi_j$, that have as input the $\mathrm Lx$ mapping of the input to the PCA space. + +## DeepONet +Proposed by [7], the DeepONet generalizes the idea of PCA-NET, by means of *learning* the PCA basis functions of the output space $\mathcal Y$, i.e., $\psi_1,...,\psi_m$ are now NNs. The parameter space is then composed of two distinct set of parameters to be learned: $\theta_\varphi$, the same parameters as the original PCA-NET, and $\theta_\psi$, the parameters for the PCA basis functions of the output space. We will then have: + +```math +\begin{align} +\mathcal G^\dagger_{\text{DeepONet}}&(x;\theta)(u)=\sum_{j=0}^m\varphi_j(\mathrm Lx;\theta_\varphi)\psi_j(u;\theta_\psi) \ \ \ \ \forall\ x\in\mathcal X \ \ \ \ u\in D_u +\end{align} +``` + +## Overcoming the curse of dimensionality +One of the big problems of these approaches is the fact $L_\mathcal Y$ is a linear combination of the {$\psi_j$}. This leads to the need of an doubly exponential growth in the amount of data, when compared to $n$ (the size of the PCA basis functions of the input space $\mathcal X$), to achieve convergence [8]. To overcome this difficulty, we're going to generalize this idea of linear approximation of operators to the non-linear case. + +Let: +- $\mathcal X$ and $\mathcal Y$ be function spaces over $\Omega \subset \mathbb R^d$ +- $\mathcal G^\dagger$ is the composition of non-linear operators: $\mathcal G^\dagger=S_1\circ \text{...} \circ S_L$ + - In the linear case, as described before, $S_1 = K_\mathcal X$, $S_L = K_\mathcal Y$ and they're connected through multiple $\varphi_j$. +The above definition *looks a lot* like the typical definition of NNs, where each one of the $S_l$ is a layer of your NN. And, as we're going to see, it is! At least it is a generalization of the definition of NN to function space. +[9] proposed to create each one of this $S_l$ as follows: +```math +S_l(a)(x) = \sigma_l\bigg( W_la(x) + b_l + \int_\Omega\mathrm dz \ \kappa_l(x,z)a(z) \bigg), \ \ \ \ x \in \Omega +``` +where: +- $\sigma_l:\mathbb R^k\rightarrow\mathbb R^k$ is the non-linear activation function. +- $W_l\in\mathbb R^k$ is a term related to a "residual network". + - This term is not necessary for convergence, but it's credited to help with convergence speed. +- $b_l\in\mathbb R^k$ is the bias term. +- $\kappa_l:\Omega\times\Omega\rightarrow\mathbb R^k$ is the kernel function. + +The main distinction between this approach and the traditional NN approach is the $\kappa_l$ term, instead of the traditional weights, and the fact that the input $a(x)$ is a *function*, instead of a vector like the traditional NNs. +Different selections of $\kappa_l$ generate different classes of these non-linear Neural Operators, but we're going to focus on the transform $\kappa_l$, more specifically the Fourier Neural Operator and the Garlekin Transformer. + +# Fourier Neural Operator +Let $\kappa_l(x,z)=\kappa_l(x-z)$, the integral will then become: +```math +\int_\Omega \mathrm dz \ \kappa_l(x,z)a(z) = \int_\Omega \mathrm dz \ \kappa_l(x-z)a(z) =\kappa_l(x) * a(x) +``` +where $*$ represents the convolution operator. + +And, as we know from Fourier Transform Theory, +```math +\mathcal F\{\kappa_l(x)*a(x)\} = \mathcal F\{\kappa_l(x)\} \cdot\mathcal F\{a(x)\} :=\hat \kappa_l(v)\hat a(v) +``` +where $\mathcal F\{\cdot\}$ represents the Fourier transform of a function. + +We can than reduce the single layer $S_l$, shown before, to the following: +```math +S_l(a)(x) = \sigma_l\bigg( W_la(x) + b_l + \mathcal F^{-1}\{\hat\kappa_l(v) \hat a(v)\} \bigg), \ \ \ \ x \in \Omega \ \ \ \ v \in \Omega^\ddagger +``` +where $\Omega^\ddagger \subset \mathbb C^d$ represent the spectral Fourier space related to $\Omega$. + +This is basically what defines the Fourier Neural Operator (FNO): the Neural Operator $\mathcal G^\dagger=S_1\circ \text{...} \circ S_L$ where each one of these $S_l$ is done by "filtering" the previous output function using its Fourier expansions, first described by [9]. + +The overall diagram of the process is shown bellow, and a walkthrough will follow: + +![Alt text](Figures/FourierDiagram.png) + +## Walkthrough + +### Lifting (P) and Projection (Q) layers +The Lifting layer (P) maps the input function from its original low-dimensional channel space into a higher-dimensional latent space. This is typically done with a pointwise linear layer (a 1×1 convolution). The reason for this expansion is that the Fourier layers approximate nonlinear operators more effectively when they operate on a wide latent representation, giving the model the expressive capacity needed to learn complex mappings such as PDE solution operators. + +The Projection layer (Q) performs the opposite transformation: it takes the final high-dimensional latent features produced by the Fourier layers and compresses them back into the desired output channel dimension. Like the lifting layer, it is usually a pointwise linear map. This step converts the latent representation into the actual predicted function (e.g., pressure, velocity, temperature), acting as the final interface between the learned operator and the physical output space. + +### Fourier layers +As stated before, the Fourier Layers are composed following the equation below: +```math +S_l(a)(x) = \sigma_l\bigg( W_la(x) + b_l + \mathcal F^{-1}\{\hat\kappa_l(v) \hat a(v)\} \bigg), \ \ \ \ x \in \Omega \ \ \ \ v \in \Omega^\dagger +``` +An interesting thing about the the kernel $\hat \kappa_l(v)$ is that it has a non-zero value for the first couple of values (here called $K_\kappa$) and zero for the last values. That is, the product $\hat\kappa_l(v) \cdot\hat a(v)$ is given by: +```math +(\hat\kappa_l(v) \hat a(v))_j = \begin{cases} W_\kappa\hat a_j(v), & j\leq K_\kappa\\0, & j> K_\kappa \end{cases} +``` +where $W_\kappa$ are the (trainable) weights for the kernel, and $j$ represents each mode ("frequency component"). + +We can see this "low-pass filter" behavior of the kernel represented on the "zoom" of the general diagram (b), where the high frequencies vanish, while the remaining low frequencies are multiplied by a certain weight. +After this "filtering" and weighting, we apply the inverse FFT get the $\mathcal F^{-1}\{\hat\kappa_l(v) \cdot\hat a(v)\}$ term. + +Meanwhile we also have the so called "residual network", represented by $W_la(x)$, with trainable $W_l$. It is not strictly necessary to be used, but it helps with convergence speed, and the (also trainable) bias term $b_l$, suppressed on the figure. The sum of all the aforementioned terms is then passed by a non-linear activation function $\sigma$, defined _a priori_. + +And, finally, T (defined _a priori_) of these layers are concatenated, before being projected down by the layer **Q**, to produce the output $u(x)$. + +## Zero-shot Superresolution +An interesting fact about the usage of Neural Operators is their **Discretization invariance**, that is, as shown on Figure 1, a change in discretization didn't lead to a change in test error. + +This was leveraged using FNO to the so-called Zero-shot Superresolution: where the Neural Operator can be trained on a dataset with a smaller discretization (i.e., on a coarser grid) and, using the same Network predict using a finer grid. The following figure showcase this for the Burgers 1D equation, shown below, and with $x \in \mathbb R^{256}$. +```math +\text{Burgers 1D equation: } \frac{\partial u}{∂ t} + \frac{1}{2}\frac{\partial u^2}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} +``` +![alt text](Figures/PlotLowRes.png) +With the maximum difference between Prediction and Ground Truth being `~ 6e-3`. + +After the training, the same Network was used to predict outputs for $x\in\mathbb R^{2048}$, and we have the following: +![alt text](Figures/PlotHighRes.png) + +With the maximum difference between Prediction and Ground Truth being, once again, `~ 6e-3`. + + + + +# Galerkin transformer + +An interesting thing about transformer is that, in general, the whole output function depends globally on the input function. I.e., let the function $f(x)$, solution of a certain PDE that has as input $g(x)$, and let $x_0\in\Omega$ a fixed point; $f(x_0)$ will depend on $g(x)\forall x\in\Omega$. With this in mind, and creating a parallel with transformers and Attention, Shuhao _et al._ [10] developed the Galerkin transformer, that uses an "attention-based" kernel $\kappa_l(x,z)$. + +This kernel embodies the essential non-local coupling across the spatial domain, dictating how information at point $z$ influences the output at point $x$. In its continuous form, the kernel $\kappa_l$ is too complex to parameterize directly. We can achieve an approximation by representing the kernel through a factorized form: $\kappa_l(x, z) \approx \phi(Q_l a(x))^\top \psi(K_l a(z))$, where $Q_l$ and $K_l$ are learnable linear maps, and $\phi$ and $\psi$ are feature transformations. Intuitively, each spatial location is mapped to a vector that describes its role in global interactions. + +The matrices $Q_l$ and $K_l$ act as projection operators, transforming the local feature $a(x)$ into a query vector $q_x = Q_l a(x)$ and $a(z)$ into a key vector $k_z = K_l a(z)$, respectively. These vectors share a common latent space, and their inner product, $q_x \cdot k_z$, measures the affinity or relevance between the two locations. + +To complete the information aggregation, a third linear map, $V_l$, transforms $a(z)$ into a value vector $v_z = V_l a(z)$. The resulting approximation to the kernel integral $\int_\Omega \mathrm dz\ \kappa_l(x, z)a(z)$ is then written as the sum: $\sum_{z} \phi(Q_l a(x))^\top \psi(K_l a(z))\, v_z$. The full discrete neural operator layer thus becomes $S_l(a)(x) = \sigma_l\left(W_l a(x) + b_l + \sum_{z} \phi(Q_l a(x))^\top \psi(K_l a(z))\, V_l a(z)\right)$, where $W_l$ and $b_l$ handle local transformations, and $\sigma_l$ introduces nonlinearity. All projection matrices and feature maps are learned, enabling the network to infer the kernel's structure and the relevant latent dynamics. + +The Galerkin transformer is a specific case where the function $a(x)$ is expanded in a finite basis $\{\phi_i(x)\}_{i=1}^M$ using a coefficient vector $c=(c_1,\dots,c_M)$. In this case, attention is computed between these modal coefficients rather than spatial points. Each mode $i$ produces its own query, key, and value vectors via the same projection operators, resulting in the modal update: $\tilde{c}_i = \sigma_l\left(W_l c_i + b_l + \sum_{j} \phi(Q_l c_i)^\top \psi(K_l c_j)\, V_l c_j \right)$. This modal attention mechanism ensures the learned operator acts within the finite-dimensional Galerkin subspace, preserving the projection structure of PDE solvers while allowing for adaptive, data-driven coupling between modes. +# Potential improvements and connection to the PINNs +All the networks shown are classified as "PDE-agnostic", that is, there's no implicit step that ensures that our predicted output matches the PDE that we're trying to solve. But PINN-based structures are being develop to connect this two concepts [11]. + +# Large-scale surrogates + +Traditional FNO applications face a significant limitation when tackling massive, real-world 3D simulations where the input data and network weights cannot fit onto a single GPU. [12] introduced a model-parallel version of FNOs that utilizes domain-decomposition to distribute both the input data and the network weights across multiple GPUs. This innovation allowed the model to handle problems involving billions of variables (e.g., up to 2.6 billion variables on 512 A100 GPUs), making it practical for large-scale applications like simulating multiphase CO₂ dynamics for carbon capture and storage (CCS). By shifting the computational strugle to the training phase, the resulting surrogate model achieved multiple orders of magnitude speedup during inference compared to traditional numerical solvers. + +Another challenge in training deep surrogate models is the storage-intensive process of creating large, high-fidelity datasets. The conventional approach (generating simulations, saving them to disk, and reading them back, commonly named offline training)creates an I/O and storage bottleneck that limits dataset size and diversity. [13] introduced an open-source online training framework designed to suppress this issue. The framework organizes the simultaneous and executes the numerical solvers and a training server in parallel, allowing data to be streamed directly to the network without intermediate disk storage. This file-avoiding method enables training with a potentially limitless amount of unique data, only constrained by available compute resources. By exposing models like FNOs and Fully Connected Networks to significantly larger and more diverse datasets, the framework demonstrated improved model generalization, reducing validation errors and achieving accuracy gains of 16% for FNO and 68% for Fully Connected Networks compared to traditional offline training. + --- +# References + +[1] McCulloch, Warren S., and Walter Pitts. "A logical calculus of the ideas immanent in nervous activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133. + +[2] Chen, Tianping, and Hong Chen. "Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems." IEEE transactions on neural networks 6.4 (1995): 911-917. + +[3] Anwar, Syed Muhammad, et al. "Medical image analysis using convolutional neural networks: a review." Journal of medical systems 42.11 (2018): 226. + +[4] LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." Neural computation 1.4 (1989): 541-551. + +[5] Neural operator: Learning maps between function spaces with +applications to pdes. + +[6] Bhattacharya, Kaushik, et al. "Model reduction and neural networks for parametric PDEs." The SMAI journal of computational mathematics 7 (2021): 121-157. + +[7] Lu, Lu, Pengzhan Jin, and George Em Karniadakis. "Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators." arXiv preprint arXiv:1910.03193 (2019). + +[8] Cohen, Albert, and Ronald DeVore. "Approximation of high-dimensional parametric PDEs." Acta Numerica 24 (2015): 1-159. + +[9] Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020). + +[10] Cao, Shuhao. "Choose a transformer: Fourier or galerkin." Advances in neural information processing systems 34 (2021): 24924-24940. + +[11] Dhingra, Mrigank, et al. "Localized PCA-Net Neural Operators for Scalable Solution Reconstruction of Elliptic PDEs." arXiv preprint arXiv:2509.18110 (2025). -Add notes, links, and resources below. +[12] Grady, Thomas J., et al. "Model-parallel Fourier neural operators as learned surrogates for large-scale parametric PDEs." Computers & Geosciences 178 (2023): 105402. +[13] Meyer, Lucas Thibaut, et al. "Training deep surrogate models with large scale online learning." International Conference on Machine Learning. PMLR, 2023. \ No newline at end of file diff --git a/class12/simple_FNO_in_JAX.ipynb b/class12/simple_FNO_in_JAX.ipynb new file mode 100644 index 0000000..315b5d4 --- /dev/null +++ b/class12/simple_FNO_in_JAX.ipynb @@ -0,0 +1,1312 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "FIHEzR1ScEDn" + }, + "source": [ + "# Fourier Neural Operators (FNO) in JAX\n", + "\n", + "together with [Equinox](https://docs.kidger.site/equinox/all-of-equinox/) and [Optax](https://optax.readthedocs.io/en/latest/).\n", + "\n", + "Code developed by Ceyron, and written by Pedro Paulo following Ceyron's [tutorial](https://www.youtube.com/watch?v=74uwQsBTIVo)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IXB6InKTb7UL" + }, + "source": [ + "![]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WWnO0lPJcIaC" + }, + "source": [ + "Neural Operators are mappings between discretized function spaces, for example:\n", + "\n", + "* Map from an initial condition to the solution function at a later point in time (or to the entire spatiotemporal solution funciton)\n", + "* Map from the function describing an inhomogeneous diffusivity distribution to the solution of the heat equation\n", + "* Autoregressive timesteppers, map state $u^{[t]}_h$ to state $u_h^{[t+1]}$\n", + "\n", + "Fouries Neural Operators do so by employing the FFT to perform efficient **spectral convolution** taking into account global features. In that sense they are a multiscale architecture (Classical convolutional architectures are only local and their receptive field depends on the depth of the network).\n", + "\n", + "Neural Operators allow for the solution of a whole parametric family of PDEs!\n", + "\n", + "FNOs allow for **zero-shot superresolution**.\n", + "\n", + "## Spectral Convolutions\n", + "\n", + "Given the (real-valued) input discretized state $a$ (with potentially more than one channel) defined on an equidistant mesh; do the following steps:\n", + "\n", + "1. Transform $a$ into Fourier space (here using the real-valued Fourier transform): $\\hat{a} = \\text{rfft}(a)$ (batch over the channel dimension)\n", + "2. Perform a batched matrix multiplication with a complex-valued weight vector $W$ for the first $K$ modes: $\\hat{\\tilde{a}}_{0:K} = W\\hat{a}_{0:K}$\n", + "3. Set all the leftover modes to zero $\\hat{\\tilde{a}}_{K:} = 0 + 0i$\n", + "4. Transform back into real space $\\tilde{a} = \\text{irfft}(\\hat{\\tilde{a}})$\n", + "\n", + "The learnable parameters for each spectral convolution are the complex-valued weight matrix of shape `(channels_out, channels_in, modes)` (Since it is complex-valued it actually has `2 * channels_out * channels_in * modes` real parameters)\n", + "\n", + "## Fourier Neural Operator\n", + "\n", + "A classical FNO consists of a lifting layer, multiple \"ResNet\"-like blocks of spectral convolutions with a bypass, and a projection layer. Projection and Lifting layer are 1x1 Convolutions to only modify the channel dimensions. The blocks operate as $b = \\text{activation}(\\tilde{a} + \\text{Conv}_{1\\times1}(a))$.\n", + "\n", + "\n", + "Here, we will mimic one example done in the original paper by [Li et al.](https://arxiv.org/pdf/2010.08895.pdf) as implemented in their [reference code](https://github.com/neuraloperator/neuraloperator/blob/af93f781d5e013f8ba5c52baa547f2ada304ffb0/fourier_1d.py) to solve the **1d Burgers equation**\n", + "\n", + "$$ \\frac{\\partial u}{∂ t} + \\frac{1}{2}\\frac{\\partial u^2}{\\partial x} = \\nu \\frac{\\partial^2 u}{\\partial x^2} $$\n", + "\n", + "The domain $\\Omega = (0, 2 \\pi)$ is periodic (i.e., $u(t, x=0) = u(t, x=2 \\pi)$) and the diffusivity is fixed to $\\nu=0.1$. Our dataset consists of $2048$ initial conditions $u(t=0, x)$ on a $N=8192$ resolution together with their solution at time one $u(t=1, x)$. The goal of the FNO is to learn the mapping from initial condition to state at time one using classical supervised learning. The input to the network is the input state channel-concatenated with the spatial coordinates of the meshpoints. The output is just the state at time one.\n", + "\n", + "### Additional technicalities\n", + "\n", + "* We train on the $32$-fold downsampled dataset (i.e., $256$ DoFs instead of $8192$)\n", + " * Training is on the first 1000 data points\n", + " * Validation/Testing is on the following 200 data points\n", + "* The FNO uses $16$ modes, $64$ hidden channels, and has four stacked spectral convolution blocks with bypass\n", + "* The dataset is reshuffled each epoch and the batch size is $100$\n", + "* We perform $200$ epochs in total\n", + "* Training is done with the Adam optimizer in default settings with a fixed learning rate of 3e-4\n", + "\n", + "### Differences from the reference code\n", + "\n", + "There are minor deviations from the [reference implementation](https://github.com/neuraloperator/neuraloperator/blob/af93f781d5e013f8ba5c52baa547f2ada304ffb0/fourier_1d.py), for example:\n", + "\n", + "* Here, the dataset is preconcatenated with the mesh. The mesh is not concatenated with the input on the fly\n", + "* No activation in the projection layer. Instead the final Fourier block is activated.\n", + "* Anything I missed? I intended this script to be a pedagocial reduction, please let me know if there is an important detail I forgot." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0yAfMzv8Jjmy", + "outputId": "c904f24b-b8b2-4407-84bc-fbabe59b1468" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting equinox\n", + " Downloading equinox-0.13.2-py3-none-any.whl.metadata (19 kB)\n", + "Requirement already satisfied: jax!=0.7.0,!=0.7.1,>=0.4.38 in /usr/local/lib/python3.12/dist-packages (from equinox) (0.7.2)\n", + "Collecting jaxtyping>=0.2.20 (from equinox)\n", + " Downloading jaxtyping-0.3.3-py3-none-any.whl.metadata (7.8 kB)\n", + "Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.12/dist-packages (from equinox) (4.15.0)\n", + "Collecting wadler-lindig>=0.1.0 (from equinox)\n", + " Downloading wadler_lindig-0.1.7-py3-none-any.whl.metadata (17 kB)\n", + "Requirement already satisfied: jaxlib<=0.7.2,>=0.7.2 in /usr/local/lib/python3.12/dist-packages (from jax!=0.7.0,!=0.7.1,>=0.4.38->equinox) (0.7.2)\n", + "Requirement already satisfied: ml_dtypes>=0.5.0 in /usr/local/lib/python3.12/dist-packages (from jax!=0.7.0,!=0.7.1,>=0.4.38->equinox) (0.5.3)\n", + "Requirement already satisfied: numpy>=2.0 in /usr/local/lib/python3.12/dist-packages (from jax!=0.7.0,!=0.7.1,>=0.4.38->equinox) (2.0.2)\n", + "Requirement already satisfied: opt_einsum in /usr/local/lib/python3.12/dist-packages (from jax!=0.7.0,!=0.7.1,>=0.4.38->equinox) (3.4.0)\n", + "Requirement already satisfied: scipy>=1.13 in /usr/local/lib/python3.12/dist-packages (from jax!=0.7.0,!=0.7.1,>=0.4.38->equinox) (1.16.3)\n", + "Downloading equinox-0.13.2-py3-none-any.whl (179 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.2/179.2 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading jaxtyping-0.3.3-py3-none-any.whl (55 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m55.9/55.9 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading wadler_lindig-0.1.7-py3-none-any.whl (20 kB)\n", + "Installing collected packages: wadler-lindig, jaxtyping, equinox\n", + "Successfully installed equinox-0.13.2 jaxtyping-0.3.3 wadler-lindig-0.1.7\n" + ] + } + ], + "source": [ + "%pip install equinox" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "55YgL0rcNQIy", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "daeef19f-c6a3-4a49-d6f5-80bd82156497" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/tmp/ipython-input-3907605969.py:9: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n", + " from tqdm.autonotebook import tqdm\n" + ] + } + ], + "source": [ + "import jax\n", + "import jax.numpy as jnp\n", + "from jax import jit, lax\n", + "import equinox as eqx\n", + "import optax\n", + "import matplotlib.pyplot as plt\n", + "from typing import Callable, List\n", + "import scipy\n", + "from tqdm.autonotebook import tqdm" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MdnQBpNiNctP", + "outputId": "12122e03-e6a5-4d4b-ce14-a5bec9bc0b4d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2025-11-07 15:24:00-- https://ssd.mathworks.com/supportfiles/nnet/data/burgers1d/burgers_data_R10.mat\n", + "Resolving ssd.mathworks.com (ssd.mathworks.com)... 23.42.90.143\n", + "Connecting to ssd.mathworks.com (ssd.mathworks.com)|23.42.90.143|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 644427710 (615M) [text/plain]\n", + "Saving to: ‘burgers_data_R10.mat’\n", + "\n", + "burgers_data_R10.ma 100%[===================>] 614.57M 2.83MB/s in 3m 42s \n", + "\n", + "2025-11-07 15:27:44 (2.77 MB/s) - ‘burgers_data_R10.mat’ saved [644427710/644427710]\n", + "\n" + ] + } + ], + "source": [ + "# Mathworks (the creators of Matlab) host the original Li et al. dataset in the .mat format\n", + "!wget https://ssd.mathworks.com/supportfiles/nnet/data/burgers1d/burgers_data_R10.mat" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-uXyl14XN7-F", + "outputId": "234c5444-7e13-4163-c4ae-dbe5966d7739" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(2048, 8192)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "data = scipy.io.loadmat(\"burgers_data_R10.mat\")\n", + "a, u = data[\"a\"], data[\"u\"]\n", + "a.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "RDkQ1P5ROCmW", + "outputId": "c41db61c-5a9f-4422-b561-b0e103f67498" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhQ9JREFUeJzt3XdcleX7wPHPWSxZshFRcOLee+fWylWZo9LKyrJl02+/LNt9v+2dpmm5WqZmpqLmTMWFE3EiDqbIXodznt8fj1CkIsg5nHPger9evDyc8zz3fR1ukIt7ahRFURBCCCGEcBBaWwcghBBCCFERkrwIIYQQwqFI8iKEEEIIhyLJixBCCCEciiQvQgghhHAokrwIIYQQwqFI8iKEEEIIhyLJixBCCCEcit7WAVia2Wzm4sWLeHh4oNFobB2OEEIIIcpBURSysrKoU6cOWm3ZfSvVLnm5ePEioaGhtg5DCCGEEDfh3Llz1K1bt8xrql3y4uHhAahv3tPT06JlG41G1q1bx6BBgzAYDBYtW1iPtJtjknZzTNJujske2i0zM5PQ0NCS3+NlqXbJS/FQkaenp1WSFzc3Nzw9PeWH0oFIuzkmaTfHJO3mmOyp3coz5UMm7AohhBDCoUjyIoQQQgiHIsmLEEIIIRxKtZvzIoQQ4tpMJhNGo9GqdRiNRvR6Pfn5+ZhMJqvWJSynqtrNYDCg0+kqXY4kL0IIUQNkZ2dz/vx5FEWxaj2KohAUFMS5c+dkry0HUlXtptFoqFu3Lu7u7pUqR5IXIYSo5kwmE+fPn8fNzQ1/f3+r/nIym81kZ2fj7u5+w43GhP2oinZTFIWUlBTOnz9P48aNK9UDI8mLEEJUc0ajEUVR8Pf3x9XV1ap1mc1mCgsLcXFxkeTFgVRVu/n7+xMXF4fRaKxU8iLfWUIIUUPIMI6wNUt9D0ryIoQQQgiHIsmLEEIIIRyKJC9CCCGqDY1Gw/Lly8u8ZtKkSYwcObLcZcbFxaHRaIiOjq5UbNbwz/db3jj79u3LU089ZfXYrEkm7AohhLBLkyZNIj09/YbJyD8lJCRQu3ZtQP1lHh4ezv79+2nbtm3JNR9//LHVl4zbQmhoKAkJCfj5+QGwadMm+vXrx+XLl/H29i65btmyZTY/v6iyJHkRDuFcWi5/HE4gLcdIs2APBrcIwsVQ+Y2OhBDVS1BQ0A2v8fLyqoJIqp5OpyvX+/fx8amCaKxLho2E3ftm62n6v7+Zt1Yf46vNp3hyaTT939/M7rg0W4cmhENSFIXcwiKrfeQVmq77WmV6PPr27csTTzzB888/j4+PD0FBQbz66qulrvnnMEp4eDgA7dq1Q6PR0LdvX+DqYaM1a9bQs2dPvL298fX15dZbb+XUqVMViq2goIAXXniB0NBQnJ2dadSoEXPnzi15ffPmzXTu3BlnZ2eCg4N58cUXKSoqqtB7O3HiBL1798bFxYXmzZsTGRlZ6vV/DhvFxcXRr18/AGrXro1Go2HSpEkldf1z2Ojy5cvcd999hIWF4e7uztChQzlx4kTJ6/Pnz8fb25u1a9fSrFkz3N3dGTJkCAkJCRX6GlmS9LwIu/blplO8u+YYAF3CfWgS6EHk0SQupOcxfs5OvpjQgYHNA20cpRCOJc9oovnMtTap++hrg3FzuvlfPQsWLGD69Ons2rWLHTt2MGnSJHr06MHAgQOvujYqKorOnTuzfv16WrRogZOT0zXLzMnJYfr06bRu3Zrs7GxmzpzJqFGjiI6OLveeJ/feey87duzgk08+oU2bNpw5c4bU1FQALly4wLBhw5g0aRLfffcdx44dY8qUKbi4uJRKUMp6b2azmdGjRxMYGMiuXbvIyMgoc95KaGgov/zyC2PGjCE2NhZPT8/r7vEzadIkTpw4weLFiwkODmbGjBkMGzaMo0ePlgwv5ebm8t577/H999+j1WqZOHEizz77LIsWLSrX18fSJHkRdmvHqUv8b62auDw/pClT+zREo9EwY1gEz/x4gD8OJzJt8T4WT+lKh/q1bRytEKIqtG7dmldeeQWAxo0b89lnn7Fhw4ZrJi/+/v4A+Pr6ljmcMmbMmFKfz5s3D39/f44ePUrLli1vGNPx48f58ccfiYyMZMCAAQA0aNCg5PUvvviC0NBQPvvsMzQaDREREVy8eJEXXniBmTNnliRIZb239evXc+zYMdauXUudOnUAeOuttxg6dOg1Y9LpdCXDQwEBAaXmvPzTiRMnWLlyJVu3bqVly5Z4enqyaNEiQkNDWb58OXfeeSegbnT41Vdf0bBhQwCmTZvGa6+9dsOvjbVI8iLsUmGRmRnLDmJW4M4OdXm0b6OS19yc9Hw6rh2PLNzL+phkHl+8jz+e7I2Xm2NPQBOiqrgadBx9bbBVyjabzWRlZuHh6XHNXgvXSs5Va926danPg4ODSU5OrlSZJ06cYObMmezatYvU1FTMZjMA8fHx5UpeoqOj0el09OnT55qvx8TE0K1bt1IbtPXo0aPkvKl69eoBZb+3mJgYQkNDSxIXgG7dulXsjV4nNr1eT5cuXcjJyQHUZK9p06bExMSUXOfm5laSuPw7Nluw+pyXzz//nLCwMFxcXOjSpQtRUVFlXp+ens5jjz1GcHAwzs7ONGnShNWrV1s7TGFnvtsRR9ylXPzcnZl5W/OrXtfrtHx0dzvCfN24mJHPS8sP2SBKIRyTRqPBzUlvtQ9XJ911X6vsDqv/XiWj0WhKko2bddttt5GWlsacOXPYtWsXu3btAqCwsLBc91vqyAVrvDdLuVZstlyxZdXk5YcffmD69Om88sor7Nu3jzZt2jB48ODrZmuFhYUMHDiQuLg4fv75Z2JjY5kzZw4hISHWDFPYmXyjia82q5Plnh3UBA+Xa/eouDvr+WRcO3RaDasOJrAp1nZ/BQgh7E/xHBeTyXTday5dukRsbCz/93//R//+/WnWrBmXL1+uUD2tWrXCbDazefPma77erFkzduzYUeqX/fbt2/Hw8KBu3brlqqNZs2acO3eu1CTZnTt3lnlPed5/s2bNKCoqKknY4O+vSfPmV//haC+smrx88MEHTJkyhcmTJ9O8eXO++uor3NzcmDdv3jWvnzdvHmlpaSxfvpwePXoQFhZGnz59aNOmjTXDFHZm+f4LpGYXEuLtypgOZf9gt67rzaTuYQDMXHGEfOP1f0iFEDVLQEAArq6urFmzhqSkJDIyMq66pnbt2vj6+jJ79mxOnjzJxo0bmT59eoXqCQsL47777uP+++9n+fLlnDlzhk2bNvHjjz8C8Oijj3Lu3Dkef/xxjh07xooVK3jllVeYPn16uScEDxgwgCZNmnDfffdx4MABtm7dyksvvVTmPfXr10ej0bBq1SpSUlLIzs6+6prGjRszYsQIHn74YXbs2MGBAweYOHEiISEhjBgxokJfh6pktTkvhYWF7N27lxkzZpQ8p9VqGTBgADt27LjmPStXrqRbt2489thjrFixAn9/f8aPH88LL7xw3dMnCwoKKCgoKPk8MzMTUCcXGY1GC74jSsqzdLnib4qiMGfraQDu7RoKZhNGc9kJybS+4aw6eJH4tFzmbTvFlJ7hpV6XdnNM0m6WU3yqtNlstvowRHHvQnF9lS3r3+Vc6/N/P1f8PrVaLR999BFvvPEGM2fOpFevXmzcuPGqexYvXsxTTz1Fy5Ytadq0KR999BG33HJLSTnF15X19fv888956aWXePTRR7l06RL16tXjxRdfxGw2ExwczKpVq3jhhRdo06YNPj4+3H///fznP/+p0Hv75ZdfmDJlCp07dyYsLIyPPvqIYcOGXTfO4OBgXn31VV588UUmT57MPffcw7fffntVXXPnzuWpp57i7rvvxmg00qtXL1atWoVOp7uq3H9+jf/9XHmYzWYURbnmqdIV+VnXKFYatLp48SIhISH89ddfpSYVPf/882zevLlUF1WxiIgI4uLimDBhAo8++ignT57k0Ucf5YknniiZgf1vr776KrNmzbrq+cWLF+Pm5ma5NySqxKlM+OSIHmetwmsdTLiUM73elaxh8SkdbnqFme1MuMpUdCFK6PV6goKCCA0Nve5yYSGqQmFhIefOnSMxMbHUPjegLsceP348GRkZeHp6llmOXf0XbzabCQgIYPbs2eh0Ojp06MCFCxf43//+d93kZcaMGaW6+DIzMwkNDWXQoEE3fPMVZTQaiYyMZODAgQ6/tbK9emn5EeACt7YNYfTtN57lX2ywWWHXZ39xKiWHeLcmPD3g79VJ0m6OSdrNcvLz8zl37hzu7u64uLhYtS5FUcjKysLDw6PSk3NF1amqdsvPz8fV1bVks71/Kh45KQ+rJS9+fn7odDqSkpJKPZ+UlHTd9fbBwcEYDIZSXUnNmjUjMTGRwsLCa/7F4OzsjLOz81XPGwwGq/2HZ82ya7J8o4k/DqvfL3d0qFehr7EBeG5wUx5ZuI/5O87yUJ+GeLuV/n6RdnNM0m6VZzKZ0Gg0aLXacs+xuFnFwwjF9QnHUFXtptVq0Wg01/y5rsjPudUidHJyokOHDmzYsKHkObPZzIYNG667Nr1Hjx6cPHmy1Bja8ePHCQ4Olq7OGmDd0SSyCooI8XalS3jFz94Y3CKI5sGe5Baa+G7HWStEKIQQwh5YNS2ePn06c+bMYcGCBcTExDB16lRycnKYPHkyoG6n/M8JvVOnTiUtLY0nn3yS48eP8/vvv/PWW2/x2GOPWTNMYSd+P3gRgJHt6qDVVrzbUqPR8HAfdVfL+X/FkVcoK4+EEKI6suqcl7Fjx5KSksLMmTNJTEykbdu2rFmzhsBA9Sya+Pj4Ut1ToaGhrF27lqeffprWrVsTEhLCk08+yQsvvGDNMIUdyCs0sfl4CgBDWwbfdDnDWwXzv7WxnL+cx097z3FvtzALRSiEEMJeWH3C7rRp05g2bdo1X9u0adNVz3Xr1u2GG++I6mfbyVTyjWZCvF1pUefmJ1rrdVqm9GrAKyuP8M3WM0zsUt+CUQohhLAHMptK2IW1RxIBGNg8sNIz3e/qGIqni574tFw2n0ixRHhCCCHsiCQvwuaKTGY2xKirjAa1CKx0ea5OOu7oEArAop0ycVcIIaobSV6Eze09e5nLuUa83Qx0Dqv4KqNrmdBVPaV1w7Fkzl/Os0iZQgj7oygKDz30ED4+Pmg0GqKjo20dUrnFxcU5XMz/NH/+fLy9vW1StyQvwuaKJ+r2beKPXmeZb8mG/u70aOSLosAPe85bpEwhhG3s2LEDnU7H8OHDr3ptzZo1zJ8/n1WrVpGQkEDLli3RaDQsX77cavEsW7aMQYMG4evrW+7kY9KkSYwcObLUc6GhoSUxO6KxY8dy/Pjxks9fffVV2rZtWyV1S/IibG7LlXkpvZv4W7Tce7qqk3V/3ncBk+1ObhdCVNLcuXN5/PHH2bJlCxcvXiz12qlTpwgODqZ79+4EBQWh11tuHcr1ztrJycmhZ8+evPvuu5UqX6fTWTzmquTq6kpAQIBN6pbkRdjUpewCDl9Qt4Tu2djPomX3bxaITy0nUrMLiU2XbcqFcETZ2dn88MMPTJ06leHDhzN//vyS1yZNmsTjjz9OfHw8Go2GsLAwwsLCABg1alTJc8VWrFhB+/btcXFxoUGDBsyaNavU+ToajYYvv/yS22+/nVq1avHmm29eM6Z77rmHmTNnMmDAgHK9h1dffZUFCxawYsUKNBoNGo2GTZs2XTVstGnTJjQaDWvXrqVdu3a4urpyyy23kJyczB9//EGzZs3w9PRk/Pjx5ObmlpRvNpt5++23CQ8Px9XVlTZt2vDzzz+XGdO1eqfq169f8vUtjm3ZsmX069cPNzc32rRpU+pg5X8OG82fP59Zs2Zx4MCBkvf4z7ayNMdM90S1se1kKgDNgj0J8LDsmSsGnZbb29Rh/l9x7E6R5EWIEooCxtwbX3czzGa17EIdXGubeYMbVGBF4Y8//khERARNmzZl4sSJPPXUU8yYMQONRsPHH39Mw4YNmT17Nrt37y45WiYgIIBvv/2WIUOGlDy3detW7r33Xj755BN69erFqVOneOihhwBKnZ336quv8s477/DRRx9ZrEfk2WefJSYmhszMzJJTnX18fK7qRfpnDJ999hlubm7cdddd3HXXXTg7O7N48WKys7MZNWoUn376ackeaG+//TYLFy7kq6++onHjxmzZsoWJEyfi7+9Pnz59KhX7Sy+9xHvvvUfjxo156aWXGDduHCdPnrzqazN27FgOHz7MmjVrWL9+PQBeXl6VqrsskrwImyqe79K7iWV7XYqNaV+X+X/FcShNQ1a+ER85I0cINbl4q45VitYC3mVd8J+L4FSr3OXNnTuXiRMnAjBkyBAyMjLYvHkzffv2xcvLCw8Pj5Lhl3/y9vYu9dysWbN48cUXue+++wBo0KABr7/+Os8//3yp5GX8+PElu8Bbiru7O66urhQUFFz3bL9/euONN+jRowcADzzwADNmzODUqVM0aKDuIH7HHXfw559/8sILL1BQUMBbb73F+vXrS47eadCgAdu2bePrr7+udPLy7LPPlsw1mjVrFi1atODkyZNERESUus7V1RV3d/eSE8ytTYaNhM0oisLWE2rPS+/Glp3vUqxliCeNA2phVDQlhz4KIRxDbGwsUVFRjBs3DgC9Xs/YsWOZO3duhcs6cOAAr732Gu7u7iUfU6ZMISEhodQQTMeOHS0W/81q3bp1yePAwEDc3NxKEpfi55KTkwE4efIkubm5DBw4sNR7++677zh16pRFYwkOVnc/L67blqTnRdjMscQsUrIKcDXo6BhW2yp1aDQaRratw//WneDX6ItM6BZulXqEcCgGN7UHxArMZjOZWVl4enhc+3Rig1u5y5o7dy5FRUXUqfN3L5GiKDg7O/PZZ59VaFgiOzubWbNmMXr06Ktec3H5e8i6Vq3y9wpZyz9PVy4+gfmfNBpNyQHG2dnZAPz++++EhISUus7Z2fm6dWg0GhSl9EqGf87/uV4sQKnDk21FkhdhM1uuDBl1beCDs15ntXpuax3M/9adYM/ZdBIz8gnysuzcGiEcjkZToaGbCjGbwWBSy79W8lJORUVFfPfdd7z//vsMGjSo1GsjR45kyZIlPPLII9e812AwYDKVPpi1ffv2xMbG0qhRo5uOqTKcnJyuiskSmjdvjrOzM/Hx8RUaIvL39ychIaHk8xMnTpTqgboZ1nqP1yLJi7CZ4iGjXlYaMioW7OVCuIfCmSwNaw4nMKmH9L4IYe9WrVrF5cuXeeCBB67qYRkzZgxz5869bvISFhbGhg0b6NGjB87OztSuXZuZM2dy6623Uq9ePe644w60Wi0HDhzg8OHDvPHGGxWKLS0tjfj4+JIJt7GxsQAEBQVdd75HWFgYa9euJTY2Fl9fX4tNZvXw8ODZZ5/l6aefxmw207NnTzIyMti+fTuenp4lc3z+7ZZbbuGzzz6jW7dumEwmXnjhhat6eCoqLCyMM2fOEB0dTd26dfHw8Ciz96cyZM6LsIm8QhNRcWmA5fd3uZa2vmo35+rDiVavSwhReXPnzmXAgAHX/CU/ZswY9uzZw8GDB6957/vvv09kZCShoaG0a9cOgMGDB7Nq1SrWrVtHp06d6Nq1Kx9++CH161f88NaVK1fSrl27komsd999N+3ateOrr7667j1TpkyhadOmdOzYEX9/f7Zv317heq/n9ddf5+WXX+btt9+mWbNmDBkyhN9//53w8Ov/ofb+++8TGhpKr169GD9+PNOnT8fV1bVScYwZM4YhQ4bQr18//P39WbJkSaXKK4tG+fegl4PLzMzEy8uLjIwMPD1v/nTiazEajaxevZphw4ZVOkOt6bYcT+HeeVEEe7nw14u3VPowxrIYjUYW/bqaV/fp0Whg13/6W3xZtrA8+XmznPz8fM6cOUN4eHip+R3WYDabyczMxNPT89pzXoRdqqp2K+t7sSK/v+U7S9jE9iv7u/Rs5GfVxKVYbWdoG+qFosBa6X0RQgiHJsmLsInizeksvatuWYZcObF69SFJXoQQwpFJ8iKqXFpOIUcuqkcCdG9YdcnL4OZq8rLrzCXScgqrrF4hhBCWJcmLqHJ/nVJ7XSKCPPD3sM5M9GupW9uV5sGemBX485jtN1kSQghxcyR5EVWueL5Lj0ZV1+tSbEAz9QTUDcdkt10hhHBUkryIKrftH5N1q9otzdShoy3HUykssv0ukUJUpWq2uFQ4IEt9D0ryIqpU/KVczqXloddq6BzuU+X1tw7xwt/DmeyCIqLOpFV5/ULYQvHJyoWFMtdL2Fbx92Dx9+TNkh12RZXafmW+S/t6tanlXPXfflqthluaBvDDnnOsj0mq0tVOQtiKXq/Hzc2NlJQUDAaDVffxMJvNFBYWkp+fL/u8OJCqaDez2UxKSgpubm7o9ZX7/1+SF1Glttlwvkux/s3U5GXDsSReua15lewzI4QtaTQagoODOXPmDGfPnrVqXYqikJeXh6urq/xsOZCqajetVku9evUqXYckL6LKmM0Kf5Xs7+Jrszh6NvbDSa/lXFoeJ5KzaRLoYbNYhKgqTk5ONG7c2OpDR0ajkS1bttC7d2/ZGdmBVFW7OTk5WaRnR5IXUWWOJmRyOdeIu7Oe1nW9bRaHm5Oe7g192RSbwoaYZEleRI2h1WqtfjyATqejqKgIFxcXSV4ciKO1mwxIiipTvES6awMfDDrbfuv1j1CXTMt+L0II4XgkeRFVpni+S1Xuqns9/a4kL3vjL5ORa7RxNEIIISpCkhdRJXILi9h1Wl2a3LuJv42jgbq13WgS6I7JrLD5RIqtwxFCCFEBkryIKrHj1CUKTWbq1naloX8tW4cD/N37IkNHQgjhWCR5EVXiz1g1Qejb1N9ulk/e0lRNXjbFJmMyy86jQgjhKCR5EVanKAqbYtWhmb5NAmwczd861K+Np4uey7lGos+l2zocIYQQ5STJi7C6Uyk5nL+ch5NOS/dGttvf5d/0Om3J/BsZOhJCCMchyYuwuk1Xhow6h/vg5mRfWwv1uzJ0tFGSFyGEcBiSvAir23z8ypBRU9uvMvo3dQ6OuoFeYka+rcMRQghRDpK8CKvKyjeWLJG2x+TF192ZNld2+y2eVCyEEMK+SfIirOrP2BQKTWYa+NWiob+7rcO5plsiZOhICCEciSQvwqrWHkkEYHDLILtZIv1vxcnL9pOpFBSZbByNEEKIG5HkRVhNvtHEpiu9GYNbBNk4mutrUceTAA9ncgtNJUNcQggh7JckL8Jqtp9MJafQRJCnC61DvGwdznVpNBpZdSSEEA5EkhdhNWsOXxkyahGIVmufQ0bFSo4KiE1GUWS3XSGEsGeSvAirKCwyExmTBNj3kFGxno39MOg0nL2Uy+nUHFuHI4QQogz2tWOYqDY2H08hPdeIv4czXRrYz66616QouOeeZ2pQLMbEY+Su/B18NaDVgpMHeIWAf1MI6QCutW0drRBC1HiSvAirWL7/AgAj2tRBZ49DRmYznN0OR5bByfWQHs90AANw7srHv2m0ENIRWoyCNneDm0+VhiyEEEIlyYuwuMx8Y8mQ0ch2ITaO5l/yM2HPXNg7Hy7H/f281kCBTxNWJ3mTjA+T+rXGWaeBgkz1uqQjkHYKzkepHxtmQbt7oPdz4BFoozcjhBA1kyQvwuLWHEqksMhM4wB3WtTxtHU4AOhNeWi3vAu7Z0N+hvqkkwe0HAVNh0NYT5yd3fnkvU2cSc2hnn97hrYKLl1IxnmI/QP2LoCkQ7B7DkQvUhOY7k+ATn6chBCiKsj/tsLiftyjjrmMbBdi+43pzGY0B5bQ/+j/oSu6krT4NYEeT0KL0eDkVuryfk0DOJN6ho3Hkq9OXrzqQucp0OlBOLMFNrwGF/aovTBHV8DoOeDfpIremBBC1Fyy2khY1LHETPacvYxeq+HODnVtG0zKcZg3CP2qx3EpykDxaQB3fAuP7oR2E69KXAD6RajnL/0Zm4LZfJ0l0xoNNOgDD66HkV+CixckRMOcfhDzmxXfkBBCCJDkRVjYop3xAAxqEUiAp4ttgjCbYeeX8HUvOL8bxakWR+qMpeihbdByNGh11721c7gPbk46UrMLOHwxo+x6NBpoOx4ei4KwXlCYDT9MhC3vgewVI4QQViPJi7CYnIIifr2yymhCl/q2CSIrCb4fAWtehKJ8aHgLRQ/v4GTgcNA53fB2Z72Ono38gArstusRBPcsh66Pqp9vfB3W/Z8kMEIIYSWSvAiL+XnvebILigj3q0X3hjbY2yV+F8zuo85HMbjB8Pdh4jLwrFOhYm4p2W03pfw36fQw5G0Y/Jb6+Y7P4I/nJYERQggrkORFWITRZGb2ltMA3N8zvGon6ioKRM2B+cMhKwH8msJDm9WJtTcRR/FRAQfOpXMxPa9iN3d7DG7/DNBA1GzY9HaF6xdCCFG2KklePv/8c8LCwnBxcaFLly5ERUWV676lS5ei0WgYOXKkdQMUlfbbgYtcSM/Dz92paifqmk2w+jlY/SyYjdB8JEzZWKlVP4GeLnQOUzeg++3AxYoX0P4eGPY/9fHmd9XESgghhMVYPXn54YcfmD59Oq+88gr79u2jTZs2DB48mOTksucTxMXF8eyzz9KrVy9rhygqyWRW+HLTKQAm9wjHxXD9CbEWVZgDSyeo+62ggYGvwZ3zwdm90kWPaKcONS2PvonkBdQl1f1eUh//8QKc3lTpmIQQQqisnrx88MEHTJkyhcmTJ9O8eXO++uor3NzcmDdv3nXvMZlMTJgwgVmzZtGgQQNrhygqaUX0BU4kZ+Phomdi1yqaqJudDPNvheN/gN4F7lqg7t1ioeGq4a2CMeg0xCRkcjwp6+YK6f0ctL4bFBP8NAnSzlgkNiGEqOmsukldYWEhe/fuZcaMGSXPabVaBgwYwI4dO65732uvvUZAQAAPPPAAW7duLbOOgoICCgoKSj7PzMwEwGg0YjQaK/kOSisuz9LlOrICo4n31sYC8HCvcNz0VfD1ybyAftEoNGmnUVx9MN21CKVuJ7hOvTfTbrUMGno39mPDsRR+3XuO6QMb31ysQ99Dl3oc7cV9KEsnUDR5rZpsiRuSnzfHJO3mmOyh3SpSt1WTl9TUVEwmE4GBpc9+CQwM5NixY9e8Z9u2bcydO5fo6Ohy1fH2228za9asq55ft24dbm5Xb0JmCZGRkVYp1xFtvKjhYoYOLyeFwIwYVq+OsWp9bgXJdD/5DobCVHKd/Pgr7HlyDqbAwdU3vLei7RZq0gA6lu48TZPCE9zs+ZIuPvfRJ/kkLslHiJ93P4frTry5gmoo+XlzTNJujsmW7Zabm1vua+3qeICsrCzuuece5syZg5+fX7numTFjBtOnTy/5PDMzk9DQUAYNGoSnp2XP1TEajURGRjJw4EAMBoNFy3ZEF9PzmPHpX4CJF4e3ZGR7Kx/CmHoC/eIX0BSmotQOxzBxOX08b1znzbbbLUYTy/+3hct5Rmo16kS/pv43HbqmZRAsHUvDlHXU7zcJpfGgmy6rppCfN8ck7eaY7KHdikdOysOqyYufnx86nY6kpKRSzyclJREUFHTV9adOnSIuLo7bbrut5Dmz2awGqtcTGxtLw4YNS93j7OyMs7PzVWUZDAarNYA1y3YUiqLw+upYcgtNdAqrzdhO9dHebNdEeSTHwMLbIScF/CPQ3LsCg8fV30NlqWi7GQwG7uhQl2+2nWHpngsMalmx/WJKiRiibmK38wv0qx6HR3eB+80nQzWJ/Lw5Jmk3x2TLdqtIvVadsOvk5ESHDh3YsGFDyXNms5kNGzbQrVu3q66PiIjg0KFDREdHl3zcfvvt9OvXj+joaEJDQ60ZrqiAlQcusj4mGYNOw1ujWlk3cbl0Cr4boSYuQa1g0u/qrrZVYHyXegD8GZvM+cvl79K8pgGvQmAryL2kbmAnhBDiplh9tdH06dOZM2cOCxYsICYmhqlTp5KTk8PkyZMBuPfee0sm9Lq4uNCyZctSH97e3nh4eNCyZUucnG68vbuwvrOXcnjp18MAPNq3EY0DPaxXWXo8LLgdspMgsCXcuxJqlW9I0RIa+LvTo5EvigKLdsVXrjC9M4z4DDQ6OLIMjt14no4QQoirWT15GTt2LO+99x4zZ86kbdu2REdHs2bNmpJJvPHx8SQkJFg7DGEh+UYTjy/ZT3ZBEZ3CavP4LY2sV1lmgpq4ZJ4H38bq+UFuPtar7zru7RYGwKKdZ8nKr+RM/Dptofs09fHv0yH/Boc/CiGEuEqVTNidNm0a06ZNu+ZrmzZtKvPe+fPnWz4gcVPMZoVnfjrAwfMZeLka+Pjuduh1Vsp/c1LVoaLLZ8C7Pty30mZzRAY2C6Shfy1OpeSweFc8D/dpeOObytJ3BsT8BmmnYcNr6hlMQgghyk3ONhLloigK76w5xu8HEzDoNHw1sQN1vF2tU1lBNiy6A1JjwTNETVwqeLiiJWm1Gh65krB8s+0M+UZT5Qo0uMJtH6uP98yDxMOVjFAIIWoWSV7EDRUnLsUHL74zujXdrHVqtMmo7kZ7cT+4+sC9K6B2mHXqqoARbUOo4+VCSlYBP+w+V/kCw3tD8xGgmGHNi3L6tBBCVIAkL6JMRpOZmSuO8PVmNXGZdXsLxljr4EVFgVVPwclI0LvC+B/B7yZ3trUwJ72Wqf3U+T2fbjxJTkFR5Qsd9Ia6227cVji6vPLlCSFEDSHJi7iutJxC7p0bxfc7zwLw+ogW3Nc9zHoV/vkW7F8IGi3c+S2EdrJeXTfh7k6h1Pd1IzW7gHnbLHBOkXc96PGU+njdy2DMq3yZQghRA0jyIq4pJiGT2z/bxo7Tl6jlpOPrezpwz5VVN1axZx5s+a/6ePgH0HSo9eq6SQadlmcGNQXg6y2nScsprHyhPZ4Ez7qQcQ6i5lS+PCGEqAEkeRFX+f1gAqO/+Ivzl/Oo7+vGr4/1YHALK24KdyISfn9GfdznBeg42Xp1VdKtrYJpUceT7IIiPtt4svIFOrlBv/+oj7e+D3nplS9TCCGqOUleRAmzWeGDdbE8tngfeUYTvRr7seKxHjSx5iZ0yTHw02R14mrbieoyYjum1Wp4cWgEAN/vjONcWiV33QVoczf4R0B+Ovz1SeXLE0KIak6SFwFATkERUxft5ZMrvQlTeoXz7aROeLtZcVfjnFRYPBYKs6B+T7j1Q9BY8ZgBC+nV2J+ejfwwmhTeWxdb+QK1OrjlZfXxzi8hK7HyZQohRDUmyYsgPbeQcXN2svZIEk46Le/d2YaXhje33gZ0AEUF8MNESD8LtcNh7Pegd5zjH4p7X1ZEX+TwBQvskhsxHEI6gjEXNv+38uUJIUQ1JslLDXcpu4Bxc3Zx8HwGtd0MLHmoC3dYayl0MUWBVU9D/A5w9oTxP9hk2//KaBnixYi26sZ57/xxrPIFajQw4BX18b7vION85csUQohqSpKXGiynoIhJ3+4mJiETP3dnfni4Gx3qV0ES8dcnEL3o7yXR/k2tX6cVPDuoKU46LdtOprLleErlCwzvrQ6fmY2w/ePKlyeEENWUJC81lMms8MSS/Ry6kIFPLSd+eLirdSfmFov9AyKv9DAMeQcaDbB+nVYS6uPGxK71AbX3xWy2wC65fZ5T/927QOa+CCHEdUjyUkN9EBnLhmPJOOu1zLm3Iw393a1faeoJWPYQoEDH+6HzQ9av08qm3dIID2c9RxMyWXHgQuULDO8DdTuDqQD++rTy5QkhRDUkyUsNtO1EKl9sOgXA/+5sQ4f6ta1faUEWLJ0ABZlQrxsM/a9DrCy6EZ9aTjzSVz208dONJyvf+6LRQJ/n1cd75qkrsoQQQpQiyUsNk5pdwFM/RKMoMK5zPW5vUwWnNSsKLH9UPSXaIxjuXAA6g/XrrSL3dquPh4ue0yk5RMYkVb7ARgOgTjt15dGOzypfnhBCVDOSvNQwr/12lNTsApoGevDKbc2rptJtH0LMStAa4K7vwCOwauqtIh4uhpK5L19tPoVS2ROiNRrofaX3ZfdcyM+sZIRCCFG9SPJSg/wZm8zKAxfRauB/d7bGxaCzfqUnN8DG19XHw/4LoZ2tX6cNTO4RhpNey/74dKLOpFW+wCZDwK+JOsy277vKlyeEENWIJC81RG5hEf/362EAJvcIp3Vdb+tXejkOfr5f3fq/3T3QwX7PLKqsAA8XxrRX98f5bsfZyheo1UK3aerjnV+CyVj5MoUQopqQ5KWG+PzPk1xIzyPE25XpA5tYv8LCXFg6UT2vp057GPZetZigW5Z7u6lDR2uPJJKcmV/5AluPhVr+kHkejiyvfHlCCFFNSPJSA1xIz+ObrWcAmHlbc2o5661f6epnIekQuPmpW/8bXKxfp401C/akQ/3aFJkVfth9rvIFGlyg88Pq478+USc+CyGEkOSlJvjfmmMUFJnpEu7DoOZVMFl2/8LSO+h6Wfm4ATsysWs9AJZExWOyxKZ1nR4AvSskHoQzWypfnhBCVAOSvFRzB86lszz6IgD/N7w5GmsP3SQdgd+fVR/3+4+65X0NMrRlMLXdDFzMyLfMkQFuPtBuovr4r08qX54QQlQDkrxUY4qi8ObvMQCMbh9Cq7pe1q2wIAt+vA+K8qBhf+j5jHXrs0MuBh0j24UA8Ms+Cx2u2O1RQAMn16u7FAshRA0nyUs1tvZIElFxabgYtDw32MqHHyoK/PYkXDoBHnVg9Bx1xUwNVLzqaN3RJDLyLLBKyKeBunQaIGpO5csTQggHVzN/u9QAhUVm3vlD7XWZ0qsBwV6u1q1wzzw4/AtodOo8l1q+1q3PjrWo40njAHcKi8z8cSjBMoV2nqL+G71Y7eESQogaTJKXamrhzrPEXcrFz92Zh/s0tG5lF6NhzYvq4wGvQr2u1q3Pzmk0GkZf6X1Zts8ChzUCNOgHvo2hMAsOLLVMmUII4aAkeamGMvKMfLJRnRsxfWAT3K25NDo/A366D0yF0GQodH/cenU5kJHt6qDRQFRcGufScitfoFb7d+9L1GxZNi2EqNEkeamGvth0kvRcI40D3LmroxWXKSsKrHhM3UnXux6M+rLab0RXXsFernRvqA6d/brfQr0vbcaBkzukHofTmyxTphBCOCBJXqqZ85dz+XZ7HAAzhkWg11mxiaPmQMxv6oGLd84H19rWq8sBjWqnJo7Loy9U/rBGABdPNYEBmbgrhKjRJHmpZt5bG0thkZnuDX3p1zTAehUlHoJ1/6c+HvQ6hHSwXl0OanCLQJz1Wk6n5HDoQoZlCu38kPrv8T/gsgXOUBJCCAckyUs1cvD83xvS/WdYM+ttSFeYox64aCpQl/B2ecQ69Tg4DxcDA6/saLx8/0XLFOrfRJ28q5hhz1zLlCmEEA5GkpdqQlEU3lp9ZUO6diG0DLHihnRrXlTnXbgHwYgvZJ5LGUZd2bBu5YGLFJnMlim004Pqv/sXQVGhZcoUQggHIslLNbEhJpmdp9Nw0mt5xpob0h1eBvu+AzQwenaN3s+lPHo38ae2m4HU7AK2n7pkmUKbDFETx9xUOLbKMmUKIYQDkeSlGigymXn7yoZ0D/QMJ8TbShvSXT4Lvz2lPu41HRr0sU491YhBp+XW1nUAWGGpVUc6PbS/R328d75lyhRCCAciyUs1sHT3OU6l5OBTy4mpfa20IZ3JCL88AAUZULcT9J1hnXqqoeKzjtYcSSS3sMgyhba/F9DAmc1w6ZRlyhRCCAchyYuDyy4o4qP1xwF44pZGeLoYrFPRpnfg/G5w9oQxc0FnpXqqofb1vKnn40ZuoYnIo0mWKdS7HjQaoD7et8AyZQohhIOQ5MXBzd58itTsQsL9ajGha33rVHJmC2x9X31820dQ20r1VFMajYaRbdWho+WWGjoC6DhZ/Vcm7gohahhJXhxYYkY+s7eeBuCFIU0xWGNDupxLsOwhQIF290DLMZavowYYcWXoaMuJVC5lF1im0MaDwSNYJu4KIWocSV4c2AeRseQbzXSsX5vBLYIsX4GiwIpHISsB/JrA0HctX0cN0dDfndZ1vTCZFVYdtNBJ0zq9mlAC7P3WMmUKIYQDkOTFQcUmZvHT3vMA/Ge4lTaki5oDx9eAzgnumAdOtSxfRw0ysq3a+2Kxs47gyqojjTq0JxN3hRA1hCQvDuqj9cdRFBjWKoj29axwplDyMYh8WX088HUIamX5OmqY29rUQafVEH0unbjUHMsU6l0PGg9UH8uyaSFEDSHJiwM6lpjJH4cT0WjgqQFNLF9BUQEsexCK8qFhf+jysOXrqIH8PZzp0cgPUA9rtJgOk9R/o2XirhCiZpDkxQF9uuEkAMNaBtMk0MPyFfz5pnrwoqsPjJTt/y1pVLsrG9ZFX7TMSdOgTtx1D4TcS+ownxBCVHOSvDiYk8nZrD6sTvh8vH8jy1dwZits/0R9fPsn4GGFicA12KDmQbgadJxJzSH6XLplCtXpoc049fH+hZYpUwgh7JgkLw5m/l9nUBQY2DyQiCBPyxaelw6/PkLJsuhmt1m2fEEtZz2DW6gnTS+Jirdcwe0mqv+ejIRMC61mEkIIOyXJiwPJyDPyy151rsT9PcItX8HqZyHzPNQOhyHvWL58AcA93cIAWB59kZQsC+354tcYQruCYoYDSyxTphBC2ClJXhzIT3vOkWc0ERHkQdcGPpYt/OBPcOgn0Ohg9Bxwdrds+aJEh/q1aVfPm8IiMwt3nrVcwcWHNe5fqO7RI4QQ1ZQkLw5CURS+v/KLblL3MMvu65IeD78/oz7u8zyEdrJc2eKaHuip9pwt3HmWvEKTZQptPhIMtSDtFMTvsEyZQghhhyR5cRB7z17m7KVc3Jx03H7lnByLMJvg16nqadEhHaHXs5YrW1zXkBZB1K3tyqWcQhbsiLNMoc7u0HKU+lgm7gohqjFJXhzEsiu7sg5tGYybk95yBf/1KZzdpv7FPnq2unJFWJ1ep+XpK3v0fLnpFBl5RssUXHxcwJFfoSDLMmUKIYSdkeTFAeQbTaw6cBGAMe1DLFfwxWjY+Ib6eOi74NvQcmWLGxrZLoQmge5k5Bn5dMMJyxQa2gV8G4MxV01ghBCiGqqS5OXzzz8nLCwMFxcXunTpQlRU1HWvnTNnDr169aJ27drUrl2bAQMGlHl9TbApNpnM/CLqeLnQtYGvZQotzIVlU8BshIhb/15qK6qMTqthxrBmAMzbfoZD5zMqX6hG83dbytCREKKasnry8sMPPzB9+nReeeUV9u3bR5s2bRg8eDDJycnXvH7Tpk2MGzeOP//8kx07dhAaGsqgQYO4cMGC26k7mDWHEwG4tU0dtFoLTdRd/wqkHld3Zr3tE9lF10b6NQ3gtjZ1MCvw3M8HLDN5t83d6qqxc7sgJbby5QkhhJ2xevLywQcfMGXKFCZPnkzz5s356quvcHNzY968ede8ftGiRTz66KO0bduWiIgIvvnmG8xmMxs2bLB2qHbJaDKz4Zia6A1qHmiZQk9EQtRs9fHIL6CWhXpzxE155bbm+NZy4lhiFi8tP1T5YwM8gqDxIPWx9L4IIaohqyYvhYWF7N27lwEDBvxdoVbLgAED2LGjfEs5c3NzMRqN+PhYeF8TB7HrdBpZ+UX4uTvRzhKnR+ekworH1MddHoFGA8q+Xlidn7szn45vh1YDy/Zd4ItNpypfaPHQ0YGlYLLQZGAhhLATVl1akpqaislkIjCwdI9BYGAgx44dK1cZL7zwAnXq1CmVAP1TQUEBBQV/71KamZkJgNFoxGi07H/axeVZutyyrDmsTtS9pak/ZlMR5sqMKigKupVPoM1OQvFrSlGfl6AK34ut2KLdKqpTPS9eHNKUt/6I5X9rY6ll0DChS72bLzD8FvS1/NHkJFN07A+UJkMtF2wVcYR2E1eTdnNM9tBuFanbrtfFvvPOOyxdupRNmzbh4uJyzWvefvttZs2addXz69atw83NzSpxRUZGWqXcf1MUWLVfB2jwzoln9erK7cYaemkr7eN/x6zRscV3AhmRf1omUAdRVe12swKBQSFa1l3Q8uqqY8TGHKFrwM0PITWv1ZHGOX+Qsu4Dok467o679t5u4tqk3RyTLdstNze33NdaNXnx8/NDp9ORlJRU6vmkpCSCgso+rfi9997jnXfeYf369bRu3fq6182YMYPp06eXfJ6ZmVkyydfT07IHFxqNRiIjIxk4cCAGg8GiZV/LyeRs0nf+hZNey+N39cfFoLv5wtLj0c95FAClzwx69HjUQlHav6put8oYqii8+UcsC3bEs/S0jg5tWzLiZjclTG0EX/9BUOZBhvXuoE7OdiCO1G7ib9Jujske2q145KQ8rJq8ODk50aFDBzZs2MDIkSMBSibfTps27br3/fe//+XNN99k7dq1dOzYscw6nJ2dcXZ2vup5g8FgtQawZtn/tCsuHYDOYT54uF2756lczGZY9QQUZkNoF3S9p6PTViIRclBV1W6V9ertLTEpsHBnPM8vO4yLs4FbW99EAhPcAup2QnN+N4ajy6DHE5YPtgo4SruJ0qTdHJMt260i9Vp9tdH06dOZM2cOCxYsICYmhqlTp5KTk8PkyZMBuPfee5kxY0bJ9e+++y4vv/wy8+bNIywsjMTERBITE8nOzrZ2qHZn28lUAHo08qtcQTs//3sX3VFfQQ1MXByJRqPhtdtbMrZjKGYFnlwaXbJcvsL+ueeLHNYohKgmrJ68jB07lvfee4+ZM2fStm1boqOjWbNmTckk3vj4eBISEkqu//LLLyksLOSOO+4gODi45OO9996zdqh2xWgys/N0GgC9GlcieUk6AhteUx8PeQt8GlggOmFtWq2Gt0a3YnS7EExmhSeX7ufoxfJ3qZZoMRr0rpAaC+f3WD5QIYSwgSqZsDtt2rTrDhNt2rSp1OdxcXHWD8gBHDiXTnZBEbXdDDQPvsm5O0UFsOxhMBVCkyHQ/j7LBimsSqfV8N87WpOWW8im2BQeXbSX3x7viYdLBbp0XTyhxUg4sAT2fy8nhgshqgU528hOFQ8ZdW/kd/O76m56G5IOgZuv7KLroPQ6LR/e1ZYQb1fiLuXy1urybTFQStsJ6r+Hl6nHQgghhIOT5MVORZ1Rh4y63exZRmd3wLaP1Me3fQwejrXSRPytdi0nPrirDQBLouLZdfpSxQqo3wNqh0FhFsSstHyAQghRxSR5sUNGk5noc+kAdAq7iZ2FC7Lg14cBBdqMh2a3WTQ+UfW6NPBlXOdQAP5v+WGKTOby36zVQls5rFEIUX1I8mKHYhIyyS004emip3GAe8ULWPsfSD8LXvVg6DuWD1DYxItDmuHtZuBEcja/7DtfsZvbjgM0ELcV0k5bJT4hhKgqkrzYoT1xlwHoUL92xee7HFsN+74DNDDqS3DxsnyAwia83AxM69cIgA8jT5BvrMBZEV51oeEt6uPoxVaITgghqo4kL3Zo71k1eelY0SGjnFT47cpGZN0eg7CeFo5M2NrErvUJ8XYlMTOfhTsreFxE8Z4v0Yup3CFZQghhW5K82BlFUdgdp07W7Vi/AqdIKwr89iTkpEBAc7jlZStFKGzJxaDj8VvU3pc5W09TUFSBJKTpMHDxhswLcHqTVeITQoiqIMmLnTl/OY/krAIMOg1tQr3Lf2P0Yji2CrQGGD0bDJU4TkDYtVHtQwj0dCYps4Bf910o/40GF2h9l/pYJu4KIRyYJC92Zs9ZtdelRR2v8h/EePks/PGC+rjffyColZWiE/bAWa9jSi91p+Svt5zGZK7Atv/FQ0fHVkFumhWiE0II65Pkxc7sj08H1Mm65WI2wfKp6h4eoV2hx5PWC07YjXGd6+HtZuBMak7Fzj0KbqMmt6ZCOPSz9QIUQggrkuTFzhw8nwFQ/iGjHZ/D2e3g5C6HLtYgtZz13NstDIDZW06hVOTQxXb3qP/u/97ygQkhRBWQ5MWOGE1mjiaoh++1DinHEufEw7DxdfXx4LfAJ9yK0Ql7c1+3+jjrtRw4n1FyiGe5tLoTdE6QeBASDlovQCGEsBJJXuzI8aQsCovMeLjoqe/rVvbFRQXqLrqmQmgyFNrfWzVBCrvh6+7MXR3VXXe/3nKq/De6+UDEcPVx9CIrRCaEENYlyYsdOXRlyKh1XS80NzpE8c+3IOmweuji7XLoYk31YK9wtBrYFJtCzJVeu3IpPi7g4A9qIiyEEA5Ekhc7cvCCmry0CvEu+8Kzf8H2j9XHt30C7gHWDUzYrfq+tRjaKhiA2VsqsO1/w37gUQfyLkPsaitFJ4QQ1iHJix0p7nlpVdZ8l4Is+PURQIG2E6DZrVUTnLBbD/dWl02vPHCR85dzy3eTVgdtx6uPZc8XIYSDkeTFThQUmTiWeGWybt0ykpc1M/4+dHGIHLoooHVdb7o39MVkVpi3La78NxYnLyc3QEYFD3oUQggbkuTFThxPzMZoUvB2M1C3tuu1Lzr2+5XlrRp1WbSLZ5XGKOzXw30aArB0dzzpuYXlu8m3IdTvCShwYIn1ghNCCAuT5MVOHLyQDqhDRtecrJudAiuvHLrYfRqE9ai64ITd693Yj4ggD3ILTRU7sLF4x939i9TzsYQQwgFI8mIn/rnS6CqKAiunQW4qBLSQQxfFVTQaDY9c6X2Z/1cc+cZyHtjY/HZw8oDLZ9SJ4EII4QAkebETB8+XsdJozzw4vkbdWGz0bNA7V21wwiEMbx1MiLcrqdmFzNt+pnw3OdWClqPUxzJxVwjhICR5sQP5RhPHk7KAa/S8pJ6AtS+pj/u/AkEtqzg64SgMOi3PDm4CwGcbT5KUmV++G4uPCzi6HPIrsFeMEELYiCQvdiAmIZMis4KfuxPBXi5/v1BUCL88CEV50KAvdH3UZjEKxzCiTQjt6nmTW2ji9VVHy3dT3U7g1wSMuXDkV+sGKIQQFiDJix04dOHv/V1KTdbd9DYkRINrbRj5JWiluUTZtFoNs25vgU6rYdXBBH7dX44l0BrNPybuytCREML+yW9DO3DwWpvTxW2HbR+qj2/7GDzr2CAy4Yha1/Xmqf6NAfjPssPsi79cjpvuBo0OzkdBynErRyiEEJUjyYsdKNlZt663+kReunroIop6Bk3zEbYKTTioR/s1ok8Tf/KMJibNi2LbidSyb/AIhCaD1cfR0vsihLBvkrzYWG5hESeS/zVZd/WzkHEOaofDUNlFV1ScTqvhy4nt6Vi/Npn5Rdwzbxcv/HyQUynZ17+p7QT13+glYDJWTaBCCHETJHmxsaMXMzErEODhTKCnCxz8CQ79pHbhj54Dzh62DlE4KDcnPQsf7MLdnUJRFPhhzzn6v7+ZUV9sZ8FfcaRm/+s06SaDoVYA5CRD7B+2CVoIIcpBkhcbKzXfJT0efp+uvtDneQjtZMPIRHXgYtDxzpjW/DK1G/0jAtBpNeyPT+eVlUfo8tYGpi3ex4X0PPVineHvibt7v7Vd0EIIcQOSvNhY8UqjNiEesOxhKMiEup2h17M2jkxUJx3q+zB3Uid2zLiFmbc2p01dL0xmhVUHExjy4Ra2HE+5cuF9gAZObYS00zaNWQghrkeSFxsrTl6GZ/0I8X+Bk7u6i65Ob+PIRHUU4OHC/T3DWTGtJ6uf6EXbUG+yCoq4f/5utp9Mhdph0Ki/evHeBTaNVQghrkeSFxvKLijiVEo2bTQnaXD4Y/XJof8Fn3DbBiZqhOZ1PPnh4a4MbRlEkVnhke/3En8pFzpMVi/YvxCKCsouRAghbECSFxs6ciEDdyWXL5w/R2MughajoO14W4clahBnvY4Px7alfT21B+a5nw9gbjwYPILVg0BjfrN1iEIIcRVJXmzo0Pl03jTMJYQk8K6nbkb3zx12hagCLgY1gXFz0rHrTBq/RCdC+3vVF/fOt2lsQghxLZK82JDb0aXcrtuBGR2MmQcuXje+SQgrqO9biyev7Mr7QeRx8ltPAI0W4rbKjrtCCLsjyYutpMQyKlGd5xLX5mlZFi1s7r7uYYR4u5KQkc/CoyZofGXHXel9EULYGUlebMGYj+nHybhSwFZTS7wHPmfriITAxaBj2i2NAJi37QxF7SepL0QvAmOe7QITQoh/keTFFiJfRpdyhFTFk/dqPY2Pu4utIxICgFHtQvBzd+ZiRj6/5TYDr1DIT4ejK2wdmhBClJDkpaod+x2iZgPwjHEqIaGyLFrYDxeDjsk9wgCYt/3clU3rgD3zbBeUEEL8iyQvVSnjPCx/FID1te9is7kNrUK8bRuTEP8yrnM9DDoNhy5kcCx4BGj1cG4XJBy0dWhCCAFI8lJ1TEXwyxS1C75OO17PvQP4x0nSQtgJn1pODGoRBMCiI4XQfIT6QtTXNoxKCCH+JslLVdn4+pXt/z1IHfwlZzOK0GokeRH2aVynegAsj75AQfsH1ScP/gQ5l2wYlRBCqCR5qQqxa2D7R+rjEZ+yO9MbgCaBHni4GGwWlhDX072hL6E+rmTlF/H75VAIbgumAtgn5x0JIWxPkhdru3wWfn1Yfdz5YWgxin3xlwFoX7+2DQMT4vq0Wg13tA8F4Nfoi9Dlyvfw7rnqEKgQQtiQJC/WVFQAP92nznMJ6QCD3gBgX3w6AB3qSfIi7NfIdnUA2H4yleR6w8DNDzLPQ+zvNo5MCFHTSfJiTWtfgov7wcUb7pwPeicKikwcOp8BSM+LsG/1fWvRvp43ZgVWHkmDDpPUF3bJxF0hhG1J8mIth3+B3XPUx6NnqwcvAkcuZlJoMuNTy4kwXzcbBijEjY1qXxdQJ+7S8X7Q6ODsdkg8ZOPIhBA1mSQv1pB6AlY+oT7uOR2aDC55aW+cOt+lXag3GjlBWti5W1sFo9dqOHwhkxP5ntD8dvUF6X0RQtiQJC+WVpANP94LhdlQvyf0e6nUyztOq0tNuzbwtUV0QlRI7VpO9G0aAFzpfel8ZeLuoZ8gN82GkQkhajJJXixJUWDFo5B8FNwD4Y65oNOXvGw0mdl1JXnp1lCSF+EYRrULAWD5/ouY63aBoNZQlA975to4MiFETSXJiyVt+1A9wE5rgLu+B4+gUi8fupBBTqEJL1cDzYM9bRSkEBXTv1kAHs56LqTnsSc+Hbo/rr6wazYY820amxCiZpLkxVJOrIcNr6mPh/0P6nW56pIdp4qHjHzQamW+i3AMLgYdQ1upifiv+y9Ai1HgWRdykuHgDzaOTghRE1VJ8vL5558TFhaGi4sLXbp0ISoqqszrf/rpJyIiInBxcaFVq1asXr26KsK8eWmn4Zf7AQXa3wcdJ1/zsr9OpQLQvaFfFQYnROWNvDJ0tOrgRfLNWug6VX1hx2dgNtswMiFETWT15OWHH35g+vTpvPLKK+zbt482bdowePBgkpOTr3n9X3/9xbhx43jggQfYv38/I0eOZOTIkRw+fNjaod6cgmxYOgHyM6BuJ7XX5Rqy8o1EnVEnOPZsLMmLcCxdw30J8VaPC1hzOBHa3wvOnpB6HE6stXV4QogaxurJywcffMCUKVOYPHkyzZs356uvvsLNzY158+Zd8/qPP/6YIUOG8Nxzz9GsWTNef/112rdvz2effWbtUCtOUWDltL8n6N71Peidr3npluOpGE0KDfxq0dDfvYoDFaJytFoNYzupxwUsiYoHF8+/N63761PbBSaEqJH0N77k5hUWFrJ3715mzJhR8pxWq2XAgAHs2LHjmvfs2LGD6dOnl3pu8ODBLF++/JrXFxQUUFBQUPJ5ZmYmAEajEaPRWMl3UFpxecX/are9j+7IryhaA6bR81Bc/eA6dUYeSQCgX1M/i8clyvbvdhM3Z2SbID5af5xdZ9I4npBOeIcp6Hd+gebsdoridqGEtLdofdJujknazTHZQ7tVpG6rJi+pqamYTCYCAwNLPR8YGMixY8eueU9iYuI1r09MTLzm9W+//TazZs266vl169bh5madHWwjIyOpc3kXneI+B+BAyETOHroEh649N8dkhnVHdIAGt/RTrF59yipxibJFRkbaOgSHF+Gl5Wi6lnd/2srt9c208+5CvbTtJC3/P/aET7NKndJujknazTHZst1yc3PLfa1Vk5eqMGPGjFI9NZmZmYSGhjJo0CA8PS27HNloNBIZGcngln44L1H3uDB1foQWA9+gRRn3/RmbQu6u/fjWcuLROweg18kir6pU3G4DBw7EYDDYOhyHZghL5tEl0exLd+bDB3rjmh4Gc3pTJ2MPw7pGgE8Di9Ul7eaYpN0ckz20W/HISXlYNXnx8/NDp9ORlJRU6vmkpCSCgoKueU9QUFCFrnd2dsbZ+ep5JgaDwSoN4FJ4Cedlz6IpyofGg9ENeQudVlfmPSsOqL1GI9qG4Opy7Tkxwvqs9T1RkwxqGUyoTyzn0vJYcTCRe7q1gUYD0ZyMxLDrM7jd8vNfpN0ck7SbY7Jlu1WkXqt2ATg5OdGhQwc2bNhQ8pzZbGbDhg1069btmvd069at1PWgdmNd7/oqVZhN19MfoslJhoAW6g66N0hc0nMLiYxRk7HR7UOqIkohrEav0zKll9q7MnvraYpMZuj9nPpi9BJIP2fD6IQQNYXVxy+mT5/OnDlzWLBgATExMUydOpWcnBwmT1b3Qrn33ntLTeh98sknWbNmDe+//z7Hjh3j1VdfZc+ePUybZp3x9HIzm9AtfwSvvHiUWv4wfik4e9zwtoU7z1JYZKZ5sCct6siuusLx3dkhFJ9aTpxLy2N59EV1Q8awXmA2wvaPbB2eEMKaTEXw+7OQdsamYVg9eRk7dizvvfceM2fOpG3btkRHR7NmzZqSSbnx8fEkJCSUXN+9e3cWL17M7NmzadOmDT///DPLly+nZcuW1g61bDu/RHtiDSaNAdOd34N3vRvekm80Mf+vswA81LuBnCItqgVXJ11J78t7a2PJLSyCPs+rL+77HjITyrhbCOGwFAV+nw6758B3t0NRoc1CqZIJu9OmTbtuz8mmTZuueu7OO+/kzjvvtHJUFdRhEua4bewvDKdNSMdy3TJ7y2lSswsI8XZleOtgKwcoRNWZ3COMRbvOcv5yHp//eZLnBvWC0K5wbqe678uQt2wdohDC0ra+D/sWABoY8g7onWwWiix7KS9nd0x3fMeF2l3LdfmJpCy+2HQSgBeGRmCQFUaiGnEx6Pi/4c0A+HLTKXafvfz33Jc98yAn1YbRCSEsbt93sPF19fHQ/0LEcJuGI79RK6Kcwz7JWfk8vHAv+UYzvRr7cZv0uohqaEjLYEa3D8GswKOL9nHOpxvUaQdFeeqZR0KI6iFmFfz2pPq4x1PQ5SGbhgOSvFiU2ayw8VgSoz7/i9MpOQR5uvDBXW1lrouotmbd3oKmgR6kZBUw7ptdXGh1ZXh412zITrFtcEKIyovbDj/fD4oZ2k2EAa/aOiJAkheLSMrM55MNJ+j9vz+5f/4eLqTnUc/HjaUPdcXfQ/Z1EdWXh4uB7x7oTJivG+cv5zHoj1qkejYHYw5s+9DW4QkhKiPxECwZB6YCaDocbv243CMQ1ibJSyWk5RTy/M8H6PHORj6IPM75y3l4uuh5sGc4q5/sRZhfLVuHKITVBXq68OujPejWwJecQjPTU28DwLz7G8g4b+PohBA3Je0MLBwDBRlQr7u6r5nOfjblt59IHMzxpCzunRtFYmY+AJ3CajO+Sz2GtgzGxVD2xnVCVDe1azmx8MEuLN51lnfX6NhljqALxziw6CVaPPytHIkhhCNJj4cFt0N2EgS2hHFLwOBq66hKkf9RbkJCRj7j5+wkMTOfBv61+GVqN356pDuj2tWVxEXUWDqthnu6hRE5vQ+b6z4CQIuklcz4ZgU5BUU2jk4IUS6ZCbDgNsiIB5+GMPEXcPW2dVRXkeSlgswKTFsaTWp2Ic2CPVk2tTsd6vvYOiwh7EawlyvPPzSZpMDe6DVmepyfzdRF+zCazLYOTQhRBmdjOvpFI+FyHNQOg/t+A49rnytoa5K8VNC2RA0Hz2fi6aJn9j0d8Haz3SY9QtizwJFvAHC7dgcpJ/bw7h/HbByREOK6clLocfIdNGmnwKuemrh42e95fJK8VEBGnpHV59Qv2XNDIgj1cbNxRELYseA20GI0Wo3Cf/SLmLv9NDtPX7J1VEKIf8tORr9oNB75F1E86sB9K8t1BI4tSfJSAQt3nSPPpKFJgDvjO9t3wwphF/rPBJ0TvXSH6auJ5uXlh9WTqIUQ9iHjAnw7FE1KDPl6b4om/go+4baO6oYkeSmn3MIiFuxQD1l8pE84Oq19rHUXwq75hEPXqQDMdFrEmeR0ft4ry6eFsAtpZ+DbIXDpJIpnXbY1eUmdpFuG9NxCHl+yn+0nU1EUpYoCvZokL+X0057zXM414uusMLRFoK3DEcJx9HoG3PwI5yLjdRv4ZMMJmbwrhK2lHIdvh6rLon0aUHTvKnKcb/y77Zd9F/jtwEXe+D2mCoK8PkleyumujqG8PDyCW+uZZc8KISrCxQv6/QeA6YZlZGeksvpQgo2DEqIGuxitJi5ZCeAfAZP/AK+6N7xNURSWRMUDMKFLPZsefSO/hcvJ1UnHvV3r0d7Pdt1kQjis9veBfzO8yeIJ/a/M3nLapl3OQtRYJ9fD/OGQmwpBrWHS6nIvhz58IZOTydk467WMaFvHyoGWTZIXIYT16fQw+E0AJunWYko4zP5z6baNSYiaZv8iWDwWCrMhvA9MWgW1fMt9+4roCwAMaB6Ih4vBWlGWiyQvQoiq0ag/NLsdvcbMG4Z5/Lw73tYRCVEzKAps+R+seBTMRdDqLpjwszqkW04ms8LKAxcBGNnW9vu/SPIihKg6Q97GpHejo/Y4uoOLySs02ToiIaq3okJY+ThsVDeNpMdTMOpr0Fdsg9Vdpy+RnFWAl6uBPk38LR9nBUnyIoSoOl510fSbAcDTLGTDPtuuWBCiWstOVs8p2v89aLQw9H8wcBZoK/6r/4/DiQAMbRmEk972qYPtIxBC1CjarlNJdWuIjyYbj21v2DocIaqnhAMwux+c2wnOXjD+J+jy0E0VpSgKG48lAzCwuX1sFSLJixCiaukM5A9+H4A+2X+QHbPBxgEJUc0c/gXmDobM8+DbGKZsgMYDbrq42KQsLqTn4azX0r2hnwUDvXmSvAghqlzdNv34zWkoAJqVj0NBto0jEqIaKCqA35+Fn++HojxoNAAeXA9+jStV7IYYtdelZyM/XJ10loi00iR5EULYxPkOL3Je8aNW3gVY/6qtwxHCsaWdgbmDYPcc9fOeT8P4H8HVu9JFFw8Z3dIsoNJlWYokL0IImxjYrhHPG6+Mwe+eA2e22jYgIRxVzG/wdR9IiAbX2ur8lgGvgrbyvSRpOYXsi78MwC0RkrwIIWq4RgHuXPLvxqKi/uoTKx6DgizbBiWEIynIht+ehB8mQkEG1O0Mj2yDJoMsVsWm2GQUBZoHexLs5WqxcitLkhchhM0MbRXE20XjuKQLgPSzsPp5W4ckhGOI3wVf9YS989XPu02DyavLdUZRRWy4MmTU346GjECSFyGEDQ1pGUQ2bjxeMBVFo4UDi+HQz7YOSwj7VVQIG16Db4fA5TPgWRfuXakev6Gz7Jb9hUVmtsSmAPY1ZASSvAghbKhpoAfhfrX4q6gpx5s+oj656mm4HGfTuISwS+f3wpx+sPV9UMzQ+m6Yuh0a9LFKdXvi0sgqKMK3lhNt6npbpY6bJcmLEMJmNBoNg1uoJ9p+VjQaQrtCQSb88iCYjDaOTgg7UZAFf7wI3/SHpMPg6gN3fQejv7bIaqLrKR4y6hcRgFarsVo9N0OSFyGETQ1tqSYvG45fIn/E1+puoOd3o/3zNRtHJoQdOL4WPu8Ku74EFGg9FqbthuYjrF518RLp/nY2ZASSvAghbKx1XS/qeLmQW2hiS5ILjPwcAN2uLwm5vNPG0QlhI+nx8MM9sPgudadc73ow8RcYPRtqWX+X29Mp2ZxJzcGg09CzsX3sqvtPkrwIIWxKo9Ew+Ervy5ojidDsNug5HYC28d9A0hFbhidE1SrMhT/fhs86QcxK9UDF7o/DozvVHXOrSHGvS5dwXzxcLDsR2BIkeRFC2NzQlsEArD+aRGGRGW75P8zhfdGbC9H/MgnyLts0PiGsTlHgyK/weWfY/A4U5UP9nvDwVhj0BjjVqtJw1sckAfa3yqiYJC9CCJvrUL82fu7OZOYXseP0JdDqMI2cTY6TH5rLZ+CnSdVuAq/ZrGA2K7YOQ1SR3MIi8gpN134x4QAsuE39Ps84B16hcOd8mLQKglpWZZgAZOQZ2R2n/sFgb/u7FNPbOgAhhNBpNQxqEcjiXfGsOZxInyb+4OZDVPiT9D39DprTm2DVU3D7Z6Cxr1UPFXXgXDrvRx5n56lL6LQa+jcL4IUhEYT6uNk6NGFhKVkFzNt+ht8OXOT85TwAQn1cGd6qDvf3CCOgKAE2vgGHr+xtpHeBHk9BjyfBqfzfD/lGE4qCxQ5N3HI8BZNZoVGAO/V9q7bHp7wkeRFC2IWhLYNYvCueyKOJvDFS/Wsz060+ptHfoP9xAuxfCLXDofezNo705i2Niuf/lh+mqLjHxQSrDiaw7WQqCyZ3pk2ot03jE5ahKApLd5/jrdUxZOUXlXrtXFoeP23eR92drzBOux6dcuX1VndB/5fVibnlUFhk5sc951i0K55jiZkoinrkxgM9w7mrYyi6SixttudVRsUkeRFC2IWuDXzxcjWQml3Inrg02od6AqA0GghD/wurn4WNr4N3fWh9p42jrbhl+87z4rJDAAxvFcxTAxqTW2hi5orDHDifwf3zd/Pb4z2p420/58eIiisoMvHy8sP8uOc8AC1DPHmsbyO6N/KDgmyS171P3ZhvcFXyQIEjrp0IG/sutcI6lLuOk8nZPLl0P0cuZl71/Ixlh1hzOJFPx7fD8yYm2hYWmdlg5/NdQOa8CCHshEGnZUCzQAD+OJxY+sXOU9SzWwCWP6LufeFATqWov1QAJnUP47Px7Wgc6EGbUG8WTelK82BPLuUU8sIvB1EUmQfjqFKyCrh79k5+3HMerQaeH9KUFY/1ZGhzP7wOzcdrTicaH/0UVyWPVI/m3Ff0EsMvP81tv2RxIunGh5IqisKiXWe59dOtHLmYSW03A6/c1pzdLw1g38sDefnW5rgYtGw+nsID83dff45NGf46fYnM/CL8PZzpGOZzM1+GKiHJixDCbhRvWLf2SOLVk1kHvg6t7gRzkbr/xZktNoiw4opMZp758QAFRWZ6NfZj5q3N0fxj3o67s57PxrfDxaBl64lUlu27YMNoxc06kZTFqC+2sz8+HS9XA/Mnd+bR3g3QHb2ygmj1s5CTog593vEtfk9v5+mHHyLYy4XTKTnc9tk2ftxz7rrJa2p2AVO+28tLvx4m36h+L619qjeTe4Tj7+GMTy0nHugZzo8Pd8PDRc/uuMs89/OBCifDqw+rvS7DWgZVaujJ2iR5EULYjZ6N/ajlpCMhI59D/+oSR6uFkV9C02FgKoAl4+D8HtsEWgFfbzlN9Ll0PFz0vDum9TW3WW/g786T/ZsA8P66WPKNFf+LWVTe5ZxCVh9K4Psdcaw+lEBiRn657tsQk8ToL//i/OU8wnzd+PXR7vTWHVLPIfp5MqSdhlr+MOw9dXfclqNBq6VtqDe/Pd6TXo39yDeaef7ngzz0/V6O/6MXJt9oYvGueAZ/uIX1MUk46bT83/BmLJjcmQBPl6tiaV3Xm2/u7Yheq2HVwQQW7Yov9/svMsP6GHW+y/DWdcp9ny3InBchhN1wMejoFxHAqoMJrD2SxFWLRHUGuONbddfRM5th4Ri4dznUaWeDaG8sJiGTj9YfB+DV21qUOZ9lco8wvtsRx8WMfBbuPMuDvRpUVZg1Xr7RxPvrYpn/VxxGU+meimbBngxpEcTgloE0DfQo1WuWml3AB5HHWXwlQehYvzZzB+rwWj1e/f4EcHJXN5nrNg2c3a+q28/dmQWTO/Pl5lN8EHmcyKNJRB5NItyvFl6uBk4kZZFzZfgnIsiDD8e2pVmwZ5nvp0sDX14YEsGbq2N4bdVROobVJiKo7HsADl/WkJVfRKCnMx3r177h9bYkyYsQwq4MaRnEqoMJrDuaTIsm17jA4AJ3L4aFo+HcLlhwu7ptemjnKo+1LIVF6nCR0aQwoFkgo9uHlHm9i0HHUwMa88Ivh/hm6xnu7RaGk146x60tI8/IA/N3s+esuq9J00AP6vm6kZiRz+GLGcQkZBKTkMmH649T39eNPk38cXfWczI5my0nUsg3mgF4roOGR0xfoFv4m1qwzgk6PQi9nrnhdv5arYbH+jViUPNA3lsXy/qYZM6k5pS8XsfLhSm9GzC+Sz2c9eVbDv1gr3B2nL7ExmPJPLFkPyun9cTFUPa9fyWpidkdHera3UGM/ybJixDCrvRrGoCzXsvZtFwu5l7nImd3NWFZPBbObofvRsKEHyGsZ1WGWqbPNp7gaII6qfKt0S1L/cV+PSPbhfD+uuMkZuaz8sBF7uhQtwoirbmKTGamLd7HnrOX8XTR89HdbbklIrDk9bScQjbEJLH2SCJbTqRy9lIu3+04W6qMvkFG3vX7ncCjP4NiBjTQZhz0fRFq169QPI0DPfj6no6k5xZy6EIGOQUmQn1caRbkWeFkQqPR8N87WjPko60cT8rm7dUxzBpx/Q3v4tNyic3QotHA3Z3Kt1zbliR5EULYlVrOeno38SfyaBL7LpXR8+DsARN+hqXj4PQmWHgH3L2wSs9/uZ4D59L5fNMpAN4Y2YoAj6vnJlyLs17H/T3DeeePY8zecoox7UPKlfSIm/PpxpNsPZGKq0HH4ildaRniVep1n1pO3NkxlDs7hpJTUMSm2BQOXkinwGgmzK2A4ZlL8TsyH016gXpD02Fwy8sQ2LxScXm7OdGrsX+lygB1SOq9O1sz6dvdLNhxlj5N/UslZ/80b7ualPVs6OsQGyZKn6QQwu6MaqcOsexM1qhnHV2PkxuM+wEaD4aiPLUn5sAPVRTlteUVmnj6x2hMZoXb2tRheOvgCt0/vks9ajnpOJ6Uzc7TaVaKUpxMzuKLTScBeGdMq6sSl3+r5axneOtgZgxsyKv+m5m0ZxT+B79GYyqAet3h/nUwbkmlExdL69s0gMk9wgB49qeDJGddPQk5ISOPH/eq+9I83Du8KsO7aZK8CCHszsDmgQR4OJNt1BB5ZfXDdRlcYOxCaDlGXUb960Ow9QP1oDsbeGt1DKdTcgjwcOa121tU+H5PFwMjriRvi3advcHV4ma9uvIoRpPCLREB3N6mHCtrFAWO/Q5fdIW1MyA/HQKaw/ifYPJqqNfF6jHfrBeGRBAR5EFaTiHP/nTwqm0IXvtN/Vo09FDoHGbfE3WLSfIihLA7Bp2Wuzqov8AXR5278Q16Jxj9zd8b2W2Ype6rYa7aJceRR5P4fqeacLx3Zxtq13K6qXLGd1bnHKw9kkhqdoHF4hOqXacvse1kKgadhlm3t7jx0FzxwYlLx0PaKXXZ820fwyPboMkguz9vy8Wg45Nx7XDWa9lyPIVXfzuC6UoC892OOP44nIhOq2FMuMlhhikleRFC2KW7OtZFi0JU3GUOnk+/8Q1aLQx+E4a8A2hg9zewdAIU3HjnUks4kZTF0z9EA+qy595Nbn7OQssQL9qEemM0Kfx0ZZt5YTkfXlm+flfH0LLnd+SkworH4Os+ELcVdM7q6qHH90GHSaC1zEGIVaFJoEfJmWHf7TjLsI+3cs/cXcxccQSAp25pSIh9nsF4TZK8CCHsUrCXCx381L8OP914svw3dp0Kd36r/qI5/gd8MxDSzlgpStWF9DzuX7Cb7IIiOof7MGNos0qXOaGL2vuyOOrs1bsNi5u29+xldp5Ow0mn5bF+ja59kdkEu+fCpx3UA0FRoOUd8Pge6D8TXG68Z4o9urNjKJ+Oa4eHi57YpCy2nkgFYFq/Rg4z16WYrDYSQtitgXXN7LmkJfJoEocvZNxwUmWJFqPAK1TteUmJgTm3wF3fQXgvi8cYl5rDPfN2cS4tj/q+bnw1sYNF9me5rXUdXl91lHNpeWw7mVqpnhzxt+92xAFwe9s619408MI++H06XNyvfh7YCoa/b9dzWiritjZ16NnIj8ijSWQXFNGrsR+NAz0wGo22Dq1CpOdFCGG3Al3h1lbqeUevrTpasXNa6naEh/5Ud9/NS4PvR6pDSRa0/mgSt3+2rSRxWTKlKz43Oc/l31yddIy+MnF36e7yb/Euri85K5/VhxIA9YDMUvIuw6qn1UT34n5w9oQh78JDm6pN4lKsdi0n7uoUyv09w2kc6GHrcG6K1ZKXtLQ0JkyYgKenJ97e3jzwwANkZ2eXef3jjz9O06ZNcXV1pV69ejzxxBNkZGRYK0QhhAN4ZmBjXAxaos6ksfLAxYrd7FkHJv/x94GOvz8DKx8HY/nOrLme5Mx8pi3ex4Pf7SEzv4j29bz58eFuZW7/fzPGXRk6WnckiZQsmbhbWUujzmE0KbSv5126Fy/mN/i8C+yZByjQ6i6Ytge6PgI6GaCwR1ZLXiZMmMCRI0eIjIxk1apVbNmyhYceeui611+8eJGLFy/y3nvvcfjwYebPn8+aNWt44IEHrBWiEMIBhHi78lhfdW7CKyuPkJCRV7ECDK4weg70fwXQwL7vYN4guBxX4ViKTGa+3X6G/h9sZtXBBLQaeLBnOEsf6kbgNQ7Jq6yIIE/a1fOmyKzw816ZuFsZZrPCkii1B+u+4l6X7GT48T74YSJkJ4FvY7hvFYyZAx7X3sxN2AerpJQxMTGsWbOG3bt307FjRwA+/fRThg0bxnvvvUedOlevqW/ZsiW//PJLyecNGzbkzTffZOLEiRQVFaHXS/YrRE31UJ8GrDuaxKELGTy5JJqFD3ap2LwSjQZ6TYfgNvDLg+rS16/7wJhvoPHAchWxJy6Nl349TOyVE39b1/XirVE33tysssZ1qsf++HSW7o7n4d4N7P7MGXu188wlEjLy8XTRM6RFoLqZ4ZoX1OEijQ56PAl9XlD3DRJ2zyoZwY4dO/D29i5JXAAGDBiAVqtl165djBo1qlzlZGRk4OnpWWbiUlBQQEHB392pmZmZABiNRotPQCouz9EmNtV00m6O6Z/tZjAY+PDOVoz4cgdRcWk88+N+3hvTquK/yOv3hgc2ovtlMtqE/SiL7sTc8xnMvZ677rLXIpOZLzaf5vNNpzEr4O1q4JmBjbmzQwg6rcbq31eDm/sxa5WOs5dy2XYiiW4NfK1aX2XZ68/bsis9V3c11WP44W44GQmAEtCSols/VhNbADuLu6rYQ7tVpG6NUqEZcOXz1ltvsWDBAmJjY0s9HxAQwKxZs5g6deoNy0hNTaVDhw5MnDiRN99887rXvfrqq8yaNeuq5xcvXoybm/2fzyCEKL+Yyxpmx2oxKxq6Bpi5q4EZ3U10RGjNRlpeWER46kYAkj1asjdsKoX60pMXC0ww/7iWo+lqL08nPzOjwszUMlT6rVTIj6e1bE/S0s7XzKQmZRyXIK6p0AQv79XRR9nDRy5zcDVnY9LoOR40khOBw1A00rNvD3Jzcxk/fnxJx0VZKtRiL774Iu+++26Z18TExFSkyGvKzMxk+PDhNG/enFdffbXMa2fMmMH06dNL3RsaGsqgQYNu+OYrymg0EhkZycCBAzEYqvh/L3HTpN0c07XabRjQ+EACz/1yiJ3JWmr5BPLhna1xdbqZzcJGUHToR3SrnyEg6zBDzr6Nacw8lDrtAUjPNfLA93s5mp6Ji0HLGyNaMKJNxc4pspSwhExGfLGTw+k6uvS5BV8LrWiyBnv8eVu3/xSz9r3AWMMmMIMS2ArziC9p5B/BdXZ6qXHsod2KR07Ko0LJyzPPPMOkSZPKvKZBgwYEBQWRnFz6PJKioiLS0tIICgoq8/6srCyGDBmCh4cHv/766w2/iM7Ozjg7O1/1vMFgsFoDWLNsYT3Sbo7p3+02pmM93F2deHzJfjYcS2HCvD3MvrcDwV43sdKn/QSo0wZ+vAdN2mn0390KQ98lp+U9PLRoPwfPZ1LbzcA393WiQ33bnfnSpp4vret6cfB8BisPJvJQ74Y2i6W87ObnLX4XndbdR4A+AQUNmh5Poun3Ega9/SaAtmTLdqtIvRVabeTv709ERESZH05OTnTr1o309HT27t1bcu/GjRsxm8106XL99fKZmZkMGjQIJycnVq5ciYuLTJwSQlxtcIsgFj3YBZ9aThy6kMHtn21nX/zlmyssqKW6l0fErWAqhFVPs++TccTEJ+HlamDpQ91smrgUG3flvKOlUecqtt9NTWU2wZ9voXw7hICiBM4rfpwf8RMMnKWehSUcmlWWSjdr1owhQ4YwZcoUoqKi2L59O9OmTePuu+8uWWl04cIFIiIiiIqKAv5OXHJycpg7dy6ZmZkkJiaSmJiIyVS1h6sJIexfpzAfVjzWg4ggD1KyCrh79k6W7bvJ5cQuXjB2Ieb+szCjpVduJMudX2XRmACaBtnHJl63talDLScdp1Nz2HUmzdbh2LecS7BwDGx+F41iZpmpJ0/V/pzQduVbWSbsn9X2eVm0aBERERH079+fYcOG0bNnT2bPnl3yutFoJDY2ltzcXAD27dvHrl27OHToEI0aNSI4OLjk49y5cpwqK4SocUJ93PhlancGNg+ksMjM9B8P8PbqmJITcytEo+HtzEFMKJzBJcWTCM1ZWv52O8T+YfnAb4K7s57b26o77hbvVyKu4cJemN0HTv8JBjc+8XqO6cZHGdS+sa0jExZkteTFx8eHxYsXk5WVRUZGBvPmzcPd3b3k9bCwMBRFoW/fvgD07dsXRVGu+REWFmatMIUQDq6Ws56vJ3Zg2pVD9r7ecpop3+0hK79iSz7nbz/DnK1n2GFuwe7BK6BuZyjIgCV3w4bX1GEIGxvXORSAPw4ncjmn0MbR2BlFgT3fwrwhkHEOfBqQeOcqPkhqh0YDt7cJsXWEwoLkbCMhhMPTajU8O7gpn4xrh7Ney8ZjyYz64i/iUnPKdf+qgxeZteooAM8NbsqQ7u1h0u/Q+WH1gq3vw/ejICfVWm+hXFqFeNGijieFRWaW7b9g01jsijEPVjwGq55S5y01HQ4PbeLn8+qK0+4NfQnykjmU1YkkL0KIauP2NnX46ZFuBHm6cDI5m5FfbOevk2UnHL8duMiTS6NRFBjfpR6P9r2ykkfvBMP+C2PmgsENzmyGr3vD+T1V8E6uTaPRlEzcXRIVLxN3AdLOwNyBEL0INFr1GIixC1GcPfn1SoI3sq30ulQ3krwIIaqV1nW9WTmtB21CvUnPNXLPvCjmbz+D+V/zYIpMZj5ef4Inlu7HZFa4o0NdXh/REo3mX7vetboDpmwE30aQeUEdloiaow5T2MCItnVwc9JxMjmbHacv2SQGu3F8HczuC4mHwM0X7vlVPQZCq+XIxUxOpeTgrNcypGXZW3QIxyPJixCi2gnwdOGHh7oyql0IJrPCq78dZdgnW/lm62nWH01i3rYzDPtkKx+uP46iwD1d6/PumNbornfcQEAzmPInNLsNzEZY/Sz8+og6XFHFPFwMjGqn9iQs3Hm2yuu3C1eWQbP4LshPh5CO8PAWaNC35JLiXpcBzQPxcLGD/WaERcmeyEKIasnFoOODu9rQuq4XH0Qe51hiFm/8XnoHcC9XAy/f2pw7OtQtR4GecNf3sOMziHwFDi6F1ONw9yLwvPqwWWu6p1t9Fu2KZ+2RJBIz8mvWfI7cNFg2BU6uVz/v9CAMfgv0f29WWmQys/LARUCGjKorSV6EENWWRqNhco9wRrUL4Zd9F9h2IoWU7AJ8aznTq7Efd3Soi7dbBTYs02ig++MQ1Bp+ug8u7oPZ/WDsQgjtZL038i8RQZ50DvMhKi6NxVHxTB/YpMrqtqmL0fDjPZAeD3pXuO0jaHP3VZdtP3WJlKwCarsZ6NPEv8rDFNYnyYsQotrzdnPigZ7hPNAz3DIFNuijDiMtGQcpMTB/GNz2MbQdb5nyy+GebvWJiktjSVQ80/o1wklfzWcB7Psefn8GTAVQO0xNGINaXfPS5VeGjG5tXaf6f11qKGlVIYS4GT7h8GCkuizXVAjLp8Lal8BUVCXVD24RhL+HMylZBaw9klglddqEMR9WPgErp6mJS5Mh6nEO10lccgqKWHNY/XqMai9DRtWVJC9CCHGznD3UHoDez6uf7/gMFt8JeTd5zlIFOOm1Jcumv99RTSfupsfDvMGwbwGggVv+D+5eAq7XP2tq3dFE8owmwnzdaBfqXWWhiqolyYsQQlSGVgu3vAR3zlf3gzm1EebcAimxVq96fOd66LQaouLSOJaYafX6qtTJ9eq+OgnR4OoDE3+B3s+pX+8y/Lr/ykTddiFXL3sX1YYkL0IIYQktRsH9a8ErFNJOw5z+cHytVasM8nJhcItAAL6rLr0vZjNs/i8svEPtwarTDh7eDI363/DW5Mx8tp1IAWSVUXUnyYsQQlhKcGt1Pka97lCYBYvHwtYPrLqh3T1dwwB1kmpmBc9zsjt5l9WzpP58E1CgwySYvAa865Xr9pUHLmJWoH09b8L8alk1VGFbkrwIIYQl1fKDe1dAh8mAAhtmwS8PQmGuVarr2sCHJoHu5Baa+GXveavUUSUSDqq75Z5YCzpnGPG5uoLLUL49bBRF4ecr7794Ez9RfUnyIoQQlqZ3UvcgGf4+aPVw+Gf4dghkWD650Gg03NO1PgDf7zzrmOcdRS9Rzye6HKf2sjywDtpNrFARB85ncCwxC2e9Vk6QrgEkeRFCCGvp9KDaC+PqAwkH1A3t4ndavJpR7etSy0nH6ZQctp90oPOOjPnw25Ow/BEoyodGA+GhzVCnbYWL+mF3PADDWgXj5SbHAVR3krwIIYQ1hfVU58EEtoScZJh/K+z7zqJVuDvrGd1ePeLg+51xFi3baopPg947H9BA3xkw/kdw86lwUTkFRayMVlcZje0Uatk4hV2S5EUIIaytdn11JVKz29WDHVc+DqufB5PlJtje000dOoo8msTF9Ko/MLJCjq2G2X0g8eDfy6D7vnjDZdDX89uBi+QUmgj3q0WX8IonP8LxSPIihBBVwdkd7lwAff+jfh71NSwcrR40aAFNAj3o2sAHswKLd8VbpEyLMxWph1ouHQf5GVC3EzyytVzLoMuydPc5QO11kb1dagZJXoQQoqpotdD3BXVXXkMtOLMF5vSDpKMWKX7ilYm7v+6/gNlsZxN308/Bgttg+0fq512mwqTV4FWOE73LcCwxk+hz6ei1Gsa0r1xZwnFI8iKEEFWt2W3quUje9dUVNt/0V1fcVNKAZoG4O+u5kJ7H3njrH1FQboeXwVc9IP4vcHJXdyMe+o66KquSlkapvS4Dmwfi7+Fc6fKEY5DkRQghbCGwhXoydXgfMOaqK26WP1ap/WBcDDoGtwgCYEX0BUtFevMKstX39PNkdZgopAM8vEXdjdgC8o0mlu1Tl5/LRN2aRZIXIYSwlVq+cM+vV+bBaCB6oXouUvKxmy5yZLs6APx+MAGjyWyhQCtOc2GPejZR9EJAA72eVSct+za0WB1rDieSmV9EiLcrvRr7W6xcYf8keRFCCFvS6tR5MPetBPdASIlR58HsmXdTxwp0a+CLn7szl3ONbDuRaoWAb8CYS4vzi9DNHwppp8CzLkz6Hfq/DDrL7r9SPDF5bKdQdFqZqFuTSPIihBD2ILw3PLINGvRVh5FWPa2uRqrgrrx6nZZbWwcDNhg6OrMV/Zw+NEpZiwYF2oyHqdsgrIfFqzqRlEVUXBo6rYa7OsqQUU0jyYsQQtgL9wCY+CsMfgv0LnBqI3zRDfYvqlAvzG1t1ORlQ0wyhUVVMHSUlQi/ToUFt6K5fIY8gw9FY5fCqC/BtbZVqlxyZaLuLREBBHmV7/wjUX1I8iKEEPZEq4Vuj6m9MCEdoSATVjwK3w6DxMPlKqJdaG38PZzJKijir1NWHDoqKoTtn8CnHeHAYgBM7e5lY7O3URoNsFq1+UYTv1yZqDu+S/lOnBbViyQvQghhj/waqxNcB7wKeld1mfHXveGPF264sZ1Wq2FQ80AA1h5JsnxsZhMc+AE+7wyRL0NhFtRpDw9uxDzsA4p0rpav8x9WH0ogI89IiLcrvWWibo0kyYsQQtgrnR56Pg3TdkPzEaCYYNdX8FFr+PMtyEu/7q3FS6YjjyZhstSGdaYidc+WL7rBrw/B5TNQyx9GfA4PboC6HSxTzw0siVIn6t4tE3VrLL2tAxBCCHED3qFw13dw6k9Y9zIkHYLN76qJTMf7oeMD6jX/0LWBLx4uelKzC9gff5mOYZU48ycvHfZ/D7tmQ8aVowdcvKHHE9D5YfXogypyPCmL3XGX1Ym6srdLjSXJixBCOIqG/dRN3mJWqj0vqbGw7UPY/jE0HQat74JGA8HJDSe9lgHNAvl1/wXWHkmsePJSVAinNsDBHyD2DyjKV59384XOD0HXqeDiZfn3eAPFvS79IwII9JSJujWVJC9CCOFItFpoMVI9YiB2NUTNVs9IOrZK/TDUUg86DOvFmLpNWLnfxNojSfxnWLOyDy005kPyUbiwF05ugLitUJj99+sBzdWEpdWdYLDunJbrhmgysyL6IgB3d5Zel5pMkhchhHBEWp2awDS7DZJj4MASOPIrpMerPTMxK+kJxDjriMsOInt+MzxqB6rDPRoNmIxqcpJ5Uf1IOwXmotJ1uAdByzFqj05wG/U+G9ocm0JaTiF+7s4yUbeGk+RFCCEcXUAzGPgaDJgFF/epc2PitsG5KJyMOTTRXICzF+DsDcpxra0mKeF91N6bwFZqT4+dWLZfXR49sm0d9Dr7iUtUPUlehBCiutBo1MMPQzpA72fBbGbVtt38uGYDnWrn8HhXX8hPV6/VGtThH49g8AwG38bgVdfmvSvXk55byPqjyQCMbl/XxtEIW5PkRQghqiutlm7t2/LEH6lsuQRjWt1CHW/bzFeprFUHEyg0mYkI8qB5HU9bhyNsTPrdhBCiGvN1d6ZjfXWlUeRRK2xYV0WWXdlRd4z0uggkeRFCiGpv4JXddtcdTbRxJDfn/OVc9sWno9XAiLZ1bB2OsAOSvAghRDVXnLzsOp1GRq7RxtFUXPERBx3DfAiQvV0EkrwIIUS1F+ZXi6aBHhSZFf6MTbZ1OBW29ojaYzTkypEHQkjyIoQQNYCjDh2lZBWwO049iHJQi0AbRyPshSQvQghRAxT/4t8cm0K+0WTjaMpvfUwSigKtQryoW9vN1uEIOyHJixBC1ACtQrwI8nQhp9DEjlOXbB1OuZUMGbWUISPxN0lehBCiBtBoNA43dJSZb2T7yVQABsuQkfgHSV6EEKKGKB46ijyajNms2DiaG/vzWDJGk0JD/1o0CvCwdTjCjkjyIoQQNUSXcF88nPWkZhew/1y6rcO5oeIho8Gyykj8iyQvQghRQzjptfSLCADsf+go32jiz2MpgMx3EVeT5EUIIWqQv4eO7PuogK0nUskzmqjj5UKrEC9bhyPsjCQvQghRg/Rp4o9Bp+F0Sg4nk7NsHc51rTms9gwNahGExk5Puha2I8mLEELUIB4uBno08gNg5YEEG0dzbUaTmQ3H1J4hGTIS1yLJixBC1DCjr5zM/POec5jscNVR1Jk00nON+NRyolOYj63DEXZIkhchhKhhBjUPxNNFz8WMfP46lWrrcK5SPGQ0sFkgOq0MGYmrWS15SUtLY8KECXh6euLt7c0DDzxAdnZ2ue5VFIWhQ4ei0WhYvny5tUIUQogaycWgY2S7EACW7j5n42hKM5uVkpVQMmQkrsdqycuECRM4cuQIkZGRrFq1ii1btvDQQw+V696PPvpIJmgJIYQVje0UCsDaw4mcv5xr42j+Fn0+naTMAtyd9XRv5GvrcISdskryEhMTw5o1a/jmm2/o0qULPXv25NNPP2Xp0qVcvHixzHujo6N5//33mTdvnjVCE0IIAbSo40WPRr4UmRW+2XrG1uGUKN6Yrl9EAM56nY2jEfbKKsnLjh078Pb2pmPHjiXPDRgwAK1Wy65du657X25uLuPHj+fzzz8nKEi6C4UQwpqm9mkEwNLd8SRl5ts4GnXKwNrDxbvqyllG4vr01ig0MTGRgICA0hXp9fj4+JCYeP1dHZ9++mm6d+/OiBEjyl1XQUEBBQUFJZ9nZmYCYDQaMRqNFYy8bMXlWbpcYV3Sbo5J2s36Otf3pF2oF/vPZfD6b0f48K7W173WbFb47VAivx9K4OylPHxqGRjQLIAJnUNxMfzdQ1KZdjuWmEXcpVyc9Fp6NKgtbV+F7OHnrSJ1Vyh5efHFF3n33XfLvCYmJqYiRZZYuXIlGzduZP/+/RW67+2332bWrFlXPb9u3Trc3NxuKpYbiYyMtEq5wrqk3RyTtJt19feG6HM6Vh1KxL/gAm19r146fSxdw8qzWi7k/j0X8XQq7DmbzrxNsUyJMBHgWvqem2m31ee0gJYmHkVs2bCuwveLyrPlz1tubvnnXmkURSn3Iv+UlBQuXbpU5jUNGjRg4cKFPPPMM1y+fLnk+aKiIlxcXPjpp58YNWrUVfc99dRTfPLJJ2i1f49kmUwmtFotvXr1YtOmTdes71o9L6GhoaSmpuLp6Vnet1YuRqORyMhIBg4ciMFgsGjZwnqk3RyTtFvVeXftcb7ZFoerQcsHd7ZmQDO15zz6XDofbjjJX6fSAPBw0TO5W306hnlzOjWXLzedJimrAH93J356uAsh3q6Vardhn27nRHIO/xvTkpFt61j8fYrrs4eft8zMTPz8/MjIyLjh7+8K9bz4+/vj7+9/w+u6detGeno6e/fupUOHDgBs3LgRs9lMly5drnnPiy++yIMPPljquVatWvHhhx9y2223XbcuZ2dnnJ2dr3reYDBYrQGsWbawHmk3xyTtZn0vDm3GqZQc/oxNYeriaBoHuFNoMnP2kvqXsJNOyz3d6jOtXyNq13ICoHdTGN46hInf7CI2KYtHFkWz/LEeJW1V0XY7mZzNieQcDDoNg1rWkTa3EVv+vFWkXqtM2G3WrBlDhgxhypQpREVFsX37dqZNm8bdd99NnTpqNn3hwgUiIiKIiooCICgoiJYtW5b6AKhXrx7h4eHWCFMIIQSg12mZfW9HHugZjl6r4URyNmcv5aLXarirY102PNOHl29tXpK4FPP3cGb+/Z3wc3fiWGIW76+LvekY1hxWjyro0cgPL1dJXETZrDJhF2DRokVMmzaN/v37o9VqGTNmDJ988knJ60ajkdjY2AqNcQkhhLAOg07Ly7c2Z2rfhhw6n4Fep6FNqDeeLmUnEsFerrw7pjUPLNjDnK1nGNw8oMzrr2f1IXUxx1DZmE6Ug9WSFx8fHxYvXnzd18PCwrjRdJsKTMcRQghhAX7uzvSLqFgC0r9ZIKPbhbBs/wVe+z2GyXUrVufJ5CyOJmSi12oY2FySF3FjcraREEKISntxaATuznoOns8kKqViO6T/vPcCAH2b+uPzr6EpIa5FkhchhBCVFuDpwhP91U3vfovXkpVfVK77TGaFX/efB2BM+wp22YgaS5IXIYQQFjGpezjhvm5kGzV8sfl0ue7ZfjKVpMwCvFwN3NLs5ubLiJpHkhchhBAW4aTX8p9hTQFYsOMsp1Oyb3jPdzviABjZto6cZSTKTZIXIYQQFtO3iT/NvM0YTQpv/l72jutnUnPYcCwZgHu7h1VBdKK6kORFCCGERY0KM6PXathwLJlNscnXvW7O1tMoCtwSEUBDf/cqjFA4OklehBBCWFSgK9zbtR4Ar686Sr7RdNU1Z1Jz+GH3OQAe6dOwSuMTjk+SFyGEEBY3rV8D/NydOJWSc9XwkdmsMHPFYUxmhVsiAugc7mOjKIWjkuRFCCGExXm4GHjvzjYAfL/zLN9sVVcfKYrCxxtOsPVEKi4GLS8Nb2bLMIWDstoOu0IIIWq2vk0DmD6wCR9EHueN32NYH5OETqth+8lLAMy8tYXMdRE3RZIXIYQQVvP4LY0w6LS8vy6WnafTANBpNcwYGsH4LvVsHJ1wVJK8CCGEsBqNRsPUvg0Z2jKI9TFJmBWFAc0CaSA9LqISJHkRQghhdWF+tXiwVwNbhyGqCZmwK4QQQgiHIsmLEEIIIRyKJC9CCCGEcCiSvAghhBDCoUjyIoQQQgiHIsmLEEIIIRyKJC9CCCGEcCiSvAghhBDCoUjyIoQQQgiHIsmLEEIIIRyKJC9CCCGEcCiSvAghhBDCoUjyIoQQQgiHUu1OlVYUBYDMzEyLl200GsnNzSUzMxODwWDx8oV1SLs5Jmk3xyTt5pjsod2Kf28X/x4vS7VLXrKysgAIDQ21cSRCCCGEqKisrCy8vLzKvEajlCfFcSBms5mLFy/i4eGBRqOxaNmZmZmEhoZy7tw5PD09LVq2sB5pN8ck7eaYpN0ckz20m6IoZGVlUadOHbTasme1VLueF61WS926da1ah6enp/xQOiBpN8ck7eaYpN0ck63b7UY9LsVkwq4QQgghHIokL0IIIYRwKJK8VICzszOvvPIKzs7Otg5FVIC0m2OSdnNM0m6OydHardpN2BVCCCFE9SY9L0IIIYRwKJK8CCGEEMKhSPIihBBCCIciyYsQQgghHIokL+X0+eefExYWhouLC126dCEqKsrWIdUYb7/9Np06dcLDw4OAgABGjhxJbGxsqWvy8/N57LHH8PX1xd3dnTFjxpCUlFTqmvj4eIYPH46bmxsBAQE899xzFBUVlbpm06ZNtG/fHmdnZxo1asT8+fOt/fZqjHfeeQeNRsNTTz1V8py0m/26cOECEydOxNfXF1dXV1q1asWePXtKXlcUhZkzZxIcHIyrqysDBgzgxIkTpcpIS0tjwoQJeHp64u3tzQMPPEB2dnapaw4ePEivXr1wcXEhNDSU//73v1Xy/qojk8nEyy+/THh4OK6urjRs2JDXX3+91FlB1abdFHFDS5cuVZycnJR58+YpR44cUaZMmaJ4e3srSUlJtg6tRhg8eLDy7bffKocPH1aio6OVYcOGKfXq1VOys7NLrnnkkUeU0NBQZcOGDcqePXuUrl27Kt27dy95vaioSGnZsqUyYMAAZf/+/crq1asVPz8/ZcaMGSXXnD59WnFzc1OmT5+uHD16VPn0008VnU6nrFmzpkrfb3UUFRWlhIWFKa1bt1aefPLJkuel3exTWlqaUr9+fWXSpEnKrl27lNOnTytr165VTp48WXLNO++8o3h5eSnLly9XDhw4oNx+++1KeHi4kpeXV3LNkCFDlDZt2ig7d+5Utm7dqjRq1EgZN25cyesZGRlKYGCgMmHCBOXw4cPKkiVLFFdXV+Xrr7+u0vdbXbz55puKr6+vsmrVKuXMmTPKTz/9pLi7uysff/xxyTXVpd0keSmHzp07K4899ljJ5yaTSalTp47y9ttv2zCqmis5OVkBlM2bNyuKoijp6emKwWBQfvrpp5JrYmJiFEDZsWOHoiiKsnr1akWr1SqJiYkl13z55ZeKp6enUlBQoCiKojz//PNKixYtStU1duxYZfDgwdZ+S9VaVlaW0rhxYyUyMlLp06dPSfIi7Wa/XnjhBaVnz57Xfd1sNitBQUHK//73v5Ln0tPTFWdnZ2XJkiWKoijK0aNHFUDZvXt3yTV//PGHotFolAsXLiiKoihffPGFUrt27ZK2LK67adOmln5LNcLw4cOV+++/v9Rzo0ePViZMmKAoSvVqNxk2uoHCwkL27t3LgAEDSp7TarUMGDCAHTt22DCymisjIwMAHx8fAPbu3YvRaCzVRhEREdSrV6+kjXbs2EGrVq0IDAwsuWbw4MFkZmZy5MiRkmv+WUbxNdLOlfPYY48xfPjwq7620m72a+XKlXTs2JE777yTgIAA2rVrx5w5c0peP3PmDImJiaW+7l5eXnTp0qVU23l7e9OxY8eSawYMGIBWq2XXrl0l1/Tu3RsnJ6eSawYPHkxsbCyXL1+29tusdrp3786GDRs4fvw4AAcOHGDbtm0MHToUqF7tVu0OZrS01NRUTCZTqf88AQIDAzl27JiNoqq5zGYzTz31FD169KBly5YAJCYm4uTkhLe3d6lrAwMDSUxMLLnmWm1Y/FpZ12RmZpKXl4erq6s13lK1tnTpUvbt28fu3buvek3azX6dPn2aL7/8kunTp/Of//yH3bt388QTT+Dk5MR9991X8rW/1tf9n+0SEBBQ6nW9Xo+Pj0+pa8LDw68qo/i12rVrW+X9VVcvvvgimZmZREREoNPpMJlMvPnmm0yYMAGgWrWbJC/CoTz22GMcPnyYbdu22ToUcQPnzp3jySefJDIyEhcXF1uHIyrAbDbTsWNH3nrrLQDatWvH4cOH+eqrr7jvvvtsHJ24nh9//JFFixaxePFiWrRoQXR0NE899RR16tSpdu0mw0Y34Ofnh06nu2oFRFJSEkFBQTaKqmaaNm0aq1at4s8//6Ru3bolzwcFBVFYWEh6enqp6//ZRkFBQddsw+LXyrrG09NT/nq/CXv37iU5OZn27duj1+vR6/Vs3ryZTz75BL1eT2BgoLSbnQoODqZ58+alnmvWrBnx8fHA31/7sv5fDAoKIjk5udTrRUVFpKWlVah9Rfk999xzvPjii9x99920atWKe+65h6effpq3334bqF7tJsnLDTg5OdGhQwc2bNhQ8pzZbGbDhg1069bNhpHVHIqiMG3aNH799Vc2btx4VXdlhw4dMBgMpdooNjaW+Pj4kjbq1q0bhw4dKvVDGRkZiaenZ8l/0t26dStVRvE10s43p3///hw6dIjo6OiSj44dOzJhwoSSx9Ju9qlHjx5XbUdw/Phx6tevD0B4eDhBQUGlvu6ZmZns2rWrVNulp6ezd+/ekms2btyI2WymS5cuJdds2bIFo9FYck1kZCRNmzaVIaObkJubi1Zb+te6TqfDbDYD1azdqmxqsANbunSp4uzsrMyfP185evSo8tBDDyne3t6lVkAI65k6dari5eWlbNq0SUlISCj5yM3NLbnmkUceUerVq6ds3LhR2bNnj9KtWzelW7duJa8XL7kdNGiQEh0draxZs0bx9/e/5pLb5557TomJiVE+//xzWXJrYf9cbaQo0m72KioqStHr9cqbb76pnDhxQlm0aJHi5uamLFy4sOSad955R/H29lZWrFihHDx4UBkxYsQ1l9y2a9dO2bVrl7Jt2zalcePGpZbcpqenK4GBgco999yjHD58WFm6dKni5uYmS6Vv0n333aeEhISULJVetmyZ4ufnpzz//PMl11SXdpPkpZw+/fRTpV69eoqTk5PSuXNnZefOnbYOqcYArvnx7bffllyTl5enPProo0rt2rUVNzc3ZdSoUUpCQkKpcuLi4pShQ4cqrq6uip+fn/LMM88oRqOx1DV//vmn0rZtW8XJyUlp0KBBqTpE5f07eZF2s1+//fab0rJlS8XZ2VmJiIhQZs+eXep1s9msvPzyy0pgYKDi7Oys9O/fX4mNjS11zaVLl5Rx48Yp7u7uiqenpzJ58mQlKyur1DUHDhxQevbsqTg7OyshISHKO++8Y/X3Vl1lZmYqTz75pFKvXj3FxcVFadCggfLSSy+VWtJcXdpNoyj/2HpPCCGEEMLOyZwXIYQQQjgUSV6EEEII4VAkeRFCCCGEQ5HkRQghhBAORZIXIYQQQjgUSV6EEEII4VAkeRFCCCGEQ5HkRQghhBAORZIXIYQQQjgUSV6EEEII4VAkeRFCCCGEQ5HkRQghhBAO5f8B3C1olW4tb04AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "sample = 17\n", + "\n", + "plt.plot(a[sample], label=\"Initial condition\")\n", + "plt.plot(u[sample], label=\"After 1 time unit\")\n", + "plt.legend()\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "kSawGdheO9Wm", + "outputId": "1b6e185a-d758-4197-b639-21b289289659" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgmlJREFUeJzt3Xd4k+X6wPFvkqZ70T0olF1m2XvvIVtFhggqKoKL41E5ngOiHtHfcYtHDwiCAuJAhsgqIFOgrDJLmaWF0kXppm2a5PfHS6sVWlqaNEl7f66rF2nyvs9z52mgN89UGY1GI0IIIYQQNkJt6QCEEEIIISpCkhchhBBC2BRJXoQQQghhUyR5EUIIIYRNkeRFCCGEEDZFkhchhBBC2BRJXoQQQghhUyR5EUIIIYRNsbN0AKZmMBhISEjAzc0NlUpl6XCEEEIIUQ5Go5GsrCyCgoJQq8vuW6l2yUtCQgIhISGWDkMIIYQQ9yE+Pp7atWuXeU21S17c3NwA5c27u7ubtGydTsfWrVsZOHAgWq3WpGVXB9I+pZO2KZu0T9mkfcom7VM6W2qbzMxMQkJCin+Pl6XaJS9FQ0Xu7u5mSV6cnZ1xd3e3+g+BJUj7lE7apmzSPmWT9imbtE/pbLFtyjPlQybsCiGEEMKmSPIihBBCCJsiyYsQQgghbEq1m/MihBDi7vR6PTqdztJhmJxOp8POzo68vDz0er2lw7Eq1tY2Wq0WjUZT6XIkeRFCiBogOzubq1evYjQaLR2KyRmNRgICAoiPj5f9vf7C2tpGpVJRu3ZtXF1dK1WOJC9CCFHN6fV6rl69irOzM76+vlbxS8yUDAYD2dnZuLq63nNzs5rGmtrGaDSSkpLC1atXadSoUaV6YCR5EUKIak6n02E0GvH19cXJycnS4ZicwWCgoKAAR0dHi/+CtjbW1ja+vr7Exsai0+kqlbxY/p0IIYSoEtWtx0XYHlN9BiV5EUIIIYRNkeRFCCGEEDZFkhchhBDVhkqlYu3atWVeM2XKFEaNGlXuMmNjY1GpVERFRVUqNnP48/stb5y9e/fmxRdfNHts5iQTdoUQQlilKVOmkJ6efs9k5M+uX79OrVq1AOWXeb169Th27BitW7cuvuaTTz6plkvGQ0JCuH79Oj4+PgDs3LmTPn36EBsbW+Ksv59//tlmzjkqjSQvwibEp+Wy6dR10nJ0NA10Y1DzABy1ld/oSAhRvQQEBNzzGg8PjyqIpOppNJpyvX8vL68qiMa8ZNhIWL2v9lyi3we7eGfjWb7cdZEXVkXR74NdHIpNs3RoQtgko9FIbkGhRb4q0+PRu3dvnn/+eV555RW8vLwICAjgjTfeKHHNn4dR6tWrB0CbNm1QqVT07t0buHPYaPPmzXTv3h1PT0+8vb154IEHuHjxYoViy8/P59VXXyUkJAQHBwcaNmzI4sWLi1/ftWsXHTt2xMHBgcDAQF577TUKCwsr9N7Onz9Pz549cXR0pFmzZkRERJR4/c/DRrGxsfTp0weA0NBQNBoNU6ZMKa7rz8NGN2/eZPLkydSqVQtnZ2eGDBnC+fPni19funQpnp6ebNmyhaZNm+Lq6srgwYO5fv16hdrIlKTnRVi1L3Ze5L3NZwHoVM+Lxv5uRJxJ4lr6LSYsOsB/J7ZjQDN/C0cphG25pdPTbM4Wi9R95s1BONvf/6+eZcuWMWvWLA4ePMj+/fuZMmUKXbp0oVOnTndcGxkZSceOHdm2bRvNmzfH3t7+rmXm5OQwa9YsWrVqRXZ2NnPmzGH06NFERUWVe2+UyZMns3//fj799FPCw8O5fPkyqampAFy7do2hQ4cyZcoUvvnmG86ePcu0adNwdHQskaDc7b1169aNAQMGYDAYGDNmDP7+/hw8eJCMjIwy562EhISwevVqxo4dy6FDhwgKCsLFxeWu106ZMoXz58+zfv163N3defXVVxk6dChnzpwpHl7Kzc3l/fff59tvv0WtVjNp0iRefvllVqxYUa72MTVJXoTV2n/xBv/ZoiQurwxuwvReDVCpVMweGsbffjjOplOJzFx5lJXTOtOubi0LRyuEqAqtWrVi7ty5ADRq1IgFCxawY8eOuyYvvr6+AHh7e5c5nDJ27NgS3y9ZsgRfX1/OnDlDixYt7hnTuXPn+OGHH4iIiKB///4A1K9fv/j1//73v4SEhLBgwQJUKhVhYWEkJCTw6quvMmfOnOIE6W7vbfv27QwYMIBt27Zx9uxZtmzZQlBQEADvvPMOQ4YMuWtMGo2meHjI19eXgICAuyZiRUnLvn376Nq1KwArVqwgJCSEtWvX8tBDDwHKRodffvklDRo0AGDmzJm8+eab92wbc5HkRVilgkIDs38+gcEID7WrzbO9Gxa/5mxvx2fj2/DM8iNsi07muZVH2fRCTzycbXsCmhBVxUmr4cybgyxWd2W0atWqxPeBgYEkJydXqszz588zZ84cDh48SGpqKgaDAYC4uLhyJS9RUVFoNBp69ep119ejo6Pp0qVLiQ3aunXrVnzeVJ06dYCy31t0dDQhISHFiQtAly5dKvZGS4nNzs6uRPLn7e1NkyZNiI6OLn7O2dm5OHH5a2yWYPY5L59//jmhoaE4OjrSqVMnIiMjy7w+PT2dGTNmEBgYiIODA40bN2bjxo3mDlNYmW/2xxJ7IxcfVwfmDG92x+t2GjUfP9KGUG9nEjLyeH3tSQtEKYRtUqlUONvbWeSrsjus/nWVjEqlKk427tfw4cNJS0tj0aJFHDx4kIMHDwJQUFBQrvtNdeSCOd6bqdwtNkuu2DJr8vL9998za9Ys5s6dy9GjRwkPD2fQoEGlZmsFBQUMGDCA2NhYfvrpJ2JiYli0aBHBwcHmDFNYmTydni93KZPlXh7YGDfHu/eouDrY8en4NmjUKjacuM7OGMv9L0AIYX2K5rjo9fpSr7lx4wYxMTH885//pF+/fjRt2pSbN29WqJ6WLVtiMBjYtWvXXV9v2rQp+/fvL/HLft++fbi5uVG7du1y1dG0aVPi4+NLTJI9cOBAmfeU5/03bdqUwsLC4oQN/miTZs3u/I+jtTBr8vLhhx8ybdo0pk6dSrNmzfjyyy9xdnZmyZIld71+yZIlpKWlsXbtWrp160ZoaCi9evUiPDzcnGEKK7P22DVSswsI9nRibLuy/2K3qu3JlK6hAMxZd5o8Xel/SYUQNYufnx9OTk5s3ryZpKQkMjIy7rimVq1aeHt7s3DhQi5cuMCOHTuYNWtWheoJDQ3lscce4/HHH2ft2rVcvnyZnTt38sMPPwDw7LPPEh8fz3PPPcfZs2dZt24dc+fOZdasWeWeENy/f38aN27MY489xvHjx9mzZw+vv/56mffUrVsXlUrFli1bSElJITs7+45rGjVqxMiRI5k2bRp79+7l+PHjTJo0ieDgYEaOHFmhdqhKZpvzUlBQwJEjR5g9e3bxc2q1mv79+7N///673rN+/Xq6dOnCjBkzWLduHb6+vkyYMIFXX3211NMn8/Pzyc/PL/4+MzMTUCYX6XQ6E74jisszdbnVhSnax2g0smjPJQAmdw4Bgx6doeyEZGbvemw4kUBcWi5L9l5kWvd6912/uchnp2zSPmWrbPsUnSptMBisZhiiPIxGY3Hcf37ur9//9XHR+1Sr1Xz88ce8/fbbzJkzhx49erBjx447yl25ciUvvvgiLVq0oEmTJnz88cf07du3uJyi68pqv88//5zXX3+dZ599lhs3blCnTh1ee+01DAYDgYGBbNiwgVdffZXw8HC8vLx4/PHH+cc//nHP9/bn51avXs20adPo2LEjoaGhfPzxxwwdOrTUOAMDA5k7dy7z5s1jxowZPProo3z99dd31LV48WJefPFFHnjgAQoKCujRowcbNmxAo9HcUW6Ruz1XHgaDAaPReNdTpSvy+VYZzTRolZCQQHBwML///nuJSUWvvPIKu3btKtFFVSQsLIzY2FgmTpzIs88+y4ULF3j22Wd5/vnni2dg/9Ubb7zBvHnz7nh+5cqVODs7m+4NiSpxMRM+PW2Hg9rIm+30OJYzvT6YrGLlRQ3OdkbmtNHjJFPRhShmZ2dHQEAAISEhpS4XFqIqFBQUEB8fT2JiYol9bkBZjj1hwgQyMjJK7Ah8N1b1T7zBYMDPz4+FCxei0Who164d165d4z//+U+pycvs2bNLdPFlZmYSEhLCwIED7/nmK0qn0xEREcGAAQNsfmtlczBF+7y+9jRwjQdaBzNmxL1n+RcZZDBycMHvXEzJIc65MS/1b3jvm6qQfHbKJu1Ttsq2T15eHvHx8bi6uuLo6GiGCC3LaDSSlZWFm5tbpScEVzfW1jZ5eXk4OTkVb7b3Z0UjJ+VhtuTFx8cHjUZDUlJSieeTkpJKXW8fGBiIVqst0ZXUtGlTEhMTKSgouOv/GBwcHHBwcLjjea1Wa7Z/BM1ZdnVwv+2Tp9Oz6ZTyeXmwXZ0KlaEF/j6oCc8sP8rS/Vd4qlcDPJ2t73+Y8tkpm7RP2e63ffR6PSqVCrVaXe45FrakaOii6D2KP1hb26jValQq1V0/yxX5bJvtndjb29OuXTu2b99e/JzBYGD79u2lrk3v1q0bFy5cKDGGdu7cOQIDA6WrswbYeiaJrPxCgj2d6FSv4mdvDGoeQLNAd3IL9Hyz/4oZIhRCCGENzJqGzZo1i0WLFrFs2TKio6OZPn06OTk5TJ06FVC2U/7zhN7p06eTlpbGCy+8wLlz5/j111955513mDFjhjnDFFbi1xMJAIxqE4RaXfHuTZVKxdO9lF0tl/4ey60CWXkkhBDVkVnnvIwbN46UlBTmzJlDYmIirVu3ZvPmzfj7K2fRxMXFlejGCgkJYcuWLbz00ku0atWK4OBgXnjhBV599VVzhimswK0CPbvOpQAwpEXgfZczrGUg/9kSw9Wbt/jxSDyTu4SaKEIhhBDWwuwTdmfOnMnMmTPv+trOnTvveK5Lly733HhHVD97L6SSpzMQ7OlE86D7n2htp1EzrUd95q4/zVd7LjOpU9376sURQghhvSw/e0cIYMvpRAAGNPOv9Iz4h9uH4O5oR1xaLrvOp5giPCGEEFZEkhdhcYV6A9ujlVVGA5v7V7o8J3sND7YLAWDFAZm4K4QQ1Y0kL8Lijly5yc1cHZ7OWjqGVnyV0d1M7Kyc0rr9bDLxabkmKVMIYX2MRiNPP/009erVQ6PREBUVZemQyi02NhaVSmVTMf/Z0qVL8fT0tEjdkrwIiyuaqNu7sS92GtN8JBv4utKtoTdGI3wXGWeSMoUQlrF//340Gg3Dhg2747XNmzezbNkyVq1axbVr12jRogUqlYq1a9eaLZ6ff/6ZgQMH4u3tXe7kY8qUKYwaNarEcyEhIVy/fp0WLcq/Iac1GTduHOfOnSv+/o033qB169ZVUrckL8Lidt+el9Kzsa9Jy320c10Afjh8lUK97ZznIoQoafHixTz33HPs3r2bhISEEq9dvHiRwMBAOnXqREBAAHZ2pluHUtpZOzk5OXTv3p333nuvUuVrNBqTx1yVnJyc8PPzs0jdkrwIi7qRnc+pa8qW0N0b+Zi07H5N/fFysSc1O589F1JNWrYQompkZ2fz/fffM336dIYNG8bSpUuLX5syZQrPPfcccXFx1KpVi/r16xMaGgrA6NGjUalUxd8DrFu3jrZt2+Lo6Ej9+vWZN29eifN1VCoVX3zxBSNGjMDFxYV///vfd43p0UcfZc6cOfTv379c7+GNN95g2bJlrFu3DpVKhUqlYufOnXcMG+3cubP4FOg2bdrg5ORE3759SU5OZtOmTTRt2hR3d3cmTJhAbu4fw+EGg4H58+dTr149nJycCA8P56effiozprv1Tnl6eha3b1FsP//8M3369MHZ2Znw8PASByv/edho6dKlzJs3j+PHjxe/xz//rEzNNtM9UW3svZ1UNA10x8/NtGeuaDVqRoQHsfT3WH4+eo0+TSzzPwQhrI7RCDoLzQXTOkMFVhT+8MMPhIWF0aRJEyZNmsSLL77I7NmzUalUfPLJJzRo0ICFCxeybds2PD09UavV+Pn58fXXXzN48ODi42b27NnD5MmT+fTTT+nRowcXL17kqaeeAihxdt4bb7zBu+++y8cff2yyHpGXX36Z6OhoMjMzi0919vLyuqMX6c8xLFiwAGdnZx5++GEefvhhHBwcWLlyJdnZ2YwePZrPPvuseA+0+fPns3z5cr788ksaNWrE7t27mTRpEr6+vvTo0aNSsb/++uu8//77NGrUiNdff53x48dz4cKFO9pm3LhxnDp1is2bN7Nt2zYAPDw8KlV3WSR5ERZVNN+lZ2PT9roUGdu2Nkt/j2Xr6UQy83S4O8q5OUKgy4V3gixT9z8SwN6l3JcvXryYSZMmATB48GAyMjLYtWsXvXv3xsPDAzc3NzQaDf7+/ri7uxdvfOrp6VniHL158+bx2muv8dhjjwFQv3593nrrLV555ZUSycuECROKd4E3FVdXV5ycnMjPzy/1bL8/e/vtt+nWrRsATzzxBLNnz+bixYvUr6/sIP7ggw/y22+/8eqrr5Kfn88777zDtm3bio/eqV+/Pnv37uV///tfpZOXl19+uXiu0bx582jevDkXLlwgLCysxHVOTk64uroWn2BubjJsJCzGaDSy57zS89KzkWnnuxRpEexOY39X8gsNbDxx3Sx1CCHMIyYmhsjISMaPHw+AnZ0d48aNY/HixRUu6/jx47z55pu4uroWf02bNo3r16+XGIJp3769yeK/X61atSp+7O/vj7Ozc3HiUvRccnIyABcuXCA3N5cBAwaUeG/ffPMNFy9eNGksgYHK7udFdVuS9LwIizmbmEVKVj5OWg3tQ2uZpQ6VSsWYtrV5d9NZfj56jUc61jFLPULYFK2z0gNiqbrLafHixRQWFhIU9EcvkdFoxMHBgQULFlRoWCI7O5t58+YxZsyYO15zdPxjyNrFpfy9Quby59OVi05g/jOVSlV8gHF2djYAv/76K8HBwSWuc3BwKLUOlUqF0Wgs8dzdJij/NRagxOHJliLJi7CY3beHjDrX98LBTmO2eka2DuLdTWeJjE0jMSOPAA/Tzq0RwuaoVBUaurGEwsJCvvnmGz744AMGDhxY4rVRo0bx3Xff8cwzz9z1Xq1Wi15f8mDWtm3bEhMTQ8OGDc0Wc1ns7e3viMkUmjVrhoODA3FxcfTq1euO10tLNHx9fbl+/Y/e6PPnz5fogbof5nqPdyPJi7CYoiGjHmYaMioS6OFEu7q1OHLlJptPXWdKt3pmrU8IUXkbNmzg5s2bPPHEE3f0sIwdO5bFixeXmryEhoayfft2unXrhoODA7Vq1WLOnDk88MAD1KlThwcffBC1Ws3x48c5deoUb7/9doViS0tLIy4urnjCbUxMDAABAQGlzvcIDQ1ly5YtxMTE4O3tbbLJrG5ubrz88su89NJLGAwGunfvTkZGBvv27cPd3Z1HH330rvf17duXBQsW0KVLF/R6Pa+++uodPTwVFRoayuXLl4mKiqJ27dq4ubmV2ftTGTLnRVjErQI9kbFpgOn3d7mboS2VsdqNpxLNXpcQovIWL15M//797/pLfuzYsRw+fJgTJ07c9d4PPviAiIgIQkJCaNOmDQCDBg1iw4YNbN26lQ4dOtC5c2c++ugj6tatW+HY1q9fT5s2bYonsj7yyCO0adOGL7/8stR7pk2bRpMmTWjfvj2+vr7s27evwvWW5q233uJf//oX8+fPp2nTpgwePJhff/2VevVK/4/aBx98QEhICD169GDChAm8/PLLODuXf0jvbsaOHcvgwYPp06cPvr6+fPfdd5Uqrywq418HvWxcZmYmHh4eZGRk4O5+/6cT341Op2Pjxo0MHTq00hlqdVSR9tl9LoXJSyIJ9HDk99f6VvowxntJSL9F13d3oFLBwX/0M/my7HuRz07ZpH3KVtn2ycvL4/Lly9SrV6/E/I7qwmAwkJmZWWK1kVBYW9uU9VmsyO9vy78TUSPtu72/S/eGPmZPXACCPJ1oU8cToxG2SO+LEELYNElehEUUbU5n6l11yzK0xe2ho5OSvAghhC2T5EVUubScAk4nKEcCdG1QdcnL4BbKRLqDl2+QllNQZfUKIYQwLUleRJX7/aLS6xIW4Iavm3lmot9NiJczzQLdMRjht7OW32RJCCHE/ZHkRVS5ovku3RpWXa9Lkf5NlfONtp9NqvK6hRBCmIYkL6LK7f3TZN2q1repPwC7z6VSUGj5XSKFqErVbHGpsEGm+gxK8iKqVNyNXOLTbmGnVtGxnleV198q2ANfNwey8wuJvJxW5fULYQlFJysXFMhcL2FZRZ/Bos/k/ZIddkWV2nd7vkvbOrVwcaj6j59araJvEz++PxzPtuikKl3tJISl2NnZ4ezsTEpKClqt1ir2+zAlg8FAQUEBeXl51e69VZY1tY3BYCAlJQVnZ2fs7Cr3778kL6JK7bXgfJci/Zoqycv2s0nMHd6sSvaZEcKSVCoVgYGBXL58mStXrlg6HJMzGo3cunULJycn+fv8F9bWNmq1mjp16lQ6FkleRJUxGIz8Xry/i7fF4ujeyAd7OzXxabc4n5xNY383i8UiRFWxt7enUaNG1XLoSKfTsXv3bnr27Ck7NP+FtbWNvb29SXqAJHkRVebM9Uxu5upwdbCjVW1Pi8XhbG9H1wbe7IxJYXt0siQvosZQq9XV8ngAjUZDYWEhjo6OVvEL2ppU17aRwUFRZYqWSHeu74VWY9mPXr8wZcm07PcihBC2R5IXUWWK5rtU5a66pelzO3k5EneTjFydhaMRQghREZK8iCqRW1DIwUvK0uSejX0tHA3UruVMY39X9AYju86nWDocIYQQFSDJi6gS+y/eoEBvoHYtJxr4ulg6HOCP3hcZOhJCCNsiyYuoEr/FKAlC7ya+VrFcD6BvEyV52RmTjN4gO48KIYStkORFmJ3RaGRnjDI007uxn4Wj+UO7urVwd7TjZq6OqPh0S4cjhBCinCR5EWZ3MSWHqzdvYa9R07Wh5fZ3+Ss7jbp4/o0MHQkhhO2Q5EWY3c7bQ0Yd63nhbG9dWwv1uT10tEOSFyGEsBmSvAiz23Xu9pBRE8uvMvorZQ6OsoFeYkaepcMRQghRDpK8CLPKytMVL5G2xuTF29WB8Nu7/RZNKhZCCGHdJHkRZvVbTAoFegP1fVxo4Otq6XDuqm+YDB0JIYQtkeRFmNWW04kADGoRYDVLpP+qKHnZdyGV/EK9haMRQghxL5K8CLPJ0+nZebs3Y1DzAAtHU7rmQe74uTmQW6AvHuISQghhvSR5EWaz70IqOQV6AtwdaRXsYelwSqVSqWTVkRBC2BBJXoTZbD51e8iouT9qtXUOGRUpPiogJhmjUXbbFUIIaybJizCLgkIDEdFJgHUPGRXp3sgHrUbFlRu5XErNsXQ4QgghymBdO4aJamPXuRTSc3X4ujnQqb717Kp7V0YjrrlXmR4Qgy7xLLnrfwVvFajVYO8GHsHg2wSC24FTLUtHK4QQNZ4kL8Is1h67BsDI8CA01jhkZDDAlX1w+me4sA3S45gFoAXib3/9lUoNwe2h+WgIfwScvao0ZCGEEApJXoTJZeXpioeMRrUJtnA0f5GXCYcXw5GlcDP2j+fVWvK9GrMxyZNkvJjSpxUOGhXkZyrXJZ2GtItwNVL52j4P2jwKPf8Obv4WejNCCFEzSfIiTG7z6WQKCg008nOleZC7pcNR5GXC/s/h4BeQl6E8Z+8GLUZDk2EQ2h0HB1c+fX8nl1NzqOPbliEtA0uWkXEVYjbBkWWQdBIOLYKoFUoC0/V50MhfJyGEqAryr60wudVHlSGjUW2CLb8xncEAx7+DbW9Azu1l0D6NodsL0HwM2DuXuLxPEz8up15mx9nkO5MXj9rQcRp0eBIu74btb8K1w0ovzJl1MGYR+DaumvclhBA1mKw2EiaVkANH4tKxU6t4qF1tywaTcg6WDIR1zyqJi1cDePBrePYAtJl0R+IC0CdMOX/pt5gUDIZSlkyrVFC/Fzy5DUZ9AY4ecD0KFvWB6F/M+IaEEEKAJC/CxPYlKR+pgc398XN3tEwQBgMc+AL+1wOuHgJ7V+g/T0laWowBtabUWzvW88LZXkNqdj6nEjLKrkelgtYTYEYkhPaAgmz4fhLsfh9krxghhDAbSV6EyeTkF3IoVRkmmtiprmWCyE6Gb0fB5tegMA8a9FOSi+4vgp39PW93sNPQvaEPUIHddt0C4NG10PlZ5fsdb8HWf0oCI4QQZiLJizCZn48lkK9XEertTNcGFtjbJT4S/tcTLu8CrTMM+xAmrVb2aamAvsW77aaU/yaNHQyeD4PeUb7fvwA2vSIJjBBCmIEkL8IkdHoDi/fFAjCla92qnahrNELkIvh6KGRdB58m8NQu6PCEMrRTQUVHBRyPTych/VbFbu4yA0YsAFQQuRB2zq9w/UIIIcpWJcnL559/TmhoKI6OjnTq1InIyMhy3bdq1SpUKhWjRo0yb4Ci0n45nsC19DxctUbGtgmquooNetj4d9j4Mhh0ygZy03ZUatWPv7sjHUOVDeh+OZ5Q8QLaPgpD/6M83vWeklgJIYQwGbMnL99//z2zZs1i7ty5HD16lPDwcAYNGkRyctnzCWJjY3n55Zfp0aOHuUMUlaQ3GPli50UAegcacNSWPiHWpApyYNVEZb8VVDDgTWU1kYNrpYseeTsBWxt1H8kLKEuq+7yuPN70KqrLuysdkxBCCIXZk5cPP/yQadOmMXXqVJo1a8aXX36Js7MzS5YsKfUevV7PxIkTmTdvHvXr1zd3iKKS1kVd43xyNm6OdnTzr6I5HtnJsHQYnNsEdo7w8DJl7xYTDVcNaxmIVqMi+nom55Ky7q+Qnn+HVo+AUY9mzRM455dzArAQQogymXWTuoKCAo4cOcLs2bOLn1Or1fTv35/9+/eXet+bb76Jn58fTzzxBHv27Cmzjvz8fPLz84u/z8zMBECn06HT6Sr5DkoqKs/U5dqyfJ2e97fEADCtWx2cc8+Zv30yr2G3YjSqtEsYnbzQP7wCY+0OYMJ6XbQqejbyYfvZFNYciWfWgEb3V9CQ99GknkOdcJSOlz5Bd2ss4GayOKsL+btVNmmfskn7lM6W2qYiMZo1eUlNTUWv1+PvX/LsF39/f86ePXvXe/bu3cvixYuJiooqVx3z589n3rx5dzy/detWnJ3v3ITMFCIiIsxSri3akaAiIUODh72RwKxzoDFv+zjnJ9P1wrtoC1LJtffh99BXyDmRAic2mryuEL0K0LDqwCUaF5znfs+XdPR6jF7JF/DIi+fit09zqvYkk8ZZncjfrbJJ+5RN2qd0ttA2ubm55b7Wqo4HyMrK4tFHH2XRokX4+PiU657Zs2cza9as4u8zMzMJCQlh4MCBuLub9lwdnU5HREQEAwYMQKvVmrRsW5SQfovZn/0O6HltWAuGtfQzb/uknsdu5auoClIx1qqHdtJaermb7+DHvjo9a/+zm5u3dLg07ECfJr73XZY+zAd+mkiDlK3U7TMFY6OBJozU9snfrbJJ+5RN2qd0ttQ2RSMn5WHW5MXHxweNRkNSUlKJ55OSkggICLjj+osXLxIbG8vw4cOLnzMYDEqgdnbExMTQoEGDEvc4ODjg4OBwR1lardZsPyhzlm0rjEYjb22MIbdAT4fQWozrUBe9vhAwU/skR8PyEZCTAr5hqCavQ+t252fIlLRaLQ+2q81Xey+z6vA1BraoxCqqJoO46DuIBilbsNvwHDx7EFzvPxmqruTvVtmkfcom7VM6W2ibisRn1gm79vb2tGvXju3btxc/ZzAY2L59O126dLnj+rCwME6ePElUVFTx14gRI+jTpw9RUVGEhISYM1xRAeuPJ7AtOhmtRsU7o1uivt8xlfK4cRG+GakkLgEtYcqvyq62VWBCpzoA/BaTzNWb5e/SvJszQQ9j9GsBuTeUDeyEEELcF7OvNpo1axaLFi1i2bJlREdHM336dHJycpg6dSoAkydPLp7Q6+joSIsWLUp8eXp64ubmRosWLbC3v/f27sL8rtzI4fU1pwB4tndDGvmbcQJqehwsGwHZSeDfAiavB5fyDSmaQn1fV7o19MZohBUH4ypVlkGtpfCBT0ClgdM/w1nTz9MRQoiawOzJy7hx43j//feZM2cOrVu3Jioqis2bNxdP4o2Li+P69evmDkOYSJ5Oz3PfHSM7v5AOobV4rm9D81WWeR2WDYfMq+DdSDk/yNnLfPWVYnKXUABWHLhCVl4lZ+wHhkPXmcrjX2dB3j0OfxRCCHGHKpmwO3PmTGbOnHnX13bu3FnmvUuXLjV9QOK+GAxG/vbjcU5czcDDScsnj7TBTmOm/DcnVRkquhkLnnXhsfUWmyMyoKk/DXxduJiSw8qDcTzdq8G9bypL79kQ/QukXYLtb8KwD0wTqBBC1BBytpEoF6PRyLubz/LrietoNSq+nNSOIE8n81SWnw0rHoTUGHAPVhIX9yo8cuAv1GoVz9xOWL7ae5k8nb5yBWqdYPgnyuPDSyDxVCUjFEKImkWSF3FPRYnLwt2XAHh3TCu6mOvUaL0OfpwCCcfAyQsmr4NaoeapqwJGtg4myMORlKx8vj8UX/kC6/WEZiPBaIDNr8np00IIUQGSvIgy6fQG5qw7zf92KYnLvBHNGduutnkqMxrhlxfhQgTYOcGEH8DnPne2NTF7OzXT+yjzez7bcYGc/MLKFzrwbeVog9g9cGZt5csTQogaQpIXUaq0nAImL47k2wNXAHhrZHMe6xpqvgp/eweiloNKDQ99DSEdzFfXfXikQwh1vZ1Jzc5nyd7LlS/Qsw50e1F5vPVfoLtV+TKFEKIGkORF3FX09UxGLNjL/ks3cLHX8L9H2/Ho7VU3ZnF4Cez+P+XxsA+hyRDz1XWftBo1fxvYBID/7b5EWk5B5Qvt9gK414aMeIhcVPnyhBCiBpDkRdzh1xPXGfPf37l68xZ1vZ1ZM6Mbg5qbcVO48xHw69+Ux71ehfZTzVdXJT3QMpDmQe5k5xeyYMeFyhdo7wx9/qE83vMB3EqvfJlCCFHNSfIiihkMRj7cGsOMlUe5pdPTo5EP62Z0o7E5N6FLjoYfpyoTV1tPUpYRWzG1WsVrQ8IA+PZALPFpldt1F4DwR8A3DPLS4fdPK1+eEEJUc5K8CABy8guZvuIIn97uTZjWox5fT+mAp7MZdzXOSYWV46AgC+p2gwc+ApUZjxkwkR6NfOne0Aed3sj7W2MqX6BaA33/pTw+8AVkJVa+TCGEqMYkeRGk5xYwftEBtpxOwl6j5v2Hwnl9WDPzbUAHUJgP30+C9CvKUuiHvwU72zn+oaj3ZV1UAqeumWCX3LBhENwedLmw6/8qX54QQlRjkrzUcDey8xm/6CAnrmZQy1nLd0914kFzLYUuYjTChpcgbj84uCtLol3MtG+MmbQI9mBka2XjvHc3na18gSoV9J+rPD76DWRcrXyZQghRTUnyUoPl5Bcy5etDRF/PxMfVge+f7kK7ulVwdtC+TyBqxR9Lon2bmL9OM3h5YBPsNWr2Xkhl97mUyhdYryfU7Q4GndJGQggh7kqSlxpKbzDy/HfHOHktAy8Xe75/urN5J+YWidkM295QHg9+Fxr2N3+dZhLi5cykznUBpffFYDDBLrm9/q78eWSZzH0RQohSSPJSQ30YEcP2s8k42KlZNLk9DXxdzV9p6gX4eRpghPaPQ8enzF+nmc3s2xA3BzvOXM9k3fFrlS+wXi+o3RH0+fD7Z5UvTwghqiFJXmqgvedT+e/OiwD856Fw2tWtZf5K87Pg+4mQnwkhnWHwezaxsuhevFzseaa3cmjjZzsuVL73RaWCXq8ojw8vUVZkCSGEKEGSlxomNTufF7+PwmiE8R3rMCK8Ck5rNhph7bOQchZcA+Dhb2xqZdG9TO5SFzdHOy6l5BARnVT5Ahv2h6A2ysqj/QsqX54QQlQzkrzUMG/+cobU7Hya+Lsxd3izqql070cQvR7UWhj3Lbj5V029VcTNUVs89+XLXRcxVvaEaJUKet7ufTm0GPIyKxmhEEJUL5K81CC/xSSz/ngCahX856FWOGo15q/0wnbY8ZbyeOj/QUhH89dpAVO7hWJvp+ZYXDqRl9MqX2DjweDTWBlmO/Zt5csTQohqRJKXGiK3oJB/rjkFwNRu9WhV29P8ld6MhZ8eV7b+b/MotLPeM4sqy8/NkbFtlf1xvtl/pfIFqtXQZaby+MAXoNdVvkwhhKgmJHmpIT7/7QLX0m8R7OnErAGNzV9hQS6smqSc1xPUFoa+Xy0m6JZlchdl6GjL6USSM/MqX2CrceDiq5w4fWZd5csTQohqQpKXGuBa+i2+2nMZgDnDm+HiYGf+Sje+DEknwdlHmeeidTR/nRbWNNCddnVrUWgw8v2h+MoXqHWEjk8rj3//VJn4LIQQQpKXmuA/m8+SX2igUz0vBjYz/2RZ1fGVJXfQ9TDzcQNWZFLnOgB8FxmH3hSb1nV4Auyc4PpxuLy78uUJIUQ1IMlLNXc8Pp21UQkA/HNYM1RmHrpxuxWPZvOryjd9/qFseV+DDGkRSC1nLQkZeaY5MsDZC9pMUh7//mnlyxNCiGpAkpdqzGg08u9fowEY0zaYlrU9zFthfhYdLi9AVXgLGvSD7n8zb31WyFGrYVSbYABWHzXR4YpdngVUcGEbpJ43TZlCCGHDJHmpxracTiIyNg1HrZq/DzLz4YdGI5qNs3DLv47RLRDGLFJWzNRARauOtp5JIuOWCVYJedVXlk4DRC6qfHlCCGHjauZvlxqgoNDAu5uUXpdpPeoT6OFk3goPL0F9Zg0G1OhHfwUu3uatz4o1D3KnkZ8rBYUGNp28bppCO90+BypqpXLUghBC1GCSvFRTyw9cIfZGLj6uDjzdq4F5K0uIgs2vAXAm6GGMIZ3MW5+VU6lUjLnd+/LzURMc1ghQrzd4N4KCLDi+yjRlCiGEjZLkpRrKuKXj0x3K3IhZAxrjas6l0XkZ8ONjoC/A0GgQF/2GmK8uGzKqTRAqFUTGphGfllv5AtXqP07hjlwoy6aFEDWaJC/V0H93XiA9V0cjP1cebm/GZcpGI6yboeyk61kH/fDPq/1GdOUV6OFE1wbK0NmaYybqfQl/BOxdIfUcXNppmjKFEMIGSfJSzVy9mcvX+2IBmD00DDuNGX/EkYsg+hflwMWHloKTp/nqskGj2yiJ49qoa5U/rBHA0R3CxyuPZeKuEKIGk+Slmnl/SwwFhQa6NvCmTxM/81WUeBK2/lN5PPAtCG5nvrps1KDm/jjYqbmUksOpBBOdDF00dHRuE9w0wRlKQghhgyR5qUZOXP1jQ7p/DG1qvg3pCnKUAxf1+coS3k7PmKceG+fmqGXA7R2N1x830aoj38ZQv7dy2OXhxaYpUwghbIwkL9WE0WjknY23N6RrE0yLYDNuSLf5NWXehWsAjPyvzHMpw+jbG9ZtOJmI3lRzbDtMU/48tgIKC0xUqBBC2A5JXqqJ7dHJHLiUhr2dmr+Zc0O6Uz/D0W8AFYxZWKP3cymPno19qeWsJTW7gHMZJkryGg8Gt0DITYWzG0xTphBC2BBJXqqBQr2B+bc3pHuiez2CPc20Id3NK/DLi8rjHrOgfi/z1FONaDVqHmgVBMCRFBMlLxo7aPOo8vjIUtOUKYQQNkSSl2pg1aF4Lqbk4OViz/TeZtqQTq+D1U9AfgbU7gC9Z5unnmqo6Kyj42kqcgsKTVNo20cBFVzeBTcumqZMIYSwEZK82Ljs/EI+3nYOgOf7NsTdUWueina+C1cPgYM7jF0MGjPVUw21reNJSC0nCgwqtp81wUnTAJ51oNEA5fHRZaYpUwghbIQkLzZu4a6LpGYXUM/HhYmd65qnksu7Yc8HyuPhH0MtM9VTTalUKkaEBwKwzlSrjgDaTVH+lIm7QogaRpIXG5aYkcfCPZcAeHVwE7Tm2JAu5wb8/BRgVOZZtBhr+jpqgBGtlORl74Ub3MjON02hjQbJxF0hRI0kyYsN+zAihjydgfZ1azGoeYDpKzAaYd2zkHUdfBrDkPdMX0cNUd/XhRAXI3qDkQ0nTNT7UmLi7temKVMIIWyAJC82KiYxix+PXAXgH8PMtCFd5CI4txk09vDgErB3MX0dNUh7XwNgwrOOANpORpm4u1sm7gohagxJXmzUx9vOYTTC0JYBtK1Ty/QVJJ+FiH8pjwe8BQEtTV9HDdPW24hGrSIqPp3Y1BzTFOoZ8sfEXVk2LYSoISR5sUFnEzPZdCoRlQpe7N/Y9BUU5sPPT0JhHjToB52eNn0dNZC7PXSt7wUohzWaTLupyp9RMnFXCFEzSPJigz7bfgGAoS0CaezvZvoKfvu3cvCikxeMku3/TWlk0aqjqATTnDQN0GigclRD7g1lmE8IIao5SV5szIXkbDaeUiZ8PtevoekruLwH9n2qPB7xKbiZYSJwDda/qR9OWg2XU3OIik83TaEaO2g9Xnl8bLlpyhRCCCsmyYuNWfr7ZYxGGNDMn7AAd9MWfisd1jxD8bLopsNNW77AxcGOQc2Vk6a/i4wzXcGtJyl/XoiATBPuJSOEEFZIkhcbknFLx+ojylyJx7vVM30FG1+GzKtQqx4Mftf05QsAHu0SCsDaqARSsky054tPQ6jTBYwGOP6dacoUQggrJcmLDfnxcDy3dHrCAtzofHvip8mc+BFO/ggqDYxZBA6upi1fFGtXtxZt6nhSUGhg+YErpiu4ze3el2PLlT16hBCimpLkxUYYjUa+vf2LbkrXUNPu65IeB7/+TXnc6xUI6WC6ssVdPdFd6TlbfuAKtwr0pim02Siwd4W0ixB3wDRlCiGEFZLkxUYcuXKTKzdycbbXMKJ1kOkKNuhhzXTltOjg9tDjZdOVLUo1uHkAtWs5cSOngGX7Y01TqIMrNB+tPD72rWnKFEIIKyTJi434+faurENaBOJsb2e6gn//DK7sBa0LjFmorFwRZmenUfPS7T16vth5kYxbOtMUXHRcwOk1kJ9lmjKFEMLKSPJiA/J0ejYcTwBgbNtg0xWcEAU73lYeD3kPvBuYrmxxT6PaBNPY35WMWzo+237eNIWGdATvRqDLVRIYIYSohqokefn8888JDQ3F0dGRTp06ERkZWeq1ixYtokePHtSqVYtatWrRv3//Mq+vCXbGJJOZV0iQhyOd63ubptCCXPh5Ghh0EPbAH5M9RZXRqFXMHtoUgCX7LnPyakblC1WpSk7cFUKIasjsycv333/PrFmzmDt3LkePHiU8PJxBgwaRnJx81+t37tzJ+PHj+e2339i/fz8hISEMHDiQa9dMuJ26jdl8KhGAB8KDUKtNNFF321xIPQeu/jD8U9lF10L6NPFjeHgQBiP8/afjppm8G/6Ismos/iCknKt8eUIIYWXMnrx8+OGHTJs2jalTp9KsWTO+/PJLnJ2dWbJkyV2vX7FiBc8++yytW7cmLCyMr776CoPBwPbt280dqlXS6Q1sP6skegOb+Zum0PMRELlQeTzqv+Biot4ccV/mDm+Gt4s9ZxOzeH3tycofG+AWoBwZABAlvS9CiOrHrMlLQUEBR44coX///n9UqFbTv39/9u/fX64ycnNz0el0eHmZeF8TG3HwUhpZeYX4uNrTxhSnR+ekwroZyuNOz0DD/mVfL8zOx9WBzya0Qa2Cn49e4787L1a+0KKho6jvQG+iycBCCGElzLq0JDU1Fb1ej79/yR4Df39/zp49W64yXn31VYKCgkokQH+Wn59Pfv4fu5RmZmYCoNPp0OlM+492UXmmLrcsm08pE3X7NvHFoC/EUJlRBaMRzfrnUWcnYfRpQmGv18GE78US7WMr7tU2Hep48NrgJryzKYb/bInBRatiYqc6919hvb7Yufiiykmm8OxmjI0H339ZVUA+O2WT9imbtE/pbKltKhKjVa+Lfffdd1m1ahU7d+7E0dHxrtfMnz+fefPm3fH81q1bcXZ2NktcERERZin3r4xG2HBMA6jwzIlj48bK7cYacmMPbeN+xaDSsNt7IhkRv5km0L+oqvaxRWW1jT8wMFjN1mtq3thwlpjo03T2u/8hpGYu7WmUs4mUrR8RecFw3+VUJfnslE3ap2zSPqWzhbbJzc0t97VmTV58fHzQaDQkJSWVeD4pKYmAgLJPK37//fd599132bZtG61atSr1utmzZzNr1qzi7zMzM4sn+bq7m/bgQp1OR0REBAMGDECr1Zq07Lu5kJxN+oHfsbdT89zD/XDUau6/sPQ47BY9C4Cx12y6dXvWRFH+oarbx5aUt22GGI38e1MMy/bHseqShnatWzDyfjclTGkACzcRkHWcoT3bg6vffUZvfvLZKZu0T9mkfUpnS21TNHJSHmZNXuzt7WnXrh3bt29n1KhRAMWTb2fOnFnqff/3f//Hv//9b7Zs2UL79u3LrMPBwQEHB4c7ntdqtWb7QZmz7D87GJsOQMdQL9yc797zVC4GA2x4HgqyIaQTmp6z0KgrkQjdQ1W1jy0qT9u8MaIFeiMsPxDHKz+fwtFBywOt7iOBCWoBtTugunoIbfTP0PW5+4y66shnp2zSPmWT9imdLbRNReIz+2qjWbNmsWjRIpYtW0Z0dDTTp08nJyeHqVOnAjB58mRmz55dfP17773Hv/71L5YsWUJoaCiJiYkkJiaSnZ1t7lCtzt4LqQB0a+hTuYIOfP7HLrqjvwQzJi6i8lQqFW+OaMG49iEYjPDCqqji5fIV1nqi8qcc1iiEqEbMnryMGzeO999/nzlz5tC6dWuioqLYvHlz8STeuLg4rl+/Xnz9F198QUFBAQ8++CCBgYHFX++//765Q7UqOr2BA5fSAOjRqBLJS9Jp2P6m8njwO+BV3wTRCXNTq1W8M6YlY9oEozcYeWHVMc4klL9LtViLMWDnBCln4doR0wcqhBAWUCUTdmfOnFnqMNHOnTtLfB8bG2v+gGzA8fh0svMLqeWspVngfc7dKcyHn58GfQE0HgxtHzNtkMKsNGoV//dgK9JyC9gZk8KzK47wy3PdcXOsQNevowc0GwknVimHNdYuexhWCCFsgZxtZKWKhoy6NvS5/111d86HpJPg7C276NooO42ajx5uTbCnE7E3cnlnY/m2GCihaM+Xk6uVYyGEEMLGSfJipSIvK0NGXe73LKMr+2Hvx8rj4Z+Am4l25xVVrpaLPR8+HA7Ad5FxHLx0o2IF1O0GtUKhIAuifzF9gEIIUcUkebFCOr2BqPh0ADqE3sfOwvlZsOZpwAjhE6DpcJPGJ6pep/rejO8YAsA/156iUF+BfVvUamhddFjjt2aITgghqpYkL1Yo+nomuQV63B3taOTnWvECtvwD0q+ARx0Y8q7pAxQW8drgpng6azmfnM3qo1crdnPr8YAKYvdA2mWzxCeEEFVFkhcrdDj2JgDt6taq+HyXsxvh6DeACkZ/oUzYFNWCh7OWmX0aAvBRxHnydBU4K8KjNjToozyOWmmG6IQQoupI8mKFjlxRkpf2FR0yykmFX55XHneZAaHdTRyZsLRJnesS7OlEYmYeyw9U8LiI4sMaV1K5Q7KEEMKyJHmxMkajkUOxymTd9nUrcIq00Qi/vAA5KeDXDPr+y0wRCkty1Gp4rq/S+7JozyXyCyuQhDQZBo6ekHkVLu00S3xCCFEVJHmxMldv3iI5Kx+tRkV4iGf5b4xaCWc3gFoLYxaCthLHCQirNrptMP7uDiRl5rPm6LXy36h1hFYPK4+jVpgnOCGEqAKSvFiZw1eUXpfmQR7lP4jx5hXY9KryuM8/IKClmaIT1sDBTsO0HspOyf/bfQm9oQLb/hcdFxC9AXLTzBCdEEKYnyQvVuZYXDqgTNYtF4Me1k5X9vAI6QzdXjBfcMJqjO9YB09nLZdTcyp27lFgOPi3BH0+nFptvgCFEMKMJHmxMieuZgCUf8ho/+dwZR/Yu8qhizWIi4Mdk7uEArBw90WM5T10UaX6Y+Ku7PkihLBRkrxYEZ3ewJnryuF7rYLLscQ58RTseEt5POgd8KpnxuiEtXmsS10c7NQcv5pRfIhnubR6GDT2cP04JJ40X4BCCGEmkrxYkXNJWRQUGnBztKOut3PZFxfmK7vo6gug8RBoO7lqghRWw9vVgYfbK7vu/m/3xfLf6OwFTYYqj4/JxF0hhO2R5MWKnLw9ZNSqtgeqex2i+Ns7kHRKOXRxhBy6WFM92aMeahXsjEkh+navXbm0eVT588T3SiIshBA2RJIXK3LimpK8tAz2LPvCK7/Dvk+Ux8M/BVc/8wYmrFZdbxeGtAwEYOHuS+W/sUEfcAuCW2kQs8lM0QkhhHlI8mJFinpeWpY13yU/C9Y8AxiVZa9NH6ia4ITVerqnsmx6/fEErt7MLd9Nas3t846AY8vNFJkQQpiHJC9WIr9Qz9nE25N1a5eRvGye/cehi4Pl0EUBrWp70rWBN3qDkSV7Y8t/Y9GeLxe3Q0YFNrsTQggLk+TFSpxLzEanN+LprKV2Lae7X3T219vLW1XKsmhH9yqNUVivp3s1AGDVoTjScwvKd5N3A6jbDYwGOP6dGaMTQgjTkuTFSpy4lg4oQ0Z3naybnQLrbx+62HUmhHaruuCE1evZyIewADdyC/QVO7Cx+LDGFcr5WEIIYQMkebESf15pdAejEdbPhNxU8Gsuhy6KO6hUKp653fuy9PdY8nTlPLCx2Uhlg8O0SxC334wRCiGE6UjyYiVOXC1jpdHhJXBus7Kx2JiFYOdQtcEJmzCsVSDBnk6kZhewZN/l8t1k7wLNRyuPZeKuEMJGSPJiBfJ0es4lZQF36XlJPQ9bXlce95sLAS2qODphK7QaNS8PagzAgh0XSMrMK9+NRXu+nF6jrGYTQggrJ8mLFYi+nkmhwYiPqz2BHo5/vFBYAKufhMJbUL83dH7WYjEK2zAyPJg2dTzJLdDz1oYz5bsppCN4NwJdrpLACCGElZPkxQqcvPbH/i4lJuvunA/Xo8CpFoz6AtTy4xJlU6tVzBvRHI1axYYT11lz7Oq9bypxWKMcFyCEsH7y29AKnLjb5nSx+2DvR8rj4Z+Ae5AFIhO2qFVtT17s1wiAf/x8iqNxN+99U/gjoNJA/AFlqFIIIayYJC9WoHhn3dqeyhO30pVDFzFC60nKihAhKuDZPg3p1diXWzo9U5ZEsvd8atk3uAVAowHKY5m4K4SwcpK8WFhuQSHnk/8yWXfjy5ARD7XqwRDZRVdUnEat4otJbWlftxaZeYU8uuQgr/50gosp2aXfVLzny0rQ66omUCGEuA+SvFjYmYRMDEbwc3PA390RTvwIJ39UuvDHLAIHN0uHKGyUs70dy5/sxCMdQjAa4fvD8fT7YBej/7uPZb/Hkpr9l9OkGw8GV3/ISYaYjZYJWgghykGSFwsrMd8lPQ5+naW80OsVCOlgwchEdeCo1fDu2Fasnt6FfmF+aNQqjsWlM3f9aTq9s52ZK49yLf2WcrFG+0fvy+GvLRe0EELcgyQvFla00ig82A1+fhryM6F2R+jxsoUjE9VJu7peLJ7Sgf2z+zLngWaE1/ZAbzCy4cR1Bn+0m93nUpQL2z4GqODSb3DjokVjFkKI0kjyYmFFycuwrB8g7ndlq/YxC0FjZ+HIRHXk5+bI493rsW5mdzY+34PWIZ5k5Rfy+NJD7LuQCrXqQsP+ysVHl1k2WCGEKIUkLxaUnV/IxZRswlUXqH/qE+XJIf8HXvUsG5ioEZoFufP9050Z0iKAQoORZ749QtyNXGg/Vbng2HIozC+7ECGEsABJXizo9LUMXI25/Nfhc1SGQuWMmdYTLB2WqEEc7DR8NK41besoPTB//+k4hoYDwS0Icm9A9C+WDlEIIe4gyYsFnbyazr+1iwkmCTzrKJvR/XmHXSGqgKNWSWCc7TUcvJzG6qhEaDtZefHIUovGJoQQdyPJiwU5n1nFCM1+DGhg7BJw9Lj3TUKYQV1vF164vSvvhxHnyGs1EVRqiN0DKecsHJ0QQpQkyYulpMQwOlGZ5xIb/pIsixYW91jXUII9nbiekcfyM4XQaJDygvS+CCGsjCQvlqDLQ//DVJzIZ4++BZ4D/m7piITAUathZt+GACzZe5nCtlOUF6JWgO6W5QITQoi/kOTFEiL+hSblNKlGd953eQkvV0dLRyQEAKPbBOPj6kBCRh6/5DYFjxDIS4cz6ywdmhBCFJPkpaqd/RUiFwLwN910gkNkWbSwHo5aDVO7hQKwZF/87U3rgMNLLBeUEEL8hSQvVSnjKqx9FoBttR5mlyGclsGelo1JiL8Y37EOWo2Kk9cyOBs0EtR2EH8Qrh+3dGhCCAFI8lJ19IWweprSBR/UhrdyHwT+dJK0EFbCy8Wegc0DAFhxugCajVReOLjQglEJIcQfJHmpKjveur39vxupg77gSkYhapUkL8I6je9QB4C1UdfIbztNefLkj5CTasGohBBCIclLVYjZDPs+Vh6P/IxDmZ4ANPZ3w81Ra7GwhChN1wbehHg5kZVXyK83a0Nga9Dny3lHQgirIMmLud28AmueVh53fBqaj+Zo3E0A2tatZcHAhCidWq3iwbYhAKyJSoBOzygvHFqiDIEKIYQFSfJiToX58ONjyjyX4HYw8G0AjsalA9CujiQvwnqNahMEwL4LqSTXGQrOPpB5FWJ+tXBkQoiaTpIXc9ryOiQcA0dPeGgp2NmTX6jn5NUMQHpehHWr6+1Cu7q1MBhh/ekb0G6K8sLB/1k0LiGEkOTFXE6thkOLlMdjFioHLwKnEzIp0BvwcrEn1NvZggEKcW+j2gQDsObYNejwBKg0cGUfJJ6ycGRCiJpMkhdzSD0P659XHnefBY0HFb90JFaZ79ImxBOVnCAtrNwDLQOxU6s4nZDJuVtu0GyE8kKk9L4IISxHkhdTy8+GHyZDQTbU7Q59Xi/x8v5LNwDoXN/bEtEJUSG1XOzp3cQPgLXHrimTzgFO/AC5aRaMTAhRk0nyYkpGI6x7FpLPgKs/PLgYNHbFL+v0Bg7eTl66NJDkRdiG0beHjtZFJWCo3QkCw6EwDw4ttnBkQoiaSpIXU9r7kXKAnVoLD38LbgElXj55LYOcAj0eTlqaBbpbKEghKqZfUz/cHOy4ln6LQ1duQpfnlBci/we6PMsGJ4SokSR5MZXz22D7m8rjof+BOp3uuGT/xaIhIy/UapnvImyDo1bDkJZKIr7m2DVoPgrca0NOCpz43rLBCSFqpCpJXj7//HNCQ0NxdHSkU6dOREZGlnn9jz/+SFhYGI6OjrRs2ZKNGzdWRZj3L+0SrH4cMCqn8LafetfLfr+obK3etYFPFQYnROUVrTr69eR18gxq6KIcMMrvn4HBYMHIhBA1kdmTl++//55Zs2Yxd+5cjh49Snh4OIMGDSI5Ofmu1//++++MHz+eJ554gmPHjjFq1ChGjRrFqVNWujQzPxtWTYS8DKjdQel1uYusPB2Rl5UJjt0bSfIibEvnet4EeyrHBWw6dR3aTgYHD7hxHs5vsXR4QogaxuzJy4cffsi0adOYOnUqzZo148svv8TZ2ZklS5bc9fpPPvmEwYMH8/e//52mTZvy1ltv0bZtWxYsWGDuUCvOaIT1M/+YoPvwt2DncNdLd59LRac3Ut/HhQa+rlUcqBCVo1areLi9clzAd5Hx4OAG7acoL/7+meUCE0LUSHb3vuT+FRQUcOTIEWbPnl38nFqtpn///uzfv/+u9+zfv59Zs2aVeG7QoEGsXbv2rtfn5+eTn59f/H1mZiYAOp0OnU5XyXdQUlF5RX+q936A5vQajGot+jFLMDr5QCl1Rpy+DkCfJj4mj8ta/LV9xB+qQ9uMbh3AJ9vPEXk5jZiEdOq3fRK7/Z+jurKPwtiDGIPb3nfZ1aF9zEnap2zSPqWzpbapSIxmTV5SU1PR6/X4+/uXeN7f35+zZ8/e9Z7ExMS7Xp+YmHjX6+fPn8+8efPueH7r1q04O5tnB9uIiAiCbh6kQ+znABwPnsSVkzfg5N3n5ugNsPW0BlDhnH6RjRsvmiUuaxEREWHpEKyWrbdNmIeaM+lq3vtpDyPrGmjj2Yk6aftIWvtPDtebWenybb19zE3ap2zSPqWzhbbJzc0t97VmTV6qwuzZs0v01GRmZhISEsLAgQNxdzftcmSdTkdERASDWvjg8J2yx4W+4zM0H/A2zcu477eYFHIPHsPbxZ5nH+qPnaZ6LvIqap8BAwag1WotHY5VqS5tY18vmekroziW7sAnT/bE8WYoLOpJUMZhhnYOA6/691VudWkfc5H2KZu0T+lsqW2KRk7Kw6zJi4+PDxqNhqSkpBLPJyUlERAQcNd7AgICKnS9g4MDDg53zjPRarVm+UE5FtzA4eeXURXmQaNBaAa/g0atKfOedceVXqORrYNxcrz7nJjqxFxtXx3YetsMaB5IsGcM19JvsfZEEo92DoeGA1BdiEB74DMYWbm5abbePuYm7VM2aZ/S2ULbVCQ+s3YB2Nvb065dO7Zv3178nMFgYPv27XTp0uWu93Tp0qXE9aB0d5V2fZUqyKbzpY9Q5SSDX3NlB917JC7puQVERCvJ2Ji2wVURpRBmY6dR81RPpXdl4e6LFOoN0PPvyovHv4P0eAtGJ4SoKcw+fjFr1iwWLVrEsmXLiI6OZvr06eTk5DB1qrIXyuTJk0tM6H3hhRfYvHkzH3zwAWfPnuWNN97g8OHDzJxZ+fH0SjHo0ax9Bo9bcRhdfGHCKmXFxT0sP3CFgkIDzQLdaR4ku+oK2/dw+xC8XOyJT7vF2qgEZUPGej3BUAj7PrZ0eEIIc9IXwq8vQ9pli4Zh9uRl3LhxvP/++8yZM4fWrVsTFRXF5s2biyflxsXFcf369eLru3btysqVK1m4cCHh4eH89NNPrF27lhYtWpg71LId+AL1+c3oVVr0D30LnnXueUueTs/S368A8FTP+nKKtKgWnOw1xb0v72+JIbeg8I/el6PfQub1Mu4WQtgsoxF+nQWHFsE3I6CwwGKhVMmE3ZkzZ5bac7Jz5847nnvooYd46KGHzBxVBbWbgiF2L8cK6hEe3L5ctyzcfYnU7HyCPZ0Y1irQzAEKUXWmdA1l+YErXL15iwU7LvDKoB4Q0hniDyj7vgx+x9IhCiFMbc8HcHQZqNQw+F2ws7dYKNVz2Ys5OLiif/AbrtXqXK7Lzydl8d+dFwB4dUgY2mq6wkjUTI5aDf8c1hSAL3ddVA5sLOp9ObwEclItGJ0QwuSOfgM73lIeD/k/CBtm0XDkN2pFlHPYJzkrj6eXHyFPZ6BHIx+GS6+LqIYGtwhkTJtgDEaYseIo8V5dIKgNFN6C/Va4I7YQ4v5Eb4BfXlAed38JOk6zbDxI8mJSBoORHWeTGP3571xKySHA3ZEPH24tc11EtTVvZHOa+LuRnJXP+K8Ocq3V7eHhgwshO8WywQkhKi92H/z0OBgN0GYS9Jtr6YgASV5MIikzj0+3n6fnf37j8aWHuZZ+izpezqx6qjO+btV/XxdRc7k5avnmiY7U9Xbm6s1bDNzoQqp7M9DlwN6PLB2eEKIyEk/Cd+NBnw9NhsEDn5R7BMLcJHmphLScAl756Tjd3t3BhxHnuHrzFu6OdjzZvR4bX+hBqI+LpUMUwuz83R1Z82w3utT3JqfAwEupIwAwHPoKMq5aODohxH1JuwzLx0J+BtTpquxrprGeTfmtJxIbcy4pi8mLI0nMzAOgQ2gtJnSqw5AWgThqy964TojqxsvFnuVPdmLFwSv832YNBw1hdOIsx1e8TvOnv662R2IIUS2lx8OyEZCdBP4tYPx3oHWydFQlyL8o9+F6Rh4TFh0gMTOP+r4urJ7ehR+f6croNrUlcRE1lkatYnKXULbN6s2u2s8A0DxpPbO/WkdOfqGFoxNClEtmAix7ADLiwKsBTFoNTp6WjuoOkrxUkMEIM1dFkZpdQNNAd36e3pV2db0sHZYQViPAw5FXnppKkn9P7FQGul1dyPQVR9HpDZYOTQhRlqxEWDYcbsZCrVB47Bdwu/u5gpYmyUsF7U1UceJqJu6Odix8tB2ezpbbpEcIa+Y/6m0ARqj3k3L+MO9tOmvhiIQQpcpOUYaKblwAjzpK4uJhvefxSfJSARm3dGyMV5rs74PDCPFytnBEQlixwHBoPga1ysjrdstZvO8SBy7dsHRUQoi/yk5WtvtPjQH3YHhsfbmOwLEkSV4qYPnBeG7pVTT2c2VCR+v+wQphFfrPBY093TWn6a2K4l9rTyknUQshrEPGNfh6CCSfAdcApcfFq56lo7onSV7KKbegkGX7lUMWn+lVD43aOta6C2HVaoVC5+kAzLFfweXkdH46IsunhbAKaZfh68G3h4pCYOpG8G5Q5i3puQXMXHmU3y+kYjQaqyjQO0nyUk4/Hr7KzVwd3g5GhjT3t3Q4QtiOHn8DZx/qkcAEzXY+3X5eJu8KYWkp55Qel/Q48KpfrsQF4KcjV9lw4jpv/RpdBUGWTpKXcnq4fQj/GhbGA3UMsmeFEBXh6AF9/gHALO3PZGeksvHkdQsHJUQNlhClJC5Z18E3DKZuKtccF6PRyA+H4wGY2KmORY++kd/C5eRkr2Fy5zq09bFcN5kQNqvtY+AbhidZvGC3hoW7L1m0y1mIGuvCNlg6DHJTIaAVTNlY7uXQpxMyOZeUjb2dmuHhQWYOtGySvAghzE9jB4P+DcBjmi3or5/iWHy6ZWMSoqY5tgJWjoOCbKjXE6ZsABfvct++5tg1AAY09cfDSWuuKMtFkhchRNVo2B+ajsBOZeBt7RJ+OhRn6YiEqBmMRtR7P4R1z4KhEFo+BBNXK0O65VSoN7AuKgGAMW0tv/+LJC9CiKoz+F30ds60V59Dc2Iltwr0lo5IiOpNX0Dr+CVodr2jfN/tRRi9EOwqtsFqZGwaqdn5eLnY07Oxr+njrCBJXoQQVccjGFWf2QC8xHK2H7XsigUhqrXsZDTLR1P3xi6MKjUM+Q8MmAfqiv/q3x6dDEDfMD+0VrBoxfIRCCFqFHXn6aQ6N8RLlY3b3rctHY4Q1VNCFCzsg/rqQXQaZ/TjvoNOT913cTvOKslL/6Z+JgqwciR5EUJULY2WvEHvA9ArexPZ0dstHJAQ1cyp1bBkMGRexejdkN2N52Js0O++i7uUks3l1By0GhXdG1l+yAgkeRFCWEDt8D78Yj8EANX655TVD0KIyinMh41/h58eh8Jb0LA/hVO2kO0YWKlii4aMOtf3xtXBzhSRVpokL0IIi7ja7jWuGn1wuXUN9Y63LB2OELYt7TIsGQSRC5Xvu78EE36o0Iqi0mw/mwRAvzDrGDICSV6EEBYyoE1DXtEpY/CaI4vxzpLJu0Lcl+hf4H+9IOEYONWCCT9C/zdAral00Rm5Og7F3gSgb5j1HI0jyYsQwiIa+rlyw7cLKwqVsfg2cV/J8JEQFZGfDeufh+8nQX4G1O4Iz+yFxgNNVsWu8ynoDUYa+blSx9vZZOVWliQvQgiLGdIygPmF40nV+OFSkIJmy2xLhySEbYg7CF92g6PLlO+7PqccruhR26TV7IhWhoz6WskqoyKSvAghLGZwiwCyceb5/OkYUKE+8R2c/MnSYQlhvQoLYNs8+How3IwF99rw2C8w8G3QmHbL/kK9gd9iUgDo39R6hoxAkhchhAU18Xejno8Lvxc2Ybf7SOXJDS8pkw+FECVdPQKL+sDeD8FogFaPwPR9yjlFZnA0Lp2MWzo8nbW0CfE0Sx33S5IXIYTFqFQqBjVXTrT9tHA0htqdID8TVj8Jep2FoxPCSuRnwabX4Kt+kHQKnLzgoWUw5n/g5Gm2aotWGfVu7IudFeyq+2fWFY0QosYZ0kJJXk6l25E77HNlaee1w7DtDcsGJoQ1OLcFPu8MB78AjNBqHMw8BM1Hmb3qov1d+lnZkBFI8iKEsLBWtT0I9HCkwKBiT4ozjPxceWH/Apn/Imqu9Dj4YTKsfBgyr4JnHZi0GsYsBBcfs1cfdyOXC8nZaNQqqziI8a8keRFCWJRKpWJgM2Ulw9YzSdB0OHSfpby4/jlIPGXB6ISoYgW58Nt8WNABzqwDlQa6Pg/PHoCG/assjG23Vxl1CK2Fh5NpJwKbgiQvQgiLG9RM6ZbefjaFgkID9P0nNOgLulxlD4tbNy0coRBmZjTC6TXweUfY9S4U5kFoD3h6Nwx8C+xdqjScouTF2lYZFZHkRQhhcW3reOKmNZKZV8j+SzeUnUHHLla6ym9ehh+nVLsJvAaDEYPBaOkwRBXJLSjkVoH+7i9ePw5LH1A+5xnx4BGiTMh97BcIaFGlcQJk3NIReTkNsN7kxTpOWBJC1GgatYqWXkZ+T1Kx+VQivRr7grMXjFuhnI57aSdseBFGLACVytLhVsrx+HQ+iDjHgYs30KhV9Gvqx6uDwwjxsp7dS4VppGTls2TfZX45nsDVm7cACPFyYljLIB7vHoqfLgF2/BtO3Z7bZecI3V6Ebi+Affk/D3k6PQajEWd70/xK33UuhUKDkYZ+roT6VG2PT3lJ8iKEsArhXkZ+T4KIM4m8PaoFGrUKAlvBQ1/Dd4/AseVQKxR6/t3Sod63VZFx/HPtKQqLelz0sOHEdfZeSGXZ1I6EW9leGuL+GI1Gvj8Uz79/jSYrv7DEa/Fpt/hp11FCDsxhvHo7auPt11s+BP3mKL2N5ZBfqOfHw1dZcTCO6OuZADTyc2Vqt3qM6xCi/P25T9utfMgIJHkRQliJRu5GPJzsSM0u4HBsGp3qeysvNB4EQ/4PNr4MO94Gz7rQ6mHLBnsffj56ldd+PgnAsJaBvNi/EbkFeuasO8Xxqxk8vvQQvzzXnSBPJwtHKiojT6f8TH84fBWAFsHuzOjdkK4NfCA/i5St7xMcvRgn8sAIp5w6UG/ce7iEtit3HTGJWbyw6hhnE7NKPH8+OZt/rDnJ5tOJfD6hDW6OFZ9oq9Mb+O2sskR6QDPrOhLgz2TOixDCKmjU0DdM+cdy06nEki92nKac3QKwdrqy94UNuZiSzezbicuUrqEsmNCGRv5uhId4smJaZ5oFunMjp4BXV5/AaJR5MLYqJSufRxYe4IfDV1Gr4JXBTVg3oztDmnrjcXIJHos60DD6c5zII8W9OZML/8kDN19i+OosLiRn3bN8o9HIN/tjGbFgL2cTs/B2sWfu8GZEvt6Po/8awD+HNcVRq2b3uRQeX3qI3ILCe5b5V79fvEFmXiHeLva0Dql1P81QJSR5EUJYjUG3/6e35XTinZNZ+78JLR4EQyF8/yhc3m2BCCuuUG/gbz8cJ7/QQI9GPsx5oBmqP83bcXWwY8GENjhq1ew5n8rPR69ZMFpxvy4kZzH6v/uIik/Hw0nLssc78mzP+mhO/QQL2sOmVyA3FbwbwkPL8H1pH7OenkaghyOXUnIYsWAfPxyOLzV5Tc3O58llh5mz7jT5hQZ6N/Fl84s9mdqtHn5ujni52PNkj/r8+HRX3BztOBR7k9dWn6xwMrw+KgGAoS0DKzX0ZG6SvAghrEb3Bt642Gu4npHHiWsZJV9Uq2H0l9BkGOjz4bvxcPWwZQKtgP/tvkRUfDpujna8N7YV6rv8Qqjv68oL/RoD8MHWGPJ0paxKEWZ1M6eATSev8+3+WDaevE5iRl657tsencSY//7O1Zu3qOvtzJrpXeihOg4Le8LPT0L6FXD1hwc+UvZraT4KVCpah3jyy3Pd6VLfm9wCPa/8dIKnvj1CzJ+Gg/J0elYcvMKgj3az/Wwy9nZq5jzQjK+ndMDXzeGOWFrW9mDxYx3QqFWsP57Aisj4cr//PJ2eraeVXs8RrYPKfZ8lyJwXIYTVcNBq6BPmx4YT19l06jqt/zqBVaOFB5fAd+OUFUjLx8DkdRDUxhLh3lP09Uw+3nYOgDeGNy9zPsvUbqF8sz+WhIw8lh+4wpM96ldVmDXerQI9H0bEsPT3WHT6kj0VTQPdGdjMn0HNA2ga6Fai1+xGdj4fRpxjxcE4ANrVrcWS/io8No6H2D3KRQ7uyuqhztPvuleLj6sDy5/sxJe7LvJhxDkiziQRcSaJej4uuDtpuZCURc7tJdZN/N34ZHxrwgLcy3w/Het5MXtIGG//Gs38zed4uZyrrXfGJJOVX0iQhyPt6ljvkBFI8iKEsDKDWwSw4cR1tpxK5LXBYSV+WQCgdYRHVsK3YyD+ACwbCZN+gpCOlgm4FAWFynCRTm+kf1N/xrQNLvN6R62GF/s34tXVJ/lqz2UmdwnF3k46x80t45aOx5ce4sgVZSPEsAA3QrycuZ5xi9MJmURfV74+2X6eOl7O9Grsi6ujHReTs9l1LoX8QgMAL7eD6frP0azYoBSssYcO06Dny8qy/zJo1Cpm9GnIgGb+fLj1HBHRSVxOzSl+PcjDkSd71GdS57rl/kw80b0eu86lsOd8KisuaHhUb0B7j/m7K2/30oxoHXzXHkJrIsmLEMKq9Gnih4OdmtgbuZxNzKJp4F3+l2nvoiQsK8fBlX3wzSiY8D3U61Hl8ZZmwY7znLmeSS1nLe+MaXFnEnYXo9oE88HWcyRm5rH+eAIPtqtdBZHWXIV6AzNXHuXIlZu4O9rx8SOt6Rv2x/LgmzkFbD+bzJbTiew+l0JcWi7fHrhSooxeATr+z+dX/M/8BEYDqNQQPh56zwbPkArF09jfjS8fbUd6bgGnrmWSnV9IiJcTTQPcK5xMqFQq/u/BVgz8aDdXsgv5am8sz/VvUur1sak57D6XgkoFEzqWb7m2JUnyIoSwKi4OdvRs7EvEmSR+OZ5w9+QFwMENJv4Eq8YrQ0grHoRHVlTp+S+lOR6fzuc7LwLw9qiW+Lk5lus+BzsNj3evx7ubzrJw90XGtg0uV9Ij7s9nOy6w53wqTloNK6d1pkWwR4nXa7nY82C72jzYrja5BYXsPpfCsbh08gsN1HUu4IHMVficWYoq/fbcmCZDlb1a/JpWKi5PZ3u6N6r84YuBHk78a2gYr/x8ik9/u0j/5oGl/n36et9lAHo39qWOt/VvmCh9kkIIqzO6jTLE8sPheOWso9LYO8P476HRIOUsmJWPwIkfqijKu7tVoOelH6LQG4wMDw9iWKvACt0/oVMdXOw1nEvK5sClNDNFKS4kZ/HfnRcAeHdsyzsSl79ytrdjcItAZg9swBs+vzH18Eh8T3yJqjAP6nSBx7fA+O8qnbiY2qjWgbSoZUCnN/Lcd8fIyb9z+XRC+i2+uz1kZCtzrSR5EUJYnQHN/PFzcyA1u4AtpxPLvljrCOOWQ/MxYNDBz9Ngz4fKQXcW8M7GaC6l5ODn5sCbI5pX+H53Ry0jbydvKw5eucfV4n69sf4MOr2RfmF+jAgvx8oaoxHO/gr/7QRbX4e8DPBrpiTPUzdBnc7mD/o+qFQqHmlgwN/NgQu3N7H76/Lpt389Q4HeQKd6XnRt4G2hSCtGkhchhNXRatQ8cnvcffmBcvwCt7NXDnLsMlP5fvs8+PVvYKjaJccRZ5KK50S8/1A4tVzs76ucojkHW04nkpKVb7L4hOLgpRvsvZCKVqPijRHN7z00l3gSlg2HVRMg7RK4+MGIz+CZvdBksNWft+WmhY/HtUKjVrEuKoE31p+mUK/0aC77PZaNJxPRqFX86y97EFkzSV6EEFZpfEflfJaDl9M4cTX93jeo1TDo3zD4XUAFhxfDqomQf++dS03hfFIWL30fBSjLnns29r3vsloEe9A6xBOd3siPR8q/T4con4+3nQfg4fYhZR+ImZ0C65+DL3soS581DtDjb/D8UWg7WTn93Ea0r1uL+aNbolLBsv1XGPrpHh5dfJC5608DMGtA43sOnVkTSV6EEFYp0MOJkbe78z/bcaH8N3aeDg8vU37RnNsEXw2AtMtmilJxLf0Wjy87RHZ+4e09Nio/72FiJ6X3ZeXBuDt3Gxb37ciVNPZfuoFWo+LZPg3vfpFBD4e+ggXt4Og3gFEZlpx5SJmQ6+BWpTGbysMdQvjkkTa4OdpxLimbPedTUangub4NebZ3A0uHVyGy2kgIYbVm9G3ImqhrRJxJ4tS1jPL/z7DZSHAPVnpeUqJhUR94+Buo19PkMcam5vDokoPEpym7q345qZ1J9md5oFUQb204w9Wbt9h36YYJIhUAy35XhvVGtQ4m+G6bBl47Cr/OgoRjyveB4crBoFY6p6WiRoQH0b2hD9uik8jJL6R7Qx8a+dteMiY9L0IIq9XA17V4MuWbG85U7JyW2u3hqd+U3Xdv3VT2golcZNKJvNvOJDFiwd7ixOW7aZ3xus95Ln/lZK8pXnX1/aGrJimzpkvOymPTqesAPNY1tOSLt9KVeVKL+iqJi4M7DH0fpv1WbRKXIl4u9jzcPoSp3erZZOICZkxe0tLSmDhxIu7u7nh6evLEE0+QnZ1d5vXPPfccTZo0wcnJiTp16vD888+TkZFR6j1CiOrv74Oa4KhVE3k5jfXHEyp2s3uQshKk5UNg1MPGl+GX50FXvjNrSpOYkceMFUd58pvDZOYV0raOJz883aXM7f/vx/jbQ0fbz6aQWWDSomukVZHx6PRG2tbxLNmLd3otLOigDBVhVD4vMw8rp5nb0LyWmsRsycvEiRM5ffo0ERERbNiwgd27d/PUU0+Ven1CQgIJCQm8//77nDp1iqVLl7J582aeeOIJc4UohLABtWs5M6O3Mjdh7vrTXM+4VbECtE4wZhH0nweolDkMSwbBzYovQy7UG1i89zL9P9zFryevo1bBk93rseqpLvi7l28juooIC3CnTR1PCg1GIlNsYxWItdIbjKy8fQbR5C6hypPZyfDDZPjxMchJBu9GMHk9jP0K3PxLL0xYnFnmvERHR7N582YOHTpE+/btAfjss88YOnQo77//PkFBd66pb9GiBatXry7+vkGDBvz73/9m0qRJFBYWYmcn03OEqKme6lWfrWeSOHktgxe+i2L5k50qNq9EpYLuL0JAS1j9JFyPgv/1VH5JNRpQriIOx6bxz7WnOHv7xN/WIZ78e3QLmgeZd4XG+I51OBaXzv4ktUzcrYQDl26QmJmHh5OWIS384cSPsOkVuJUGKg30mAU9/w52d57ULKyPWTKC/fv34+npWZy4APTv3x+1Ws3BgwcZPXp0ucrJyMjA3d29zMQlPz+f/Pw/9kHIzMwEQKfTodPp7vMd3F1ReaYut7qQ9imdtE3Z7tU+auCjh1oy8ov9RMam8bcfjvH+2JYVPzyubk94Ygea1VNRXz+GccVDGLr/DUOPv5c6PKA3GPnvzkss2HkRgxE8nbT8bUAjHm6nHF5n7p/poKY+vOmgITVfz97zyfRsIj0Cf1Wev1+rby85f7iJBu0PE+H8ZgCMfi0oHP4pBLQCI1DN/o7a0r89FYlRZazQDLjyeeedd1i2bBkxMTElnvfz82PevHlMnz79nmWkpqbSrl07Jk2axL///e9Sr3vjjTeYN2/eHc+vXLkSZ2frP59BCFF+0TdVLIxRYzCq6ORrYFwDA5r7GE1RG3S0uLaCeqk7AEhya8nR0GcosCs5eTFfD1+fUxOdrvTydPA1MLquAZd7nM5raj9eUrM3SU0bbwNTGpdxXIK4qwI9/POIhj7GQ3zkuAgnQw4GlYaYgJGc938Ao0p69q1Bbm4uEyZMKO64KEuFfmKvvfYa7733XpnXREdHV6TIu8rMzGTYsGE0a9aMN954o8xrZ8+ezaxZs0rcGxISwsCBA+/55itKp9MRERHBgAED0N7rbPEaSNqndNI2ZStv+wwFGh6/ziurT3IwRY2rtz8fPdQKJ/v7mVQ5ksKTP6DZ+Df8s04y+Mp89GOXYAxqC0B6ro4nvz1KdHoGTlo1b41szsjwip1TZCq149PYu/AwJ29q6NSrL94mWtFUXdzr87P12EXeOvoKD2t3gQGMAa3QD/+chn5NKWWnl2rDlv7tKRo5KY8KJS9/+9vfmDJlSpnX1K9fn4CAAJKTk0s8X1hYSFpaGgEBAWXen5WVxeDBg3Fzc2PNmjX3bGwHBwccHO4co9RqtWb7QZmz7OpA2qd00jZlK0/7PNi+Dm5O9jz33TG2n01h4pLDLJzcjkCP+1jp03YiBLeG7x9FlXYRu28egCHvkdvyUaYtP8bxqxl4OmtZMqUDbevUur83ZQKtQryo42IkLgfWn0jkqZ62taFYVbnr5yf+EB22TsbPLgEjKlTdX0LVezZau5qVANrCvz0Via9Cq418fX0JCwsr88ve3p4uXbqQnp7OkSNHiu/dsWMHBoOBTp06lVp+ZmYmAwcOxN7envXr1+PoaPrZ+0II2zeoeQArnuyEl4s9J69lMGLBPo7F3by/wvybK/vBhD0A+gLY8BJHPx3P2fgkPJ21fP9UF4smLkW6+ivDRd9Fxldsv5uaSl8IO9/DuGQQfoUJXDX6cHXkj9B/rnIWlrBpZlkq3bRpUwYPHsy0adOIjIxk3759zJw5k0ceeaR4pdG1a9cICwsjMjIS+CNxycnJYfHixWRmZpKYmEhiYiJ6fdUeriaEsH4dQr1YN6MbTfzdSMnKZ9zCA6w5dp+buTl6wLjlGPq/iQE13XMiWOswl+Vj/GgSYB2beLX1MeJir+Fyag4HLqVZOhzrlpUE34yAne+gMupZq+/KrFoLCGlTvpVlwvqZbZ+XFStWEBYWRr9+/Rg6dCjdu3dn4cKFxa/rdDpiYmLIzc0F4OjRoxw8eJCTJ0/SsGFDAgMDi7/i4+VgMiHEnUK8nFn9bFf6N/WnoNDAS98f573NZ+9vSbFKxbuZA5lQ8A9Sje6EqeJo8csIiNlk+sDvg4MGht+ec7PqUJyFo7FicQeUZfBX9oG9Gx+7/50XdTMZ0LaJpSMTJmS25MXLy4uVK1eSlZVFRkYGS5YswdXVtfj10NBQjEYjvXv3BqB3794Yjca7foWGhporTCGEjXN1sGPho+2KD5b7YudFnvr2MNn5hRUq5+t9l1m4+xIHDM2IHLgWQjpBfgZ89whsf1M5rM/CHmlfG4BNJxO5mSNb7pZgNKI+tBCWDoPsRPANI+HhTXyc3AaVCka0vnN/MWG75GwjIYTNU6tVvDI4jE8eaY29nZpt0cmM/e/vxKflluv+DScSeHPDGUA5jmBot3bw2Abo9IxywZ4P4NvRkJNqrrdQLs2D3GkR7E6B3sDqo3LeUbGCHNpd+QLN1n+AoVA5AfrJ7ay+osyb7NbAxyw7IAvLkeRFCFFtjGwdzA9Pd8HPzYGYpCxGLNjLgXucyPzL8QReWBWF0QiTOtcp7sHBzh6GvAdjF4PWBS7vUoYj4g9VwTsp3fiOynlH30XGycRdgBsXsVs6mNo3D2BU28Hgd+HBJRjtXVgbdQ2AkdLrUu1I8iKEqFZah3iyfmZ3WtX24GaujklfHeSb/bF3zIMp1Bv4dPt5nl91DL3ByNi2tZk3ogUq1V92vWv5IEzbrpx7k3kNvh5i8tOpK2JEeBDO9houpuSw/x6JWbV39ldY2BtVSjR5dh7oJ66BztNBpeLUtUwupuTgYKdmcIuyt+gQtkeSFyFEtRPg4cgPT3dheHgQhQYjc9adZuine/hqzyW2nUliyd7LDP10Dx9GnMNohMld6vKfB1uhKe24Ab+mMG0HNB0BBp1yOvWaZyp9OvX9cHPUMrpNMADf7q/44ZLVgkEP2+bBqgmQn4khpDM7w97CWKdL8SVrjim9LgOa+ePmaN37m4iKkz2RhRDVkqNWw6ePtKZ1iCcfbzvH2cQs3v615A7gHk5a/vVAMx5sV7scBbrDw9/A/gUQMRdOrILUc/DICnCv2mGJyV1CWXEwjq1nkriecev+NuizVTmpsPoJuLRT+b7zs+h7/4v8LRHFlxTqDaw/ngDAqNbBFghSmJskL0KIakulUvFE93qMaRPMmmPX2HM+hZTsfLxdHOjRyIcH29XG07kCG5apVND1OeV06h+nQMJRWNhHSWBqt7/n7abSJMCNjvW8iLycxncH45g1sIYsA756BH6YDJlXQesMIz5ThvX+cqDfvos3SM3Op5azll5NfC0UrDAnSV6EENVeLRd7Hu9ej8e71zNNgfV7w7Tf4LvxkBKtzIMZ/gm0nmCa8sthcpe6RF5OY2VkPDP7NsLerhrPAjAa4cjXsOlVZRdk74YwbrkynHcXa28PGQ0PD0KrqcbtUoPJT1UIIe6HVz14MgKaDFN+oa6dDlteV7alrwKDmgfg5+ZAanY+m08nVkmdFqG7BetmwIaXlHYOe0BJHEtJXHLyC9l8SmmPUW1kyKi6kuRFCCHul4Ob0gPQ61Xl+/0LYOVDcOs+z1mqAK1GXbxs+tv9sWavzyJuxsLiARC1AlRq6D9PaW9H91Jv2XomkVs6PaHezrQJ8ayyUEXVkuRFCCEqQ62GPv+Ah5Yp8zAu7oBFfSElxuxVT+hUBzu1ikOxN4m+nmn2+qrU+Qj4Xy9IPAnO3vDoWuj+ojLvqAxrjt2eqNsm+M5l76LakORFCCFMofkoeHwLeNSBtEuwqB/EbDZrlf7ujgxqruxh8k11WTZtMMDOd2HFQ5CXDsHt4OndUL/XPW9Nzspn7/kUQFYZVXeSvAghhKkEtoKnfoO63aAgSzkXac8HZt3Q7tEudQFlkmrGLd09rrZyuWnw3TjYOR8wQvsnYOom8CjHUnbg15OJGIzQto4noT4u5o1VWJQkL0IIYUouPjB5nfKLF6NyqOPqJ6CgfOcsVVSnel409nfllk7P6iM2fN7R9eOwsDec3wp2jjDqC3jgQ7BzKNftRiP8fFRZZTRaJupWe5K8CCGEqWm0yi/eYR+C2g5OrYavB0OG6ZMLlUrFo11CAVh+4ModxyDYhGMrYPFASL8CnnXhiYgKLzuPy4azSdk42KkZES7JS3UnyYsQQphLhydg8nplwmlRz0LcAZNXM7pNMK4OdlxKzWHfRcuefF0huluw/jlY9ywU5kGjgfD0LmX4rYL2Jyu/zoa2DMTDWY4DqO4keRFCCHMK7absS+LfEnJSYOkDcGSZSatwdbBjbFult8FmJu6mXVZ6W45+A6igz+sw/ntwqlXhonLyCzmaqqwsGtchxMSBCmskyYsQQphbrbrwxBZoNlI52PGX52Hj30Fvugm2RRN3t0cncS39lsnKNYuzG28vgz5xexn0z9DrFWXZ+X349WQi+QYVod7OdKrnZeJghTWS5EUIIaqCvYuyF0yf15XvIxfCt6OVFTYm0NDPja4NvDEYYeVBK+190RfCtjdg1XjIz4DaHZRl0A36VqrYH44oE3Ufaid7u9QUkrwIIURVUamUHoZxK8DeFWL3KPNgkk6bpPiJnYqWTSdY38Td9HhYNhz2fqR832k6TNlY7mXQpTmbmMnxqxmoVUbGtKna072F5UjyIoQQVa3pA8qKGs+6ygqbr/pD1HeVLrZfUz9cHey4ln6LI3HmP6Kg3E6vgS+6QdzvYO8GDy6BIe+CXQVO9C7Fqsh4AFrWMuLjWr5l1cL2SfIihBCW4N8MntqpnFCty4W1z8DaGVCQc99FOmo1xTvurou6Zpo4KyM/WzlU8ccpyjBRcHt4Zje0GGuS4vN0en4+qiw/7+JnZT1NwqwkeRFCCEtx9oJJP0PvfygHD0YtV85FSj5730WOuj108uuJ6+j0BlNFWnFxB2FhLzi2HFBBj5fh8c3gVd9kVWw+lUhmXiFBHo408ZTkpSaR5EUIISxJrYHeryr7wbj6Q8pZZR7M4SX3daxAl/re+Lg6cDNXx57b5/xUqYJc2PwPWDIIblwA92CYsgH6/UvZvM+EVh6MA5SJumqZp1ujSPIihBDWoF4PeGYv1O8Dhbdgw0uwfEyFd+W106h5oFUgAOujEswRaeli98IXXeHA54ARWk+E6fsgtLvJqzqflEVkbBoatYoH28mOujWNJC9CCGEtXP2UYaRB7yjn+1zcAf/tiur4dxXqhRkeriQv288mU1BYBUNHWUmw5hlYOgxuXlZ6WyauhlH/va9N58rju9sTdfuG+RHg7miWOoT1kuRFCCGsiVoNXWYovTC1O0B+BnYbnqPbhXcg+Uy5imgTUgtfNwey8grZf+mG+WItLIDfP4PP2sHx7wAVtJsKzx6ARv3NVm2eTs/q2xN1J3SqY7Z6hPWS5EUIIayRTyN4fAv0n4fRzgmf7BjsvuoDm16958Z2arWKgc38AWVSq8kZ9HB8FXzeAbb+EwqyILgdTNsOwz8GR3fT1/knG09eJ+OWjmBPJ3o28jVrXcI6SfIihBDWSq2B7i9S+Mx+rnl2QGXUw8Ev4ZNw+G0+3Eov9daiJdMRZ5LQm2rDOn2hckL2f7vAmqfhZiy4+MLIz+GJbUoCUwW+i1Qm6j7SIQSNzNStkewsHYAQQoh78KjN4XrP4d/UBbvtcyHpFOx6Fw5+Ae2fgPaPg2fJAwk71/fG3dGO1Ox8jsbdpENoJc78uZWuHKAYuRAylLkmOHpCtxeg09PK0QdV5FxSFodib6JRq3hYDmGssSR5EUIIG2Gs1wue3gPR62HnfGVZ9d4PYd/H0GQotHoYGg4Ae2fs7dT0a+rPmmPX2HIqseLJS2EBXNwOJ76HmE1QmKc87+wNHaZB5+ng5Gnqt3hPRb0u/cL88JeJujWWJC9CCGFL1GpoPgqaDoeYjUpvyOXdcHaD8qV1gYb9ILQHY2s3Yf0xPVvOJPL6sKZlH1qoy1MmBF87Ahe2K+cuFWT/8bpfMyVhafkQaJ3M/jbvGqLewLrby78f6Si9LjWZJC9CCGGL1BolgWk6XNmRN2o5nF4HGXFKz0z0eroD0Q52XM4OIHtpGG6efrd7S1Rg0ClHEWQmKF9pF8FQWLIOV39o8aDSoxMYrhwsaUG7YlJIyynAx9VBJurWcJK8CCGErfMLg4Fvw4C3IOGosj9M7D6Ij8Rel0MT1VW4chWu3KMcJy8lSanXAxr2B/+WSk+Plfj5mLI8elTrIOw01hOXqHqSvAghRHWhUikrfoLbQc+/g8HAr3sP8f3m7XTwzOa5Lj6Ql65cq9Yqwz/uQeAWCN4NwaO2xXtXSpOeW8C2M8kAjGlb28LRCEuT5EUIIaortZou7drw3KZUdqfB6BZ9qF3L2dJR3ZcNJ65ToDcQFuBGsyDz7iMjrJ/0uwkhRDXm5WJP+9srjbadSbJwNPfv59s76o6VXheBJC9CCFHtFe22u9VGk5erN3M5GpeOWgUjWwdZOhxhBSR5EUKIam5gM2W33YOX00jPLbBwNBW35bSSdLUP9cJP9nYRSPIihBDVXh1vZ8IC3NAbjOw4m2zpcCpsy2nlfKbBt488EEKSFyGEqAGKh45O29bQUUpWPodilYMoBzb3t3A0wlpI8iKEEDXAwNu9FrvOpZCn01s4mvLbFp2E0Qgtgz1sdqWUMD1JXoQQogZoHuROkIcjt3R69l1ItXQ45VY8ZNRChozEHyR5EUKIGkClUjHAxoaOMvN0xYnWIBkyEn8iyYsQQtQQRUNH26KT0BuMFo7m3n47m4xOb6SBrwsN/dwsHY6wIpK8CCFEDdGxnhfujnbcyCngaNxNS4dzT0VDRoNklZH4C0lehBCihtBq1PRrWjR0lGjhaMqWp9Pz29kUQOa7iDtJ8iKEEDXIn3fbNRqtd+hoz/lUbun0BHk40jLYw9LhCCsjyYsQQtQgPRv7Ym+n5sqNXM4nZ1s6nFJtPqX0DA1sHoDKSk+6FpYjyYsQQtQgLg52dG/oAygnNVsjnd7A9rPKiigZMhJ3I8mLEELUMEWHG64+ctUqVx1FXk4jPVeHl4s9HW6fiC3En0nyIoQQNcyg5gF4OGm5ln7LKjesKxoyGtDUH41ahozEncyWvKSlpTFx4kTc3d3x9PTkiSeeIDu7fOOrRqORIUOGoFKpWLt2rblCFEKIGslRq2HU7d6X7w/FWziakgwGI1vPyK66omxmS14mTpzI6dOniYiIYMOGDezevZunnnqqXPd+/PHHMkFLCCHMaFyHOoCyl8q19FsWjuYPUVfTScrMx9XBjq4NvS0djrBSZkleoqOj2bx5M1999RWdOnWie/fufPbZZ6xatYqEhIQy742KiuKDDz5gyZIl5ghNCCEE0CzInS71vSk0GFm0+5KlwylWtDFdnzA/HOw0Fo5GWCuzJC/79+/H09OT9u3bFz/Xv39/1Go1Bw8eLPW+3NxcJkyYwOeff05AgHQXCiGEOc3o0xCAVYfiSM7Ms3A0ypSBLaeKdtWVs4xE6ezMUWhiYiJ+fn4lK7Kzw8vLi8TE0nd1fOmll+jatSsjR44sd135+fnk5+cXf5+ZmQmATqdDp9NVMPKyFZVn6nKrC2mf0knblE3ap2zmap+Odd1pE+LBsfgM3tpwmg8falXqtQaDkV9OJvLryetcuXELLxct/Zv6MbFjCI5a0/SQnE3MIvZGLvZ2arrVr1Xu9yufn9LZUttUJMYKJS+vvfYa7733XpnXREdHV6TIYuvXr2fHjh0cO3asQvfNnz+fefPm3fH81q1bcXZ2vq9Y7iUiIsIs5VYX0j6lk7Ypm7RP2czRPv08ISpewy8nEvHJu0Zr7zuXTp9NV7H+ippruX/MRbyUCoevpLNkZwzTwvT4OVU+lo3xakBNY7dCdm/fWuH75fNTOltom9zc3HJfqzJWYH/olJQUbty4UeY19evXZ/ny5fztb3/j5s0/Dv4qLCzE0dGRH3/8kdGjR99x34svvsinn36KWv3HSJZer0etVtOjRw927tx51/ru1vMSEhJCamoq7u7u5X1r5aLT6YiIiGDAgAFotVqTll0dSPuUTtqmbNI+ZTN3+7y35Rxf7Y3FSavmw4da0b+p0nMeFZ/OR9sv8PvFNADcHO2Y2qUu7UM9uZSayxc7L5GUlY+vqz0/Pt2JYM/KZTBDP9vH+eQc/jO2RfFqqPKQz0/pbKltMjMz8fHxISMj456/vyvU8+Lr64uvr+89r+vSpQvp6ekcOXKEdu3aAbBjxw4MBgOdOnW66z2vvfYaTz75ZInnWrZsyUcffcTw4cNLrcvBwQEHB4c7ntdqtWb7QZmz7OpA2qd00jZlk/Ypm7na57UhTbmYksNvMSlMXxlFIz9XCvQGrtxQ/idsr1HzaJe6zOzTkFou9gD0bALDWgUz6auDxCRl8cyKKNbO6HbfQ0gXkrM5n5yDVqNiYIug+3qf8vkpnS20TUXiM8uE3aZNmzJ48GCmTZtGZGQk+/btY+bMmTzyyCMEBSnZ9LVr1wgLCyMyMhKAgIAAWrRoUeILoE6dOtSrV88cYQohhADsNGoWTm7PE93rYadWcT45mys3crFTq3i4fW22/60X/3qgWXHiUsTXzYGlj3fAx9Wes4lZfLA15r5j2HxKOaqgW0MfPJys+5essDyzTNgFWLFiBTNnzqRfv36o1WrGjh3Lp59+Wvy6TqcjJiamQmNcQgghzEOrUfOvB5oxvXcDTl7NwE6jIjzEE3fHshOJQA8n3hvbiieWHWbRnssMaxVE6xDPCte/8aSymGOIbEwnysFsyYuXlxcrV64s9fXQ0NB7Hsduzce1CyFEdeTj6kCfML97X/gn/Zr6M6ZNMD8fu8bc9adZM70r6gps638hOYsz1zOxU6sY0EySF3FvcraREEKISnttSBiuDnYcj0/np6NXK3TvT0euAdC7iS9efxmaEuJuJHkRQghRaX7ujjzfT9n07v82nyUrr3x7dugNRtYcU5KdsW1rmy0+Ub1I8iKEEMIkpnStR30fF1KzC1iw40K57tl3IZWkzHw8nLT0bVqx4SpRc0nyIoQQwiTs7ZRJvwBL9l3mUkr2Pe/5Zn8sAKNaB8lZRqLcJHkRQghhMn3C/OjdxBed3si/fy17x/XLqTlsP5sMwOSuoVUQnaguJHkRQghhUv8c1gw7tYrtZ5PZGZNc6nWL9lzCaIS+YX408HWtwgiFrZPkRQghhEk19HNlyu2elLc2nCFPp7/jmsupOXx/KB6AZ3o1qMrwRDUgyYsQQgiTe75/I3xc7bmYknPH8JHBYGTOulPoDUb6hvnRsZ6XhaIUtkqSFyGEECbn7qjl/YfCAfj2wBW+2nMJUDYf/WT7efacT8VRq+b1YU0tGaawUWbbYVcIIUTN1ruJH7MGNObDiHO8/Ws026KT0KhV7LtwA4A5DzSXuS7ivkjyIoQQwmye69sQrUbNB1tjOHApDQCNWsXsIWFM6FTHwtEJWyXJixBCCLNRqVRM792AIS0C2BadhMFopH9Tf+pLj4uoBElehBBCmF2ojwtP9qhv6TBENSETdoUQQghhUyR5EUIIIYRNkeRFCCGEEDZFkhchhBBC2BRJXoQQQghhUyR5EUIIIYRNkeRFCCGEEDZFkhchhBBC2BRJXoQQQghhUyR5EUIIIYRNkeRFCCGEEDZFkhchhBBC2BRJXoQQQghhU6rdqdJGoxGAzMxMk5et0+nIzc0lMzMTrVZr8vJtnbRP6aRtyibtUzZpn7JJ+5TOltqm6Pd20e/xslS75CUrKwuAkJAQC0cihBBCiIrKysrCw8OjzGtUxvKkODbEYDCQkJCAm5sbKpXKpGVnZmYSEhJCfHw87u7uJi27OpD2KZ20Tdmkfcom7VM2aZ/S2VLbGI1GsrKyCAoKQq0ue1ZLtet5UavV1K5d26x1uLu7W/2HwJKkfUonbVM2aZ+ySfuUTdqndLbSNvfqcSkiE3aFEEIIYVMkeRFCCCGETZHkpQIcHByYO3cuDg4Olg7FKkn7lE7apmzSPmWT9imbtE/pqmvbVLsJu0IIIYSo3qTnRQghhBA2RZIXIYQQQtgUSV6EEEIIYVMkeRFCCCGETZHkpZw+//xzQkNDcXR0pFOnTkRGRlo6JKuxe/duhg8fTlBQECqVirVr11o6JKsxf/58OnTogJubG35+fowaNYqYmBhLh2U1vvjiC1q1alW8gVaXLl3YtGmTpcOySu+++y4qlYoXX3zR0qFYhTfeeAOVSlXiKywszNJhWZVr164xadIkvL29cXJyomXLlhw+fNjSYZmEJC/l8P333zNr1izmzp3L0aNHCQ8PZ9CgQSQnJ1s6NKuQk5NDeHg4n3/+uaVDsTq7du1ixowZHDhwgIiICHQ6HQMHDiQnJ8fSoVmF2rVr8+6773LkyBEOHz5M3759GTlyJKdPn7Z0aFbl0KFD/O9//6NVq1aWDsWqNG/enOvXrxd/7d2719IhWY2bN2/SrVs3tFotmzZt4syZM3zwwQfUqlXL0qGZhlHcU8eOHY0zZswo/l6v1xuDgoKM8+fPt2BU1gkwrlmzxtJhWK3k5GQjYNy1a5elQ7FatWrVMn711VeWDsNqZGVlGRs1amSMiIgw9urVy/jCCy9YOiSrMHfuXGN4eLilw7Bar776qrF79+6WDsNspOflHgoKCjhy5Aj9+/cvfk6tVtO/f3/2799vwciELcrIyADAy8vLwpFYH71ez6pVq8jJyaFLly6WDsdqzJgxg2HDhpX4N0gozp8/T1BQEPXr12fixInExcVZOiSrsX79etq3b89DDz2En58fbdq0YdGiRZYOy2QkebmH1NRU9Ho9/v7+JZ739/cnMTHRQlEJW2QwGHjxxRfp1q0bLVq0sHQ4VuPkyZO4urri4ODAM888w5o1a2jWrJmlw7IKq1at4ujRo8yfP9/SoVidTp06sXTpUjZv3swXX3zB5cuX6dGjB1lZWZYOzSpcunSJL774gkaNGrFlyxamT5/O888/z7JlyywdmklUu1OlhbBWM2bM4NSpUzIu/xdNmjQhKiqKjIwMfvrpJx577DF27dpV4xOY+Ph4XnjhBSIiInB0dLR0OFZnyJAhxY9btWpFp06dqFu3Lj/88ANPPPGEBSOzDgaDgfbt2/POO+8A0KZNG06dOsWXX37JY489ZuHoKk96Xu7Bx8cHjUZDUlJSieeTkpIICAiwUFTC1sycOZMNGzbw22+/Ubt2bUuHY1Xs7e1p2LAh7dq1Y/78+YSHh/PJJ59YOiyLO3LkCMnJybRt2xY7Ozvs7OzYtWsXn376KXZ2duj1ekuHaFU8PT1p3LgxFy5csHQoViEwMPCO/wA0bdq02gytSfJyD/b29rRr147t27cXP2cwGNi+fbuMy4t7MhqNzJw5kzVr1rBjxw7q1atn6ZCsnsFgID8/39JhWFy/fv04efIkUVFRxV/t27dn4sSJREVFodFoLB2iVcnOzubixYsEBgZaOhSr0K1btzu2ZTh37hx169a1UESmJcNG5TBr1iwee+wx2rdvT8eOHfn444/Jyclh6tSplg7NKmRnZ5f4387ly5eJiorCy8uLOnXqWDAyy5sxYwYrV65k3bp1uLm5Fc+T8vDwwMnJycLRWd7s2bMZMmQIderUISsri5UrV7Jz5062bNli6dAszs3N7Y65US4uLnh7e8ucKeDll19m+PDh1K1bl4SEBObOnYtGo2H8+PGWDs0qvPTSS3Tt2pV33nmHhx9+mMjISBYuXMjChQstHZppWHq5k6347LPPjHXq1DHa29sbO3bsaDxw4IClQ7Iav/32mxG44+uxxx6zdGgWd7d2AYxff/21pUOzCo8//rixbt26Rnt7e6Ovr6+xX79+xq1bt1o6LKslS6X/MG7cOGNgYKDR3t7eGBwcbBw3bpzxwoULlg7Lqvzyyy/GFi1aGB0cHIxhYWHGhQsXWjokk1EZjUajhfImIYQQQogKkzkvQgghhLApkrwIIYQQwqZI8iKEEEIImyLJixBCCCFsiiQvQgghhLApkrwIIYQQwqZI8iKEEEIImyLJixBCCCFsiiQvQgghhLApkrwIIYQQwqZI8iKEEEIImyLJixBCCCFsyv8D2ZqbofqKVG0AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Add channel dimension\n", + "a = a[:, jnp.newaxis, :]\n", + "u = u[:, jnp.newaxis, :]\n", + "\n", + "# Mesh is from 0 to 2 pi\n", + "mesh = jnp.linspace(0, 2 * jnp.pi, u.shape[-1])\n", + "\n", + "plt.plot(mesh, a[sample, 0], label=\"Initial condition\")\n", + "plt.plot(mesh, u[sample, 0], label=\"After 1 time unit\")\n", + "plt.legend()\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PrOY1mbmPjMI", + "outputId": "e8d64235-aa47-4b1e-b982-ff341c35b26a" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(2048, 2, 8192)" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "mesh_shape_corrected = jnp.repeat(mesh[jnp.newaxis, jnp.newaxis, :], u.shape[0], axis=0)\n", + "a_with_mesh = jnp.concatenate((a, mesh_shape_corrected), axis=1)\n", + "\n", + "a_with_mesh.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "44DsZARuPk5Z" + }, + "outputs": [], + "source": [ + "train_x, test_x = a_with_mesh[:1000], a_with_mesh[1000:1200]\n", + "train_y, test_y = u[:1000], u[1000:1200]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5br9kvvYPydk" + }, + "outputs": [], + "source": [ + "class SpectralConv1d(eqx.Module):\n", + " real_weights: jax.Array\n", + " imag_weights: jax.Array\n", + " in_channels: int\n", + " out_channels: int\n", + " modes: int\n", + "\n", + " def __init__(\n", + " self,\n", + " in_channels,\n", + " out_channels,\n", + " modes,\n", + " *,\n", + " key,\n", + " ):\n", + " self.in_channels = in_channels\n", + " self.out_channels = out_channels\n", + " self.modes = modes\n", + "\n", + " scale = 1.0 / (in_channels * out_channels)\n", + "\n", + " real_key, imag_key = jax.random.split(key)\n", + " self.real_weights = jax.random.uniform(\n", + " real_key,\n", + " (in_channels, out_channels, modes),\n", + " minval=-scale,\n", + " maxval=+scale,\n", + " )\n", + " self.imag_weights = jax.random.uniform(\n", + " imag_key,\n", + " (in_channels, out_channels, modes),\n", + " minval=-scale,\n", + " maxval=+scale,\n", + " )\n", + "\n", + " def complex_mult1d(\n", + " self,\n", + " x_hat,\n", + " w,\n", + " ):\n", + " return jnp.einsum(\"iM,ioM->oM\", x_hat, w)\n", + "\n", + "\n", + " def __call__(\n", + " self,\n", + " x,\n", + " ):\n", + " channels, spatial_points = x.shape\n", + "\n", + " # shape of x_hat is (in_channels, spatial_points//2+1)\n", + " x_hat = jnp.fft.rfft(x)\n", + " # shape of x_hat_under_modes is (in_channels, self.modes)\n", + " x_hat_under_modes = x_hat[:, :self.modes]\n", + " weights = self.real_weights + 1j * self.imag_weights\n", + " # shape of out_hat_under_modes is (out_channels, self.modes)\n", + " out_hat_under_modes = self.complex_mult1d(x_hat_under_modes, weights)\n", + "\n", + " # shape of out_hat is (out_channels, spatial_points//2+1)\n", + " out_hat = jnp.zeros(\n", + " (self.out_channels, x_hat.shape[-1]),\n", + " dtype=x_hat.dtype\n", + " )\n", + " out_hat = out_hat.at[:, :self.modes].set(out_hat_under_modes)\n", + "\n", + " out = jnp.fft.irfft(out_hat, n=spatial_points)\n", + "\n", + " return out\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "R_5U3sSOUGRo" + }, + "outputs": [], + "source": [ + "class FNOBlock1d(eqx.Module):\n", + " spectral_conv: SpectralConv1d\n", + " bypass_conv: eqx.nn.Conv1d\n", + " activation: Callable\n", + "\n", + " def __init__(\n", + " self,\n", + " in_channels,\n", + " out_channels,\n", + " modes,\n", + " activation,\n", + " *,\n", + " key,\n", + " ):\n", + " spectral_conv_key, bypass_conv_key = jax.random.split(key)\n", + " self.spectral_conv = SpectralConv1d(\n", + " in_channels,\n", + " out_channels,\n", + " modes,\n", + " key=spectral_conv_key,\n", + " )\n", + " self.bypass_conv = eqx.nn.Conv1d(\n", + " in_channels,\n", + " out_channels,\n", + " 1, # Kernel size is one\n", + " key=bypass_conv_key,\n", + " )\n", + " self.activation = activation\n", + "\n", + " def __call__(\n", + " self,\n", + " x,\n", + " ):\n", + " return self.activation(\n", + " self.spectral_conv(x) + self.bypass_conv(x)\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AS-gz_rCVRJh" + }, + "outputs": [], + "source": [ + "class FNO1d(eqx.Module):\n", + " lifting: eqx.nn.Conv1d\n", + " fno_blocks: List[FNOBlock1d]\n", + " projection: eqx.nn.Conv1d\n", + "\n", + " def __init__(\n", + " self,\n", + " in_channels,\n", + " out_channels,\n", + " modes,\n", + " width,\n", + " activation,\n", + " n_blocks = 4,\n", + " *,\n", + " key,\n", + " ):\n", + " key, lifting_key = jax.random.split(key)\n", + " self.lifting = eqx.nn.Conv1d(\n", + " in_channels,\n", + " width,\n", + " 1,\n", + " key=lifting_key,\n", + " )\n", + "\n", + " self.fno_blocks = []\n", + " for i in range(n_blocks):\n", + " key, subkey = jax.random.split(key)\n", + " self.fno_blocks.append(FNOBlock1d(\n", + " width,\n", + " width,\n", + " modes,\n", + " activation,\n", + " key=subkey,\n", + " ))\n", + "\n", + " key, projection_key = jax.random.split(key)\n", + " self.projection = eqx.nn.Conv1d(\n", + " width,\n", + " out_channels,\n", + " 1,\n", + " key=projection_key,\n", + " )\n", + "\n", + " def __call__(\n", + " self,\n", + " x,\n", + " ):\n", + " x = self.lifting(x)\n", + "\n", + " for fno_block in self.fno_blocks:\n", + " x = fno_block(x)\n", + "\n", + " x = self.projection(x)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5SPtzCnGlfY6" + }, + "outputs": [], + "source": [ + "fno = FNO1d(\n", + " 2,\n", + " 2,\n", + " 16,\n", + " 64,\n", + " jax.nn.relu,\n", + " key=jax.random.PRNGKey(0),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "crHtqJpulx5c" + }, + "outputs": [], + "source": [ + "def dataloader(\n", + " key,\n", + " dataset_x,\n", + " dataset_y,\n", + " batch_size,\n", + "):\n", + " n_samples = dataset_x.shape[0]\n", + "\n", + " n_batches = int(jnp.ceil(n_samples / batch_size))\n", + "\n", + " permutation = jax.random.permutation(key, n_samples)\n", + "\n", + " for batch_id in range(n_batches):\n", + " start = batch_id * batch_size\n", + " end = min((batch_id + 1) * batch_size, n_samples)\n", + "\n", + " batch_indices = permutation[start:end]\n", + "\n", + " yield dataset_x[batch_indices], dataset_y[batch_indices]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "cce40a53674844a7adf1db99fed5f788", + "8defc036f3bd4cd19e99730f872138b4", + "88bbc3d3f779410c82d576e59f6fe318", + "f45c0411fc5648f7bf4dd2d6f07e30a4", + "13cf91be1b304ede9d2e7184ec3886c9", + "191d9a1b52d74f829bd3fe49fa9ec056", + "ed62e5ba392345e6a297eaa53f12099b", + "ef6ce49eb4b849aca7004bea6083befe", + "fb31e044d6f445bb92cd33436add91b6", + "6d68817751e64fdc9797a7d4be6ad7f5", + "b19e99ed98044b1bbf5d2aa7651cbb36" + ] + }, + "id": "fBVjXTPTpZte", + "outputId": "aa02a8bb-79d3-4200-be0d-8eb7922a3b4b" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/200 [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeXlJREFUeJzt3Xd4VFX6wPHvncmkkUYIpEDoHUJCF0SKdBTBsqK4Cqi4KthQV9BdQHdV1oLtF8VVATssSlFBkN6lh94JnYQS0ttk5v7+uGSSSU+YyZS8n+eZJ3PvPXPvezJJ5s25pyiqqqoIIYQQQrgInaMDEEIIIYSoDElehBBCCOFSJHkRQgghhEuR5EUIIYQQLkWSFyGEEEK4FElehBBCCOFSJHkRQgghhEuR5EUIIYQQLsXD0QHYmtls5uLFi/j7+6MoiqPDEUIIIUQFqKpKWloaERER6HRlt624XfJy8eJFIiMjHR2GEEIIIarg3LlzNGjQoMwybpe8+Pv7A1rlAwICbHpuo9HIH3/8waBBgzAYDDY9tzNw9/qB+9dR6uf63L2O7l4/cP862qt+qampREZGWj7Hy+I2yUtsbCyxsbGYTCYAAgIC7JK8+Pr6EhAQ4LY/kO5cP3D/Okr9XJ+719Hd6wfuX0d7168iXT7cpsPuhAkTOHToEDt27HB0KEIIIYSwI7dJXoQQQghRM0jyIoQQQgiX4jZ9XoQQQrg/VVXJy8uz9G90RkajEQ8PD7Kzs506zqqqav30ej0eHh42mcZEkhchhBAuITc3l0uXLpGZmenoUMqkqiphYWGcO3fOLecbu5n6+fr6Eh4ejqen503FIMmLEEIIp2c2m4mPj0ev1xMREYGnp6fTJgZms5n09HT8/PzKnWzNFVWlfqqqkpuby5UrV4iPj6dFixY39b2R5EUIIYTTy83NxWw2ExkZia+vr6PDKZPZbCY3Nxdvb2+3TV6qUj8fHx8MBgNnzpyxvL6q3O+7KoQQwm25YzJQk9jq/ZOfAiGEEEK4FLdJXmJjY2nbti1du3Z1dChCCCGEsCO3SV5khl0hhBA1QePGjfnwww8dfg5HcpvkRQghhHAmer0eRVFKfUyfPr1K592xYwdPPPGEbYN1MTLaqKIyrqJb9x8aXTUCwxwdjRBCCCd34cIFSwfV+fPnM3XqVI4ePWo57ufnZ3muqiomkwkPj/I/luvWrWv7YF2MtLxU1KHF6Hf8lzaXfoKcNEdHI4QQNZqqqmTm5jnkoapqhWIMCwuzPAIDA1EUxbJ95MgR/P39+f333+ncuTNeXl5s2rSJkydPMmLECEJDQ/Hz86Nr166sWrXK6rxFb/koisKXX37J3Xffja+vLy1atOCXX36p1Pfz7NmzjBgxAj8/PwICArj//vtJTEy0HN+7dy/9+vXD39+foKAg+vbty86dOwE4c+YMw4cPp3bt2tSqVYt27dqxbNmySl2/sqTlpaI6jcG0JRav66fY/N1Uosd9iJ+XfPuEEMIRsowm2k5d4ZBrH3pjML6etvn7P3nyZN577z2aNm1K7dq1OXfuHMOGDePNN9/Ey8uLb775huHDh3P06FEaNmxY6nlef/113nnnHd59910++eQTHnroIc6cOUNwcHC5MZjNZkvisn79evLy8pgwYQKjRo1i3bp1ADz00EN07NiRzz77DEVR2Lp1KwaDAdD6nObm5rJhwwZq1arFoUOHrFqV7EE+fSsoDz1PJt7Nl57v0/XSD3y5/D6eHtHX0WEJIYRwYW+88QYDBw60bAcHBxMdHW3Z/te//sWiRYv45ZdfmDhxYqnnGTt2LA8++CAAb731Fh9//DHbt29nyJAh5cawevVq9u/fT3x8PJGRkQB88803tGvXjh07dtC1a1fOnj3Lyy+/TOvWrTGbzYSGhhIQEABorTb33nsvUVFRADRt2rTy34hKkuSlgg5dSmWVuRNbTW3poT9E6NHvgb6ODksIIWokH4OeQ28Mdti1baVLly5W2+np6UyfPp2lS5dy6dIl8vLyyMrK4uzZs2Wep0OHDpbntWrVIiAggMuXL1cohsOHDxMZGWlJXADatm1LUFAQhw8fpmvXrkyaNInHH3+cb7/9lv79+zNkyBBLkvXss8/y1FNP8ccffzBgwADuvfdeq3jsQfq8VNCpKxmAwlzTIABuzVwNFbzvKYQQwrYURcHX08MhD1uuqVSrVi2r7ZdeeolFixbx1ltvsXHjRuLi4oiKiiI3N7fM8+Tfwin8/TGbzTaLc/r06Rw8eJA77riDNWvWcMstt7Bo0SIAHn/8cU6dOsXDDz/M/v376dKlC5988onNrl0SSV4qaGTH+gCsM8eQrRoI4xrnj+1xcFRCCCHcyebNmxk7dix33303UVFRhIWFcfr0abtes02bNpw7d45z585Z9h06dIjk5GTatm1r2deyZUteeOEFVqxYwZ133sncuXMtxyIjI3nyySdZuHAhL774Il988YVdY5bkpRJeHdqKQG8D28xtAPju+9lcTs12cFRCCCHcRYsWLVi4cCFxcXHs3buX0aNH27QFpSQDBgwgKiqKhx56iN27d7N9+3YeeeQR+vTpQ5cuXcjKymLixImsW7eOM2fOsHnzZvbs2UObNtpn4fPPP8+KFSuIj49n9+7drF271nLMXiR5qYRxPRsxOdrENnNrAFqrJ7lv1lYHRyWEEMJdzJw5k9q1a9OzZ0+GDx/O4MGD6dSpk12vqSgKS5YsoXbt2vTu3ZsBAwbQtGlT5s+fD2iT7V27do1HHnmEli1b8sADDzBgwADLJHsmk4kJEybQpk0bhgwZQsuWLfn000/tGrN02K0kvQ4IbQdJ0EY5y9mkTEeHJIQQwsmNHTuWsWPHWrb79u1b4nwxjRs3Zs2aNVb7JkyYYLVd9DZSSedJTk4uM56i52jYsCFLliwpsaynpyc//vijZdtsNpOamoq3tzeA3fu3lMRtWl6qc2HG4KZaFtxMuYgnRrtfTwghhBAF3CZ5qc6FGc1+4SSrtfBQzDRTLtr9ekIIIYQo4DbJS3XyMug5q9YDoL5y1cHRCCGEEDWLJC9V4KFTuKiGABCuXHNwNEIIIUTNIslLFfRtVZeLah0A6kvyIoQQQlQrSV6qoJ6/FxduJC8RcttICCGEqFaSvFRR/m2jCGl5EUIIIaqVJC9VlKBqy4yHKUkOjkQIIYSoWSR5qaKraEuB1yHVwZEIIYRwZ3379uX5558v9fj06dOJiYmptnicgSQvVZSkasmLj5ILuRkOjkYIIYSzueuuuxgyZEiJxzZu3IiiKOzbt6+ao3IPkrxUUQbe5Kg3liDPkE67QgghrD366KOsXLmS8+fPFzs2Z84cunTpQocOHRwQmeuT5KWKvn/8Fq7hr21kSvIihBDC2p133kndunWZO3eu1f709HQWLFjAY489xrVr13jwwQepX78+vr6+REVFWa0jVBVms5k33niDBg0a4OXlRUxMDMuXL7ccz83NZeLEiYSHh+Pt7U2jRo14++23AW2dpOnTp9OwYUO8vLyIiIjg2Wefval47EEWZqyiJiG1SFIDiFCSIENGHAkhRLVSVTA6aGFcgy8oSrnFPDw8eOSRR5g7dy6vvfYayo3XLFiwAJPJxIMPPkh6ejqdO3fmlVdeISAggKVLl/Lwww/TrFkzunXrVqXwPvroI95//30+//xzOnbsyOzZs7nrrrs4ePAgLVq04OOPP+aXX37hf//7Hw0bNuTcuXOcO3cOgJ9//pkPPviAefPm0a5dOxISEti7d2+V4rAnSV6qyKDXkazWAkDNuk75P8ZCCCFsxpgJb0U45tqvXgTPWhUq+uijj/Luu++yfv16+vbtC2i3jO69914CAwMJDAzkpZdespR/5plnWLFiBf/73/+qnLy89957vPLKKzzwwAMA/Oc//2Ht2rV8+OGHxMbGcvbsWVq0aEGvXr1QFIVGjRpZXnv27FnCwsIYMGAABoOBhg0bVjkOe5LbRlXkqdeRivbDa85OcXA0QgghnFHr1q3p2bMns2fPBuDEiRNs3LiRxx57DACTycS//vUvoqKiCA4Oxs/PjxUrVnD27NkqXS81NZWLFy9y6623Wu2/9dZbOXz4MABjx44lLi6OVq1a8eyzz/LHH39Yyv3lL38hKyuLpk2bMn78eBYtWkReXl6VYrEnaXmpIoOHQprqC8CBk+eI7u7ggIQQoiYx+GotII66diU89thjPPPMM8TGxjJnzhyaNWtGnz59AHj33Xf56KOP+PDDD4mKiqJWrVo8//zz5Obm2iNyADp16kR8fDy///47q1at4v7772fAgAH89NNPREZGcvToUVatWsXKlSt5+umnLS1HBoPBbjFVllO2vNx9993Url2b++67z9GhlMqg15GK9gO89VC8g6MRQogaRlG0WzeOeFSgv0th999/Pzqdjh9++IFvvvmGRx991NL/ZfPmzYwYMYK//vWvREdH07RpU44dO1blb0tAQAARERFs3rzZav/mzZtp27atVblRo0bxxRdfMH/+fH7++WeSkrRJV318fBg+fDgff/wx69atY+vWrezfv7/KMdmDU7a8PPfcczz66KN8/fXXjg6lVB66gpaXAGSeFyGEECXz8/Nj1KhRTJkyhdTUVMaOHWs51qJFC3766Se2bNlC7dq1mTlzJomJiVaJRmW9/PLLTJs2jWbNmhETE8OcOXOIi4vj+++/B2DmzJmEh4fTsWNHdDodCxYsICwsjKCgIObOnYvJZKJ79+74+vry3Xff4ePjY9Uvxhk4ZfLSt29f1q1b5+gwyqQoCoHBIZAGTf1Njg5HCCGEE3vsscf46quvGDZsGBERBR2N//GPf3Dq1CkGDx6Mr68vTzzxBCNHjiQlpep9KZ999llSUlJ48cUXuXz5Mm3btuWXX36hRYsWAPj7+/POO+9w/Phx9Ho9Xbt2ZdmyZeh0OoKCgpgxYwaTJk3CZDIRFRXFr7/+Sp06dW76e2BLlU5eNmzYwLvvvsuuXbu4dOkSixYtYuTIkVZlYmNjeffdd0lISCA6OppPPvnEKXsr36zOLRvBLvAyS8uLEEKI0vXo0QNVVYvtDw4OZvHixWW+trx/5qdPn8706dMt2zqdjmnTpjFt2rQSy48fP57x48eXeGzkyJHFPtOdUaX7vGRkZBAdHU1sbGyJx+fPn8+kSZOYNm0au3fvJjo6msGDB3P58mVLmZiYGNq3b1/scfGigzpfVZGHbxAAXnnpjg1ECCGEqEEq3fIydOhQhg4dWurxmTNnMn78eMaNGwfArFmzWLp0KbNnz2by5MkAxMXFVS3aEuTk5JCTk2PZTk3VFko0Go0YjUabXSf/nIW/enj5AOBpzrL5tRyhaP3ckbvXUern+ty9jlWtn9FoRFVVzGYzZrPZHqHZTH4LS3687uZm6mc2m1FVFaPRiF6vtzpWmZ8Jm/Z5yc3NZdeuXUyZMsWyT6fTMWDAALZu3WrLS1m8/fbbvP7668X2//HHH/j6Vm44W0WtXLkSAPXaSVoDnuZsli1bZpdrOUJ+/dyZu9dR6uf63L2Ola2fh4cHYWFhpKen23UYsS2lpaU5OgS7qkr9cnNzycrKYsOGDcXmj8nMrPiMyTZNXq5evYrJZCI0NNRqf2hoKEeOHKnweQYMGMDevXvJyMigQYMGLFiwgB49epRYdsqUKUyaNMmynZqaSmRkJIMGDSIgIKBqFSmF0Whk5cqVDBw4EIPBQNLJXXAWvMlh2LBhNr2WIxStnzty9zpK/Vyfu9exqvXLzs7m3Llz+Pn54e3tbccIb56qqqSlpeHv728ZEu1ObqZ+2dnZ+Pj40Lt372LvY/6dk4pwytFGq1atqnBZLy8vvLy8iu03GAx2+8XPP7eXXyCgJS96vQc6nXv8kNrze+cs3L2OUj/X5+51rGz9TCYTiqKg0+nQ6ZxyijKL/Fsp+fG6m5upn06nQ1GUEt//yvw82PS7GhISgl6vJzEx0Wp/YmIiYWFhtrxUMbGxsbRt25auXbva9TqF6Qza8gC+5GByw/uaQgjhbEoasSNch63eP5smL56ennTu3JnVq1db9pnNZlavXl3qbR9bmTBhAocOHWLHjh12vU5hOm8/ADwUMyZjTjmlhRBCVFX+f+WV6RchnE/++3ezrYqVvm2Unp7OiRMnLNvx8fHExcURHBxMw4YNmTRpEmPGjKFLly5069aNDz/8kIyMDMvoI3fi4VXQIdiUkwE+9ukgLIQQNZ1erycoKMgy7Yavr6/T9icxm83k5uaSnZ3ttreNKls/VVXJzMzk8uXLBAUFFRtpVFmVTl527txJv379LNv5nWXHjBnD3LlzGTVqFFeuXGHq1KkkJCQQExPD8uXLi3XidQc6D09yVT2eiklLXqjr6JCEEMJt5Xc/KDxvmDNSVZWsrCx8fHycNsG6GTdTv6CgIJt0I6l08tK3b99y71lNnDiRiRMnVjmoqoiNjSU2NhaTqfqm6vfQKaThhSeZqDkyy64QQtiToiiEh4dTr149p54Hx2g0smHDBnr37u2Wna6rWj+DwXDTLS75nHK0UVVMmDCBCRMmkJqaSmBgYLVcU6dTyMSbQDIx58p9WCGEqA56vd5mH4L2oNfrycvLw9vb2y2TF2eon/vdjKtmWWjDtM3S8iKEEEJUC0leblL2jeRFNUryIoQQQlQHt0leHDHPCxRKXqTlRQghhKgWbpO8OGKeF4AsRZveWM2V5EUIIYSoDm6TvDhKfssLxizHBiKEEELUEJK83KTM/NtG0vIihBBCVAtJXm5SWp42TOzg6UsOjkQIIYSoGdwmeXFUh938lpej5517xkchhBDCXbhN8uKwDrs3kpemge43BbQQQgjhjNwmeXGU0Dq1AahfS5ZpF0IIIaqDJC83KSAgCAC9SUYbCSGEENVBkpebZPbwAUCfJ8mLEEIIUR0keblJ6o3kxcOU7eBIhBBCiJrBbZIXR402Ug03kheztLwIIYQQ1cFtkhdHjTYye9QCwCAtL0IIIUS1cJvkxWE8tZYXU04GOXkmBwcjhBBCuD9JXm6SYvAFwFPNYcrP+x0cjRBCCOH+JHm5SapBu21UT0nmtgOvQl6OgyMSQggh3JskLzdJuXHbCOBu/WaI3+DAaIQQQgj3J8nLTdJ51bLekXzGMYEIIYQQNYTbJC+OGiqt8/S12janyQKNQgghhD25TfLiqKHSeg9Pq+0T5xOq9fpCCCFETeM2yYujGDysv4VXr111UCRCCCFEzSDJy03y1OvYZm5t2fZXZKZdIYQQwp4keblJBr2OJ3Of5395fbTtvAwHRySEEEK4N0lebOA6AawxdwQkeRFCCCHsTZIXG0lHm+/F0yTJixBCCGFPHo4OwNV1aVSbv/Vuiv7SdTgHXpK8CCGEEHYlLS83SadTmDKsDbd3aAqAj5rp4IiEEEII9+Y2yYujJqnL51krCAAfNQtU1SExCCGEEDWB2yQvjpqkLp+vXyAAHphQ87IdEoMQQghRE7hN8uJokWF1Lc8vJFxxYCRCCCGEe5PkxUa8PD3JxBuAnMxkxwYjhBBCuDFJXmwoP3kxZac5OBIhhBDCfUnyYkOZirbCtDkr1cGRCCGEEO5Lkhcbyr6RvKg56Q6ORAghhHBfkrzYULZOm2VXzZHbRkIIIYS9SPJiQ+m6AADqnloMZrNjgxFCCCHclCQvNpTiUQeAugnrIe47B0cjhBBCuCdJXmzolHc7y3P1+EoHRiKEEEK4L0lebGh/0ACWmroBcPjYMQdHI4QQQrgnSV5sqFHdWszNGwKAj/G6g6MRQggh3JPbJC+OXpgRQEEhCX8AghUZcSSEEELYg9skL45emBFAUSBJ1ZKXQCUTNS/XYbEIIYQQ7sptkhdnoADJ+GFSFQDy0q86NiAhhBDCDUnyYkOKAio6rt+4dWTOuObgiIQQQgj3I8mLDRn02rczVdWWCTBlSqddIYQQwtYkebGhMT0aExHoTRqyQKMQQghhL5K82FDtWp5snny7peXFnJ3i4IiEEEII9yPJi40pikLGjdWlyZLkRQghhLA1SV7sIB1peRFCCCHsRZIXO0hX/ABQcqTPixBCCGFrkrzYQabuxm0jaXkRQgghbE6SFzvIVGppT7Kl5UUIIYSwNUle7CDPEACAKreNhBBCCJuT5MUOVC9thl0ZbSSEEELYniQvdqD4BGpfc6XlRQghhLA1SV7sQO8TpD2RPi9CCCGEzUnyYgeJuV4AGIxpZOWaHByNEEII4V6cLnk5d+4cffv2pW3btnTo0IEFCxY4OqRKO5asffVVcvhj/zmHxiKEEEK4G6dLXjw8PPjwww85dOgQf/zxB88//zwZGRmODqtSnh3WxfL8zQWb2Hc+2XHBCCGEEG7G6ZKX8PBwYmJiAAgLCyMkJISkpCTHBlVJA9rX57qqzbL7u9dktp285uCIhBBCCPdR6eRlw4YNDB8+nIiICBRFYfHixcXKxMbG0rhxY7y9venevTvbt2+vUnC7du3CZDIRGRlZpdc70s+m2wCoo6QRkHLYwdEIIYQQ7qPSyUtGRgbR0dHExsaWeHz+/PlMmjSJadOmsXv3bqKjoxk8eDCXL1+2lImJiaF9+/bFHhcvXrSUSUpK4pFHHuG///1vFarleG/mPcR5NQSAgNTjDo5GCCGEcB8elX3B0KFDGTp0aKnHZ86cyfjx4xk3bhwAs2bNYunSpcyePZvJkycDEBcXV+Y1cnJyGDlyJJMnT6Znz57lls3JybFsp6Zqw5ONRiNGo7EiVaqw/PNV5LwqOjaZ2vOAxzp8M8/bPBZ7qEz9XJW711Hq5/rcvY7uXj9w/zraq36VOZ+iqqpa1QspisKiRYsYOXIkALm5ufj6+vLTTz9Z9gGMGTOG5ORklixZUu45VVVl9OjRtGrViunTp5dbfvr06bz++uvF9v/www/4+vpWtCo2990JHT2TFvGC4WfWefYlpd2jDotFCCGEcHaZmZmMHj2alJQUAgICyixb6ZaXsly9ehWTyURoaKjV/tDQUI4cOVKhc2zevJn58+fToUMHS3+ab7/9lqioqBLLT5kyhUmTJlm2U1NTiYyMZNCgQeVWvrKMRiMrV65k4MCBGAyGMssqBxLY+NMGAMI9M7l12DCbxmIPlamfq3L3Okr9XJ+719Hd6wfuX0d71S//zklF2DR5sYVevXphNpsrXN7LywsvL69i+w0Gg91+aCpy7mA/Hy6pdQAINF52qR9ge37vnIW711Hq5/rcvY7uXj9w/zraun6VOZdNh0qHhISg1+tJTEy02p+YmEhYWJgtL1VMbGwsbdu2pWvXrna9TkXVr+3DJTUYgMDcy+WUFkIIIURF2TR58fT0pHPnzqxevdqyz2w2s3r1anr06GHLSxUzYcIEDh06xI4dO+x6nYpqElKL8MjmAPiomZAtK0wLIYQQtlDp5CU9PZ24uDjLiKH4+Hji4uI4e/YsAJMmTeKLL77g66+/5vDhwzz11FNkZGRYRh/VJGP7tiNZrQXA7GWbHByNEEII4R4q3edl586d9OvXz7Kd31l2zJgxzJ07l1GjRnHlyhWmTp1KQkICMTExLF++vFgn3prA39uDS2odgpQMwvZ8yNLmnbijQ7ijwxJCCCFcWqWTl759+1Le6OqJEycyceLEKgdVFbGxscTGxmIyOc8qzgE+BnaaW9JGd5Zh+u30+nE5d3SoeS1QQgghhC053dpGVeVsfV4AgnwN/CvvYct2jHLSgdEIIYQQ7sFtkhdnFOTjSS4G5uX1BaC57oJjAxJCCCHcgCQvduTjqQfghFofgOaKJC9CCCHEzXKb5MXZ5nkp7JxaF4AI5ZqDIxFCCCFcn9skL87Y5yVf4o3J6kKV6w6ORAghhHB9bpO8OKvbWoSQoNYGIJTrYHae0VBCCCGEK5Lkxc6mDW/LFYIwqQoeihkyrjg6JCGEEMKlSfJiZ83r+WNCzxWCADCnXHRsQEIIIYSLc5vkxZk77AKWW0fmVElehBBCiJvhNsmLM3fYBUhQ6wCgpshwaSGEEOJmuE3y4uzyW15Ik5YXIYQQ4mZI8lINdAqcUbWFKZWE/Q6ORgghhHBtkrxUgwVP9mCzuT0AavwmrianOjgiIYQQwnVJ8lINOkbW5pjagCTVD4Oawxc//ebokIQQQgiX5TbJizOPNtLpFEBhn7kZAOqFXY4NSAghhHBhbpO8OPtoI4C9alMAunuddmwgQgghhAtzm+TFFey90fLS2nTcwZEIIYQQrkuSl2q039wEgDDjOTBmOzgaIYQQwjVJ8lKNrhDEddUPPWbi4rY7OhwhhBDCJUnyUq0UjqkNAJi76HfOXMtwcDxCCCGE65HkpZodN9cHoKXuPH3eXefYYIQQQggX5DbJizMPlS7ssNoIgGjlpIMjEUIIIVyT2yQvrjBUGmCbuTUAnXXH8MTo4GiEEEII1+M2yYurOKHW56oagLdipIO0vgghhBCVJslLtVMsrS/ddEccHIsQQgjheiR5qSaKUvB8t7kFAO11px0TjBBCCOHCJHmpJnd3rG95nt9pt61yxlHhCCGEEC7Lw9EB1BT/GtGeHk3rsOH4VTbtTQWgsS4RctLAy9/B0QkhhBCuQ1peqkktLw/+0iWSOrU8uU4Al9RgANZuWM+y/ZccHJ0QQgjhOiR5qWaqqgJwwhwBwLJ163n6+92YzaojwxJCCCFchtskL64ySV1OnhmAk6qWvDRVtFYXsyrJixBCCFERbpO8uMokdbk3kpdTajgAzZSLAJgkeRFCCCEqxG2SF1eRY0letJaX5soFAFQVziVlcj0j12GxCSGEEK5ARhtVs5w8EwD7zU0wqwpNdQnU5ToJKdn0fW8dAKdn3OHACIUQQgjnJi0v1SzLqCUvKfhxQG0MwK26g+y7kOLAqIQQQgjXIclLNUvKKFiMcbO5PQC36fdbRiEJIYQQomySvFQzH0PBt3zTjeRlkG4n+uzrjgpJCCGEcCmSvFSz/9zbwfJ8u7kNp82h+CtZNI6f58CohBBCCNchyUs1axHqz+kZdzBnbFeMeDDLNBwA79OrHRyZEEII4RokeXEQD722zPQ6UzQATbMPU5tUR4YkhBBCuARJXhxEr2jJSwJ1OGyORKeo9NAdAsBkVqUDrxBCCFEKSV4cJDW7YNTRXnMzAFrpzgPQ9721/PWrbQ6JSwghhHB2Mkmdg/h6FnzrT6j1AWh2Y7bdc0lZnEvKckhcQgghhLNzm5YXV1mYMV+v5iE8c3tzoCB5aaectiojt46EEEKI4twmeXGVhRnz6XQKLw5qBcAuc0vyVB1NdIk0UK5YyhhNkrwIIYQQRblN8uLK0vBlj6q1wtym22fZn2c2OyokIYQQwmlJ8uIkNpq0yetu0+237JOWFyGEEKI4SV6cxAazlrwM02/n1hsJTJ5JWl6EEEKIoiR5cRL71KZcU/0BmOHxJQB5Zml5EUIIIYqS5MVJmNHxvHECAJG6K4SQglFaXoQQQohiJHlxIhvNHThijgSgk+4YWbkmB0ckhBBCOB9JXpzMbnMLADrpTjDwgw0sibvg4IiEEEII5yLJi5PZZW4J5A+ZVnluXpxD4xFCCCGcjSQvTmajOQqjqqed7gy36A4D8M7yI5xLynRwZEIIIYRzkOTFwabe2dZq+zK1+cXcAyiYsO7TdSd54L9/VntsQgghhDOS5MXBHu3VhH6t6lrt225uA8AEj18IIAOAC8lZ/O3bnczfcbbaYxRCCCGciSQvTmDOuG70LZTAbDEXtMa8ZfjK8nzFwURe+Xk/QgghRE0myYuT+OiBjpbn59RQvskbCMCd+j9pqZxzVFhCCCGE05HkxUkE+histv9rutPyvJvuSHWHI4QQQjgtp0tekpOT6dKlCzExMbRv354vvvjC0SE5xHm1Ll/lDQXgSY9fgYKlAt7/4yirDyc6KDIhhBDCsTwcHUBR/v7+bNiwAV9fXzIyMmjfvj333HMPderUcXRo1e470wAe8/idBspVmikXOanWB+CTNScAOD3jDkeGJ4QQQjiE07W86PV6fH19AcjJyUFVVVS1Zi5QGK+Gs9vcHICVnn93cDRCCCGEc6h08rJhwwaGDx9OREQEiqKwePHiYmViY2Np3Lgx3t7edO/ene3bt1fqGsnJyURHR9OgQQNefvllQkJCKhum2/jVpM35olNUeuv2OjgaIYQQwvEqnbxkZGQQHR1NbGxsicfnz5/PpEmTmDZtGrt37yY6OprBgwdz+fJlS5n8/ixFHxcvXgQgKCiIvXv3Eh8fzw8//EBiYs3t3/G1aTBX1AAAxuj/cHA0QgghhONVus/L0KFDGTp0aKnHZ86cyfjx4xk3bhwAs2bNYunSpcyePZvJkycDEBcXV6FrhYaGEh0dzcaNG7nvvvtKLJOTk0NOTo5lOzU1FQCj0YjRaKzQdSoq/3y2Pm9ZzOh4MvcFfvZ6nTa6MyXGYyuOqF91c/c6Sv1cn7vX0d3rB+5fR3vVrzLnU9Sb6FCiKAqLFi1i5MiRAOTm5uLr68tPP/1k2QcwZswYkpOTWbJkSbnnTExMxNfXF39/f1JSUrj11lv58ccfiYqKKrH89OnTef3114vt/+GHHyx9Z1zFc1tLziX9yWS/9+MA/C33eVaYuwHwUY+8aotNCCGEsKfMzExGjx5NSkoKAQEBZZa16Wijq1evYjKZCA0NtdofGhrKkSMVm6vkzJkzPPHEE5aOus8880ypiQvAlClTmDRpkmU7NTWVyMhIBg0aVG7lK8toNLJy5UoGDhyIwWAo/wWV9NzWkm8LpeHLddWP2ko67xtmsSKnK6AwbNgwADafvMa19Fzuig6/qevbu37OwN3rKPVzfe5eR3evH7h/He1Vv/w7JxXhdEOlu3XrVuHbSgBeXl54eXkV228wGOz2Q2PPc5fmaeNz/Oj5Jn5KNn/Rr2eBqS8Gg4GkjFzGzt0FQM8WdQkP9LnpazmiftXN3eso9XN97l5Hd68fuH8dbV2/ypzLpkOlQ0JC0Ov1xTrYJiYmEhYWZstLuaUfx9/CiJiIEo9tNbfjjLkeAO8a/ksdUgC4ml7Q3yctW24jCSGEcH82TV48PT3p3Lkzq1evtuwzm82sXr2aHj162PJSxcTGxtK2bVu6du1q1+vYU49mdazWOCrqb8aC22Mj9ZsBMJkLuiwZTWb7BSeEEEI4iUrfNkpPT+fEiROW7fj4eOLi4ggODqZhw4ZMmjSJMWPG0KVLF7p168aHH35IRkaGZfSRvUyYMIEJEyaQmppKYGCgXa/lKEfUSIyqHoNioqlyCbBOXvJMNXMyPyGEEDVLpZOXnTt30q9fP8t2fmfZMWPGMHfuXEaNGsWVK1eYOnUqCQkJxMTEsHz58mKdeEVVKEw2jud9z1l0vbFYo7nQYLE8syQvQggh3F+lk5e+ffuWO13/xIkTmThxYpWDEqU7pjYAoKXuAuqSiZhi3rAcy5PbRkIIIWoAp1vbqKrcoc9LRexXm7DJ1A4AZc+31LqwwXLMJC0vQgghagC3SV4mTJjAoUOH2LFjh6NDsTOFyXnjLVtpm760PDeaVZIycrn/8638tOu8I4ITQggh7M5tkhd38uGoGBrV8aV/63o83qtJsePn1XrckzMdgPYZW/FEm1I5z2TmvT+Osj0+iZcWyCKOQggh3JPTTVInYGTH+ozsWB+ApIxcvtwUX6zMHrU511R/6ihpjNavZq5pCHlmleTM3OoOVwghhKhWbtPy4q59XvQ6pcT9Kjo+z7sTgOmGb9BjIs+kYpY+u0IIIdyc2yQv7trnxcuj9Ldolbmz5flJ74fxTDtrNXT6UkpWuSPDhBBCCFfjNsmLu/I26Es9dkoNZ6e5pWW7wemfrZKXHm+v4YOVx+wanxBCCFHdJHlxaQp/yZ3Kn+Y2ADQ5swBM1n1ePl5zoqQXCiGEEC5LkhcX8OvEXqUeU9HxWO5LZKsGvHOTuDP5+2qMTAghhKh+bpO8uGuHXYCoBmWv1ZSBD5+btM67I1O/J0o5VR1hCSGEEA7hNsmLu3bYLUnHhkHF9n2Zd4fl+TMei6oxGiGEEKJ6uU3yUpOEBXgX25eGLxtavgrALbpDeCHzvQghhHBPkry4IB/Pkkcg7Q+7m2u6EAKULFZ7vURr5azl2MLd59l84irJmblk5uZVV6hCCCGEzckMuy7It5TkJc+ssNm7N3dlLqSBcpXvPN+iS84sTlxOY9L/CpYL0Clw4s1h6EqZAE8IIYRwZtLy4oJC/YvfNgLIM5tZ6z3Ash2ipBJCCheTs63KmVUY+tFG8kwyHa8QQgjX4zbJizuPNirKs5RZd40mlcOmBsy6sWwAwELPqWA2FSt7NDGNAxdT7RajEEIIYS9uk7y4+2ijN+9uD8Dkoa3JySu5xWTW+pMcSUxnRt5o7s/5JwANdVeIOP5dtcUphBBC2Jv0eXERo7s15PbW9QgL8CY1K4+Z5Uz7v11tbXkecm4F0KZYmR+3nSUzN4+ezUJsHa4QQghhN27T8uLuFEUhPNAHRVEI9DVU5BXclzMVgKDL2wkgo1iJ+TvPMfqLbQCYzSpPfb+Hn+PlR0IIIYRzk08qF/X94915ZUjrMsscUhtbnm/yeg4dpXfQ3XchhVVHrrAhQX4khBBCODf5pHJRtzYP4am+zcosk4k3X+YNBSBAyeSg16M0UC6XWNZklpFHQgghXIMkL27u33kPMydvMAA+Si6zDB8CagklZc4XIYQQrsFtkpeaNFS6sl7Pe4RpxjEAtNed5nbdnmJllEK5i6qWlNwIIYQQzsFtkhd3Hyp9cxS+Ng3md5OW2M32fI8uypEiJQpI7iKEEMKZuU3yIsr3jWmQ5fn3nm9RnyuWbaVQ04tJshchhBBOTJKXGmSHuRWX1SAAvJQ8Nns/x9895nH6Srp1udPXHRCdEEIIUTGSvLi4O6LCK1w2Dw8G5fyHZLWWZd/THr/QOLY+PtcOWvaNmbuLK2k5lu0Nx64w/ZeD5OQVX2ZACCGEqG6SvLi4/xvdkSP/GsJXY7pUqHwy/nxtGlxsf92Dc6y2L6VkWZ4/Mns7c7ec5ustp28qViGEEMIWJHlxcYqi4G3Q4+dV8ZUePssbzsvGJ6z21UrYRnPlPJM9fsCXbEzm4v1eziVlFdsnhBBCVDdZ28hNdGpUm3YRAXh66NhzNrnMstl4scDUl5WmzsR5/w0Ar7SzrPL6OwABZDB/RwtahwXg46m3vE4tcX4YIYQQonpJy4ubMOh1/PZMLz55sGOFX5OMP62y5xbbP9pjLb/tOMqbyw5Z7ZdBSEIIIZyB2yQvMkmddgtJp1RuptwcPGmZ/TUptRpb7X/a4xeWH0i02lfCnSQhhBCi2rlN8iKT1Gkqm7wA5GKg47V/80NeP8u+pz1+4SXTl5CdWqikypW0nBL7wwghhBDVxW2SF6Ex6AuSl+cHtKjw68zoeDVvPCNz3rDse0D9HZa9bNnefSaZrm+uYszs7VavlSHUQgghqpMkL26mVqFRR4E+hkq/Pk5tbr1j3zz+6fEtIaRwNDENgE0nrloO/7DtLK3+sZxl+y9VLWAhhBCikiR5cTNeHjf/lr5n/IvV9mMev/OH18sUXo06/9bRq4v2A/D097tv+rpCCCFERUjy4mYKr1FU+d4vmlmm4fTK+YjJ6jOWfcFKOo/rl/Gc/mdilBMMmLme3DzzTUYrhBBCVJ4kL25Mr9cxuF1opV+Xhwfn1br8qvaCbgWT2f3D8D0vGH5msddUGidtYu/5ZKvXHbiQcrMhCyGEEOWS5MUNje3ZmKZ1a3F3x/p8+lDnKp8nI9fEl/5P0T/n3WLH5ni+S8NdM2innLbsu/OTTVW+lhBCCFFRMsOuG5p+VzubnevfSw8D9TlrrktD3RWrY6H7P2epFzTO/p6q36QSQgghKkdaXkSFDMh9j27ZsTTO/oHZeUOsjo3R/4EO6f8ihBCiekjyIiokFwOXqQ3AzLz7SFV9LMdeN3zNsx4LieBqaS8XQgghbEaSF1Fp6fjSM+cTLg6aZdn3vMdCtng/C5ePODAyIYQQNYH0eRFVko4vKY17sTGvL6M81hUc+LS79nX4R5B+GY4ug4d+glohDolTCCGE+3GblhdZmLF8nnrbvt1m4JW8J3g4d3Lxg78+B2vfhIt7YOP7YDZBThpc2GXTGIQQQtQ8bpO8yMKM5VOx7YKK+89r87psNHegZ/bHnDSHkxZQwnpKf34Kn/aArwbBF7fDuv/AkaXFil3PyLVpfEIIIdyT2yQvonyqCt8/3t1m55u8cL/l+UVC6J/7PlGXXy+5JebqUbh8SHu+7i2YN9qqFWbu5ng6/mslX248ZbP4hBBCuCdJXmoQFbi1eQjDoyPsep2N5g4srPUAiWoQE3KfJafJgJILHv4NMpMAmP6rltho88oIIYQQpZPkpQZ49nZtpeg3RmiT1+mrYT65eQFj6Z7zKUvNt/Bw9kvQtF/xQptmwpcDYPe3RCqJ9g9KCCGEW5DkpQZ4YWBLdrw2gIe6NwJAp9g/ezGaCiat23E6CR5ZzC937cPkGWBdMOkk/DKRjV4v8LbHF3aPSwghhOuT5KUGUBSFuv5elm2dzv7Jy56zyQXXB7bHJ/Hs/w4wKO2f0OVRaDm02Gse9FjLJ4aPYfZQSLlg9xiFEEK4JkleaqBGwb7Vej1FUTh+OQ2Ak2p9uPMDGD0PHvmFneaWGFW9pexw/Z9wdgt80Bbm/xWS4rWexkIIIcQNMkldDTS+d1MSUrMZ1C6MhsG+9HtvnV2vp1DKraqmfbgvd7r2VLnIGq+XrI8f/lV79H4ZOo+DwPp2jVMIIYRrkJaXGsjboOfNu6Po07IuTUJq2f16igL6QsnLlpNXOXkl3arMKTWCu3NeZ50puvgJNryrtcT89JjcThJCCCHJi7A/BYXCDS+jv9hG//fXFyu3R23BWOMrMHEX3P6P4ic68BPMHgLxG2DOHfDtPdpaSiajHaMXQgjhbOS2kbA/BfSV6SQc0ly7VRTzV1B0sOYN2POddizlLHw9vKDsp93B0w+a9oUeE6FRD5uGLoQQwvlIy4uwO4VKJi/5AsLBPxRGxMKLR/k0766Sy+Wmw5HfYM4QeK8VbP8Crh6/qZiFEEI4L2l5EXanKNqIo4o6fTWDIwmpxF/N5Km+zbSd/mG8kzeKX009GB2RyMOtgZ1zICfF+sXpCbDsRsff2/8B10/Dma3QcjAMedsm9RFCCOFYkrwIu8s2mnn2xz0VLt+30OintUcvM2Voazo2rA0oHFYbsSGwGw8P7AIDpkNuBmx8D44s09ZPKmzNvwue//kpXD+Drk5zRuz5CJN+PNz53k3VSwghhGPIbSNRoq6Nazs6BECb3O7uT7eUfFBRwMtPS2ImbofpKTDud2g1rOTyR5ei3/IRAPqdX8A3I2H5FEi9pHUCNptLfp0QQgin4rQtL5mZmbRp04a//OUvvPee/Idc3b59rDvnr2cyYOYGu10jJ89k+5M26qk98nIgYT/oPGD1G3BydfGyp9Zqjz8/LdjX8xkY9O/iZYUQQjgNp01e3nzzTW655RZHh1Hj1PdV+ettrfA26Glez9+u1/ps3Un7ndzDCxp00Z4/8L12C6nRreSlJvDnsSvceulLlIzLxV+35RPtUa8thEVBZHfw8AaDN7S/137xCiGEqDCnTF6OHz/OkSNHGD58OAcOHHB0ODXGbc3rcF/dRIb1alwt19t5+nqVXlfpcUsGHxj8JgCq0ci1S8vI6/czhvNb4dhyOLmm+GsuH9Ie++YX7Pt9Mgz9D4S2h0t7tUUlPby0dZqCm0JeNmRcgTrNqlQvIYQQFVPpPi8bNmxg+PDhREREoCgKixcvLlYmNjaWxo0b4+3tTffu3dm+fXulrvHSSy/x9tsyMqS6/N/ojkQ3COT1u9pU63ULrzxd7eq1ge5/g78uhLv/C8/s1p6HRpX+mozL8NM4iO0KCx+HdW/DqunaXDP/rguf94ZPOmmtPNcKtSplXddmCU45b/dqCSFETVDplpeMjAyio6N59NFHueeee4odnz9/PpMmTWLWrFl0796dDz/8kMGDB3P06FHq1asHQExMDHl5ecVe+8cff7Bjxw5atmxJy5Yt2bKllI6awqbu7BDBnR0iMBqN7C9y7PfnbmPZ/kskpmbzv522/fDdFp9UpddVYtR1xU4WPUp7XqcZNO8PpjxA1ZKQs3/C1WOQVYFYr8drXze8qz3a3Q39XoPNH8Geb+HYCnh8lQ2DF0KImqnSycvQoUMZOnRoqcdnzpzJ+PHjGTduHACzZs1i6dKlzJ49m8mTJwMQFxdX6uv//PNP5s2bx4IFC0hPT8doNBIQEMDUqVNLLJ+Tk0NOTo5lOzU1FQCj0YjRaNtp4/PPZ+vzOouS6tc8xIdn+zUlNcvIuaRM2ob70zEyiInz9jokNgCzWSU9Mxsvg77EsmuPXmHj8atMHtIKTw+tcVFVVRRFqdx72LfQEgXGTEg5j8fsASjGzIoFfXCR9sh3fofdf3Zq4s+ou3H3Orp7/cD962iv+lXmfIqqqmpVL6QoCosWLWLkyJEA5Obm4uvry08//WTZBzBmzBiSk5NZsmRJpc4/d+5cDhw4UOZoo+nTp/P6668X2//DDz/g6+tbqeuJintua/V2l/qoR57lmgoq6o2eLy+0z6NxkX7F+eXuaWyiT7jKoesK3xzX8WAzM9F1qvzjbqEzG9GZc/E0pZNtqI23MYWBh16s8OtNigfngnsRlrKHFN9G7Gr0JHl6H1Sl5GRMCCFqgszMTEaPHk1KSgoBAQFllrXpJ9DVq1cxmUyEhoZa7Q8NDeXIkSO2vJTFlClTmDRpkmU7NTWVyMhIBg0aVG7lK8toNLJy5UoGDhyIwWCw6bmdQWXq99zWP6opKk1e/Y5w46aWWqjL7ufHvJg7tjPf/nmWvw9uSViAtyW22vWbMmxIK577p7Y9+5ieQ1P72eU9NPbtg379W6j1u2BuPgjl4m48Fj+hxevlj5KTZimrV/NofG0dAN6p+xi2/2lURYe59yuo9dqiBjTQRjpVJQ75GXV57l5Hd68fuH8d7VW//DsnFeGUo43yjR07ttwyXl5eeHl5FdtvMBjs9kNjz3M7A2es3+cb40vcn5lr4v7/ah3Cr2fm8d3j3S3HPPT6YvXI37Z5Heu1gL/MAUCfv+3lC751UBr11JYp+Ci61Jcrqhn9+iKd1FsMBp/aULsRxIwG3zrgVbHh6874HtqSu9cP3L+O7l4/cP862rp+lTmXTZOXkJAQ9Ho9iYmJVvsTExMJCwuz5aWEg/2lcwMW7NI68N7XuQE/7bLvSJqK3Nw8dSXdeoctO/ZWRZtCq1/XbgxjfoVv74Fh70Dd1trkeWe3lv764ysKnq//j/Y1ohOEtICov4DJCK2G2rgHsxBCOD+bJi+enp507tyZ1atXW/q8mM1mVq9ezcSJE215qWJiY2OJjY3FZLLDrK2imLfviWLsrY1pExaATqcwqG0oT3y7y27Xq0hPFXORQorDs5cimvSGqVcLth9drmVlqqqtjJ1yTpt3ZvUbpZ/j4m7tUXj+mXythqELbs6IPR+jnmsFf/0Jghpqyx7oZCUQIYT7qHTykp6ezokTJyzb8fHxxMXFERwcTMOGDZk0aRJjxoyhS5cudOvWjQ8//JCMjAzL6CN7mTBhAhMmTCA1NZXAwEC7XkuAh15Hu4iC7/OgdvZtWTtxOb3cMmZV5a1lhy3b6TlGDlxIKeMV1rKNJr7deoZ+revRvJ5fleKsNG3JbfAOAO92ENpOW5vpzGbwC4O6rSDxACwYW/65ji4jv8uvcvUo/PQYNOgKf8ZqOwdMh+5PwbXjULuJti6UEEK4oEonLzt37qRfv36W7fzOsmPGjGHu3LmMGjWKK1euMHXqVBISEoiJiWH58uXFOvEKYWtmFf674ZRl+7s/z/Ldn2cr/PqPVx/n03UneXPZYU7PuMMeIVZMvTbaI19IC23OmL3ztQUkT6yC9ITyz3N+u/bIt2q69sh3x/vakgdnt0GT27R9nrWKn8dsLkiyhBDCCVQ6eenbty/lja6eOHGi3W8TFSW3jcTV9JzyC5Vh55mqLVdQbaJHFUyoB5CZBN6BYMqFC7tg+RTMdVuj7F+AUpEbbUtf1B4l0Rmg62PQ+g74cTTkpoF/ONz7JTTuVfGYLx+BzR9C75dl2QQhhM049WijypDbRs7F26Aj2+jA6f+r4uangKlevsHaV52PllA8uRGT0cgyjzsZ1rMdhrObwNNPa13Jug7b/6staVARZiNsm6U98qVdgrl3QMsh0LQv3PJU+ef5aiDkpMLeH+Gu/4ODC7VOx/3/WenqCiFEPrdJXoRzub11PT59qDNd/r3qpltEqovqctlLGYIaQd3mBdu+wdB3svYwZmkLSx5YCNs/r/y5jy3XHsu1GbNpdjvc8jQ06w8Je7VVuIMawo8PaIlLvl9utMaeXAO3/6Nqt6EyrlArJ7H8ckIItybJi7CLKUO1Phs3MYGzXZnMKicupdIq1B+drob15TD4QMNbtMewdyAnXUsyAiIgfiMkHoTlr2hlg5tC0qmyz3dyTckrc5flj3+AXz3o/iToPQsSmcwkbW6boolN4kHwCcbj/zoyIC8bU3AiNO4BTfuBTmYmFqKmkeRF2MwbI9rx5tLDfPtYdyKDtaUZHu3VhHdXHLUq9+ztzfl4zYmSTlEtLmVC62krAXjm9uZM6Nccb4Peai6ZzNw87v1sK31a1mXy0NYAnL6aQYPaPnjo3WzYsZdfwcijJrdpj+5/024T+YdricTBxbBqmtZ5t/vf4I/Xbu6aW/9P+7qy5DXLAGhzF5xcq/W3uSE/pdFveg82oU3k95e54ClLgQhRk7hN8iIddh3vkR6NGd2todWH+5N9mtGtSTB//XIbOXlmvn60G31a1mXV4csculTxqaBtafbRgv/UP1lzgti1JxjVNdLqptHPu85z+FIqhy+lMnloa5btv8TT3++mb6u6zB3XrfqDrm6KorXE5Gs3UnvkazMcAuqD3gOuHIWdsyE7Revbkq9pX/AL1SbkC4uC7++rXAyHfym/zPEV8FY4DJkB3Z6A1AuAAkGRlbuWEI6WfkXrgO/h6ehIXILbJC/SYdc5FG2V0OsUujYO5vAbQ26MttX+d3bknGlpRRYuNavw4/ZzdG5U27Iv12R9u+urTdryBOuOXrF7fC6hdqOC53VbwdAbMwDfPQvycrQWk8a9rOeSefEoJJ+Fq8chtC18NUgbKWULyycX9MEpLLgphMdoyyvkZkBERy32XXO121NtRxSUzUyCRU9C1H3Q4X5t8sAzmyHjCrQeriVqQthDUjx8HAOhUfDUJkdH4xLkt1FUi6L9SnQOmjPEbFbJMpV87ZNFlxeooJNX0jmWkMbQqPCbCc19eHhBqyHF9/uHaY/IGy1XLx7V+rsUTnBMRm224ctHtH4xeTnabay8bK11p7KSTmmPgwtLL/PIEmjSB95pom0fXwELx1uXadYf7v8G9AatfkWpKlw9pnWUNniXH9f107D/J+g2XvtvW9Rs+a2MifsdG4cLkeRFOISjkpdlB0qf3C0501jqsbL0f389AN882o3eLetW6Rw1Uv5Q78L0Bq1FpFEPGL/a+tiw9zFmpbD7pw/oquxHd+5PMGbefBzfjCi/zMnV8HZ97bl/uNaaM/ANQNXWnTrws3as+UBtPps2w63nw1FVrZUpP/H5arA20WB6Igz5D5zeqM2GLH13aiZFOp1XliQvwiEK5y79W9dj9ZHLAHRoEMi+8xWf0r+yfj9YsWG2H646VuZxVVUtt8Dy7TufLMmLPel04OlHQlBnTMP+ic5ggLQE7bZOSEstkUm9CHu+hy7jILAB/PaCNizcmKXdQjq1FtSbnH8o7ZL2OPZ78WMnVmqPwvPjFGbw1ZKf/BmSt/9Xe4C2v+UQiHnk5mMUrkVX6KPYZNSSeFEmt0lepMOuaync8pJrKvhD3ayuHwue7MG87eeY9stBm19384lrFSqXlp1X6rEftp1l5spjfPNoN9pGBFj2/7bvEsOiwmlaV9YMqjb5t6JAa9XwqQ1D3io4fncJSURejrbMQqOe2tefHtUSn25PQL/X4PIhWPg3SDmrtaScWGm7eI2ZkHSy5GNpl2DXHAy75jACMBvvhfb3aIlQ2xFap+flkyH6Qa1VR1W1tbCq0oqpqmA2ST8eZ3FqXcHznLSCVklVLXh/Cz8vickIF+MgIkZLhi7s0pYZKWnJDzfgNj+50mHXtRTuApObZ2ZAm3qsOnyZR3o0wstDz5ieje2SvGTkVj65LTpXzauLtPvSL8yPY8ULvS37jySkcfv76x27LpIon4cXtBioPW81FF67ZH28UU94YX/BatzmG8m1TlewAnhWsjayKu4HuB5vlzB1B3+GgzduR53eWHDg4h7rgj0mwvYvwHRjMkhFBx1uTBDYeZy2NtbPj2mzLT84D85uhW9HamUfXw0NutguaLMJjq2A8A5ay5eomMKteO80gdcSYMeXsPljGPubNqJvyUS49wtoObjkc6ycCn9+qs2dFB4Di5/U+nI9+CMk7IcG3UofKWHKKzuRzUrWfq68A0ovU83cJnkRrqVwy4uvp57/PtyF5CwjwbWcb5hgrslMTl7xpOdoYloJpYXbyP9DX/gPvqKAl7/26PN37QGQcVUbMRIeDVePaiOqGvfS/ovWG7QZh6+fgY+iAVX7UBn2HsR2vfk48+fMyaeaYe8P2vMjv1kfe7PIArlf9ofBb2m31RQF2t8Hu+bAqfVakveXudqH1uaPtOtEdtc+PKNHay1FtRtrna53fqXNy/NxjPX5+0+FtiO1DtdBDbXvW3ZK8dtiqqp9z3R6+66BpapaZ+mAiJI7XttDbqb2/a1Vp/QyQY0g+UzB9pp/F7yvsYWmZvjhfphe6La6qmpLf/gGa4kLWN+yjF8P/xujtR7e+QF0ebT4tf/4J+z6Gp7coL2f+XLStOTct46W/IL2vt/1SYWqbW+SvAiH8PQo+EB4/a726HRKqYnLX29pSF0/bz5cfQxHTNg79MONnLqaUeKxgxft1z9HuJBaIdoDtNs7YVHac796BWVqN4LpydbN/69e1IZoe/mDTxAkxWPMyWLHqoV0b2BA36QXHF0GCfu0W1x+YRVbUbwyVrxa8Hz1G9bH3m9lvX1um/YoWg5KnnBw9RvFyhqAEYBJNw76/0Pb+X9dIStJe37rc+AfoX0PD/wMvZ7XEp/yGLO0RMvDS/seq2ZIOQcp5yGsg/ahvvbNgvLj10L9TnD4V1j/jtZaNOjf2q3Hylr9Bmx8X4t7wDRoe2/BsVm9tFuFL58s+Bkp7PppbdbrwuJ+qNh1f/+71meq5zOll8m/7bnt85KTly0fa183fwx3zoS8XG2umRWvwu5vrMvu/UGbbqDTuIrFZ0eSvAiHmH5XO0Z/8SdP9mlGwzolj7B4ZUhrft59nhcGtKSOnxfjezdhZOxmjiVWbUhzVZWWuAC8+L+9Zb7WbFYxqyp5ZhVvg4woEFj3W/CsZd0nIbgJGI1cCYjC3GsYeoMBGt9q/frsVG39KA9Prf/OvIegSW/tAyzzmvaBXaeFNq/N4ie1pRsGvQlbPilIfPRe0O9VWPMvMJfev8ue9LvnwO45xQ9s/sh6e+dX2teHftJafrwDtGHmPz8GjW/T6uEdBJ/1sH6dVyDklPHPxRf9oM9kWD9D207YB0mnYdxS63L5tw+LMpvgUpzWz2Tj+9q+tIuw6G/QeqS2raoFfZzi12uLpBaWeKh43FCQyJUl/XJBZ+8tFWgNuXJE6981+G3wDy1+XNFpt6qWT4HR87XvcUl+f1mSF1uSDruupVldP/6c0r/YiJ3CnurbjKf6FjQh+3p68McLfXhpwV5+2nW+OsIsV25e8VEhW09e46tN8Zy/nklunplTVzPw9NCx558DqeXlNr9ywlEK9zvw8IK/FvqQKdwC5OUHDy8qONbzxsKYeTkF60n1el7rLJqWoLVQRHTUbgf99kLxCQTbjtBGbl0/bYdKVUBJMzSf3ghzhpZcvqzEJV9+4pLvzCaYHqj1I7oYp50jYb829L3fP7RWsFbDtH5Ea9+Cje+VeFrd1o/pd3guutqFOmf/9Ci0ukO7jbj3R6jbpuz5h0qz/QttZfYvb6/8aw/8rD3ybz2ZCk0PseOLgue/Pl/mNAQe7zdDafVB5a9vQ27zl1Q67LqeshKXskQEVmASsGpSUqvMg1/8WWxfbp6ZnWeu00eGUgtHK9rXo2nf4mU6/rX012cla52W93yvTbIHWmdSn9ra3DdbPtZaBaIf0PoA/fEPrbxvHe0/e2BP5KPEZKxHKW3klaMV7Ud0+FftAbD6dajTHK6Vvj6bft2bBACsed36wJuh0HwAnFhV9diWvVT11+ZTVe29CKhf8vHC/W9KoGSn0DBpI3DXzcdSRW6TvAjh7MxOusK2EJXiE6Q9+r5SsO/BQn00Bhb5wB5RKBEY+i7GPCNnf19O+7++jWHHZ7DnO4j6i5bcePlrHZ8PLtQ6Bre5S5sE8PRmbRkKnV4bAgzQcqj1KJ3hH2mroh/4GbDz71oZiUu5biZxsZWfHyuYWLGKvI3XbRRM1UjyIkQ1KTrkurCMnDyOJKTRMTKo2FIKQrgNnU7rWwFaItLrBe1RVL8pBc//WokP2c5j4b6vCrYLDwHeOVvrmNukN4z8TBtVdXwVdHwImt2urZyedKrUW0EOMfkszKhAZ+XKusnEBUBVHJs+SPIiXE5V/qcKC/AmITXb5rFUxnsrjvG3b3cxtmdjXh3Wxuq22egvt7H3XDL/uTeKUV3t8MdKiJqo8NwlXR61Hm3T9XHtka/jQ9rX/v/U+gXpDNYddbOua9P4K4o2l43eoM2IjKI9VxTtdszKqaiHf+WMrhGNsg+itBqqTX5YeORWrxe0W2tx3xfsa3UHxDyozcdybLl2S8c7EO7/FrbGQu+X4JdntVtwY36BZX+H89sLXq/oYESsNg/QtZNay9Xvf7fJt7EkQRmOveUnyYuoET77ayfu/nSLQ2M4dCkVgC82xtOvVT3mbDnNo7c2oV39APaeSwZgwc7zkrwI4WglzQFTeAh1VAmdh0FLYAb9i7x+U9m7bBn1hw3DYLgx1f8rp7VRYoWHRY+8MTfLxTht+Yr8ztidxxSUaXuX9gB48XDB/nv+Cz+MgtbDoFZdiHlIu50XM7pQPLqCPjLN+sPQd2DpC9qw+6K8g7QkLCsZzDc68oZGaUttnN+hdTIuJNUnkhAH3gqX5EW4tNMz7qDxZG1o42vD2hAa6E37iACWxF3k8w0nyTZqo4H8vQt+1PuEm1l/qZSZJqvJ6C+3AbDykPVaS45asFIIYWdlzR8TEVP58wU3gYnbyy7T9XGtXFiHgjmHxtzoeGw2w/yHtBmXn9oKAeHa/twMrU9Pdqo29413oJYQtblLe27MxNioN0d+X05TB/69kuRFuJxRXSP5ZM0JBrSxnqvAx1PPXdERALwwsCXb4q/x56kkIoN9rIYoxwSb6d2pLfVr+/Lkd7urNfZy3fhbMHtTPP7eHtT29eTxb3ayeMKtxEQGWRW9lJJFqL+39JERQpRMUbTRTSXR6bSlA4ryrKWNEivM4KO18OQzGnE0t0leZJ6XmqNBbV8OvzEEb4N160nRBsx374tm6pID3Nu5gVXyoijwyC0NSckpmKNlbM/GzN1y2o5RV4xOgdcW7ef7bWet9o+M3czpGXcw4YfdJKXnclvLEN5ZfpRujYPJMpqY9XBn6gf5lHJWIYRwL45tO7ehCRMmcOjQIXbs2OHoUEQ18PHUF58npsj918hgX+aM68adHSKo5VmQvOSZtdcZCnXGG9U10n7BVoJepxRLXPL9vOs8S/ddYuupa7yz/CgA208nsf9CCm/8ar2I5bnrmaw/dsXu8QohhCO4TfIiaq6/3tKQBrV9GNmxlAmX0JKCfP4GLcnx0Bfsc5YpWE5fLX1WyxcXlL4UQVq29RTvt8/cxJjZ29l26prNYhNCCGchyYtwef8eGcXGv/fD39tQZrmvH+3GWyPbEXZjKaXCyYtZVfl1Yq9yr7XzH6XcP7aRC8lZVXrdlpPXLC0tmxIK6rXrrGMnkgKIO5fMwt3OsZyDEMI9SPIi3EJFlhro07Iuf+lc0DpjKLLYWlSDQCb2aw7ALU2D6dG0jtUaerc0DSbEr4QhlE5izGxt5MGC+IIFIN9ZfpTLaTc/v43ZrHIkIRWzufJNVCNjNzPpf3vZHl+BxeaEEKICJHkRNVbhUTqBPlqrzfMDWjDviVuYO64bPz5xC4ffGGIpo3eBUT1GU/GFIru9uZrVhxNRVbXMWX7L8vbvhxny4UbeWXG0yrGdvFK9q4ELIdyXJC+iRvvsoU68dXcUkcHavSQPvY5bmtbB26C1XuR/hbLnYHmyT7NSj1WnnBJWuQZ47OudPP71TnrOWENSRi5JGbkM+mA9/7fmeIXO+8XGeABmra/6rJrOn/oJIVyFJC+iRhsaFc7o7hWb0Ta/5WXGPVE8VOg1j/dqwitDWpX2smqVbSx9qoDVRy5zKSWb9ccu8/2fZziWmM57fxyrxuiEEMI2JHkRooL0N1peHujWkDfvjrLsb1Dbx6rPzaSBLfm7g5KZH7eX3zE2KcNodcvsXFIm2UYTZrPK9YxcAP792yFm/H6kynFcTc/h2z/PkJZdMJmVTB4shLAVmaROiHKM7t6QH7ad5dn+LUo8HtUgEIAfx9/C5hNXebpvMzz0Og5cSGHZ/oTqDJVP1pV/WyfPZCag0HIJt72zlsZ1fGkZ6s8fhxKZ9ddOfLlJu030XP8W+HjqSzsVoK2WPWXhfur5ezFpkJa0jZuzg/0XUqyGaiuFbhz9b8c5Pl13gtlju9K0rl+l6iiEEG7T8iKT1Al7eXNkew6+PpjoItPzr36xD7PHdqFzo2AAejSrw0uDW+Gh136t3rkvuuipSlXX3zajmCrSH3ff+RROXc2w2nf6WiZ/3FhnqfCSCYvjLpB0ozWm4BoqOXkF/yQcvpTGvB3n+HjNCUuH4P0XUgBYtv9SiTH8/ed9nL6WyT+XHADgzLUMPlp1nJQsx087LoRwfm6TvAhhL4qiWC0vkK9ZXT9ubx1awis0fl4evDCgJQD/N7pjmXPE7HjNvvPHFLZ0/yXmbD5dobJTFu6n079WWu17bl4cUdP+IDFVG4KdZSyYIK9oh2GrkdUl3DbKubFw5p0fb+KDVcf45+IDFYpLCFGzSfIihB09N6AFcVMHcmeHiArPEeNt0PHNo93sHFnV/bL3IrkmM//bcQ6AwqOzM3NLv21bUpeX/H4waTlaArQtXmYEFjVTWrYRUxXmUaqpJHkRws6CfD0rVd5sht4t63J6xh3V2iJTWaYbt4gycwtaXrKMJg7cuGVUVEUmEhSiJrqYnEXU9D947Gvp9lBRkrwIUY3u7dQAgDE9GvHGiHYllskzFzRl1PX34vSMO6oltsrK/yexcGtLVm4ed36yqcTyLy3YS/zVDNYcSbTsU8qZ/aUqM/oK4Wp+2qWNElx3VBZTrShJXoSoRm/d0555T9zCP+5sa7XSdWFlfV7fERVup8gq7+PVx2k8eSmrDhckI2XdNgLo9946Hp2707JtUlXWHr1s2S7c4fibraeJeeMP9p5LrvLMwEK4gsId4EXFSPIiRDXy8tBzS9M6GPQ6OjWqXenXhwZ4V6hcrXKGN9vSwt0XLM+vpOVU6rW7zlxn3JyCpvLLaTk0nryUE5fTmbrkIKnZeYyI3UzTV5eRmJrN3xce4ESqVvZYYhrP/LiHE5cLlh1YEneBJXEXil5GCKdmNBUk55KoV4zbzPMihKtpElKL35+7jTp+1n1iIgIrlqDkW/9yXxrVqcWfp67xwH//BGD1C7342/dx7D1fcv8Te3ns653lF6qAATPXW22rKnR/azUAwV56epy+zuivtKRn1+kktkzpT0ZOHs/NiwPg9tb1LKuMbzt1DS+DnpgiQ92LUlWVsXN2kJtn5ofx3aWPjqg2hZceyTKa8C2lVVYUkJYXIRyoTXgA9fy1ZOWXibfSt1Vd5owre6TR0md7WZ7PHtuFRnVqAeBTaB0mTw897eoH2iFix0vKUSyJC8DFlGySMnKtlkbIv311PSOXUf/9k5Gxm8v9jzY9J4/1x66w9dQ1LiRn2Sd4IUpQeM3X8m69Co2kd0I4iQ4NgphbTuIC0C4ikAe6RnI2KZM+LeuVWMbLQ2f1B7Fvq7pu3Rmw079WElUoWcu9Md/M1fSC21hGk4qnR8VaUw5dTGX5gQTG9GyMQS//4wn7yi00P5J0Uq8YSV6EcEEz7u1QbF/huxwGvWJZiwm0CfVKSl7mjO3KnC2n2XDM9ROb/YWGaJfUAdJoMuPpobMq4+VR0FpVeI6NJ77dBWiriv/1lkb2CFcIi+xCP695krxUiPxLIYQLKdo/prB2EYF0qB9Ah2AziqJY9dl4YWBL7u/SgA9GWS9Z0K91vRInxGsTHmC7oB0gK9fMMz/u4e1Ci0saC82m9+m6E0RN+4NdZ5Is+0r60DiWmMbl1GyupudgMqsyiZiwi/yZpgH5Gasgt0leYmNjadu2LV27dnV0KELY3P+N7sjw6AgevbVJqWX0OoWf/tadx1ppfwgLdwL08/LgnfuiubtjAx7rVfwcT/VtZrUd3aDgFszHD3YsVv6Z25vTu2XdStejury17DC/7r3ImiMFw7CP3xiVlJpt5J3lR8k1mbn3s60M/mADRxJSS/zQ0CkK3d5aTZd/r+KOjzdy5yebLM36hy+lsuN0UrHXCFFZhZfVkOSlYtzmttGECROYMGECqampBAa6Z0dFUXPd2SGCOztElFuucGuLrpTuHX8f0oqdZ67TuWHBUO1XhrRGryj839oTAEwZ2gadTuHeTvXp3CgYPy899YN8OXwplZ7N61DP35tHZm+vcPy/P3cbQz/aWOHyN2vrqeLLDPxl1laO/nsIHab/YbX/aGIaz/64p8SO0nO3nLY8P5KQBsC1jFwSU7Mtk/Fte7V/hYewC1GSwrc5TTJUukLcJnkRQlgbGhXOl5viCS8y9NrLQ8+SCbcWKz++d1OOJKRyV0x9An0NvHV3lOVY/gKUrcL8LfsqMx+Ft0HPb8/0YuIPuzl9LbOyVbGZVv9YXuL+Y4npnLmWUeKxojYev8Kk/+21bJ+/nmlJXtJz8jCZVQJ9DMVel5iazU+7zjOqa2SF17kSNUPhDrvJmblllBT53Oa2kRDCWudGtVk1qTerJvWpUPlAHwNfjunKXdHlt/AAdCxh3hQPncLf+jTl9+du47YWIVb729cPZM2LfSt0bkcY/cW2CpVbHHfRattkhmyjibPXMmk/bQXRr/9hGbZ98ko6/9txjvScPMbM3s67K47y7I97bB67cG2FJ6m797OtJKRkOzAa1yDJixBurHk9f2p52aeB9el+zfn7kFaseL63ZV+QrydThrahTXgAnz7UybI/v5FGp1N4fkALu8RTXdKzjVbbJrPKXf+3id7vrrXsm39jxe3+76/n7z/vo8P0FZbbTltOXuN6Ri6/7btIttEkQ2OFVcsLUKVZolVVJf5qhuXrq4v2s/dcso0idD5y20gIUSXeBj1P921utS/Ap+BPSuH5UVQKPqCf69+Cvq3q8c3W01ZLC4DWEfjhHo3YeOwqLy7YizPafTbZanvrqWscS0y32jftl4M81L2hZbtofjJmznb23Zj9OMTPizljuxLVIFASmRoqx2SdvGTcmKhOVVUURWHf+WQa1PYluFbpow0/WXOCmSuP8fyAFuw4ncTmE9fYfeY6C5/uybzt5xjSPoyIIJ8Kx5Sek8eCnefo1TyE+KsZ3No8xG7/CFWF80QihHBZH4yK5r0Vx/ik0MgkLw8dt7euR3p2HpG1fS37FUUhJjKImMgYVh1KJDU7z3Ls+QEt0esU7u3cAA+9YpnuP98d7cPo4nme13c7z5+uj1cfL3F/89d+L/U1+wot23A1PYfh/7eJD0fF8M/FBxjToyFhxlJfKm7CkYRUPl17kkkDW9I4pJajw7EwFml5yTGaGPF/m0jPyePThzpz1/9tBuDEm0PxKGXSxJkrjwHw4arjBHhrvx9HEtL4x+IDLNx9gSV7L5bY160005Yc5Ofd5y3bw6MjeHVYa8KcpHO68/wFEEK4rLs7NuDujg2s9imKwuyxXS3/PZZk0+TbOXE5nS0nrtIy1B99oSFSwztEcOpKBh0bBnHoUiqzN8XzwoDmHNx2njljOjPu6112rVN1e35+HAD/t+4U4IE54hwP92hi9b27mp6DQa+zdAiOXXuCX/deZP4TPQj0Ld5JWFi799MtZOSaOHAhhTUv9a2265b1OwCQW6TlZd3RKxxN1G4z/rj9rGX/5pPX6FOBKQpqeXlY/inIb92s7C2kwokLwK97L/Lr3ovMGduVXs0qv6isrUmfFyGEXZX1RzvA20CnhrWZeHsLBrULszqm0ym8MLAlfVvV4+m+zdnx2gAa1dFacG5tFkzbIhPpnZ5xh2WEVMNgX6tjzerW4otHutiiOtVm6i+HrYajn7qSTpd/r2Jk7GbLvndXHOVIQhpfbjpV4jlUVWXe9rMcuFC9C3Q6q/zbMaeuVmxkmS08P28PA2aut1p7qyhjkeQlP3EB65Xax1RwegKfSqwqn5mbV+GRdgBfbCz5Z626SfIihHAJhZMgRVH49Zlels7C+Q02D3SNZM64riwu0jzu721gYNtQxvTQpvr//OHO1RP0Tdp4/CopmUZWH07k9ve1lbbjr2YQfzXD6gMnN89McmYuby87zL9/O8SXG08xInYz32w9w+SF+y1z0iRl5PLKT/vYduoa/91wkpNX0ku8bk2Qlm37e3N7zyVz4rL193Rx3EVOXsmwmjCxqKIddgvbc/Z6qccOXUzlP8uPkJGTZ7X/1JWKJyOvLtxPn3fXsbZIfF4eJacHzrLWl9w2EkK4JL1OoVWYP3+80Js6Nzoy6nQK/Vppi1Uuerond3+6BQD/G30Apt/VjkkDWxHoa+Cu6Ah+2Xux5JOjzTK897zjWyyi3/ij2L7+76+z2j50KZWYN1YWK1f0VsGrC/ez/GAC83dqo6HeWnaEezrV5627o/C+sSp5cmYuG49fZWDbUMs+dzT+m53Me6IHoPUXOXE5jU8e7GR167IyLqVkMeJGq9jxfw0qdrys1aKLtrwUdjW99HlfxszZzpW0HBJvYmh1/tD/D1Ydo1/rgoVeS/s+OEuXcudIoYQQoopahvpTp4RJ3zoWmkG4Zag2uZ6iKJa+IaXdzTryryF8MCqa2WOdd6kRs2o9gmnj8avlvqbx5KUsP5hQbP/C3ReYs/k0oN1mGjNnB8/8uId3lh8tVnbLyauM/uLPUltsvt92hneWH7HcIsk2mth7LtlqQsNVhy9z1gENPkVHcv15qmBph49XH2fZ/gTWHyu9daQ8hRPFkqb4zyrjtlFOGS0vhfvDKIr15JD5t5R+23epMqGWyKNIsqIv5RekMpNT2pMkL0IItzVnXFfu6VifFwa2LHZMV+SPc4cGgXz0QAzeBj13d2xQYkJUtC+Nuzh/XZv1+OGvtls+hEtqlRr9xTa2nLzGMz/sQVVVq2ntzyVl8tqiA3y67iSt/7mctUcu8+R3uxgRu5kmU5aRkZPHeyuO8tQPcby/v3ob/Wf8foSmry4r8Vjh22+JqTkllqmIwqPmMgsNdc6XXcWWl8JUteTEqKJLCjSevJTVhxNLPOZZ5DZRGV3VnILcNhJCuK1+repZbiMV5Vno3n1dfy9+mdir1PN0aVSbGfd24PTVDB7/ZudNxdSxYRB7iswV42inr2WQbTSx6URBC05+n4dLKVn0eHsNd3QItxy7kJzF2Dk7OHAhhbUv9yXA28DpIp0+x83dYbU9a/1Jy9pZoM0jUttQPSOkZq0/WeL+jJw8+ry7zrKdnFm1fjDfbj3N9F8PWbYzc7VEpnCiUXREUf71201bUalrGU0qHkXu5lVmMcfJC/ez4zVtuY/CrVEeOuvkpdTbRs7R8CItL0KImumFgS2p5+9F05Ba/FpG4gJQx8+T5vX86N+mHv+5t2DNp8Z1fLmjQzjt6wfwy8Rb2Tz59jLP89lDnVj4VE+bxG9Lm09c44NVx6z2XUjOYsbvR+jx9hoAlha6NZGSZWT9sStcy8jl5QV7GTBzPQ9/VfZImE/WnLDafnNZwW0po8ls1YpTVd/+eabUloWSnE2yXmcrOatq6wr9c8lBqwQi/xZRXqF9JU1AuLqMTrylMZor1kpTmvRCLUSFb1epRXqzlJa8bDpxlU/WlJwMVidpeRFC1Ehhgd5sf21AmWXG9mzM3C2nea6/dttJURRGdW2IWdVuRXwwKsaqbw3Af+6NYs/ZZJrV9ePNZYetjg2N0lovlky4lX8sPsD+Cyl0bxLMtvgkHO3z9cWHwJbWYlHYioMVTxYK+2n3Bd65LxqdTmHU51uJv5rBxldux6+MWVwPXkxh1vpTvDSoJY3qFEwyl56Txx0fb+TMjUU/uzcJ5sFuDRnZsX6ZMVwvsghiapZtRiCl3UgQCq9ZlFdC8lJav5KyFJ3QrrJCAwpuhxYe5WQ2w/WMXNYfu8KQ9mFlTnHw8dqTvBRV6uFq4ZTJS+PGjQkICECn01G7dm3Wrl1b/ouEEMLGpt/VjslDWxcbdfNgt4Y80DWyxD/wo7o2ZFTXhizaUzDJl6+nnub1/Czb0ZFB/PpMLy4kZxER6M2fp5JIysilZagfhy8m8+z8fVbnVBS4v3Mk43s3Zdn+S5bZVF1dp3+vZMHfeliWXBjy4QaeH9CS+TvOcm+nBmTmmmhQ24c/TyWx/fQ1DlxIBSD+ajrznuhBRk4eoQHevLfiqCVxAdgWn8S2+CTCAr2Lta4UlpplPcS4tI6zqw4l8q+lh/jogY7EFFmQdHsJiefby4/xYCjkFWolKenWTtEhzhWx+2wySRk53N8lstKvBes6Fm7tMplVxs7dwd5zyTxzpTl55fTDOZnm2E4xTpm8AGzZsgU/P7/yCwohhB2VNly4rP9MAYZFhfPdn2fpGBnES4NblTg/Rv0ba830aFbHsq9xsDdvnNhNWJuuZJu0Mo3r+FLb1xOdTuHZ/i3o2awO983aehO1cg7JmUYGfrDBsn3+ehYv3VjTasfp0uc3OXIpjZ5vryY1O487osJZur/k0TYP/PfPMq//5HfWszQv3H2BhbsvMHtsF25vHWrZn9/P6aNVx5gzrptl/2/7LjLxh+KrhO84fZ36qsIthVpeSrrdk16F5GX8jVjqVXGa/lyr5KXgeXaeybJsRdFbfCUJdPCEzk6bvAghhCvz8tDzcxX7twR6Qr9WdTGU0qG1S+Ng1r/c16qzaU2SZ1Yto3tKS1xuxqNzd3J6xh2AdV+Vwh/2S+IuFFt7q7DFZ/Q02VWw8OiVtByrZQJ+23eRhXvOl/bych26mFql1xUe2VS4PvsqOadRnoM77la6w+6GDRsYPnw4ERERKIrC4sWLi5WJjY2lcePGeHt70717d7Zvr9iUxvkURaFPnz507dqV77//vrIhCiGE22tUp5bVytX5/L09mDa8rdW+V4a0tjzv07Iuh94YTFM7LkzYvn5A+YWcXJ7JzA/bzloNsd5y8hrXM3K5lp5TZuKS74PVBS0YC3df4I3ftBFJl1OzmfjDHsttsHz5CVNFvLui+Dw8FZGanceWG6PKbqaTtPHmut7ctEonLxkZGURHRxMbG1vi8fnz5zNp0iSmTZvG7t27iY6OZvDgwVy+XNCrOiYmhvbt2xd7XLyozSuwadMmdu3axS+//MJbb73Fvn37SryWEELUZG/eHcXkoVpickdUOKdn3MH+6YMZd2sTq3Ljbm1see7pocPX04Ph0RGVutZtLUIqVO7FgS3p1bz8xQOdXfPXfufVRfuL7X923h52nK5aB+v8yQDjq3FtpZKM/nIb205dK3NZgvLkOjh5qfRto6FDhzJ06NBSj8+cOZPx48czbtw4AGbNmsXSpUuZPXs2kydPBiAuLq7Ma9Svr/UQDw8PZ9iwYezevZsOHTqUWDYnJ4ecnIKJhVJTtUzWaDRiNNp27Yr889n6vM7C3esH7l9HqZ/rq2wdx90SSefIANqEB1i9pkODAPad1/4e6in4pPHUKRiNRkL9i9+SerpPUz69MepoSLtQPh7VgTd/P8rOM9eZfmdr+n+wqdx4Hr+1IR87wVBae9l4/GqFZjQuzeu/HLCMRiqq6Hu+6Mlb+GzDKV4a2IJBH20u8TVVte3UVTo1DKry641m2/8eVuZ8inoTc/0qisKiRYsYOXIkALm5ufj6+vLTTz9Z9gGMGTOG5ORklixZUu45MzIyMJvN+Pv7k56eTp8+fZg1axZdu5Y8Vff06dN5/fXXi+3/4Ycf8PV1z9kwhRCiPF8c0XHguta4/lGPPBad1rE5UeHlDiZCfcCkwpIzOpr4qWxI0NEq0MyQSO3jICkHgjwLFrzMdykT4tMU5p8quRPzfU1M3BamsuysjhUXZBqxyvqoRx6v7dSTblSo7akyvXPBbZ2/b9OTY3aeaW8HNzAzLNK2zS+ZmZmMHj2alJQUAgLKvvVo0w67V69exWQyERoaarU/NDSUI0eOVOgciYmJ3H333QCYTCbGjx9fauICMGXKFCZNmmTZTk1NJTIykkGDBpVb+coyGo2sXLmSgQMHltqRzpW5e/3A/eso9XN9tqpjTM8snpm/lzG3NGJYdDjDgByjCa9Co6eG3/j6WiXPPf+fBYtFzh/fjVahfhhNKkE31o1K23meFRcOlfZyOgSb6duhGR+vi7faP314G6b/eph7OkawcE/pi2aW5a2RbXl1cenXtpevx3bmzWVHOXa56gs3DRs2jBad05m56jgT+zWjXUTBZ9jUuDXkZFV+dJK9GM3Y/Pcw/85JRTjdaKOmTZuyd+/eCpf38vLCy6v4GiQGg8Fuf9zseW5n4O71A/evo9TP9d1sHRvVNfDLxNuKndMW8lfcHh4dQfdmxfu3jOrWiIOX0unVPISjiWl8vPo4rcP8OZKQBkCbIJVHezWxSl66NQlm7K1NGXtrUwDa1Q/iXzc6uK5+sQ/9319fZky1PPX88kwvmtX1Y+2xa6w8VPrkef8a2Z5/Lj5Q6XqXpWGIP/oShsNXhsFgoG2D2nw5tlvxYzd5blszmm3/e1iZc9k0eQkJCUGv15OYaP1Dk5iYSFhYmC0vVUxsbCyxsbGYTDc/xbQQQojSfTmmK78fuFTqDLYGvY6379GmYB2mhnFXdDhNQ/xYe/QyG45dJlo9ZVk7CeDnp3oQE2k9U/Ffb2lIttFEn5Z1aVbXj3/c0YZ/Ly2YsbhpSC1O3ej4OiImgpn3x1imtH/7nijCA735ZusZS/npw9sSFuiN0aRyZ4dwdp5O4mJyFl0aB/Nc/xaW+XwaT15ape+Jn5dHiUsA2Epp0/XbQkxkEHGFVsWuCJcbbVQWT09POnfuzOrVqy37zGYzq1evpkePHra8VDETJkzg0KFD7Nixo/zCQgghqqyuvxeP9GhMgHf5/ykrikLzev7odAr924Tyj2Gt0SvgodfRvn4A9YN8iKofVOzD2ctDz4R+zWlfPxCAdhGBlmP/uTeKDx+IIbiWJwC3t65n9foQPy/eGNGexnUK+j2OvbUJQ9qHMzxam+bjowc6suDJnrwyxHoG5Y8eiLGK4+m+zXixhFXJ8w1oU49BbUMJ8fMstrpzZfKNueNK7x6RX6fKKDoTcFm8PCqfCjg6eal0y0t6ejonThSMXY+PjycuLo7g4GAaNmzIpEmTGDNmDF26dKFbt258+OGHZGRkWEYfCSGEEABLJvTCrKoVuiVyS9NgvnikC63D/IkM1pKS5c/fxsELqfRpWfLQ7Kq0VoyIqc9d0RGoKpy8kk6zun58sbFg3afCt79Aa4XKV3QJgKUTe+Lv68XG41eJqh/I5bRsHp1bfFXy357pZUnSSvPhqBienRdH4zq+/H4godjx+zo34F8j2nPqajohfl4E1/LkeGI6O04nMe2Xg2Weuypra7lc8rJz50769etn2c7vLDtmzBjmzp3LqFGjuHLlClOnTiUhIYGYmBiWL19erBOvEEKImk2vU9BTsQRDURQGtrX+HKnn70291qVPk9+lUTAnr1R+ThVFUVAUaBHqD8A9nRqw7ugV2oQHMHV4W15esJcFu4rPjls0eantayCsti8PdsufTLB4gnJ3x/rlJi6gxfL7c7eRmZvHwYup+Ht7EFU/kHk7zgFay4yPp96qhaptRABtIwLKTV4UBbw99JbVsEvSo2kdPPSKZZi4yyUvffv2pbzR1RMnTmTixIlVDqoqpM+LEEKIwl67sw0h/p7cFV326tLlqevvxY9P3GLZfnFQK7acvMaD3awXRyyavJS0LtbHD3Zk1+kkpg5vhwLoKtk65OvpwfqX+1qWGfDQKyzafaHE2ZbzBfoYSCljxex6/l7Me6IHf566xpSFBRPz5XdsHtQ2lP8+0gWAw5dS+X3fRZLPO3ZxUOfqvnwTpM+LEEKIwgK8Dbw8uDWtwvxtet6wQG82T76dibe3sNr/n3utJ1MtKXm5KzqC10e0R69TKp245Cu8KOi/R0axZ+ogy620ksx74hYGtAnl9+duK/H47a3r0SSkVqEWIm1G5YdvacTGv/cj9qFOlv1twgN45vZmdA5x7OJGbpO8CCGEEI7Uq0UIR/41hKf6NGFEI5NdRwgV5llOh9s24QF8OaYLbcIDWPBk8cEzU4a1sTx/aVBLannqee0ObV9ksK/TDdMGJ5znRQghhHBV3gY9kwa0YNmy444OpURdGwdbnv/+3G20CbeezHXi7S14sk8zPJwwYSnMbZIX6fMihBBClO+nJ3uQkJpdLHHJ5+yJC7hR8jJhwgQmTJhAamoqgYHl99wWQgghaqIuhVpfXJXzp1dCCCGEEIVI8iKEEEIIlyLJixBCCCFcitskL7GxsbRt25auXcteH0IIIYQQrs1tkheZpE4IIYSoGdwmeRFCCCFEzSDJixBCCCFciiQvQgghhHApkrwIIYQQwqW4TfIio42EEEKImsFtkhcZbSSEEELUDG6TvAghhBCiZpDkRQghhBAuxW1Wlc6nqioAqampNj+30WgkMzOT1NRUDAaDzc/vaO5eP3D/Okr9XJ+719Hd6wfuX0d71S//czv/c7wsbpe8pKWlARAZGengSIQQQghRWWlpaQQGBpZZRlErkuK4ELPZzMWLF/H390dRFJueOzU1lcjISM6dO0dAQIBNz+0M3L1+4P51lPq5Pnevo7vXD9y/jvaqn6qqpKWlERERgU5Xdq8Wt2t50el0NGjQwK7XCAgIcMsfyHzuXj9w/zpK/Vyfu9fR3esH7l9He9SvvBaXfNJhVwghhBAuRZIXIYQQQrgUSV4qwcvLi2nTpuHl5eXoUOzC3esH7l9HqZ/rc/c6unv9wP3r6Az1c7sOu0IIIYRwb9LyIoQQQgiXIsmLEEIIIVyKJC9CCCGEcCmSvAghhBDCpUjyUkGxsbE0btwYb29vunfvzvbt2x0dUoW8/fbbdO3aFX9/f+rVq8fIkSM5evSoVZm+ffuiKIrV48knn7Qqc/bsWe644w58fX2pV68eL7/8Mnl5edVZlRJNnz69WOytW7e2HM/OzmbChAnUqVMHPz8/7r33XhITE63O4ax1y9e4ceNidVQUhQkTJgCu9/5t2LCB4cOHExERgaIoLF682Oq4qqpMnTqV8PBwfHx8GDBgAMePH7cqk5SUxEMPPURAQABBQUE89thjpKenW5XZt28ft912G97e3kRGRvLOO+/Yu2oWZdXRaDTyyiuvEBUVRa1atYiIiOCRRx7h4sWLVuco6X2fMWOGVRlH1bG893Ds2LHFYh8yZIhVGVd+D4ESfycVReHdd9+1lHHW97Ainwu2+tu5bt06OnXqhJeXF82bN2fu3Lm2qYQqyjVv3jzV09NTnT17tnrw4EF1/PjxalBQkJqYmOjo0Mo1ePBgdc6cOeqBAwfUuLg4ddiwYWrDhg3V9PR0S5k+ffqo48ePVy9dumR5pKSkWI7n5eWp7du3VwcMGKDu2bNHXbZsmRoSEqJOmTLFEVWyMm3aNLVdu3ZWsV+5csVy/Mknn1QjIyPV1atXqzt37lRvueUWtWfPnpbjzly3fJcvX7aq38qVK1VAXbt2raqqrvf+LVu2TH3ttdfUhQsXqoC6aNEiq+MzZsxQAwMD1cWLF6t79+5V77rrLrVJkyZqVlaWpcyQIUPU6Oho9c8//1Q3btyoNm/eXH3wwQctx1NSUtTQ0FD1oYceUg8cOKD++OOPqo+Pj/r55587vI7JycnqgAED1Pnz56tHjhxRt27dqnbr1k3t3Lmz1TkaNWqkvvHGG1bva+HfW0fWsbz3cMyYMeqQIUOsYk9KSrIq48rvoaqqVnW7dOmSOnv2bFVRFPXkyZOWMs76Hlbkc8EWfztPnTql+vr6qpMmTVIPHTqkfvLJJ6per1eXL19+03WQ5KUCunXrpk6YMMGybTKZ1IiICPXtt992YFRVc/nyZRVQ169fb9nXp08f9bnnniv1NcuWLVN1Op2akJBg2ffZZ5+pAQEBak5Ojj3DLde0adPU6OjoEo8lJyerBoNBXbBggWXf4cOHVUDdunWrqqrOXbfSPPfcc2qzZs1Us9msqqprv39FPxTMZrMaFhamvvvuu5Z9ycnJqpeXl/rjjz+qqqqqhw4dUgF1x44dljK///67qiiKeuHCBVVVVfXTTz9Va9eubVW/V155RW3VqpWda1RcSR98RW3fvl0F1DNnzlj2NWrUSP3ggw9KfY2z1LG05GXEiBGlvsYd38MRI0aot99+u9U+V3kPi34u2Opv59///ne1Xbt2VtcaNWqUOnjw4JuOWW4blSM3N5ddu3YxYMAAyz6dTseAAQPYunWrAyOrmpSUFACCg4Ot9n///feEhITQvn17pkyZQmZmpuXY1q1biYqKIjQ01LJv8ODBpKamcvDgweoJvAzHjx8nIiKCpk2b8tBDD3H27FkAdu3ahdFotHrvWrduTcOGDS3vnbPXrajc3Fy+++47Hn30UauFR135/SssPj6ehIQEq/csMDCQ7t27W71nQUFBdOnSxVJmwIAB6HQ6tm3bZinTu3dvPD09LWUGDx7M0aNHuX79ejXVpuJSUlJQFIWgoCCr/TNmzKBOnTp07NiRd99916pJ3tnruG7dOurVq0erVq146qmnuHbtmuWYu72HiYmJLF26lMcee6zYMVd4D4t+Ltjqb+fWrVutzpFfxhafnW63MKOtXb16FZPJZPUGAYSGhnLkyBEHRVU1ZrOZ559/nltvvZX27dtb9o8ePZpGjRoRERHBvn37eOWVVzh69CgLFy4EICEhocT65x9zpO7duzN37lxatWrFpUuXeP3117nttts4cOAACQkJeHp6FvtACA0NtcTtzHUryeLFi0lOTmbs2LGWfa78/hWVH09J8RZ+z+rVq2d13MPDg+DgYKsyTZo0KXaO/GO1a9e2S/xVkZ2dzSuvvMKDDz5otcjds88+S6dOnQgODmbLli1MmTKFS5cuMXPmTMC56zhkyBDuuecemjRpwsmTJ3n11VcZOnQoW7duRa/Xu917+PXXX+Pv788999xjtd8V3sOSPhds9beztDKpqalkZWXh4+NT5bglealBJkyYwIEDB9i0aZPV/ieeeMLyPCoqivDwcPr378/Jkydp1qxZdYdZKUOHDrU879ChA927d6dRo0b873//u6lfDGf11VdfMXToUCIiIiz7XPn9q+mMRiP3338/qqry2WefWR2bNGmS5XmHDh3w9PTkb3/7G2+//bbTTzv/wAMPWJ5HRUXRoUMHmjVrxrp16+jfv78DI7OP2bNn89BDD+Ht7W213xXew9I+F5yd3DYqR0hICHq9vlgv68TERMLCwhwUVeVNnDiR3377jbVr19KgQYMyy3bv3h2AEydOABAWFlZi/fOPOZOgoCBatmzJiRMnCAsLIzc3l+TkZKsyhd87V6rbmTNnWLVqFY8//niZ5Vz5/cuPp6zft7CwMC5fvmx1PC8vj6SkJJd6X/MTlzNnzrBy5UqrVpeSdO/enby8PE6fPg24Rh3zNW3alJCQEKufSXd4DwE2btzI0aNHy/29BOd7D0v7XLDV387SygQEBNz0P5eSvJTD09OTzp07s3r1ass+s9nM6tWr6dGjhwMjqxhVVZk4cSKLFi1izZo1xZooSxIXFwdAeHg4AD169GD//v1Wf2zy/9i2bdvWLnFXVXp6OidPniQ8PJzOnTtjMBis3rujR49y9uxZy3vnSnWbM2cO9erV44477iiznCu/f02aNCEsLMzqPUtNTWXbtm1W71lycjK7du2ylFmzZg1ms9mSuPXo0YMNGzZgNBotZVauXEmrVq2c4nZDfuJy/PhxVq1aRZ06dcp9TVxcHDqdznK7xdnrWNj58+e5du2a1c+kq7+H+b766is6d+5MdHR0uWWd5T0s73PBVn87e/ToYXWO/DI2+ey86S6/NcC8efNULy8vde7cueqhQ4fUJ554Qg0KCrLqZe2snnrqKTUwMFBdt26d1XC9zMxMVVVV9cSJE+obb7yh7ty5U42Pj1eXLFmiNm3aVO3du7flHPlD4gYNGqTGxcWpy5cvV+vWresUw4lffPFFdd26dWp8fLy6efNmdcCAAWpISIh6+fJlVVW14X4NGzZU16xZo+7cuVPt0aOH2qNHD8vrnbluhZlMJrVhw4bqK6+8YrXfFd+/tLQ0dc+ePeqePXtUQJ05c6a6Z88ey0ibGTNmqEFBQeqSJUvUffv2qSNGjChxqHTHjh3Vbdu2qZs2bVJbtGhhNcw2OTlZDQ0NVR9++GH1wIED6rx581RfX99qG2ZbVh1zc3PVu+66S23QoIEaFxdn9XuZP0pjy5Yt6gcffKDGxcWpJ0+eVL/77ju1bt266iOPPOIUdSyrfmlpaepLL72kbt26VY2Pj1dXrVqldurUSW3RooWanZ1tOYcrv4f5UlJSVF9fX/Wzzz4r9npnfg/L+1xQVdv87cwfKv3yyy+rhw8fVmNjY2WodHX75JNP1IYNG6qenp5qt27d1D///NPRIVUIUOJjzpw5qqqq6tmzZ9XevXurwcHBqpeXl9q8eXP15ZdftponRFVV9fTp0+rQoUNVHx8fNSQkRH3xxRdVo9HogBpZGzVqlBoeHq56enqq9evXV0eNGqWeOHHCcjwrK0t9+umn1dq1a6u+vr7q3XffrV66dMnqHM5at8JWrFihAurRo0et9rvi+7d27doSfybHjBmjqqo2XPqf//ynGhoaqnp5ean9+/cvVu9r166pDz74oOrn56cGBASo48aNU9PS0qzK7N27V+3Vq5fq5eWl1q9fX50xY0Z1VbHMOsbHx5f6e5k/d8+uXbvU7t27q4GBgaq3t7fapk0b9a233rL68HdkHcuqX2Zmpjpo0CC1bt26qsFgUBs1aqSOHz++2D97rvwe5vv8889VHx8fNTk5udjrnfk9LO9zQVVt97dz7dq1akxMjOrp6ak2bdrU6ho3Q7lRESGEEEIIlyB9XoQQQgjhUiR5EUIIIYRLkeRFCCGEEC5FkhchhBBCuBRJXoQQQgjhUiR5EUIIIYRLkeRFCCGEEC5FkhchhBBCuBRJXoQQQgjhUiR5EUIIIYRLkeRFCCGEEC5FkhchhBBCuJT/BxiY9/SYrB9BAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.plot(loss_history, label=\"Train loss\")\n", + "plt.plot(val_loss_history, label=\"Val loss\")\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "1f_4epwlrMJm", + "outputId": "4f7e4cc9-b24b-43e8-ad7c-a623e8189e7d" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlfNJREFUeJzs3Xd0k9UbwPHvm6R7Ulo6oOy9WvZSlmwEwQU4EFBUFBcK4s+BG1QcuMAFiAsVBAHZyJa9R8sulO6926z390doBSmlI2k6ns85PQeS9733yW3aPL1TUVVVRQghhBCiktDYOwAhhBBCiJKQ5EUIIYQQlYokL0IIIYSoVCR5EUIIIUSlIsmLEEIIISoVSV6EEEIIUalI8iKEEEKISkWSFyGEEEJUKjp7B2BtZrOZ6OhoPDw8UBTF3uEIIYQQohhUVSUjI4OgoCA0mqL7Vqpc8hIdHU1wcLC9wxBCCCFEKURGRlKnTp0ir6lyyYuHhwdgefGenp5WLdtgMLB+/XoGDBiAg4ODVcsW0r7lQdrYtqR9bUva1/bs2cbp6ekEBwcXfI4XpcolL/lDRZ6enjZJXlxdXfH09JQfHBuQ9rU9aWPbkva1LWlf26sIbVycKR8yYVcIIYQQlYokL0IIIYSoVCR5EUIIIUSlUuXmvAghhCgZVVUxGo2YTCZ7h1Ikg8GATqcjNze3wsdaWdm6jR0cHNBqtWUuR5IXIYSoxvR6PTExMWRnZ9s7lJtSVZWAgAAiIyNlHy8bsXUbK4pCnTp1cHd3L1M5krwIIUQ1ZTabuXDhAlqtlqCgIBwdHSt0UmA2m8nMzMTd3f2mm5iJ0rFlG6uqSkJCApcvX6ZJkyZl6oGR5EUIIaopvV6P2WwmODgYV1dXe4dzU2azGb1ej7OzsyQvNmLrNvbz8yMiIgKDwVCm5EW++0IIUc1JIiDKi7V69uQdK4QQQohKRZIXIYQQQlQqkrwIIYSoFhRFYfny5UVeM27cOEaMGFHsMiMiIlAUhcOHD5cpNlu4+vUWN86+ffvy0ksv2T64MpIJu0IIISqdcePGkZqaetNk5GoxMTHUqFEDsHyYN2jQgEOHDhEaGlpwzZw5c1BV1crR2l9wcDAxMTH4+voCsGXLFvr06UNKSgre3t4F1y1ZsoScnBw7RVl8krwIUY1FJmez7kQsfh5ODG0TiE4rnbGi6goICLjpNV5eXuUQSfnTarXFev0+Pj6kp6eXQ0RlI7+phKiGzGaV5387wq3vb+btv8J4ZvFhBn6yjQMXk+0dmrAzVVXJ1hvL/ausvR29e/fm6aefZtq0afj4+BAQEMDrr79+zTVXD6M0aNAAgHbt2qEoCr179wauHzZau3Ytt9xyC97e3tSsWZPbb7+dc+fOlSi2vLw8XnzxRYKDg3FycqJx48Z89913Bc9v3bqVzp074+TkRGBgINOnT8doNJbotZ05c4aePXvi7OxMy5Yt2bBhwzXPXz1sFBERQZ8+fQCoUaMGiqIwbtw44Ppho5SUFMaOHUuNGjVwdXVl8ODBnDlzpuD5hQsX4u3tzbp162jRogXu7u4MGjSImJiYErVRSUnPixDV0Kebz7H04GUUBTrX9+FUXAbnErKYuOgAa565FX9PZ3uHKOwkx2Ci5Wvryr3ek28OxNWxbB9J33//PVOmTGHPnj3s2rWLcePG0aNHD/r373/dtXv37qVz585s3LiRVq1a4ejoWGiZWVlZTJkyhbZt25KZmclrr73GyJEjOXz4cLGXmI8dO5Zdu3bx6aefEhISwoULF0hMTAQgKiqKIUOGMG7cOBYtWkR4eDgTJ07E2dn5mgSlqNdmNpu588478ff3Z8+ePaSlpfHss8/eMJ7g4GCWLl3KXXfdxalTp/D09MTFxaXQa8eNG8eZM2dYsWIFnp6evPjiiwwZMoSTJ0/i4OAAQHZ2NrNnz+aHH35Ao9HwwAMP8MILL/DTTz8Vq31KQ5IXIaqZY8kK3546D8CH94RwZ/s6pOcaGP3Vbk7GpPPs4sP8+EgXtJqKu9OqEIVp27YtM2bMAKBJkyZ8/vnnbNq0qdDkxc/PD4CaNWsWOZxy1113XfP/+fPn4+fnx8mTJ2nduvVNYzp9+jS//fYbGzZsoF+/fgA0bNiw4Pkvv/yS4OBgPv/8cxRFoXnz5kRHR/Piiy/y2muvFSRIRb22jRs3Eh4ezrp16wgKCgLg3XffZfDgwYXGpNVq8fHxAaBWrVrXzHm5Wn7SsnPnTrp37w7ATz/9RHBwMMuXL+eee+4BLOchzZs3j0aNGgEwefJk3nzzzZu2TVlI8iJENWIwmfkjwvLLcEKPBtzZvg4Ans4OfHZfO4Z9toNd55P4cfdFHupe346RCntxcdBy8s2Bdqm3rNq2bXvN/wMDA4mPjy9TmWfOnOG1115jz549JCYmYjabAbh06VKxkpfDhw+j1Wrp1atXoc+HhYXRrVu3azZv69GjB5mZmVy+fJm6desCRb+2sLAwgoODCxIXgG7dupXshd4gNp1OR5cuXQoeq1mzJs2aNSMsLKzgMVdX14LE5b+x2YokL0JUI38eiSE5T8HX3ZGpA5td81wjP3deHNScGStOMHfLOUZ3DsZJV/YPFFG5KIpS5uEbe8kfxsinKEpBslFaw4YNo169enzzzTcEBQVhNptp3bo1er2+WPffaDimpGzx2qylsNhsvWJLJuwKUU0YTWbmbrUMFz3coz4ujtcnJqM7B+Pv6URsei5/HIwq7xCFKDf5c1xMJtMNr0lKSuLUqVO88sor3HbbbbRo0YKUlJQS1dOmTRvMZjNbt24t9PkWLVqwa9euaz7sd+7ciYeHB3Xq1ClWHS1atCAyMvKaSbK7d+8u8p7ivP4WLVpgNBrZs2dPwWP5bdKyZctixWYrkrwIUU38dSyGS8k5uOlUxnQq/Jeik07LxFst4/Fzt5zDaKoYf9kJYW21atXCxcWFtWvXEhcXR1pa2nXX1KhRg5o1a/L1119z9uxZ/v77b6ZMmVKieurXr89DDz3EhAkTWL58ORcuXGDLli389ttvADzxxBNERkby1FNPER4ezp9//smMGTOYMmVKsScE9+vXj6ZNm/LQQw9x5MgRtm/fzssvv1zkPfXq1UNRFFatWkVCQgKZmZnXXdOkSRPuuOMOJk6cyI4dOzhy5AgPPPAAtWvX5o477ihRO1ibJC9CVBO/7osE4NYAM25ONx4WuK9LXXzcHLmUnM3GMNuOWwthLzqdjk8//ZSvvvqKoKCgQj+MNRoNixcv5sCBA7Ru3ZrnnnuODz74oMR1zZ07l7vvvpsnnniC5s2bM3HiRLKysgCoXbs2q1evZu/evYSEhPD444/z8MMP88orrxS7fI1Gw7Jly8jJyaFz58488sgjvPPOO0XeU7t2bd544w2mT5+Ov78/kydPLvS6BQsW0KFDB26//Xa6deuGqqqsXr36uqGi8qaoVWwrwfT0dLy8vEhLS8PT09OqZRsMBlavXs2QIUPs/o2riqR9bedySja3vLcZgBntjTwwsug2nrUmnHlbz3Fb81p8N65TeYVZ6VW293Bubi4XLlygQYMGODtX/OXxZrOZ9PR0PD095SRsG7F1Gxf1nivJ57d894WoBpZdmb/StUENfJxufv09HS3DSptPxROXnmvL0IQQosQkeRGiilNVlaUHLwNwZ7vaxbqnkZ87HevVwKxScK8QQlQUkrwIUcUdikwlIikbV0ctA1rWKvZ993YKBuD3/Zer5EF1QojKS5IXIaq4dcdjAejXwr/Iibr/NbRNIC4OWi4kZnE8quIf1CaEqD4keRGiClNVlbUnLMnLoNY3P1H2am5OOvo2t/TUrDoWbfXYhBCitCR5EaIKC4/N4GJSNk46Db2a+pX4/qFtAwFYfSxGho6EEBWGJC9CVGFrrwwZ9WzqV6Iho3x9mtXCxUFLZHIOx6Ku38RLCCHsQZIXIaqwdflDRq1KNmSUz8VRS98WlqGjv47F3ORqIYQoH5K8CFFFRSZnEx6bgVajcFuL4q8y+q+hbSxDR38dlaEjIazh9ddfJzQ01N5hANC7d2+effZZe4dRYpK8CFFFbT5l2dq/Q90aeLs6lrqc/KGjyyk5HL0sQ0ei4oiNjeWZZ56hcePGODs74+/vT48ePZg7dy7Z2dn2Dq9UXn/9dRRFKfKrNLZs2YKiKKSmplo3YDuR5EWIKurvcEvy0qd56Xtd4Nqho9UydCQqiPPnz9OuXTvWr1/Pu+++y6FDh9i1axfTpk1j1apVbNy48Yb3GgyGcoy0ZF544QViYmIKvurUqcObb755zWNX0+v1dorUviR5EaIKytGb2HUuCaBguXNZ3H5l6GiVDB2JCuKJJ55Ap9Oxf/9+7r33Xlq0aEHDhg254447+Ouvvxg2bFjBtYqiMHfuXIYPH46bm1vBoYVz586lUaNGODo60qxZM3744YeCeyIiIlAUhcOHDxc8lpqaiqIobNmyBfi3N2PTpk107NgRV1dXunfvzqlTp66JddasWfj7++Ph4cHDDz9Mbu6Nj9xwd3cnICCg4Eur1eLh4VHw/9GjRzN58mSeffZZfH19GThw4E1jjYiIoE+fPoDlpGxFURg3blzBtWazmWnTpuHj40NQUBCzZs0q6bej3EnyIkQV9M+5RPKMZmp7u9DU373M5fVuVgtXRy1RqTJ0VOWpKuizyv+rBElxUlIS69ev58knn8TNza3Qa/47vPL6668zcuRIjh07xoQJE1i2bBnPPPMMzz//PMePH+exxx5j/PjxbN68ucRN9vLLL/Phhx+yf/9+dDodEyZMKHjut99+4/XXX+fdd99l//79BAYG8uWXX5a4jqt9//33ODo6snPnTubNm3fT64ODg1m6dCkAp06dIiYmhjlz5lxTnpubG3v27GHWrFm8//77bNiwoUwx2lrJ104KISq8f4eM/Eo9Rn41F0ctfZvXYtXRGFYdjSYk2LvMZYoKypAN7waVf73/iwbHwhOR/zp79iyqqtKsWbNrHvf19S3o1XjyySd57733Cp677777GD9+fMH/x4wZw7hx43jiiScAmDJlCrt372b27NkFvRTF9c4779CrVy8Apk+fztChQ8nNzcXZ2ZlPPvmEhx9+mIcffhiAt99+m40bNxbZ+3IzTZo04f333y/4f0RERJHXa7VafHx8AKhVqxbe3t7XPN+2bVtmzJgBQKNGjfjss8/4+++/GThwYKljtDXpeRGiilFVlc1XkhdrDBnlu71gw7pYzGYZOhIVz969ezl8+DCtWrUiLy/vmuc6dux4zf/DwsLo0aPHNY/16NGDsLCwEtfbtm3bgn8HBlp+TuLj4wvq6dKlyzXXd+vWrcR1XK1Dhw5luv+/ro4fwN/fvyD+ikp6XoSoYk7FZRCdlouTTkO3hr5WK7d3s1q4XRk6OhSZQod6PlYrW1QgDq6WXhB71FtMjRs3RlGU6+aWNGzYEAAXF5fr7rnR8NKNaDSWv+2vnuN1o4m+Dg4OBf/O7+k0m80lqq8k/vtaShJrYa6OHyyvwZbxW4P0vAhRxeQPGXVvVBMXR63VynV20DLgymZ3K4/IqqMqS1Eswzfl/VWC4c2aNWvSv39/Pv/8c7Kyskr1Mlu0aMHOnTuveWznzp20bNkSAD8/y3EaV6/uuXpCbEnq2bNnzzWP7d69u8TlFKU4sTo6WrZLMJlMVq3bXiR5EaKKscWQUb7brzrryCRDR8KOvvzyS4xGIx07duTXX38lLCyMU6dO8eOPPxIeHo5WW3TiPnXqVBYuXMjcuXM5c+YMH330EX/88QcvvPACYOm96dq1K7NmzSIsLIytW7fyyiuvlDjOZ555hvnz57NgwQJOnz7NjBkzOHHiRKle840UJ9Z69eqhKAqrVq0iISGBzMxMq8ZQ3iR5EaIKSc3Wc+BiClD2/V0Kc2sTPzyddcRn5LEvItnq5QtRXI0aNeLQoUP069ePl156iZCQEDp27Mhnn33GCy+8wFtvvVXk/SNGjGDOnDnMnj2bVq1a8dVXX7FgwQJ69+5dcM38+fMxGo106NCBZ599lrfffrvEcY4aNYpXX32VadOm0aFDBy5evMikSZNKXM7N3CzW2rVr88YbbzB9+nT8/f2ZPHmy1WMoT4paxTZtSE9Px8vLi7S0NDw9Pa1atsFgYPXq1QwZMuS6MUJRdtK+Zffn4SieWXyYpv7urH+u13XPW6ONp/5+hN8PXOaBrnV5e0SbsoZcpVS293Bubi4XLlygQYMGODs72zucmzKbzaSnp+Pp6Vkwz0NYl63buKj3XEk+v+W7L0QVYq1ddYtye4hlGe2aY7EYTRV7Up8QomqS5EWIKsJgMhfMdxnQ0t9m9XRvVJMarg4kZenZdT7JZvUIIcSNSPIiRBWxLyKZ9FwjNd0cCQ2uYbN6HLQaBucfFyCrjoQQdiDJixBVxIaTcYBllZFWU/ZddYuSv+po7YlY9EYZOhJClC9JXoSoAlRVZWOYJXnpZ8Mho3xdGtSklocTaTkG/g6Ps3l9QghxNUlehKgCTsdlEpmcg6NOw61NrLer7o1oNQoj29cGYMmByzavTwghribJixBVQH6vyy2NfXF1LJ9TP+7pEAzA5lMJxGeU/pA5IYQoKUlehKgC8ue79Gth+yGjfI1rudOurjcms8ryQ1HlVq8QQkjyIkQlF5+Ry+HIVABua2G7/V0Kk9/78uu+SKrYfpdCiApMkhchKrm/wyx7u4TU8cLfs3x3SR0WEoibo5ZzCVnsOid7vghhS1u2bEFRFFJTUwFYuHAh3t7eZSrTGmXYgyQvQlRyBauMynHIKJ+HswN3tq8DwPe7Isq9flF9jRs3DkVRrvs6e/bsNc/PmjXrmvuWL1+O8p8TrE0mEx9//DFt2rTB2dmZGjVqMHjw4OtOna5oRo0axenTp4t9ff369fnkk0/KVEZFIcmLEJVYtt7I9jOJAPRvVf7JC8DYbvUAy7ybqNQcu8QgqqdBgwYRExNzzVeDBg0Knnd2dua9994jJSXlhmWoqsro0aN58803eeaZZwgLC2PLli0EBwfTu3dvli9fbtWYVVXFaDRapSwXFxdq1SrbULE1yrAHSV6EqMQ2hcWTZzRT18eVZv4edomhib8HPRrXxKzCj7sv2iUGUT05OTkREBBwzZdWqy14vl+/fgQEBDBz5swblvHbb7+xZMkSFi1axCOPPEKDBg0ICQnh66+/Zvjw4TzyyCNkZWUVem9ERASKorB48WK6d++Os7MzrVu3ZuvWrQXX5A/1rFmzhg4dOuDk5MSOHTswm83MnDmTBg0a4OLiQkhICEuWLLmm/NWrV9O0aVNcXFzo06cPERER1zxf2JDPypUr6dSpE87Ozvj6+jJy5EgAevfuzcWLF3nuuecKeqluVMZ3331HkyZNcHR0pFmzZvzwww/XPK8oCt9++y0jR47E1dWVJk2asGLFihu2sS1I8iJEJfbXUcv2/Le3DbyuK7w8je1WH4DFey+RazDZLQ5Rdqqqkm3ILvcvW0z41mq1vPvuu3z22Wdcvlz4fkQ///wzTZs2ZdiwYdc99/zzz5OUlMSGDRuKrGfq1Kk8//zzHDp0iG7dujFs2DCSkq6dAzZ9+nRmzZpFWFgYbdu2ZebMmSxatIh58+Zx4sQJnnvuOR544IGCxCcyMpI777yTYcOGcfjwYR555BGmT59eZBx//fUXI0eOZMiQIRw6dIhNmzbRuXNnAP744w/q1KnDm2++WdBLVZhly5bx0ksvMWXKFI4fP85jjz3G+PHj2bx58zXXvfHGG9x7770cPXqUIUOGcP/995OcnFxkfNZUPhtCCCGsLjPPyOZTlsm6Q69s128vtzWvRW1vF6JSc1h1NIa7O9Sxazyi9HKMOXT5uUu517vnvj24OriW6J5Vq1bh7u5e8P/Bgwfz+++/X3PNyJEjCQ0NZcaMGXz33XfXlXH69GlatGhRaPn5j99sTsjkyZO56667AJg7dy5r167lu+++Y9q0aQXXvPnmm/Tv3x+AvLw83n33XTZu3Ei3bt0AaNiwITt27OCrr76iV69ezJ07l0aNGvHhhx8C0KxZM44dO8Z77713wzjeeecdRo8ezRtvvFHwWEhICAA+Pj5otVo8PDwICAi4YRkfffQR9913H5MmTUKj0TBlyhR2797N7Nmz6dOnT8F148aNY8yYMQC8++67fPrpp+zdu5dBgwYV2VbWIj0vQlRSm8LiyDOaaejrRstAT7vGotNquL9rXQC+/ydClk2LctGnTx8OHz5c8PXpp58Wet17773H999/T1hYWKHPl/X9mp+AAOh0Ojp27HhdXR07diz499mzZ8nOzqZ///64u7sXfC1atIhz584BEBYWRpcu1yaRV9dTmMOHD3PbbbeV6bUUVm+PHj2uez1t27Yt+Lebmxuenp7Ex8eXqe6SkJ4XISqplVdOdB5q5yGjfKM71eWTjWc4FpXGochU2te13cnWwnZcdC7suW+PXeotKTc3Nxo3bnzT63r27MnAgQN56aWXGDdu3DXPNW3a9IZJTf7jTZs2LXFshcWaLzMzE7AM89SuXfua65ycnEpdh4tLyduwtBwcHK75v6IomM3ld0ir9LwIUQklZ+nZetryV86wkCA7R2Ph4+bIHVdi+W7HBTtHI0pLURRcHVzL/cvWCfisWbNYuXIlu3btuubx0aNHc+bMGVauXHndPR9++CE1a9YsGO65kd27dxf822g0cuDAgRsORQG0bNkSJycnLl26ROPGja/5Cg62bPzYokUL9u7de8N6CtO2bVs2bdp0w+cdHR0xmYqek9aiRQv27Lk2ed25cyctW7Ys8r7yVi7JyxdffEH9+vVxdnamS5cu131DbmTx4sUoisKIESNsG6AQlcyqo9EYTCqtgjxpaqdVRoWZcItlmeqaYzFEJmfbORoh/tWmTRvuv//+64aWRo8ezciRI3nooYf47rvviIiI4OjRozz22GOsWLGCb7/99ppek8J88cUXLFu2jPDwcJ588klSUlKYMGHCDa/38PDghRde4LnnnuP777/n3LlzHDx4kM8++4zvv/8egMcff5wzZ84wdepUTp06xc8//8zChQuLjGPGjBn88ssvzJgxg7CwsOvmyNSvX59t27YRFRVFYmJioWU8//zz/Pzzz8ydO5czZ87w0Ucf8ccff/DCCy8UWXd5s3ny8uuvvzJlyhRmzJjBwYMHCQkJYeDAgTcdG4uIiOCFF17g1ltvtXWIQlQ6fxy0nCWUv0FcRdEi0JNbGvtiVi1zX4SoSN58883rhjYUReG3337jf//7Hx9//DHNmjXj1ltv5eLFi2zZsqVYfzzPmjWLWbNmERISwo4dO1ixYgW+vkWf7v7WW2/x6quvMnPmTFq0aMGgQYP466+/CvapqVu3LkuXLmX58uWEhIQwb9483n333SLL7N27N7///jsrVqwgNDSUvn37XtNZ8OabbxIREUGjRo3w8/MrtIwRI0Ywc+ZMPvroI1q1asVXX33FggUL6N27903boTwpqo1n1nXp0oVOnTrx+eefA2A2mwkODuapp5664bIvk8lEz549mTBhAtu3byc1NbXYGwWlp6fj5eVFWloanp7WncRoMBhYvXo1Q4YMuW68T5SdtG/xnEvI5LYPt6LVKOx+6Tb8PIo/Rl4ebbz5VDzjF+zD3UnHrpf64uFcfb6Xle09nJuby4ULF2jQoAHOzuV7tERpmM1m0tPT8fT0RKOx/6yHiIgIGjRowKFDhwgNDbV3OFZh6zYu6j1Xks9vm07Y1ev1HDhwgJdeeqngMY1GQ79+/a4bd7zam2++Sa1atXj44YfZvn17kXXk5eWRl5dX8P/09HTA8kvEYDCU8RVcK788a5crLKR9i+f3fZcAuLVxTbydNSVqr/Jo4+71vWnk58a5hCx+3h3BhB71bVZXRVPZ3sMGgwFVVTGbzeU62bK08v/Wzo/Z3vJjqCztVxy2bmOz2YyqqhgMhms2FISS/dzYNHlJTEzEZDLh73/ttuX+/v6Eh4cXes+OHTv47rvvOHz4cLHqmDlz5jVr2vOtX78eV9eS7RlQXDfbsEiUjbTvjRnN8OMBLaDQgDhWr15dqnJs3cadPBTOJWiZ9/cp/FJPorX/YqhyVVnewzqdjoCAADIzM9Hr9fYOp9gyMjLsHQLw76qhrKysgj+cqwpbtbFerycnJ4dt27Zdd0xCdnbx58lVqKXSGRkZPPjgg3zzzTc3HS/Ml78TYL709HSCg4MZMGCATYaNNmzYQP/+/StFl3BlI+17c38ejiZzz3ECPJ2Ydt+t6LQl69YtrzbuazCx/sNtJGcZ0NZtz5A2N94UqyqpbO/h3NxcIiMjcXd3rxTDRqqqkpGRgYeHR4XYHqB169Y3Xb1T2di6jXNzc3FxcaFnz56FDhsVl02TF19fX7RaLXFxcdc8HhcXV+gOf+fOnSMiIuKabZrzu610Oh2nTp2iUaNG19zj5ORU6Lp4BwcHm/3ysGXZQtq3KD/utWxx/kDXerg4l34/CFu3sYODAw92rc+cTWeYv+sSd7QPtlldFVFleQ+bTCYURUGj0VSIOSQ3k/95kB+zsD5bt7FGo0FRlEJ/RkryM2PT776joyMdOnS4Zt252Wxm06ZNhe4U2Lx5c44dO3bNjonDhw8v2EUxf/27ENXRkchUDkem4qjVMLpzXXuHc1MPdquHo1bDkchUjkSm2jscIUQVYvNhoylTpvDQQw/RsWNHOnfuzCeffEJWVhbjx48HYOzYsdSuXZuZM2cWnMh5tfzTLv/7uBDVzfe7IgDLIYy+7qXvdSkvvu5ODG0byLJDUSzadZEPg73tHZK4ATnOQZQXa73XbJ68jBo1ioSEBF577TViY2MJDQ1l7dq1BZN4L126JN1/QtxEUmYeq64cBzC2e337BlMCY7vVY9mhKFYejebloS3wcXO0d0jiKvnd9NnZ2eW6tbyovvInhv93pVFJlcuE3cmTJzN58uRCn9uyZUuR995sR0EhqoPF+yLRm8yE1PEitBL1YIQGe9OmthfHotJYvO8ST/S++Tk0ovxotVq8vb0LNg11dbX9Nv1lYTab0ev15Obmyh+9NmLLNjabzSQkJODq6opOV7b0o0KtNhJCXM9oMvPT7osAjO1W377BlJCiKDzYrR7Tlhxl8d5IHu/ZCI2m4n44Vkf5iyfK80Tg0lJVlZycHFxcXCp0klWZ2bqNNRoNdevWLXPZkrwIUcFtDIsjOi2Xmm6ODG0baO9wSuz2toG8tfIkl5Kz2X0+ie6Ni7cNgigfiqIQGBhIrVq1KvzmegaDgW3bttGzZ89KsZqrMrJ1Gzs6OlqlR0eSFyEquO//sfS6jO4cjLND2caJ7cHVUcfw0CB+2nOJxfsiJXmpoLRabZnnIdiaVqvFaDTi7OwsyYuNVJY2lkFDISqwU7EZ7DqfhFajcH+XevYOp8RyjDmcSz1Hm0YJaF3Pse7sPqLTUuwdlhCikpOeFyEqsEVXlkcPaOlPkHflWA0SkxnDsrPL2H55O2HJYZhUyw6krldyr4HLP6ehVwN61ulJ/3r9aePbRuYvCCFKRJIXISqotBwDfxyMAirHRN24rDjm7J/NXxHrMPPvXg4eJjN+JhMKKukaDQk6HefTznM+7TwLTyykWY1mjG89nsENBqNRpDNYCHFzkrwIUUEtPXCZHIOJpv7udG3oY+9wbijHmMPC3e+x4NwycrBsLd45J5c7MrPonJNLgMkEGgcwWyaDJms07HN24m83Vza5unAq5RTTt0/nh5M/8ErXV2jtKxtSCiGKJsmLEBWQ2awWDBmN7Va/Qg6rqKrK6sNf8/HRecRhOR22XW4u0wyutG50F9TvAbVagmdtcHAGs4lJ32wkKeIYz9ZL4T3zYdIi/2GxpzvzvTw5kXSC+/+6j3Gtx/NE6BM4aSv+LsJCCPuQ5EWICmjbmQQikrLxcNYxsl1te4dznUsJJ3l1/WMcNKYCEGQ08pxbMwb2no5StwsUlmxptPTp0JJpF4y8luTOhufexiv1Eo/t+5a7DnzHB57OrHZ3Y/7x+Wy+uIm3bn2HEL+Q8n1hQohKQQaYhaiAFu2yLI++p0Mwbk4V62+M5btmcfdf93LQmIqL2czTukD+HLaUQaOXo9TrWnjicsWg1gE46jScjc8kLCYDatSDAW/h+9QR3gseypy4BHyNJi5kXOShNWP5+ujXmMymcnx1QojKQJIXISqYi0lZbD5l2e30wW4VZ3m02ajnoz/u4dXTP5GjKHQ2wPIubzPx/vU412pZrDI8nR3o26wWAH8eifr3CXc/GP4ZfUf9wfIMLUMzszCpZj479BlPbnqStLw0W7wkIUQlJcmLEBXMD7suoqrQq6kfDXzd7B0OAIacVKb/3JsFGeEAPO5cn28e/IegliNLXNYdoUEArDwcjdn8nxNm63XH67HtzPTpylsJSTibzeyM3sn9f91PRFpEWV+GEKKKkORFiAokW2/kt/2RAIyrIKdH61Mu8twvfVijZqBTVWbWG8mTo1aicfIoVXl9mtfCw0lHdFou+y8WsmGdizfKqB8ZEfoYP8TEEWg0cjHjIg+tfYhTyafK+GqEEFWBJC9CVCB/Ho4mPddIXR9XejX1s3c4mONO8MrvQ9mqNeKkqswJfY7be79ZpjKdHbQMam05DPDPw1GFX6TRQL8ZNO83k1+iYmmRpyc5N5nx68ZzIulEmeoXQlR+krwIUUGoqsr3/0QAMLZbPfufvhx9mI+XjGSNk4JOhU+7vUnP0IetUvQdoZYVVH8di8FgMt/4ws4TqTn8C76NjSckN48MfQaPrX+MMylnrBKHEKJykuRFiApi74VkwmMzcHHQck+HYPsGE3ucH5few0J3y14rb3Z5me7N7rRa8d0a1cTX3ZHUbAP/nEsq+uLQ+/Ac+jFfxcbTJjePNH0aE9dPJCrzBr02QogqT5IXISqI/OXRI9rVxsvVjqe5xoex9teRvO9hSVyeafs4w1qMtmoVWo3CwFaWoaPVR2NufkOHcbj1e4O5cfE01etJyk1i8qbJZOozrRqXEKJykORFiAogNi2XtSdiAcuQkd0knmHfzyP4n5cTqqIwpvGdPBz6hE2qGtomEIB1J2OLHjrK1/1pvEIf5IvYBPxMZs6mnuWFbS9gNBttEp8QouKS5EWICuCXvZcwmVU61/ehRaCnfYLITODMz3fyjKcOg6LQv3YvXuz2ms2OJujcwIeabpaho103GzoCy+Z3Qz4koE43PouNx1mFnVE7+WDfBzaJTwhRcUnyIoSdGUxmftl7CYAH7NXrYsghbfEonnI1kqHV0N63LTP7fIhWo7VZlTqthoFXVh2tPlaMoSMAnSOM+oFWbkHMjE8A4Ofwn/nt1G+2ClMIUQFJ8iKEnW08GUd8Rh6+7o4MujIPpFyZzZj+eJQXDZeIctBR28WfObd9US4HIxYMHZ0o5tARgKsPjPmVfkYdzySnAvDe3vdkDxghqhFJXoSwsx/3WCbqjuoUjKPODj+Sm97g89it7HR1wVnjwJx+X+Dt7F0uVXdp4IOPmyMp2QZ2ny/G0FG+Ws3h9o95OC2dntk56M16pm2bRo4xx3bBCiEqDElehLCjcwmZ7DybhEaBMZ3rln8Ax5aw8dBXfOvtBcAbPd6mmU+zcqtep9X8u+qouENH+dregxJyH28lJOFnVjmfdp4vDn1hgyiFEBWNJC9C2NFPuy1zXfo2r0WdGq7lW3ncScLXPMvLfjUBeLDlgwxpOKR8Y+DqoaM4jMUdOso35AN8vBvw+pX5Lz+G/Sgb2AlRDUjyIoSd5OhNLDlgOcfoga7lPFE3L4Po3x/giZoeZGs0dAnozJQOU8o3hiu6NrQMHSVn6dl9PrlkNzu5w93z6Zlnol9WNibVxNu738asljAJEkJUKpK8CGEnK4/8e45RzybleI6RqpK74gmedMoiQaejsWcDPurzMTqNrvxiuIpl6MgfsBwXUGJBodBvBi8mpeBiVjkYf5AV51ZYN0ghRIUiyYsQdpI/Ufe+LnXL9RyjBvFreDV1H2cdHfFz9GbugK/xdLTT3jJXDLlq1VGJh44Auj5BQGAHJqWmAvDR/o9Iy0uzYoRCiIpEkhch7OBIZCpHL6fhqNNwb8dyPMco5jD/ZK9lk5srDoqWj/t9ToCbHZZn/0e3hjWp4epAcpaePRdKOHQEoNHCiC95IFNPI72elLwUPjn4idXjFEJUDJK8CGEHP+629LoMbROIj5tj+VSqz+KfVRP50tsDgJe7vkKIX0j51H0TV686KtXQEYBvExz6vswrSSkALD29lBNJJ6wVohCiApHkRYhylpqtZ8WRaKB8J+pe/OtpprsYUBWFuxsM466md5db3cVRMHR0vJRDRwDdJtOxZmuGZGahovLenvdQVdWKUQohKgJJXoQoZ0sPRpFnNNMi0JP2db3LpU798aVMTdhBpkZDI/yY2vmVcqm3JLo1qom3qwNJWXr2lmboCCzDR3d8yXNpWbiYzRxKOMTaiLXWDVQIYXeSvAhRjlRV5dd9lr1d7utS12aHHl4jPZo5W18izMkRL8WBuzzH46B1sH29JeSg1TCwZRmHjgBqNSeg2zNMSEsH4KP9H8rOu0JUMZK8CFGOjlxO43RcJk46DXeEBtm+QlVl+58Ps8jdck7R6z3ewVNj35VFRRnStoyrjvLdMoVxmpoEGo3EZsex8PhC6wQohKgQJHkRohz9us+yKd2QNoF4Otu+9yNh39e8YrBMDh5TbxC96vazeZ1l0f3K0FFiZhmGjgAcnHEe+hHPX5m8O//Yt8RklqE3RwhRoUjyIkQ5ydYbWXllom55LI82p13m5UMfk6zV0sSxBs/f+rbN6ywrB62GAS3LsGHd1Rr1ZUCDIbTPzSXXrOfjAx9ZIUIhREUgyYsQ5WTNsVgy8yw76nZp4GPbylSV3/98iF3ODjir8MGAb3DSOtm2TisZ2tYynLbuRCwmc9lWCimDZjI93YCiqqyJWMuBuAPWCFEIYWeSvAhRTn7dbxkyurdjHZvvqHt575d8aIoF4JmW42hUs/xOii6rq4eO9lxIKlthHv606PUyd2ZkAfDe7nfl3CMhqgBJXoQoBxcSs9h7IRmNAnd1qGPTuswZsbx25HNyNBraO/tzX6fnbFqftV09dLS6rENHAB0n8JQuEHezmbDU0/x59s+ylymEsCtJXoQoB79f6XXp2dSPQC8Xm9a1eNUj7HPS4aLC2wO/QaNUvh/z/A3r1h6PK/PQERotNYfM5vEUy1lHn+yfTaY+s6whCiHsqPL9VhOikjGZVZYevAzAKBtP1I089guf5F4A4NnmDxLs3cCm9dlKj8a+eLk4kJiZV7ZVR/nqdee+ugOorzeQrE/n66Nflb1MIYTdSPIihI3tOpdEXHoe3q4O3NbC32b1qHmZvLHnXXI0Gjo51mR0lxdsVpetWX3oCHAY8DZT0y2b1f1wchGXMy5bpVwhRPmT5EUIG1txJAqAwa0DcdTZ7kfuzzVPsMcBnFV4o/+8SjlcdLX8DetWH4vBUJYN6/J5BtGz8zN0zcnBqJr58uCcspcphLCLyv3bTYgKLs9oYu1xy6qf4SG221E36eIOZidblgFPqjeUYN/mNqurvNzS2Bdfd0eSsvRsPZVgnUK7PckzJncAVkWs5UzKGeuUK4QoV5K8CGFD204nkp5rxN/Tic622ttFVXn/7ymkaTU0V1wY26vib0ZXHA5aDSNCawOw5ICVhnh0TrTu/z79s7JRgc/2zLJOuUKIciXJixA2tOLKjrq3tw1Ca6O9XbbveIfVmhw0qsrrPd9Dp9HZpB57yF9Wvik8jpQsvXUKbTqAyV5t0Kgqm+P2cjj+sHXKFUKUG0lehLCRbL2RjSfjANsNGWVnxvL2mcUA3O/dmlb1+9ikHntpEehJqyBPDCa1IBG0hoaDPuSOLMvk3Tk7XkNVy7gcWwhRriR5EcJGNpyMI8dgol5NV9rW8bJJHV+seYxorUKQGSYPnGeTOuzt7iu9L1YbOgKo2YhJje7GQVXZn3GBfy5tsV7ZQgibk+RFCBtZecSyxHdY2yAUxfpDRidOr+LHrHMAvNL6UVxdvK1eR0UwPCQInUbhWFQap2IzrFZuYJ9XGZ1r6XH5aOcMTGaT1coWQtiWJC9C2EBatoGtp+MBGB5q/SEjo8nAG//MwKwoDNZ4c2unp6xeR0VR092Jvs1rARRs9mcVTu482uVFPExmThtSWHFsgfXKFkLYlCQvQtjA2hMxGEwqzQM8aOrvYfXyF/09jTBFj6fJzIsDvrB6+RVN/tDRskNRGK2x58sV3qEP8phiWQX26eEvyDZkW61sIYTtSPIihA2subK3yzAbTNS9lBjGl1EbAJha6xZq+re1eh0VTe9mtfBxcyQhI49tZ6y05wuAojBm4KfUMRhJxMiC7TOsV7YQwmYkeRHCyjLzjPxzNgmAga2sexyAqqq8ufFJ8hSFLga4Y8AnVi2/onLUabjjyvDbb/usu62/Y1A7nqvZCYCFl9YSlxFl1fKFENYnyYsQVrb1VAJ6k5mGvm408nO3atl/Hv2OPXkJOJvNzOg4DcXRtidUVySjOlkOtdwYFkdiZp5Vy+4/cA7t9CZyFfh0w9NWLVsIYX2SvAhhZetPWoaM+rf0t+oqo8ScRD44/DkAkzQ1CQ55wGplVwbNAzwJqeOF0ayy7KB1e0cU1xpMbTEOgJXppzh+catVyxdCWJckL0JYkcFk5u9wyyqjAVYeMpq99SXSMdE8T8/Y/p+CDZZfV3T3Xul9+XV/pNU3lmvT/QVuNzmhKgozt0/HrFpvYrAQwrokeRHCivZeSCYj14ivuyOhwTWsVu7u6F38FbcbRVWZUbMLuqBQq5VdmQwLCcLZQcPZ+EwOXkq1buEaDVN6v4er2cxRUyYr9n5s3fKFEFYjyYsQVpTf69KnWS2rnWWUZ8rj7W3TARidlUvrAe9bpdzKyNPZgSFtAgH4bV+k1cv3a3gbk9waA/BR2PckZcVbvQ4hRNlJ8iKEFW05dSV5ubKpmjXMP/IVF/OS8TWaeKrlePAIsFrZldGojpaho1VHo8nKM1q9/PsHz6OpwUSKovLO2oly7pEQFVC5JC9ffPEF9evXx9nZmS5durB3794bXvvNN99w6623UqNGDWrUqEG/fv2KvF6IiiIyOZtzCVloNQo9GvtapcyL6Rf55th3ALyYo+BxyxSrlFuZdW7gQwNfN7L0Jv46GmP18h08Anm7+UPoVJUNmedZfeInq9chhCgbmycvv/76K1OmTGHGjBkcPHiQkJAQBg4cSHx84d2xW7ZsYcyYMWzevJldu3YRHBzMgAEDiIqSvRdExbbltGXztA51a+Dl4lDm8lRV5d2dr2PATPfsHAbe+ho4VJ+l0TeiKAr3dLTsuPvrfusPHQG06D6VR82WnZHfOvABF9Mv2qQeIUTp2Dx5+eijj5g4cSLjx4+nZcuWzJs3D1dXV+bPn1/o9T/99BNPPPEEoaGhNG/enG+//Raz2cymTZtsHaoQZbLlynyXXs38rFLeruhd/BO/HwdV5WVtEEqbe6xSblVwd/s6aDUKBy6mcDbeeoc1FtBomDj4K9rn5pGFmRfWPUquMdf69QghSsWmyYter+fAgQP069fv3wo1Gvr168euXbuKVUZ2djYGgwEfHx9bhSlEmeUZTfxzzrKrbm8rJC9m1czHe2cCMDo9g7oD3wONTFHLV8vTmT5X2vm3/dbdcTefLrAt79cdTg2TifDsaObs/9Am9QghSk5ny8ITExMxmUz4+1+734W/vz/h4eHFKuPFF18kKCjomgToanl5eeTl/bvbZnp6OgAGgwGDwVDKyAuXX561yxUWlbl9955PJsdgws/dkSa+LmV+DasvrCY8PQJ3s5mHa3bGENQRrNAulbmN/+uudkFsDItn6YHLPNu3IQ5a6yd3Pj1f4e35a3jSE346tZi+dQcQ6hd6w+urUvtWRNK+tmfPNi5JnTZNXspq1qxZLF68mC1btuDs7FzoNTNnzuSNN9647vH169fj6upqk7g2bNhgk3KFRWVs378uaQANdZ1zWbNmTZnKMqtmvkyz/JU/PjWdw0F9yFy92gpR/qsytvF/mczg4aAlKUvP7J/XEVLTNquC/L3u5Y70hfzp4c70Dc8yyes5HJSi5zRVhfatyKR9bc8ebZydXfxT3W2avPj6+qLVaomLi7vm8bi4OAICil7uOXv2bGbNmsXGjRtp2/bGp+a+9NJLTJny7wqM9PT0gkm+np6eZXsB/2EwGNiwYQP9+/fHwaHsEzLFtSpz+87/ag+Qxj23tmFI+9plKmtn1A5it6bhZjYzuv4QXG6faJ0gqdxtXJgwh9N8syOCC4o/Lw1pb6NahtB8+QV2pe8hXpfOef/TPNdxaqFXVrX2rWikfW3Pnm2cP3JSHDZNXhwdHenQoQObNm1ixIgRAAWTbydPnnzD+95//33eeecd1q1bR8eOHYusw8nJCScnp+sed3BwsFnD27JsUfnaNz3XwLGoNAB6NvMvc+w/HvoUgLuycvG8awbYoC0qWxvfyKjO9fhmRwTbzySRlmfG1/363wXW4D30I2Z805UnvXX8ePoXBjQaQmit0BteX1Xat6KS9rU9e7RxSeqz+QzAKVOm8M033/D9998TFhbGpEmTyMrKYvz48QCMHTuWl156qeD69957j1dffZX58+dTv359YmNjiY2NJTMz09ahClEqu88lYVahga8bQd5lW8ocnniCPeln0aoq9ze+EzyDrBRl1dS4ljttrxzWuPJItO0qcvWhZ7/3GZ6RiQq8unWarD4Swo5snryMGjWK2bNn89prrxEaGsrhw4dZu3ZtwSTeS5cuERPz70ZTc+fORa/Xc/fddxMYGFjwNXv2bFuHKkSp5K8y6tG4ZpnL+nbH6wD0zzUS1OvlMpdXHdzZzjJMt+yQjfeCajWCab5dqWU0EpEdwxcHP7VtfUKIGyqXCbuTJ0++4TDRli1brvl/RESE7QMSwop2nk0EoEejsu2qez7xJOtTw0BReKTZaHDxtkJ0Vd+wkCDe/iuMo5fTOBOXQRN/D5vV5TX0E2Z8150na+hYFPYDt9UfUOTwkRDCNmTjCCHKIDlLz5l4y5Bml4Zl63n5euv/UBWFvnqVZrdMt0Z41UJNd6eCvXX+sHXvi4c/PQd8zPCMTMzAa1unojfpbVunEOI6krwIUQb7I5IBy9wLHzfHUpdzMf4oazLOAvBYqwngUPjWAKJwd7a3HBew/FAUZrOND1JsOZxptftT02jiQnYs3x763Lb1CSGuI8mLEGWw70ry0ql+2XaA/mbry5gVhZ5GLS27PmON0KqVvs1r4eGsIyYtl93nk2xen9eQD3kpzzLq/s2JhZxOOW3zOoUQ/5LkRYgy2BeRAkCn+jVKXUZk7BFWZV0A4LG2j4JGa5XYqhNnBy23t7WszFp6sBwOcXXyYMDt39A7OwcjKs+sfYTk3GTb1yuEACR5EaLUsvVGjl/Z36UsPS/fbfsfJkWhh9mBth0nWSu8aufOK5sDrj0eQ7beaPP6lLpdeKPJ/dQ2GLmsT+GZdY+SZ8q7+Y1CiDKT5EWIUjocmYrRrBLg6UydGqXb3yUm5hB/Zl8E4LGQx0FRrBlitdKxXg2CfVzI0pvYcDLu5jdYgU/f1/jSoR4eJjOHU0/xxj+voKo2nnMjhJDkRYjS2nfhypBRAx+UUiYd3219CaOi0EV1ol076x0DUB0pisLI0HLa8yWfRkvDu37go0wVnaqyNnITm3I3lU/dQlRjkrwIUUr7L+ZP1i3dfJe4qP38kXsZgMfaTZZeFysYcWXDuu1nEknIKKchHHc/uo5cyKvJliHELXlbWH5uefnULUQ1JcmLEKVgNJk5eNHS89KxXunmuyzY+j8MikJ7nOkUMs6K0VVfDf3cCQn2xmTr4wL+K7gzd3b/HxNTLQnMO3veZtvlbeVXvxDVjCQvQpRCWEwGWXoTHs46mgWUfEfX6Ivb+U1v+XB9vN3T1g6vWiu34wL+q8vjPBnUj+EZmZgw88KWKRxLOFa+MQhRTUjyIkQp5O/v0qFeDbSakg/3zN3+CgZFobPiRtc2D1g7vGrt9raB6DQKx6LSOBufUX4VKwrm2+fwdI4PPbJzyDHl8eTGSVxMv1h+MQhRTUjyIkQplGVzuvNnVrPCaNlI7eku00s92VcUrqa7E72aWo4LWH6oHIeOAHTOHGz4HLPzXGmRpydFn8bEdY8QmxVbvnEUQVVVftsXycgvdzLok208+N0eDkem2jssIUpEkhchSkhV1as2pyt58vL5rrcxKwp9tDUIaTbCytEJ+Hfi7rLyOC7gP/Q6D5xGLebL1FzqGQzEZMfyyLqHK0QCk5qtZ+z8vUxbepRDl1IJj81g+5lERn65k/fWhssyb1FpSPIiRAlFJGWTmJmHo1ZD2zpeJbr3xPFf2aBmoKgqT/V43TYBCvq39MfdSUdUag77r0ysLle+TfC950e+iU8l0GjkYsYlxvw1huOJx8s/litMZpWnfjnE9jOJOOk0TBvUjEUTOjOyXW1UFeZuOceCnRF2i0+IkpDkRYgSyh8yalvHC2eHkm3lP2f/bABudwqgSYO+Vo9NWDg7aBncOgCww8TdfA1uJfDu71kYm0RjvZ7EnETGrR3H2oi1dgln9vpTbD+TiIuDlqWTuvNE78b0bOrHx6NCeWVoCwDeWR3GP+cS7RKfECUhyYsQJXToUipgmaxbEnsPfsMuJRedqvJEz5k2iExcbeSV4wL+OhpNrsFknyCaDiRoxFf8GJNAz+wc8kx5TN06lW+PfVuuYRy8lMLcLecAeO/utrSufW2P4cO3NGBku9qYzCpTfz9qv/YSopgkeRGihI5cmdwYGuxd7HtUVWXO0XkA3ONSjzq1O9kgMnG1rg1qEujlTHqukS2n4u0XSKuRuA3/nE/jEngwLR2AOQfnMO/IvHKpXlVV3lp1EoC7O9RheEjQddcoisK7I9sQ4OlMVGoO3/8TUS6xCVFakrwIUQI5ehOn4izLb0NKkLz8feALjip6XMxmHu39no2iE1fTaBSGh1o+qP8oj5OmixJ6H9rhnzMtJZ0pyZY5OF8c/oJvjn5j86pXHo3h0KVUXB21TBvY7IbXuThqeX5AUwA+33yWlCy9zWMTorQkeRGiBI5FpWEyq9TycCLQy7lY95jMJj47MR+AB9wa4evf2pYhiqvc2a4OAJtPxZOabecP4/YPwj0LGZ+Zx7NXEphPD31q0yEko8nMB+vCAZjUqxG1PIt+z97Zvg4tAj3JyDUyb9s5m8UlRFlJ8iJECVw9ZFTc/Vn+2jeHcxjwNJkZ10d6XcpTswAPWgR6YjCprDwaY+9woOUdcN9vPJxt5unkVMAyhLTg+AKbVPfXsRgik3Oo6ebII7c2vOn1Wo3C8/0tvS+/7LlEVp7RJnEJUVaSvAhRAvmbeYXW9S7W9QaTgS/DfwBggnsTPP1a2CgycSN3XZm4++u+S3aO5IpGfeChFUw0OPJkSioAHx34iO9PfG/ValRVZd7W8wCM614fF8firYzr27wW9Wu6kp5r5I+Dl60akxDWIsmLECVQkLzU8S7W9b/vnU0URvyMJu6TXhe7uKt9HRx1Go5HpXP0cqq9w7Go0xEe3czjzvV44koCM3v/bL48/KXVNorbdiaRsJh0XB21PNitXrHv02gUxvdoAMCCnRHlvsmfEMUhyYsQxRSfkUtUag6KAm2KsTldtiGbr0//CsBjHs1w8bvxZElhOzXcHBlyZc+Xn/dUkN4XAO+6MGEdk4L6FCQwc4/M5fUdL5NrzC1z8d9ut/S6jO5UF29XxxLde3eHOng46zifmMW2MwlljkUIa5PkRYhiOhKZBkCTWu54ODvc9Pqf9rxPEibqGIzc2XeWrcMTRbivi6XnYcWRaDJyDXaO5iqObnDP90xq/zSvJKWgqCp/nF/JqOV3EJ4cXupiz8Znsv1MIooC43vUL/H9bk467mpvmez8+wEZOhIVjyQvQhTT4UjLCpHi7O+SlpfGgnPLAHjSsyUOvtLrYk+d6tegSS13svUmfttfwT6MFQV6TmXU3UuYmwm+RhPns6IZs3IUC499h1k1l7jIH3dbTrK+rbk/wT6upQrr7g6W5GXDiTjSsitQwicEkrwIUWz5812Ks7/L/N0zycBME72eIdLrYneK8u88jvk7LmAwlTwhsLm6Xenx8HaWuofSJysbI2Y+PPgJDy6/s0S9MJl5RpZe6S0ZW4K5Lv/VKsiT5gEe6E1mVh4t59O5hbgJSV6EKAazWeXolWGjm/W8xGfH81PEagCe8WqLxreJrcMTxXBn+9r4ujsSlZrD6mMVYNl0YVxq4HPvT8zp8S4z0nJxM5s5mn6Oe1few7TNUziXevO9V5YdiiIjz0hDXzduaexb6lAURSnofVkiQ0eigpHkRYhiOJ+YSUaeERcHLc38PYq89qtd75KHSmhuHj17v11OEYqbcXbQ8lC3+gB8tfW81Vb1WJ2ioISM4u6Hd/GnewcGZGahAmsubWDknyN4YcvznE45Xeitqqqy6MrW/g90rYdGU7y9iG5kRLvaaDUKhyNTOZ+QWaayhLAmSV6EKIb8wxjb1PZCp73xj01keiR/XN4EwDPeISi1ZK5LRfJgt3q4Omo5GZPO6mOxVi07z2hi1dEYfjyr4baPt9NmxjpavLqWoZ9u55XlxzgZnV6yAt188b9nER/2n8dvGRpuy8pGBdZdXM9dK+7iqU1PcSThyDW3/HMuiTPxmbg6arm7Y50yvyZfdye6N6oJwJrj1m0vIcpCkhchiuHIlf1BQoKLXiL9zd73MQI9snPo2Oct2wcmSsTb1ZGJV3aafX9dOHpj2ee+5OhNfLH5LD1m/c1zvx9jX4KGS8k5ZOQZyTGYOBGdzo+7LzHk0+1MWLiPmLScklXQdAAtHt/LJ20nsyQujQGZWSiqypbLW3hg9QM8su4R9sXuQ1XVggMV72pfB89irIgrjiFtAgFYc7yCDrWJakmSFyGKoWBzuuAaN7wmOjOalVFbAHi8RijUam77wESJPdqzIX4eTlxMyuaHK6tySuuvozH0mb2FD9adIjFTj7+nE/2CzMx/qD1/P9+Lv5/vxdz723N720A0CvwdHs+gT7az4WRcySrSOcEtz9Hs8T18WHswf0bFMTIjE52qsid2DxPWTeC+vx7i7wv7gbJN1P2vAS390WoUjkelcykp22rlClEWkrwIcRO5BhPhMfknSd+452X+vg8xAl1ycgnt80Y5RSdKys1Jx3P9LOf3fLzhNBeTskpcRkJGHpN+PMCTPx8kNj2X2t4ufDwqhM1TbmVYPTO3NvaloZ87Df3cGdwmkM/va8/653rRto4XaTkGHvthP7/tjyx58J6BMOILGkzczpu+3VkdGc3o9AwcVJXjSYdwqf8Fwc2W4+Fe8td0IzXdneja0AeQ3hdRcUjyIsRNhMdmYDSr1HRzpLa3S6HXxGfH88elDQA85tkK/FuVZ4iihEZ1CqZzfR8y84w8s/hwsZdOq6rK8kNR9P94K2uOx6LTKDx9WxM2Pd+Lke3q4FDEfKjGtdxZ8nh3RncKxqzCtCVHS7/jb63mMPonAsev52WP1qyOjGZ4hmVCbapmN8OW3c5H+z8iMSexdOX/x+DWlqGj1TLvRVQQkrwIcRPHrsx3aVPH64YnSS/Y9zEGVNrn5tKxt/S6VHRajcLHo0PxcNZxODKVV5cfv+kZPrFpuUxctJ9nfz1MaraBVkGe/Dm5B1P6N8XZoXiHHjrqNMy8sw0P32LZc+aV5cdKPoR0tTod4aGVnOowl7vjfVgcFUuHnFxyTXksOLGAwUsH8d7e94jPji99HcDAVgEoiuVU9cspMnQk7E+SFyFu4uhly/4ubWsXPmSUlJPEkiv7ujzq3hwlKKTcYhOlV9vbhQ/ubouiwOJ9kUz57TA5etN11+VPyO374RY2hsXjqNXwwoCmLH+yB62Cbn7G1X8pisIrQ1sU9MA89cvBMh0YqQLvnQlipP4NIpp/yAJNEF/ExtM2N49cUx4/hv3I4KWDeWf3O8Rmla7nxM/Dic71LUNHa6X3RVQAkrwIcRPHoizJS5sbnCS96MAccjHTOi+P7r3fLMfIRFkNah3InNHt0GkUlh+OptcHm/li81k2noxj+aEoXvvzOJ3f3cgH606RrTfRvq43q56+hcl9mxQ5RHQziqLw1ojW9G7mR67BzGM/HCAhI69UZW0+Fc/JmHRcHHR0HzgaZeIWet6xgB/NfnwVE0/73Fz0Zj2LTy1m8B+DeWPXG1zOKPmmc/mrjirsBn+iWpHkRYgi5OhNnI6zTNZtW8hJ0un6dH49twKAR10bo9RuV67xibIbHhLEtw91pE4NF+Iz8vhg3SkeuTI8tGjXRTJyjdT1cWXO6FCWTupO05tsUlhcDloNn41pR0M/N2LScnny54MlPrZAVVU+2XgGsKwwquHmaDkrqfkQlMe20334Nyw01WR+TBydc3Ixmo0sOb2E25fdzis7XilRT8ygKydzH7yUWvLl3kJYmSQvQhThZEwaZtXSbe7v6Xzd878dmkcWJhrr9fSSuS6VVu9mtdj0fC/eHtGaIW0CaBnoSaf6Nbi/S12+n9CZLS/05o7Q2jec81RaHs4OfP1gR9yddOy9kMzbq06W6P7Np+I5ejkNFwctj/ZseO2TGg20HI7y+D90un0e3xlr8H10HN2zczCpJv489yfDlw3ju2PfYTDd/OBFf09nOtazbBWwxsob/AlRUpK8CFGEoua75Jny+OnUrwCMd6qLpk6nco1NWJeTTssDXevx5f0dWP3Mrfz+eHfeGdmGXk39yrzNflEa13Ln41GhAHy/62Kxl1DrjWZmrbEc2Di2ez1qujsVfqFGA63vhCd20X7o53xl8OTH6Fja5+aSY8rlk4OfcOeKkeyO2X3TOgdfGTpae0KSF2FfkrwIUYR/57tcn7ysOraQRFWPv9HI4F4y10WUXv+W/jzbz3KA58vLjvHPuZsvcZ639Ryn4zKp6ebI4z0b3bwSjRba3gtP7iVk8BwW5rrwTkISPiYTEekXmbh+ItO2TityefWAlv4A7I9IJimzdHN0hLAGSV6EKMKx/J6X/yQvJrOJhce+A2CsQwAO9bqVe2yianm6bxOGtgnEYFJ5bNEBwmJufBbSmbgMPv/7LACvDWtpmetSXFodhN6HMvkAw/vMZGWKkTFpGWhUlTURaxj+x1AWhy/GZL5+5VWwjyutgjwxq7AxrAxLvIUoI0lehLiBrDwjZ6+cpNv6P8NGW8J/J8Kcg4fJzF23zLBHeKKK0WgUPrw3hM71fcjIMzLmm93sj0i+7rrLKdk8NH8vepOZPs38GB4SVLoKtQ7Q4SE8Jx/gf60m8HNcMi3z8sgwZvPOnnd4YNVoTiZdPwdnYCvLxN11JyR5EfYjyYsQN3AiOh1VhUAvZ2p5/DtZV1VV5h/6DIDR2hq4NextpwhFVePsoOWbsR0JDfYmNdvAfd/u4bNNZ8jMM6KqKltOxXPfN3uITsulkZ8bH9wTUvZJxE4ecNtrtHp0Fz97deV/icm4m80cTwlnzKrRzNozk0x9ZsHl+cnLjjOJZOYZy1a3EKUkyYsQN5C/cVib//S6HDi/lqPGdBzNKvd1e9kOkYmqzMvVgV8mdqVfC3/0RjMfbjhN6BvrafP6esYt2Mel5GyCfVz46ZGu+N5okm5p1KiHdtQixtz9OytyPRicmYUZlZ/Cf2b4H0NYG7EWVVVp6u9O/Zqu6E1mtp5KsF79QpSAJC9C3EDBZN3/JC8L9nwAwB2KB75NB5d7XKLqc3HU8vWDHZgzOpSGvm4YzSqZeUacHTQ8cksDlj/RgwCv65fuW0W97vg9up33Q57mq/hU6hoMJOSlMHXrVCZtfJzLGZevGjqSVUfCPnT2DkCIiqqwlUZnLv/DNkMCiqoyrvPz9gpNVAMajcIdobUZ1jaI2PRcsvUmank64ensYPvKtQ5wy7N0b3kHf6x6lvnJB/nG24ud0f8w4s87GFp3LCgN2Bwej95oxlEnfweL8iXvOCEKkZFr4HxCFnBtz8vCnZYl0f1woW6Lu+wSm6heNBqFIG8XGtdyL5/E5Wo+DXB6cDmTbn2LP+LT6JqTg95sYFnEd3g2mkO2NrxYy7qFsDZJXoQoxPEoyzLV2t4uBZt/xcQdZXWO5UyYCaFPWrZhF6KqUxToMI76E7fztVNT3o9PxNdoQnVIwLXet8za/1qRe8MIYQuSvAhRiGNRqcC1+7ss2PoyRkWhs9mR1iEP2SkyIeykRn2Uh1YxuPt0/oyOZ3R6BoqqEmXcybBlw1l+drm9IxTViCQvQhQi/1iA/PkuiYnhLM2+AMCjbR6RXhdRPWk00OMZPMev5X9GD36OjqN5np5MQwav7nyVOQfnoKqqvaMU1YAkL0IU4r8rjRZteQm9ohBi1tG5/WP2DE0I+6vTEWXSDgxO3VkcHcukFMvPy7fHvuWVna9gMN/8oEchykKSFyH+Iy3bwMWkbMCSvKQmn2NxxhkAHm35EIpGfmyEwNmLmP5zeddwP4+mZvBmQhJaFVacW8HkTZPJMmTZO0JRhclvYSH+43i05a/Iuj6ueLs68uOW6eRoFFqYtdza6Wk7RydExdGrWS1+UIbxgP5/DDM681lcPC6qyj/R//DohkdJy0uzd4iiipLkRYj/uHq+S0baJX5Os5zvMrHZGOl1EeIqbk46ejbxZbe5JQvbfM+t3s34LjoOL5OZowlHeWT9IyTnXn8+U2nkGkwcvJTKwUSFtBwZlqru5DexEP9RsNKotheL/36RDI2GhmYNt3V9wb6BCVEBDbiy2+6SMyqMX0ObBv2YHxOHj8lEeHI4E9ZOICG7bMcI/L4/kvZvbWDUN3v5/oyWnrO3MXNNGAaT2RovQVRCkrwI8R/5PS8tfHL5IeUoABMb341Go7VnWEJUSP1b+KPTKITHZnA21QyjfqRph0dZGBNHLaORc2nneGjNWKIzo0tctqqqzFwdxtQlR8nWm/B1d8TPWSVbb+Krred5edkxWd1UTUnyIsRVkrP0XE7JAeDs2ZmkaDUEmxUGdXvRzpEJUTHVcHOkZ1M/AP48HA0aLQx6lwYD3uP72ARqG4xEZl7moTVjuZR+qURlL9gZwVfbzgPw9G1N2Dm1Fy+HmvjonjZoFPht/2W+2HzW6q9JVHySvAhxlfwl0q1q6vkx5RAAjzS4A53O0Z5hCVGh3REaBFiSl4KekE6PUOfexSxMzKS+3kBsdhzj1ozlXOq5YpV58FIK764OA+DV21sypX9TNBoFRYFhbQN5Y3grAD7acJpTsRnWf1GiQpPkRYirHL+SvLT3+IkErYYAs8KwHq/YOSohKrb+Lf1xddRyKTmbQ5Gp/z7RpB8BY1eyIE1PE72ehNwkxq8ZS1hSWJHl5ehNPP3LIYxmlaFtApnQo/511zzYrT6DWwdgVilIckT1US7JyxdffEH9+vVxdnamS5cu7N27t8jrf//9d5o3b46zszNt2rRh9erV5RGmEBy9nIo7GexxsKwwGl9vEA4OTnaOSoiKzdVRx4CW/gD8eSjq2ieDQvF9aC3zM3W0yssjRZ/Ow2vHcSThyA3Lm7vlLJdTcgjycmbWXW1QbrCj9fTBzXHQKmw9ncC202WbFCwqF5snL7/++itTpkxhxowZHDx4kJCQEAYOHEh8fHyh1//zzz+MGTOGhx9+mEOHDjFixAhGjBjB8ePHbR2qEBy7nEaPGr8Qo9NS0wx33jLD3iEJUSmMaFcbgGWHosg1mK590q8p3uPX8k2eO+1yc8kwZvPoukfYF7vvunIuJmUx78o8l1dvb4lHESdp16vpxthu9QGYvf6UTN6tRmyevHz00UdMnDiR8ePH07JlS+bNm4erqyvz588v9Po5c+YwaNAgpk6dSosWLXjrrbdo3749n3/+ua1DFdVcQkYeaWlJXPKx7KY7rk4/nB3d7ByVEJXDrU38qFPDhfRcI38djbn+Au9gPMavY57qT5ecXLJNuUza8Bg7onZcc9mbK0+iN5q5tYkvg1oH3LTeJ3o3wlGn4ejltGuHrESVprNl4Xq9ngMHDvDSSy8VPKbRaOjXrx+7du0q9J5du3YxZcqUax4bOHAgy5cvL/T6vLw88vLyCv6fnp4OgMFgwGCw7kZG+eVZu1xhYe/2PXwpiVu9F7PTUYuXGUZ2e7XKfa/t3cZVXXVv33s71OajjWf5cXcEw9v6X3+BkzcO9//JZ7/fxwvZ59jmCk9tmswb3d5kcP3B/H0qgU3h8ThoFV4e3Ayj0XjN7YW1r6eThqFtAlh2KJoFO87T5p62Nn2NVZ0938MlqdOmyUtiYiImkwl//2vfxP7+/oSHhxd6T2xsbKHXx8bGFnr9zJkzeeONN657fP369bi6upYy8qJt2LDBJuUKC3u179+XcomqGQ5ouY0mbNm03S5xlAd5D9tWdW3fGnrQKFoORabx7e+rCbpBx6W2xsO8fO4jXM3xrHV34+V/XmbLge1sDesJaOjpb+LUvq2cukE9/23fRkYAHauPxdDZ4TKesjiwzOzxHs7Ozi72tTZNXsrDSy+9dE1PTXp6OsHBwQwYMABPT0+r1mUwGNiwYQP9+/fHweHG47CidOzdvoe+nkCEoxZ3s8ozd3+Fh7N3ucdga/Zu46pO2hd25h5h7Yk4Tmvr8siQ1je+0DCQmb8/gG/aUX708mRD3lr03unUyr6L2RNuxd3p+o+notp3U+oeDkWmkejVjNF9Gln7ZVUb9nwP54+cFIdNkxdfX1+0Wi1xcXHXPB4XF0dAQOFjmQEBASW63snJCSen61eDODg42KzhbVm2sE/7mvMyOexwANByu2dnfDz8yrX+8ibvYduqzu37eO/GrD0Rx4ojMTzbryn1at6g+8XBC+77jRd/GUNA4n5m16yBo88/NG/kipdbPzTKjadkFta+D3Stz6HII6w4Gsuz/ZvdcIWSKB57vIdLUp9NJ+w6OjrSoUMHNm3aVPCY2Wxm06ZNdOvWrdB7unXrds31YOm+utH1QljD6o2vcM5Ji4tZ5eF+M+0djhCVVmiwN72a+mEyqzff/dbBBcb8QkdDc2bFJ6JVVQ6lbOS9ve+VeOXQoNYBuDhouZCYxWGZuFvl2Xy10ZQpU/jmm2/4/vvvCQsLY9KkSWRlZTF+/HgAxo4de82E3meeeYa1a9fy4YcfEh4ezuuvv87+/fuZPHmyrUMV1ZSqz2ZhjGV8t2l2UwK8CploKIQotmf6NQHgj4NRnEvILPLatafSuDPlSdwymvJWYhIAP4f/zBeHvyhRnW5OOga0svzsLv/vXjOiyrF58jJq1Chmz57Na6+9RmhoKIcPH2bt2rUFk3IvXbpETMy/y+q6d+/Ozz//zNdff01ISAhLlixh+fLltG5dxNipEGWwbdubnHLQ4GxW8av5lL3DEaLSa1+3Bn2b18JoVnnh9yOYzIX3osSk5fDi0qPk4ci+Lp8xzL8r/0tMBuCro1/x/YnvS1TvyCt7zaw8GiMnTldx5bLD7uTJk7l48SJ5eXns2bOHLl26FDy3ZcsWFi5ceM3199xzD6dOnSIvL4/jx48zZMiQ8ghTVEOqPod5ESsBqJ3agHb1Gtg5IiGqhrdHtMbDScehS6l8te3684yy9Uae/uUQaTkG2tbx4pmBrWHUT4zxCeXp5FQAZu+fzdLTS4td5y2NffF1dyI5S8+OM4nWeimiApKzjUS1tnPH2xx30OBkVjmZOIrWtb3sHZIQVUKQtwszrhye+MG6U8zfcaHgufRcAw/N38u+iBTcHLXMGd0OR50GHF3hvsU84tGM8amWlSdv7HqDtRfWFqtOnVbDkDaWxR1rjxe+vYaoGiR5EdWWashl3vk/AaiTWg+T6kPLQOsurxeiOrurfW0e6FoXVYU3V53knnn/8PxvR7hl1t/si0jBw1nHooe70MD3qhVJTh4o9y/hOee63J2egYrKS9uns+3ytmLVOaiVJXnZEBaHUYaOqixJXkS1tWfHTI44KDipKmFJo2jq74Gzg9beYQlRZSiKwlt3tGb64OYoCuyLSGHpwcuk5xqp6+PKLxO70qFejetvdPFGefBPXtEGMDgzC6NqYsrm5zgQf+CmdXZu4IO3qwPJWXr2RaTY4FWJiqDSb1InRKkY9cw7txQcFDrThNXGmrSVISMhrE5RFB7v1YhBrQLYfT6JC0lZdG/kyy2NfdFqitiLxdUH7dgVvLNgMFnZaWxzhWe3PM1Y53FF1qfTaujfwp/fD1xm3YlYujWqad0XJCoE6XkR1dK+nbM44KDgoKpkGC3L9tvUkeRFCFup7+vG6M51eWlwC3o19Ss6ccnnXguHh1byod6VTjm5ZBlz+D5zIefTzhd528ArQ0frTsTKSdNVlCQvovox6vnqzG8AjKzRmhMxLgC0kZ4XISoezyCcx67ks2xHWuflkU0OkzY9xuWMyze85ZYmvrg6aolJy+Xo5bRyDFaUF0leRLVzcOf77HFQ0Kkqt7efQXKWHp1GoVmAh71DE0IUpkY93B5awZcZ0FivJyE3iYnrHiY+O77Qy50dtPRpXguAtSdk1VFVJMmLqF6Mer468ysAd3i3Ij7dMlmwiUzWFaJiq9kI9zF/8FlCNnUMBi5nRfPY+omk5qYWenn+qqO1x2XoqCqS5EVUK0d3fcg/DqBVVR7u9Q7Hoyxdym1qyxJpISo8v2acaTCVr1NyqGU0cjbtPI9veJRM/fVHEPRpXgtHrYYLiVmciS/6iAJR+UjyIqoPo56vwn8G4Hav5gTXaFyQvMjmdEJUDumu9Qi89ze+TsrC22TiRHIYT216klxj7jXXuTvpuLWJLyAb1lVFkryIauPoro/Y5ggaVWViz3dQVZVjUZZdPCV5EaLyUIPa02jUr8xLzMDNbGZ//EGe3/IcBrPhmusGtpLddqsqSV5E9WDU8+mpnwC43asZ9Wo2Iz4jj8TMPDQKtAiQYSMhKpV63Wh19w98npCKk9nMtqgdvLz9f5jMpoJL+rX0R6PAyZh0IpOz7RissDZJXkS1sHvnLPY4gE5VeaLXewAcu7KEskktD1wcZbKuEJVOw950HLmQjxJS0akqayLW8vbutwom6Pq4OdKpvg8A60/G2TNSYWWSvIgqTzXq+fTs7wDcW6MNtX0aA3A82pK8tJLJukJUXk3603PYPGYmpKCoKkvOLOXjAx8VJDBXb1gnqg5JXkSV9/f2tzimAxdVZWLv9wse/3elkcx3EaJSazGMQYPmMCPRcpbRghML+fbYNwAMaOUPwP6IZJIy8+wWorAuSV5ElWYy5PLZheUAPODTHl+v4ILnjstkXSGqjjZ3c9dt7/FCkiWB+fTQZ/wc9jN1arjSKsgTswqbwgrf1E5UPpK8iCpt9bbXOacFT7PKuL4fFDyekJFHbHouigItA2XYSIgqod0DPHTrGzyWYulVnbl3JotOLJKhoypIkhdRZRn02Xxx8S8AJvh1wdPdv+C5/PkuDX3dcHOSw9WFqDI6PcyTPV5nXKqlZ/WD/R+Q6rgSUNl+NpGsPKN94xNWIb+1S+lUbAZ/HY3mckoOHs467ukYLMMPFcySra8QpQVfk8p9fd+/5rnjl2W+ixBVldJpAlMUDe47XuPzGl78fn4BfnV7kXBpEFtPJzCkTaC9QxRlJMlLCZnMMGfTWeZtu4DR/O95Gd/vuki/Fv58OiYUV0dpVnvLzkvnq8sbQAOPBdyCi2vNa57P73mRhFOIqknpOI7HtDrcN09nVs0a5Lptxbl2En8d95HkpQqQYaMSUFWVX85p+HzLeYxmld7N/Jg6sBnDQ4Jw0CpsDIvjvm/2kJKlt3eo1d7Pm18iSQO1jWbu6jPruudlsq4Q1UC7B7i/7/u8nZCETlVx8DzOtsxXOZV01t6RiTKS5KUEvt4ewb5EDVqNwpzRoSwY14kn+zTm0zHt+O2xbni7OnA4MpUnfjqI2SynmNpLenYS82O2AfBkUF8cXLyveT45S09Uag4ALYNksq4QVVrofdzR/2O+i02kltEIjvHcv/o+1kastXdkogwkeSmm9Sdi+XDjGQBeHdqcO0JroyhKwfPt6tbg10e74eKgZdf5JObvvGCvUKu9hZunkqGBxkYzQ/q8e93z+fu7NPB1w9PZobzDE0KUt5BRtB8xn5+ik+mUk0ueOYepW6fy2s7XyDJk2Ts6UQqSvBRTkLcL/h5O3Opv5v7OwYVe0yzAg1dubwHA+2tPcTouozxDFEBi+mV+TNgLwFP1h6F19rjumoKddaXXRYjqo/kQEvvOZ3ZMBg+npqGosOzsMu5ecTeH4w/bOzpRQpK8FFPr2l4sn9SVkQ3MRV53X+e69Gnmh95k5oN1p8opOpFv4Zbp5CgKbYwqfXq+Xug1srOuENVTi25DeEr3Bvcnq3wXG0egGS5nXuahtQ/x3bHvCo4UEDdmNqusORaDwVT0Z6GtSfJSAjXdndAqRV+jKAovD22BosCGk3EFH5TC9hLTLvFr8mEAnmh8D4qDc6HXyWRdIaonrUahYZse3K1/nUamGiy9FMmwHBNm1cwnBz9h5t6Z15xKLa63KTyeST8dZNhnO+w6t1OSFxtoXMuDO0KCAPhk42k7R1N9LNw8jVxFoa0RevR4qdBr0rINXErOBqB1kCQvQlQ3Q9sGclEN4G7D67j5teTd2CheTMlAQeGX8F+Yum0qeSY5A+lG5m09B0CvZn5oNDf5a96GJHmxkadva4JGgY1h8YTHpts7nCovMeU8v6YeB2BSszEoOsdCrztxZb5LsI8LXq4yWVeI6qZTfR/8PZ04n+vJ390XQZOBPJCawvvxCTigYcPFDTy24THS9fJ7+7/2RSRz4GIKjloND/doYNdYJHmxkYZ+7gXnaSzeG2nnaKq+Bfm9LiYNPbpNu+F1x2S+ixDVmlajMCK0NgC/H0uFMb9Al0kMyspmXkwM7mg5EHeAcWvHEZ8tBzlebd4WS6/LXR3qUMuz8GH58iLJiw2N6mRZlbTsUBS5BhlHtZXEpNP8lhYOwKQWD6Bob7zD8fFoy19TrWTISIhq6872dQD4OzyelBwTDJ4FQ2bTWW9iYdRlfM0KZ1LO8ODqB4lIi7BvsBXEuYRMNoXHoyjwaM+G9g5HkhdburWJH0FezqTlGOQ0Uxuav3kauRqFtmYtPTpPKfLaE9LzIkS11yzAg1ZBnhhMKquORlse7DwRHlpFM0cffoi6TD2jieisaMauGcuxhGP2DbgC+GXPJQBua16LBr5udo5Gkheb0moU7u5o6X35dZ8MHdnC5djDLM60bPX9RKsJKFrtDa/NyDVwPtGyIZWsNBKiesvvfVlyMOrfB+t1g8e2USewE4uiYmiVl0dKXgoPr3+YnVE77RSp/eUaTCw9eBmA+7rUtXM0FpK82Ng9HSw/ILvOJ5GQITPYre3TLdMwKApdzY507zi5yGtPXhkyqu3tgo9b4RN6hRDVwx2hQeg0CkciUwt+NwDgEQAPrcSn8+N8FxNPt5wccow5TN70JEtPL7VfwHa07kQsKdkGgryc6dW0lr3DASR5sblgH1fa1vFCVWFTWJy9w6lSjkdsYk1eDIqq8nyH51A0Rb+d8yfrys66QghfdycGtrYsqvhpz8Vrn9Q5wqCZuN33O19kwJDMLIyqidd3vc4b/7xOrjHXDhHbz09XhoxGdaqL1o7Lo68myUs5GNDSH4D1JyV5sRZVVZm9YwYAw3CneZv7b3rPiSt/Xcl8FyEEwP1XhkCWH4oiM894/QVN+uMw6R9merbjqeRUFFVlyZmljFo+ghOJJ8o5Wvs4G5/J3gvJaBS4t1Mde4dTQJKXcjDgypLpHWcTySrsB0SU2JYTP3HAlIaT2cxT3WeAcvO/BvJ7XmS+ixACoFvDmjT0cyNLb2LZoajCL3KvheaBJTza6x3mJWfjazRxPiuKMX+NZvqWqVV+NdIvey29Ln2b+xPo5WLnaP4lyUs5aFLLnXo1XdEbzWw7nWDvcCo9o9nIxwc/AeABnT8BTQff9J5svZFzCZmAJC9CCAtFUbi/Sz0AFuy8cOPt7hUF2o+l+yM7WebSmqGZWajAXxfXMmz5MJ7Y+AQ7onZgVu173o+1XTtRt/ADie1FkpdyoCiKDB1Z0R97P+KCmkcNk4mH+35QrHtORqejquDv6YSfh5ONIxRCVBb3dqyDh7OO8wlZbLjZvETPQLzH/MqsPh+zOE2lZ3YOANujtjNp4yTuWH4HP4X9RKY+sxwit721x2NJrWATdfNJ8lJO+jS3fON3nE2Uk0vLIEufyRfhPwHwuHtTPGp3KNZ9cpK0EKIwHs4OPNjV0vsyb+u5m/9+VhRoeQetHt/LFy0msiommQfS0nE3m4lIj2DW3ln0/b0v/9v+P/6J/qdSH/T4896KN1E3nyQv5aR93Ro46TQkZOQVDF+Ikpu/7VWSFTP1DEbu6f9Jse87FiU76wohCje+RwMcdRoOXUplz4Xk4t3k6Aq9X6TepD28GDyEjZEx/C8xmQZ6AznGHFaeX8ljGx5jwJIBfLT/I06nVK5Deq+eqJu/W3xFIslLOXF20NKxfg0A/jmXZOdoKqe4zGgWXd4IwLN+3XGoUb/Y9+YfyCg9L0KI//LzcCrYk+v9teEl6x33qgMj5+I2aTdj6g7gz6gYfoiOZVR6Bp6qhviceBacWMBdK+7inpX3sOjEIhJzEm30SqzntwOWCcx9m/sT4GXfc4wKI8lLOereyBeAf85K8lIaX2yeRq4C7fRGbuv3frHvyzWYOBNv6e1qVVv2eBFCXO/p25rg4qDl4KVU1h4vxXEufk3hngUok/4htNlIXknJYHNEBJ/EJXCbQUGHhvDkcD7Y/wH9fu/HpI2TWHNhTYXcM8ZghmWHLMcmVLSJuvkkeSlH3RrVBCy77d5wVrso1OmEEyxPOgLA8w1GoLjVLPa9YTHpmMwqvu6OBNj5JFQhRMXk7+nMxFsbAPDe2nD0xlKuHPJvBXd+Dc8cwbHbZG4z6vjk8kU2X7zEK0lptFXcMKkmdkTtYNq2afRb0o8P939IZEbFOULmcJJCak7FnKibT5KXctS2thfuTjrScgycjEm/+Q0CsGxI99GWqagKDMgzE9Lz1RLdn3+SdOvaXijF2A9GCFE9PdqrEb7uTkQkZfP55rNlK8yrDgx8B54Ph+Gf4R3YjlHpafx0PoyVkdE8mqMSqHUhLS+NhScWMvSPoUzaOImtkVvtOslXVVU2R1tSg/u6VLyJuvkkeSlHOq2Gzg18ANh9XoaOimv7+TXszI7EQVV5tvVEy0S5Esg/Sbq1TNYVQhTB3UnHG8NbAfDF5rMcvZxa9kKd3KH9WJj4Nzy+AzpNpL7WladiI1lz9hSfxSbQw6hBRWVH1A4m/z2ZocuG8t2x74jMiCz31an/nE8mKlvBxUFTsAdORSTJSznrVN+SvBy4mGLnSCoHg8nA+7veBOABgyPBXYo+fLEwx6Pzd9aV+S5CiKINbRvIsJAgTGaVZ389TFq2wXqFB7SBobPhhdNwz/doWwyjt97MvMgI/oqMZlxqOl6qQlRmFJ8c/IQhfwyh92+9eWrTU3x99Gv+ifqH1NzUQotOzzWw53wSG07GER5b+p79b3dEAHB3hzrUqMAH2OrsHUB1066uNwCHLqXaNY7K4ucDn3LRlEVNo4lHb5kJ2pK9ZfOMJk7FZgCyTFoIUTxvDm/FvgvJnE/IYuKi/Sx6uDPODlrrVeDgAq1GWL5y0yH8L+oeX8Lz5zbzZGoaa91c+cPDjWNOziTnJrPl8ha2XN5ScHtt99p08O9A37p96VSrOz/simLelnNkXHX8TKsgT56+rQkDrxxPUxyHI1PZcTYJBZXx3eta7/XagCQv5axtHS+0GoXY9Fxi0nIq1FkRFU1SThLzwhYB8IxDIO4tbi9xGWfiMjGYVLxcHKhTQ9paCHFzNdwcWTihE/fM28XeiGQmLNzHp2Pa4et+8925EzLyiEvPRaMo1PFxwdPZoegbnD0hdIzlKzsZ5/BVjDixjBHnt5KHiXBHR446OXHMqxYnnV24aEwnKjOKqMwoVpxbgdbsTVb8LRj0nQn08sTX3Ynw2HRORKfz2A8HGNM5mNdub4WLY9HJl9ms8sZKy2GTHf1UgmuUbHi+vEnyUs5cHXU0D/DgRHQ6hy6lEthGPlBv5LPtr5CJmRZ5eu4YPqdUZVy9s65M1hVCFFfzAE++GduR8Qv28c+5JIZ+up3n+jXljtDaBYmA2axyLiGT/RdT2B+Rwv6LyVxMyi4oQ6tRaBfszQNd6zE8JAjNzSa/uvpY5se0HwvZyTiFryLkxDJCzm+F9HMApGsUTgQ05++a9ViSHolRk4pzwCp8am9nQttxPNjyAXLyNMzbeo6vt5/nl72RnIhO59uxHalVxGrLP49EcehSKq6OWobVrfgHCEvyYgft6npfSV5SGNIm0N7hVEgnE07wR/QOUGC6bzc0Aa1LVU7+fBfZ30UIUVJdG9bkz8k9eOKng5yNz2T6H8d4bcUJ6ni7oNEoxKTmkKW/dmWQooCvuxMms0pylt6S2FxMYcE/EXx4TwiNa7kXr/L/JDKEr4ITy/A8v5Vu0WF0iw7jWVXLx54t2BqoJdaQwqeH5rDk9O9M6zyNl4bcRq+mfkz+5RBHL6dxxxc7+fahjoUOn19Oyeadv8IBmNSzAV5Z4WVuO1uTCbt20C7YstPuQZn3UiiT2cSbm59DVWBwtp72A4q/Id1/Hb9yLICsNBJClEZTfw9WTO7By0NaUNfHFb3RzPnELM7GZ5KlN+HsoKFrQx8m92nMgvGdOPzaAPa93I+Dr/Zn+7Q+PN+/KW6OWo5EpjLyy51sO51Q8iDyE5kHl8HUs6yuP52D5sa4KSZeyTjOmtNHeCfDiL/WheisaJ7d/CzPb3meZrUVlj3RnUZ+bsSk5XLPvF2sPR5zTdFp2QbGLdhHYmYezQM8GN+94q4wupr0vNhB+3qW5OVYVBp6oxlHneSQV/v91M+cyInB3WxmavMHwb10myQZTWbCYv7d40UIIUrD1VHHxJ4NefiWBlxOyeFyajZmMwR4OVOvpisO2sJ/hwf7uPLUbU0Y1SmYJ346yP6LKYxfuI9PR7djaNvS9bqvOpvL5PC2QFt+GObBrZnr0B35heGJ0fRLUvi2Rg3me7mz/uJ69sbuZXrn6Syd1J/JPx9ix9lEHv/xILc28WVY2yAy84x8s/08MWm5BHg6s2B8J5ysOTHZhiR5sYP6NV3xdnUgNdtAWEw6IcHe9g6pwkg3p/PF4c8AeDZHg98tL5S6rLMJmeQZzbg76ajnU7EnnwkhKj6NRqFuTVfq1izZ75Nans78NLELLy45yvLD0Ty9+BBaDQxqXbIE5lRsBtOWHAXg8V6NuLVHc6An3DYDTv2F656vePrSLvpnZvCqb01Okcr07dPpHbyW90e9zPc7PJm/4wLbzySy/cy/5ysFelkSl0AvFwwGKy4NtyH5k98OFEWhbR1vwNL7Iv61Nms5WaqRtrl53HPLa+BQ+u38jxecJO1584lyQghhQ046LR/eG8qd7WpjMqtM/vkQG07GFfv+tBwDj/94gGy9iVsa+/LCgKb/PqlzhFYjYcJaeGQTLRoP5ZeYeCanpKJTVbZEbuHuFXfQvHE4G5/rxbju9endzI/ODXx4fVhLNr/Qm+YBlWteoPS82EnrIE+2nU4oOO1YwPao7Rw1nUarqrymDUTT5u4ylZe/0kiGjIQQFYFWo/DBPSEYzSorjkTzxE8H+OrBDvRt7l/kfWazyvO/HeZCYha1vV34dEw7dDcYqqJOR7j3exwSz/LY1ln0Df+T1/xqcBx47Z/X6OG/ihl93ybQvZX1X2A5kp4XO8n/QD0RLWccAeSZ8nh/95WddNMyaDZkjmXafhmckJ11hRAVjFaj8NG9IQxtE4jBpPL4DwfZWsQkXlVVmb3+FBvD4nHUaZj3QAd8irPzrW9juOtbmjyylR88OjIlOQVHs8rOuL2MWDaU38IXY1ZLefhkBSDJi520CrJ8oIbHZGAwVd43kLX8fOIHovKSqGU08lj92yEotEzlmc1qQWIoK42EEBWJTqvhk9GhDGoVgN5kZuKi/aw6Gn3ddaqq8v66U3y5xbLHy9sjWtOmTgl/n/m3RDfmZ8aP+IUluW60y80l22zgrT3v8Miq+4jKjLLGSyp3krzYSV0fVzycdehNZs7EZdo7HLtKykni6yNzAXgiLRfnPjPKXOb5xCyy9SZcHLQ09CvmvgpCCFFOHLQaPh3Tjv4t/dEbzUz++RBTfjvMyeh0DCYzx6PSeGjBPuZeSVxeGdqCezsGl77CBrfS4NGdLAh5nulpObiYzexLPsE9y4ax4cJaK72q8iPJi50oilLQ+3K8ms97mbvvQzLNelrk6WngNRxcapS5zPwho5ZBnhX2SHchRPXmqNPw5f3tmdynMYoCfxyMYsin22ny8hpu/2wH204n4KBVeHtEax65tWHZK9Tq0HZ9nPvHbWOpQxNCcvPIMBuYsm0qb2+ZRp4pr+x1lBObJS/Jycncf//9eHp64u3tzcMPP0xm5o17GJKTk3nqqado1qwZLi4u1K1bl6effpq0tKr7wZ4/nHGiGq84Optylt8vrATgBWoSWbO3VcotmKwbJPNdhBAVl4NWwwsDm/Hro90Y2Mq/YN8vB63CoFYBbHiuFw90tfLGcZ5BBN+/jAWdX2VCRi4Av15cw/1Lh3Ix/aJ167IRm602uv/++4mJiWHDhg0YDAbGjx/Po48+ys8//1zo9dHR0URHRzN79mxatmzJxYsXefzxx4mOjmbJkiW2CtOu8resr86Tdj/c8Spm4LasbNoP+Za/jsRapdyCZdKy0kgIUQl0buBD5wY+ZOuNZOWZqOnmaNstHhQFh3YP8lzDvnRa+gAvE8epnDjuW3U3tzsPYwhDbFe3Fdik5yUsLIy1a9fy7bff0qVLF2655RY+++wzFi9eTHT09ZOSAFq3bs3SpUsZNmwYjRo1om/fvrzzzjusXLkSo7HiHxJVGvk9Lydj0jGZVTtHU/52Xt7OjuTj6FSVKYG9UWu3t0q5qqoWDMXJZF0hRGXi6qjDz8Op/Pam8qrNLQ9t4Pc6d9ApJ5ccTPyeu5wZ26aRbci++f12YpOel127duHt7U3Hjh0LHuvXrx8ajYY9e/YwcuTIYpWTlpaGp6cnOt2Nw8zLyyMv799xuvR0y1/cBoPB6jsF5pdnrXKDvZ1w0mnI1ps4H59G/ZpuVim3MjCajby//WUAxmTpCRzxttXa92JyNhm5Rhx1Gur7OFWaHSPLg7Xfw+Ja0r62Je1rOzX6vMnc4J7M3/QM89wdWXl5I+dWnuGz/vOp4Vz2eYjFUZLvq02Sl9jYWGrVuvY8Gp1Oh4+PD7GxxRsWSExM5K233uLRRx8t8rqZM2fyxhtvXPf4+vXrcXW1zZbwGzZssFpZfk5aLhsVflm9jZCa1af35UDW35w3pOBtMnGLcz9Wb91b8FxZ2/dQkgJoCXAysWFd5ZtFXx6s+R4W15P2tS1pX9tpVGsacy5/zKveZk5mXOT+pcO53/Nxamhtn8BkZxe/p6dEycv06dN57733irwmLCysJEUWKj09naFDh9KyZUtef/31Iq996aWXmDJlyjX3BgcHM2DAADw9rTtZ02AwsGHDBvr374+Dg4NVytySc4zLh2Nwr9OUIX0aWaXMii4jL53ZSy3LoSfhTacHPwZFY7X2Pbn+DJy+QPeWwQwZ0tJaYVcJtngPi39J+9qWtK/tGQwGNq91Z37WLzypP02MLotFWV/y+cAFNKnR9OYFlEH+yElxlCh5ef755xk3blyR1zRs2JCAgADi4+OvedxoNJKcnExAQECR92dkZDBo0CA8PDxYtmzZTd+gTk5OODk5Xfe4g4ODzd7c1iy7RZAXyw7HcDYhq9r8MH636X+kYqKR3sC9w75B53jt96+s7XsyNgOAtnVqVJs2LSlb/nwIaV9bk/a1LaPWhfqjfmPR368wKXIFZx3hkbUP8PWghbSuFWKzekvyPS1R8uLn54efn99Nr+vWrRupqakcOHCADh06APD3339jNpvp0qXLDe9LT09n4MCBODk5sWLFCpydS38oX2XR7MphWOFXPnCruovxR/k5dicoCi/U7ocuwLrna6jqVTvryrEAQghROoqGgEEfsHBXXZ48+hlHnOHRNWP5asB3tAnsePP7bcwmq41atGjBoEGDmDhxInv37mXnzp1MnjyZ0aNHExQUBEBUVBTNmzdn717LXIf09HQGDBhAVlYW3333Henp6cTGxhIbG4vJZLJFmBVC8wAPACISs8g1VN3Xme/Djc9gVBR6GBVu6T/b6uVHp+WSnKVHp1FodqVthRBClI5Xt6f4qvvbtM/Vk4GZR9dN4GjUP/YOy3ab1P300080b96c2267jSFDhnDLLbfw9ddfFzxvMBg4depUwQSdgwcPsmfPHo4dO0bjxo0JDAws+IqMjLRVmHZXy8MJLxcHzCqcja/axwRs3fcZmw2JaFWVqV1fBQfr96wdjUwFoKm/B046rdXLF0KI6satzb3M7fcF7fOMZCoqj254jMOR2+wak802qfPx8bnhhnQA9evXR1X/XV3Tu3fva/5fEW2L2kaOOceqZSqKpYdg74VkTsVmFJw2XdVkZ8bx7rGvQKsw1rUBjVrdY5N6Dl9OBSC0rrdNyhdCiOrItVE/5jou5Mm149nvqGXaxsn8dd8uHJzss8WHnG1UTBvPr2HK1mf5If0LUnJTrFp2/tDRqbiqO+/lq1XjidYqBJrg8aHzbVbPkSs9L6F1vG1WhxBCVEeuwV344vZfuC3PzMeNRtstcQFJXoot+MIuvE0mLpHKI6vHEJ8df/Obiil/bkZVnbR75vAPLMq9BMD/2k7C1e3mk75Lw2RWOXbZsrOu9LwIIYT1uQaG8MnYXbTq+T+7xiHJSzE16/0qC5xb4G80ciE3nqfXjLPaCZwFPS+xVe+MI3N2Mm/tfw+jotDX0Z/eHZ+wWV3nEjLJ0ptwc9TSyM/dZvUIIUS15mz/lZySvBSX1oHgOxfxfqYfXiYTJzIjmbnxaasU3cTfkrzEpeeRmq23SpkVgqry659jOeSg4KLCS4O+sWl1h68MGbWp44W2vM4FEUIIUe4keSkJrSOX6z7DLIf6KKrK0th/WLnnwzIX6+nsQG1vFwBOVaGho7Ddc5idGwHA001HE1CjgU3ry09eQoK9bVqPEEII+5LkpYRUjY4ud//GJI0vAO+enE/0qZVlLrdZFZu0mxl7jBdOfo1eo9DbpQ73d7P9+KhM1hVCiOpBkpfS0DkxcdQqQnAiU6Phf1unYojYWaYiq9KkXdWo583V47ik0xKganl72E8oim2HcXINpoK2k54XIYSo2iR5KSWdkzszh/2CKwoHnByYunYChku7S13ev5N2K3/ysuSviazR6tGpKh/0+gAvFx+b13kiOg2TWcXPw4lAr6p/rIQQQlRnkryUQbBPEz7uPQdHFTa5OPLi6nEYIveWqqymVybtno7NqPCb9RXlyIGvmZV8AICngwcR2qB/udR7ONKyRDqkjrfNe3mEEELYlyQvZdS9Xh/m9P4YBxU2uDgw/a8HMV4+UOJyGvm5o9MoZOQZiU7LtUGkthdzeQ/PHJmDXqPQ17EWD/V9v9zqLpjvElw1dygWQgjxL0lerOCW+v34pNcH6FRY7+LIlL/uJ/vyvhKV4ajT0NDPslthZdzvJTs7iac3PEqSVkNTVcfMEUvRKOX39jpy5VgAme8ihBBVnyQvVtKzwSA+vvU9HFXY7OzAhLUPkRxZsjkwzQIsG/9Utkm7ZrOJl5fdSbjGjI9Z5bOB3+Hq4l1u9adk6bmYZDngs23t8qtXCCGEfUjyYkW9Gw3h29u+wFtVOOGg5cl1E8iOPlTs+yvrpN05f01gozEZB1VlTrsXCApsX6715/e6NPR1w8vVoVzrFkIIUf4kebGydsE9+X7wIrxVheMOWp5fdT+G+LBi3dvMv/IlLz9ueZn5yQcBeN2/N6Gh48o9BtmcTgghqhdJXmygoX8oX9z2Jc4q7HDS8vqyu1ATz970vuaBluTlbHwmeqPZ1mGW2ZqDc3nv4goAnnFuwPBBn9kljoLkpY5M1hVCiOpAkhcbaRt8C7N7vItWhRXOWmYvGY7pJj0wtb1d8HDSYTSrnE/MLKdIS2fXmZX87+gXANyHJw/ftQTssETZbFY5eDEFgA71bL+fjBBCCPuT5MWGejUZxoyOUwFY5KLlseV3ER+x7YbXK4pC00ow7+Vw5Hae3fk/jIrCQIOWF+9dhaJztEssZ+IzSc814uqopcWVnishhBBVmyQvNjay9Vje7fQ/XFTY46Tljs1P8POu9zCZTYVenz9pNyymYiYvx6P2MGnTk2Qr0EVv5t2RS9G41LBbPPsikgFoV9cbnVbezkIIUR3Ib/tyMKzlGH4d/BOtzQ5kahRmnv6Rx1eOJjk3+bpr/11xVPH2egmLPcCjGyaSqah00Jv4bOiPONZsZNeYDsiQkRBCVDuSvJSTBv5t+XH0Zl5WfXAxm9mdGs49f9zOofhrl1I3D7Ts9VLRho1OJxzj0bUTyFBUQvVGvhg0H5egdvYOq6DnpVN9+/X+CCGEKF+SvJQjrYsXo+9fx88uLamvNxBvyGDCmof44cSigvOM8s84ik7LJS3bYM9wC5yPO8zEvx4gVTHTWm/ky/5f4Rbc1d5hEZeey+WUHDQKtKsryYsQQlQXkryUNwdnGt/7K4trD2dwZhZGVN7f/wFv73oDo9mIl4sDQVdORT4VZ//el3OXd/HI6rEkK2Za6I3M6/MZHvV72jssAPZHWIaMWgR64u6ks3M0QgghyoskL/ag0eA25H3ea/c8U5NSUFSV384s5bkNT2AwGQqGjsLtPO9lX/hSHtwwkQSNShOjma8HfodX4352jelqey4kAdCxnvS6CCFEdSLJix0p3Z9k7NBv+DglGyezmS2xu3hh7QSa+LsA9jvjyGAy8PnGZ3l09wwyNAqhRoX5ty/Gu253u8RzI7vPW5KXbo1q2jkSIYQQ5UmSF3trNpjbxm7gU70rjmaVvxMPczZxCjry7DJp90T8EUYt7s1XUZswKgqDzc58c+86vP3blHssRUnMzON0nGUjv84NJHkRQojqRJKXiqBmI7qP38Ic1+Y4qCp7zTH0Dp6BKfZowUReW0vLS+ODHa9x/+oHOGNMp4bJxGyv9rz/4E6cPQLLJYaSyO91aR7ggY+bfTbIE0IIYR+SvFQUjm7ccu/vfNJoDDpVZY87eAR+xIW/XgZ9ls2qzdRn8s2Rrxjy220sOrcMkwIDc/Qs7/gaA0d8D3baOfdmdp2TISMhhKiuJHmpSBSFnre+zGc9ZuJsVjjs4sSEuOX88VUHTHu+AqPealVl6DOYd2QeA3+/jU8Pf066OY/Gej1zTTWZPWodPm1HW60uWyiY79JQkhchhKhuZH1pBXRLk2GE7tNwNPMdkpwymOGp5acjHzF13+d07fIMtB0FTiU/x0dVVY4lHmPpqd9Zc2E1OWZLMtRAb+DRLAODu09H2/Fh0FTsnDY+PZdzCVkoCnSR+S5CCFHtSPJSQXWo3ZwNa16kXaujxPEnp51gohN0OvAe47a9za31B6C0Hgn1b7lpIpOWl8aqsytYGvYTZ7KiCh5vrNfzaHoOA1rej7bXVHCtHFvs7zyXCECrIE+8XB3sHI0QQojyJslLBdUswAPQkZHQk9VPPMW8Q5/x6+kl7HNxZp+LM42Tt/LgylUMys7DtVZLCGgD3nXBzQ+DVkd4VjRH08+zI+0Me/RJGBRLuU5mMwOycrjLoKV96/tQuj0J7rXs+lpLauupBAB6NvGzcyRCCCHsQZKXCqpFgGWjuguJWThrPZje7VXGtZ3Ijyd/YMmp3zjrCDP8ajLLbKZLTjQNL15EexFidDq2uriQcfUJywo0zdNzV66JoUG34NVlJDQdBDonO7260jObVbadsfS89GoqyYsQQlRHkrxUUP6eTtRwdSAl28Cp2AxCgr0JcAvghU5TeSzkcZacXsKS00u4lHGJLW6ubPnP/V5oaavzpL1rbfoGdKVBg9tQarWs8PNZbuZEdDrJWXrcnXS0l511hRCiWpLkpYJSFIU2dbzZdjqBo5dTCQn2LnjOw9GD8a3HM67VOI4mHuV44nEupl9Eo2hwd3CnW1A3Qv1C0Wq09nsBNrL1dDwAPRrXxEFbuRMxIYQQpSPJSwUWUseLbacTOHI5jQcLeV5RFEL8QgjxCyn32Oxl6+kr811kyEgIIaot+dO1AmtbxxuAo5dT7RpHRZGWbeDgpVRAJusKIUR1JslLBRZSxwuAs/GZZOUZ7RyN/W0Kj8NkVmke4EGwj6u9wxFCCGEnMmxUgdXydCbA05nY9FyOR6XRxUq7ySZm5rFwZwSRKdnU9nZhYKuAa+bUVFTrT8QBMKClv50jEUIIYU+SvFRwbet4EXsyl2NWSl5+2BXBu6vDyTGYCh6bt/Uck/s05unbmqCroJNgcw2mgvkuA1oF2DkaIYQQ9lQxP6lEgfwekSOX08pc1u/7I3n1zxPkGEyE1PFi6sBmDGzlj1mFT/8+y5TfjpTbKdYlteNMIjkGE0FezrQK8rR3OEIIIexIel4quLZX5r0cjkwpUzk7ziQy/Y9jADzasyEvDW6Ooli23f3zcBTP/3aEFUeiaRbgwZN9GpctaBtYfzIWsPS65McthBCiepKelwquXd0aaDUKkck5RKXmlKqMbL2RF5cexWRWubNdbaYPan5NAnBHaG1eH94KgNnrT7Hjyg62FYXeaGZd/nyXVjLfRQghqjtJXio4dycdbWpbel92n0sqVRkfbzhNVGoOtb1deHtkazSa63suHuhajzGdg1FV+N+yY+ReNSfG3radTiAtx0AtDyc5RVoIIYQkL5VB1ysTdXedL3nyEh6bzvydEQC8PbI1ro43Hin835AWBHg6cyk5m8//PluqWG3hzyPRAAwLCUJbSOIlhBCiepHkpRLo1uhK8lKKnpcP15/GZFYZ1CqAPs2KPj3aw9mB14e3BOCrbeeISMwqebBWlplnZMOV+S53hAbZORohhBAVgSQvlUDHejXQaRSiUnOITM4u9n1HIlPZcDIOjQIvDGxWrHsGtgqgZ1M/DCaVTzaeLm3IVrPhZCy5BjMNfN0Khs+EEEJUb5K8VAJuTrqCJdMlGTqavf4UACPb1aFxLfdi3aMoCtOuJDp/HonmVGxGyYK1st/3XwYsvS6yykgIIQRI8lJpdG3oA8D2Yq4E2nM+ie1nEtFpFJ7t16REdbWu7cXg1gGoKnx4JQGyhwuJWfxzLglFgXs6BtstDiGEEBWLJC+VRL8WliXCm8LiyNEXvRJIVVU+XG8Z8hnVKbhU5wBN6d8UjQLrT8ZxJDK1xPdbw+K9lwDo3dSP2t4udolBCCFExSPJSyURGuxNXR9XsvUmNobFFXntjrOJ7I1IxlGnYXLf0m0418TfgxHtagP/Dj+Vpzyjid8PWIaMxnSu+//27j2qqWvPA/g3gRBFDCnyCFRA8IWWx7WoubRqq6QIYx2rzr0+mFt1rI4WZlq1jtq5V2vXrGVrW9ur42pntVPtrFqttlVbVusVRaTaiBVxUEEqFMUHkRGKQSIQyJ4/qLk3lUdQTpJDv5+1spacvc85O1+Ph58n++S4fP9EROS5WLzIhEKhwNSEUADAlz/fOtwem03gjb+0FRv/qI9EqP/9X7FYZhgGlZcC3168iRP3cZv2gzhwzoTahmYE91djUkznd0kREdGvC4sXGZma0Har8NHSti9ta88XhddQdPUW/NTeeH7i4AfaX3iAL2aNaZtr8uZfSl323CMhBN7/9kcAQLo+0mMfFklERO7B3woyEqPTYFiIH5pbbfjs549U/lZDUws2HrgAAMicNASBfuoH3ue/TBoKtbcSpy7/hDwXPTbg5KWfcO6aGX1USvwhKdIl+yQiIvlg8SIz8x+LAgD8+dAPqG1odmjbeOACquubEDnAFwseH9Qj+wvR9MGzPxcQbx10zdWX//75G4H/IXEgAvr5SL4/IiKSFxYvMjNrTDhidP1hbmzBpuy/TqTdfeoKPjJeBgC8MvURqL29emyfS54YDF8fLxRdvYWDxZ1PFn5Q1xqAI6U3oVAAC8dFS7ovIiKSJxYvMuOlVGDd1LYnQH98ohKrPivCf2QV4497zwEAXjQMxcQenuA6wE+Nf3q87YrPpoM/wGaT7urLN1faDskpcaGICuwn2X6IiEi+WLzIUNLgAVg8oe2qxKenruCDYxVobrXh6fhQ/Ouk7n0hnbMWjY9G/z7eKL1Rj6yzVZLs49w1M87+pIRSAbxoGCbJPoiISP5YvMjUy383Ap8vTcLE4UEwjAjBtvljsHn2KCgleuqyv68Ki8e3FUzvZP+AllZbj+/j7cMXAQB/Hx/q9OMMiIjo18fb3QOg+5cYGYBtC8a6bH8LxkVh23eX8OPNBuz8/gr+8NueuxMo58IN5F2sgZdCIHPSg93iTUREvZtkV15qa2uRnp4OjUYDrVaLhQsX4vbt206tK4RAWloaFAoF9u3bJ9UQqZv81N725yS9dbAUdZbmLtZwTlNLK179qhgA8GSoQOR9PM6AiIh+PSQrXtLT03H+/HlkZ2cjKysLeXl5WLx4sVPrvvPOO3yCsIeaOzYCw0P6o85ixabsH3pkmx98W4FLNRYE+fkgZWDPfxxFRES9iyTFS0lJCQ4cOIAPPvgAer0e48aNw5YtW7Br1y5cv97xV9sDwJkzZ/DWW2/hww8/lGJo9IC8vZRYN3UkAODjE5dxuvKnB9reBZMZfz7UNtdl1eRh6NNzd3gTEVEvJcmcF6PRCK1Wi9GjR9uXGQwGKJVK5OfnY/r06e2uZ7FYMHfuXGzduhU6nc6pfTU1NaGpqcn+s9lsBgBYrVZYre1/hf79uru9nt6u3IyJ9Me0hFDs/98qvLT7DPY/n4Q+qu5XHc0tNizbdQbNrTZMGh6EtJGBOHSd+UqJx7C0mK+0mK/03Jlxd/YpSfFiMpkQHOz4XSPe3t4ICAiAyWTqcL1ly5bhsccew7Rp05ze14YNG7B+/fp7lh88eBC+vtLMncjOzpZku3KiVwFHVF748aYFme9nY8ag7n/c81mFEiUmJfp5C0z0q8KhQ223YDNf6TFjaTFfaTFf6bkjY4vF4nTfbhUvq1evxuuvv95pn5KSku5s0u7LL79ETk4OCgsLu7XemjVrsHz5cvvPZrMZ4eHhSElJgUajua+xdMRqtSI7OxtPPfUUVCpVj25bjgbE/B/++eNCHK1S4unH4vHMb8KcXnfX91fxrbFtku6bvx8Fw4hg5usCzFhazFdazFd67sz47icnzuhW8bJixQrMnz+/0z7R0dHQ6XSorq52WN7S0oLa2toOPw7KyclBeXk5tFqtw/KZM2di/PjxyM3NbXc9tVoNtfreBxCqVCrJgpdy23IyOTYMmRPr8Z9HyvDv+4sRGdgfY6MCulzvm7NVWJ/VVuSueGoY0uIfdmhnvtJjxtJivtJivtJzR8bd2V+3ipegoCAEBQV12S8pKQl1dXUoKChAYmIigLbixGazQa/Xt7vO6tWr8dxzzzksi4uLw9tvv42pU6d2Z5jkQsufGoYLpnocKrmBZz/Mx7vpiZ0+nmD3qStY/XkRbAKYPuphZE4a4sLREhFRbyDJ3UYjRoxAamoqFi1ahJMnT+L48ePIzMzE7NmzERbW9tHCtWvXEBMTg5MnTwIAdDodYmNjHV4AEBERgaioKCmGST1AqVRgy5xReHJ4EBqtNjz3P6ew4esSNDS1OPS7YW5E5ien8W+ftRUuv0sciDd/l8Bb4omIqNsk+4bdHTt2IDMzE8nJyVAqlZg5cyY2b95sb7darSgtLe3WBB3yTH19vPD+s6Ox6vMifHH6Gv4r70d8kl+J3w4egAH9fHD1pzv4rvwmbKLtwZKZE4fgheShkj3KgIiIejfJipeAgAB88sknHbYPGjQIQnT+dOKu2slzqLyU2PT73+Dp+FCs/6oYl2ssyC6+4dBnzKCH8McpI5EQrnXPIImIqFfgs42oR02KCcETw4Jx/votGMtrYG21wb+vCuOGBiEqsJ+7h0dERL0AixfqcV5KBeIHahE/UOvuoRARUS8k2bONiIiIiKTA4oWIiIhkhcULERERyQqLFyIiIpIVFi9EREQkKyxeiIiISFZYvBAREZGssHghIiIiWWHxQkRERLLC4oWIiIhkhcULERERyQqLFyIiIpIVFi9EREQkK73uqdJCCACA2Wzu8W1brVZYLBaYzWaoVKoe3/6vHfOVHjOWFvOVFvOVnjszvvt7++7v8c70uuKlvr4eABAeHu7mkRAREVF31dfXw9/fv9M+CuFMiSMjNpsN169fR//+/aFQKHp022azGeHh4bhy5Qo0Gk2PbpuYryswY2kxX2kxX+m5M2MhBOrr6xEWFgalsvNZLb3uyotSqcTAgQMl3YdGo+E/HAkxX+kxY2kxX2kxX+m5K+OurrjcxQm7REREJCssXoiIiEhWWLx0g1qtxrp166BWq909lF6J+UqPGUuL+UqL+UpPLhn3ugm7RERE1LvxygsRERHJCosXIiIikhUWL0RERCQrLF6IiIhIVli8OGnr1q0YNGgQ+vTpA71ej5MnT7p7SLL0yiuvQKFQOLxiYmLs7Y2NjcjIyMCAAQPg5+eHmTNn4saNG24csefLy8vD1KlTERYWBoVCgX379jm0CyGwdu1ahIaGom/fvjAYDLh48aJDn9raWqSnp0Oj0UCr1WLhwoW4ffu2C9+F5+oq3/nz599zTKempjr0Yb4d27BhA8aMGYP+/fsjODgYzzzzDEpLSx36OHNeqKysxJQpU+Dr64vg4GCsXLkSLS0trnwrHsuZjJ988sl7juMlS5Y49PGkjFm8OOHTTz/F8uXLsW7dOpw+fRoJCQmYPHkyqqur3T00WXrkkUdQVVVlfx07dszetmzZMnz11VfYs2cPjh49iuvXr2PGjBluHK3na2hoQEJCArZu3dpu+8aNG7F582a89957yM/PR79+/TB58mQ0Njba+6Snp+P8+fPIzs5GVlYW8vLysHjxYle9BY/WVb4AkJqa6nBM79y506Gd+Xbs6NGjyMjIwIkTJ5CdnQ2r1YqUlBQ0NDTY+3R1XmhtbcWUKVPQ3NyM7777Dh999BG2b9+OtWvXuuMteRxnMgaARYsWORzHGzdutLd5XMaCujR27FiRkZFh/7m1tVWEhYWJDRs2uHFU8rRu3TqRkJDQbltdXZ1QqVRiz5499mUlJSUCgDAajS4aobwBEHv37rX/bLPZhE6nE2+88YZ9WV1dnVCr1WLnzp1CCCGKi4sFAPH999/b+3zzzTdCoVCIa9euuWzscvDLfIUQYt68eWLatGkdrsN8u6e6uloAEEePHhVCOHde+Prrr4VSqRQmk8ne59133xUajUY0NTW59g3IwC8zFkKIJ554QrzwwgsdruNpGfPKSxeam5tRUFAAg8FgX6ZUKmEwGGA0Gt04Mvm6ePEiwsLCEB0djfT0dFRWVgIACgoKYLVaHbKOiYlBREQEs75PFRUVMJlMDpn6+/tDr9fbMzUajdBqtRg9erS9j8FggFKpRH5+vsvHLEe5ubkIDg7G8OHDsXTpUtTU1NjbmG/33Lp1CwAQEBAAwLnzgtFoRFxcHEJCQux9Jk+eDLPZjPPnz7tw9PLwy4zv2rFjBwIDAxEbG4s1a9bAYrHY2zwt4173YMaedvPmTbS2tjr8hQFASEgILly44KZRyZder8f27dsxfPhwVFVVYf369Rg/fjzOnTsHk8kEHx8faLVah3VCQkJgMpncM2CZu5tbe8fv3TaTyYTg4GCHdm9vbwQEBDB3J6SmpmLGjBmIiopCeXk5Xn75ZaSlpcFoNMLLy4v5doPNZsOLL76Ixx9/HLGxsQDg1HnBZDK1e4zfbaO/ai9jAJg7dy4iIyMRFhaGoqIirFq1CqWlpfjiiy8AeF7GLF7IpdLS0ux/jo+Ph16vR2RkJHbv3o2+ffu6cWRE92f27Nn2P8fFxSE+Ph6DBw9Gbm4ukpOT3Tgy+cnIyMC5c+cc5sFRz+oo47+dgxUXF4fQ0FAkJyejvLwcgwcPdvUwu8SPjboQGBgILy+ve2a237hxAzqdzk2j6j20Wi2GDRuGsrIy6HQ6NDc3o66uzqEPs75/d3Pr7PjV6XT3TD5vaWlBbW0tc78P0dHRCAwMRFlZGQDm66zMzExkZWXhyJEjGDhwoH25M+cFnU7X7jF+t43adJRxe/R6PQA4HMeelDGLly74+PggMTERhw8fti+z2Ww4fPgwkpKS3Diy3uH27dsoLy9HaGgoEhMToVKpHLIuLS1FZWUls75PUVFR0Ol0DpmazWbk5+fbM01KSkJdXR0KCgrsfXJycmCz2ewnMHLe1atXUVNTg9DQUADMtytCCGRmZmLv3r3IyclBVFSUQ7sz54WkpCScPXvWoUjMzs6GRqPByJEjXfNGPFhXGbfnzJkzAOBwHHtUxi6fIixDu3btEmq1Wmzfvl0UFxeLxYsXC61W6zDrmpyzYsUKkZubKyoqKsTx48eFwWAQgYGBorq6WgghxJIlS0RERITIyckRp06dEklJSSIpKcnNo/Zs9fX1orCwUBQWFgoAYtOmTaKwsFBcvnxZCCHEa6+9JrRardi/f78oKioS06ZNE1FRUeLOnTv2baSmpopRo0aJ/Px8cezYMTF06FAxZ84cd70lj9JZvvX19eKll14SRqNRVFRUiEOHDolHH31UDB06VDQ2Ntq3wXw7tnTpUuHv7y9yc3NFVVWV/WWxWOx9ujovtLS0iNjYWJGSkiLOnDkjDhw4IIKCgsSaNWvc8ZY8TlcZl5WViVdffVWcOnVKVFRUiP3794vo6GgxYcIE+zY8LWMWL07asmWLiIiIED4+PmLs2LHixIkT7h6SLM2aNUuEhoYKHx8f8fDDD4tZs2aJsrIye/udO3fE888/Lx566CHh6+srpk+fLqqqqtw4Ys935MgRAeCe17x584QQbbdL/+lPfxIhISFCrVaL5ORkUVpa6rCNmpoaMWfOHOHn5yc0Go1YsGCBqK+vd8O78Tyd5WuxWERKSooICgoSKpVKREZGikWLFt3zHxvm27H2sgUgtm3bZu/jzHnh0qVLIi0tTfTt21cEBgaKFStWCKvV6uJ345m6yriyslJMmDBBBAQECLVaLYYMGSJWrlwpbt265bAdT8pYIYQQrrvOQ0RERPRgOOeFiIiIZIXFCxEREckKixciIiKSFRYvREREJCssXoiIiEhWWLwQERGRrLB4ISIiIllh8UJERESywuKFiIiIZIXFCxEREckKixciIiKSFRYvREREJCv/D1IwEIihic2JAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.plot(test_x[sample, 0, ::32], label=\"Initial condition\")\n", + "plt.plot(test_y[sample, 0, ::32], label=\"Ground Truth\")\n", + "plt.plot(fno(test_x[sample, :, ::32])[0], label=\"FNO prediction\")\n", + "plt.legend()\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 448 + }, + "id": "g0uh-4Nwr5Qx", + "outputId": "1d422e3a-fb5b-49ce-b99d-4e1b1abab51c" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 17 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAl6RJREFUeJztnXmYXHWV/t9be/VSva9JJ+kskIRskEjTiIrSkrA4ZGAQEQkwMYyYzIBRVBgEBJXfICCyzGQcR8ARBHFBQYiGhACSNpANSEhC9k7S+15d3bXf3x/3fr+1dC331nqr6nyeJw+k61b1repK37fe855zBFEURRAEQRAEQRQQumyfAEEQBEEQRKYhAUQQBEEQRMFBAoggCIIgiIKDBBBBEARBEAUHCSCCIAiCIAoOEkAEQRAEQRQcJIAIgiAIgig4SAARBEEQBFFwGLJ9AlrF7/ejs7MTpaWlEAQh26dDEARBEIQCRFGE3W5HY2MjdLroPg8JoCh0dnaiqakp26dBEARBEEQCnDx5ElOnTo16OwmgKJSWlgKQXkCbzZblsyEIgiAIQgmjo6Noamri1/FokACKAit72Ww2EkAEQRAEkWPEi69QCJogCIIgiIKDBBBBEARBEAUHCSCCIAiCIAoOygAlgc/ng8fjyfZpEGlAr9fDYDDQCASCIIg8hQRQgoyNjeHUqVMQRTHbp0KkiaKiIjQ0NMBkMmX7VAiCIIgUQwIoAXw+H06dOoWioiLU1NSQS5BniKIIt9uNvr4+HDt2DHPmzIk5TIsgCILIPUgAJYDH44EoiqipqYHVas326RBpwGq1wmg04sSJE3C73bBYLNk+JYIgCCKF0MfaJCDnJ78h14cgCCJ/od/wBEEQBEEUHCSACIIgCIIoOEgAEZMQBAEvvfQS//uBAwdw3nnnwWKxYMmSJVG/RhAEQRC5AoWgC4gbb7wRzzzzDADAYDCgsrISixYtwrXXXosbb7yRZ166urpQUVHB73fPPfeguLgYBw8eRElJSdSvEQRBEESuQA5QgbFixQp0dXXh+PHjeO211/DZz34Wt956Ky6//HJ4vV4AQH19PcxmM7/PkSNHcMEFF2D69OmoqqqK+jW1uN3u5J8QQaSQl9/vRPuRgWyfBkEQGYAEUAoQRRHjbm9W/qgdxGg2m1FfX48pU6bgnHPOwZ133ok//vGPeO211/D0008DCC2BCYKAnTt34r777oMgCLj33nsjfg0ATp48iS9+8YsoLy9HZWUlrrjiChw/fpx/7xtvvBErV67ED3/4QzQ2NuLMM89Udb+HHnoIDQ0NqKqqwtq1a0OmcLtcLnznO99BU1MTzGYzZs+ejf/93//lt+/duxeXXHIJSkpKUFdXh+uvvx79/f2qXjsiv/nw1Aj+9de78fVnd9KAU6Kg8PsL8/1OJbAUMOHxYf7df8nK9/7ovuUoMiX3Y/zc5z6HxYsX4/e//z2++tWvhtzW1dWFtrY2rFixAt/61rdQUlKCr33ta5O+5vF4sHz5crS2tuLtt9+GwWDAD37wA6xYsQIffPABn6a8efNm2Gw2bNq0CQAU3++NN95AQ0MD3njjDRw+fBjXXHMNlixZgjVr1gAAVq1ahfb2djz22GNYvHgxjh07xgXO8PAwPve5z+GrX/0qfvKTn2BiYgLf+c538MUvfhFbtmxJ6rUj8oc/vX8aADA07sG424diM/16JPKff/m/HfioaxQbb/10wb3nC+vZElGZO3cuPvjgg0lfr6+vh8FgQElJCerr6wEAJSUlk772q1/9Cn6/Hz//+c/5fKSnnnoK5eXl2Lp1Ky6++GIAQHFxMX7+859zYaP0fhUVFXjiiSeg1+sxd+5cXHbZZdi8eTPWrFmDjz/+GL/5zW+wadMmtLW1AQBmzpzJn8MTTzyBs88+Gz/60Y/4137xi1+gqakJH3/8Mc4444yUvpZE7uH3i3jlgy7+9/4xV8FdDIjCY9TpwV/29QAA9nWO4tzmyiyfUWahf+EpwGrU46P7lmfte6cCURSTGuz4/vvv4/DhwygtLQ35utPpxJEjR/jfFy5cGLJbS+n9zjrrLOj1gefa0NCADz/8EACwZ88e6PV6fOYzn4l6bm+88UbEsPaRI0dIABHYcWIIXSNO/vf+MRemVxVn8YwIIv181DnK//94v4MEEKEeQRCSLkNlm/3796O5uTnh+4+NjWHp0qV49tlnJ91WU1PD/7+4OPSiovR+RqMx5DZBEOD3+wEg7jqSsbExfOELX8B//Md/TLqtoaEh5n2JwuDl9ztD/t5np4A+kf/sPT3C///4gCOLZ5IdcvuqTaSELVu24MMPP8Q3vvGNhB/jnHPOwQsvvIDa2lrYbLa03y+YhQsXwu/348033+QlsPDv8bvf/Q4zZsyAwUBveWIyWw70AgBsFgNGnV70j7myfEYEkX4+LHABRF1gBYbL5UJ3dzdOnz6NXbt24Uc/+hGuuOIKXH755Vi1alXCj3vdddehuroaV1xxBd5++20cO3YMW7duxb/927/h1KlTKb9fMDNmzMANN9yAf/7nf8ZLL73EH+M3v/kNAGDt2rUYHBzEtddei/feew9HjhzBX/7yF9x0003w+XwJP2ciP/D5RXSNTAAAPjFDKgGQACLU8sy24/jWi+/D5c2d3ykhDlD/eBbPJDuQACowNm7ciIaGBsyYMQMrVqzAG2+8gcceewx//OMfQzI2aikqKsJbb72FadOm4corr8S8efOwevVqOJ3OmM5OovcL57/+67/wT//0T/j617+OuXPnYs2aNXA4pE80jY2NeOedd+Dz+XDxxRdj4cKFuO2221BeXk4LTwkMjLngFwGdAJxZL2XRSAARavnp5kP47c5TeONAX7ZPRRFjLi+O9gdcn+MDjoIb/yCIhfaMFTI6OoqysjKMjIxMuhA7nU4cO3YMzc3NsFgsWTpDIt3Qz7kw2Ht6BJc//jfUlpqx9rOzcc+f9uGSBfX4r68szfapETmCKIqY/e+vwecXcdU5U/HwFxdn+5Ti8t7xQVy9oR3VJSYMOtzwi8C7/34Raktz/3ddrOt3MPTxlyCIgqZnVOr+qrWZUVUidSiSA0SoYdztg08eJrjlQA+8Pn+Wzyg+H56Syl9LmsrRWC41kpwYKKwyGAkggiAKml67JHbqSi2oLpFWwPSPURcYoZxRZ2Aq/dC4B7s6hrN3MgrZ2ykJoAVTytBcLXXnHusvrCB02gXQk08+iRkzZsBisaClpQXvvvtuzONffPFFzJ07FxaLBQsXLsSrr74acrsoirj77rvR0NAAq9WKtrY2HDp0aNLj/PnPf0ZLSwusVisqKiqwcuXKVD4tgiDyhGAHiAsgOzlAhHJGJ7whf9/0UXeWzkQ5ncNS8L+5uhjTq4oAACcKrBMsrQLohRdewPr163HPPfdg165dWLx4MZYvX47e3t6Ix2/btg3XXnstVq9ejd27d2PlypVYuXIl9u7dy4958MEH8dhjj2HDhg3Yvn07iouLsXz5cjidgSFmv/vd73D99dfjpptuwvvvv4933nkHX/7yl9P5VAmCyFGYA1RTakGNLIDsLi+cntzp5iGyS7ADBACb90e+xmmJQYfkclYWmzBDHvpZaJ1gaRVAjzzyCNasWYObbroJ8+fPx4YNG1BUVIRf/OIXEY//6U9/ihUrVuD222/HvHnzcP/99+Occ87BE088AUByfx599FHcdddduOKKK7Bo0SL88pe/RGdnJ1/e6fV6ceutt+LHP/4xvva1r+GMM87A/Pnz8cUvfjHlz4/y4/kN/XwLg17ZAaqzmWGzGmDSS78WKQdEKGV0QhJAjWVSgPj4gINngrRKRAFEDlBqcLvd2LlzZ8hgOp1Oh7a2NrS3t0e8T3t7+6RBdsuXL+fHHzt2DN3d3SHHlJWVoaWlhR+za9cunD59GjqdDmeffTYaGhpwySWXhLhIkXC5XBgdHQ35Ew3WLu52U04gnxkflz4NhU+hJvIL5gDVllogCEJQEJr+fRPKYA7Q9KpiCALgF4Ghce2+f/x+EUPj0jlXFZsxo1oqgXUUWAg6bWNx+/v74fP5UFdXF/L1uro6HDhwIOJ9uru7Ix7f3d3Nb2dfi3bM0aNHAQD33nsvHnnkEcyYMQMPP/wwLrzwQnz88ceorIy86+SBBx7A97//fUXPzWAwoKioCH19fTAajTRLJs8QRRHj4+Po7e1FeXl5UvORCO3TE+QAAUB1iRldI07KARGKYRmgymITKotMGHC40T/m4pkyrTHq9HCHqqLYCJtVkgJ2lxejTg9slsL40Jd3ewHYfqh///d/x1VXXQVA2i4+depUvPjii/iXf/mXiPe74447sH79ev730dFRNDU1RTxWEAQ0NDTg2LFjOHHiRIqfAaEVysvL+bZ7Ij/x+UXu9LD5J8wBGnCQACKUwUpgpRYDqkokATSgYQdxQC5/lZgNMBukD3gVRUYMjXtwemgCtgYSQElRXV0NvV6Pnp6ekK/39PREvajU19fHPJ79t6enJ2SJZU9PD5YsWQIgsNxy/vz5/Haz2YyZM2eio6Mj6vmazWaYzcrVuslkwpw5c6gMlqcYjUZyfgqAAYcLPr8IQQCqZeFDrfCEWlgJzGY1oqrYDGBM0xmyoaD8D2NKhRVD4x50Dk9gXkNiexlzjbQJIJPJhKVLl2Lz5s28Bd3v92Pz5s1Yt25dxPu0trZi8+bNuO222/jXNm3ahNbWVgBAc3Mz6uvrsXnzZi54RkdHsX37dtxyyy0AgKVLl8JsNuPgwYO44IILAAAejwfHjx/H9OnTU/ocdTodTQgmiBymd1S6SFUVm2GQw89MAPVRCYxQCCuB2SwGVJdqX0APRBBAjWVW7D09itNye3whkNYS2Pr163HDDTdg2bJlOPfcc/Hoo4/C4XDgpptuAgCsWrUKU6ZMwQMPPAAAuPXWW/GZz3wGDz/8MC677DI8//zz2LFjB372s58BkEpPt912G37wgx9gzpw5aG5uxve+9z00NjZykWWz2fC1r30N99xzD5qamjB9+nT8+Mc/BgBcffXV6Xy6BEHkGL320PwPEHCCtPwJntAWoQ6QXELV8PtnMIoDBIAEUKq45ppr0NfXh7vvvhvd3d1YsmQJNm7cyEPMHR0dIQHi888/H8899xzuuusu3HnnnZgzZw5eeuklLFiwgB/z7W9/Gw6HAzfffDOGh4dxwQUXYOPGjSFOzI9//GMYDAZcf/31mJiYQEtLC7Zs2YKKiop0Pl2CIHIM5gDVlgYEUI38/1rOcBDaggsgi5G/f7QsoCMKIHkdRuewM+J98pG0h6DXrVsXteS1devWSV+7+uqrYzo1giDgvvvuw3333Rf1GKPRiIceeggPPfSQ6vMlCKJw6JEFUJ0t8AGKXRTYRYIg4sFLYFYDnB7mAGn3/cPe21XBJTBZAJ0eKpxW+LzrAiMIglAKK4EFO0AVRawLTLsXMEJbBDtAciMyOUA5AAkggiAKFuYA1QY5QKwNfmjcDb9fhE4nZOXciNyBtcHbrEbo5feLlkPQTABVRHCAeuxOeHx+GPX5P98u/58hQRBEFPoiOEDsU7HPL8Lu9Ea8H0EwRFHEqJN1gRmDxii4NLtOJ1IJrKrYBJNBB1EEukcKwwUiAUQQRMESKQNkNuhRYpbMcRqGSMRj3O3jU5VtVgMXQC6vHw63NhfqRiqB6XQCL4MVSicYCSCCIAoSv19E3xgrgYUOQaUgNKEUlv8x6ARYjXpYTXoUm6QhqlpdpxJJAAFAY7n0QaCTBBBBEET+MuBwB02BDhVALBtBQWgiHoEOMCMEQcr/VMnvp3Q6iPu7RvGtF9/nu+yUMuH2YcIjOVOTBFAZ6wQjAUQQBJG3sA6wqmLTpMBnFTlAhEICHWCBniI2TLPPnp73j98v4hsv7MFvd57Cc9ujr3iKBBNlJr2Ol3oZbBhi5wgJIIIgiLwlMARx8jobKoERSgnuAGOk2wF6fX8PDnTbAQAdg+rm9gSXv5hjxWgok/4tdFEImiAIIn/hM4Bsk5cgkwNEKCV4BhCDr1NJgwMkiiKeeOMw/3uiAqgirPwFBGZgDY97kjjD3IEEEEEQBQnvACMHiEiC4CnQjOo0OkDtRwfwwakR/vdEBVBVBAFUzgVQYbzvSQARBFGQxHKAKARNKIWXwIIcICYu0jENes/JYQDAp+ZUAwD67C5MqGi3j+0ASc9heIIcIIIgiLwl0hRoRqAEps02ZkI72F2BLjBGFR+GmHoBfVJ2fM6eVoFSOXh9SsX+LlbeqiwyTrqtTP7ayISHzzbKZ0gAEQRRkPTaJ2+CZ7AS2JCjMD4JE4kTcIACJTAmoNNRSjoxIImd6ZVFmFZZBEBdGWxEPt8y62QBVG6VzlsUAbsz/9/7JIAIgihI+uT5KXURHaD0z3Eh8gMWgi4NKoFVcAcx9SKCC6CqIjRVqBdArLxVVjS5BGYyBFrjhwogCE0CiCCIgsPvF2M7QHIXj9Pjx7hbe/vA/rD7FFY8+haO9zuyfSoFD9sXVxrkAHEHUV6omyrcXj+65Bk906qKMK1KEkAnB5XP7YnlAAV/vRCC0CSACIIoOIbG3fDKF6aaCAKo2KSHSR6OOKDBrd6/33UaB7rt2HKgN9unUvCwRajBQwXL5SxNqhfqnhoah18Eikx61JSY0ZRICUwWNuVRBFBFMRNA5AARBEHkHSwAHWkKNAAIgqDpVngmyvrS0GVEqGMsQgkseKHuYAqdlBOy0JlWWQRBENAkT24+mVAJLLIAYjmg4Qntve9TDQkggiAKjkAL/OT8D4MLIA2WApgoY9Osiewx5ppcAgPSM0uqYyAggIL/e3JoHKKorNTGSmDRHCDmXhVCAwAJIIIgCo7AGozJ5S9GlZwDGtRYCUwURX5RJQco+0TKAAHBQegUOkBBAWhA2t0lCMC426doZpXfLwYyQNEcoAKaBUQCiCCIgoM7QDEEkFZLYGMuL9w+PwCgV+UmcCK1+PwixuUhhOGLRSu5k5JCB2hQCr1PqyoGIJXaGmQXU0kOyO7yghlF0ULQFQU0DZoEEEEQBQdfg6GgBKa1adDBpYk+OzlA2WQsKOBcEs0BSmUGKGgGEGMqK4MpEEAjcrDZatTDbNBHPCbQBUYOEEEQRN7Rw2cAxXCAirQ5DTp4NtHguBse2Q0iMo/dJYkEk0E3SVCw90+qHCC/X+QuDyuBAUE5ICUCKE4LPBBwgIbIASIIgsg/2AygmgiLUBlsFlA6htklQ3BJThS12aZfKLD8jy3M/QEC759UOYi9dhdcXj/0OgGN5Vb+dTXToFlnV3mU/E/wbSOUASIIgsg/ehU4QFrdBxZ+QWV5JiLzsA6w8PwPkHoH6EjfGABJ8ASPblAjgJioscVwgMrJASIIgshP/H6Rd0/FzgBJ4khrIejw86EcUPYY4x1gkwVFqjNAh3rsAIA5tSUhX2+qZLOA4k+DZrmeaC3wQFAXGGWACIIg8ouhcTc8PqkVprokfheY9kLQ4Q5QfgignSeGcMuvduZUZxvbAxbRASpOrQN0qFdygObUhQsgyQHqGpmA2xs7D6YmA2R3euHN83wZCSCCIAoKJhiqik0wGaL/CmQXMLvTq6mgcbggyxcH6L/fPILX9nbjqW3Hs30qiuElsEgZoBSPUTjUIwug2tKQr9eUmGEx6uAXgc7h2C4QH4IYIwMUnGfK9xwQCSCCIAoK1gEWaQdYMOVWI3SC9P+pnOWSLOyCymYY5UsG6OSQdPHedWIoy2einGhDEIFABmg0BQJaFEV83CuVwGaHlcCklRjKckBstk95hE3wDINex0VQvm+EJwFEEERB0atgBhAA6HQCLwdoqQzGzmVugw1A/qzDODUkXbzfPzWsKcctFjwDFKEEZgsW0EnmgAYcbgyPeyAIkwUQoDwIrSQEDQQE0kie7wMjAUQQREHBHJNYHWAMLU6DZl1pc+ulUkg+rMMYmfBwN8Xp8WN/12iWz0gZ9giLUBl6nRDoqEpylMLHcgB6WmURLMbJAwybgnaCxUJJCBoAKgpkHxgJIIIgCooevgcstgMEaDMIzS5KZ9ZJAigfHKBTYRfunTlSBrPHyAABASGRrIA+zALQEdwfQPkwRCUhaAAoY+swKANEEASRPyTiAGklA+Ty+njwdm6D7ADZXYo3gWuVU0Oh4d1cEUBjMTJAAFCVolEKLAA9OywAzWhSWQKLFYIGAsIt3/eBkQAiCKKgYA5QrCnQDK05QOxCatAJmFUjuQFunx+jE95Yd9M8TACxsQS5EoRmZbtIbfAAUFEsO0BJColDvZFnADF4BmggNQ6QTS7p2Z25/b6KBwkggiAKCtY2rsQB0to0aLb2oqLYBItRz52HvrHc7gRjJbAVC+qg1wnoHHGiayT+YL9sw9w4W4QMEBC0VysJAS2KIg52ywKoLrIAaiyXxPyo04txd2TR4vL6+Ob6cmv0LjAAKJYFHXt++QoJIIIgCga/XwwqgSl3gLQSgmbnwYQZ+yQ/muOf1JkDdGZdKWbIiz6P9jmyeUqKYCHoaBkgJlAdSQiJ4wPjGBr3wGTQ4cz6yCWwErMBJnk9RrT3KnN/BCF6yY7Bbh/L8fdVPEgAEQRRMCidAs2olI/RysJR1k7NhFlpnpQqmACaWlGE+jJJmHaPaN/VYg5JNEHBnBR7EgJox/FBAMCiKWWTNs4zBEGIK9ZHWQu8xQgd68+PQgk5QARBEPmF0inQDOa0aGUxZHAJDAhceJkTkauwEtjUCit35rpzYCXGaJwMEPt6Mg7Qrg4pD7V0ekXM4+Ll1VgLfLz8DxA472SEWy5AAoggiIJB6RRoBstwaKUExtqSWZeOjQug3L1QBc8AmlJhRb0sgHo0LoBcXh/fvRVpDhCQGgHEOuLOUSiAouWN2FTnijgdYECgpDeW48I6HiSACIIoGHrtyqZAM6pKmAPkgd+f/Vbz0bAunkAJLHcvVMz9qSo2ochk4CUwrQsgh8vH/z+qA5SkQB2Z8OBjuQX+nGnKBFA0sT6kYA0Go5RKYARBEPkF2zSupAMMCDhAPr+oicWQ4W3MpXngAAXyP1YACCqBaaPzLhpMdBab9NBHydSwDJAjSmdWPHbL5a/pVUVxXct4Amg4LD8WixIKQRMEQeQXaqZAA4DJoOMiQwuzgPJRALGwc0OZJIB4CUzjIWg+AyhGRxUPEyf482HzkOLlfwAlDpCyIYgAZYAIgiDyDjVToBksCN2vgZ1bI0GdPECgBDaawyWw8LIeK4H1jbng00DZMRrxhiAG3zYWVC5Tw0dd0vyfxVPL4x4bPwQtB+gVlMCCs0u5PmU8FiSACIIoGNRMgWbMlCcu7+vM/oLOfHSA7GGt5NUlZuh1Anx+UROiMxqBFvjojkpAACUmUNkATjVDO6OGoB3qQ9B+EZjwJCbecgESQARBFAxqpkAzWPmBtSNnE+4A5VEIOnyjul4noEaev6TlWUCB847vADk9fnh9ftXfg29vV+DaVMQpgQ2qCEFbjXqwWFM+54BIABEEURCIYmAKdK3CLjAg0H2jhf1Uk7vAct8BGo2wUJQJVC3PAmIOUKwSWHHQbY4EymCDKoLLfG1LlJlVakpggiAURA6IBBBBEAXB0LiHT4GuUTAFmrG4qQx6nYCuESc6h7O3n8rp8cElz50py6M5QPaIAkj7rfDsvKPtAQOkED0buDmmshMsuPNQSXCZiaThcU9Et0lNCBoIOHLkABEEQeQ47GKqdAo0o8hkwPwGG4DAULpswNwfnQCUmCSxkA8lsLGwEhiAnFiHwVdLWGPv1Up0GOLohAcsfxxveSkglbYEuWzFxA5DFMWAA6TATQIKYx0GCSCCIAoCtVOgg2E5oGwKoOD8D9vlFFwCy9VunYCTEskB0m4ImnXexXKAgKCWcpVOCitllZoNigS7XiegXC6Nhq9ucbh93P2sVFACA5If4pgLkAAiCKIgUDsFOpizp5UDyG4QOrwDDAi4Jl6/CKdHfchWC0Sap5ML6zBGJ2ThFme3VnGCDhBzbMqLlZWsgKBW+LDlvawzzGzQwWqKvFA1HHKACIIg8gQ2Bbo2CQfog1MjWPPLHXx9QyaJJICKTYFunVydBRTeBQYElcC0LICcykpgia6VYG3rSh0bIGgfWJgDNMz3gCl/rELYB0YCiCCIgiAZB2hqRRFua5sDvU7Apo96cPuLH6T69OISPgQRkLp1cjkH5POLcLil7qiIIehcyADFKYEVmyXHRa0AUtO2zog2DDGwB0y5m8RyZuznk4+QACIIoiDoUbkHLJzb2s7Af39lKQDgdBa6wSI5QEBAOIzmYFYjuMMoWADVyj8ju8uLCY1egNnrrbQEprabKtC2rqYEJr1ug+ElMBUt8AzKABEEQeQJzAFSMwU6nOaaYgCTSwyZIFrmJOAA5d6FipWRTAYdzIZANiU4+KvVadBKHSAm7NRmgFgnl9KuLQCoLI4cguYlMBV5omSnWOcCJIAIgigIekfVT4EOh32Ctju98CQw2TcZ4jlAuVgCi9QBBkilPTarqU+DAkgURcUZoGJTohkg9a4Nc4DCS2BsOrSaclppAWyEJwFEEETeI4oiX4ORSBs8o8xq5LNWhsczKziiCaBcHoYYKQDNqJZ/Tv12dQJo0OFOe4nS6fHztvK4bfCWBAWQyrk9QJAD5Ah3gNSX06gLLEU8+eSTmDFjBiwWC1paWvDuu+/GPP7FF1/E3LlzYbFYsHDhQrz66qsht4uiiLvvvhsNDQ2wWq1oa2vDoUOHIj6Wy+XCkiVLIAgC9uzZk6qnRBBEDmF3eeGWHZtqFVOgw9HrBC5AhjNcBovuAOVuCHrMNXkKNCNRB+jK/3wHFz/yZtSloKmAuT96nYCiOG3liQ5CVLO8lFFTEnl8wFASXWC5KKyVknYB9MILL2D9+vW45557sGvXLixevBjLly9Hb29vxOO3bduGa6+9FqtXr8bu3buxcuVKrFy5Env37uXHPPjgg3jsscewYcMGbN++HcXFxVi+fDmczskdA9/+9rfR2NiYtudHEIT2YaHQIpMeFqOyOSjRYG3J0ZZOpovwPWCMXN4HxmcARdinVVMqvc79duWvs8PlxfGBcTjcPrx3fDA1JxmBQP7HAIFZglFI1ElhDpCaNvjGckkAdQ5PhAzGTCgETQ5Q8jzyyCNYs2YNbrrpJsyfPx8bNmxAUVERfvGLX0Q8/qc//SlWrFiB22+/HfPmzcP999+Pc845B0888QQAyf159NFHcdddd+GKK67AokWL8Mtf/hKdnZ146aWXQh7rtddew1//+lc89NBD6X6aBEFoGDVLJePBWonD1w2km/gZoNy7UMXaqF7NHSDlrfC9QeWyXR3DyZ1cDAL5n/juTHHCAkj5JnhGY7kVgNS6zt4vQGIh6NIES3e5RFoFkNvtxs6dO9HW1hb4hjod2tra0N7eHvE+7e3tIccDwPLly/nxx44dQ3d3d8gxZWVlaGlpCXnMnp4erFmzBv/3f/+HoqKiuOfqcrkwOjoa8ocgiPyAOUCpEEDsU3SmO8FGouyeYiWwXByEGNgEP/nCXMMzQMpf5+DdYemc2s078uLkf4DEMkChu7uUixaLUY/qEun9GZyDGkpgplCJmZahJkV/fz98Ph/q6upCvl5XV4fu7u6I9+nu7o55PPtvrGNEUcSNN96Ir33ta1i2bJmic33ggQdQVlbG/zQ1NSm6H0EQ2oeVq1IigKJM2003+ekARc8AMQdITRt8rz0ggD44NZy2Tr3RGM5VOIEMkPJ5RnaXF16/VMJSU7YCgCmyC3R6KCCAEpkEnegAx1wiL7vAHn/8cdjtdtxxxx2K73PHHXdgZGSE/zl58mQaz5AgiEySyhIYC6WmM2Qbjtvrx4RHuoDmUwg6VhcYc4DUhKCDw79Ojx8Hu+1JnmFklM4AAgJt8GoE6rAcgLYa1WfWWBmsU3aAxt1eLmKqSlS0wcsOkMvrh9ubm3vm4pFWAVRdXQ29Xo+enp6Qr/f09KC+vj7iferr62Mez/4b65gtW7agvb0dZrMZBoMBs2fPBgAsW7YMN9xwQ8TvazabYbPZQv4QBJEfcAdI5afpSAQcoMwJjuDyVrhYyAcHKHwOEBDkAKlogw/fHp+uMlhgCnR8ByiRQYjJCHYmgFgJrGNQ2ltXXmRUJNgYzAEC1Hew5QppFUAmkwlLly7F5s2b+df8fj82b96M1tbWiPdpbW0NOR4ANm3axI9vbm5GfX19yDGjo6PYvn07P+axxx7D+++/jz179mDPnj28jf6FF17AD3/4w5Q+R4IgtA/bjl2p4hNwNHgGKIMOECt/lVoM0OtCu47yYw5QJAEkvc4Otw/jbmXPjTlAzKXbdSJdAkiFAySXwCY8PngVluQS2d3FmMIdIOm1ODEgCaBplfGzsMEY9DpYjfldBosvX5Nk/fr1uOGGG7Bs2TKce+65ePTRR+FwOHDTTTcBAFatWoUpU6bggQceAADceuut+MxnPoOHH34Yl112GZ5//nns2LEDP/vZzwBIE0Jvu+02/OAHP8CcOXPQ3NyM733ve2hsbMTKlSsBANOmTQs5h5KSEgDArFmzMHXq1HQ/ZYIgNAa7oFTlaAiahXvDy19AbpfAAnOAJj+vErMBFqMOTo8f/XY3plXFv1yxad8Xz6/HCztO4t1jgxBFMW6rulqirSWJRIiT4vahzBrfd0hkCjQj3AE6OZiYAAKkAPeEx5eT4loJaRdA11xzDfr6+nD33Xeju7sbS5YswcaNG3mIuaOjAzpd4A1x/vnn47nnnsNdd92FO++8E3PmzMFLL72EBQsW8GO+/e1vw+Fw4Oabb8bw8DAuuOACbNy4ERZL4jt+CILIXwaSuKCEw9yFTE6CfnGHlEk8b2bVpNsSCdlqhVhzgARBQHWJGaeGJtA35sK0qvgX8B45BH3Zoga88kEnOkec2NUxhKXTK1N63gEHKP4l1GzQw6TXwe3zw+HyRhSx4QRa4NU7QFMrQgVQog4QIO1k67O7yAFKhnXr1mHdunURb9u6deukr1199dW4+uqroz6eIAi47777cN999yn6/jNmzAgZCkUQRGEx6JCcATUh0GiwXMZghhygPrsLr34odbiuap0+6XZWYnH7/HB5fSFLRbVOrC4wQApCnxqa4GtMYiGKInfKZlQVY/mCevx+12n8Yffp1AugCeVzgADJSRl0uBULiQE5+J3I1HLmAPXZXXB5fTwDNF2BgAwn0MKfe+6iEvKyC4wgCCIYtlaALYtMBjZLZWTCA58//R+sXnivA26fH0uayrFoavmk24Pdk1xzgUZjdIEB6lrhRye8cMndSrU2M1YumQIA+PMHXSlvh+chaIWhYrUt5f1cAKkX7BVFRliM0qW9a9jJBVBTIiUwc+7my5RAAoggiLzG5fXxC08qusBYWUIUETJtNx14fX48u70DAHDD+ZPdH0DaR8XCqrnUreP3i/znEq2UxKdBK3CAWPmrvMgIi1GP82dVoabUjKFxD976uC9FZy1hV+sAmVlOS6kAktzFRBwgQRB4EPrk0DhODTEHqFj1YxXncHlVCSSACILIa1gLvEEnKGpbjodRr+Mlm3QHoV/f34OuESeqik24dGFD1OOKc/CTusPtBUsmRHOA+DRoBQ4Q6wCrK5WyoAa9Dl9YJO2B/PMHXcmebgiBVRjK3k+BUQXKBHN/EiUwIFAG23F8CB6fCKNeQL1NfUa21EwlMIIgiJyFCaCKYlPKuoEy1Qr/zLYTAIAvndsUM9vDZ80obBfXAkysGXQCL9mEUyOXgJQJIOmYWltANHxubi0AYPux1C1GFUVR1SqM4OMUO0Cy41VdmpgAYg7Q24ck56upomjS+AQl8AxQDglrNZAAIggir0nlEERGJoYhftxjR/vRAegE4LqWyOUvRi6uLeAdYDE2qjMHqFdJCUx2gIKdjiXTyqETpI6o4D1hyeDy+uGWM0VKS2CsxDeqoGQqiiL6HcmNbThnWgWAwELYRPI/QFAGKIfeV2ogAUQQRF6Tyj1gDL4OI40lsF/9XXJ/Lp5fz0sa0WDrFnLpkzp77WIJ01pZzPSOxhdAvawEFiSASswGzGuQpvrvOJEaF4iJGJ0AFJuUddypmdZtd3n56omaBB2glWdPQVNl4D2TSAcYQA4QQRBETsMFUApa4BmVGSiBbTsyAAD4p6Xxh7cmsm4h2/Dp3DGEKRMzvXZn3FEm3VwAhYqGZdMlN2TH8dRMhQ7kf4yKS6rMKVKSAWLlL2kQZGIjDUwGHb7Rdgb/eyIzgIDgDFDuvK/UQAKIIPKcj3vs+MLjf8PL73dm+1SyQjpKYKwVPl2zgLw+P04MOAAAcxtK4x5fnIMXKjabKZYAqpFDwB6fGLfcyMpkNaWhYd+lM6QZQKlygILXkiiFHTuqwEkJdIAl9369YskUnFknvXfmNya22zIwByh33ldqIAFEEHnOD/+8Hx+eHsFvd57K9qlkhYE0lMBY90+6uq5ODU3A4xNhNujQWBa7/AXkpgBiP5dYwylNBh3/ufXaY2d4WKt8bZgD9IkZkgO0v8ueEoeMzZRSM1XcpmJdSbIdYAy9TsCvvtqCp278BFojTBBXgtr2/VyDBBBB5DG7OobwpjwDZTiDu6u0xJCCC61aAusn0nNhONo/BgBori6GTkH3TmmazycdKM1m1co5mPBN78GIohhwgMKEQ0OZFVPKrfD5Rew5OZzEGUsEFpUqfz+xNn8lDhCbAp2K92tNqRmfnVubcPdjSQ4KazWQACKIPOanrx/i/z+c5qF9WkVJ1kQtaRdAfVL5a2aNsuF1Oe0AxZnOzYLQrMsrEqPO2MFh5gK9fag/oXMNhu2Aq1Cxp6tURRdYXxJDEFNNut/n2YYEEEHkKaeHJ7j7A6R/Zk2m6B5xcvdA0fERuoOSJd2DB4/2ywKoukTV+YwlMbH3rY/7sPj7f8UfdmemVDo4psyZq2Ot8DEEECt/2SyRg8MXzZOWb/91X3fSeyGHJ9Qv1g2EoJVkgFJTAksF1AVGEDnG8Liblt8iIHiMesn+HnV64U3xTqRMc3JwHBc9vBX/8MTf4PLGv9iLohhxPkyylKR58ODRPqkEptQBSrYE5veL+OGf92NkwoM/f9Cd0GOoZUBBCBoI7gSLXgJj+aBobeMXnlkDk16Ho/0OHO4dS+R0OYlsag+EoJV3gSU6BDGV8BKY2wt/BvbeZRoSQEResefkMM6+fxPuf2V/tk8l67BhbbVBXTFKMgha5okth+Fw+3BqaAIb98a/UI9MePiCzERnqkSiJM07kgIlMJUOUII/39f39+Bgjx0AePdZulGcAbKxDFB8Byjaz7jUYsQnZ0tB4L/sS07gsSxducIhiNL3D5Qo4wkJ5gDVpDCzlijsvEURGPfk3z4wEkBEXrHj+CBEUQr/Fjouj3Tht5r03CFI9+6qdHJiwIHf7gqUZ9igwFiw4CxbkJkq2ODBdJTA7E4PdzuUZ4ASnwQtiiKefOMw//uJwfG0f9r3+wNt7XEzQKUsAxTdAeIdYKXRXb7lZ9UDAP6yr0fVuYbDu8BUZMpYF5goxncN+3lpMPsOkNmgg0EO4edjGYwEEJFXdA5LnxKV7A7Kd5gDZNLrUF4s/QIeTuPqhnTz+JbD8PlFnD2tHAadgPeOD2F/12jM+3SnofwFpHfw4DE5/1NdYla8a6o0iXkt7UcG8P6pEViM0sXO7fXz1y1djEx44JNFVvwSWPyN8PEcIABom18HnQB8eHoEncMTak+Zk0gXmMWoh0kvXW7jubADGsoACYIQNAsod393RIMEEJFXdI1Iv9j6x1wFnwNiXTEmgw7lVumXda62wnt9frz6obTR+67L5vFP8/FcIFY2qU2xAGIlpwmPj1/IU4XaDrDg80lEkD217TgAaeI0mxh8vD92GUwURUUZrGiwDrBSiwEmQ+zLUPA06GjOlBIBVF1ixpKmcgCBJaGJkEgXGKBsI/yE2weHW3pdkx2EmCpK0hz4zyYkgIi8olNeeOj0+DHuzr+atRpCBBDfXZWbn+IO9tgx7vah1GzA2U0V+Mp50nLQP+w+HfOC0ssdoNR+mmYlJ0C967L39EhMN4N1gM1SI4BMiTlAJwfH8fp+qSR04/kz+M6o4wPjMe/3tV/txLIfvI43Dvaq+n4MPutGQRmpOmQadGQB3zfGSmCxf84XzKkBAPzt8IDicw0nkS4wINAJxjbJR4I512aDjguPbJPPs4BIABF5RVeQtV3oZTD2Cd1s0HG7PlcdoN3yVuvFTeXQ6QScN7MSs2tLMO724Q+7T0e9Xzpa4AHAbAiUNNS4Lm8f6sPlj/8N5z2wGauffi/ihnL2vlVzzsxdcHn98Kjo9Ptl+3GIIvCpOdWYXVuK6VWS6IoVhO4cnsBf9vXA7vRizTM78FKM1z8aahbUmgw6LpSi5YDYstR4QfcLZlcDALYd7k8o5+T0+OCUs3VlaXCAWDdbdYk54eGFqaYkyYC9liEBROQNbq+ffxIESAAxB8hs0HG7PlczQEwAnTOtHICUTbhedoH+r/1E1HInu2CmWgABARdIjQB675i0j8rnF7H5QC9+/W7HpGOGEljdURzkFig9H79fxG92SKHymz45AwAwgztA0QUQK0WaDDp4/SK+87sPFK14CCawBkOZM1cbVAaLBPt3H08AnT2tHMUmPQYcbuzvjp0fiwRzoAw6gTcWKCWwDiP6z+d4v+S8Jbq8NB3k8z4wEkBE3tAz6kTwdbDPnptuR6rgIehgB2giN1+T3XJX39nTKvjX/vGcKSgy6XGodwztRyOXNHrS5AABQcMQVVwYjsj5HlaqORoha8PcETUlFqNex7M0Si9U/WMujEx4oBOAT8mloRnVkgPELsSR+LMsgO68ZC5mVhfD5fXjjYPqMjWDfAq0sudYy4chTv5Q4/H5+ePF6gIDpNepRd6L9c5h9VOhWQdYeZHyTfAMJbOAWAC+WUX5M91QCYwgcoDwzg42aK1Q4RkgvY7PLMnFDNCQw82FAguxAtIn6n88ewoA4D82HoxY0kjHEERGImsCjsgDDtlk4mP9k4fyBUK26jImpSovVCwvV1tqgVEu581gJbBBR8TX89TQOHZ3DEMQgEsXNWDFArm1XMFMpmDUlMCAQCdY58jk7i3m9Bp0gqLZPJ+Uy2CJrMUYTqADjBEogUX/+RwbYBPAtSOASvN4GjQJICJv6ArLU/QXuAPk4iUwPSp4G3zuvSZ7Tg0DkC4K4bNXbr1oDkrMBrx/chjPv3cy5Davz8/DxnUpDkED6gWQ3y/yT/ht82oBSE5LePluUP4ZsZ+ZUtR2gnXLYqKhPCAOp1RYodcJcHr8EScvv/ahJHRamitRW2rhAuiNg71wqhiUN6BSAJ1ZbwMA7Dwxeb4X+xlXl5gVLY791BxJAL13fFDVOQOBfXpqO8CAQAkspgMkO4RMiGoBcoAIIgc4HeYAFXoGyBWxDT73HKDdJyaXvxi1NgvWf/4MAMB/bDwQIvAGHG74RUCvE9IyVE7tPrDTwxNwef0w6XU4f1Y1dIJ0UQnOrYmimFAGCFDfrsxmZjWUBQSQUa/D1AorgMk5IFEU8dudUmbo8kWNAICFU8rQWGbBuNunylFRu/GcTXF+7/ggdzYZSlrgg5lTW4KaUjOcHr/qgaksA1RmTcQBit0FJooif821VQKTs0skgAhCu7AZQMyyLXQBFKkNPhcF0L5OKay6uKks4u2rWqdjZk0xRiY8IctfWYdVTYkZegXOgFrUOkCsjDe9qghWkx5TK6SgK/vUD0iCyCuXntSWwNSu52Adcg1l1pCvN8vll0NhO7N2dQzhYI8dFqMO/7BEEkCCIGC57AIpWU3CGFS4CZ5xZl0pqopNcHr8PA/G6LUra4FnCILAu8H+prIMlugMICB+F1iv3YVxtw96nYCmCg2GoKkERhDapUv+RLtoqnShHBjLvXJPKgkVQLnbBs+Ew+woe7EMeh0+LYd4Pzg1wr8eCECnZ6IuFxwK500dkQXFLPl5MKFxLCgIzUK2VqNe9eoOtV1pLDMX7AABkqsDAHvkzjvGc9ulEuMXFjWGTKhmr/2+zhEoRW0JTBAEtM6SXKBtR0ID70pb4INhAkhtEJq5c2rWYDD4HKAoQoINwGyqsMYdDplJ1GbLcgntvMoEkSQs1LlwSjkAcoDcPunCbNIH2uAdbt+kEoKWcXv96BiUOpJiLQZlovf9k8P8a+nsAAPUl8CO9odueOcCKKjUxEosastfAFBiUVeqYA5ZuAN0jlxq3H0y4LSMjHvwygedAIBrW6aFHM+GJ3YMTs4zRcIb1LWlRrSw8PK2I6Gi5fSw9P5oLLdOuk+8x/rg9AhGVLiiiWyCZ8RzgJgQnqGhADRADhBB5ASsBMYuhn0FLoDYMlSzUQebxQjWtZtLLtDJoXH4/CKKTPqYTs5iuTtsb+cIHwR4WnYE68vSI4BKVDouR3rZhOcwByioBDbIu4zUX2DVng9rGgh/fVin3dE+B3+vPLXtGFxeP+bWl+LsoE48QApOCwIw7vZxZycWPXYXfH4RRr2AGhXZrE/OkkTL7o5hjActFD01JP27Z9klJdSXWTC7tgSiOFlQxYK9HmrLk0D8LjDWEdisMQGUyLiHXIEEEJEXjLu9vD7PLHy705vUvqJcJ3gZqk4noEy24FknSy7AygLN1cUx5640VxWj1GKA0+PHxz12AMDhXum/s2I4R8lQonIhalQHKKQElrgDxNZhKDkfn1/kDlljeagAqig28Tbs3R3DODHgwH9uPQIAWPvZ2ZN+DmaDHg2yy8bculiwae31ZRZFXVuMpkorppRb4fWLaA8qg50cGpdvV5ebYWWwrSpmGLF/O0ra7cPhXWBR/v0dk2cvaakFHkhs3EOuQAKIyAvYxN9ikx5TK6wwyL9YCzkHFDwJGgh8ah1S8CldKxztY6IhtojR6QTu/LEc0Mc90n3n1KVHABWryEbYnR7+Hp0Z5gCdGBjnC1WHEpwBBAQEmZJP6v1jLnj9InQCIrowrONuV8cQ7v3TPri9flwwuxqXL2qI+HhMfJxUIIBYt2ZjmXLHBpByQBfJ4wP+sk8KXHt9fp79U+MAAcDn50uzmH6761TE9vpIJLIJnhFvEjRzgLRWAiulSdAEoW34YLUSEwRB4O21hZwDCg5BA8hJB4i5I0o+FS+eWg5AygFNuH3cGTijrjQt56ZmPgoTP6UWA/85NJZbYdLr4Pb5eSCZh2wTKoEp/6TOyl91NgsM+smXgbPllSO/+NsxvHGwD0a9gO9fcVZUF06NAGLt91NUZHYYbO7Qpo964PX50T3qhFcup9XFmQIdzidnV+OKJY3w+UV844U9in6OvAtM5YwmALBZpZ/PhGdyDs/vF7l7pqUZQEDweAWPooxXLkECiMgLwmvzbIN0IQug4EGIAIL2geWSAyQLIAVzUVgOaM/JYRzuHYMoSqWk6jTMAALUCQ42cI+VqQBpPtHUSkkEMLEWGIKYgAOkIpQdXIaKBAtCsw63710+P2Ypke2uUlICY2JPTWiZce6MSlQUGTE07sG7xwZ5/mdKuVVVOY1x3xULMKXcio7BcTz814MAJAH94anJHW0ur4//20mkRGmzGKGLksMbmfDA45PERbpC+4nC8mgen4hxhR2PuQIJICIvCN+fFBBAuXOxTzXhDlCgFT53HCCem6mOX8Zi4d2Pe+x477i0dHRObXrKX4C6EtiELICsptDWdpYlYcPxkgnZsjZrJYtJmQMUrQx1Rl0JbHLp418/NxurWmfEfLxMCSCDXoeL58tzh/Z1c8dJbf6HUWY14v9dtRCAtFT3V38/gSv/axuu/u9tk7rDTg6Owy9KZXY14W2GTidw4RT+e4l9UCuzGjXVAg8ARSYDrPJIhnyLFGjrlSaIBAkfUEYOEOAKCkEDuRdmHJnw8AuFksm4dTYLzqwrhV8Efv72UQDAmfXpKX8B6kpgE/In5/DZPuGiZTCZOTNyxmREQYmTdUxGc4AMeh3++/pl+PE/LeKTtmMRKIFN3tUVDs8AlSfmdKwIGrzIBJDa/E8wn5pTgwvPrIHXL+Kul/bC5xfh9PjxxsHekOPYItvmmtiB/FgwATQYlsPrUzkZO9Nw4ZZn+xVJABF5wWBYOJH9IhnMs08sagh3gNSEZLUAy//Ulpq52IjHpQulkC6bCTUnTfkfQN3kZe4AGUN/5fL1CHLZig1CrEzAASoLc5Ni0cVnAEUXIa2zqnD1siZFF3vmAHWOTMSdM8UcoEQyQABw/uwqlJoN6LW78MoH0mb6qUlOTv73S+fxaeGsgWLTRz0hxwTyaIm7imzydfiiZuaspKtcmyzV8u9TcoAIQoOE1+ZZCWEwh/IuqYaNAOACKMccoEAHmPJQ6KUL60P+fkYGSmAOtzfi5vRgnFFKYLaw4XhDScwBYiFbZQ5Q5CGIiVJdYoLVqIcoTt7JF4zd6eFiryFBAWQ26PE5uRuMTQlPxgECJKH8nRVn4pOzq/DEl88GAGw92BsyRiOR92M4lVGEBHOqEymtZQK2S28gzxx1EkBEXjAY1j1TVZx7Ld+pJrwNPte2OrOLtJpP93PqSkNyP+nqAAMCr6coAuNxtoqzEpg1rAQWvCBTFMWkJkEzByhSl1E4bAZQfVlqLriCICjKAbGfqc1iUOzqReKSBaFCN9EMUDA3f3oWnv3qebh4fj1qS81wuH0h84aYA5TMoMLqKCUwJoCqNVoCY79PlQy6zCVIABF5AZ+fwhygKL9oConwElggtJsbnRyBhZnqLgqsDFZdYk4oS6MUi1HHyybxXDXmAE3OAAUcIIfbxzuBEps0HHCNRmMEoUVR5PuzalW2jseiSe5oiyWATicRgA7m02fUwBJUTkzWAQpGpxPQJs8ICi6DMQGUzGDNyiglsH67tktgAQcov36fkgAi8oKhsC6wSnlORyGXwNgk6EkOkIIuIS2Q6FTkL36iCVPKrbhq6ZR0nBZHEAQUyyWteK7ahLyWJKoD5PTw52sx6iaVypSg1wl8cWW0acOA1DDA3hu1KVwUO12eX3NInsQdiWTzP4wikwEXniGVwSxGXcpLR58PEkB+vxgSyE9mUGG0EhgTRFUaFUA8A0QhaILQHuETdNknLRYqLUS4A6SXLqZqQrtaYCDBjqgp5Va8893P4Y5L5qXjtEIIiMp4Aih2Bmh0whsY5pmA+8Mfzxq/E6zHLpWhKoqMfEZUKlg2XZod9PejA1GPSaYFPpxL5LzXjKrEu7Kicf6sKhSb9Oi1u/DB6RHu/tTZlAfyI1EdpZTUx0PQGi2B5WkIOvGfJEFoBFEUA/NTZOeHXUTGXNI+sFT+os8V+CBEY2gXWK5kgBItgWWSEosBGFFeAgt3gHgbvMuT1JqF4Mc7PTwRWwDJ5a9UD9xrmVkFQFpB0j/miljOYVOgUyGALl/UiJOD4/jEjMqkHyscs0GPC8+sxZ8/7MKmj7onLbBNlGht8P12OQNUqk0HiHWv5dtYEXKA8oC/Hx3AZY+9jR3y8LdCw+7ywusPzU6UWgw8n1GILpDPL/L9UoE5QMrKNVphMInFoJlC6aZsFoI2hwugIAeIlViSmQVTJmeKRmM4UiwAXZtiAVRZbMJcee5SNBfoYLdUHpuWgtCyXidg3efmcOGVaoLLYLwFPsnFulUR5pOJopgDXWAUgiY0yh/3nMa+zlH8ZsfJbJ9KVmDZCatRz0OmOp3AxVC+1a2VENwFNDkE7c2JnT48F1GszYsCEH/BJWMimgNkCQxCTMVFUMkwxF5ZANWlwW1onSWJkeDuKcagw42PukYBAOc2p961STWfPbMWep2Aj3vG8OcPpXlDyW5qZ26m3enl/0Ydbh93a7U6CJH9Gxx0uOOOfMglSADlAay1dH9X9PBhPsPyP+FOAQtCF6IDFEkAseyCzy/yX7haZdzthVMODldq9KIABC2YjRO2VzIIMRVlkMAwxMyXwACgVXZj2iM4QMwVOqOuBDUaLfUEU1ZkRIss1I72OWDUC7hgTnVyj2k1cmeaOZzs515k0qPIpM1UCvvd6pMD4fkCCaA8oFsWQAd77PD6tH1hSwfRhsfxensBdoKxAW6CEJhsG7yIU8nCzGzCwpYmg453WmkRJYIDAJzuKCFoa0CUsvbxZIKwNkUCiG2CT70IaWmugiBIgoF9H8a2I/0AgPNnJSciMsmq1hkQBOCC2dX43S3nY269LanHi+RMB2YAaVcUmgw6Xq7NJ0edBFAewH7RuL1+Phm1kIjWLs0FUJ4F95TgChqCyDpkdLpA27bWp0EHB6BT3eGTSpjoHo4jgCaizAGyGvXcEWD/dpO5EHJBFmPUQY/sOKQ6AwRIrsmiKWUAgCe2HA65bdthyQE6f1Z6MjvpYMWCehz+4aX41VdbsGhqeUoesyosCK31IYiMfFwwTQIox3F6fLwEBAAfdY5m8WyyA3v+4d0zgXUY+WPZKsUdtgiVoWaDeTYZDJvrpFXKFLSdA9EzQIIg8E/WJwZSJ4AUZYDSIIAA4PblcwEA//f3E3jz4z4A0vLVo/0O6ASkLbScLphATRXhLeX9Gt8DxsjHVngSQDkOm+jK2N9VgAKIz08JLYEV8jqMwBTo0AturrTCcwdI45+KFQugKCUwIFC2YlOgk7kQspJatIWofr+IXjvLAKXngnvBnGrceP4MAMC//Xo3fv72Ufx440EAwIIpZfw1K1Qqw2YB9Y9pewgiI9oi11xGm4krQjHdYXX2jwpRAEWZn1LI6zBcYXvAGLmyEDUXWuCB4BB0nAxQFAcIkEY2BFNdmkwbfGxBNuBww+cXIQjpdRy+s2IudpwYxN7To/jBn/fzr191ztS0fc9cge/VGgvNANVoXOznowNEAijHYQKoxGzAmMtbmA5QlAWS0YaOFQLhi1AZubIQdSBHBBAT3fFC0NEyQECgdR2QQutJTYK2xM4AsbxgdYkZRn36CgBWkx5/+Pon8ZsdJ/Grv3egusSE1Rc04zNn1KTte+YKzOkJdIHJJTCNd8bxfWDkABFaoUfuADtvZhW2HOhB/5gbvXZnSpccah3W5h6tC2yoALvAwhehMnInA8RmAGlbAHEHKF4XGNsFFqEEFuwAVRaZYEhCmMRzgHrt6esAC8eo1+G6lum4rmV62r9XLsF+L7HsD1tNotUhiIzqPHSAKAOU47BPdM3VRXxJH5u2WihEc4AC7ab58w9WKW6f5DiEC6BShbursk2gBKbti0Kw4Ig1XDJaCBoIdYCSnY8T3AYfaWAdnwFUQB+QtAYTEv1jLoiiiMO9YwCSnzKdblgGqM+ePw4QCaAcpzuoo4PV9PNpUJUSWP6i3Bq5BDbkcOfE5ONUEliEGtkB0noGKHdKYJLg8PlFONyRl8z6/CL/eUQqgZUGCaBkczlMkPlFwOGe/DNO1xoMQjnsg+rh3jF0jzphd3qh1wmYUZ38epB0Ul8mvWfY4N18gARQjsN+odWXWVAk2+vjUX4R5yusnBMeJmUXT69fjLurKd9wRSmBsS4wrb8euRKCthj1/DWONg2aBaCBKA6QNfC+TXYWjNmg46I30gehU0PSNvaGMhJA2WJWTQlMeh3GXF68cUAaEzC9skjzC5unyAtsu0edeTNwlwRQjsMcoHpbQABNFJAAEkWRf9ItMof+ArEY9fw1GcyjurUScr4LbCw3BBAAlMfJ3UwECaDwnwcQWgJL1gESBCGoDDb5Z9wxIE2bnl6lbbchnzHqdZhTJ5W7/vT+aQDA7Fptl78AoLbUDKNegC9olEKukxEB9OSTT2LGjBmwWCxoaWnBu+++G/P4F198EXPnzoXFYsHChQvx6quvhtwuiiLuvvtuNDQ0wGq1oq2tDYcOHeK3Hz9+HKtXr0ZzczOsVitmzZqFe+65B253fl0ERVEM2evD9sgUkgM04fGBVbfYxT2YQs0BRQtB50IXmNvr5w6V1kPQQFAOKEorPPtAYjHqoIswVC/YuUxFJxDbCB9JkB2Xhy3OqEpuqSeRHPMbpJUa248NAgAXRFpGpxN4Gez08ESWzyY1pF0AvfDCC1i/fj3uuece7Nq1C4sXL8by5cvR29sb8fht27bh2muvxerVq7F7926sXLkSK1euxN69e/kxDz74IB577DFs2LAB27dvR3FxMZYvXw6nU3JDDhw4AL/fj//+7//Gvn378JOf/AQbNmzAnXfeme6nm1GGxj38QldrMwc5QOm/uJ0cHA+x9rOFwxXYeWWJYCEzq//U0HhGzyvbRBuEGOgCy/7PLhos1K7XCTkxNC9e51WsGUBAILgMpGY2jy3KOoxxt5d/cicBlF3myQKIfXibU1uaxbNRTmOZVAbrJAGkjEceeQRr1qzBTTfdhPnz52PDhg0oKirCL37xi4jH//SnP8WKFStw++23Y968ebj//vtxzjnn4IknngAguR6PPvoo7rrrLlxxxRVYtGgRfvnLX6KzsxMvvfQSAGDFihV46qmncPHFF2PmzJn4h3/4B3zrW9/C73//+3Q/3YzClqBWFptgNuh5i220MGaqONI3hk//+A2sePStrP9DGGflL6M+4qfrOXXSL5aPewqrM84VJQTNHaAYu6KyDWuzrSgyRvyZao14+8BidYABYQ5QCobhRRNkbNlqmdWIsiLtC8t8Zn5j6FLVXCiBAcCUCkkAkQOkALfbjZ07d6KtrS3wDXU6tLW1ob29PeJ92tvbQ44HgOXLl/Pjjx07hu7u7pBjysrK0NLSEvUxAWBkZASVlZVRb3e5XBgdHQ35o3V6wnb6FGeoBLb39AhEETg+MI4v/nc7DvdmT1ywUk5xhPIXAJwhW8sf94xl7Jy0AB+EaIyWAdKuAzQcZbK3VrHFywCxEliUrfapzAAFP174ANDj/ZIAmkH5n6zDHCBAcq9nabwFnsGC0KeHSADFpb+/Hz6fD3V1dSFfr6urQ3d3d8T7dHd3xzye/VfNYx4+fBiPP/44/uVf/iXquT7wwAMoKyvjf5qammI/uSTpHnEmXZbpYyPU5dxApkpgncOBNshTQxNY8ejbeODV/RHnjqQbJvaiCaAzZQfoUIE5QHwOULgDlAO7wNhy24occSnY+IV4IeioJbAUzgECAu7C24f6Qr7Olq1Op/JX1imzGrmYmFphjTggU4uwc862858q8r4L7PTp01ixYgWuvvpqrFmzJupxd9xxB0ZGRvifkydPpu2cPD4/vvDE33DJo28nlaNhSz5ZUNSaoTb47hHpzf9PS6fic3Nr4fWL+O+3juLlDzrT+n0jEXCAIv8CYSWwExrJLGWK6KswpNdJ2wIotxygePvA4mWAKktMMOoFFJn0Kel6u3RBAwDg70cH+b4pQHJsAXKAtAITqrmS/wGAxnIqgSmmuroaer0ePT09IV/v6elBfX19xPvU19fHPJ79V8ljdnZ24rOf/SzOP/98/OxnP4t5rmazGTabLeRPutjfNYo+uwt2lzepNQ2D4ywrIf3SzNQcoE45e7R4ahl+ceMncEOrNOq+/chAWr9vJMblUg7rgAunusSEiiIjRBF84mohEG0OUPAgRK0OhxweD2SAcgGWAYq2D4w7QFE+5ZeYDfifVcvwvzd8IiX7uaZVFWHBFBt8fhF//Sjwe7Jj0CHfTg6QFvjkrCoAwLnN0aMZWqMxqASm1d8fakirADKZTFi6dCk2b97Mv+b3+7F582a0trZGvE9ra2vI8QCwadMmfnxzczPq6+tDjhkdHcX27dtDHvP06dO48MILsXTpUjz11FPQ6bRjdu06McT/P5mZPWxWCtvSG2iDT++n+64RNkxN+sfwqTnSgsP3jg+m9ftGgs2zKY5ycREEoSCD0PGWoXr9IhdJWiNQAssxB2gi8oeZCXf0KdCMC8+sRat8QUwFl8gu0KsfdvGvUQZIW1zfOgO///r5WH1Bc7ZPRTGsBOZw+zCq8XU6Ski7Kli/fj3+53/+B8888wz279+PW265BQ6HAzfddBMAYNWqVbjjjjv48bfeeis2btyIhx9+GAcOHMC9996LHTt2YN26dQCkC9ptt92GH/zgB/jTn/6EDz/8EKtWrUJjYyNWrlwJICB+pk2bhoceegh9fX3o7u6OmhHKNLs6hvn/J+PWDGXJAWLdZw3lUvh66fQKAMCRPkfGN6+zIYjRMkBAIAeUC0FoURSx7Ug/7n/lI/woiVxV1GWoQU6ZVstguVoCSzQDlA4uXSgJoG1HBtA/5oLL60On/MGFMkDaQK8TcM60ipS4fpnCGlSmVRKE7hgYx97TI+k+rYRJ+zb4a665Bn19fbj77rvR3d2NJUuWYOPGjTzE3NHREeLOnH/++Xjuuedw11134c4778ScOXPw0ksvYcGCBfyYb3/723A4HLj55psxPDyMCy64ABs3boTFIl2QN23ahMOHD+Pw4cOYOnVqyPlowbbb1RFwgJLJpQT2JUm/gHkIOo1ZF5fXx7cYMweootiE2bUlONw7hp0nhvD5+XWxHiKl8BB0lBIYEOgEy4Ug9ONbDuORTR/zv180txYtM9U7Ay5f5DZ4nU5AsUkPh9uHMac3JV1HqWY4x0LQrKU83hwgizFzF7rm6mIsmlqGD06N4MGNB/Avn5kFUZR+R6Si1Z4oXBrLLRh0uNE5PDGpnT+YcbcXV/7XOxiZ8GDLNy9EU6X2nMeM/Itct24dTpw4AZfLhe3bt6OlpYXftnXrVjz99NMhx1999dU4ePAgXC4X9u7di0svvTTkdkEQcN9996G7uxtOpxOvv/46zjjjDH77jTfeCFEUI/7JNr12J9/HAyTpAIVtzLYa09/izNwfs0EXcoH6xAzJBdqR4TIYczHC12AEw0pgB3NAAP39aGiOqifBkfMuT+RBiEDwMERygFJBsiHodHH35fMhCMBvdpzCHb/7EIDk/giC9mcrEdqFd4KNxHaAfrvzFPrH3PD4RGz9uC/msdkid7y3PGHXieGQvyfj1gyGOUCsEyqdbfBsE3BjuTXkF+my6VKQL9M5oHH5Ih5pDQbjDFkAnRqa0OxFn8GC2lPlgWN9CQogty9yCQzQ/j4wJuxzxQFiu8DsTi98EUqW8eYApYtlMypx/XlSg8K7xwdh0Am45cJZGT0HIv+YUi45Ocf6HVGP8flF/O/fjvG//+0QCSACwO6g8heQeAnM4/PzEBp3gFgGyONLm9vFAtD1ttBt0p+YIQmgD0+PZLTdfCxOFxggTcquleerHOzWrgs06vTwVQUtzVLZq38sQQHklV6XSMs3mVs2rtGxADwEnQN7wIDQVRaROsGykQFi3L78TCxuKsfipnK8tPaT+IfFjRk/ByK/WDS1DACwOyjLGs7r+3twYmAcBnmS+7YjA5rcIE8CKMPsChNAiZbAWJlAEAIWPBMBooi0dfh0hQWgGU2VVpQXGeHxiTE/GaQa1vFWEqMEBgQmr+7v0u6Eb+b+1NnMmFkjBVUTdoCihKABoEgulY5rcBq0zy/yHVblOeIAGfU62OQBk5EEazYFUKnFiD+u/ST+uPaTWDClLOPfn8g/WNPLvs7oH3Zf3HEKALD6U80osxphd3rxgQbD0CSAMszCKeWY12DDWXJ4LNE2+CGHfJGwGqGXVXbwL9h0lTe65CnQbCkeQxAENFVI1uipDI5JZ3vPYjlAQG4JoNm1JaiRw8kJO0AxSmDcAcrA0ly1jEx4+IJINmE5F2DraHojCFZnnDlABJFLTK2woqbUDI9PxJ6Tw/jqM+9h1S/eDSn/spEjF55Ri/Pl8Q5/O9SflfONBQmgDHP3F+bjtVs/FRBACZYhBhzSL9rgybF6ncA7TdLVCs9LYGWWSbex3EomN6874kyCZsxrkHJAWhZAR5gAqilBdan0c01UALEQtDlCi22mxiUkAnM2S8yGiOJNq9TaJMHaa3dOuo1ngLLgABFEqhEEActkF+jR1z/G6/t78dbHfTjSJ/3+cnp8/Bowq7YYF8ypBkACiAiCORbJOkDho/P546Yp3xEIQUcXQJlclOeIswyVMV92gA5027Oys0wJwQ4Qa09PNgQdvgwVCB6YqT0BFFiEmhvlL0ZtqewAjWqrBEYQ6YCVwf5+NND0wj5cnhgYh18ESi0G1JSY8clZkgDac3KYl+a1AgmgLME+DSZ6ERqM4AABgV+y6XOA5AxQWAkMAKZmpQQmt8HHKYE1VxfDZNBh3O1Dx2DmHCo1HJY/Qc2qLeFLMQfG3AkJNp4B0k++6AYcIO2VwKIJe63DQvaRSmATshtHAojIF5gACuYjWQAxJ2hWTQkEQcD0qiKUWY1w+/yam8ZPAihLJDu0cDCqAyRf3NKQAXJ5fbz1PrwLDAgqgQ1nTmCwIG+sNngAMOh1fCK0FstgTo8PJ2VhNru2BFVyZ5/XL2I4yoC9WMQMQWvYAcq1GUCMmhgCyOmmDBCRX5zVWMY7TNmw1f1dkrhhpXzWyCEIAu8c++CUtoLQJICyBPs0mGjLePgaDEaROX0XNzboTa8TIpYosuEA8UGICi4uWs4BHet3wC8CNtk2Nhl0/DVOJAfEhHXENngNO0C5NgWaUctC0KMRMkAeygAR+YXJoMOn5GzP2s/OBgAckH+vHpW7gGfVlPDjF8odiB+eHs7gWcaHBFCWsCR5EQqswQgTQMb0zXjhn86txojTZKfIDtDwuAd2p3rXQi1en5+3+8fLAAGBTrB9ndoTQMH5H/bashxQv8ockNfn5wK41DL5dcmFEHSuLEJlsBJYpMzWRBZWYRBEunn46iV49d8+ha9+qhmCILmfA2OukBIYgxwgIgQmVFg+QC1D0QQQK62l4dM9y2eURfl0XmI28E/up4fT7wIFi7x4XWBAYFr1mx/34XgGZxUpIVgAMVgrfJ9KByh42nWpZfLPipXA0rkyJVHYEMTcC0FHL4Gx4Yi2CD8LgshVyoqMmN9oQ7HZgOnynq/9XfZAN2ttYOnuwqnlAKRBtJkclBsPEkBZwpqkUBmMJoDM6bu4jUzE/3TOy2CD6RdArAPMoBMmLf2MxMKpZfjsmTXw+kX8+K8H0316qmAB6GABVB3DVYiFXZ4QbjHqImaAijU8B2g4Vx0guQQ25vKGzOByenzcpcw1UUcQSmHu+taDvXC4fdDrBEyrDAigxjILqopN8PpFTUUQSABlCWvSIejYJbB0tMEPKchnZHIWEBN5xWaD4gWP314xF4IA/PmDLrx/cjiNZ6eOIxEcILa1W60DxCYpR3J/gPR3CibDUI62wZeYDdx9DXaB2PPR64S4QX2CyFXm1ksC6NUPuwAA0yqLQj58BQehP9TQRGgSQFmCXYQSmQMkiiIGo3xStqYx4Mp+mZfFmNAbEECZc4CKVXTXzGuw4Qp5H9Ifdp9Oy3mpxecXeXBwdk0p/zrrLOq3u1U9HnOAIuV/gEBeSpsOEBPZueUAAUFlsKAgNHs+0XJzBJEPsAaTTnlMyqya4knHsDKYlnJAJICyRCCro14AOdw+3uZcVRKlDT4Nn+5HFDlAmesE4zOAVH6yXiYvbs3kxOpYnBwch9vrh9mg40FyICgErdIBCgigyD8nCkGnBz4MMcgBGs7RTBNBqOHTZ9RgxVn1aCizwGrU47JFDZOOWcQ6wTQkgMiTzRLWJEpVrMPKoBMmDVdjn+4TnTAdC35xijGkbkp55mYBjQeVwNTAzrFzeHLLcjY4zOdmlPC9bkDAAVKfAWKh28ivi1bnAImimLMhaACosU0OQg/n6FwjglCDxajHhuuXApD+HUdyOxfKJbBDvXaMu71xh9dmAnKAskQyk6DZnieLUT/pjcYEkSMtAkjuArNGvzg1yd0AJ/rHIYrpXTnBHCA1JTAAaGQCaCRz84piESkADSDhhajxSmBanQMUy9nMBeq4AxRUApvIzblGBJEo0Uq9dTYL6mxm+EXtjCIhAZQl2EXI5fWrXnXAukpiDblLRxv8iIJ8xozqIugEwO7yRmwJTiWOBB2gBnmP2fC4RxMi4HDQEtRg+DoMhztk03I8mANUao5dAnN6/KoeN90Mjkluidmgy8m1EWwhat/o5BB0rNwcQRQKC6eUA9BODogEUJYIHovv9Kpza5wxpvxa05jvCOQzon+aNRv0mF4lBeDYhT1dJBKCBqR5LKWyaNJCGSzSDCBAygAZdAJ8fjHilvFojCoMQQPpW5qbCAPyfruqYlNOBoYjzQIayeGSHkGkGt4Jdmo4uyciQwIoS1gMgYu2WrHCHKBIo/WL05jv4CWwOL/M2QTQtAugBEPQQMAF6szAwMZYiKIYsQUekFqn2XmqCZXb47TBmw06MH2Rjp1xicJHO+Rg+QsIhKB7InSBUQmMIIImQmukFZ4EUJbQ6QQ+Gl9tYNklO0aRF12mJ98hiqKiQYhA4EKeKQcokfkqLAfUleUcUJ/dBbvLC50glQ/DYYHt0yoEEHOAbNbIr4sgCGkVyokSWO9izvKZJAYbAdExOM5Li7wERiFoguA7wY72OTKyLikeJICySKKdYE5PdAcoXSUwh9sHj0/6pa4ZASQ/RyWLUMNhAuh0lktgPXJepLrEDLNh8vNgYwXUrBaJ1wYPBN4nDg1koBjMAaqK0WWoZZrk4W8ur5+PWKAQNEEEqCox8w91e09nPwhNAiiLsDbARB2gyCHo9LTBs91jJoMu7lJHLoD60iuAxnkGKAEHqEwbJTA2tTlaZx0fK6BiZlGgBBb9dSlOYg5Vuog23TxX0OsEXv491CO993kbPIWgCQJAwAXaq4EyGAmgLMKEhFq3hjlA5ggOULqG3I0EfZKNF1BlU0D77C5+v3QQL+wbC62UwNjrE1UAJTBZO14bPABY2UJUEkApZY4s/g/1MgFEIWiCCOaMemlq9JE0f0BWAgmgLMLcGrXbcZkDZInVBu/xqW6vj4WaCb2lFiPq5eWQkcpgfXYXbnzqXbz8fmdS55TMkLmGMm0MQxyNI4BYrkRdCSz+9vHiNI5LSJRcL4EBwQLIDlEUeQmMBBBBSGQqIqEEEkBZJNEMkCumA5SeFudhBUMQgwm8ye2Tbvtl+3FsPdiHH/z5o6REWjKfrgPToCfSPrAxFswBskUTQOVyBmhI+Xkqc4DkDJBLOw7QQD44QHXS+/5I7xgmPIHBjjQJmiAkWIWAHKACJ9HAsjNGBig4n6PWWYrFsModTdFUviiK3PnpGXXhveODiZ/TRPzBjNGoKzNDEKSRAsx5yAbxSmD1ZRZ+nv1j8c/T6/Pz91OsEDTvAtPQHKBBNgcoR9vgAWB2rWTvH+od42MjjHpB9awqgshXZlZL14ahcU9Wf/cCJICySrIOUKQwsiAIvD2ezQtKBWp3NM2UVf6JgdDw7r7OURwP+tqfEiyD+f1iUAlMvQNkNuj5stFslsFYCDqaA2Qy6PiKBSVlsLGguT6xHCCeFdPSHKCx3G6DB4DpVUUw6gWMu334SB73X2bNzcGOBJEOrCY9d+CzXQYjAZRFrAnmMAIOUORPleY0CKBAuUnZp/NIm7EBcPeHdWG9trcbHp/687S7vGDVM6VluXC0sBNsZEKe2RNDrEytUN4JNio/nsWog1Ef/Z93kVlbG+GdHh8PZOdyCcyo16G5WhL/O2R3k/I/BBEKqxBkuwxGAiiLBASQOgEQywGSvs52PaWjBKbsl3mkTeaiKOKVD7oAAHdcOg9VxSYMOtx453B/wudjNeojzkNSwhQNTIOOF4IGAp1gSoYhjioIQAPBG+G14QAxK9yoF2KKwVxgjlwGe1cWQDQDiCBCYeMijpADVLgkXALjy1Az5wANqSw31QYJIBbePTEwjtPDEzAbdPj8/DqsWFAPANh6sE/1+aSivZh1gnWNZK8EFi8DBARNg1Yg1JQEoIH0jUtIFCaAKopyv1zEPt2yOSe0CJUgQplVq40gNAmgLJLo5nZXjGWowV93pdIBmlBXAmMOkNvn52WZ4wMOAMCMqmJYjHqc21wJANh9clj1+Qwl0QLPaFQhLNLFaJwuMCAwDVrJLKB4e8AYWhNA+dABxvj8/DoACJqcTg4QQQTD90WSACpcLEk6QNFKP8wZSqUDxLdaK8zbWIx6Xspgm8w7BqUMy7Qq6YJ+dlMFAGB/5yifbaT4fCbUnU8kYk2Dfm57B1of2ByxjT+VxJsEDQCNKkp1yh0grZXAcr8DjLFgShk+Naea/50yQAQRCnNJTw1NpDSqoRYSQFkk0U/hsVZhAIFsUCrfWLxUo+KXea08DJHlgFhH2PRKSQA1VVpRWWyC2+fHvk51e2HYao6K4iQEEJsGHdYF5vb68fBfD6JrxIm/ftST8OPHQ1owG98Bqi+bvGU8GkqGIAIadIDyoAMsmLWfnc3/n2YAEUQoVcUmlFmNEEXgWL8ja+dBAiiLWBMMK8dahgqk3gEKnmirpuOqRm4z7w0XQLIDJAgCzm4qBwDs7hhWdU6B80m+BNZjd4Z0om050MNLMmq2sKvF6fHzMkms15VN1R4a98R9r6h3gLQhgPJhCnQwLc2VWDpdcjhZFx9BEBKCIOCsRhvm1pdm9XdQbrdb5DhWU6IlsDgZIGNqQ9AOtw8+uedczVLHWltoJ1jHoKT0p1UV82OWNJVj84Fe7FGZA2Ih6GTyFVXFJpj0Orh9fvSMOnnW5vn3TvJj1OzgUgtzf/S62IPyyqxGmOUt472jLl5CjITdpS4E7dDIHKB82AMWjCAI2PCVpdhyoAeXLmzI9ukQhOZ49qstWW94IAcoizAHKPFlqHFC0CpzNdFgF2qTPv4m+GACDpAToijyDBArgQHA2dOkT8m7O4ZUnVMyQxAZOp2ABp6vccr/ncBbHwe60tIZkOblL4sh5i8CQRB4Gaw7ThlMaQi62JyY+E4X/WP5JYAAqRHgmk9MizmPiSAKlWyLH4AEUFYJzAFKdBlq7BIYE0rJwgLQNmv8TfDBBDtAvXYXnB4/dEJgrg0ALGoqgyBITktf2NDEWAypHMwYjYawIPRf9nXDLwa1nqvYwaUWJQFoRp1NmQAaVVkC08IusJEJD9qPSLOgWHcIQRBEuiEBlEUSHVjI5wBFHYSYWgdoeCIxtyV4GjRzfxrLrSGfiG0WI7/ofXBqWMU5Jd8Fxs4HCEyDZjml5WdJM4omPL607asZUbFgluWAeuLMLOJt9QpD0FrYBv/8ux1wuH04o64E582szPbpEARRIJAAyiImWQiwIKxSnJ54qzDkEHSKHCAl04ojETwNOjwAHcxZjTYAwIFu5S3nI2wydZIlk+Ct8EBg3cSs2mI+zDFdZTAlHWAMpSUwNh8pXimpxCw7QO7AxvJs4PH58fS24wCAr14wUxO2OEEQhQEJoCyS6NLSwBygeBmgFJXAEhRATED02l3okIcgTqssnnTc3HpJAO3vUt4KP6RyLlE0+DRoOQN0clASO1MrilStoEiEeItQg+ElsDgO0JBD2YTsiiITF+BK2uvTxasfdqFrxInqEjOuOLsxa+dBEEThQQIoizAB5FZZqorrAKW6BKaiVBMMc4BGJjw4JO98ieQAzWuQdicpFUA+v8jFQ7IZIDZk8PSwlPVhDtDUCquqCcyJoEZY1ivMACl1gHS6QLA6m6tAfrvzFADgupZpUd/PBEEQ6YAEUBZhn8DdKrahi6IYNwOU8hB0gg5QmdXIn+POE1KXV3AHGGNeg+QAHet3KMpDjU54ICa5CZ7RGFQCGx738I3kU8qtqnZwJcIo3wSvpAQmiclYDpDT4+MdhUqEIRN/XSPZWQXSM+rki3CvOmdqVs6BIIjChQRQFmEOkJoMkMcn8ot/tE/MqQ5BJyqABEHgLhAbhjinrnTScbWlZlQUGeEXgUM98XfDsAB0idnAX8NEYV1go04v9neP8vOxGPV8gJ0WHCBWAuu1O+H3R36/MKdOr1O2Ub2xjIm/7DhAL7/fCb8ILJ1eEXO2EUEQRDogAZRFmDvi84t80GA8nEGiJnoGKLWToBMVQECgDAYA1yxr4jtgghEEgbtASspgrMyTrPsDSPNy6uR2/b/uk9ZeMOEzhQug8aS/TyTUvK61pRYIgiSAB8cjd6Wx16WiSNm4ggYVO8bSwR92nwYArDx7Sla+P0EQhQ0JoCwS7F4o7cQJ7uwyRRmwFtgGn30BxMTFnNoS3PsPZ0U9jgehu+MLINY+nswesGDYyoKX3+8EENi+3lSR5hIYD0HHd2tMBh2qimOXwdh+NKW5KB4Az0IJ7EjfGPZ1jsKgE3AZTUomCCILkADKIsHzcJQKoEAAWhf1U36qQ9B883oCU5dvPL8Zn59fhw3XL+WDHyMxVw5CH+iK3wrPnA41azlisWy6NHuG7f9qqpSEAcsH2Z1e/hqkErXjBVgOKFrXFuuMq1QogAIjADJfAmM/50VTy/Jq+jNBELkD7QLLIkZ9QMAoDUIHWuCjiwlLiucAJeMAtc6qQuusqrjHzW9gs4BGIYpizBIOu9Cr2Uwfi2UzKkL+zhygIpMBVcUmDDjcODU0jjJrWUq+H0Pp0EJGvc2CvadHo3aCDalcD9KQxRA0ew4N5bQolCCI7EAOUBYRBCHQCq9YAMVehAqkzwFKReYmGrNrSyAIkrjpG4u9EmPQId1enSLnYF6Dje9lA0K3d7O2/eP9qc8BDat8XeviTINmJbAKlSWwoXGP6nUsydIti64G+TkRBEFkGhJAWcbMWuEVl8Bit8ADqQ1B+/1iRgSQxajnJZl4YiOwOdwc8zilGPU6nD2tnP+dOUAA0FwthbaP9cfvTlODyxtoWVcqWPhk7bFoIWiWjVL2eDaLgW+h78ywC8RmD7FZRARBEJmGBFCWMRrUCaB4i1CBgDukdsdYJOwuL2+7VzKxOBmaq6Up0fHExgDbHF6SuuzIMjkILQiB+TgAMLNGOqej/Y6UfS8gEOTWCfEXlzKqZGHDHLBwgrvAlCAIAs85dWU4B8SC3MyFIgiCyDQkgLJMYB+YugxQphwgllOxGHUxc0epYCYXQLEdIBZWTlUJDAA+0SwFoRvLrCHzlQKiLLUCaChourZOp2z/FXO8oi1nHUpgP1pD2DLYTEEOEEEQ2YZC0FlG7T4wlye+AxQYhJi8AMpE+YsxQ6EDFCiBpU4AXTC7GrcvP5MvZuXnVCWd0/EUC6DhcXV5HSDwfAeiCiCP6sdsLMv8LCC/X+SdbA0kgAiCyBIkgLKMSXUJTIUDlIISWKJ7wBJBqdsyIIekq1JYAhMEAWs/O3vS12dUS3mgoXEPhhzupLfPM/gyVxWdbNXy8x2IlgFyqCuBAZOXwWaCfocLXr8InRA6KJMgCCKTUAksyxhV7gOLtwgVCIgjZwodoFTN3InFTDlwfHxgPOq6B7fXj1GntEMrVSHoWBSZDNylODaQOhdoeFzd0EIg4ACNTHgilkwTKYGxvFMmS2A9I3IXX4k5ZBYWQRBEJsnIb58nn3wSM2bMgMViQUtLC959992Yx7/44ouYO3cuLBYLFi5ciFdffTXkdlEUcffdd6OhoQFWqxVtbW04dOhQyDGDg4O47rrrYLPZUF5ejtWrV2NsLLWdPKmA7wNT6QBFW4MBBELQPr8Ir4pFq5FgAijdAWhAWj1h1Atwe/1RL8jsIq8TgPIMnBMQKIMd60uhAEpguGR5kQlsPNJQ2DoMj88PuywM1ZTA0r3xPhJs7hCVvwiCyCZpF0AvvPAC1q9fj3vuuQe7du3C4sWLsXz5cvT29kY8ftu2bbj22muxevVq7N69GytXrsTKlSuxd+9efsyDDz6Ixx57DBs2bMD27dtRXFyM5cuXw+kM2PjXXXcd9u3bh02bNuGVV17BW2+9hZtvvjndT1c1ZpUOEBtuGMsBCg4rJ5sDGp5I3d6teOh1AqZXxS6D8Q6wYpPi8HCyNMudYMdT6AAlMs1arxO4uAkPQrNSpSCo+1mxJaSnhsYV76NLFjYEkQLQBEFkk7QLoEceeQRr1qzBTTfdhPnz52PDhg0oKirCL37xi4jH//SnP8WKFStw++23Y968ebj//vtxzjnn4IknngAguT+PPvoo7rrrLlxxxRVYtGgRfvnLX6KzsxMvvfQSAGD//v3YuHEjfv7zn6OlpQUXXHABHn/8cTz//PPo7OxM91NWhdoMECuBxXKAgneEJSuAklmDkQjxckADcgt4JtcnsO60VLbC831mKl9X3go/Fi6AAkJVr0IY1tssMOl18PjEjE2E7qIWeIIgNEBaBZDb7cbOnTvR1tYW+IY6Hdra2tDe3h7xPu3t7SHHA8Dy5cv58ceOHUN3d3fIMWVlZWhpaeHHtLe3o7y8HMuWLePHtLW1QafTYfv27RG/r8vlwujoaMifTMDWYagOQcdwgHQ6gYugZGcBjWQwBA0EiY0o5SbmfFRlIP/DSEcJjDtAKoUcE379YQ7QoMop0Ay9TuCTrzsG07P1PpxuaoEnCEIDpFUA9ff3w+fzoa6uLuTrdXV16O7ujnif7u7umMez/8Y7pra2NuR2g8GAysrKqN/3gQceQFlZGf/T1NSk8Fkmh9pVGMHLUGNhVtleHw21w/WSZUY8BygNQxCVntOJAQdEMTVlIt4FplJYss63wbB1IUMJOkoA0FQplcE6BjIjgCgDRBCEFqAWDJk77rgDIyMj/M/Jkycz8n1NspOjvg0+9lDCVO0DC7RrZ0ZwMLflRJS8DSuBVWWwBMYcEofbh9EJb0oecySBmT1AwAEKzwANJTBXiMH2nWXcAaI9YARBZJG0CqDq6mro9Xr09PSEfL2npwf19fUR71NfXx/zePbfeMeEh6y9Xi8GBwejfl+z2QybzRbyJxOY1IagFSxDlW5PzUb4RAb2JQML5Z4enogYys1GCcxi1HPhcTpFAwPVbm5nsNb/8GGI7HVJRKhOkx2gExkQQKIoUgiaIAhNkFYBZDKZsHTpUmzevJl/ze/3Y/PmzWhtbY14n9bW1pDjAWDTpk38+ObmZtTX14ccMzo6iu3bt/NjWltbMTw8jJ07d/JjtmzZAr/fj5aWlpQ9v1RgMqjLALFlqPHWUphTNA06kYF9yVBvs8CoF+DxBS6UwWSjBAYE5uWkIigsimJCbfBAYBhiuAPUw0WFemHIBNDJDAig0Qkvfw/XkQNEEEQWSXsJbP369fif//kfPPPMM9i/fz9uueUWOBwO3HTTTQCAVatW4Y477uDH33rrrdi4cSMefvhhHDhwAPfeey927NiBdevWAZAm9t522234wQ9+gD/96U/48MMPsWrVKjQ2NmLlypUAgHnz5mHFihVYs2YN3n33XbzzzjtYt24dvvSlL6GxsTHdT1kV6neBqXOAkglBi6IYKNVkqOQkhXKjZ1IGuAOUYQEkdyylYmXEhMfHBa9ax4avwwjrAkums2paBktgfXJ2qdRiSPtuOYIgiFikfRXGNddcg76+Ptx9993o7u7GkiVLsHHjRh5i7ujogE4XuJiff/75eO6553DXXXfhzjvvxJw5c/DSSy9hwYIF/Jhvf/vbcDgcuPnmmzE8PIwLLrgAGzduhMUS+ET57LPPYt26dbjoooug0+lw1VVX4bHHHkv301VNwqswMhCCHnf7eGkuUyFoQArlHut34OTgOFpnVYXcNpgtASQvDT2dgpURzFUz6gUUm9SJgMA+sNAQdDLB4iZZcA6PezAy4Ulrx1+fXTrvmhJagUEQRHbJyC6wdevWcQcnnK1bt0762tVXX42rr7466uMJgoD77rsP9913X9RjKisr8dxzz6k+10yjdhlqYA5QnBKYIfkQNMupmPQ6WDP4aX1aZfS27HTsAVMCXxmRAgcoeA2GIKgb5lgVZSN8Mq3lxWYDqkvM6B9z4eTgOMqmlKl+DKX0yz+/atoBRhBElqEusCyjdheYUgeICaRkQtDDQfkftRfqZGCZlHABlOk9YMEwBygVGaDhBFvggYDwG57w8DUnLq8P/XJJrDHB4YJMdJ5Icys8OUAEQWgFEkBZRv0kaIUhaANbiJq8A5SpDjAGD+UOhV6Ms7EHjMEEUGcKSmDDCbbAs/sIAiCKgVIaWy5qNugSDqsHOsFSN+wxEswBoi3wBEFkGxJAWSZtIegUOECZ7gBjsBB0eFdSNvaAMZiz0j3qTHpnFhNyZQm8rnqdwMUfK4MF538SderYDrbjKVz3EQnmAFVnuIRJEAQRDgmgLGNW6wC51WaAkimBZckBkruS+sfccLgCgwfZBT+Te8AYNaVmGHQCfH4RvfbkXKDhJKdrhwehUzFXZ2ZN7BUkqYIcIIIgtAIJoCzDM0BhQkUURfz09UP48wddIV93yAKo2BxbAFlSMAl6yMFa4DPrANksRu46BZfBsrEIlaHXCVxgJBuETqYEBgTKccf7x+XzkQRQovkfAJhVUwIgtQtfI8Ha4KspA0QQRJYhAZRlou0CO9I3hp+8/jG+98e9IV+fkAVQkSl2A19gDlAyJbDEpwsny7QI+6lYCawqSxdPJjCSbYVnpcVESmAAsFDu0vrw9DAAoFsugSXjADXL+84GHW7uUKWDfrv02OQAEQSRbUgAZZloIWh2sR90uPltbq+fC6XiuAIoeQdoZCLxBZvJ0hShEyxbM4AYfBp0kg4QK6El+jwWTZUE0PsnR6Tz4UMQExdAxWYDv/+RNJXB/H4x0AZPDhBBEFmGBFCWibYLjIkPIODEMPcHAKxxBujxXWBJZIC4A2TNogM0qI0SGBDcCZa4APL7Rew5OQwAOKsxsXk7i6aWAwAO9tjh9Ph4BiiRKdDBBHJAY0k9TjRGJjzwygHyTM9xIgiCCIcEUJYxRnGA2LwbIBAcHfdIXzPqBe4cRYPvAsvBLjAAaJa7ko4FZVKyXQJrSME06CN9Y7A7vbAa9ZhbX5rYeZRZUF1ihs8v4qOuUZ4BSna56MzqEvkc0+MAsfxPmdXIBTpBEES2IAGUZcxRQtDBDhAr/ThcyvI/AGBJwRwg3q2UBcelOUJXUrZLYFNSsBB1V8cQAKmMZdAn9s9PEAReBtt5fIgL5GRKYED6HaB+O3WAEQShHUgAZRnm5ITPARoNEkDM+Rh3Sw6Qkv1RKZkD5EiuXTsZZsqh3M6RCb7+YyCLbfBAakpgu04MAwDOnlaR1LkwAbTpox4A0vso2ddlZpo7wQIdYFT+Iggi+5AAyjLRQtDBDhAvgckZoHj5HyD5ELTXF1g7kY0usMpiE2wWA0QxsJ5hIMsXUJaxGRr3hOSx1MAcoHOmlSd1LovlHNC7xwcBAFMrrEmvK2Gi88SAg6/ZSCV8DUZpck4VQRBEKiABlGWi7QIbdQY5QI4wB8gcvwSWbAg6WIBleu0EIJV5mpkj0TeW1T1gDJvFgBL5te9MoAw2MuHBoV6pvHTO9OQcoIVTAwHqErMBd14yL6nHA4Ap5VaYDTp4fCJODSW/8ywctq+MHCCCILQACaAsE20bfGgJTPrkHMgAqXCAPIk5FSwAXWoxJJxVSZZZsiNxtN+R1T1gDEEQktoKz7q/plUWJd0GXl1ixi0XzsKV50zBpvWfRtv8uqQeDwB0OoHPAzrcm/ocUB9lgAiC0BDxrQQirUTbBTY6MXkFhNIhiEBgVUaigxCztQYjGHYxPtbvyOoesGAayqz4uGcsIQH0u52nAADLknR/GN9ZMTcljxPMvAYbDnTb8VHXaEpEVTA0A4ggCC1BDlCWibYLLDQDJHeBySUwJQ5Qkbwqg91HLYF1DdlxW4DgTrCxrO4BCybRrfC7Oobwp/c7IQjA6k81p+PUUsJZjTYAwL7OkZQ/NpvjRCUwgiC0AAmgLMMyQH4RIcHT0AxQaAg63hRoQJq1AoQKKTWMyUtISyzZMwnZXJpj/Y6sD0FkTEmgBCaKIu57+SMAwNVLpyY8ADETzJcF0N7Toyl/bFbCLbVkT1QTBEEwSABlmeCBhsFB6JEIbfBsM7qSLjCbfJEZc3nhl6fvqoF1j1myOLBuRrU0DXpo3MOH81VlKQDN4A6QihD05v292HNyGEUmPb518ZnpOrWUwMTZ6eGJlO8EY6JaiYNJEASRbkgAZZlgAeTxSkLF4/NztweQnJ8Jty/gAMXZBA8ANqvk3IgiYHeqL4OxUDabKJ0NikyB/VQ7T0jt3tleocBa4dWUwH7xzjEAwFfOm45am7ZbwMusRjRVSs/xo87UukDjzFVU0MVIEASRbkgAZRmDTgAb3+LySQInuAOMhaQHHC7eBq8kBG026GGRxUtwOU0pbIBitlcWzKmT1kW8d1yan5P9ElhgGKIoxnfW9neNYtuRAeh1Am44f0aazy41nNUguUD7UiiA/H4RDhUhfoIgiHRDAijLCIIQmAUkuy5s3k2J2cAdj4ExN7+AKJkEDSSXA2IlMHOcnWPp5tIF9QACr0221mAw6srMEATJIWPB7P4xF473O0IE0e92nsIVT/wNtz6/GwCwYkE9F09aJx1B6ImgcQzkABEEoQVIAGmA8H1gzAEqsxoDAsjhUtUGDwRyQKMJCSDmAGX3LXLZogbuZAHZW4TKMBv0vI27c9iJgTEX2h55Exc+tBVn378Jz24/AQD42VtH8f6pEXzcI83T+edParfzK5yzpjABlDoHiHUjCgJCfp4EQRDZgn4TaQC+DkMOQTPHptRi4KHf/jE3D0EXKcgAAYAtKQeIZYCyWwIrtRhxyYIG/vdsl8CA0CD009uO85EBw+Me/O/bx+D3izg+IIW2v3LeNNx/xVlJr77IJCwIfaRvjJddk4V1gBWbDEmv7CAIgkgFJIA0AF+IKoegWWYnxAEac6tqg2f3D348NbAJ0tl2gACpdZyR7RIYEGiF37y/B09vOw4A+N7l8wEAJwbHcXJoHC6vHwadgHu/cBaub52RUxf92lIzakvN8Iupc4GYeFcS4CcIgsgE2b+6EUEOkCQ6mGNjsxp5uWUwKAStpA0ekHZXAaFTpZWilRIYAJw3swqfmFGBGVVFmFZVlO3TwUVzpQnJv9lxCnanF7NqinHj+TNQbNLD5xex9WAfAGBaVVHW1ogkgyAIWNJUDgB4X17fkSxcAFEAmiAIjUC/jTQAC0G7eAZIuljYLEbueCTjACVVAstyFxgg7ah6/uZW6ARowkm5aulUONxe3POnfRBF4JYLZ0OvEzCrtgQfnBrB6/t7AADNVcVZPtPEWdxUjr9+1IPdKRJAgREO9CuHIAhtQL+NNIApLAQ9EhSCZg5Qj92ZcAYooRIY6wLTSGBVn8X9X5FY1ToDc+ttONo3hivPngIAmF0jCaC/Hx0AAMyozl0BlHIHSMUaF4IgiExAAkgD8AyQLzQDZLMa0CDnTbpGnLyVOCMOkEc7JTCtcm5zJc5truR/n1Urre5gP8fmHBZAC6eWQRCAU0MT6B9zJb3A1EFDEAmC0Bh0ddMAJkN0B6hRnjx8amiCX1iVZ4BS0QZPn9iVMlsWQIxcFkA2ixGzaqTnkwoXiHWBFZEAIghCI5AA0gC8BBY2CdpmMaJeXgURvC1eaRmBrcPI5UGIuQQTDIxcLoEBwOKp5QBSJYBYCJoENUEQ2oCubhog3AEKHoRoMepDWr9NBh0PTccjkAFKvAvMkuU5QLnE9KoiGOSsktmgQ4PG937FY0mTNA9oz6nkJ0I7KARNEITGIAGkAQIOEMsAyV1gsoBhOSBAXYg0qRIYZYBUY9TruOszo6oYOo0Ft9WypKkCgOQAKdl7FgtygAiC0Bp0ddMA4Q7Q8Li0Y4qVsNgGckDdHJWU7ALTSBdYrjCrRhZA1dmfV5QsZ9aXwmTQYWTCg+MD40k9FusCIweIIAitQFc3DRC8DLV31ImhcQ90AtBUIV1EG8sSdIBkAeTy+uEMWkapBApBJwZzTRZOKcvymSSPyaDji1GTzQGNUwiaIAiNQQJIAwQ7QO/LeYs5taX803JD0BZxNReQUrMBbG6g2llAWpoEnUv88wUz8H+rz8VXPzUz26eSElgQek+SAog7QFQCIwhCI9DVTQOY+RwgP/+kvWhqwEFoCHaAVISSdToBpebE1mEEdoHRBUsNZoMen5pTkzfh8bPlJa5JCyAXlcAIgtAWJIA0QPA2+PdPDQOQVhEwQjJAKpdJJroRPrANnt4ihQxzgD7qHA0ZxaCW4G3wBEEQWoCubhrAqJfqVC6PDx/IJTB24QHCHCCVF5BENsJ7fX54/VLXD5XACpvpVUUoLzLC7fPjQHfim+EDIej8cMYIgsh96OqmAUx66aJwoNuOkQkPTHodzqwv5bfXl1l4lkftLqVEWuFdQZ/0qQRW2AiCkJKBiLQMlSAIrUECSAM0VUolru3HBgEA8xttvCwGSF1iNfIupoQdoAQFkIkcoIJnsZxHez+JgYhjLlqGShCEtqCrmwa4YskUfG5uLf/74qmTW6hZJ5j6DJAcglYxDZrNADLqBc1tYScyz7wGqRX+YLc9oft7fH6eH6JlqARBaAUSQBpArxPw0y8twZl1UtmrdVbVpGOmyNOgE3WA1ISgA1Og6dM6AcyVBdDHPXb4/OonQrMZQID69y9BEES6oN9GGqHUYsRvb2nF+ydH8MnZkwXQV86bDrvTixUL6lU9brVcOtt1YgiiKEIQ4js6NAOICGZaZREsRh2cHj9ODDgwM2zpazxYANqk11FJlSAIzUC/jTREqcWIC+ZURxQp58+qxv+tbkGzyg3j/7CkESaDDjtODOHtQ/2K7kOb4Ilg9DoBZ8ju5IEEymBsBlARdYARBKEh6AqX5zSUWXH9edMBAA//9aCipZaBGUB0wSIk5tYnIYDcNAOIIAjtQQKoALjlwlkoMunx/qkRRS4QbYInwjmzngWh1c8CGnfRDCCCILQHXeEKgOoSMy5f1AAAaD86EPf4wCZ4umAREswBSqQTLNACTw4QQRDagQRQgXDONGlL+Z6O4bjHUgiaCIcN5jwxOI5xt7q9cmwIIrXAEwShJegKVyAskZdafnBqOG4rM4WgiXCqS8yoLjFDFIGPe8ZU3ZeGIBIEoUXoClcgzKktRZFJD4fbh8O9sS9gNAeIiMSZ9VL7+6EedWUw5hiRA0QQhJYgAVQg6HUCFk6RVxrE2elEm+CJSEyrLAIAnB6eUHW/MXkQIrXBEwShJegKV0CwMtjuuAKISmDEZKbI61hODakTQLwLjELQBEFoCLrCFRBnN5UDAPbEE0BUAiMiMKVCEkCnVQqg/jEXAKCi2JTycyIIgkgUEkAFxJImqRPsYPdozE4e6gIjIjG1IrESWOewE0DAQSIIgtACdIUrIOrLLKizmeEXgb2now+0C8wBorcHEYAJmK6RCVVLUZlgaiQBRBCEhkjbFW5wcBDXXXcdbDYbysvLsXr1aoyNxe4+cjqdWLt2LaqqqlBSUoKrrroKPT09Icd0dHTgsssuQ1FREWpra3H77bfD6w24Gb///e/x+c9/HjU1NbDZbGhtbcVf/vKXtDzHXGQJL4MNRT0m4ABRCYwIUGezwKAT4PGJ6LU7Fd3H6/Oje5QcIIIgtEfaBNB1112Hffv2YdOmTXjllVfw1ltv4eabb455n2984xt4+eWX8eKLL+LNN99EZ2cnrrzySn67z+fDZZddBrfbjW3btuGZZ57B008/jbvvvpsf89Zbb+Hzn/88Xn31VezcuROf/exn8YUvfAG7d+9O11PNKVgZLFYOiFZhEJHQ6wTUl1kAKM8B9dpd8PlFGHQCakrN6Tw9giAIVaSlLWP//v3YuHEj3nvvPSxbtgwA8Pjjj+PSSy/FQw89hMbGxkn3GRkZwf/+7//iueeew+c+9zkAwFNPPYV58+bh73//O8477zz89a9/xUcffYTXX38ddXV1WLJkCe6//3585zvfwb333guTyYRHH3005HF/9KMf4Y9//CNefvllnH322el4ujkFd4BiTISmLjAiGlMrrDg1NIHTwxNYpuD4Trn81VBugV4npPfkCIIgVJCWK1x7ezvKy8u5+AGAtrY26HQ6bN++PeJ9du7cCY/Hg7a2Nv61uXPnYtq0aWhvb+ePu3DhQtTV1fFjli9fjtHRUezbty/i4/r9ftjtdlRWVsY8Z5fLhdHR0ZA/+ciiqWXQCUDniBO9o5HLGLQNnojGlHIpCK20FZ7nf8qo/EUQhLZIiwDq7u5GbW1tyNcMBgMqKyvR3d0d9T4mkwnl5eUhX6+rq+P36e7uDhE/7HZ2WyQeeughjI2N4Ytf/GLMc37ggQdQVlbG/zQ1NcU8PlcpNhswp1ba6xStDOb0kANERIa1wisVQNQBRhCEVlF1hfvud78LQRBi/jlw4EC6zlU1zz33HL7//e/jN7/5zSRBFs4dd9yBkZER/ufkyZMZOsvMsyTOPCBqgyeiMVUWMkpb4TupA4wgCI2iKgP0zW9+EzfeeGPMY2bOnIn6+nr09vaGfN3r9WJwcBD19fUR71dfXw+3243h4eEQF6inp4ffp76+Hu+++27I/ViXWPjjPv/88/jqV7+KF198MaSsFg2z2QyzuTBCmkumleOFHScVCCAqgRGhBIYhjis6ngQQQRBaRZUAqqmpQU1NTdzjWltbMTw8jJ07d2Lp0qUAgC1btsDv96OlpSXifZYuXQqj0YjNmzfjqquuAgAcPHgQHR0daG1t5Y/7wx/+EL29vdzR2bRpE2w2G+bPn88f69e//jX++Z//Gc8//zwuu+wyNU+xIGA7wfZ3Rc45sRC0heYAEWFMrQg4QKIoQhBiB5sDM4AsaT83giAINaTlCjdv3jysWLECa9aswbvvvot33nkH69atw5e+9CXeAXb69GnMnTuXOzplZWVYvXo11q9fjzfeeAM7d+7ETTfdhNbWVpx33nkAgIsvvhjz58/H9ddfj/fffx9/+ctfcNddd2Ht2rXcvXnuueewatUqPPzww2hpaUF3dze6u7sxMjKSjqeakzTJE32Hxj087xMMrcIgotFQZoUgAE6PHwMOd9zjmQBiwokgCEIrpO0j/rPPPou5c+fioosuwqWXXooLLrgAP/vZz/jtHo8HBw8exPh4wEr/yU9+gssvvxxXXXUVPv3pT6O+vh6///3v+e16vR6vvPIK9Ho9Wltb8ZWvfAWrVq3Cfffdx4/52c9+Bq/Xi7Vr16KhoYH/ufXWW9P1VHMOm9XA3Z2eCJ1gtA2eiIbJoENVsfRhI9J7J5hRpwd2pzSktIG6wAiC0BhpW89cWVmJ5557LurtM2bMgCiGjtO3WCx48skn8eSTT0a93/Tp0/Hqq69GvX3r1q2qz7XQEAQB9TYLjg+Mo3vEielVxSG30xwgIhbVJSb0j7nQPxbbAeqSO8DKi4woNtMmeIIgtAVd4QoUNtG3O5YDRCUwIgJsonO/3RXzuE6aAUQQhIYhAVSg1NtkATQSQQDRKgwiBjUlkgDqG4sjgEbkKdBlFIAmCEJ70BWuQKmL4gCJokjb4ImYVCt0gHpkcV1HAoggCA1CV7gChTlA4UFWr1+EX45mUQmMiER1iQkA0B/HAeoZlW5n7zWCIAgtQQKoQGFlifASGMv/AFQCIyLDMkDxSmDMXSQBRBCEFqErXIFSFyUD5AqaC0QCiIhEdQkrgcXuAmPuIpXACILQInSFK1BYF1iv3QW/PzCOYNwdmAIdb8ovUZhwAUQOEEEQOQwJoAKlpsQMnSBlfvodgQvZ0Lj0qb6yyJStUyM0DiuBDY674fX5Ix7j9PgwPO4BQAKIIAhtQgKoQDHodfxC1jMSEECD8nqDchJARBQqikzQCYAoBt4v4bDyl8Wog81KQxAJgtAeJIAKGD4LKKgTjH1qryg2ZuWcCO2j1wmoLI4dhGbZsjqbhUqpBEFoEhJABUxdBAHESmAV5AARMeCdYFFmAbH3VB2VvwiC0CgkgAoYvg5DntgLAEMOEkBEfAKzgGKXwCj/QxCEViEBVMAEBFBwCFougRVRCYyIDl+HEc0Bkt9T9dQCTxCERiEBVMDUlrJW+MklMApBE7HgC1GjZIB67FQCIwhC25AAKmAilTF4G3wxCSAiOvFmAbE9YFQCIwhCq5AAKmAiXcSGHFIJrJxKYEQMqkslgRwvBF1fZs7YOREEQaiBBFABwwfaOdx8GvQwdYERCojlAImiiF55ESorsxIEQWgNEkAFDCtz+fwiL30NUgmMUADL9nSNOCGKYshtgw433PKE6FobOUAEQWgTEkAFjFGv491e/WNuOD0+OD3ShYtKYEQsplUWQRAAu9M7aRo0K39Vl5hgNuizcXoEQRBxIQFU4AR38zAXyKATUGKm9QVEdCxGPRrLrACAo/2OkNvYFGhqgScIQsuQACpwgrMc7JN8RbGJ1hcQcZlZUwwAONYXKoC6qAOMIIgcgARQgVMdNNBumIYgEiqYWS0JoCP9YyFf51OgyQEiCELDkAAqcLgACiqB0RBEQgkza0oAAEejOEANcomMIAhCi5AAKnDYPJd+uztoDxg5QER8mmUH6Fi0DBCVwAiC0DAkgAqc4AwQ2wNGLfCEElgG6MSAA1657R0IHoJIAoggCO1CAqjAqSmZ3AVGJTBCCY1lVpgNOnh8Ik4PT/CvUxcYQRC5AAmgAifEAaISGKECnU7gZTCWA7I7PRhzeQFQCYwgCG1DAqjAYRmggTE3BnkXGDlAhDK4AJJzQMz9sVkMKKZZUgRBaBgSQAVOVbHkAHn9Io7LFzESQIRSWA7oaJ/UCk/5H4IgcgUSQAWOyaBDmVUqeZ0cGgcAVJaQACKUMa2yCADQKWeA+BBEaoEnCELjkAAi+DoMUQSmVxVhQWNZls+IyBUqZQeRTRFnJbAGyv8QBKFxSAARqA5yfL7/D2fBZKC3BaGMKvm90z8mCyAqgREEkSPQlY7gSy1XnFWPC8+szfLZELlElTwzKtwBIgFEEITWoTYNAl//7Gw0lFuw+oKZ2T4VIsdgQzMnPD5MuH1BGSASQARBaBsSQARm15bg9uVzs30aRA5SYjbApNfB7fNjwOHii1AbSAARBKFxqARGEETCCILAc0BdI05eCmuwURcYQRDahgQQQRBJwcpgH3WOAgAsRh1sVjKXCYLQNiSACIJICiaA9nWOAAAayqwQBCGbp0QQBBEXEkAEQSRFFRdAkgNEO8AIgsgFSAARBJEUbBjixz12ABSAJggiNyABRBBEUrAQtMcnAgDqSAARBJEDkAAiCCIpWAmMQQ4QQRC5AAkggiCSojJMAFEGiCCIXIAEEEEQSVFVEu4A0QwggiC0DwkggiCSgoWgGXVl5ihHEgRBaAcSQARBJEWwA2TQCaguJgFEEIT2IQFEEERSlJoNMOqlwYd1Ngt0OhqCSBCE9iEBRBBEUgiCwIPQ1AFGEESuQAKIIIikYTkgmgFEEESuQAKIIIikqZZzQA3UAk8QRI5AAoggiKSZUi61vk+vLs7ymRAEQSjDkO0TIAgi97m1bQ7mNdhw1TlTsn0qBEEQiiABRBBE0jSUWXHD+TOyfRoEQRCKoRIYQRAEQRAFR9oE0ODgIK677jrYbDaUl5dj9erVGBsbi3kfp9OJtWvXoqqqCiUlJbjqqqvQ09MTckxHRwcuu+wyFBUVoba2Frfffju8Xm/Ex3vnnXdgMBiwZMmSVD0tgiAIgiDygLQJoOuuuw779u3Dpk2b8Morr+Ctt97CzTffHPM+3/jGN/Dyyy/jxRdfxJtvvonOzk5ceeWV/Hafz4fLLrsMbrcb27ZtwzPPPIOnn34ad99996THGh4exqpVq3DRRRel/LkRBEEQBJHbCKIoiql+0P3792P+/Pl47733sGzZMgDAxo0bcemll+LUqVNobGycdJ+RkRHU1NTgueeewz/90z8BAA4cOIB58+ahvb0d5513Hl577TVcfvnl6OzsRF1dHQBgw4YN+M53voO+vj6YTIGR/F/60pcwZ84c6PV6vPTSS9izZ4+q5zA6OoqysjKMjIzAZrMl+EoQBEEQBJFJlF6/0+IAtbe3o7y8nIsfAGhra4NOp8P27dsj3mfnzp3weDxoa2vjX5s7dy6mTZuG9vZ2/rgLFy7k4gcAli9fjtHRUezbt49/7amnnsLRo0dxzz33pPqpEQRBEASRB6SlC6y7uxu1tbWh38hgQGVlJbq7u6Pex2Qyoby8POTrdXV1/D7d3d0h4ofdzm4DgEOHDuG73/0u3n77bRgMyp+ey+WCy+Xifx8dHVV8X4IgCIIgcgtVDtB3v/tdCIIQ88+BAwfSda5x8fl8+PKXv4zvf//7OOOMM1Td94EHHkBZWRn/09TUlKazJAiCIAgi26hygL75zW/ixhtvjHnMzJkzUV9fj97e3pCve71eDA4Oor6+PuL96uvr4Xa7MTw8HOIC9fT08PvU19fj3XffDbkf6xKrr6+H3W7Hjh07sHv3bqxbtw4A4Pf7IYoiDAYD/vrXv+Jzn/tcxO9/xx13YP369fzvo6OjJIIIgiAIIk9RJYBqampQU1MT97jW1lYMDw9j586dWLp0KQBgy5Yt8Pv9aGlpiXifpUuXwmg0YvPmzbjqqqsAAAcPHkRHRwdaW1v54/7whz9Eb28vL7Ft2rQJNpsN8+fPh9FoxIcffhjyuP/5n/+JLVu24Le//S2am5ujnrPZbIbZbI7/IhAEQRAEkfOkJQM0b948rFixAmvWrMGGDRvg8Xiwbt06fOlLX+IdYKdPn8ZFF12EX/7ylzj33HNRVlaG1atXY/369aisrITNZsO//uu/orW1Feeddx4A4OKLL8b8+fNx/fXX48EHH0R3dzfuuusurF27louXBQsWhJxLbW0tLBbLpK8TBEEQBFG4pG0VxrPPPot169bhoosugk6nw1VXXYXHHnuM3+7xeHDw4EGMj4/zr/3kJz/hx7pcLixfvhz/+Z//yW/X6/V45ZVXcMstt6C1tRXFxcW44YYbcN9996XraRAEQRAEkYekZQ5QPkBzgAiCIAgi98jqHCCCIAiCIAgtQ9vgo8CMMZoHRBAEQRC5A7tuxytwkQCKgt1uBwBqhScIgiCIHMRut6OsrCzq7ZQBioLf70dnZydKS0shCELKHpfNFzp58iRli9IEvcbphV7f9EOvcXqh1ze9ZPv1FUURdrsdjY2N0OmiJ33IAYqCTqfD1KlT0/b4NpuN/uGlGXqN0wu9vumHXuP0Qq9vesnm6xvL+WFQCJogCIIgiIKDBBBBEARBEAUHCaAMYzabcc8999DajTRCr3F6odc3/dBrnF7o9U0vufL6UgiaIAiCIIiCgxwggiAIgiAKDhJABEEQBEEUHCSACIIgCIIoOEgAEQRBEARRcJAAyjBPPvkkZsyYAYvFgpaWFrz77rvZPqWc5N5774UgCCF/5s6dy293Op1Yu3YtqqqqUFJSgquuugo9PT1ZPGNt89Zbb+ELX/gCGhsbIQgCXnrppZDbRVHE3XffjYaGBlitVrS1teHQoUMhxwwODuK6666DzWZDeXk5Vq9ejbGxsQw+C20T7zW+8cYbJ72nV6xYEXIMvcbReeCBB/CJT3wCpaWlqK2txcqVK3Hw4MGQY5T8Xujo6MBll12GoqIi1NbW4vbbb4fX683kU9EkSl7fCy+8cNJ7+Gtf+1rIMVp6fUkAZZAXXngB69evxz333INdu3Zh8eLFWL58OXp7e7N9ajnJWWedha6uLv7nb3/7G7/tG9/4Bl5++WW8+OKLePPNN9HZ2Ykrr7wyi2erbRwOBxYvXownn3wy4u0PPvggHnvsMWzYsAHbt29HcXExli9fDqfTyY+57rrrsG/fPmzatAmvvPIK3nrrLdx8882ZegqaJ95rDAArVqwIeU//+te/DrmdXuPovPnmm1i7di3+/ve/Y9OmTfB4PLj44ovhcDj4MfF+L/h8Plx22WVwu93Ytm0bnnnmGTz99NO4++67s/GUNIWS1xcA1qxZE/IefvDBB/ltmnt9RSJjnHvuueLatWv5330+n9jY2Cg+8MADWTyr3OSee+4RFy9eHPG24eFh0Wg0ii+++CL/2v79+0UAYnt7e4bOMHcBIP7hD3/gf/f7/WJ9fb344x//mH9teHhYNJvN4q9//WtRFEXxo48+EgGI7733Hj/mtddeEwVBEE+fPp2xc88Vwl9jURTFG264Qbziiiui3odeY3X09vaKAMQ333xTFEVlvxdeffVVUafTid3d3fyY//qv/xJtNpvocrky+wQ0TvjrK4qi+JnPfEa89dZbo95Ha68vOUAZwu12Y+fOnWhra+Nf0+l0aGtrQ3t7exbPLHc5dOgQGhsbMXPmTFx33XXo6OgAAOzcuRMejyfktZ47dy6mTZtGr3UCHDt2DN3d3SGvZ1lZGVpaWvjr2d7ejvLycixbtowf09bWBp1Oh+3bt2f8nHOVrVu3ora2FmeeeSZuueUWDAwM8NvoNVbHyMgIAKCyshKAst8L7e3tWLhwIerq6vgxy5cvx+joKPbt25fBs9c+4a8v49lnn0V1dTUWLFiAO+64A+Pj4/w2rb2+tAw1Q/T398Pn84X84AGgrq4OBw4cyNJZ5S4tLS14+umnceaZZ6Krqwvf//738alPfQp79+5Fd3c3TCYTysvLQ+5TV1eH7u7u7JxwDsNes0jvXXZbd3c3amtrQ243GAyorKyk11whK1aswJVXXonm5mYcOXIEd955Jy655BK0t7dDr9fTa6wCv9+P2267DZ/85CexYMECAFD0e6G7uzvi+5zdRkhEen0B4Mtf/jKmT5+OxsZGfPDBB/jOd76DgwcP4ve//z0A7b2+JICInOSSSy7h/79o0SK0tLRg+vTp+M1vfgOr1ZrFMyOIxPjSl77E/3/hwoVYtGgRZs2aha1bt+Kiiy7K4pnlHmvXrsXevXtDcoFE6oj2+gbn0RYuXIiGhgZcdNFFOHLkCGbNmpXp04wLlcAyRHV1NfR6/aSOg56eHtTX12fprPKH8vJynHHGGTh8+DDq6+vhdrsxPDwccgy91onBXrNY7936+vpJYX6v14vBwUF6zRNk5syZqK6uxuHDhwHQa6yUdevW4ZVXXsEbb7yBqVOn8q8r+b1QX18f8X3ObiOiv76RaGlpAYCQ97CWXl8SQBnCZDJh6dKl2Lx5M/+a3+/H5s2b0dramsUzyw/GxsZw5MgRNDQ0YOnSpTAajSGv9cGDB9HR0UGvdQI0Nzejvr4+5PUcHR3F9u3b+evZ2tqK4eFh7Ny5kx+zZcsW+P1+/kuQUMepU6cwMDCAhoYGAPQax0MURaxbtw5/+MMfsGXLFjQ3N4fcruT3QmtrKz788MMQoblp0ybYbDbMnz8/M09Eo8R7fSOxZ88eAAh5D2vq9c147LqAef7550Wz2Sw+/fTT4kcffSTefPPNYnl5eUginlDGN7/5TXHr1q3isWPHxHfeeUdsa2sTq6urxd7eXlEURfFrX/uaOG3aNHHLli3ijh07xNbWVrG1tTXLZ61d7Ha7uHv3bnH37t0iAPGRRx4Rd+/eLZ44cUIURVH8f//v/4nl5eXiH//4R/GDDz4Qr7jiCrG5uVmcmJjgj7FixQrx7LPPFrdv3y7+7W9/E+fMmSNee+212XpKmiPWa2y328VvfetbYnt7u3js2DHx9ddfF8855xxxzpw5otPp5I9Br3F0brnlFrGsrEzcunWr2NXVxf+Mj4/zY+L9XvB6veKCBQvEiy++WNyzZ4+4ceNGsaamRrzjjjuy8ZQ0RbzX9/Dhw+J9990n7tixQzx27Jj4xz/+UZw5c6b46U9/mj+G1l5fEkAZ5vHHHxenTZsmmkwm8dxzzxX//ve/Z/uUcpJrrrlGbGhoEE0mkzhlyhTxmmuuEQ8fPsxvn5iYEL/+9a+LFRUVYlFRkfiP//iPYldXVxbPWNu88cYbIoBJf2644QZRFKVW+O9973tiXV2daDabxYsuukg8ePBgyGMMDAyI1157rVhSUiLabDbxpptuEu12exaejTaJ9RqPj4+LF198sVhTUyMajUZx+vTp4po1ayZ9OKLXODqRXlsA4lNPPcWPUfJ74fjx4+Ill1wiWq1Wsbq6WvzmN78pejyeDD8b7RHv9e3o6BA//elPi5WVlaLZbBZnz54t3n777eLIyEjI42jp9RVEURQz5zcRBEEQBEFkH8oAEQRBEARRcJAAIgiCIAii4CABRBAEQRBEwUECiCAIgiCIgoMEEEEQBEEQBQcJIIIgCIIgCg4SQARBEARBFBwkgAiCIAiCKDhIABEEQRAEUXCQACIIgiAIouAgAUQQBEEQRMFBAoggCIIgiILj/wPmXRHVtBTMRAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.plot(fno(test_x[sample, :, ::32])[0] - test_y[sample, 0, ::32], label=\"Difference\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "ZYkXHoi2sYCm", + "outputId": "3b203fea-104d-4e57-9a35-582431ae99be" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAl1FJREFUeJzs3Xd0FGUXwOHf7G56D4GEQCCh996bdBAVwQaKUkVBsWH/VEAsoGJX7IgFFKWjSBfpofeEHiCd9J5t8/2xJIIESNmScp9zcg7szrzvnczu5u5bFVVVVYQQQgghKgiNowMQQgghhCgJSV6EEEIIUaFI8iKEEEKICkWSFyGEEEJUKJK8CCGEEKJCkeRFCCGEEBWKJC9CCCGEqFAkeRFCCCFEhaJzdADWZjabiY2NxcvLC0VRHB2OEEIIIYpBVVUyMzMJDg5Go7lx20qlS15iY2MJCQlxdBhCCCGEKIWLFy9Su3btGx5T6ZIXLy8vwHLx3t7eVi3bYDCwbt06Bg4ciJOTk1XLFrYj961ikvtWMcl9q5jKw33LyMggJCSk8O/4jVS65KWgq8jb29smyYu7uzve3t7ypqxA5L5VTHLfKia5bxVTebpvxRnyIQN2hRBCCFGhSPIihBBCiApFkhchhBBCVCiVbsyLEEKIklFVFaPRiMlkKnNZBoMBnU5HXl6eVcoT9mGv++bk5IRWqy1zOZK8CCFEFabX64mLiyMnJ8cq5amqSlBQEBcvXpS1tioQe903RVGoXbs2np6eZSpHkhchhKiizGYz586dQ6vVEhwcjLOzc5n/cJnNZrKysvD09LzpQmOi/LDHfVNVlUuXLhEdHU3Dhg3L1AIjyYsQQlRRer0es9lMSEgI7u7uVinTbDaj1+txdXWV5KUCsdd9q169OlFRURgMhjIlL/LKEkKIKk6SDGEv1uqSklesEEIIISoUSV6EEEIIUaFI8iKEEKJKUBSF5cuX3/CYsWPHMmzYsGKXGRUVhaIoHDx4sEyx2cKV11vcOPv27cvTTz9t89jKSgbsCiGEqHDGjh1LWlraTZORK8XFxeHn5wdY/piHhYVx4MAB2rRpU3jMxx9/jKqqVo7W8UJCQoiLiyMgIACAzZs306dPH1JTU/H19S08bvHixbi4uDgoyuKT5EWIKupiSg4rD8WSbzDRr2kgrUN8HR2SEDYVFBR002N8fHzsEIn9abXaYl2/v79/hRjAXf4jFEJY3Z+H4+j/wT+8t/YEn2w6zZ2fb+edNZGV8hunKBlVVcnRG8v0k6s3lficsr72evfuzZNPPskLL7yAv78/QUFBzJgx46pjruxGCQsLA6Bt27YoikLv3r2Ba7uN1qxZQ48ePfD19aVatWrcfvvtnDlzpkSx5efn8+KLLxISEoKLiwsNGjTgu+++K3z+n3/+oVOnTri4uFCzZk1eeukljEZjia7t1KlT9OrVC1dXV5o1a8b69euvev7KbqOoqCj69OkDgJ+fH4qiMG7cOODabqPU1FRGjx6Nn58f7u7u3HrrrZw6darw+fnz5+Pr68vatWtp2rQpnp6eDB48mLi4uBL9jkpKWl6EqGJ2nE7iyV8PYDKrdAr1J8DLmdVH4vli8xk8XXQ83qeBo0MUDpRrMNFs2lq713t85iDcncv2J+mHH35g6tSphIeHs3PnTsaOHUv37t0ZMGDANcfu3r2bTp06sWHDBpo3b46zs3ORZWZnZzN16lRatWpFVlYW06ZNY/jw4Rw8eLDYLRSjR49m586dfPLJJ7Ru3Zpz586RlJQEQExMDEOGDGHs2LH8+OOPREZGMnHiRFxdXa9KUG50bWazmbvuuovAwEDCw8NJT0+/4biVkJAQlixZwt13382JEyfw9va+blfR2LFjOXXqFCtXrsTb25sXX3yRIUOGcPz4cZycnADIyclhzpw5/PTTT2g0Gh588EGee+45FixYUKzfT2lI8iJEFZKRZ+DZ3w9hMqvc2SaYD+9rg0aj8MOOKKavPMYH60/Ss2EArWr7OjpUIUqsVatWTJ8+HYCGDRvy2WefsXHjxiKTl+rVqwNQrVq1G3an3H333Vf9f968eVSvXp3jx4/TokWLm8Z08uRJfvvtN9avX0///v0BqFevXuHzc+fOJSQkhM8++wxFUWjSpAmxsbG8+OKLTJs2rTBButG1bdiwgcjISNauXUtwcDAAb7/9NrfeemuRMWm1Wvz9/QGoUaMGvr6+mM1mMjIyrjquIGnZvn073bp1A2DBggWEhISwfPly7r33XsCyL9KXX35J/fr1AZgyZQozZ8686e+mLCR5EaIK+fqfs8Sl51G3mjuz7mqJRmNZMGpMt1D2RKXwx+E4pq88xtLJ3WRfmirKzUnL8ZmDSn2+2WwmMyMTL2+vEo2dcHMq+2Z9rVq1uur/NWvWJDExsUxlnjp1imnTphEeHk5SUhJmsxmACxcuFCt5OXjwIFqtlltuuaXI5yMiIujatetV77fu3buTlZVFdHQ0derUAW58bREREYSEhBQmLgBdu3Yt2YVeJzadTkfnzp0LH6tWrRqNGzcmIiKi8DF3d/fCxOW/sdmKJC9CVBGXMvOZt/0cAP8b0vSaJvppdzRjY0QiBy6ksf54AgOb33xwn6h8FEUpU/eN2WzG6KzF3Vln94GfBd0YBRRFKUw2SuuOO+6gbt26fPPNNwQHB2M2m2nRogV6vb5Y57u5uZWp/gK2uDZrKSo2W4+fkwG7QlQRP+6MIkdvonVtHwY2C7zm+RperozvEQrAJ5tOyeBdUakVjHExmUzXPSY5OZkTJ07w6quv0q9fP5o2bUpqamqJ6mnZsiVms5l//vmnyOebNm3Kzp07r3q/bd++HS8vL2rXrl2sOpo2bcrFixevGiS7a9euG55TnOtv2rQpRqOR8PDwwscKfifNmjUrVmy2IsmLEFVAvtHEL7svAPBIr/rX7RKa0KMeLjoNR2My2Hu+ZB/SQlQkNWrUwM3NjTVr1pCQkEB6evo1x/j5+VGtWjW+/vprTp8+zaZNm5g6dWqJ6gkNDWXMmDGMHz+e5cuXc+7cOTZv3sxvv/0GwGOPPcbFixd54okniIyMZMWKFUyfPp2pU6cWu+Wqf//+NGrUiDFjxnDo0CG2bt3KK6+8csNz6tati6Io/PHHH1y6dImsrKxrjmnYsCF33nknEydOZNu2bRw6dIgHH3yQWrVqceedd5bo92BtkrwIUQWsORpPUpaeQG8XBja/ttWlgL+HM8Pb1gLg+8tdTEJURjqdjk8++YSvvvqK4ODgIv8YazQafv31V/bt20eLFi145plneO+990pc1xdffME999zDY489RpMmTZg4cSLZ2dkA1KpVi9WrV7N7925at27NpEmTmDBhAq+++mqxy9doNCxbtozc3Fw6derEww8/zFtvvXXDc2rVqsXrr7/OSy+9RGBgIE888USRx33//fe0b9+e22+/na5du6KqKqtXr76mq8jeFLWStQ1nZGTg4+NDeno63t7eVi3bYDCwevVqhgwZ4vAbJ4pP7huM/Honu86m8Ez/RjzVv+ENjz0Rn8mgj7agUWDny/0I9Ha1U5RXk/tme3l5eZw7d46wsDBcXa1znwtmrXh7e1eIxc6Ehb3u241ecyX5+y2vLCEqubj0XMLPpQBwT4eb96E3DvKifV0/zCqsOBhj6/CEEKLEJHkRopL741AcqgqdQv2p5Vu8mQ93t7MkOUv2xcjAXSFEuSPJixCV3IpDltaToW2Cb3Lkv25rVRNnnYYTCZkci824+QlCCGFHkrwIUYmduZTF0ZgMdBqFIS1rFvs8HzcnBlyeTr1kf7StwhNCiFKR5EWISmzdsQQAujUIwN+j6L1brmd4G8uso9VH4jCbpetICFF+SPIiRCW2/ng8QGErSkn0bBSAl4uOhIx89l+QNV+EEOWHJC9CVFKXMvM5cDENgP5Na5T4fBedtjDp+eOwbbe3F0KIkpDkRYhK6u/IRFQVWtbyoaZP6fZXKRgn89dR6ToSQpQfkrwIUUmtO24Z71KaLqMCV3Yd7ZOuIyGsYsaMGbRp08bRYQDQu3dvnn76aUeHUWKSvAhRCeXqTWw7fQmA/k1Ln7y46LQMuLydwJ/SdSTKmfj4eJ566ikaNGiAq6srgYGBdO/enS+++IKcnBxHh1cqM2bMQFGUG/6UxubNm1EUhbS0NOsG7CCSvAhRCW07nUSewUwtXzea1vQqU1m3Xe46kllHojw5e/Ysbdu2Zd26dbz99tscOHCAnTt38sILL/DHH3+wYcOG655rMBjsGGnJPPfcc8TFxRX+1K5dm5kzZ1712JX0er2DInUsSV6EqIQ2XNFlVNpvagV6NAzAy1VHYma+7DQtyo3HHnsMnU7H3r17ue+++2jatCn16tXjzjvv5M8//+SOO+4oPFZRFL744guGDh2Kh4dH4aaFX3zxBfXr18fZ2ZnGjRvz008/FZ4TFRWFoigcPHiw8LG0tDQURWHz5s3Av60ZGzdupEOHDri7u9OtWzdOnDhxVayzZ88mMDAQLy8vJkyYQF5e3nWvy9PTk6CgoMIfrVaLl5dX4f9HjhzJlClTePrppwkICGDQoEE3jTUqKoo+ffoAlp2yFUVh7NixhceazWZefPFFwsLCCA4OZsaMGSW8G/YnyYsQlYyqqvx9IhGAfqWYZfRfV846Wn1Euo4qPVUFfXbZfgw5JT+nBNtQJCcns27dOh5//HE8PDyKPOa/SfuMGTMYPnw4R44cYfz48SxbtoynnnqKZ599lqNHj/Loo48ybtw4/v777xL/yl555RXef/999u7di06nY/z48YXP/fbbb8yYMYO3336bvXv3UrNmTebOnVviOq70ww8/4OzszPbt2/nyyy9venxISAhLliwB4MSJE8TFxfHxxx9fVZ6HhwcbNmxg9uzZzJw5k/Xr15cpRlvTOToAIYR1HYvNIDEzH3dnLZ3C/K1S5u2tarJ0fwyrj8Qx7fZmaDRla80R5ZghB94u/lYS/6UBfEtz4v9iwbnoROS/Tp8+jaqqNG7c+KrHAwICCls1Hn/8cd55553C5x544AHGjRtX+P/777+fsWPH8thjjwEwdepUdu3axZw5cwpbKYrrrbfe4pZbbgHgpZde4rbbbiMvLw9XV1c++ugjJkyYwIQJEwB488032bBhww1bX26mYcOGvPvuu4X/j4qKuuHxWq0Wf3/LZ0GNGjXw9fW96vlWrVoxbdo0MjIyaNu2LXPnzmXjxo0MGDCg1DHamrS8CFHJ/B1paXXp3iAAF53WKmX2aFBduo5Eubd7924OHjxI8+bNyc/Pv+q5Dh06XPX/iIgIunfvftVj3bt3JyIiosT1tmrVqvDfNWtaxoglJiYW1tO5c+erju/atWuJ67hS+/bty3T+f10ZP1iuoSD+8kpaXoSoZDZd7jLq26TsXUYFnHUaBjYLYsn+aP48HGu1Fh1RDjm5W1pBSslsNpORmYm3lxcaTQm+Hzu5F/vQBg0aoCjKNWNL6tWrB4Cb27XrGl2ve+l6CmK/clf16w30dXJyKvx3QXeV2WwuUX0l8d9rKUmsRbkyfrBcgy3jtwZpeRGiEknOyufg5VV1+zS2XvIClq4jgNVH4zHJrKPKS1Es3Tdl+XFyL/k5JRhYXq1aNQYMGMBnn31GdnZ2qS6zadOmbN++/arHtm/fTrNmzQCoXr06wFWze64cEFuSesLDw696bNeuXSUu50aKE6uzs2VvM5PJZNW6HUVaXoSoRLacuoSqQtOa3gT5uFq17O4NAvB21XEpM5+9USl0rlfNquULURJz586le/fudOjQgRkzZtCqVSs0Gg179uwhMjLypl0rzz//PPfddx9t27alf//+rFq1iqVLlxZOsXZzc6NLly7Mnj2bsLAwEhMTefXVV0sc51NPPcXYsWPp0KED3bt3Z8GCBRw7dqywlcgaihNr3bp1URSFP/74gyFDhuDm5oanp6fVYrA3aXkRohLZFGlZmK5vk+pWL9tZp2Fg8yAA/pRZR8LB6tevz4EDB+jfvz8vv/wyrVu3pkOHDnz66ac899xzvPHGGzc8f9iwYXz88cfMmTOH5s2b89VXX/H999/Tu3fvwmPmzZuH0Wikffv2PP3007z55psljnPEiBG89tprvPDCC7Rv357z588zefLkEpdzMzeLtVatWrz++uu89NJLBAYGMmXKFKvHYE+KqpZgfloFkJGRgY+PD+np6Xh7e1u1bIPBwOrVqxkyZMg1fYSi/Koq981oMtPujfVk5BlZMrkr7etaf1zK3ycSGff9Hqp7ubDr5X5obTjrqKrcN0fKy8vj3LlzhIWF4epqnZY6s9lMRkYG3t7eJRvzIhzKXvftRq+5kvz9lleWEJXEgYtpZOQZ8XV3ok2In03q6F7/366jPVEpNqlDCCFuRpIXISqJTZenSN/SqLrNWkScdRoGXe46kgXrhBCOIsmLEJVEwfou1pwiXZQhBbOOjsRjNJXv6ZRCiMpJkhchKoHYtFwi4zPRKNCrofUH616pR4MA/D2cScrKZ+vpJJvWJYQQRZHkRYhKoGAvo7Z1/PDzcLZpXU5aDUNbW5aPX7wv2qZ1CSFEUSR5EaIS2BRhny6jAve0rw3A+uMJpOcUfyVPIYSwBklehKjgsvKNhd03Bbs/21rzYG+aBHmhN5pZdbj0S8kLIURpSPIiRAW35eQl9EYzodXcaVjDPitmKorC3e0srS9L9kvXkRDCviR5EaKCW3ssHoBBzYMKN4WzhzvbBqPVKBy4kMbpxEy71SuEEJK8CFGB6Y3mwvVdBja3T5dRgRperoVjbH7edcGudQtRFW3evBlFUUhLSwNg/vz5+Pr6lqlMa5ThCJK8CFGBhZ9LJjPPSICnC21ttKrujTzUpS4AS/ZFk6M32r1+UXWNHTsWRVGu+Tl9+vRVz8+ePfuq85YvX35NC6XJZOLDDz+kZcuWuLq64ufnx6233nrNrtPlzYgRIzh58mSxjw8NDeWjjz4qUxnlhSQvQlRgBV1GA5oForHhPkPX06NBAKHV3MnMN7LioAzcFfY1ePBg4uLirvoJCwsrfN7V1ZV33nmH1NTU65ahqiojR45k5syZPPXUU0RERLB582ZCQkLo3bs3y5cvt2rMqqpiNFon0Xdzc6NGjbLNMLRGGY4gyYsQFZTZrLL+eAJg/y6jAhqNwoOXW19+3HmeSrbPqyjnXFxcCAoKuupHq9UWPt+/f3+CgoKYNWvWdcv47bffWLx4MT/++CMPP/wwYWFhtG7dmq+//pqhQ4fy8MMPk52dXeS5UVFRKIrCr7/+Srdu3XB1daVFixb8888/hccUdPX89ddftG/fHhcXF7Zt24bZbGbWrFmEhYXh5uZG69atWbx48VXlr169mkaNGuHm5kafPn2Iioq66vmiunxWrVpFx44dcXV1JSAggOHDhwPQu3dvzp8/zzPPPFPYSnW9Mr744gvq16+Ps7MzjRs35qeffrrqeUVR+Pbbbxk+fDju7u40bNiQlStXXvd3bAuSvAhRQe27kEpCRj5eLjq61a/msDjuaV8bF52GiLgM9l+4/jdcUTGoqkqOIadMP7nG3BKfY4vEV6vV8vbbb/Ppp58SHV30rLiFCxfSqFEj7rjjjmuee/bZZ0lOTmb9+vU3rOf555/n2Wef5cCBA3Tt2pU77riD5OTkq4556aWXmD17NhEREbRq1YpZs2bx448/8uWXX3Ls2DGeeeYZHnzwwcLE5+LFi9x1113ccccdHDx4kIcffpiXXnrphnH8+eefDB8+nCFDhnDgwAE2btxIp06dAFi6dCm1a9dm5syZha1URVm2bBlPPfUUzz77LEePHuXRRx9l3Lhx/P3331cd9/rrr3Pfffdx+PBhhgwZwqhRo0hJsd9mrTq71SSEsKqVl7tpBjYPwkWnvcnRtuPr7szQ1sH8vi+aH3acp31df4fFIsou15hL54Wd7V5v+APhuDu5l+icP/74A0/Pf5cHuPXWW/n999+vOmb48OG0adOG6dOn8913311TxsmTJ2natGmR5Rc8frMxIVOmTOHuu+8GLK0Wa9as4bvvvuOFF14oPGbmzJkMGDAAgPz8fN5++202bNhA165dAahXrx7btm3jq6++4pZbbils/Xj//fcBaNy4MUeOHOGdd965bhxvvfUWI0eO5PXXXy98rHXr1gD4+/uj1Wrx8vIiKCjoumV88MEHjB07lsceewyAqVOnsmvXLubMmUOfPn0Kjxs7diz3338/AG+//TaffPIJu3fvZvDgwTf8XVmLtLwIUQEZTebCXZ2Htgl2cDQwplsoYNlpOiEjz7HBiCqjT58+HDx4sPDnk08+KfK4d955hx9++IGIiIginy9rq09BAgKg0+no0KHDNXV16NCh8N+nT58mJyeHAQMG4OnpWfjz448/cubMGQAiIiLo3PnqJPLKeopy8OBB+vXrV6ZriYiIoHv37lc91r1792uup1WrVoX/9vDwwNvbm8TExDLVXRLS8iJEBbT9TDLJ2XqqeTjT3YFdRgVa1PKhQ10/9p5PZUH4BaYOaOTokEQpuencCH8gvNTnm81mMjMz8fLyQqMp/vdjN51bievy8PCgQYMGNz2uV69eDBo0iJdffpmxY8de9VyjRo2um9QUPN6oUdlfzx4eHoX/zsrKAizdPLVq1brqOBcXl1LX4eZW8t9haTk5OV31f0VRMJvtt8u8tLwIUQEVdBkNaVkTnbZ8vI3Hdg8FYGH4efKNJscGI0pNURTcndzL9OOmcyvxObZeYHH27NmsWrWKnTt3XvX4yJEjOXXqFKtWrbrmnPfff59q1aoVdvdcz65duwr/bTQa2bdv33W7ogCaNWuGi4sLFy5coEGDBlf9hISEAJYuq927d1+3nqK0atWKjRs3Xvd5Z2dnTKYbvzebNm16zRTx7du306xZsxueZ292+dT7/PPPCQ0NxdXVlc6dO19zQ67n119/RVEUhg0bZtsAhahA8gwm1l2eIl0euowKDGoeRJC3K0lZ+sIuLSHKi5YtWzJq1KhrupZGjhzJ8OHDGTNmDN999x1RUVEcPnyYRx99lJUrV/Ltt99e1WpSlM8//5xly5YRGRnJ448/TmpqKuPHj7/u8V5eXjz33HM888wz/PDDD5w5c4b9+/fz6aef8sMPPwAwadIkTp06xfPPP8+JEydYuHAh8+fPv2Ec06dP55dffmH69OlERERcM0YmNDSULVu2EBMTQ1JSUpFlPPvss8yfP58vvviCU6dO8cEHH7B06VKee+65G9ZtbzZPXhYtWsTUqVOZPn06+/fvp3Xr1gwaNOimfWNRUVE899xz9OzZ09YhClGhbIpMJDPfSLCPK+3r2H9huutx0mp4qKtl2vT326Nk2rQod2bOnHlN14aiKPz222/873//48MPP6Rx48b07NmT8+fPs3nz5mJ9eZ49ezazZ8+mdevWbNu2jZUrVxIQEHDDc9544w1ee+01Zs2aRdOmTRk8eDB//vln4To1derUYcmSJSxfvpzWrVvz5Zdf8vbbb9+wzN69e/P777+zcuVK2rRpQ9++fa9qLJg5cyZRUVHUr1+f6tWrF1nGsGHD+Pjjj5kzZw7Nmzfnq6++4vvvv6d37943/T3Yk6La+BOmc+fOdOzYkc8++wyw9IeGhITwxBNPXHfal8lkolevXowfP56tW7eSlpZW7IWCMjIy8PHxIT09HW9vb2tdBgAGg4HVq1czZMiQa/r7RPlV2e7bmHm7+efkJR7vU5/nBzVxdDhXSc7Kp+vsTeiNZpY+1o12ZUiuKtt9K4/y8vI4d+4cYWFhuLq6WqVMs9lMRkYG3t7eJRrzUhFFRUURFhbGgQMHaNOmjaPDKRN73bcbveZK8vfbpgN29Xo9+/bt4+WXXy58TKPR0L9//2v6Ha80c+ZMatSowYQJE9i6desN68jPzyc/P7/w/xkZGYDlg89gMJTxCq5WUJ61yxW2VZnuW1x6HltOXQJgeOua5e6avF003NEqiCX7Y5m39Swt72t185OuozLdt/LKYDCgqipms9lqgy0Lvg8XlFuZFVyfNX9/jmKv+2Y2m1FVFYPBcNWCglCy97pNk5ekpCRMJhOBgVev/hkYGEhkZGSR52zbto3vvvuOgwcPFquOWbNmXTWnvcC6detwdy/ZmgHFdbMFi0T5VBnu29poBVXV0sBb5Vj4Zo45OqAi1DMC6Fh9NI5OztH4OJetvMpw38ornU5HUFAQWVlZ6PV6q5admVn5dxovmDWUnZ1d+MW5orP1fdPr9eTm5rJly5ZrtknIyckpdjnlaqp0ZmYmDz30EN98881N+wsLvPzyy0ydOrXw/xkZGYSEhDBw4ECbdButX7+eAQMGSDN2BVJZ7pvZrPLeR9uAXB4d0JIh5Wiw7n/9nb6bvefTSPBqxP39bj6VtSiV5b6VZ3l5eVy8eBFPT0+rdRupqlo4VdrWM4gcrUWLFjedvVNR2Ou+5eXl4ebmRq9evYrsNioumyYvAQEBaLVaEhISrno8ISGhyBX+zpw5Q1RU1FXLNBc0X+l0Ok6cOEH9+vWvOsfFxaXIefFOTk42+8CzZdnCdir6fdtxJono1Fw8XXTc3ro2Tk6OW1X3Zsb3qMfe8/v5dU80T/ZvVKYVgCv6fSvPTCYTiqKg0WisNs6h4DO7oFxRMdjrvmk0GhRFKfJ9XZL3uU1fWc7OzrRv3/6qeedms5mNGzcWuVJgkyZNOHLkyFUrJg4dOrRwFcWC+e9CVEWL9lwE4I7Wwbg5l9/EBWBgs0Bq+riSnK3nj0MybVoIYV027zaaOnUqY8aMoUOHDnTq1ImPPvqI7Oxsxo0bB8Do0aOpVasWs2bNKtyR80oFu13+93EhqpLEzLzCtVPu71T+k3jd5WnT7645wfwdUdzVrlal70KoyGRau7AXa73WbJ68jBgxgkuXLjFt2jTi4+Np06YNa9asKRzEe+HCBWlaFOImft19EYNJpW0dX1rV9nV0OMUysmMdPt5wiiMx6ey/kCobNpZDBc30OTk5dl1aXlRdBQPD/zvTqKTsMmB3ypQpTJkypcjnNm/efMNzb7aioBCVncFkZkH4eQDGdA11bDAl4O/hzLA2tVi09yLfb4+S5KUc0mq1+Pr6Fi4a6u5e9mX6zWYzer2evLw8+WJagdjjvpnNZi5duoS7uzs6XdnSj3I120gIca21x+JJyMgnwNOFIS1rOjqcEhnTLZRFey/y19F44tJzqekj3+7Lm4LJE9baEVhVVXJzc3Fzc5OuwgrEXvdNo9FQp06dMtchyYsQ5dyPOyytLg90CsFZV7G+yTYL9qZzmD/h51JYsOsCzw1q7OiQxH8oikLNmjWpUaOGVRYENBgMbNmyhV69eskssQrEXvfN2dnZKi07krwIUY4dj81gd1QKOo3CqC51HR1OqYzrHkr4uRQW7r7AE/0alGnatLAdrVZb5nEIBeUYjUZcXV0lealAKtp9q1hf44SoYn7cGQXAoBZBBHpbZxExe8kx5HDo0iE0HkcJCDxKhmY/P+3bhsEky/0LIcpGWl6EKKfScvQsPxgDwNhuoY4NpphS8lJYdWYVq8+tJjIlErN6eY8Uf3Dzh48jf+aLk860D2xP/7r9ua3ebXg4eTg2aCFEhSPJixDl1O97o8kzmGla05sOdUu/O7M9ZOmzmHdkHj8dn0+e+d+WlRpGI0FGE26qSq6icM7JiUz07Izbyc64nXyw7wOGNxjOwy0fpppbNQdegRCiIpHkRYhyyGRW+XFXFABju9Utt7M2DGYDS4/+xNxDc0kxW3Z3b5qv557MLHrl5BJUsO+LogXVhAqcc9Kx2d2NZZ6eRJHNzxE/s+zUMp5s9yQjm4xEo0hvthDixiR5EaIc+jsykYspufi4OTG0dS1Hh1OkPec38ca2VzlntOxCG6o38HSWnr61e6N06A01W4NfGLh4AfDzP0dYuHYrQzzjmRIcxdhT69nhpPKpnw/HgVm7Z7Hh/Hre6PEmtTzL5zULIcoHSV6EKIfm74gCYGSnkHK3j1FmfgYfrH+Cxcn7AfAzmZhs8uSeTv/DqdkwcCp6LZfBHRozfV00x5NCGTz6BRoMU+hx4Ge67fycRZkpfOjvy56Evdy74i6mdX+dfrX62fGqhBAVibTPClHOnErIZNvpJDQKPFTOpkefid3DyF97FyYu9+q1/NnpDe5/OByn1vdfN3EBCPB0oXej6gAsOxADLp7QZRKaJ/Zxf5cXWJKYQeu8fDKNOTz/z/PMDJ+JXtXb5bqEEBWLJC9ClDMFrS4DmwVR28/dscFc4Z89nzFq7TguYCDYaGJezcFMG7cbrxZ3QzHH5AxtEwzAn4fj/t2gTecM3Z8iZNJO5js34JHUdBRVZfmZ5czNnMvJ1JO2uiQhRAUlyYsQ5Uh6roGl+y9Pj+4e6thgCqgqf69/nqePfUm2RqGDScMvA+fRceB7lsSjBPo1DcRFpyEqOYfjcRlXP+lTG92YVTzR5jG+i0+khtFIkjmJ8evHsTV6qxUvSAhR0UnyIkQ58vvei+QaTDQJ8qJzWDnYyNBkZOfycTwb8xdGRWGIU3W+vn8L/iFdSlWcp4uOPo1rAJbWl2totND7JTre/iWLE1LpnJtHjjGXJzY9wdJTS8tyJUKISkSSFyHKCZNZ5YfLK+qO7Rbq+OnRhjz2/zKcp9L2YFAU+nmE8taItTi5+ZSp2NtaWTaX/PPIFV1H/9XiLrzuX8IniZkMzczCpJqYvmM6i08uLlPdQojKQZIXIcqJTZenR/u6O3FnGwdPFdbncGzhMB4znCVXo6G7TyPeHb4Enbbse570bVIDVycN55NzOBabcd3j1Nqd2NPgRd7IMvFQuuW4mTtnsvz08jLHIISo2CR5EaKcmL/jHAAjO9Zx7PTo/CxOLxzGo6YLZGs0dPBpyIe3/4yztmTjW67Hw0VH3yaWrqM/iuo6ukKaRz1MDyzh+SwjD6RnoqIyfcd0/r7wt1ViEUJUTJK8CFEOnEzIZPvpZMv06K4OnB5tzCf+15FMMl0kXaullXcYn932E26660+BLo3bWl6edXQk9vpdRwVqtkEZ8RMvpWVxd2YWZtXMi1tf5GjSUavGJISoOCR5EaIcKJgePah5ELV8rZsoFJvZRPqS8UzWnyJBpyPMvSaf3/qjTTZO7NOkOm5OWi6m5HIkJv3mJ9TvizLsC15NSqF7Ti65xlwe3/g40ZnRVo9NCFH+SfIihIOl5xhYtt/Bu0erKoY/nuHp1N2cdnamhrMPX946H19XX5tU5+78b9fRn0du3HVUqNW96Hq/zPuJSTTWG0jJS+Hpv58m15hrkxiFEOWXJC9CONjv+/6dHt3JQdOj1a3v89aFVex1c8VT68LcQd8R7Bls0zqHtLTMOvrrSPzNu44K9HoBj0ZD+Cw+EX+zyonUE7y5683iny+EqBQkeRHCgcxmlQXhFwAY46jp0cdX8sueD1ni5YkCvNv7Qxr7N7Z5tX2aVMfVScOFlBvPOrqKRgPDvyTItx7vJSSiAVaeWcnvJ3+3aaxCiPJFkhchHGjHmWTOJWXj6aJjaGvbtnQUKe4Qu1ZP4d1qfgBMbf8sPWv3tEvV7s7/Lli3urhdRwCu3jByAZ2MGp5OSQUsO1KfSDlhizCFEOWQJC9CONDPu84DcFe7Wni42HmT98wEzi66n6n+XpgUhTvCbmNM8zF2DaGg62j1jRasK0r1xnDrO4xNz6RPTi5Gs5FpO6ZhNBttFKkQojyR5EUIB0nIyGN9RAIAD9p792iTkdTFY5jiaSZTq6FNtRZM7/663but+japUbjXUURcZslObjcapdmdTEtKxssMx5OPszBioW0CFUKUK5K8COEgv+6+iMms0inUn0aBXnat27DpDZ7LP8NFJydquQXycf/PcdG62DUGsCxY17txdaCEXUdg2cn6jo8J8KzFs8nJAMw9NJdLOZesHaYQopyR5EUIBzCazPyy2zJQd1SXOvat/ORa3ov4gd1urrhrnPlswJf4uzpuE8hSdx0BuPnB8C8ZnpVNy7x8sg3ZvL/vfRtEKYQoTyR5EcIBNkYmEp+RRzUPZwa3CLJfxWkXWPLX4/ziY2npmXXLezTwa2C/+ovQt0kNnHUaziZlcyKhhF1HAKE90HR6hFeSU1BUlT/P/sme+D3WD1QIUW5I8iKEAxQM1L23QwguOjvtY2QycHjxg7zp4wrA460m0bdOX/vUfQNerk70aljQdRRfukL6Tae5ezD3ZmYB8Hb42xjMBmuFKIQoZyR5EcLOopKy2XoqCUWBUZ3t12WUvGkmU5VLGBWF/jW78Wibx+xW980MaWlpfSrxuJcCLp5w52c8mZqOr8nE6bTTLIpcZMUIhRDliSQvQthZwViXWxpVJ8Tf3S51Gs/v5IUzv5Kg0xHqUo03er/vmAXxrqN/s0CctAqnE7M4VZquI4CwXvi0G8dTqWkAzD04l7S8NKvFKIQoPyR5EcKO9EYzv++zbCY4qrOdpkfnZ/LZmkfY7eaKGxo+Gvwdns6e9qm7mLxdneh5ueuo2HsdFWXA6wzHh0b5ejINmcw9NNdKEQohyhNJXoSwo40RCaRk66nh5UKfy1OEbW3nqkl8Zxnmwsyu06nvW98u9ZbUlXsdlZqLF9pb3+HFyyvv/nZiEWfSzlgjPCFEOSLJixB2tGjvRQDuaV8bndb2b7+0w4t4NX0/APfV7MngRnfZvM7SGtDU0nV0IiGT04lZpS+o6R10CulN3+wcTKqZ9/a8Z70ghRDlgiQvQthJXHouW05aFlC7r0OIzetTs5OZufN1EnU6QnWePNe3fK9/4uPuRPcGAQD8VZauI0WBIe/xXHouOlVle+x2tkRvsVKUQojyQJIXIexk8d5ozCp0DvMnNMDD5vWt+GMC61216FSY3f8L3HRuNq+zrIa0sHQdlWncC4BfXUJ6Ps9D6ZbBv+/tfkemTgtRiUjyIoQdmM0qv+2zdBmN6Gj7Vpfow78wK+cUAI83uIfmgW1sXqc1DGweiE6jEBmfybmk7LIV1nUKE3VB+JtMRGVe4LcTv1knSCGEw0nyIoQd7DqbzMWUXLxcdNx6uXXBVtTcNGaEv0WORkM7J3/GdXvVpvVZk6+7M13rVwNgzbGEshWmdcLr9o+YUjB1ev+nMnVaiEpCkhch7KBgoO7QNsG4Odt2Rd2lf0wk3FnBVYU3Bn2NVmOnFXyt5LbLs47KnLwA1O3KXaG30ShfT4Yxmy8OytRpISoDSV6EsLH0XAN/HbVM/7V1l1F85ArmZB0HYEr9u6lTrbFN67OFgc2D0GoUjsdlkpRX9vK0A2byQoaloEUnfuVs2tmyFyqEcChJXoSwsb+OxKE3mmkU6EnLWj42q0fV5/LmttfI0mhopfPmwe6v2awuW/L3cKZrPUvX0YFkK6wC7F2Tzl2eoU92DiZU3g2fVfYyhRAOJcmLEDa2/GAMAMPa1rLpkvx/rnuGf5xUnFSVmf0/r3DdRVcqWLBuf5KVPqK6TOZZs7dl6nT8LrZGb7VOuUIIh5DkRQgbik3LZdfZFADubFPLZvUkxe5jdqLlD/KkWv2oX0FmF13PbS1r4qRViM1RiIgr5V5HV9K5UHfQuzxYMHV611sydVqICkySFyFsaOWhWAA6hflTy9dG66yoKrPWTyFdq6EJzozrW/FXlPVxd6JfkxoALD8Ya51CGw7gkYCO+JlMnMuOYfmp5dYpVwhhd5K8CGFDyw9YuoyGt7Vdq8vGbW+zjix0qsobPWfjpHW2WV32NKyNpeto5eE4jCazVcr0GvwOj2RY1o/5Yt+H5BpzrVKuEMK+JHkRwkYi4jKIjM/EWaspXDnW2jIyYnjr1C8AjPVpTpN6A2xSjyP0ahiAh04lKUvP1tNJ1im0Wn3uaz6GWgYjlwyZLDj6g3XKFULYlSQvQthIwUDdPk2q4+PuZJM6PvrrES5pFUJNMOnWr21Sh6M4aTW0D1ABWLo/xmrlOvd6gcfzLAOn5x35hvT8dKuVLYSwD0lehLABVVX587Blfx5bDdTdG7GY3/MuADCt9RRcXG03DdtROla3dBetOxZPRp6VBti6eDKk1wwa6vVkmvV8t/cj65QrhLAbSV6EsIFjsRlEp+bi6qShT+MaVi8/35jH6+FvAXCPthod2z9q9TrKgxAPqF/dg3yjmTVH4q1WrrblvTylCwZg4eklxGdbr2whhO1J8iKEDfx11NLq0rtRDZtsB/DVpueJUoxUN5l4ZuDnVi+/vFAUGN7GkmQs3hdt1YJ7Df6Ydnn55KPy5bbp1itbCGFzkrwIYWWqqhZuB3BryyCrl38i8Qjfx24G4JUat+Bdo7nV6yhPhrauiaLA7qgUzieXcafpKyg1W/FMUC8AlsXt4GzKCauVLYSwLUlehLCyU4lZnL2UjbNWQ98m1u0yMplNzNj4BEYF+ueb6TdwjlXLL49q+rjSo0EAAEus2foCtBn4Hn3yjJgVmLNpqlXLFkLYjiQvQljZX5fHZvRoGICXq3VnGS08+AVH9cl4mcy83P5ZcPawavnl1b0dLBtaLtkfg9msWq9gNz+mtnwEnaqyNfsC207/Yb2yhRA2I8mLEFZWMN5lcAvrdhnFZMXw6ZFvAHgGP2q0G2fV8suzgc0C8XLVEZOWy86zyVYtO7TLUzxgsqx+/N7OmRjNRquWL4SwPklehLCiC8k5RMZnotUoDGgaaLVyVVXljb+fIxcz7XPzuHvQx5bRrFWEq5OWoa1tMHAXQKPh0b7v42sycdacy2/hlb8rToiKTpIXIaxoU2QCAB1D/fDzsN4y/WvP/cX2lKM4qSrTa/RAU6u91cquKO5pXxuwtGxZbc2Xy7zDejHFozEAc08sJD03xarlCyGsS5IXIaxo04lLAFYdqJuhz+CdnW8AMDEzj7CB71it7IqkTYgvDWp4kmcws/ryAoDWdPetc2lgMJGuqHy58Rmrly+EsB5JXoSwkhy9kV2Xx2NYc2G6T/Z+QJIxi1C9gQmtHwFP6y96VxEoilLY+vK7tbuOAJ13TZ4PGwbAr0n7OB23z+p1CCGsQ5IXIaxkx+lk9EYztf3caFDD0yplHrp0iN9OLQFgWq4G565PWKXciuqutrXQKLDvfCpnL2VZvfxuvV+nj1GLUVGYvukpTGaT1esQQpSdXZKXzz//nNDQUFxdXencuTO7d+++7rHffPMNPXv2xM/PDz8/P/r373/D44UoL/4+kQhYWl0UKwymNatm3t75BiowNDOLjr1eBSe3MpdbkdXwduWWRtUBWLLf+q0vaJ14pftMPM1mDhvT+XlX1eyiE6K8s3nysmjRIqZOncr06dPZv38/rVu3ZtCgQSQmJhZ5/ObNm7n//vv5+++/2blzJyEhIQwcOJCYGOvtKiuEtamqymYrj3dZcXoFx1NP4Gk2M1VbE1qNsEq5FV3hmi/7YjBZc82XywKbDOVZ13oAfHLyF04kHbd6HUKIsrF58vLBBx8wceJExo0bR7Nmzfjyyy9xd3dn3rx5RR6/YMECHnvsMdq0aUOTJk349ttvMZvNbNy40dahClFqJxOyiEnLxUWnoUu9amUuL8eQw8f7PgBgUmo61Qa+CRrr75FUEfVrWgMfNyfiM/LYfjrJJnXcffu39MozoFfgxfWTyDPm2aQeIUTp2DR50ev17Nu3j/79+/9boUZD//792blzZ7HKyMnJwWAw4O/vb6swhSizLSctrS5d61ezykaMy08vJzk/jVoGIw8EdID6fctcZmXhotNy5+XNGm0xcBdA8QrkjTZPEmA0cUafypztM2xSjxCidHS2LDwpKQmTyURg4NWLdQUGBhIZGVmsMl588UWCg4OvSoCulJ+fT35+fuH/MzIyADAYDBgM1l0LoqA8a5crbMse923bqcvJS5hfmesxmo38eNiyku6Y9EwYMaNKvuZudN+Gt67JjzvPs/ZYPMkZOXi7WXcbBgCvthN449giJpPCoqg/6VKnP7fUvsXq9VQ28jlZMZWH+1aSum2avJTV7Nmz+fXXX9m8eTOurq5FHjNr1ixef/31ax5ft24d7u7uNolr/fr1NilX2Jat7pvRDDvPaAEFU+xxVq8u2xiJI/mHiclLws9kor1TK1bvOw+ct0qsFVFR901VoaablrhcM7N/2UCPIOuPfQHw9BjBQwnv8pOPF6/98yKP+TyNt8bbJnVVNvI5WTE58r7l5OQU+1ibJi8BAQFotVoSEhKuejwhIYGgoBvv+zJnzhxmz57Nhg0baNWq1XWPe/nll5k69d/dYDMyMgoH+Xp7W/dDxmAwsH79egYMGICTk/W/6QnbsPV92xOVij58D37uTky4ewAaTelnGqmqyoIVcwEYkZVH2KgvCPMOtlaoFcrN7luCbxSz1pzkpMGft4d0tlkc3TYnsufcL0S6wBbXTXze7yurzCarrORzsmIqD/etoOekOGyavDg7O9O+fXs2btzIsGHDAAoH306ZMuW657377ru89dZbrF27lg4dOtywDhcXF1xcXK553MnJyWY3wJZlC9ux1X0Lj0oDoFuDAFxcyrYlQHjMDiJyYnExm7m/yf04VatrhQgrtuvdt7va1+Hddac4FJ3O+dQ8GtTwsk39vV/inZMruc8pn12Je1kZtZJ7Gt1jk7oqE/mcrJgced9KUq/NZxtNnTqVb775hh9++IGIiAgmT55MdnY248ZZdsQdPXo0L7/8cuHx77zzDq+99hrz5s0jNDSU+Ph44uPjycqy/oJUQljDjjOWGS89GgSUuaxvdr4NwLBcI/69XihzeZVZdS+XwpWMbTVwFwAnV+rdMZcnUtMBmBM+m7gs629PIIQoPpsnLyNGjGDOnDlMmzaNNm3acPDgQdasWVM4iPfChQvExf37QfDFF1+g1+u55557qFmzZuHPnDmy06sof7LzjRy4kAZA9/plS14Ox+0lPPs8OlVlfPMx4OpjhQgrt4LtApbtj8FoMtuuojpdeLD5WNrm5ZFtzmf6tv+hqrYZZyOEuDm7DNidMmXKdbuJNm/efNX/o6KibB+QEFayOyoFo1mltp8bdaqVbYD4N5en496WrxLcTTYGLI6+TWrg7+FMYmY+W08l0ceKG2L+l7bvq8z8Zi33mHPYmbCXxacWc2+je21WnxDi+mRvIyHKYOcZy0aMZW11OZFwgM3Z51FUlQktJ1T5bQCKy1mnKVzzZbEtu44AnFwJvfMrnkyzDCqcEz6b2KxY29YphCiSJC9ClEH4uRQAutQv2yKK3255DYCBBg1hnZ8sc1xVyb3tLdsFrD+eQFqO3raV1WrHqFYTaZuXR45Zz/QtL0n3kRAOIMmLEKWUozdyLMYyiLNjaOmTl6j4g6zNjgJgYutHQVuul18qd5oFe9Ospjd6k5mVh2zfEqK95SXeoDquZjO7Lh3g9xO/2bxOIcTVJHkRopQOXEjDaFYJ9nGltl/px7vM2/IKqqJwi0lH4w6TrRhh1VEwcPf3vTbuOgLQOVP37h95MiMXgPd3zyYmSzaOFcKeJHkRopR2X+4y6lCGVpeLsXtZlWNZPXdi68dAI2/J0hjWthZOWoUjMelExhd/oatSC2jAqFveol1eHjmqkefXTSLHUPzVQYUQZSOflEKU0p4oS/LSMaz0ycuX/7yMUVHoprrQut3D1gqtyvH3cKbv5ZlGi+3R+gJo2tzPmwHd8DGZOJIZxXObnsJglv18hLAHSV6EKAWDyVy4vkunUra8nI76m1X5ljWOnmz/LMiS82Vyz+WBuysOxWIy22cQbcjtn/NZnguuZjNb43cxc8frMoBXCDuQ5EWIUjgak06uwYSPmxMNa3iWqozPt01HVRT6K540b3m/lSOsem5pVB0/dycuZeaz/XSSfSp18aTN3T/zXkoWGlVl+ZkVfHrgU/vULUQVJsmLEKWwNyoVgI6hfqXaiPHoieVsMKWiqCpTur5m7fCqJGedhttbWdZ8WX7AjgNoA5vTe/DHTEuydCN+c+Qbfon8xX71C1EFSfIiRCnsLhjvUsouo0/D3wHgDl0A9RsOsVpcVd2wtrUAWHMsnhy90X4VNx/G3W0e5fHUNABmhc9iXdQ6+9UvRBUjyYsQJaSqKnvLMFh3z9GF7FCz0Kkqk3u+Ye3wqrR2dXypW82dHL2JdccS7Ft531d5tFon7svIREXlpa0vsid+j31jEKKKkORFiBKKSs4hNceAi05Di+CSbZ6oqiqf7P8IgLudg6hdt6cNIqy6FEVhWBtL68sye3YdAWi0KPfO43+6YPpm52AwG3lq05NEpkTaN44byDOY+HjDKfrO2Uzr19fxwDe72HLykqPDEqLEJHkRooQOXLCMd2lRywdnXcneQlsPzeOgmour2cyjvd62RXhVXkHX0dZTl0jMzLNv5a4+aEct5p08F9rl5ZFpyOKRdRM5lXrKvnEU4VJmPsM+386HG05yNimb9FwDO84kM3rebt5fd0JmSYkKRZIXIUqoYIp02xDfEp1nVs18cugLAO53DaF67U5WjkwAhAV40LaOL2YVVh2Ks38A3sG4jlrMZ6n5NM/PJzU/jbFrxrIzdqf9Y7ksV29i9LzdRMZnEuDpzAf3teaPJ3owtlsoAJ9uOs132845LD4hSkqSFyFK6MBFS8tL2zp+JTpv3b65nCAfT7OZ8X1m2yI0cdnwy60vdp11dKXAZniNWMBXSRm0yssnQ5/B5A2TWRCxwCEtHNNXHiUiLoMAT2cWT+rGXe1q06KWDzOGNueVIU0BmPVXJPvOp9g9NiFKQ5IXIUogV28iIi4TgLZ1fIt9ntFs5LNj8wAY414P36A2NohOFLi9VTA6jWW7gNOJmY4JIqwnPvf+zLzEVIZmZmFSTczePZsZO2dgMNlvJd4dp5P4bW80GgU+ub8toQEeVz3/cM8w7mwTjMms8vLSIxhMZrvFJkRpSfIiRAkcjU3HZFap4eVCTR/XYp+3cvcHnMeAn8nEQ33ftWGEAizbBfRuXB1wwMDdKzXsj8t9P/JmSgbPJaeiAZaeWsrkjZPJNebavHq90cy0lccAeKhLXbrVD7jmGEVReH1oc/w9nDmZkMUPO6JsHpcQZSXJixAlUDBYt20dX5RiLuefb8rni8iFADzs1QSP6k1tFp/417DCrqNYzHbaLqBIjW9FuWceY7Jy+Sw+EXcUwuPCeWLjEzZPYH7fd5HTiVlU83Bm6sDG1z3O192Z5wdZnv9i8xn7rpEjRClI8iJECRQO1i3BeJffd84mXjERaDQxou97NopM/Ff/poF4ueiIScst3ETTYZrdCfcvoqdB4cvYONxVhfD4cJ7YZLsERm80M/fvMwA80bcBPm5ONzz+nva1qePvTnK2ngW7LtgkJiGsRZIXIUqgpDONcvTZfHN6KQCTfFviUq2+jSIT/+XqpOXWlkEALD/owK6jAg37w+gVtFXc+DIuDncVwuPCeXzj4+QYcqxe3eJ90cSk5VLDy4WRnerc9HgnrYYpfRsA8NWWs+QbTVaPSQhrkeRFiGKKS88lPiMPrUahZe3iLU738443SVHM1DEYuVPGuthdQdfRH4fiykdXSJ3OMO4v2rpU56u4eDzMKnvi9zB5w2SyDdlWq8ZkVvnyH0ury6Rb6uPqpC3WecPb1iLQ24WkrHzWHI23WjxCWJskL0IU08HLrS6NA71wd9bd9Pj0vHTmR/0JwOPVOuDkV9eW4YkidAmrRt1q7mTmG1l1KNbR4VgENoeJf9Omemu+jk/A02xmf+J+Jq+fTJY+yypV/B2ZyIWUHHzcnBjZKaTY5zlpNYzqbHmdysBdUZ5J8iJEMR24mAYUf4r0/O0zyFRUGuqNDO73ju0CE9el0Sg8cLnL5OfyNI7DKxDG/EGrxnfxTVwiXiYzBy4dYOLacSTmJJa5+PmXE4+RHUOKlWhfaWSnEJy0CvsvpHEkOr3MsQhhC5K8CFFM/840uvlg3aScSyy4uAGAJ2t0Q+MdbNPYxPXd2yEEZ52GIzHpHLqcgJYLTq4w/Eta9H2DbxNT8DGZOJoSyYgVd7E3fm+piz2VkMm200loFHiwS8lb+2p4uXJri5oALNpbjhI+Ia4gyYsQxWAwmTkSY/kW2qYYg3W/2TqNXAVa5Ru4pa/sYeRI/h7O3NbS8sf4513nHRzNfygKdJlEs9GrWZjtRAO9niR9OuPXjuP93e+Qb8ovcZEFrS4DmgUS4u9eqrDu62Dpalp1KE4G7opySZIXIYrhRHwmeQYz3q466v1nhdL/is2M4be4bQA8FXQLilegPUIUN/BgF0vX0YpDsfbfrLE4gttSZ+JWFvh1587MLFRgfsTP3Lf0Dg4kHih2Mem5Bpbut8ysGtstrNThdK1fjSBvV9JzDWyKKHs3lhDWJsmLEMVwKDoNgNYhvmg0N16c7tsdb2BUoHOenk59ZtohOnEz7er40a6OL3qjmXnbohwdTtFcvXG/Zx5v9vuUz9L0BBhNnM2JY/Rfo3lh09PEZd18k8nF+6LJNZhoEuRFl3r+pQ5Fq1EKZ2ot2V8OppkL8R+SvAhRDAUDF1vdZIp0fHY8y+K2AzA5qJdlYKZwOEVReKy3ZQ2Tn3edJz3XfnsLlVjT27ll4k6W+Xbh7swsFFXlr4sbGbJ0MK9sfYWTqSeLPM1sVgu7xR7qWrfYK0Bfz93tLMnL5hOJJGeVvPtKCFsq2TB0Iaqow5eTl5a1fG943Hc73sSoQKe8fNr3ed0OkYni6tukBk2CvIiMz+SHHVE82a+h1co2mMxsjEhg3bEE9l9IJTbN0jUV7OtK+7r+3NO+Nl3q+Rc/oXD3x/fuecw4u5kRa55jjiad3W6urDy7kpVnV9ItuBtjmo2ha3DXwjK3n0niXFI2Xi46hrWpVeZrahjoRYta3hyNyWDNsfjCKdRClAfS8iLETeQZTJxMsOxMfKOWl4TsBJbE/gPApBrdQGYYlSsajcJjfS6vIPvPGauMfTGYzMzbdo5e7/7NpJ/3s/RADFHJOehNZvQmM1HJOSzZH8393+xi5Ne7Cl9HxVavN00f3cl3rZ9mYWIGg7Ky0agqO2J38OiGRxm1ehTbYrahqio/7bS0utzdvjYeLtb5XnpbS8tr+K8jsmCdKF8keRHiJiLiMjCaVQI8nW+4k/T3u2ZhANrl5dOht4x1KY9ub1mT1iG+ZOtNzFl7okxlHYlO587PtjPzj+PEpecR4OnCwz3C+GlCJ7a92IdtL/bhx/GdeKBzHVx0GsLPpTD0s20sOxBdsoq0TtD1cVpO2s2ckNv5MyaBUemZuJnNHEk6wuQNkxn5x0NsOr8D+HdwsjUMuby9ws6zyaRk661WrhBlJcmLEDdRMEW6RS2f6zb7X8q5xOLoTQBMCuiE4me9PyDCejQahWm3NwPg933RpdqwMVdv4u3VEdz5+TaOx2Xg4+bEm8NasO3FPrx6ezN6NqxObT93avu506tRdd4e3pKNz95Cz4YB5BnMPLPoEF9vOVPy4L0CYegn1H50By8F9uSvi7GMTs/AxaxyPOUQbnW+IajxD2RRirKvo241D5oHe2Myq6w9Jq0vovyQ5EWImygY79Kq1vW7jL7f9Q75qLTJy6eLtLqUa+3r+nFv+9qoKjz968ESDd7dfjqJQR9t4estZzGrcHurmmyYegsPdql7w/2Davu5M39cJybdYtmY8+3VkYV7D5VYQEMY8RPVxm/gee+WrI6OZWRGJjpVJVsTwUN/PcTjGx/nePLx0pX/H0Mur5Gz+sjNZzsJYS+SvAhxEwUzjVrW9i3y+ZS8FH6/uA6ASf7tUarVs1doopSmD21OHX93YtJyeXzB/psuxJaSref53w8x6ttwLqTkUNPHlW9Hd+CzB9pR3culWHVqNQov3dqE5wY2AmD2X5GsKMtu17Xbw5hVRLT/gtsu+fFndCx3ZWahVVW2RG9hxB8jeObvZziVeqr0dfBv8rLjTDKp0nUkyglJXoS4gRy9kVOJNx6su3D3h+Sh0jxfT7c+b9gzPFFKni465o5qh7uzlm2nk5gwfy9pOdf+Yc43mvhp13n6vr+Z3/dZxqqM7lqXdc/0on+z0k2Dn9K3IRN7WhaQe/73w4SfTS71dZhVmBkRyDD9Gxxp+h6va4JYER3HbVnZKKrKhgsbuHvl3by45UXOZ5RudeGwAA+a1rR0Ha0/nlDqWIWwJklehLiBiLgMzCrU8HIh0Pvawbo5hhx+ObcKgPE+zVECGtg7RFFKLWr58PVDHXBzsiQwfeZs5oP1J/k7MpG1x+J5e3UEvd79m9eWHyUtx0CTIC8WT+rKzDtb4OXqVKa6X761Kbe2CEJvMvPoz/u4kJxTqnI2RSZy5lI2Xi5OdLttNEzaTt07v2K2yZelMfEMyM5BRWX1udXcufxOpm2fRkxWyVt7brs8cPdP6ToS5YQkL0LcwOGbLE63eN9nZGCirsFAvz5v2jM0YQU9GgawZHI3GtTwJDXHwCcbTzFu/h4e/WkfX285S0JGPkHersy4oxl/PNGDDqGlX7X2ShqNwocj2tC6tg9pOQYm/LCHzLySLZynqipzN58GYFSXupaESqOBlvfA47tpcOsHfJDnyqKYOHrl5GJSTSw7vYzbl93Om7veJCG7+K0og1sUdB0lkVHCOIWwBUlehLiBIzdYnM5gMvDDiV8BGOtRH22NZvYMTVhJs2Bv1jzVk49GtOHWFkE0D/amdW0f7mpXi88faMc/L/RmbPcwdFrrfly6Omn5enQHgrxdOZWYxZO/HMBkVot9/oaIRPZfSMPVScP47qFXP6nVQbvR8OR+mvV9k8+zFH6Kjadzbh5Gs5FFJxYxZOkQ3t3zLil5N59x1aCGJw1qeGIwqfwdKXsdCceT5EWIGzgcc/2Wlz8PfUsiBqobjQzt/Za9QxNWpNNqGNa2Fl882J4/n+zJiik9+OC+NtzWqiYuuuvPIiqrQG9XvhndAVcnDX+fuMSs1RHFOs9oMvPumkgAxncPo0YRXZoA6FygyyR46iBterzMt2l65sUl0DYvD71Zz0/Hf+KOZXew7NQyVPXGidPg5pauozVHZcq0cDxJXoS4jqx8I2cuZQGW8RFXMqtm5h2dB8CDLrVxrtnG3uGJSqJlbR/m3NsagG+3neO3PRdves687ec4lZiFr7sTj16efn1Dzh7Qcyo8dYiOnZ7ih+QcvohPpHG+ngx9BtN2TGPiuolcyLhw3SIGt7AkL5tPXCJXf+PZWULYmiQvQlzHsZh0VBWCfVyvmQ67+dgvnFPz8DKZue8WWddFlM3trYJ56vJeS68sP8Luc9fvyjmVkMn76yybM/7v1qb4uJVg8LCbL/R9BeWpQ/Ro8zC/JqYxNSUVV7OZ8Phw7loxjG8Of4PBdO24lubB3tTydSPXYGLLqUsluj4hrE2SFyGu48qVda+kqirfHfwcgPucauAZ0tXusYnK56l+DRnSMgiDSeXhH/YUmcAkZ+Xz8I97yTea6dkwgHs71C5dZR4BMOgtdE8eYFzD+1gad4muubnkmw18cuAT7lt1NwcTD151iqIoha0va6XrSDiYJC9CXMf1ZhrtO/0Hh02ZOJtVHuz+qiNCE5WQRqPw/r1t6FDXj4w8Iw9+G87czacLu2gOXkzj3q92cj45h1q+bnw0ok3xd6m+Hu9guP0DQiaF85VvZ2YlJuFvMnE6/Ryj/xrNGztnkqHPKDy8IHnZEJGA3mguW91ClIEkL0JcR0HLy39X1p23ew4Ad2p9CajXz95hiUrMzVnLzw93ZlDzQPQmM++uOUHbN9bR+e0NDPt8O2cvZRPs48qPEzpRzbN4K/sWi38YysgF3H7nD6zI0jE8MwsVld9O/s6wZXewLmodqqrSro4fAZ4uZOQZ2VWGxfWEKCtJXoQoQkaegXNJ2QC0vKLb6MT5f9hqTEGjqozt/KKjwhOVmKuTli8fbM+ce1tTx9+dPIOZhIx8dBqFu9rWYsWUHtSv7mmbyhsNxHdyODObT2ReQgqhegOX8lJ49p9neWLTFBJz4hnY3LKy8BrZqFE4kM7RAQhRHh293OpS288Nfw/nwse/3WFZ/n+A4kmdxnc4JDZR+SmKwj3ta3NX21qcS84mK89IaDUPfNzLtrJvsTi5QZ//0bHF3SxePplvU0/zra83/0RvYXfcUIbUHgfUZt2xBN64swVaTRm7roQoBWl5EaIIR4oY73Iuehdr8y3fNie2f8YhcYmqRaNRqF/dk9YhvvZJXK5UvTEu49fxeIepLIlLpl1eHrmmPJac/wKvenNJMZ5l/4VU+8YkxGWSvAhRhILF6a5cWffbbTNQFYXeqiuNW4xwUGRC2JFWBz2ept6Ev/leqcX0pGS8TGZwicE99DNmh79LjqF0+zIJURaSvAhRhP+2vMTEH+TPPMuuwo+0fdxhcQnhEDWaoJmwnntaPczKmFhuzcpGUVRO5v3JsBXD2BK9xdERiipGkhch/iMtR8+FFMu3yRbBluRl3pZXMSkKXc3OtGw1xpHhCeEYWicYMJOA+xfzTraGufGJ1DSYiMuO4/GNjzNz50yMZqOjoxRVhCQvQvxHwRTputXc8XF3IuHScZblRAHwSMtHoKxrawhRkTXohzJ5O9VozvKYWMalZaABfj/5O89sfoZcY66jIxRVgCQvQvzH4cKdpC2tLvP/eQWDotDOrKND+0ccGZoQ5YNXIKcGzud7wx1MTU3jg4RLuKCw+eJmJm+aTK5ZEhhhW5K8CPEfV453SUk5w+LMUwA80myMtLoIcVmfpjX5SL2fyfqn6KNX+Do2Hi8zHE46zPfZ35Oen+7oEEUlJsmLEP9x5IqZRj9tfok8jUJzs5ZuHZ90cGRClB/erk50bxDAX+bOLGrzPe3cg5kfG4efyUysKZZJmyaRlpdmlbouJOfw296LLN0fzaXMfKuUKSo2SV6EuEJyVj4xaZYm7zpe6fySHgHAI43vR9HI20WIKw1ubtnraOE5T5i4iUbBnZkXl4C/ycSJ1BM8vO5hUvNKvxZMrt7Ey0uP0Ou9v3lh8WGm/naInu9u4tutZ1FV1VqXISog+TQW4goFrS71qnuwasdrZGsUGpo19O78rIMjE6L86d8sEI1ied9E57vCQ0up13gY38clEGC0JDAT1k4gJe/aHbJvJldvYvz8Pfyy+wIAHUP9aFrTmzyDmTf/jODD9SetfTmiApHkRYgrFIx3aRto5OfUgwBMrH8XGq3spCHEfwV4utAx1B+AtccSQOeCaehc9NVuZ158AtWNRk6lnWLcX2NJzEksdrmqqvLs7wfZeTYZTxcdCx7uzO+TurH6yR68MqQpAJ9sOs2ao7K/UlUlyYsQVyhYWdfX/A3pGg11zQoDu73s4KiEKL8Gt7B0Ha0tSCQUhRM17yJk8EfMS0gm0GjkbMY5xvw1mpismGKV+cOOKFYficdJq/D9uI50bxBwuWiFib3q8XCPMABeW3GU9FyD9S9KlHuSvAhxhSPR6bgrmWw0HgXg4dA70Oqcb3KWEFXXoMvjXvacTyExI6/wcbXVSELvXcgPienUNhiIzophzOrRRKVH3bC8iyk5zPorEoD/DWla2LJzpecHN6ZegAeXMvP5aIN0H1VFdklePv/8c0JDQ3F1daVz587s3r37hsf//vvvNGnSBFdXV1q2bMnq1avtEaao4hIz8ojPyKOT/y8kazUEm+G2Hq86OiwhyrVgXzfa1/VDVWHJ/v+0rDTsT61RS5mfkkuY3kBCbiJj/xrNydTrJxxv/RlBvtFMl3r+jO0WWuQxLjotM4Y2B2BB+AXi0/OKPE5UXjZPXhYtWsTUqVOZPn06+/fvp3Xr1gwaNIjExKL7P3fs2MH999/PhAkTOHDgAMOGDWPYsGEcPXrU1qGKKu5ITDquZHPB/zQA40MG4uTk5uCohCj/RnQIAeC3vRevnQVUpwuBo/9kfrqJJvl6kvNTGf/XWI4lHbumnC0nL7HmWDxajcLrQ1ug3GBdpZ4NA+gU6o/eaOaLzaetej2i/LN58vLBBx8wceJExo0bR7Nmzfjyyy9xd3dn3rx5RR7/8ccfM3jwYJ5//nmaNm3KG2+8Qbt27fjss89sHaqo4g5Hp9PFbxGXdBqqm2FYr9cdHZIQFcJtrWri4azlXFI2e84XMTU6qAX+49bwba4zrfLySTdkMmHtOPYn7C88RG80M2OVJaEZ0zWUxkFeN6xTURSe6t8QgN/2RsvYlyrGplMo9Ho9+/bt4+WX/x3wqNFo6N+/Pzt37izynJ07dzJ16tSrHhs0aBDLly8v8vj8/Hzy8/9dtCgjIwMAg8GAwWDdF3NBedYuV9hWce/bsYuxxFWLBDSMDuqFRnGRe+1A8n6rOJw1MKRlEL/vi+G3PdH09SjivnnXwf3BP/lqwZ08qWaxxw0eXTeRD275iC41u/DttnOcvZRNNQ9npvQOLdZ971jHm0Y1PDmZmMWi3ecZ162uja6w8isP77eS1G3T5CUpKQmTyURgYOBVjwcGBhIZGVnkOfHx8UUeHx9f9JS4WbNm8frr135DXrduHe7u7qWM/MbWr19vk3KFbd3ovqkqKEkLiA3U4GtS8cztIWOtygl5v1UMtfMBdPx5JI4O7a5/31yCn+bdU7N4Tc1lmzs88fcUhjjfx5IjrQGFwUG5bN1U/HvexlPhZKKWrzZFUj31GBrZwaNMHPl+y8nJKfaxFX7xipdffvmqlpqMjAxCQkIYOHAg3t7eVq3LYDCwfv16BgwYgJOTk1XLFrZTnPsWm5LKN5f+B2i4v3oX7hx8j32DFNeQ91vFoqoqG9PCORydwdZ4DR9N6Hf9+5bVj48XDOOl7FTWe7izKn8RZu882noNYtroTmhKkIH01htZ/e4WkvONVG/Whc5h185OEjdXHt5vBT0nxWHT5CUgIACtVktCQsJVjyckJBAUFFTkOUFBQSU63sXFBRcXl2sed3JystkNsGXZwnZudN82bX2LC84aPMwqD/WdLfe3HJH3W8Ux+ZYGTF6wn20JCgZVwf16982vNoz9i/d+uJ1ZGQks8vbCteZyWof54ezc/YYDdf/Lx8mJ21vV5Nc9F1lxKJ4ejQJvfpK4Lke+30pSr00H7Do7O9O+fXs2btxY+JjZbGbjxo107dq1yHO6du161fFgaca63vFClJVq1PNHquU119HcBC+PAAdHJETFNLB5EHX93ckxKizcHX3jgz2rY3pwFfenevFYahoAS859z4f7PyxxvXe1qw3A6iNx5OpNJT5fVDw2n200depUvvnmG3744QciIiKYPHky2dnZjBs3DoDRo0dfNaD3qaeeYs2aNbz//vtERkYyY8YM9u7dy5QpU2wdqqiitm57m5POCq5mldYNX3J0OEJUWFqNwqRbLKvfzv3nLMlZN94B+qu96dyT8z/6p/nySpJl/6Pvj37PvKNFz0a9ng51/QjxdyNbb2LdcdkyoCqwefIyYsQI5syZw7Rp02jTpg0HDx5kzZo1hYNyL1y4QFxcXOHx3bp1Y+HChXz99de0bt2axYsXs3z5clq0aGHrUEUVpBoNfHVmCQB102rTMayBgyMSomIb3iaY2h4qmXlG5qw7cd3jDl5M4+ONp0jFm9ODfmakSzDPJlumWX+470OWnlpa7Do1GoXhbS2tL0v/u1CeqJTsssLulClTOH/+PPn5+YSHh9O5c+fC5zZv3sz8+fOvOv7ee+/lxIkT5Ofnc/ToUYYMGWKPMEUVtHvX+xzWgZNZ5UTK/TddW0IIcWNajcLwUEvXzS+7L7L22LUtIYmZeUxZuB+jWeW2VjUZ3KUVjF7JWG0A49Ms+4u9vuN1Np7feM251zOsTTAA208nkZajt8KViPJM9jYSVZfZxDcnFgJQL70mdarXw9VJ6+CghKj4GnjDhO6WNVeeWXSQXWeTC5+LS89l9He7iU7NpW41d94e1tIyQNe7JoxZydNmb+7KzMKMmee3PM/uuBtvJ1OgXnVPmgR5YTSrrD+ecPMTRIUmyYuosg6Gf0K4TkWnqkQkjaRVbR9HhyREpTG1f0N6NgwgR29i1LfhPPHLAf637AgDP9hCZHwmAZ4u/Di+Ez7uV8ww8a2DMmYlr+W70D87B4PZwBObphS5lUBRbm1RE4A1R2XcS2UnyYuomsxmvj7+AwAt84PJNgbRspavY2MSohJx1mn4+qEO3NkmGJNZZdWhWBaGXyAz30ir2j4se6wbdat5XHuifz10o1cyO1uhc24eOcZcJm+YxLn0czetc0hLy5IaW08lkZknKzNXZpK8iCopYt9XbNWZ0Kgqp5LuA6BFLesuaihEVefmrOXjkW1Z+lg3nujbgEd71ePb0R1Y/lh3QvxvsAJ69Ua4jF7BxxkGmufnk5qfxiPrJhKffeMWlYaBXtSv7oHeZGZTZNGb/4rKQZIXUfWoKt8c/hqA/q51icusiZNWkcG6QthIuzp+PDuwMS8PaUr/ZoHFW0E3sDkeDy5nbmo+oXoD8TkJPLJuIql5RWz8eIUhLS1dR6uPxN3wOFGxSfIiqpzTB75nvc4IQNs6TwPQKNALF50M1hWiXAlug/8Di/k6JZtAo5FzGVE8tmEy2Ybs654yuIWl62jziUvk6I32ilTYmSQvompRVb4++DkA/VyDSciqA0CLYBmsK0S5FNKRmiN+4etLGfiaTBxNPsbTm55Cbyp6OnSzmt7U8Xcn32jmnxOX7ByssBdJXkSVcvrwz6zRWFb9nNxjJkdjLGtKyHgXIcqx0B7Uu+dH5l5Kw81sZld8OC9teRGT+dqtABRFYVBzyyKoRa0xIyoHSV5E1aGqfLHvY1RFYYBrTRoFd+JIjGUX0+a1pOVFiHKtQT9aDvuOjy+loFNV1l/YwBs7Z6Kq6jWHFnQdbYxMRG802ztSYQeSvIgq49TRX1inzUdRVSb3eIPEzHySsvLRKNA0SFpehCj3Gt9K19vm8s6lFDSqypLTS3ln9+xrEpi2IX5U93IhM8/IzisWyBOVhyQvompQVb469BkAg1yDaVirc2GXUYManrg5y2BdISqE5sMZOPADXr+8keOCyIV8vP/jqxIYjUZhYDNL15EsWFc5SfIiqoSczO1s0uQVtroAHL3cZdRCuoyEqFhaj2RY77cKd6L+7uh3fH15+YMCBV1H64/HYzJf27UkKjZJXkTlp6pszl0HwBDXYOrVtmwMejT28mBdmWkkRMXTYRwju7/Kc5d3ov7s4Gf8cOyHwqe71KuGt6uOpCw9+y/ceG0YUfFI8iIqveNHF7DDxYxGVZnU863Cx/+daSTJixAVUpfJjOk4lcdT0wCYs3cOiyIXAeCk1dC/qXQdVVaSvIjKTVWZe8iyrssQ11qE1uoIQFJWPnHpeQA0C5bBukJUWD2n8mjLR5mQZvky8mb4myw7tQyAQZe7jtYcjS9yVpKouHSODkAIW9p34Ft2aPLRqSqPdJ9Z+PixWMt4l3oBHni6yNtAiIpM6fsKTxlyyDu5kAU+XkzfMQ2tRsuAhrfh6qQhJi2XY7EZ0spaiUjLi6i0VLOZTw9/CUA/ox+1g9oVPiddRkJUIoqCMugtXqx3FyMyMlGBV7e9yoaLq+ndqAYgC9ZVNpK8iEpr5/4v2afocVZVOniPuOq5Y7Gysq4QlYqioAyZw/9qD+HejExUVF7d9gpBtY4BMu6lspH28lLafyGVpfujuZCSS6CXC0Na1aR3o+ooSjF2SxU2p5rNfHbkG9DAPe5huLmEXPX8kRiZaSREpaPRoLnzU15dbsYcs5Yl3p4svfgeLv5DOZXYjTOXsqhf3dPRUQorkOSlhExmeHXFcRbtjb7q8d/3RdO7cXU+GtEGX3dnB0UnCmze8wlHNEbczCrjer5N+O6zhc+l5xi4mJILQHNJXoSoXDRaNMPmMm3VU+gurGKRtxfOgStBl8ZfRxswpU9jR0corEC6jUrAaDLz/UkNi/ZGoyhwd7vavHt3K8Z2C8VZp2HziUuM/HoXKdlF73Yq7MNsNvHZ8fkAPODVkGoBTa56vqDLKMTfDR93J3uHJ4SwNY0GzdBPeKXePTyVkgaAc7Ut/Hj2NVLyUhwbm7AKSV5K4KONZziSqsFZp+G7MR14/77W3NcxhBlDm7Pi8e5U93IhMj6TJ385ICs6OtC6Xe9zUmPC02xmXN/3rnm+YHG6ljJYV4jKS1FQhrzHw81G805iEq5mM7m6CO5ecS8HEw86OroKLTkr39EhSPJSXBuOJ/DV1nMAzLm7BX2bBF71fNOa3vw8oTPuzlq2nU5i7t+nHRFmlWc0Gfj8xAIARns3xce/wTXHFGwLIF1GQlRyigID32RIu8dYGJtAqN5AUl4i49aM4+fjP8vaL6VwKiGTbrM3MWPlMYwmx+3YLclLMQV6u1Lb15Vbgszcennho/9qHOTFm8NaAPDp36c5l5RtzxAF8OfOd4jSmPExmXmo75wij5Fp0kJUIYoC/V4jrc6j/Bobz8CsbIyqkXf2vMPUzVPJ0Gc4OsIKQ1VVZqw6Rr7RTGxaLjqt41IISV6KqWVtH5Y/1pWhdW+caQ5vW4ueDQPQG828vTrCTtEJAINRzxenfwdgvG9LPP1CrzkmM8/A2ctJZXNZWVeIKiPotleYoZ/I7MRUXkpOQQdsuLCBEatGcDz5uKPDqxDWHktg++lkXHQaXru9mUNjkeSlBHzcnNDd5DemKArT72iORoH1xxM4HJ1ml9gELNvxFjGKmWomMyP7XTvWBSAiLhOAmj6uBHi62DM8IYQDhfi7c6zGUCYZnmFEloEfY+KppWqIzormwdUPsihykXQj3YDZrPLRhpMATOxZjxB/d4fGI8mLDTSo4cmwtrUA+GSjjH2xh3xDLl+dtexnMtGvLe4+IUUeJ11GQlRdg1sEsdHcnndqvEtLjTuLLpynjwEMZgNvhr/JjJ0zMJqNjg6zXFp3PIHI+Ey8XHRM7FnP0eFI8mIrj/exDBTdGJnAheQcB0dT+f22ZRqJikqQ0cy9/Yse6wL/zjSSxemEqHoKxivOv1iDtAf+xMe7Dh9HX+C59Fw0KCw9tZRnNz9Lvsnxs2nKE1VV+XTTKQDGdg8tF0tMSPJiI/Wre9KrUXVUFX7cGeXocCq1nLwMvr2wBoBHa3TF2avoAdVwZcuLjHcRoqppGOhF82BvDCaVFdGeMPFvlDrdGJNyiQ8SL+GsaNl0cROT1k8iU5/p6HDLjb3nUzkWm4Gbk5bx3cMcHQ4gyYtNje1WF4BFey+SZzA5OJrKa+E//yNFAyFGM3f2e/e6x+XqTZxOzAKk20iIqurudrUBWLI/GjyqwegV0PZB+mXn8GVsLB5o2Zuwl/Frx5OUm+TgaMuHheEXALijdU38PMrHCvKSvNhQ70Y1CPZxJTPPyKbIREeHUymlZScwL/YfACbX6ouTu/91j41MyMSsQoCnCzW8ZLCuEFXRnW2C0WkUDkencyohE3TOMPQzGPgWHfONzIuJxt8MkSmRjPlrDBczLzo6ZIdKzdbz55E4AB7oXNfB0fxLkhcb0mgUhraxDNxdfiDGwdFUTt9uep5MDTQymrmt7+wbHns81rKeQ8ta3rKBphBVVDVPF3o3rgHA4v2X96hTFOg2BcasoplzNX6MiaWW0cSFzAs8uPpBDl065MCIHWvJ/mj0RjPNanrTunb5abGW5MXGhrUNBmDziUuk5xgcHE3lEpt6hoXJ+wF4OmwYGmePGx5/7PI0aekyEqJqu6f9v18qr1olNrQ7TNpK3ZDu/BgbT9N8PSl5KUxYO57159c7KFrHUVWVhbstXUYPdK5Trr70SfJiY02CvGkS5IXeZGbt8XhHh1OpfP738xgUhY4G6NFz2k2PPxYr2wIIIaBvk0D8PZxJyMhn43+79D1rwEPLqNHzBebHJ9ErJ5d8k56pm6fy0b6PMJirzpfQ8HMpnL2UjbuzljvbBDs6nKtI8mIHgy9Pz9twPMHBkVQeJ+P3syrDsmDSM83GoDjdeAyL0QynCgfrykwjIaoyZ52GER0ta0EVORtUo4XeL+E+fi0fG7wYlW5ptf3u6HeMXf0QUelFnFMJFQzUvbNNMF6ujp8efSVJXuygf1PLJo5bTyXJrCMr+eSfl1EVhQEGDS27PHPT4+NywGBS8XV3opavmx0iFEKUZ6M610GjwPbTyZxOvM606Nod0E3azksN7uX9hEt4mcwcTj7G8BV38sHeDyr1bKTkrHz+Onp5oG6n8jNQt4AkL3bQPNibIG9Xcg0mdp5NdnQ4Fd7eqE38kxeLVlV5su0Tlm9JN3Ex29JX27KWT7nqtxVCOEZtP/fCL5Y/7jx//QOd3WHIewy89zd+z3GlR04uRtXM98e+Z8Dv/Xl568scTDxY6bYWWLwvGoNJpWUtH1qWo4G6BSR5sQNFUejX1DK6fWOEdB2VhaqqfLhjBgB3m1wIbTu+WOdFX05eZLyLEKLAmG6hACzZF33zCRVhvag1aQdzmz3Cp5fSaJWXj1E18cfZP3jor4cYtmIY84/OJzm34n9BNZtVfrk8UHdU5zoOjqZokrzYSZ/LU/O2n674L2xH2hDxK4cNqbiZzUzq/DJoivcSLkheZLyLEKJAt/rVaBLkRbbexPc7zt38BJ0Lyi0v0Hv8Fhb4dOSXmHiGZmbhZlY5m36W9/e9T//f+/P030+zJXpLhd0naefZZKKSc/B00XFH6/I1ULeAJC920rmeP1qNwrmkbGLTch0dToVkMBn4cO8HAIxWfKne/O5inmcmJtvyb9nTSAhRQFEUpvS17EM3b9s5MvKKOZPIPwxGLqDFg6t4y60hmy5EMy0pmZZ6I0bVyMYLG3l84+MMWjKID/d9yJm0Mza8CusrGKg7rG0wHi46B0dTNEle7MTL1YmWl9cX2X668g7ysqVFez/koppHNaOJ8b3ftSwsVQxnLmVjVBU8XXTUcfA27kKI8uXWFjVpUMOTjDwjP+6IKtnJdbrA+LV43vcz97qHsTAmlqXRcTyYkY2v4kRiTiLzjs5j2Iph3LfqPuYdnUdMVvlesDQxM5+1xyzLepTHgboFJHmxo+4NqgGw84x0HZVUen46X0YuAGCKexjuod2Lfe6/67t4odHIYF0hxL+0GoUnLre+fPXPWZKySrijtKJA09th0jZ44DcaBrblxeRkNp49w/sJl+iNOzpFQ0RKBB/u+5DBSwbz4OoHWXVmFXqT3gZXVDa/7Y3GaFZpX9ePZsHlt5tdkhc76lY/AIDtZ5Iq3ch0W/tm6zTSMdNAb2BY/w9LdG7ByrrNa5bfN6IQwnFubxVMi1reZOYbmbP2ROkKURRoNAgmrIMxf+DceAgDc/P59Fwkm6Iu8FqWiY4u1VFQOHTpEP/b9j8GLB7Ax/s/Ji4rzroXVEomFX7da9kyYXTX8tvqApK82FX7un446zQkZORzNinb0eFUGBfTL7AwehMAUwO6oKveqETnF+xpVJ6/RQghHEerUZhxR3MAFu29yMGLaaUvTFEgrCfc/ws8dQh6TMXP1Z/7LsUwL3IfGy9c5EmjO4E6T1LyUvj2yLcMXjqYp/9+mvC4cId+sT2aopCQkU81D+fCxVXLK0le7MjVSUub2r4A7ItKdWwwFcgn/7yAQYGueQZ69H+3ROeazCrH4y53G9X0skV4QohKoEOoP8Pb1kJVYepvB8nVW2FBUd860H86TD0O98yDhoOoblaYeDGSNaeO82FiCp1xw6ya2XhhIw+ve5hhK4bx0/GfOJd+zq6JjKqq/B1nSQlGdgrBRXfz9bMcqXwOI67E2tX1Y3dUCvsvpHLf5eWpxfUdit/HmtRjKKrKs/WGoXjVKNH555KyyDWYcdaohAXceONGIUTVNv2OZuw4k8TZS9lMX3mUd+5uZZ1FLXUu0OJuy09WIhxZjO7wr/SPO0T/cyc446TjFx8fVnl5cjb9LO/ueZd397yLv6s/Df0a0sivEU39m9LEvwlhPmHoNP/+6VZVlWOxGUTEZeDmrKVDXX+CfFxLHOKe86mcy1Rw1mkY0zW07NdsY5K82Fm7Or4A7DsvLS83Y1bNvPfPSwDcmWem8S2vlbiMozGWVpdaHpamYSGEuB5fd2fev7cNo+eF89veaOpW8+DxPg2sW4lnDej6mOUn6RQcW07948t5NeEoTyensNLTg00e7ux3cyUlL4XwuHDC48ILT3fRutCmehv61OlDsK4TH65N4HB0euHzGgVuaxXMq7c1JdC7+EnMF/9Y1rm5u20wNUpwnqNI8mJn7er6AZZNAtNzDfi4la/NrsqTVZG/cSgvHjezmSmtJ4FzyVtOjsZY3tQhHjJAWghxcz0aBjDt9mbMWHWc99aeIM9g4pn+jW46UzFXb+Jiag6p2Xp83J2o6++Bm/NNul4CGsItz1t+kk7jeXw5DxxfzgPxR8hTFM44OXHSxYUT1cOIcPciMj+ZHGMO4fHhhMeHo5p1GAwdcXXtQ7taYWTmGTkSk86qQ7FsOXmJD0e0pm+TwJte87ZTSWw7nYxGUXm4R2gJfluOI8mLnQV4uhBazZ2o5BwOXEild+OSdYNUFRn6DD7Y+x4AkwzOBHZ6rFTlHI21JC+1JXkRQhTT2O5hpOUa+GjDKT7ddJrd51J4dmBjOtT1K0xisvKN7IlKYdfZZHafS+FIdDpG87+fM846Db0bVWdS7/q0q+N380oDGkCv5yw/yWdwPb6c5seW0zz+MGQeBsCscyOqYW9+1lZnUdJpNG7ROPvvxClgLx2aPcijrR7lXKKRl5ce4UhMOg//sJfpdzQv3AahKHqjmTf/PA5Aj0C1wqyFJcmLA7Sr40dUcg77z0vycj2f73ybFLOeML2Bh255F7Qlf6mazSrHLncbSfIihCiJp/s3ItjHjekrjxF+LoX7vtqJj5sTQd6uZOUbiUvPxfyfjxUfNyf8PZxJzdGTlmNg3fEE1h1P4KEudfnfkKY3b4kpUK0+9HzW8pN0Go4uhsO/oUk5Q72Iv5gGTFE9WV6zB1tqwb6U43x/9HtWnVnFi51eZOljA3lt+VF+3XOR6SuPcfZSFq/d3gyd9to5Oh9tOElkfCa+bk4Mrl1xVn+X5MUB2tX1Y+mBGPZfSHN0KOVSZEokv0b9CcD/XMNwanxrqcq5kJJDZr4RZ52GIDdrRiiEqAru6xhC1/rVmLv5NMsPxJKeayA9998tBEL83egSVo0u9arRKcyf2n5uKIqCqqpExmfy7dZzLNkfzU+7znM4Oo1vx3SkupdLyYIIaAC9X4JbXuTSqXDW/vIZ/c3bCFJSGR+/hnHxsCW0Pe+4mriYm8Tz/zzPraGb+N9t/6NONXfeXXOCH3ae52xSNp+MbIufh3Nh0SsOxvDFP5atC964sxnm8/us8nuzB0leHKD15enSR2LSUVXVOqPZKwmzaubtf17EDAzOzqHLPSVbkO5KBV1GTYI80WpSrBShEKIqCfF3Z9ZdrXh9aAtOJmSSlmPAzVlLiL8bNbyKHtiqKApNa3rz/n2tGd62Fk/8sp9D0enc8+UOFj3StVSzgfQmlUc2mDiQez+/BD3M0oF5uBycj3JqLbdE7aMr8HVgCN+6a/gr6i/2Juzlje5v8GVAe55ZdJCtp5Lo98E/TOgRRqNAL/45mcjPuyx7GI3tFsrg5oGsPl+W35R9yTovDtAoyBMnrUJ6roHo1IrTTGcPq06v4EDGWdzMZp4NGQI1mpS6rCOXB+s2k5V1hRBl5KzT0KKWDz0aBtC+rt91E5f/6tEwgCWTuxHi78b55Bwe+HYXlzJLuAUB8PbqCA5cSMPbVcfchzri0mwwPPArPHUYer2As0cNpiRc5KeYOEKNZi7lXmLShknszfqWBY+0pXGgFynZet5be4KJP+69KnGZdnuzEsfjaJK8OICLTkvjIMuCaQV/YAVk6jP5cPdsACZl5RPU7/UylVcw3qWFrKwrhHCgetU9+WViF2r5unH2UjYPfhtOSnbx9zVadSiW+Zc3jfxwRBvqVrti5qVvCPR9BZ4+Ard/SEuPYH6LjuGBdMu2KItOLGLanvHMesCbd+9pRb8mNWhRy5vbWtVkwcOdmTG0eYXc802SFwcp2GFakpd/fbnvY5KNOYTqDTzU4Wlw9y91WaqqFv5uJXkRQjhabT93FjzcmRpeLpxIyOTBb8NJy7l5AnM6MYuXllhmGz3Wuz79ml5n6rOTK3QYD1P24XbXt7ysqc5XcYnUMBo5n3mB8WtGk6BZzpcPteGPJ3ry+QPt6N4gwJqXaFeSvDhIi8vJy1FJXgA4m3aWhSd/A+BFgztOnR4tU3nRqbmk5xpw0io0qOFpjRCFEKJMQgM8WDixCwGezhyPy+Ch73ZfNQD4vxIz8xj7/W6y9SY6h/kzdUAx9nXT6qDlPTB5J90GvMvSdJUhWdmYUPn6yNc8sPJuTqaetOJVOYYkLw5yZcuL7DANc3bMxIhK7+wcevSfBdqyLd5XkBQ2DvLCRScvcyFE+dCghicLJ3bB38OZIzHpPPDNLmLTrh37mJCRx0Pf7iY6NZe61dz5fFS7Iqc6X5dWB+3H4DNlP++0mMT7Sen4mkxEZpxjxMp7+fbQV5jMVti/yUHkU91BGgd54aRVSMuRQbs7Yraz9dI+dKrKc17NoeHAMpdZ0GVUkCQKIUR50SjQi58ndMbfw5ljsRnc/uk2FoSfJyvfiN5oZsXBGG7/dBsnEjKp7uXC/HGdCPAs4RTrAs7ucMsLDBz3D8ucG9M7OwcjZj4++BljVt3L+YwKNMXoCpK8OIiLTkujQMug3arcdWQym3hv+zQARmbmUPe2jyxbypfR0djLO0kHS/IihCh/mgV7s+Lx7jQP9iYlW88ry47ScsZamk5bw1O/HuRSZj4NaniydHI362wq6x9GwKilfHLL+7yRno+n2cyhtFPcu3wYv0QswKyay16HHdkseUlJSWHUqFF4e3vj6+vLhAkTyMrKuuHxTzzxBI0bN8bNzY06derw5JNPkp5eef+wF7QKFKxHUhUti/yV07mJeJtMTGr6EPjXK3OZqqoWJoTS8iKEKK9C/N1Z9lh3Xru9GWEBHqgqmMwqAZ4uPN2/IX880YMQay7XrygozYcxbPx2lro0pXNuHrmqkbd3z+bxDRNJM6dZry4bs9kidaNGjSIuLo7169djMBgYN24cjzzyCAsXLizy+NjYWGJjY5kzZw7NmjXj/PnzTJo0idjYWBYvXmyrMB2q2eVZMJFxmQ6OxDGyDdl8us+yCN2kfC0+t7xklXLj0vNIydaj0yiXp6RXrG8UQoiqw1mnYUKPMMZ3DyU5W4/RpBLo7WLbxUs9q1Pz/t/5+sDP/LplOh/6uBF+6QCHOUpwdDADwgbYrm4rsUnyEhERwZo1a9izZw8dOnQA4NNPP2XIkCHMmTOH4ODga85p0aIFS5YsKfx//fr1eeutt3jwwQcxGo3odJVvMeAmQZeTl/iqmbx8F/4uKeZ86hgMjOw9B5yss4Z/wXiXhoFeuDppMRgkeRFClG+KopR+XEvpKkTT7iEeqN2R7r8/yP90GRx2halbpjIueRxPtnsSnab8/t21SWQ7d+7E19e3MHEB6N+/PxqNhvDwcIYPH16sctLT0/H29r5h4pKfn09+/r+rFWZkWMY6GAwGDIbrT0ErjYLyrFVu/WqWFRpj0nJJzsjB261sM2wqkrisWH48vQwUeMYlDBoMstrv9dCFVACa1/S66nVg7deDsC25bxWT3LcKxq8+wWPX8+2qp/kkcTM/+3jz/bHvOZVyknd7voerruRbGZRWSV4zNkle4uPjqVHj6t2SdTod/v7+xMfHF6uMpKQk3njjDR555JEbHjdr1ixef/3alVjXrVuHu7tttvZev3691cryc9aSqlf4YcV66lehtdRWpH5GvqLSPi8fs+9drF692mplb47QABpIvcDqKzbrsOZ9E/Yj961ikvtWwbgOZ4ibJ20SlvJKdX+2xW1n1OIRjPIag6tinwQmJyen2MeWKHl56aWXeOedd254TEREREmKLFJGRga33XYbzZo1Y8aMGTc89uWXX2bq1KlXnRsSEsLAgQPx9rZuNmAwGFi/fj0DBgzAyck6rSTLU/bz94kk/MJaMKRzHauUWd7tPr+BPdvj0agqL4QOp2HfsVYrW1VV3jjyD6DnvgFdaRvia5P7JmxP7lvFJPetYrLcN4VBXQbz1drHecLfi3Nc5Hfzz3zW/xuquVWzeQwFPSfFUaLk5dlnn2Xs2LE3PKZevXoEBQWRmJh41eNGo5GUlBSCgoJueH5mZiaDBw/Gy8uLZcuW3fTF7+LigovLtf2ETk5ONnvjWLPsZsE+/H0iiZOJOVXijW40G5mzcwYA9xqdadbvDdBZ77rj0/NIytKj1Si0CvHHyUlb+JwtXxPCduS+VUxy3yombZPBtK/xF/MWjeBRTxMnMqOYtG4s825fiL9r6bdsKY6SvF5KlLxUr16d6tWr3/S4rl27kpaWxr59+2jfvj0AmzZtwmw207lz5+uel5GRwaBBg3BxcWHlypW4utqvr81R/h20W/yMsyJbtG0mp805+JpMPNHvU9A5W7X8ginSDap74npF4iKEEKKYApvTZNxGfvzlLsarKZzJjuHRP0fx7e2/4uNSPpafsMk6L02bNmXw4MFMnDiR3bt3s337dqZMmcLIkSMLZxrFxMTQpEkTdu/eDVgSl4EDB5Kdnc13331HRkYG8fHxxMfHYzJV3CWMb6ZpTctCdSfiMzGbK/c2ASkZ0Xx+ZhkAT/i2xiest9XrKNyMUdZ3EUKI0vMKpO7ov/hWW4dqRhORWdFMWjWSTH35mB1rs0XqFixYQJMmTejXrx9DhgyhR48efP3114XPGwwGTpw4UThAZ//+/YSHh3PkyBEaNGhAzZo1C38uXrxoqzAdLrSaB846DTl6ExdTiz9YqSL6ZM2jZGqgqVHl7lu/sEkdx2ILFqerQqOfhRDCFly9CRu1gm9cm+BrMnE0O5rHV9xHjsHxf6tsNonb39//ugvSAYSGhl61IWHv3r3L/QaFl3ISb35QCem0GhoFenI0JoOIuEzqVrPCMtDl0LHjv7M05zwoCi+3eRKtm69N6pGWFyGEsCInVxqO/I2vl49nQvo+DuREM37ZUGYOmEsjv2Lscm0jsrdRMcWnRXHX8iGsTvua9HzrLuff9PK4l4i4yjnuxZyfxds730BVFG7XVaNt+xtPfy+txMw8EjLy0Sj/rl4shBCijLQ6mt71A19U64aXycyx3ASe/GscRrPRYSFJ8lJMO3a+S45qYgcXGPPHPVzMsF5XVpOalXvQ7tI/J3JYp+JuVnlm8Nc3P6GUjkRbksr61T1xdy6/K0MKIUSFoyi0Hvo1y2oOpl92Ds9nGdGZHbd6uSQvxXTXwE/40bUJwQYjF/KTeXj1KFLyUqxSdpOgfwftVjYXjy3mvfTDADxWbxg1qtmumfHQxTQAWof42qwOIYSoshSFwMFz+Kj9C/Qbtdrqs0VLQpKX4tLqaD78J97LDqKOwUBsfirP/DUWvUlf5qIbX05ezqfkkKN3XDOctZlyUnhl5wxyNBra63x5sOe1KyFb08HLLS9tJHkRQgjbUBTo/Ch42H7RuhuR5KUkNDqi6k7hY/dmeJrN7M84xzsbnixzsQGeLgR4OqOqcCohywqBlg/zV43hgJOChwpvDZ6HVmO7dVdUVS1seZHkRQghKjdJXkpIVXTUvesn3nEKRVFVfovfzpIds8pcbuNK1nW0b+f7fJp7DoAXm46hVrWGNq0vKjmH9FwDzjpN4e9SCCFE5STJS2lonek1cilTtJbVht86uYDDh38uU5GNAy/POKoEg3aTYvbyfMQ8TIrCre51GNbpWZvXWdDq0iLYGyetvKyFEKIyk0/50tK58PCIP+mHJwZF4Zk9b5N0am2pi6ssg3aN+mxeWDuRS1oN9VUdM+74BUVRbF7vQRmsK4QQVYYkL2WgcXbnrXtXUQ8nEnVapv79NDlR20pVVmXpNvpkxQPs0RpxN6t80P8L3F3ts97KQRnvIoQQVYYkL2Xk4R7Ax7ctxFNVOOCiY/K6iWSdL3kC0yjQC0WB5Gw9lzLzbRCp7S3b+jrf55wFYGbjh6hXu4td6tUbzRyPtXS3ta7ta5c6hRBCOI4kL1YQGtCELwd+g5eqsN9Fx6PrJpJ+fnuJynBz1hJ6eWuAitj6sitiMTPP/A7ARI8GDOr2ot3qjozPQG8y4+vuRN1q7narVwghhGNI8mIlrYM78+2gefioCoeddTy0YSLRZzeWqIzGgZauo4q20u7phAM8E/46RkXhVtWdJ4Ytsmv9hYvT1fa1y/gaIYQQjiXJixU1q9mB7wf/SKCq4ZxOy6jNT3L2zLpin18Rx70kZSfy2JoJZCnQzqDy5vClKHZedfHgRcvidDJYVwghqgZJXqysYVAbFgxdQmOzlhSthkf/eYb4YnYhFc44SqgYyUuOIYcpK+4hDgN1DUY+7j8XZ59ado/jwMVUAFrXlp2khRCiKpDkxQYC/RvwzfBlhJo1xGs1TNrwCOkx+256XkHLy8mETExm1dZhlonJbOKlP0ZxzJCKr8nE3FZP4Bvay+5xpGTrOXspG4B2dfzsXr8QQgj7k+TFRvx8w/jq9l+oYVY4o9Mw5a/R5CQcu+E5dat54OqkIc9g5kJKjp0iLZ05G57k74zTOJtVPg3qT51Ojzkkjn3nLa0uDWp44ufhuE3ChBBC2I8kLzYUXL0ZXw76Di8VDjppeGTVfVy6sPO6x2s1Cg1rFIx7Kb+Ddr/b/iY/x20B4C33xrS59WOHxbL3vGVn7w51pdVFCCGqCklebKxhcEe+7Ps5XiocctJw+8aJfLvtdfJNRa/lUtB1FFlOB+3+uPt9PjptmU00FT8G3/2LZZdRB9kbZWl5aS/JixBCVBmSvNhBqzq9+HHQfFqadeRoFD4+s5hRy4ZxPuP8NceW520CftzzIe9FzAdgksGFcSNWgZ1nFl0pz2DiSLRlplGHUH+HxSGEEMK+JHmxkwY12/Pz/Zt5W62Gv8nEiexoRqy8mw3nN1x1XHlteflxz0e8d3weAI/onXhs5BpwdezsnqMx6ehNZgI8nQmVxemEEKLKkOTFjjSuPtwxag2/uTajXV4e2aZ8ntn8DN8d+Q5VtcwuKkheopKzydWbHBluoXm73uG9498B8Ei+jikj16B4Bjg4KthzRZeRLE4nhBBVhyQv9ubkSuCIX/gucAAPpFtaVz7a/xGv75iBwWyguqcL1TycUVU4lejY1hdVVfliy2t8eOJnACbla5kycjWKVw2HxlVgX+FgXekyEkKIqkSSF0fQOqG783NebvcULyWnoFFVlpxeyuPrHiHLkFUuuo6y9Fm8+Odo5p5bDsCTRnceH7URxbumw2K6kqqqhdOkO4TKYF0hhKhKJHlxFEWBHs8wavAXfJyUgZvZzM6EvYxeeS8hNfSA4wbtHkw8yIjfB/JX8kG0qspLBDDxwY3gUc0h8RTlZEIWqTkGXJ00NA+WlXWFEKIqkeTF0ZoNpfeoVczP1lHdaOR0dgx7019Eo0u1e/KSa8zlg12zGPPXQ1wwZhJkNDLfpxOjRq0FF0+7xnIzO84kAdAx1B9nnbyMhRCiKpFP/fKgZmuaPbyFnz1aU8tgJFHNIqzuu6QmHLBL9aqqsvrsaoYuHsT3JxZiBoZm5bC4xZO0GT7PodOhr2fHmWQAutV3/MBhIYQQ9iXJS3nh6kPwiF+Y1/Rhgo0mEp1VlBofc2H9G2AsekG7slJVlb3xe3noz/t5ceuLxOenEmww8kmWhreG/opP58k2qbesTGaV8LOW5KVr/fLTlSWEEMI+JHkpTxSF4O7P8t2g7/A3Kpx31jHq4i8s+KYDhkO/gtlslWpMZhMbzm/gwdWjGLd2HIeSj+FmNvNEShorAnrT5+HtENLRKnXZwvHYDDLyjHi56GgR7O3ocIQQQtiZztEBiGvVrt2VurpZ6PPfJM0li9nu8MueGTyz4x36dpiC0vp+cC75omw5hhz+OPsHPx2bT1TmRQCczSp3ZmUxSVudGsO+gDD77wxdUgXjXTrX80enlfxbCCGqGkleyqk2NRuwZdPL9GgVyUXT75x3gqedjDQ/8A4PbX+LgSH9cGpxN4R2Bxev65ajqiqRKZEsPbGIVWf+INts6YLyMpkZmZnJA0ZXArq/BB0ngNbJXpdXJgXjXbrKeBchhKiSJHkppxoHeQNaMlO7s/qRx/nu4Bf8FLGAYy7wkosL76Vt544167gzO4cG/k2gehPwCwU3PwxaLfszL7A5LZK/s88To/47ZqaOwcDIjCzucq6JR5enoN1D4OTmsOssKb3RzJ4oy+J03WS8ixBCVEmSvJRTTWpaWlNOxmfipnXnyY7P8VDLCfwWuYhfjv9EMhnM9/Vmvq83ofpLhCbE4hWnkqVR2OPmSpbm3+4UV7OZnrl53Kt60TnsVjQD74aQTg7dDbq09p5PIUdvIsDTmcaB129xEkIIUXlJ8lJOhVbzwEWnIddg4kJKDqEBHvi5+vFom0mMbzWBrdFbWXF6BVui/yHKGaKcr+7y8UdHL5dAens3pGvdfrjXag++IQ66GuvZfOISALc0qoFGU/GSLyGEEGUnyUs5pdUoNAz05GhMBpHxmYQGeBQ+56Rxom+dvvSt05e0vDSOJh8lNiuWLEMWLloXWgS0oGVASzRK5RvM+ndkIgB9mlR3cCRCCCEcRZKXcqxJkDdHYzI4HpvO4BZBRR7j6+pLj1o97ByZY1xMyeFUYhZajULPBpK8CCFEVVX5vppXIq1rW/bsORSd7uBIyofNJy1dRu3r+OHjXjFmRgkhhLA+SV7KsdYhvgAcik5DVVXHBlMO/HPC0mXUW7qMhBCiSpNuo3KsSZA3zjoNaTkGzifnXDXupSy2n05i8b5oEjLyaFDDkwc616FJUPleqTbPYGL7acv6Ln0a13BwNEIIIRxJkpdyzFmnoXmwNwcupHEoOq3MyYvJrPLq8iP8svti4WM7ziTz867zPDuwMY/1ro9STqdPbz5xiVyDiVq+bjQJkinSQghRlUm3UTnXurYvAAcupJWpHFVVef73Q/yy+yIaBUZ1rsN797RiUPNAzCq8t/YEH64/WfaAbWTN0TgAbm0RVG4TLCGEEPYhLS/lXJsrxr2Uxffbo1h6IAadRuGzB9oyuEVNAO7tEMK8beeY+cdxPtl0mrDqHgxvW7uMUVtXvtHExgjLeJdbW9Z0cDRCCCEcTVpeyrmC5OVYTAZ5BlOpyohKymbWXxEAvHpb08LEpcD4HmE83qc+AK8tP8bFlJzSB2wD208nkZlvJNDbhbaXfx9CCCGqLkleyrm61dyp7uWC3mTm4MW0UpUxZ90JDCaVng0DGNMttMhjpg5oTPu6fmTlG3l+8aFyNbtp9ZF4AAY3D5JVdYUQQkjyUt4pikKXepYNCHde3k25JI5Ep/PH4TgUBf43pOl1x4toNQof3tcGVycNu86m8MfhuDLFbS15BhNrj1qSlyHSZSSEEAJJXiqErpeTl11nS568vLMmEoBhbWrRtOaNp0PXqebO5FsaADBrdQQ5emOJ67O2dccTyMw3UsvXjY6h/o4ORwghRDkgycv/27v3oKiuPA/g326gWxGblmeLgkJEiC/iI3ZIJDNZCY91LWPcGTVM1qR8JAZ2ykdMdKZGnardMiabp0OMqUxCspPRxMloEteQEBGIipggRkVCRDH4oEUhbbfyaujf/sHQSY/Ky+6Gi99PVVfBPeeeew6/6ts/bp97jwLcE9X2oV1y1tyteS9fnbyEfRWX4eOlwooHR3dpnyd+EYVh+oG4cKURf/6qskf9daW/Hz4HAHh40jB+ZURERACYvChCZNAghOq0aG6xo/iHH7u0j90ujqsuv7lnBMIDfLu03wAfLzyTEgMAePOr07hSb+tZp12gxtqIgn8sCTB74rBe6wcREfUtTF4UQKVSISG67ZH47bcMd+b/jlXj+HkL/LTeyHhgVLeON3NCGGINg2FtbMGWglPd7q+rfFxyAXYBJkboERXs12v9ICKivoXJi0Ik3hkKAMgpM3V6J5Ct1Y4XvygHACxOiEKgn7Zbx1Krf/qa6Z39Z3DJ2tSDHt8au13wftEPAIB/n9y3njtDRES9i8mLQtw/OghabzXO1jWg/KK1w7rbvj6LM7X1CPLTYFFCZI+O9+CYUMSF69Fga8XreRU9auNW7Ku4jDO19Ris9cZDd/ErIyIi+gmTF4Xw1XgjIToIAPDptxduWu9aUwte/fIkAOC306MxSNuzhyirVCqsSmqb+/J+URWqrzT0qJ2eeq+w7arLnMnDezwGIiLqn5i8KMjDk9q+Ptn+zTm0tNpvWGdL/ilcvtqEiABfzLs74paOd9+oQEyNDEBzix1/yvXc1ZdzP9Yj97uLANomGxMREf0ckxcFSbwzFIGDNKixNmHPd9dP3D1vbsCWgtMAgN/9ayw03rcWXpVKhZX/mPvy4TdnPbZswJ/3VcIubcnTqBBO1CUiImdMXhRE463Gr6aEAwD+lFsBu/2nibsigt/9/RiaWuwwRgYgeazBJcc0RgUiIToItlbBptyTLmmzI3XXmrHt0FkAwJO/uMPtxyMiIuVh8qIwixMi4af1xrHzV/DBN2cd29/6qhL531+C1luN/3po3E2XAeiJ9juPPjp8HpWXr7ms3RvJOnAGDbZWjBumw7RRQW49FhERKROTF4UJ9NPit9Pbntuy7pNSvFd4Bv/zeTn+e3fbqtFrUmMRHTrYpcecGDEE/xIbgla74NUvv3dp2z9nabTh3QNnAABP/XKUSxMwIiLqP5i8KNCiaVFIHhuK5hY71n5cij/tbZtMuzgh8qarRt+q9qsvH397Ad93cqt2T72ZfxpXGmwYFeLnsq+9iIio/2HyokBqtQqZj0zCsymxmDDcH/dEBWDT/Ikdrhp9q8YN80fKWANEgFfccPWlxtKIP+9rW0tpVXIMvLiOERER3QQfoKFQ3l5qLP3lHVj6S89Nal3+4Gh8fsKE3cdM+PasGXHhepe1/cqek2iwtWJShB5JY0Jd1i4REfU/brvyUldXh7S0NOh0Ouj1eixcuBBXr17t0r4igtTUVKhUKuzcudNdXaRuijEMxux/PO123SelTnc73Yqj58zYdqgKAPBsSiznuhARUYfclrykpaWhtLQUOTk52LVrFwoKCrBkyZIu7fvKK6/wA6yPWp0ai0EaLxw5a8bfDp+75fZa7YLf7zgOuwAP3RUGY1SgC3pJRET9mVuSl7KyMmRnZ+Ott96C0WjEtGnTsGnTJmzbtg0XLtz80fYAcOTIEbz44ot4++233dE1ukUhugFYltg2eXfjZ9/BXN98S+1lHTiDY+evYPAAb/x+xhhXdJGIiPo5t8x5KSwshF6vx5QpUxzbEhMToVarUVRUhNmzZ99wv/r6ejzyyCPIzMyEwdC1u02amprQ1PTTqscWiwUAYLPZYLPZbmEU12tvz9XtKk3a1GH44OsqVFy6hjUfHcWrcyf06EpZucmKjdnfAQBWJUVDP0Dtlr8t46ZMjJsyMW7K1Bfi1p1juyV5MZlMCAkJcT6QtzcCAgJgMpluut/y5ctx7733YtasWV0+1oYNG/DHP/7xuu1ffPEFfH19u97pbsjJyXFLu0oyywC8fNkLn5VeROB72bg7uHvzX5pagZeOeaG5RYUxejt0Ncewe/cxN/W2DeOmTIybMjFuytSbcauv7/oSNN1KXlavXo2NGzd2WKesrKw7TTp88sknyM3NRUlJSbf2W7NmDVasWOH43WKxIDw8HElJSdDpdD3qy83YbDbk5OTgwQcfhI+Pj0vbVqKW4FN4NfcUdlRpMDd5KmINXXs4XqtdkL71CEwNlxDkp8HbT8Qj0E/rtn4ybsrEuCkT46ZMfSFu7d+cdEW3kpeVK1fiscce67BOVFQUDAYDamqcFw5saWlBXV3dTb8Oys3NxalTp6DX6522z5kzBwkJCcjLy7vhflqtFlrt9R98Pj4+bguAO9tWkv+cPhqHzphReLoWT/ylBH9/6j4Y/Ad0uI/dLli/6zj2fHcJGm813vyPKTAM8czii4ybMjFuysS4KVNvxq07x+1W8hIcHIzg4OBO68XHx8NsNqO4uBiTJ08G0Jac2O12GI3GG+6zevVqLFq0yGnb+PHj8fLLL2PmzJnd6SZ5iLeXGm/8ZjJmb96P05eu4ddbCvG/C6diROCgG9ZvtLXi9zuO46PD56BSAS/+Kg6TIoZ4uNdERKR0brnb6M4770RKSgoWL16MQ4cOYf/+/cjIyMC8efMQFhYGADh//jxiY2Nx6NAhAIDBYMC4ceOcXgAQERGByMhId3STXMDf1wfvPj4VEQG+qKqrx79t2ocPvz6Llla7U73iH37E7NcP4KPD56BWAS/9Og4z48J6qddERKRkbnvC7vvvv4+MjAxMnz4darUac+bMwWuvveYot9lsKC8v79YEHeqbwgN88bcn4/HEX4pRUmXGMx8dxctffg9jZAA03mocO29BWXXbd5kBgzR4Ze5duH9051fwiIiIbsRtyUtAQAD++te/3rR85MiREOn4DpXOyqnvCNENwPYn4vHWvkpsyT+F6iuN2Hnkp2f6eKtVmDNpOFYmjUaIruN5MURERB3h2kbkMt5eajz5izuwIH4kDlbWoqzagpZWwYhAXyREByNgkKa3u0hERP0AkxdyuYEaLzwQE4IHYkI6r0xERNRNblvbiIiIiMgdmLwQERGRojB5ISIiIkVh8kJERESKwuSFiIiIFIXJCxERESkKkxciIiJSFCYvREREpChMXoiIiEhRmLwQERGRojB5ISIiIkVh8kJERESKwuSFiIiIFKXfrSotIgAAi8Xi8rZtNhvq6+thsVjg4+Pj8vbJPRg3ZWLclIlxU6a+ELf2z+32z/GO9LvkxWq1AgDCw8N7uSdERETUXVarFf7+/h3WUUlXUhwFsdvtuHDhAgYPHgyVSuXSti0WC8LDw3H27FnodDqXtk3uw7gpE+OmTIybMvWFuIkIrFYrwsLCoFZ3PKul3115UavVGD58uFuPodPp+KZUIMZNmRg3ZWLclKm349bZFZd2nLBLREREisLkhYiIiBSFyUs3aLVarFu3Dlqttre7Qt3AuCkT46ZMjJsyKS1u/W7CLhEREfVvvPJCREREisLkhYiIiBSFyQsREREpCpMXIiIiUhQmL12UmZmJkSNHYsCAATAajTh06FBvd+m2tn79eqhUKqdXbGyso7yxsRHp6ekIDAyEn58f5syZg4sXLzq1UVVVhRkzZsDX1xchISFYtWoVWlpaPD2Ufq2goAAzZ85EWFgYVCoVdu7c6VQuIli7di2GDh2KgQMHIjExESdPnnSqU1dXh7S0NOh0Ouj1eixcuBBXr151qnP06FEkJCRgwIABCA8Px/PPP+/uofVrncXtscceu+79l5KS4lSHcfO8DRs24O6778bgwYMREhKChx56COXl5U51XHVuzMvLw6RJk6DVajFq1ChkZWW5e3hOmLx0wQcffIAVK1Zg3bp1OHz4MOLi4pCcnIyampre7tptbezYsaiurna89u3b5yhbvnw5Pv30U2zfvh35+fm4cOECHn74YUd5a2srZsyYgebmZhw4cADvvvsusrKysHbt2t4YSr917do1xMXFITMz84blzz//PF577TW88cYbKCoqwqBBg5CcnIzGxkZHnbS0NJSWliInJwe7du1CQUEBlixZ4ii3WCxISkrCiBEjUFxcjBdeeAHr16/Hm2++6fbx9VedxQ0AUlJSnN5/W7dudSpn3DwvPz8f6enpOHjwIHJycmCz2ZCUlIRr16456rji3FhZWYkZM2bggQcewJEjR7Bs2TIsWrQIn3/+uecGK9SpqVOnSnp6uuP31tZWCQsLkw0bNvRir25v69atk7i4uBuWmc1m8fHxke3btzu2lZWVCQApLCwUEZHdu3eLWq0Wk8nkqLN582bR6XTS1NTk1r7frgDIjh07HL/b7XYxGAzywgsvOLaZzWbRarWydetWERE5ceKEAJCvv/7aUeezzz4TlUol58+fFxGR119/XYYMGeIUt2effVZiYmLcPKLbwz/HTURkwYIFMmvWrJvuw7j1DTU1NQJA8vPzRcR158ZnnnlGxo4d63SsuXPnSnJysruH5MArL51obm5GcXExEhMTHdvUajUSExNRWFjYiz2jkydPIiwsDFFRUUhLS0NVVRUAoLi4GDabzSlmsbGxiIiIcMSssLAQ48ePR2hoqKNOcnIyLBYLSktLPTuQ21RlZSVMJpNTnPz9/WE0Gp3ipNfrMWXKFEedxMREqNVqFBUVOercf//90Gg0jjrJyckoLy/Hjz/+6KHR3H7y8vIQEhKCmJgYLF26FLW1tY4yxq1vuHLlCgAgICAAgOvOjYWFhU5ttNfx5Gcik5dOXL58Ga2trU6BBIDQ0FCYTKZe6hUZjUZkZWUhOzsbmzdvRmVlJRISEmC1WmEymaDRaKDX6532+XnMTCbTDWPaXkbu1/537ui9ZTKZEBIS4lTu7e2NgIAAxrIXpaSk4L333sOePXuwceNG5OfnIzU1Fa2trQAYt77Abrdj2bJluO+++zBu3DgAcNm58WZ1LBYLGhoa3DGc6/S7VaXp9pCamur4ecKECTAajRgxYgQ+/PBDDBw4sBd7RtT/zZs3z/Hz+PHjMWHCBNxxxx3Iy8vD9OnTe7Fn1C49PR3Hjx93mgvYn/DKSyeCgoLg5eV13WzsixcvwmAw9FKv6J/p9XqMHj0aFRUVMBgMaG5uhtlsdqrz85gZDIYbxrS9jNyv/e/c0XvLYDBcNzG+paUFdXV1jGUfEhUVhaCgIFRUVABg3HpbRkYGdu3ahb1792L48OGO7a46N96sjk6n89g/j0xeOqHRaDB58mTs2bPHsc1ut2PPnj2Ij4/vxZ7Rz129ehWnTp3C0KFDMXnyZPj4+DjFrLy8HFVVVY6YxcfH49ixY04n2JycHOh0OowZM8bj/b8dRUZGwmAwOMXJYrGgqKjIKU5msxnFxcWOOrm5ubDb7TAajY46BQUFsNlsjjo5OTmIiYnBkCFDPDSa29u5c+dQW1uLoUOHAmDceouIICMjAzt27EBubi4iIyOdyl11boyPj3dqo72ORz8TPTY1WMG2bdsmWq1WsrKy5MSJE7JkyRLR6/VOs7HJs1auXCl5eXlSWVkp+/fvl8TERAkKCpKamhoREXnyySclIiJCcnNz5ZtvvpH4+HiJj4937N/S0iLjxo2TpKQkOXLkiGRnZ0twcLCsWbOmt4bUL1mtVikpKZGSkhIBIC+99JKUlJTIDz/8ICIizz33nOj1evn444/l6NGjMmvWLImMjJSGhgZHGykpKTJx4kQpKiqSffv2SXR0tMyfP99RbjabJTQ0VB599FE5fvy4bNu2TXx9fWXLli0eH29/0VHcrFarPP3001JYWCiVlZXy5ZdfyqRJkyQ6OloaGxsdbTBunrd06VLx9/eXvLw8qa6udrzq6+sddVxxbjx9+rT4+vrKqlWrpKysTDIzM8XLy0uys7M9NlYmL120adMmiYiIEI1GI1OnTpWDBw/2dpdua3PnzpWhQ4eKRqORYcOGydy5c6WiosJR3tDQIE899ZQMGTJEfH19Zfbs2VJdXe3UxpkzZyQ1NVUGDhwoQUFBsnLlSrHZbJ4eSr+2d+9eAXDda8GCBSLSdrv0H/7wBwkNDRWtVivTp0+X8vJypzZqa2tl/vz54ufnJzqdTh5//HGxWq1Odb799luZNm2aaLVaGTZsmDz33HOeGmK/1FHc6uvrJSkpSYKDg8XHx0dGjBghixcvvu6fOcbN824UMwDyzjvvOOq46ty4d+9eueuuu0Sj0UhUVJTTMTxBJSLiues8RERERLeGc16IiIhIUZi8EBERkaIweSEiIiJFYfJCREREisLkhYiIiBSFyQsREREpCpMXIiIiUhQmL0RERKQoTF6IiIhIUZi8EBERkaIweSEiIiJFYfJCREREivL/v24/EMghvy0AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Zero-Shot superresolution\n", + "plt.plot(test_x[sample, 0, ::4], label=\"Initial condition\")\n", + "plt.plot(test_y[sample, 0, ::4], label=\"Ground Truth\")\n", + "plt.plot(fno(test_x[sample, :, ::4])[0], label=\"FNO prediction\")\n", + "plt.legend()\n", + "plt.grid()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 448 + }, + "id": "-HTX1O1Ds903", + "outputId": "0b07ec27-49b6-44c9-c1b1-e4153621f029" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 19 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAk5xJREFUeJztnXmcXHWV9p9be1fv+5J09p1sJEhsDCjQkiBoMjKIDCMQIbwgmQFR8IUXAwMoDoIiwoi4gM6IIKNGRQiGQFhDAiGB7GTprN3Ve3d1V3fXet8/7v396lZ1LffWeqvqfD+ffAjdt6pvdVXqPvWc55wjiKIogiAIgiAIooAwZPsECIIgCIIgMg0JIIIgCIIgCg4SQARBEARBFBwkgAiCIAiCKDhIABEEQRAEUXCQACIIgiAIouAgAUQQBEEQRMFBAoggCIIgiILDlO0T0CuBQADt7e0oLS2FIAjZPh2CIAiCIFQgiiKGhobQ1NQEgyG6z0MCKArt7e1obm7O9mkQBEEQBJEAJ0+exMSJE6N+nwRQFEpLSwFIv8CysrIsnw1BEARBEGpwOp1obm7m1/FokACKAit7lZWVkQAiCIIgiBwjXnyFQtAEQRAEQRQcJIAIgiAIgig4SAARBEEQBFFwUAYoCfx+P7xeb7ZPg0gDRqMRJpOJRiAQBEHkKSSAEmR4eBinTp2CKIrZPhUiTdjtdjQ2NsJisWT7VAiCIIgUQwIoAfx+P06dOgW73Y7a2lpyCfIMURTh8XjQ3d2NtrY2zJw5M+YwLYIgCCL3IAGUAF6vF6Ioora2FkVFRdk+HSINFBUVwWw24/jx4/B4PLDZbNk+JYIgCCKF0MfaJCDnJ78h14cgCCJ/oXd4giAIgiAKDhJABEEQBEEUHCSAiHEIgoANGzbw/z9w4AA+/elPw2azYfHixVG/RhAEQRC5AoWgC4hrr70Wv/nNbwAAJpMJVVVVWLhwIa688kpce+21PPPS0dGByspKfrt77rkHxcXFOHjwIEpKSqJ+jSAIgiByBXKACoyVK1eio6MDx44dw8svv4zzzz8ft9xyCy699FL4fD4AQENDA6xWK7/NkSNHsHz5ckyePBnV1dVRv6YVj8eT/AMiCIIgEmLDztN493BPtk8ja5AASgGiKGLE48vKH62DGK1WKxoaGjBhwgQsWbIEd911F/7yl7/g5ZdfxjPPPAMgtAQmCAJ27NiB++67D4Ig4N577434NQA4efIkvvKVr6CiogJVVVVYtWoVjh07xn/2tddei9WrV+N73/sempqaMHv2bE23e/jhh9HY2Ijq6mrcfPPNIVO43W43vvOd76C5uRlWqxUzZszAr371K/79PXv24OKLL0ZJSQnq6+vxta99DT09hfsPnyCIwuZE7whufX4X/uWX29DnKswPo1QCSwGjXj/mrX8lKz97330rYLck9zRecMEFWLRoEf70pz/h+uuvD/leR0cHWltbsXLlSnz7299GSUkJbrzxxnFf83q9WLFiBVpaWvDWW2/BZDLhgQcewMqVK/Hxxx/zacqbN29GWVkZNm3aBACqb/f666+jsbERr7/+Og4fPowrrrgCixcvxtq1awEAV199NbZu3YrHHnsMixYtQltbGxc4AwMDuOCCC3D99dfjxz/+MUZHR/Gd73wHX/nKV/Daa68l9bsjCILIRY70DPO/f3RyAOfPqcvi2WQHEkAEAGDOnDn4+OOPx329oaEBJpMJJSUlaGhoAACUlJSM+9r//M//IBAI4Je//CWfj/T000+joqICW7ZswUUXXQQAKC4uxi9/+UsubNTerrKyEo8//jiMRiPmzJmDSy65BJs3b8batWvxySef4A9/+AM2bdqE1tZWAMC0adP4Y3j88cdx5pln4vvf/z7/2q9//Ws0Nzfjk08+waxZs1L6uyQIgtA7p/pH+d/3dThJABGJUWQ2Yt99K7L2s1OBKIpJDXb86KOPcPjwYZSWloZ8fWxsDEeOHOH/v2DBgpDdWmpvd8YZZ8BoDD7WxsZG7N69GwCwa9cuGI1GfPazn416bq+//nrEsPaRI0dIABEEUXCc6h/hf/+kcyiLZ5I9SAClAEEQki5DZZv9+/dj6tSpCd9+eHgYS5cuxe9+97tx36utreV/Ly4uTuh2ZrM55HuCICAQCABA3HUkw8PD+OIXv4j//M//HPe9xsbGmLclCILIR5QO0Mm+kRhH5i+5fdUmUsJrr72G3bt345vf/GbC97FkyRI8//zzqKurQ1lZWdpvp2TBggUIBAJ44403eAks/Gf88Y9/xJQpU2Ay0UueIAgiRAAp/l5IUBdYgeF2u+FwOHD69Gl8+OGH+P73v49Vq1bh0ksvxdVXX53w/V511VWoqanBqlWr8NZbb6GtrQ1btmzBv//7v+PUqVMpv52SKVOm4JprrsHXv/51bNiwgd/HH/7wBwDAzTffjL6+Plx55ZV4//33ceTIEbzyyitYs2YN/H5/wo+ZIAgiV+kYCIqe7iE3Rj2F915IAqjA2LhxIxobGzFlyhSsXLkSr7/+Oh577DH85S9/CcnYaMVut+PNN9/EpEmT8OUvfxlz587Fddddh7GxsZjOTqK3C+dnP/sZ/vmf/xnf+MY3MGfOHKxduxYulwsA0NTUhHfeeQd+vx8XXXQRFixYgFtvvRUVFRW08JQgiILD6w+ge9gd8rWT/YVXBhNErYNkCgSn04ny8nIMDg6OuxCPjY2hra0NU6dOhc1my9IZEumGnmeCIPKRU/0jWP6fr8NiNGBabTEOOIbw9LWfyptOsFjXbyX08ZcgCIIgCgjH4BgAoKHchsZy6cNdp3Msm6eUFUgAEQRBEEQB0a4QQPVlTAC5Y90kLyEBRBAEQRAFhGNQCkA3ldtQxwTQEDlABEEQBEHkMe0DzAEqQoMsgLqoBEZogfLj+Q09vwRB5CMsA9RYbkN9mRUAlcAIlbB2cY+nMDfoFgojI1JbaPgUaoIgiFym1yWJndpSqyIDVHgOEI3FTQCTyQS73Y7u7m6YzWaaJZNniKKIkZERdHV1oaKiIqn5SERuMOb14/rffIAZdSW490tnZPt0CCKt9LqkD+9VxRbUyQ5Qz7AbPn8AJmPhXM9IACWAIAhobGxEW1sbjh8/nu3TIdJERUUF33ZP5DcvftyBtw/34O3DPVh/6TwYDIkvBiYIvdMnC6DqYguqi60wGgT4AyJ6XR7uCBUCJIASxGKxYObMmVQGy1PMZjM5PwVEl6IDptflQW2pNYtnQxDpw+sPYGDEC0BygIwGAbUlVjicY+h0jpEAItRhMBhoQjBB5AGdg0EB1OkcIwFE5C39I9KHdkEAKuwWAEB9GRNAhRWELpxiH0EQRBROKxZDFmIYlCgcWPmryi65PwCCs4AK7LVPAoggiILnVH9QADkK7CJAFBZ9w8EANIO1whfaLCASQARBFDyhDlBhlQGI5Pn41AC+8JO3sL2tL9unEpceVwQBVFqY6zBIABEEUdAMjnoxNObj/6/MAxGEGu76827s63DiKz/fmu1TiUvfsCRyqkuUDlBhrsMgAUQQREFzWlH+AgrvIkAkj3JovNvnz96JqKAvggNUV6DToEkAEQRR0CjLX0BwTQBBqKW6JNg1uK/dmcUziU9wCGLwnOsLdB8YCSCCIAqa0/3SypOpNcUAgK6hwvoUTCTPwEhwHtzOEwPZOxEVKIcgMpgA6nV54PEFsnJe2YAEEEEQBQ3rADtzUgUA6QKh9zIGoS+YqACAnScHsnciKuiVu8CUGaBKuxlmo9QS3z1cOB8ASAARBFHQtA9KAuiMpnKY5LkoygsaQcSjX/F62XWyP4tnEp+BUelcK+1BASQIAupKC28WEAkggiAKmvYB6Q1/QkUR/1TcM0QCiFDHmNcPlyfoGJ7qH8WIxxfjFtllcFRag1FeZA75eiHOAiIBRBBEQcNCz43lNlTLwdAeV+GUAYjkYHu1jAYBlXYzRBE42u3K8llFh53veAFUeLOASAARBFGw+PwBnnloLLehRt4BxnISBBEPVi6ttJsxo64EAHC0R58CaMzrh1sOOZdFFUDkABEEQeQ9PcMe+AMiTAYB1SVW1MidMb0FFAQlksM5JjkqZUVmTKy0AwDaw0Yr6AWnXP4SBKDUGroLnRwggiCIAqJDDkDXl9lgNAjBDBAJIEIlbIp4mc3MRYReZ0mx/E+ZzQyDHPhn8AxQAQ0CJQFEEETBwi5UDeXShaumhEpghDaYq1JqM6HSbg75mt6IFoAGqARGEARRUHSECSA20beH2uAJlQyNBV2VClkADeSgAKqV82/dBTQIlAQQQRAFi0P+tNtYxgQQa4MvnIsAkRxOVgIrMqG8SHr9KCdD64lYAqhC/trgqBeBgDju+/lI2gXQE088gSlTpsBms2HZsmXYvn17zONfeOEFzJkzBzabDQsWLMBLL70U8n1RFLF+/Xo0NjaiqKgIra2tOHTo0Lj7+fvf/45ly5ahqKgIlZWVWL16dSofFkEQeUC4A1Qjt8H3Uhs8oRLmAJUqHKDBHHSAWFdYQASG3PqdY5RK0iqAnn/+edx2222455578OGHH2LRokVYsWIFurq6Ih7/7rvv4sorr8R1112HnTt3YvXq1Vi9ejX27NnDj3nooYfw2GOP4cknn8S2bdtQXFyMFStWYGwsWLf84x//iK997WtYs2YNPvroI7zzzjv4l3/5l3Q+VIIgchCHHIJuLC8CANSUsi4wD0SxMD4FE8nhHGUhaFPOCKDwFngAsJmNKDIbpeNG9Hn+qSatAuhHP/oR1q5dizVr1mDevHl48sknYbfb8etf/zri8T/5yU+wcuVK3H777Zg7dy7uv/9+LFmyBI8//jgAyf159NFHcffdd2PVqlVYuHAhfvvb36K9vR0bNmwAAPh8Ptxyyy344Q9/iBtvvBGzZs3CvHnz8JWvfCWdD5UgiBwk3AGqktvgfQGRX9gIIhZDboUDxEtgXl0K6FgOEADdC7hUkzYB5PF4sGPHDrS2tgZ/mMGA1tZWbN26NeJttm7dGnI8AKxYsYIf39bWBofDEXJMeXk5li1bxo/58MMPcfr0aRgMBpx55plobGzExRdfHOIiRcLtdsPpdIb8IQgifwkERN7xwgSQ1WREqU2aj1JISyGJxOEOUFHQAfIFxJD1GHohngBiX2f7wvKdtAmgnp4e+P1+1NfXh3y9vr4eDocj4m0cDkfM49l/Yx1z9OhRAMC9996Lu+++Gy+++CIqKyvxuc99Dn19fVHP98EHH0R5eTn/09zcrOHREgSRa/S6PPD6RQgCUCd3wABALW+FJwFExIdngKxm2MxGWEzSZVWPQWinSgdogEpguUkgII35/n//7//hsssuw9KlS/H0009DEAS88MILUW935513YnBwkP85efJkpk6ZIIgswGYA1ZZYYTYG3wpZJ1gvtcITKgh2gUnigXVT6VFExC2BsRIelcCSo6amBkajEZ2dnSFf7+zsRENDQ8TbNDQ0xDye/TfWMY2NjQCAefPm8e9brVZMmzYNJ06ciHq+VqsVZWVlIX8IgshfOngA2hbydb4QlRwgQgXBLjCpdJqJHM2J3hEc6hzSfDt2Tuwcw+HnrkP3Kh2kTQBZLBYsXboUmzdv5l8LBALYvHkzWlpaIt6mpaUl5HgA2LRpEz9+6tSpaGhoCDnG6XRi27Zt/JilS5fCarXi4MGD/Biv14tjx45h8uTJKXt8BEHkNo6w/A+DdYL10DRoQgXBDBBzgIJB6HQQCIi49Kdv4fM/flPzzrG4GaACK4GZ4h+SOLfddhuuueYanHXWWTj77LPx6KOPwuVyYc2aNQCAq6++GhMmTMCDDz4IALjlllvw2c9+Fo888gguueQSPPfcc/jggw/w1FNPAQAEQcCtt96KBx54ADNnzsTUqVPx3e9+F01NTXzOT1lZGW688Ubcc889aG5uxuTJk/HDH/4QAHD55Zen8+ESBJFDsA4w1gLPIAeIUMuY1w+PX4pdMAeoPM0OUNeQm5fdth7pxWVLJ6q+LZXAQkmrALriiivQ3d2N9evXw+FwYPHixdi4cSMPMZ84cQIGQ9CEOuecc/Dss8/i7rvvxl133YWZM2diw4YNmD9/Pj/mjjvugMvlwg033ICBgQEsX74cGzduhM0W/BT3wx/+ECaTCV/72tcwOjqKZcuW4bXXXkNlZWU6Hy5BEDlE+B4wBssA9ZEDRMSBbYIXBKDEIpfA0txJdaJvhP/9SPew6tu5fX6MeSWxFmkOEFB4Iei0CiAAWLduHdatWxfxe1u2bBn3tcsvvzymUyMIAu677z7cd999UY8xm814+OGH8fDDD2s+X4IgCgMHd4BCBRCbBdSn4xC0c8wLi9EAmzy4jsgObBN8idXEt6sHczTpERFKAfRJp3oBxNwfQQBKrZEv/cF1GPp97aeSvOsCIwiCUAPPAJVFDkHrdR1G95Abn3nwNfzrL7fpctheIcHaystsQUelwi4J6P40BYlPKgTQoS71QWjluTKxFk6hZYBIABEEUXCIoqjoAgvLAOm8Df6DY30YcvvwwfF+7Djen+3TKWiYA8TyP0DQQexNUwlVKYBO9I3A4wuoul28/A9QeBkgEkAEQRQcg6NenoeoK7OGfK+6ONjF4/Oru7hkki7Fpvo3PunO4pkQLAOkzNSwoZrK5ymV7DgRFL2iCD7NPB5qBFDQASqMXXgkgAiCKDhY+auq2DIuR1Nht0CQKwT9OiwFDCs2db9/LPp0eyL9MAeoTOEA1cslVbXCRAu7Tg7geO9IyNdYN2M8VAkg+Xtevwi3SmcplyEBRBBEwcEC0PVh+R8AMBoEVNpZGUx/OSB20QWATqf+zq+QYLmaUkUGiDmKPcPulDuI/9grrXwqthixbGoVAKieBcRC2bEEkN1s5OKfuVv5DAkggiAKji5ZONSHlb8YrAymx1Z4l8IBollF2SWSA1RdbIXRICAgpj5HdqhL6vr6zsVzMKFCyq61D6oUQGEDGyNhMAgokTvElEI7XyEBRBBEwcFKYPWl4x0gIBhk7dFhEFpZAhsa88Ht09/W8ULBOTbeATIaBL5QN9VlsCOyAJpeW4ImJoDUOkAqSmBAsKONBBBBEEQewi5M9eWRBVBwGKL+HJbwC1O/K/9LFXqFO0BFoXN1WBmsK4UlSo8vgONyB9j02hI0Vkiv3Y4BdSKLDWaMJ4BYR9sQlcAIgiDyj864JTDp63ochqgsgQFUBssmkTJAAFAnO4udQ6lzgE70ueAPiCi2GFFfZuUO0GmVDpBTpQMUFEDkABEEQeQdnVGGIDJypQQGFM7QOj0SzACFigomrFMZUj/c5QIATK8rgSAIaK60A5BmAalpWVdbAmNibpgEEEEQRP7BS2BRBFCNjveBMQHEunXStXSTiE8wAxRaAmOvq64UZoDY3q/ptSUAgElVdhgNAkY8flVCS60AYiFo6gIjCILIM3z+AC8bhQ9BZFTpeB0GE0CsCyhdSzeJ+AQzQOElsNSHoA91SmsvptcWAwAsJgOaK6XXwFEVS1HVO0BUAiMIgshLeoY9CIhSt05NcTQBpN91GKw0wQRQPjhA/7vjFK765XvoTtP05HQRzABFcYBS+Hg+Pj0IADhjQjn/2jTZDTrS44p7e60lMBJABEEQeQZrga8rtUZdCslLYDoTQD5/AKNeqe19QmX+CKBvv/AR3jnci9v+sCvbp6KaQEDEsCdyBqguxRmgoTEvjnZLImehUgDVSG5QW3dsAeT2+fnqF+oCC0ICiCCIgiJe/gcIOkADI154dbQPzOUOzvzhDlAehaDfOtST7VNQzZDbB5Y9juYA9brcKXn97JbdnwkVRaguCbqWzAE62hO7BOYcDebGws81HDbUMTxsn4+QACIIoqDo4gIocvkLkPaBGfg+MP24QCyYajMbUCvnTPLBATIpnDi1bd3ZhjkkFpNh3D65KrsFJoMAUUzNmILdpyQBtHBiecjXp8oO0NE4DhB7jZRaTVFdTwaVwAiCIPIUR5wWeCB0H5ieymDKHAcrZeS6ABJFEQFFG/fWI71ZPBv1MFelLIKjYjAIXKCmYhjix1wAVYR8fZociD7VPwJPjOWl/HVjj13+AqBYhZHbrys1kAAiCKKgYLmMuhgCCFAEoXXUCq8UQKzzKNfnAA27fQgoxtjkigBiz0W03Vrs9ZMKAf3RqQEAwKIwB6iu1Aqb2YCAGNs5UzsEEaAuMIIgiLxFTQYICK7D0FMnmFIAVeSJAxR+/tuP5YoAkl4XFXEEULKvn55hN071S+JG2QEGAIIgYFKVNBDxeG/0MpjaDjAgWAJzkgAiCILIL+JNgWawdRi9Olo1EakE5swTAWQxSZejk32jGNBR7ioa8UQFK6EmK1Cff/8kAGD+hLKIP2tSlVQGOynvCYt1ruHdapGgLjCCIIg8xTEYPwQNpLaEkSqUZRd2MRxy++DTUaeaVthjaq4s4m7G3nZnNk9JFfEEUAnrpkrCSRnz+vH0O8cAANctnxrxmMnVzAGKL4DUOEBMJLl9gZi5onyABBBBEAXDqMfPrf1om+AZei+BKS9muVyuUOZTFsglnj1y27eeYc9Fhez0hFNqZe3kiTspf/zwFHqG3ZhQUYRLFzZFPIYLIBUOkBoBVKIIded7KzwJIIIgCoYueTt3kdnIL1DRqOYhaH2WwExGA+/YyeUcEOumKi8yY74sgHbngABi4fNoIehgN1XiIuIZhftjNka+XKvJADnjBLaVGA0C7BaprT/fy2AkgAiCKBiU5S9BiD0PhQ2c02MJjH2SL+edYPo5R60oH9PMOmmw37EYF3O9EM9V4VmaBF0Uf0DkC1AvWdgY9bgZ8u/saLcraslKiwMEFE4nGAkggiAKhk55N1O8DjBAn23w4e3M+TALSHlxbpDLko5B/bhu0YifAZK+nmgGqM8l7awThKAbGYkJFUUosZrgC4hoi7ITTLsAYp1gufu6UgMJIIIgCobOQXUt8ICiBKZjB6isSPqknssZIGWwmwmgVK2QSCdMjEZrgy+xJrdSgi2GrbJbYIpS/gKkVvhZ9ZILdFDeGB8OOUCRIQFEEETBwFvg4wSggWAJbHBUP/vAwi9kwbUFuftJXfmYquwWmI3SColUblJPBwNxpisn207OVmiwidKxmFVfCgA40hV5J5iWDBAQFG8uCkETBEHkB8pN8PGoKDIH94HpxAUaL4CSb7XONkoHyGAQUFfKymBj2TytuMQtgVmTe26YA6RGALHXc7S8mlYHiAQQQRBEnsH2MqlxgAyKfWB6KIMFAuK4DFBpCjqNsg3LmbDHxJ4b5tbpkUjPRTjJhqCZA1RTokKss711EcLwXn8ALo8/5rmGU8zLd35Vx+cqJIAIgigYOofUZ4CA4CwgPXSCDSl2ZpXlaQkMCE7o1rMDNOwJPhdxByG6fRAVy17VosUBYoH9SN2ASnEcaXFrJMgBIgiCyCNEUQy2wZeqE0DswtKjg1lAzHGwmQ2wmaU5Lcm6DHog3Elh4lTPDtCgPAPIago+F+GUWqXHI4rgDowWgg5Q9A4wRiWfWj5eCDOBWWI1xQxTKym2So+JBiESBEHkAc5RH9zynJS6OGswGHqaBcQG71UUBS+IQQcoNy9UoiiOd4DKpd95h44dIDWZGpvZAKMcIkskB9StIQRdJZfAImXVtOZ/gGAJjBwggiCIPIAFoCvs5qif2sOp1tEsoAG2fVzRdVSS44srR71+eP1SeSjcAWJTu/WIGlEhCIKiFV7789MzJD3f6jJA0nn0jXjGldsGNXaAAYoSmIcEEEEQRM6jdgu8kiodzQKKdCErtSU3aybbsDUYyvULrAuMBdb1SHAPWGxRkcw8HU0OkPw69fgCGPWGltuCm+DV5X8AoNhCIWiCIIi8gbfAaxBAwRJY9i/GwRJY8KJbluMD61gHWJnNxFeT1MvlST3PAWLPRbyyUqLDEL3+APpH1DtAdosRFpN0OQ8v11IJLDokgAiCKAi6uAOkLv8D6KsEFulCVmLN7QxQpAF9TKAOu326dbbUlpUSdYD6XB6IouSMVUbZNq9EEARFDii03BavXT8S1AVGEASRR3Q61e8BY1QX66cNPlLZRTltOJFW62zDhEGZTSnqTCiWy2FdOu0EU+uqJDoMka/BKLbwIHU8lDkgJYkIIOoCIwiCyCO0zFVhsDlAesgAsRkvFXZlF5h0gfX6Rd7hlkvwElhRaD4l2AqvzzIYF6NFsd0Z3qWnUUjw/I+K8hcj2iygREpg5AARBEHkEb1yjqe6WMtFRT/7wCKVXYotJsjRmZwsgzF3gs3MYdTxHJA+HaCgqxI7WFyS4KqSHlms12gQ65VR3EougOIEtpUEM0AUgiYIgsh5mItTrWKwHENP+8AihaANBgElltxthWdb7KM5QHrtBGMjCeKJiuCqEm3PTUIOUJRZQMEuMO0CyOMPwO3LXxFEAoggiIKABZlZrkcNBoOgmAadXQEUrZSRy63wwS6wMAdIdj70Og1acwZIawksgXJtZZSRDcwRqtLwumcZLCC/XSASQARB5D1ef4BftKo1fKoGgheObAeho82eyeVp0GwOUHg3Fc8AaWyFH/P6se7ZD/HHHadSc4JRCAqg2KKiJMFVJUxsq1mDwQiKxtDfWW8CAshkNMBmluRBPueASAARBJH3sLKAQQgtIamBZYayvQ8s0ioMILenQSvnACmpS3Af2AsfnMSLH3fgWy98lJoTjMKgyjlATJxq7wKTHrcWB6ixXF4i6xzlXwsERC7c1cwTUpKoe5VLkAAiCCLvUX4KNqhsK2boIZDr9vn5hN9oJbDcdIDkEHRYCaxevvB3a3SAlMtAR9K0xsEfEHl2KV0lMOYAaRNARQDAF/4CksD0y2vrtThAQGEMQyQBRBBE3sPyP1ovAkBwdcbRbldKz0kLrOQiCEHBw8jpEthY5BJYog6QMrCbrudL6bTFd4ASDEEPaQ9BMweoZ9jDfw9MSJXaTHxStFqC6zBy73WlFhJABEHkPYm0wDM+M6MGALBpXyd8cit8pocOOhWdPOEOVok1dx2goWglMNn5GPH4NV2Alesz/t+fd6elbMnEqHL9RDQSGYTo9vn5z9DiAFXYzbDK59M5KD3urgRKaYySAmiFJwFEEHnMvnYnFt77Cp5680i2TyWr8E4YDaFSRsv0alTazeh1ebBpXyfW/2UPPv3g5oxOKeb5nwht12W8CywHM0BRQtDFimnQWspgSgH00alBPPjSgRScZShaBgsmEoJmro3ZKGgaXigIApoqpDJYx6CUA0pkATCDTYOmEhhBEDnJrc/vhHPMh++n4UKQSyTSAs8wGw342qcnAwBu+t2H+O3W4+h0urH9WF9KzzEWwcnD4y+IOZ0BGmMZoPEDBZlroUVohh/7xw9PcdcuVahdhAqEjihQ6xoqy19sQaxamNDpkHNADtkJaihPRABRCYwgiBzG58+9/VDpgA9BTKAEBgDXnTsNE+RP14xRT+ZKA+yiG2n5Zq6WwMa8fnjk9R2RHlddqTwMMUEHiPHhiYHETjAKahehAsEJ16IIuFS+XhKZAcRgOaDTA5ID5JCdoEQcoEJYh0ECiCDyGOWk2lR/Es4leuUsSCIlMED6tP+/N7Xglgtn8q9l8sIwwGcAjT9/3mqdYxcq5v4IAvg0ayW1Zdo6wTy+AC917ri7FasXNwEANu/vTMXpcmK5ceHYzAa+zFRtDojllrS2rQPApGo7AOB4rxQAd7ASWDIOUJq66fQACSCCyGPsiomuWofK5RN8FkoCJTBGY3kRvvn5WbjirGYAmRUcgzF2T5Xk6CRo5liVWk0RRxOwDii1DhATDiaDgEq7Ba3z6gEAm9IkgNSUwARBULTCq8toJeMATastARDsgHPIQxHrE8oAkQNEEEQOM+YNuj4dA6MxjsxvEpmGG42g4MhcCWyQbYKPMHk40X1T2cYZp5Skdf5Sl0I4GAwCzptVC7NRwNFuF452D6fgjCW0blfXWqJMSgDVFAMA2nokAdQpZ4EaE3CASngImrrAkuKJJ57AlClTYLPZsGzZMmzfvj3m8S+88ALmzJkDm82GBQsW4KWXXgr5viiKWL9+PRobG1FUVITW1lYcOnQo4n253W4sXrwYgiBg165dqXpIBJETKD+9nS5kASS7A1rXYESiWOMn+lQQbQ0GkPjG8WzDZgCFD0FksAyQ2hIYC0CzGUJlNjOWTa0GAGze35XUuSoZjNGRFwmtu9qSEUBTZQHU6/Kgd9jNxWNiXWC56SxqIe0C6Pnnn8dtt92Ge+65Bx9++CEWLVqEFStWoKsr8gvy3XffxZVXXonrrrsOO3fuxOrVq7F69Wrs2bOHH/PQQw/hsccew5NPPolt27ahuLgYK1aswNjY+E8Kd9xxB5qamtL2+AhCz7DpwUCwE6rQ8PgC/GKbSBdYOKUJzHZJloEYbgl3GHLsQhWcbTS+rAcEBYBqASQfV6cQDq1z6wAArx1InQDqY25chDxWJLR26SWyCZ5RbDXxsP6bh7oREKWSYCLCn0LQKeBHP/oR1q5dizVr1mDevHl48sknYbfb8etf/zri8T/5yU+wcuVK3H777Zg7dy7uv/9+LFmyBI8//jgAyf159NFHcffdd2PVqlVYuHAhfvvb36K9vR0bNmwIua+XX34Z//jHP/Dwww+n+2EShC5R2tdsGGCh0S9fsIwGbXNVopGNElhwD1gMB0hDq7UeCLbAR3OAtGWAuAOkEEDnyEMsPzo1wFdCJMuA/HqqVCmAtA5DTMYBAoD5E8oAAH//uAMAMLGyiAextcAmQZMAShCPx4MdO3agtbU1+AMNBrS2tmLr1q0Rb7N169aQ4wFgxYoV/Pi2tjY4HI6QY8rLy7Fs2bKQ++zs7MTatWvx3//937Db7XHP1e12w+l0hvwhiFxnVNHBUagOEAvHVtq17wGLRDZKYM4YuRNlq/VIBlvzk6UvzsZzJmT6XB54VXQwBh2gYLlnem0J7BYjRjx+HElRDqhfFqOVKktgJWxViUohkUwXGAAsmFAOAHhVLvtNqi5O6H6oBJYkPT098Pv9qK+vD/l6fX09HA5HxNs4HI6Yx7P/xjpGFEVce+21uPHGG3HWWWepOtcHH3wQ5eXl/E9zc7Oq2xGEXhFFESOKElhPgQqg4Dbs5MtfgKIEloELw593nsKqJ97BUTnUGqnsEtJqnUMXqx6ey4r8vFTaLTDJj0vNSgsugMqCwsFoEDBfFgQfnRxI5nQ5AwmWwNQ4QC63j4vYRB2gBRMrQv5/UlVR5APjQKswcpSf/vSnGBoawp133qn6NnfeeScGBwf5n5MnT6bxDAki/Yx5A1BWRAq1BJbMItRIFGfowiCKIu79676QC3ek4K2y1TqXhiH2xBlOaTAI3AVRkwNigd+6MOGwaKIsgE4NJHqqHFEUeTlS7etJS5cee5x2i5G/zrTCHCDGpKr4FZBI0CqMJKmpqYHRaERnZ+gchs7OTjQ0NES8TUNDQ8zj2X9jHfPaa69h69atsFqtMJlMmDFjBgDgrLPOwjXXXBPx51qtVpSVlYX8IYhcxhU2wCwdiyFzgVS2wAOZm7y86+QA7/5iRMswleRguYJ15tXEcDp4K7xThQByji+BAUFHZG978rGGIbcPPjlLpLYLTMtz051k+QuQXudsCCQAzG8qj3F0dLgD5MmtbJkW0iqALBYLli5dis2bN/OvBQIBbN68GS0tLRFv09LSEnI8AGzatIkfP3XqVDQ0NIQc43Q6sW3bNn7MY489ho8++gi7du3Crl27eBv9888/j+9973spfYwEoVfCVzUUagaoNwUXFSWspJHuT8ZvHeoZ9zWb2RjhSG1lFr3ASrKxhlOqHYboD4hc4CtLYAAwr7EUAHCgYyjpIHS/LKaLzMaoz0U4WhaiOgYTb1tX8uCXF+K7l87DI5cvQsv06oTugzlQATG0mzSfSMxj08Btt92Ga665BmeddRbOPvtsPProo3C5XFizZg0A4Oqrr8aECRPw4IMPAgBuueUWfPazn8UjjzyCSy65BM899xw++OADPPXUUwAku/fWW2/FAw88gJkzZ2Lq1Kn47ne/i6amJqxevRoAMGnSpJBzKCmRpmNOnz4dEydOTPdDJghdwBwgi8kAjy+AEY8fIx4f7BHWDuQzwVBpaktgo14/fP4ATMb0fI7c1tYLALjt87Pwpw9P4YwYn+S1ThvWA2pmM9WpXIfR63IjIAIGYfyog6k1JbCZDRj1+nG818WnJSeC1gA0oK0LrJPPMkpOrBdZjLhu+dSk7sNuMUIQpHD9sDs/3zfS/oiuuOIKdHd3Y/369XA4HFi8eDE2btzIQ8wnTpyAwRB8AznnnHPw7LPP4u6778Zdd92FmTNnYsOGDZg/fz4/5o477oDL5cINN9yAgYEBLF++HBs3boTNlpxqJoh8goUp60qt6Bpyw+MLoHfYA3tV/r2RxaKXdxulxgFi2QhAygGV21MvgDy+AHYc7wcArDijAf92wYyYm8FzbSO8zx/gYiJaCBpQOkCxp0Gz8ld1iXWcIDUaBMxuKMNHJwew88RAkgJIWwAaCLb5q8kApcoBSgWCIKDYYsKw2yfl3UqzfUapJyPvhOvWrcO6desifm/Lli3jvnb55Zfj8ssvj3p/giDgvvvuw3333afq50+ZMiVva5gEEY0ROaRbbDGhplhE++AYel0eNCcYisxVeNg2RQLIajJyV23Y4wtZOJsq9nU4MeYNoNJuxsy6kpjiBwi2WudKBogNEzQIsefp1Jap2wgfLQDN+OysWnx0cgAv73HgsqWJVwH4DKBi9c+5lknQbF9fIstL00Gx1SgLoNx4XWklL7vACIIARuQSmN1qRKVcFmCfYAuJ3jjt1omgdbidVvbJgd0FEytUzS7KtS6wnqFgMD3WkL46ldOggwHoyALokgWNAIA3P+nmAxgTod/FSmDqX0uaSmCyA5TI8tJ0kO+zgEgAEUSewkpgxRYT7x5ie4xylRGPD+0ad5rxEliUdutESHfX1f4OSQDNbVBXd9C6byrbsJEM0VrgGWrXYUQagqhkVn0JptUUw+MP4N3D48PlatE6BRrQGIKWM0B6cYDSLfSzDQkggshTWAi6yGLkLbvhbdW5RCAg4spfbMN5D72ONz/pVnWbEY+Pd7Ck0gFK9yfjAw5ZADWqG8eRKgcoU1EBLkpLYz8nSgco1rnxEliU8LAgSNvhAeCdw72az5fRxwWQhhKY4rUS6zGIohgUQDpxgJSt8PkICSCCyFNGuQNk5A7QQA47QK/sdeCjkwPwBUTc+7e9CKhoaWYXWpvZALtFXduyGtK5EFUURRzoGAIAzGlU5wClwpHa3+HEmfdvwi/fOprwfaiFT4FW6QB5/IGY4j1eCQwAzpHbwd9JwgHq55vgtYegWTdVNAZGvPD4pJUfyXaBpYpcK61qhQQQQeQpTAAVWYwoL5LesHPZAXr63WP870e7XXh1f2f0g2WUF9p4QWItlKRxFtDpgVEMuX0wGwVMq1HXscQXoiaRb1n/lz0YGPHigb/vT/g+1MJmAMVz5aymoHiPFYTu5Gswojsnn55eDYMAHO1x4bTGMiojkRC0zWyA2Si99pwxhESn7GJVFVtgNaVOrCdDOl/neoAEEEHkKW7506TFaAg6QKO5GYLudI7h/WN9AIBLF0qB1g27Tse9XU+chZuJwkpgahdcauGgQ3J/pteWwGJS9xadiv1k7QOxW82V+PyBpIYKahlOqSYI3R1hE3w4ZTYzFspTod87klgZjIWgtThAgiCoyuA5dBaABjK79y4bkAAiiDzFI2/QtpgMPAPkzFEH6KXdHRBFYOnkSlx/7jT5a464F2E1w/YSIZ3h0Hb5Qqhlh1NJCuYAKefUsFJMJNw+P77w2Fv4/I/fwFiCE4K1DKfk6zCizAISRZGvkIjlAAHS6weQ1owkQiIhaAAoK4qfwWOuVKNOAtBAal5XeoYEEEHkKewiZjEZcj4D9IYcer54fgPmN5WhWM7z/PS1QzFv18sXbqbWAeLrMNIQDmVOh5Zt4MlmgEY9/hA3i7kRkXjxow580jmMo90ubNoXvwwZid44i1CV8GGIUfaB9Y944fWLIcdG48xJFQASF0CJTIIGgjvcYgmgE30jABJfXpoOSqy5NV9KKySACCJPCZbAjKhQ8QasV3z+AN5vk8pf50yvgclowCVyGeyvu9pjdtakarVAOMWW9H0yTkQAJdsGf6hrCMpf46mBkYjHiaKIZxRZrD98cDKhnxfsAlNRApNdnWglMOYMVdrNcUuGZ06SHKD9Hc5xu/LiMeb1845CLSUwICiAYjmwJ3UpgKQPGtQGTxBETqF0gMp4Bij3BNCedidcHj/Ki8yYI8/F+e6l82AxGnC0x4VPOoej3pYJoFTnKtIZDk3MAZI/qY9p29y9cU8HLv3pW/jS4++EfH3b0b6Ix2890ovdpwf5/791qEezmyKKoiKcHl9IxFuIGm0LfCSaym2oLbXCFxCxp30w7vFK2IcHo0FAmU3bEgU1H0COdrsA6EwA5dh8Ka2QACKIPMUbIQM0OOLNubUw2+WloJ+aUsWnIpfazDhvVg0AKR8UjU754phyAcQ+GafhwsDEQbxyjhLmAPkCInf+1PDE60ew57ST/z+bO/TXj9ojHv+zN44AAK5umYzLlkgrJVY/8Q5e1VAKG3b7+Dmqmc0ULwOkxeUTBAFnNlcAAHae6Fdzuhy+B6zIrLmjMF4TgscXwJFuScirHX2QCZiwTkfYXw+QACKIPCVSBsjjD2DMq/4CqQd2yxdolt9gXDxfKoNt3OOIetu0OUAKx0UtP3/jCG787x28yysaiThAbHM3oL4sJ4oiDnZK5/Ktz8/Cpm+eh2evXwYAaOtxod8VerHeeaIfbx3qgdEgYO250/Cti2bx7930ux2q5jIBwfKX3WJUtWG8sbwIAHCyL3LrepfG3xcrg+08MaDqeAbrAEtk91u8DNChriF4/SLKbCZMqCjSfP/pgg9CJAFEEEQuwbrArEYDSqwmvnMp11rh98qlijOaQqcit86th8kg4GDnEA53jS+DBQIivzimerKu1tKAKIp49NVD2LjXgRWPvhk1O6PsaNKyvV4QBMXQOnVlTueYj4vktedNw8z6UlQWWzC1phgAsOvUQMh5ff8laT7QP505Ac1VdjRVFOF/b2wBAHj9Ik72R84NhcMen1rBMqtemoV0emA04mNjglGtyF0sO0AfaSzdJdoBBii7wCK/XvbLgy/nNZWldF5VsvBsGWWACILIJZQOkCAEcwu51NLqcvvQ1iNlI85oKg/5XrndjM/MkMpgL0cog/W43PAHRBiE1M8B0loC63N5eIAWAP7vHz/G7lPjMyjD7qAo0SKAAO0zW5g7Vl5khs0cHLzHSkS7FA7JX3a14/1j/bCZDSHOz1lTqnhmJd7Gdoaaqc1KKuwW1MvlrUh5r3ib4MNZOLEcBkEaN9DlVD/7iOXntHaAAfEdoNP9krvFxKdeSPfOu2xDAojIO1470IkXP46cYSgklAIIUM70yJ0g9AGHE6IoXdwiOQZsKOJz75+Ezx9a2mMX2poSK0zG1L7VsRKY2tIAa58utZlwyYJGBETg/hf3jT9OLrMUmY0o0ri6o0Tjp3XW6h7uji2WS407ZYfkcNcw1v9lDwDg5s/N4CUpBhOXPWoFkCxYtJT4ZjdI7l+k8qGWEDQgDbGcWSflbHZqcIF4BigBByieAFK7HDbTKJ1OtSXOXIIEEJFXeP0BfP2ZD7Du2Z1RQ5OFgtsfnAQNAKUs0JhDDhAL6IaXvxhfXNSEqmILTg+M4uWwLFA6J+tq2fANKPeymXD3pXNhMRqw/Vgf/rzzVMhx7EJYlcDcohKN06nZ4s36sMF7ZzZLGZn3jvbiidcP46tPvQfnmA9nTqrATZ+bPu5+mFPV41JXWo23uT0SrPvvoMM57nv8/jSMOkikDMZmaLGOLi3Ea4Nnc5ESed7TCXtNAfm5EJUEEJFXsA4aIPbo/EIg3AEqzcESGNuKPi+KALKZjbi6ZTIA4IevHAzpcHOkKQANACVyeNfjC8ScmswYkS8edosRjeVFuPGz0jTrH236JOQ45jIkJIBs2oLZndwBChUOcxpLYTUZ4PEF8MNXDqJn2I05DaX41TWfiuiksVk+ah2gRELeTAC/fyy0c0sURc0lMCAYqH9pd4fqadaDfBFqAgLIHscB4hPL9SWArKbgHrN8LIORACLyik7FtFjWbVKoeHzSG3suC6Aj8myUGXXRl4Jef+40GA0CTvSNhDz/LOPSUJ76skKxNVieUlMGY/kfVta6Tl7ncbJvFE5FSZK9ZisTEEBaM0BMIIaXwMxGAxZMCOatrlo2CRtu/kxUUcYdoGG1JTBtGSAAWD6jBoIA7OtwhkypHhz18q5GLUL3CwsbUV9mxbHeETy2OfY0ceXPAoJujhaUJbBIYyj6NEzGziSh4frced9QCwkgIq/oVIQa1b4h5yvKXWCANDsHAIbduZMBYgHoWFvRS6wmTJPDo/sVJRJ2oQzPrKQCk9EAm1n6vaoRHKwEViSHjcuLzFwAHFF0sDEHKJHVHVoDq51RSmAAMLEy+Du7Y+WckJB0OLUsA6RWADm1Z4CqS6xYJC8yfe1AF/86W+BaVWyJeY7hlNnMuH/VfADAr95uQ7tiO/yN/70DX/jJW+PcGvb/ZUkIIH9AhCvCBGougHTmAAHq1njkKiSAiLxC2dVBJbDQDFCufZIbGvPy53BabezumDnyAL/9HQoBlMYSGKBtT9KIJ9QBAoKPiYk8IJgFSaTVWuviSuaWRRoRcO1npsIgAK1z6+I6HkEHSJ3j2p1ABggALjqjHgDwX1sO8985Ey5NFdqf48/Pq8eyqVVw+wJ45B9SKfJk3wg27nVgX4dzXGdhMg5QkdnI/x2GC4lAQFQ4QPoTQGyRcG8efqAkAUTkFcoSCAkgeQ5QjpbA2GqA2lIrd6+iMVeensvmqQBKByg9AkjL/i1WArMrBNCECql9vENR0ulPwgkIOkDqPqnHEoiLmyuw6bbP4tGvnhn3fngGSMUF0usPoE92ubTuZ7umZQomVBThVP8o/nvrcQBAxyDboK7d5RMEAXd9YS4A4E87T2F/hxOv7g9OtN7XERq4TsYBEgQhOAsobCHxwKgXrMEqkdJnumGiTK3AzSVIABF5hbIE1qeyKyVfGR+Czq0usKM9UmlomorZKHMjOUBp7AIDgjkgNaHj8BIYEBRmykxLXxIOkJahdV5/gAuWaL+f6bUlIV1A0eAOkIoPHI7BMYii5EpWaXyMxVYTbjhPyk69e6QHgDTLB0DC05MXNVfgkoWNEEXgBy8fCJkq/nHYnCaW1UrEAZJuJ/0uwx0g5qyUF5lhTvG4hlQQdIDy7/1Uf79tIiHcPj/vNClkOhVvwr2FLoDkDBB7U821OUBtsgMUr/wFAPNkAXS0exhjXj+G3T7eDt6QJgdIS+YmWAILCgp2Xh0RBFAybfBqzqd7yA1RBMxGIemyC8syuTz+ceszwjklD/ybUFnE97ppgbWv7213QhRFXgJLxuW7Y8VsmI0C3vikG9vagktg93U4+T49jy/APzgkLoAiZ2l6dVz+AoJzntiIhnyCBFAe4A+IWPX4OzjvoS0FP/tGmQHKx3+wagkERHj9kq/OHKCyHNvsfERFAJpRV2pFdbEFARE44Bjirkqp1aTKxUgELRmgSCUwlr2J5FomIoC0OHys/FVXaktIiCgptpp4aHp/hDk9Sk7J6zKUIWstzG4ohdEgoM/lgcM5hg45BN2YxP6sydXFuGrZZP7/n5tdi1KbCR5fgA9eZItKS22mhIUKG6DIVmowmLOixwA0EBRm5AARumR/hxMHHEPoGXbjpY+jb8YuBBxKAZSH/2DV4lFMRc7VNvijGhwgQRBwhty6/fGpgWD5K03uD6BYh6GqBBacA8Soki94/YoLYjID8bSEoDt5eTA1bdfBEmTsRa/MAUpUANnMRsyURyLsOe1Eu5wBmpBACFrJv10wAxV2MwwC8O8XzsRZk6VhkKzUtvVILwBpjUaiu7rYcxruTPclMfwyE1RrHHOQS5AAygOOKrpIwoN7hcSox8+ntQLSG02kmRuFQIgA4l1gzCHIjRIYcwsmV9tVHb9gQnBdQrA7KH2btbUsRGUlMGWrdkVYKNbrD5ZZ0l0C4zOAUiQQI2WwInGSO0DqntNIsKGYu08PpmzUQXWJFX+9eTn+um45lkyqxLkzawEAbx2SBNDmA1I4+jz56wn9DPk5Dc8m9nAHSF8zgBjVJZGFWz5AAigPOK4QQMd71W1kzkfYp0Hm6Ht8gZwp96Qa5XRivgojh0pgox4/FwNqQ8xTqiWn6FivC6cGmDOQRgGkpQ0+QgmMBZ2H3D54/QGenzEIieVMtDy/qR4RMI934cUWQKzlny1QTQS2FHfLwS74AiKMBkHTUMVoTKq2Y77sIp43S1qyu72tD209LrwrO0BfWNCY8P1XRRFAem6BB4LDGakNntAlJ/qCoqeQBRDLA0yrLeEXmkItgzEBZDYKPOPBHAJnDpTAWJatyGxUneFhm7SP9Yzw7dqJllrUwEpgaiZBj3nGC6CyIjNYNWVgxMvbwyvsFhgTyOVwB0hDCSzSDKBEYA7Qoc5hHhwOJxAQeaaGjS1IhCXyGgvWpdVUYUv5stvptSWYVGWH2xfAF37yFkQROHtKFZqTEG7RSmDBRag6FUC8VOsdt3A41yEBlAco/0E5nGNw+9Tttsk32geDHSHR3mwKhfAhiIA0/ZZ9T++vETbPqb7MqjpzMUUWQO2Do2iTW+jT6wCpXz4aqQRmNAj8ORkc9aBvOLmFmKwk5/HHf37bUxAeVtJcaUep1QSPPxBxYzsAHO8bwYjHD4vJwN26RFg0sSLE8UnmvqIhCAL+ZdkkAMEA+79dOCOp++SlpDAnhX1Iq9JpCazSbuFCvW8kv95PSQDlAeGWaqEOAGQOUFN5UV5PL1VD+BoMIHiBBNQvzMwWrDOqToNDUV1sQanVBFEEPjwxACC9GaBiDY5LsAQW6mZVyksy+xUOkNb5OPx8LOqf39MpLhEaDAIWy87Mhyf6Ix6zr10qj82uL03KsTEYhJBSVDLltFhcv3wqrmmZjDkNpXhg9XyeC0oUVkoKf7/Wexu80SDw16QaR10URdz1593jFv3qERJAeUB/mCpXttUWEnwqbIUNNeQAAQgVQEaDwEsweu8ES2RhpiAI47bGqw1QJwLL3CRaAgOAct4a7U2qBR6Qnt9i+f5j5YB8/gDPAKXSIVsqd059cCyyANpxXPr6wonlEb+vheuWT+V/P3NSZdL3FwmT0YD/WDUfG289D//66cnxbxAHpSutbM7Q8x4wRtC9iv9+erTHhWe3ncBjmw/x92S9QgIoD2DhyQr506RyHUQhwabCSg5Q5MBhoeCOIICA3AlCdynm1GhhyeTgxVC5cDQdaAtBS8eEL+wMOkCe4BToJJwANa3wnUNu+AMizMbUhIcZZ02uAhAUOuG8f0waMnj21Kqkf1ZzlR3/fd3ZuH3FbKxe3JT0/WUC9p7k8QX4QlSfP8A/wOq1DR5QBKFVzFZTDsN8dX9XjCOzDwmgHMfrD/BQ65wGKVhYsA7QQNABqirO39kVaoiUAQJyZyEqc+5qSrVdFFac0cD/Pru+NOGZLWrgqzA0bIMPd4BYK/zAiIdfOKqKE5s0DKhrhWcB8cbyxKYxR+PMSRUwGwWcHhjFYcWGe0AavbC3XQotp0IAAcC5M2tx8/kzUh6AThd2iwk2s3SuLO/VP+KFKAKCkHjpMxMw8aZmH5jymFf3dcY4MvvkxiuHiMrb8pyKIrMRs+uZACrMi36HYiZIjQbLNh8JZoBCL7jsAqn3tSkDCeZhFk0sx1c/1YyaEgtu/Ny0dJwaR8tgyagCSFkCk+cBJbIHjFEih6pjZYBOD0idoqkOiBdbTWiZLrWP/2OfI+R72472ISACzVVFSc/syWWYk9IjOynMUam0W3Qt5Go0DENUuu5bj/Tq2m3W72+cUMXvt58AAKw+cwLv6OgqQAdo2O3j/9Aay22K4V2FKQYjZYCAYAhXz29KQPBNtEKjGBAEAT+4bCE+uPvzuGBOfTpOjcO2ew+NeREIRB+4KYoiD0EXmcMFUDAEzURfMgKoVIMDNCENIwIumif9zl/e7YAoinAMjsHrD+BlecnohWl+TvROrVxy7JI/pPYM6TsAzWADMzsH419b+hTvuR5/AG9+0p2280oWEkA5zu7Tkq385SUT+Fh7RwEKICb6Sq0mFFtNiuFdBeoAyQLIGvapspg7QPpug++X3RA95yLYsMKAGLsV3u0LgGVeiyzhGaDgfiiWBalMogRWqmLhbao7wJSsnN8Ai8mA3acH8b2/78c5P9iMy5/cio17pBU9yQwSzAfY0lYWU2Af0Gp02gLPYPOiOlQIoPDGk3cO96TlnFIBCaAcZmDEw1+QcxpKUV86frliocDKfnWyCCz0OUDeCG3wQDC3oqZzKZv0pSAPk26sJiMvaQ2ORBccowqxGd4GzxygwVEv+l0pKIGpmE10Ko0OUE2JFVec1QwA+OXbbQiIwK6TA3B5/JjbWMZ3bBUqzElh79s9Ol+EymDnrebDNfvQ+akp0nMdLRSvB0gA5TBsB1hjuQ2lNjNfrjg4mhu7nlJJZ9hof/aJqs/liVmeyFeilcCYA+Ry69cB8vkDcI4lLwYyAXOBBkajC21W/rKYDOMmPPPbj3iDDlBSGaD4s4nS6QABwO0rZ2NRc0XI12pLrXj48oUpDV3nIsxJccjt4SxTo3cHiDlXjsGxuPsV2YeXi+ZJDQkHO4d0e01SN2Oe0CVsESAb9pYrHT7pgA/OKw11gPwBEc4xr+YsSa7j9kfuAmNzYlw6DkEPjnp5ySiRnViZpLzIjI7BsZAlvOGwTfDh+R92ewDoHnbzsmQ6M0CiKPJFsekSQGU2M/580zkYGPWi0m6G1y9CEACzjkO+mSLcAerlAkjf70/sg+Wo1w/nqA/l9uj/Lpmom9VQisnVdhzvHcHOE/343Oy6jJyrFugVmcOwf0TsH1WpPJfE7QuELMMsBIKrE6TfhcVkQJn8aVhN62a+Ed8B0q8AYk5IeZFZ150xQLCENRDjE+5IlA4w6fbShY9NbzcaBJ7jSYR4DtDgqBdjXum1kapN8JEwGARUFVsgCAIsJgOJHxnWAcdKSb063wTPsJmNfGZVhzP2cEPlZOszZSdwt7y3TW/QqzKHYTZqk/xGxvIdQPq7fA51DuGm/9mBv33Untafoxb2qVa53bqQ12FEFUAW/QugPpf+A9CMiiK57BxjRxLLAIUHoKXbm8f9fzJlIjacMVoGiH1oqiq2jBvKSKSfRoUDJIpizpTAAKCBibcYQWh/QOTzrKpLLDijSZr6va/Dmf4TTAASQDlMcF2A9I/KZDRwmz3du55+8dZRvLzHgX/7/U4c7oq8/DCTHO6WBq9NryvhX2OtpYU4DTquA6TjLrB+vhVd3+UvQOEAxSiBRWuBB4Kt9OH3lyjxHCB28apP0RZ4QhusScPjC6B/xJszIWgAaGBdxjEEUPvAKHwBERajAXWlNr6ahgQQkXJYq7DyTZO3wbrTGzr76GTQ0nzqzaNp/Vnx8PgCOCYHwmfVKwQQm15aiALILwdvx7XB678LjE9EzoHcVrmiiysa0YYgAuNLXsmGvuNlgFjppTGN5S8iOlaTkecU23pcPLuYC88Hc4BitcKzxpzJ1XYYDQLmNUoC6HjvSMzRDNmCBFAOE2lwmppdQMni9vlxSOH6/OGDUzhj/Ua8stcR41bp43ivC76AiBKriXdZAMESWM9Q4ZbArNFKYDp2gPr4PBz9CyBWAouVAQqWwCJne5QfYJJ9zCVxdr0FuyX1X3LJV6bXSh/Strf1wRcQYRCA2hwogTGRxuIGkWiTnfhptcUApNczi2gccGS/UhAOCaAcJtLgNP4JMI0C6ETvCAIiQgSHy+PHt1/4KCsqn9mrM+tLQnY/aRnfnm9EnQSdSw5QDgggZRt7NIIlsMhvt0xEAcHlqIkSrxOUz8vSuGSWSB3T6yRx8PZhaUJyfZlN92F/QHJ1AOBYryvqMcwBmloTdOJZGWzvaf0FofX/WyeiMuBiJbDxDlA6Q9DBF3kxHvnKIr6EdWjMhxc/7kjbz43Gh/KgrcURZo8AwQ6bQsITpQ2e7wLTswCKUNrVK8FBhrFC0NLvOnwIIkPZ6p9sCYxlipyj3ojzWrqH5HER5ABljRmyA/TO4V4A6e3GSyXMuTraHV0AHWEOUE0x/xorg+1t118OiARQjuLxBXinhzIrURqnCyQVtCkE0Gdm1GDjrefh9hWzAQCvH+hK28+NBrNWF02sCPk6s5W7C9ABcufwLrBcygBVqHCARj3ScxGpCwxAyEyVZOdVsd+Zxx+I+ByHN04QmWemvLSakQv5HwCYIouaXpeHTz73B0SMeYPl9EOdkgCaqchizpEF0Cddw5k6VdWQAMpR2ORZQQjtJClRsQsoWdrkTwCszgsAy2dIW6C3HumFz5/ZGUTM7g93DAraAZIFUPj8lRLFLrB4E12zRS5lgMrVzAHyRh+ECIS2wic7+LHIYuQ/h63WUEIZoOyzqLkCykkHbDaQ3imxmvjr5mjPMHz+AFY++ibO/t6raB8YxeCIlwvsGYpuXPb3I13DunvPIQGUBUY8Pnzlya343t/3JXwf7BNneZE5ZLx+JqZBs1H6Eyvt/GvzJ5SjzGbCkNuH/R2ZDbuxqcbssTPqFAJIb//w0k28DJAvIHKXSG/kUgaIOTaDI5FLTkDsLjDpPsZ/gEmG4B68UOHvD4i87ZocoOxRYjVhocKtzhUHCACm1QTLYJ1DbhzqGoZzzIcXP27njTFN8momxpTqYhgNAobdPt0t6iYBlAU+OjmI7cf68Iu32nCybySh+2AXifDMAGtzHk1jl09H2ABGQGrnZf+o97RnNuzGAr3FYQKIhaDdinJhoeCJtgxVkUPR60Z4lgFKNhCcCZh74/EHov4+Yw1CBEJdn1Jr6gRQf9hwxj6XB/6AtJZC76sX8p2vfqqZ/13ppOsd5uYc7Bzi1yAAeHVfFw7JJa4ZYSU+i8mAyVXSh+XDOiuDkQDKAsoOnERbA52yw1MW9omR2d/KumwqEUVx3AoOxhkTpFrv7gyn/VnWIdwBKrIY+QUll8pgQ2Ne3PQ/O/DS7sQD5dHa4I0GATa5G0mPnWA+f4DP1NH7IlRAcnXY7zPawM1YgxCB0C6wVDpA4fNaWPmrutiaE11H+czlZzXjjpWzccuFM/G5WfrbkRUN1miy43g/X3kBAB8c78M7h3sAADMV5S8GE3lsXpteyMi/gieeeAJTpkyBzWbDsmXLsH379pjHv/DCC5gzZw5sNhsWLFiAl156KeT7oihi/fr1aGxsRFFREVpbW3Ho0CH+/WPHjuG6667D1KlTUVRUhOnTp+Oee+6Bx6OPgXjKRZSJXpjZxSv8DZONtx9NkwAacvv4J91wAbRggjT2PJPtjj5/gO82ilRiyMUc0H9tOYKX9zjwjd99mPB98BJYhAtdCZ8GrT8BxLI0gqD/RagAIAgCqotjj1uIVwIrjzDINBnYv8NtR/tCvt7NA9CU/8k2RoOAb3xuBr75+VlJrT7JNGdNqQQg7fY6onBzAiJ4B3AkAcQW754eKLAS2PPPP4/bbrsN99xzDz788EMsWrQIK1asQFdX5G6hd999F1deeSWuu+467Ny5E6tXr8bq1auxZ88efsxDDz2Exx57DE8++SS2bduG4uJirFixAmNj0i/3wIEDCAQC+PnPf469e/fixz/+MZ588kncdddd6X64qlBa5YlemFlJp9gy3vUA0lcCY2PQy4vM49p6Z8vW5+EMht2UA/3CS2AAUJODAkg5aCzR5zFaCQwIdoLp0QFitnouLEJlsHJSb5SluyNsG7yKNvhwFzMRls+UGhLeOdyDQCD475AC0ESyTKqyo6bEAo8/gD98cBIAMLEyNMSt7ABjTJCPiTVEMRuk/R3mRz/6EdauXYs1a9Zg3rx5ePLJJ2G32/HrX/864vE/+clPsHLlStx+++2YO3cu7r//fixZsgSPP/44AMn9efTRR3H33Xdj1apVWLhwIX7729+ivb0dGzZsAACsXLkSTz/9NC666CJMmzYNX/rSl/Dtb38bf/rTn9L9cFWhvPAkOqQvmgNUlGYHiNnqkYJ7k+Wwm8vj5wPX0g37PZgMwrhyD5CbDpCypfqTzsRKpNFC0IByI7z+MkDB/I/+y18MvnTXFcUBYg5llBKY8kMMG2ORDEsmVcJuMaLX5cF+R3D2CrXAE8kiCAKWTa0GEIxv3LfqDHx2Vi0A6f1mVlgGCAAmVEgZoNOFJIA8Hg927NiB1tbW4A80GNDa2oqtW7dGvM3WrVtDjgeAFStW8OPb2trgcDhCjikvL8eyZcui3icADA4OoqqqKpmHkzJS4QC5ouRe7Gl2gDrkF3AkAaQMu7GBWOlGGYBWToFm5OIsIGVQsC3BmnmsElixRb/ToPt4uF//5S8Gy9z0RHGARrkDFFkAKT/EsCaGZLCYDFg2VXqve/tQD/86a17IlcF7hD5ZfeYE/veaEgvOmV6DJ65agn+/YAYev/LMkA4wRlNF/DUa2SCtAqinpwd+vx/19fUhX6+vr4fDEXlvlMPhiHk8+6+W+zx8+DB++tOf4v/8n/8T9VzdbjecTmfIn3ShzF70jSSWS2Jt7uECKN0ZoGgBaMY0eVpoptL+rAQWrXSQaw7QsNsX8inpaIICKNogREDfG+FZ51IutMAzquOWwGJ3gU2tKcb1y6fiW5+flbKy37kzpU/kmxWDSU/2Sa+r5ip7xNsQhBpa59bh2nOmoLHchgdWz4fNbESJ1YTbLpqNi85oiHgbVgLrdI7Bm+E5cbHIjSJ7Epw+fRorV67E5ZdfjrVr10Y97sEHH0R5eTn/09zcHPXYZFF+8k70U3i01u90l8CYkxLNRudDrzLuAEW+uHAHKEcEULhwTNgBipEB0vNG+L4o4x30TE1x7BIY68iMFoIGgLsvnYd/u3Bmys7pojOkD4jvH+vjzs+pfmnkRnhmgyC0IAgC7v3SGdh654VYOb9R1W1qiq2wGA0IiMEc6aOvfoL7/rYPJ3oTGwWTCtIqgGpqamA0GtHZ2Rny9c7OTjQ0RFaKDQ0NMY9n/1Vzn+3t7Tj//PNxzjnn4Kmnnop5rnfeeScGBwf5n5MnT8Z/gAkyosheJLqSIFbrNwCMpenTfa8sgKLNEZkutzvG2heTSoajCEEGc4Acg/rqPohGeObnaIJCMlobPKDcCK8/ATSQQ1OgGaodoCgZoHQwsdKOs6dUQRSBv+xqx+CoF6f6JSE0iRwgIsMYDAIvgzGH+393nMKv32mL+sEhI+eVzju3WCxYunQpNm/ezL8WCASwefNmtLS0RLxNS0tLyPEAsGnTJn781KlT0dDQEHKM0+nEtm3bQu7z9OnT+NznPoelS5fi6aefhsEQ+6FarVaUlZWF/EkXygtPop/CowqgNDtA7E2eBT/DmSrvi0nUudBKtCwUY668h+ZQ1xCcWdhUrxXmAJ0rd/K09bgS6qgLZoDGX3SDIWj9CaA+V+6GoCM1NIiiyP8tRiuBpYvLlkpZjV+93YZn3jkGX0DEnIZSNFWQA0RkHva6YzkgN/+Qltl/F0rSXgK77bbb8Itf/AK/+c1vsH//ftx0001wuVxYs2YNAODqq6/GnXfeyY+/5ZZbsHHjRjzyyCM4cOAA7r33XnzwwQdYt24dAMl+u/XWW/HAAw/gr3/9K3bv3o2rr74aTU1NWL16NYCg+Jk0aRIefvhhdHd3w+FwRM0IZRplCDrRlRXRSmDpzgCx4VfVUT6hT66WBFD74CjcvvRnTFxRxgEwGsptmFxtR0CUhnfpHeYAXTinDoIgvVYSCXDHboNnJTA9Z4ByJwRdzVdPjHeA3L4AmH6Ntg0+XfzTmRMxoaII3UNu/PjVTwAAaz4zJaPnQBAMPgtIdiLd8jXKas5eEift/yKvuOIKdHd3Y/369XA4HFi8eDE2btzIQ8wnTpwIcWfOOeccPPvss7j77rtx1113YebMmdiwYQPmz5/Pj7njjjvgcrlwww03YGBgAMuXL8fGjRths0kW26ZNm3D48GEcPnwYEydODDkfPeyEUn7ydvsC8PoD45ZWxoM5QOGD03gJzBtAICCmfMgW+5QbzQGqKbGgxGrCsNuHk30jmFE3viUylQzLF/FoJTAAOHtKFY73jmB7Wx/On63vqatsm/K8pnLUlFjRPeRGl9OtqXXZHxDhl+e/xBJA6ZoWngw5mQGS/y30uTzj/s0pP+xksgQGSM/9I19ZhK8/8z5GPH6cP7sW/7w0fdlGgogFd4AGwx2gPBZAALBu3Tru4ISzZcuWcV+7/PLLcfnll0e9P0EQcN999+G+++6L+P1rr70W1157bSKnmhHCdwa53D6+VFEtrigXfmXQ0u0LpNR2d/v83LGqjSKABEHA5Go79rY7cawn/QIoWAKL/jjPnlqFF3acwva2vqjH6AGXogNsZl0J6kplATQ0BqBc9f14FEtOIwkg5hLqcRdYLmaAWMeaPyBicNQbcu5sCKLFZAhZWpwpPj2tGm9/5wKc7h/FGU1lOTV1mMgvWCfYqf5RiGJwGbMtwx8MlOR9F5geCQ+fJhKEjpYBsinqqSMpDrmyT+cmg4CyoujaeYqcAzrWm/4cULwQNAA+uOvjUwNpXRKbLCz/U1NiRWWxha8s6NI4VDJEAEVwFlkpJl1l0mTIRQfIYjLwnXzhgU41HWDppqrYggUTy0n8EFllgiID5Fa8R2XTASIBlAXCsxdaBZAoilEFkEExETnVF7hgANoSceggY2p15oLQw1EmYitpripCY7kNXr+InSf0mwNi+Z9Z8ij5+jKp7KV1qrZHMWfDbBz/PBVZ5NeHzsSg1x/gS35zaQ4QECyDhQ9DzEYHGEHokeA+sFG4vUoBRA5QQaFc36D8f7W4fQGe8Yg0/6YoTRkPFsZlyx+jMblaarM9noH5DvG6wACpLHe2PBn3vaO9aT+nRGEOEFsmyB2gIW0t/MoAdCShWmTWpwPEVoDkyiJUJdFa4eMNQSSIQqFRboMf8wbgkPfSCULkD2mZggRQhvH5A9z+Y5/wtXaCKY+P1P3EW+E9qZ24qXSAYhGvFf6Aw4ndp1KzMX44ThcYY/kMqa385T0OXQThI8EcoJnyLp06+fXRpXGII58BFCVYzy7GessAsfxPeZE5K3mZZKiOMgwx3iZ4gigUrCYjn8vG5ptZo3xIyxQkgDLMiOJTd528lVlrO3Kw9dsYsa7PSmCpbkMPDkGM5wAFW+HDXSivP4CVj76FLz7+dkrm8qjJAAHAivkNsJgMONQ1zJf46Y1D0Rwgp0YHKMYaDEC/XWAs/1OVQ/kfBvtQEF4C4zOAqARGELwMxlb8ZLP8BZAAyjhsCrTRIPA3+mG3NiEw5ottq7MXlTJolgrizQBisFZ4UQyO32col+F1DCQ/ndkVZRxAOGU2My6QW+D/sqs96Z+bakY8Pj6pN1UOUDQBVMS7wPQ1CLE/BzvAGDVRVq4ES2CZnQFEEHqEVQf2tksVAFsWZwABJIAyzpjiE6GdT+TV9kk81qZvIDhYKtUOULwZQAxBEDClRsoBtfWECiB2kQekxXjJEm0cQCS+tLgJAPDkG0fw0u6OpH92Kgl2gFl4ALi+LHhRDQTUl+08ful3ElUAWViJVF8OUP9I7k2BZjTKy4HZ3i0G2wRvJweIIDBFrg4c6SIHqCBRBlSL2YVIYyki3id8XgLzZicDBATLYMfDWuGVm84HRlNXAos1B4hxwZzgEMSbn/0w6Z+dSj6RByCyZbKA5CoIAuALiOgbibxnKhLuOAI53etSEiXYAp9bAWggOOQt3NUc1UEbPEHohQr533an3NiRzRZ4gARQxmGixGoy8HksWrvA4gugdJXAJAco2hBEJdFa4U8rHKDBJAWQKIpRV4JEwmY24idfXSzfNvUOWTLs73ACAOY0BHfQmY0GXm7UMgtIbQbI6xfh9af2NZIM/SwDlIMlMLboUVniBYIlMBsJIILg3Z2s4zObazAAEkAZR1mesCfYjeOOsecJCNZVU32B7xtWn9FgrfDhwxCVFwhnkgLI7QvAx8cBqMtYfGlRE/9HyNZO6AFWE5/XFLqEt7aU5YDUlwuZAIq2XkU5eVVPLlBfDmeAGsslB2jI7QsJ9/MuMCqBEQTKw9xdKoEVGMwBshgNsFvZUkqNc4C8cTJAaXKAghmN+CUKFnY72h0mgAZT5wApB0jGa4NnCIKA+RMkkbHndGpa8ZNFFEXsa5ccoDPCBFAi06BjLUIFJPeRNQ+O6SgHxD4V5mIXWLHVxO19ZRmMSmAEESR8vheVwAoM5t5YzQZ+0R7RmgFScYEDUpsBGvP6+Zu5mr1lcxrLYDQI6Bgcg2MweEFoV1wcBkeSE0BMONotRk1zY+Y3SXu19sqiI9uc6h+Fc8wHs1HAzLDdaSwInYgDFO3NRRAERSeYfgQQywBV5GAGCAi6QEqXk0pgBBGkIkwAZXMPGEACKOMoO7j4QLqEM0BR2uDTUAJjbo1BAEpVlJtKrCY+8+FEn9QJFgiIISHoVDlAastfDFZm2tOuDwdon5z/mVlXOk7Usi3wWtZhxOsSBIJt2XoqgbE2+FzMAAHABJYDUricVAIjiCDkABU4bv7p3MgdIJfGT+Fx2+DTUAJjF6cKu0X1UsWJfPuvJIB6XZ6QRZ1JC6Cx+GswIjF/guQA7e9w8pUi2YSVv8LzPwBQL7dXOzSMDIjnEALBfWB6dIByMQMERHaAgiUwmgNEECSAChxlhw7LAGkdSOeRnZ1oL57gJOjUCSCWz9BSnggKIOmCcDqsQyZZAeTyMAdI26frqdXFsFuMGPMGMrKwNR5sBcachtJx32uKMl8mFvG6wADALu8D08s0aK8/wFe85GIGCIjcCs/+bVMJjCAAk9EQ8oGVQtAFhlshXuwJ5jDYJ/y4AiiFFze2pym8hhuLiZVSJxhzgFgLPDOQkl2FMSwPQdTqABkMAqbXSvN22ADCbBLcAj9eADUwAaRharaaDeQ2ne0DUy5CLcuxRagM1gqvFPpUAiOIUJQuELXBFxjKT+csuzKS6CToaALIzHY9pbIEpn1Kb7gDxEoDcxulUk/SDpCKTfDRYPu2Dndldy+Y2+fHsV5JIEYSQE1yWaXX5VHt1qhZKWHX2TDEfoXAzrVFqAzuAA1SFxhBRCNEAFEJrLBQZoDYm6JLcwlMZRdYCkPQwRKYFgHEHKDQEhgTQENjvqQyOFqGIIYzo14fDtDRbhf8ARGlNhPv+FJSYTfzuU5qV4f0q5iozAL4emmDz/X8DxC6DoOtLqEuMIIIRSmAqAuswAjJALFOHI8foqheCPBBiFFD0OnIAGlvUZ5QGQyF+hUdYEwAAcBQEmUwlhlJRACxEtiR7uxmgNgG+Fn1pRCE8c6HIAjcBWpXWQZT49bxDkSdLERlr69czf8AQH2ZDQZBmrDdLe/N4yUwEkAEASD0GkIOUIERkgGSw7u+gMhzPWrIxiqMAQ1DEBlsiJ8vIKJ/xIMTcqlnWk0xz6ckUwZjAqjMpj0z0iy7U+HB7EzTJbs6bGRAJBortAWh1bSTB/eB6WMVRp9Lu8OoN8xGA3c92QDQEZ4Boi4wggDCS2DkABUUyiF1ypCqls3c8TNAqS+BsYtquYYLlNlo4Bdhx+AY77iaXlvC/xEkI4BYiLqsSPvFhblTfS7POBfEETa8MZ2oEZasvbpD5TkFBwqqEUD6KIEFRVtuBqAZbJnt4e5hBAIi//3aLPRWSxBA6DoMCkEXGG6FADIbDTzwqcWtcWdhG3wiDhAQdIF2nuiHxx+A1WTAhMqi1Agg+baJOEDlRWY+0FE5t2VwxIvP/+gNnPvQa3xBaTpRzleKBsuW/PCVg/CpcArVLBXlGSCdCKB8yAABwPRaaQXMka7hkAnvpdbcFnYEkSooBF3AhLs3iYiVbAxCHBhlwVptF6haWQBtPdoLAJhWWwKjQeD/CI7LZbFECDpAiV1cmAt0UrGh/mjPMIbcPnj9In7x5tGEz00tvGNLhQMEAB/H2V/m9vn5YM1YeRoWPtTiPKaT/jzIAAFBB+hI9zAP6RsNAg+yE0Sho7yGUAmswFB2gQHBC9GYhnJVvF1P6egCY8Ha8Eme8agtkQTQW4d6AATbzyvlUsfdG/bg+fdPJHROzlGWAUosX8Ha9E8rBFD3UHDlxOYDXbybJ130y9mXWM5H69w6/vd4S1GZU2c0CCiN8XvRXQnMlZjA1hu8BNY1HAzpW4wRA+4EUYhUK97rEhlhkkpIAGWYlDhA8ZahmlPbBSaKIu/S0VqiYA4Quxgsaq4AgJCln3f9eU9C55W0AyQHj5VB6J5hD//74KgXBzvTOyco6ABF/73Wldmw8owGAIAjThCa53+KzDFXlhTJrxG9lMDYc1AXYRRALjFDfl13DI7xAaClCZRoCSJfYdeE8L9nAxJAGSY8v5OMAxS3CyxFGaARjx9ev+SEaJkEDYx/gZ85qQIAcIHC1fAHxBDnRS3JZICAYAksmgMEBPd0pYsBlQMmG/hOsNi/p36VWRo9ZYB6h90hAflcprzIjGk1Ug7oncOS65ntT7kEoSeUY1AmV9uzeCYkgDKOO2yPVzIZoGj101SXwJhLYTEaNM8zUQogi8mAM+SFn0smVeI3Xz+bl2nePdKj6X4DARFDcsYikS4wYPyqDgDoHg7ttDqU5kGJ/SrnKzFnJJ5QZKXKeFkam45KYP/Y1wmvX8SCCeVorsruG2IqWCyLfFb21bqrjiDyGZvZiC3f/hxevuXcrI+9IAGUYaKVwLR8Eo83CJFd3FJVAlMuQtWaZVAKoOUzakJE22dn1eLKsycBAN493Kvpfoc9PrDZkQk7QJFKYEOSIJmpCLOmi1GPnz9H8RwbtV1zfbxUGft3UqSjEDRzf86aUpnlM0kNSyZJj+OAQyqfllAJjCBCmFJTHOIEZQsSQBkmPARtTUCsqF+FkXoBpJVpNcGSxqrFTeO+/6kpVQCAD0/0a7pfVv6ymAwJj1NnJbCuITf/nbIJvgsmlPPvpYs+hbNWHMdZYwLIGUcAqQ0TsxKYHgYh7pSfexYgznU+O6s25P9LyAEiCF1CxekMs+YzU9A+MMYdhkTKVR752HgZIH9AhM8fgCmKU6QWNbNqotFQbsMtF85E15AblyxoHPd9lgk61DWMwVGv6i6zYAdY4p+uq4stsJkNGPMG0DE4isnVxegakkpgcxvLgJ2n0ZNGAdTvCpa/4jlrXADFWR2idp5O0AHK7iqMfpcHO45LAihcOOQqzVV2zKovwSedkntYV2rL8hkRBBEJcoAyzKrFE3DT56ZjihyUtCWwuV1tFxiQGhdoQMWsmlh88/Oz8OCXF0QUYjUlVh6E26nBBUpmCjRDEAReBjvVPwpRDIax58lZpZ5ht6Y9bVpgzlqsgYUMtSUwtTu1WOfcQBKDKFPBlk+6EBCBOQ2lPJOVD3xpUdDtnFVfGuNIgiCyBQmgLJOIA8QC09EyQMqvp0IAsdbw6pL0tCyyzMSukwOqb5NsBxhjAtsJ1j+KIbePC1FWn3b7Ahh2p8cl6dOwYJY9zvgZoPhzhQCgXnYlBka8We0Ee3V/FwDgQkVXYD5w9TlTcNG8enz5zAn48pIJ2T4dgiAiQAIoyyTjAEUbhGgwCFwEpaITrNcluSI1aVpTwDrDDnSon7njZItQE5wBxOAO0MAoHzJYajWhqtjCO96Us4FSyYCKGUAM5gBJIwmiv1aCGaDYv5eyIhOfThxvuGK68PgCePNgNwDgwrn1WTmHdFFmM+Opq8/Cj65YnHBGjSCI9EICKMsklgGKXQILud8UhFx70+wAMbdlv0P9zJ1eOaxclWBZjsGmQZ/qH8HedmnNBJu5UyM/XvazUo2aKdAMpdCLFYRWmwESBAH1ZdLj7BzKzOLXcD441ochtw/VxRYsnliRlXMgCKJwIQGUZRJygNQIIDbpNxUOEBdA6XGA5jRIGYnjvSN8f1I8emRRUpOkKFOuw3hu+0kAwBfksHaN/Hh70iWANGSrjAaBL2+NVQZTmwECgmWwTmd2BBArf50/py7m1GqCIIh0QAIoy2h1gAIBET55P1W0DJB0v6mbBt0jl8Cqi9PjAFWXWPnWeDY7Je45yaKsJslR6qwEtvPkAN5rk2YR/fPSiQCCM4wSmVKtBjVrMJSUxQlCj3mDi1DV3CcbrugYzLwAEkURmw90AgjddUYQBJEpSABlGa0OkEeR/7DGyBakchYQc4Bq0uQAAcEy2AGVZbBUOUBs8rDHF4AoAksmVfCvMQGUrllA/SrXYDDidYKpXYTKaCjLngN0pHsYx3tHYDEacO7M/Gh/JwgityABlGW0OkBKQRPLAbKkaB2GxxfgF9xkxUYs5jRKZTC1QWjmyiQryurCHKR/WTZZ8T1JIKQrJBzc26Uux8Ra/lkAPJw+RQBaTUmpSXa/2rPgALHy16enV6OYdmURBJEFSABlGa1OjUdxnNkY/SLHJ0wnWQJjZRqjQVA9pDAR2Hb4Q10aS2BJijJBEHDBHKkE8/l59bhM0bJcxx2g9AgErQMm4ztA2kpqXAANxN4wnw7eOyqVG8+fTe4PQRDZgT56ZRm+t0vlLBblEMRY04NTVQJjTktVsSWtQVW2BuFwlyvusf6AiD45lxS+bT4RHlg9H68d6MJlSyaG/E5Zl1S8DeyJMqBycSkj3jqMPo0CaEIWBRD7mfmy/oIgiNyDHKAsw7u11GaA2C6xOOstUrURvlcuq1SnaQYQg10Ie4bdGByJPeyvZ9iNgCi5Uqk4r6aKIvzrpyfz/VgMNqH6eK8r5dOgPYoBi6nKAGktqTVVyCU+xS60TNExILlqjeW0JoIgiOxAAijLsG4ttRcgNS3wyvtN1gHqTVHYOB4lVhO/GB7ujl0GO9E3AkC6gCe75ywWzVV2GA0CRjx+dKbYBWLlKoMAVYFlQIUD5FK/WoMdZzUZIIqZ7QQbGvNiSBZ/DeVFGfu5BEEQSkgAZRntIejYi1D5/ZrZIMQkHaA0zwBSEiyDDcc87kSvJIAmVaV3d5TZaOA/I945aYV1gFXY1ZcW47XBa22rV+5CO53BMhjrOiu1mVBCAWiCILIECaAso9WpUe8ApSYDlO4ZQEqm16oTQG09Uk4o3QIIAGbLiyzVtuerRcsQREbcEphGAQRkJwjdTuUvgiB0AAmgLMOcGs0lsLgZoFSVwPTnAO2RV1aw2UHphLfnqxzQqJbgzi71v9d4DpDaNRhKWA4okwKIlduo/EUQRDYhAZRltDo1br86B4gtukw6BD2cmnk7auACqDu6ABJFEXtOSwJo/oTytJ/TnAZtAxrVoiyBqYVngMZiO0BVKkPQgHIWUOYEUIcsgJrIASIIIouQAMoyQadGZRu81hB0knOAgl1g6S+BMQF0qn8Uo57Iv4+uITd6hj0wGgTMy4ADNFd2gD7pHIYvxhZ2rSQiVipkATTgitYFpl1UNfEMUOZC0A6nJLbYmAGCIIhsQAIoy1hibG13uX3YsPM0xhRBZt4Gn6EMUCZLYNXFFlTazRBFaVVCJJQToG0xVoGkiuZKO4rMRnh8ARyXu89SQSIlMCZCh9y+iIK5X8MiVAYPQfen7rHFg5XAKANEEEQ2IQGUZWIJlcc2H8Ktz+/C//nvHfxrQQco9sXfmoISmCiK6M5QGzwgdSUxFyiaAGLlnzJb+qZSKzEYBD4PiHWfpYJESmBlRSY+/ZvlfRhjXj9G2CJUDRmg5krpsZ3sH0UgkNpZR9FgIwXIASIIIpuQAMoyTAB5/IFxF6DfbTsBAHjjk27+NT4JOgMh6GG3jwuuTDhAQPwgtHNUmh+jdnZOKlAOREwVAwmUwARB4C5Qz1CoAFKuLCnT8LtpqrDBZBDg8QXQmaaVH+Gw1SJsGz1BEEQ2IAGUZZQb3T1hGZNIJR7NJbAkMkCs/GW3GGG3ZEZwxGuFH5IdoNIMOUAAMLm6GABSWgLr07gHjMGEKBtPwGCCqKbEEnNFSjgmowETK6Uy2LGe9JfBPL4A3+PWQA4QQRBZhARQllEKmXCxojR52CoG7XOAEi+B9bIZQBlyf4D4DtCQvAm9LI2LWcNh84aOp7AExvaAackAAUC1XIpk4pTRPSy5KonsRpskC7wTfalzuKLBSqpmo6D5sRMEQaSSjAigJ554AlOmTIHNZsOyZcuwffv2mMe/8MILmDNnDmw2GxYsWICXXnop5PuiKGL9+vVobGxEUVERWltbcejQoZBj+vr6cNVVV6GsrAwVFRW47rrrMDyc2mm+qcBkEMAGAbv9oWLFqPgk75Qv/HwSdLwSmOweqd0xFgn2ST0THWAMJoCO9brgjdB15eQOUOZKYFOYA5TCElgiXWBAcBwBG0/AYOHw2gSyWlPkEt+xFAq8aLAp0HWltrQu1yUIgohH2gXQ888/j9tuuw333HMPPvzwQyxatAgrVqxAV1dXxOPfffddXHnllbjuuuuwc+dOrF69GqtXr8aePXv4MQ899BAee+wxPPnkk9i2bRuKi4uxYsUKjI0FMwxXXXUV9u7di02bNuHFF1/Em2++iRtuuCHdD1czgiBEbVl3KVrB2QVOqwMUXlbTAutUUrtbKhU0lRehyGyE1y9GdFyYA5SNDFCqgsL+gMiHGWotgbEwek80AZSIA1SV+pB3NLpkAVRP+R+CILJM2gXQj370I6xduxZr1qzBvHnz8OSTT8Jut+PXv/51xON/8pOfYOXKlbj99tsxd+5c3H///ViyZAkef/xxAJL78+ijj+Luu+/GqlWrsHDhQvz2t79Fe3s7NmzYAADYv38/Nm7ciF/+8pdYtmwZli9fjp/+9Kd47rnn0N7enu6HrJlgx1ZQrPj8gZCJv+yCp3YQYipKYEyAFWdwX5PBIMQsgw1luAsMABrKbTAIcn7FlfxS1MFRL9hy+QqNpbzqYuYAhZXAkhBAwYxT+ktgrAWeOsAIgsg2aRVAHo8HO3bsQGtra/AHGgxobW3F1q1bI95m69atIccDwIoVK/jxbW1tcDgcIceUl5dj2bJl/JitW7eioqICZ511Fj+mtbUVBoMB27Zti/hz3W43nE5nyJ9MwcpZSrEyELbuQLsDlPwgxFGP5LYUW9I/b0dJrFZ41gWmpdMpWcxGA79gt6dgYCArf5XZTJq32bMMUI8rPAOU+LgCVgI73jPCs2bponOIWuAJgtAHaRVAPT098Pv9qK+vD/l6fX09HA5HxNs4HI6Yx7P/xjumrq4u5PsmkwlVVVVRf+6DDz6I8vJy/qe5uVnlo0yeSA5Q+JyXcQIobgYo+UGIzAEqypIAiugAuTPfBQakdmlofwI7uxgsA8ReD4xkHKBmuQQ25Pbx+UTpotNJDhBBEPqAusBk7rzzTgwODvI/J0+ezNjPjuTWOMMcIFYC423w5vSXwNg6iuIMtcAzYrXCB7vAMntOqRRAAwkMQWQ0ygtEO8J2dyUTgraZjXwqcyqD3pHopAwQQRA6Ia0CqKamBkajEZ2dnSFf7+zsRENDQ8TbNDQ0xDye/TfeMeEha5/Ph76+vqg/12q1oqysLORPpogkVobcvpBjuAOkehBiChwg+Rzs1uyVwMJDx0wYZt4BkgTC6VQIIBaATqCVn53HwIgXI57gayQZBwhIT6t/JGgKNEEQeiGtAshisWDp0qXYvHkz/1ogEMDmzZvR0tIS8TYtLS0hxwPApk2b+PFTp05FQ0NDyDFOpxPbtm3jx7S0tGBgYAA7dgRXSLz22msIBAJYtmxZyh5fqogkVlxhAmicA5SBDBBbrWDPwM4tJZOr7TAZBIx4/OhwhmZustEFBkjdaUCqHCA2BFG7ACq1mVEqh9JZHmlw1MvLlYkKi+C063QLICqBEQShD9JeArvtttvwi1/8Ar/5zW+wf/9+3HTTTXC5XFizZg0A4Oqrr8add97Jj7/llluwceNGPPLIIzhw4ADuvfdefPDBB1i3bh0AqW381ltvxQMPPIC//vWv2L17N66++mo0NTVh9erVAIC5c+di5cqVWLt2LbZv34533nkH69atw1e/+lU0NTWl+yFrhokVj0IADcsXejYqpXs4sTZ4t8+fcLCVOQz2DHaBAVLoeJJ8QW7rDpZkRFHM+C4wBiuBdQwmH4IeTMIBUp4LE2On+6X/VhVbEu7Ym5yGWUfhjHh8XMBSCYwgiGyT9ivbFVdcge7ubqxfvx4OhwOLFy/Gxo0beYj5xIkTMBiCF/NzzjkHzz77LO6++27cddddmDlzJjZs2ID58+fzY+644w64XC7ccMMNGBgYwPLly7Fx40bYbMFPlb/73e+wbt06XHjhhTAYDLjsssvw2GOPpfvhJkSkwPKw7ABNqy3B4a5hOAbDSmAqHaCACPgCIl+iqQVXljJAADCtpgRHu1042jOM5TNrAEi/H69fEnMZd4AqWBdY6jJA5QlOQm6qsOFg5xDPAZ2SN7mzlRaJwB2gFK77CIeVv+wWI0oyLKoJgiDCyci70Lp167iDE86WLVvGfe3yyy/H5ZdfHvX+BEHAfffdh/vuuy/qMVVVVXj22Wc1n2s2iNQGzwTQ7IZSHO4aRs+wG2NePxdJFqO6bfDS/QZg1thuDSgcoAx3gQHA9NpivLofOKpwgJj7YxAyL8omyK5Lz7AHY15/xD1takkmAwQAEytDJzefkh2gZATQ1BrJATrSPQxRFDXtE1MLK381lNnScv8EQRBaoC4wHcDWVijzOqwENrGiiM/haR8YDQqgOA6QMiTt9ibWCcYzQFkQQOyCfLRHIYDkGUAlVlPG1yiUF5n57yHZMlgyGSBAEodAsEsuKIDsCZ/T9NoSCILkTvWGjWBIFXwNBpW/CILQASSAdECkEDRzgEptJkyQP9mf6h9VnQEyGASFs5RYEHrEnflJ0Ixpciv8UcUwxGxsgmcIgsBbxZMtgwXXYCT2OGbWlwJQCqDkS2A2sxHNsoA61JmenXkUgCYIQk+QANIBkdrgmQAqtpp4+eX0wCg8Kpehht5vggJILoFlehAiAEyTXY7TA6MYkx2sbGyCV5KqWUBsEnR5UWIZoJnymIDjvS6Mef0pKYEp7/dw11BS9xMNaoEnCEJPkADSAbxlPYIDVGI18dLGqf4R1SFoQBmu1l4CE0WRl8CyEYKuLrag1GaCKAZbs7OxCV7JBC6AEi+BiaLI93glumS2ttSKSrsZARHY3+FUOECJl8AAYEa9JIAORRhAmQqSdb4IgiBSCQkgHcCFSoQMkLIEdlpRAos3B0g6Znx7vVo8/gB88hDCTA9CBKSSU3gZjDtAWRJAqXCA+lweLiwbEnRCBEHAWVOqAAC/fKsNTvn3wgRaosysCy2tpRr+mqYOMIIgdAAJIB3AxIzHH7kExkobJ/uDIWh1AijxEhhbgwFkfhAiY3pYEDobm+CVcAE0mJgAEkUR97+4D4BUrkqmtPjZWbUAgL/v7gAgiZ9ks1qsBJYuByhbe9wIgiAiQQJIB0Sa2uzyBAUQW1Nwom9EUzCZlckSmQbNZgBZTAbNG8tTBe8Ek1vhWRdYtkpgdfKaifBFpGoQRRH/8bd92LCrHUaDgP+8bGFS57JqcVNIKenGz01P6v4AYLosgLqH3LxTLZUwB4hmABEEoQfonUgHWCKuwpAESInVhPpSqVSivPCqyeXw9voEMkCjTIBlIQDN4CWwHlYCy66DUC1vYo/UJr63fRBdTjfOn1MX8bb/2NeJZ949BgD4/j/Nx2dm1CR1LqU2M56/oQVvfNKFVYsnpCRYXCIH7k8PjGJ/xxBaplcnfZ9KsrXGhCAIIhLkAOmASF1gfBGpxYhyuxnlYZ1PanI5yZTAmACzZyEAzWCdYG28BJadTfAMtmm9e8iNPoUIEkURlzz2NtY8837U/MzGPQ4AwLXnTMEVn5qUkvOZ3VCKG86bntKuqvkTpCXAe04Ppuw+GWzBbwkJIIIgdAAJIB0QLlR8/gD/O3N6WBkMkBwjNZOdIwkrtbiyOAWawUpgAyNe9Lk8ii6w7DhAtaVWvpvtwZf2868rByMe6hzfQu71B/D6wS4AwMXzG9J7kkmyYEI5AGBPexoEUJYzXARBEEpIAOmA8EnQI4rJzSzrw5aDAkClyjZiaxIZICbAkln5kCw2s5F3Nh3tHk56iWiyCIKAc2dK4eNPFE7PAYeT/709wpTod4/0YmDEi+piC5ZOrkz/iSbBGbIA2p1iB8jrD2BMfh1SBoggCD1AAkgHhDs1LOhsNgo8HzRFIYBqS9WtEog0X0gtbH2GzZzdl8icBqk1e9fJAcUS0ew5CHd+YQ4AoE3emQUA+zuCrk+kbep/+6gdAHDxgoasBcrVwhygth4X70RMBSwADVAJjCAIfaDvd+MCIbwENszzP8ELxeSqYv73xnJ1816SKYEF2+2z5wABwLJp0ryb94728iWi4XmoTDK1phgGAXCO+XgofX9H0AE61juCD471YeeJfgDAmNePV/ZK+Z8vLmzK/AlrpKbEisZyG0QR2JtCF4i9pm1mdeVbgiCIdEPvRDogfGDhSIQOrMkKB2jRxHJ19xthwKJa2G3UzBtKJ5+eJnUibTvaxwVHhT2xCcqpwGoyYkq1JEYPdQ1j2O3DO4d7+Pff/KQbX/n5Vlzx8/dwqn8Ef93VjqExHyZUFOFT8vBCvXPmpAoAwAfH+1N2n9nObxEEQYRDAkgHBFdWSKKDd2ApshJTaoIO0NLJ6i6kyZTAxmTXyJrlEtgZTeVoLLfxDiIgexkgBpuXc6hzCL9+uw39I96QsHhAlCZpP/jyAfzq7TYAwNUtkzO+wT5RmFDb3taXsvukKdAEQegNEkA6ILi1Xc4ARXCA6kqtWDKpAnMaSlUHaZMqgckOkC3LJTCjQcA/L53I/99kELLamQYEJya/f7wfv3jzKADgwS8vGJeX+vvHHTjYOYRSmwlfTVHreyZgAmjH8X745XUoycJKYDQDiCAIvUACSAfYwh0gz/gZPIIg4E/f+AxevuVcVYtQgeTmALl14gABwPXLp/ES4IVz6yAI2XVSZspLQ//+cQeG3D7MaSjFFxc28dIYwyg7PnesmJ3V4LZW5jaWodRqwrDbF5JvSgY2w4kC0ARB6AV6N9IB4aswRvgesPFOh5aLf3h7vRb0EoIGpK6vl/79XBzpHsachrJsnw5fGsr4twtmwmAQMLnajgMOqSNs5RkN+NZFs+Ac82GJnKnJFYwGAUsmV+KNT7qxva0P8yeoy5zFgpUwS625IwQJgshvsv/xnggpVYmiGLIINRX36/EnkAGS2+CzHYJmFFtNWDixQrX7lU7YhGpAmmmz4ox6+esl/Os2swEz66VyZbYdq0Q4e6pUBnv/WGpyQGwIIjlABEHohexfTQjusgREwBcQMRKhBJbY/aagDT6LgxD1it1iwgw5B/TvF87gs31m1wedoWwOkEwFLAf0/rE+Pu8oGYZpDxhBEDqD3o10gDJnM+b1BzfBJxn2jbRlXi16aYPXK7+65izsPj2Ii+c38q/NbggKoFzK/ERi4cRyWIwG9Ax7cLJvNGQSeSIMURcYQRA6g65uOkApMsa8AT4J2p5sCcycghA0CaCITK4uxqULm3jQGQCmK0pgjSlcUJoNbGYj5jVJeaudJ5OfBxTsAsttYUgQRP5AVzcdIAgC7wRLpQMU3l6vBba3iUpg6rGYDLhv1Rm4bMlE/NOZE+PfQOewgYg7TwwkfV+UASIIQm/Qu5FOsJmNGPMG4Pb54WKrMHTgANnIAdLE1S1TgJZsn0VqOHNSJZ5+5xhf65EMzlHpNU2b4AmC0At0ddMJbODg4S4XPj4l7WDKagaIQtAFz5nNFQCAve1O3hWYKGwVRlkRfeYiCEIfkADSCUWy2Lnxf3agY3AMFqMBZ05SN/E5Gsl0gemtDZ7IPBMri1BTYoUvIGJve3KLUXkImhwggiB0Al3ddIJyUsyyqVX4883nYGpNcdTj1ZDMLrDgIER6iRQqgiCkLAfEHSDKABEEoRPo6qYT2H6vSrsZv7t+Gc5oSn76bnIZIHkXGJXACppUCKBAQKQuMIIgdAd9HNMJ/3bBTDSU23DVssl8sF6y8BJYAvkNaoMnAODMZkmYJxOEHnL7wGYp0iBEgiD0Al3ddMKkaju+ddFsNJSnbn5MMiUw3gavg11gRPZYOLEcBgFoHxyDY3AsoftgLfBWk4EcRYIgdAMJoDyGuTe+gAifxn1gzDXSwzZ4InsUW02YLS+g3ZXgQETWAk/lL4Ig9ARd3fIYpXjRuhCVMkAEI9kc0BC1wBMEoUNIAOUxyvIVW7CqBlEUqQuM4LB5QIkKICe1wBMEoUPo6pbHGA0CH6b4zuEe1bdTZoZIABFsHtXHpwfg1egkAgoHiALQBEHoCLq65Tku2fm55bld+J/3jqu6TagAohJYoTOtphhlNhPGvAEcdAxpvr1zlAkgcoAIgtAPJIAKiEdf/URVGJq1wBsEwGwU4hxN5DsGg4BFchls92ntE6FZCYwyQARB6AkSQHnOHStnY0ZdCQCgZ9iD9472xb2NW9ECLwgkgAhgZl0pAOBw17Dm27ISGGWACILQEySA8pxvfG4GXr3ts7hsyUQAwLtH4meB+BBEaoEnZGbWSyL6UAICKLgJnhwggiD0A13hCoSW6dUAgHeP9MY9NjgEkV4ehMQsWQAd7tSeARpyszZ4coAIgtAPdIUrEJgA+vjUAF9MGQ2aAUSEM6NWKoG1D47xkpZagoMQyQEiCEI/kAAqECZUFGFKtR0BEXi/LXYOiE+BJgeIkCm3m1FXagUAHOl2abptsA2eHCCCIPQDXeEKiJbpNQCArXHKYMEhiOQAEUF4DkhjGYwGIRIEoUdIABUQSyfLA+1OxW5lpk3wRCSm1hQDAI73jmi6HZ8DRG3wBEHoCLrCFRALJ5YDAPa0D8IfEKMeRxkgIhKTquwAgBN96gWQKIoYIgeIIAgdQgKogJheW4IisxEjHj+OdEdvZx6jDBARgeZKSQCd7FcvgNy+AF/ES23wBEHoCbrCFRBGg8BdoA+O9Uc9jmeAaA4QoaBZdoBOanCAWMehIADFFhJABEHoB7rCFRjLplYBALa1RQ9CKydBEwSDCaCeYQ9cbp+q2/AWeKsJBgNNFScIQj+QACowlk2T5gG9c7gHHl/kvWAsBG0jB4hQUF5kRrk8zPBU/6iq2zAHiIYgEgShN+gKV2B8akoVakut6Bn2YPP+zojHjJEDREShuaoIgPogNAWgCYLQKySACgyLyYBVi5oAAJsPdEU8htrgiWg0lksCyOEcU3U8b4GnADRBEDqDrnAFyHmzagEA26NMhKZdYEQ0GspsAIDOQXUCiBwggiD0Cl3hCpBFEysASGWMgRHPuO/zNniaA0SE0VAuCaAOlQIomAEiB4ggCH2RNgHU19eHq666CmVlZaioqMB1112H4eHos2cAYGxsDDfffDOqq6tRUlKCyy67DJ2doTmVEydO4JJLLoHdbkddXR1uv/12+HzBjpQ//elP+PznP4/a2lqUlZWhpaUFr7zySloeY65SbjdjSrXU0bP79Pip0GM0CJGIAneAVJbAaA8YQRB6JW0C6KqrrsLevXuxadMmvPjii3jzzTdxww03xLzNN7/5Tfztb3/DCy+8gDfeeAPt7e348pe/zL/v9/txySWXwOPx4N1338VvfvMbPPPMM1i/fj0/5s0338TnP/95vPTSS9ixYwfOP/98fPGLX8TOnTvT9VBzkvkT5KnQp53jvsccIOoCI8JhDpD6DJD04YQyQARB6I20vCvt378fGzduxPvvv4+zzjoLAPDTn/4UX/jCF/Dwww+jqalp3G0GBwfxq1/9Cs8++ywuuOACAMDTTz+NuXPn4r333sOnP/1p/OMf/8C+ffvw6quvor6+HosXL8b999+P73znO7j33nthsVjw6KOPhtzv97//ffzlL3/B3/72N5x55pnpeLg5ycy6UgAdOBphIjQXQNQFRoRRrzEDNCiHoCkDRBCE3kjLR/ytW7eioqKCix8AaG1thcFgwLZt2yLeZseOHfB6vWhtbeVfmzNnDiZNmoStW7fy+12wYAHq6+v5MStWrIDT6cTevXsj3m8gEMDQ0BCqqqpinrPb7YbT6Qz5k89Mq5UWWx7tcY37HhuESCUwIhzmAA25faqGIbJ2+QmVRWk9L4IgCK2kRQA5HA7U1dWFfM1kMqGqqgoOhyPqbSwWCyoqKkK+Xl9fz2/jcDhCxA/7PvteJB5++GEMDw/jK1/5SsxzfvDBB1FeXs7/NDc3xzw+1+ECKJIDJLfBF1moBEaEUmI1odQqGcfxymCiKPKdc9NrS9J+bgRBEFrQdIX7v//3/0IQhJh/Dhw4kK5z1cyzzz6L//iP/8Af/vCHcYIsnDvvvBODg4P8z8mTJzN0ltlhWo10Qeof8aLfFdoJRiUwIhY1pVYAQJ9rfAehku5hN4bGfDAIwGQ5dE8QBKEXNGWAvvWtb+Haa6+Necy0adPQ0NCArq7QIXs+nw99fX1oaGiIeLuGhgZ4PB4MDAyEuECdnZ38Ng0NDdi+fXvI7ViXWPj9Pvfcc7j++uvxwgsvhJTVomG1WmG1WuMely8UWYyoL7Oi0+nGyf4RVBZb+Pf4HCAqgRERYOswBka8MY870iWVV5ur7FROJQhCd2gSQLW1taitrY17XEtLCwYGBrBjxw4sXboUAPDaa68hEAhg2bJlEW+zdOlSmM1mbN68GZdddhkA4ODBgzhx4gRaWlr4/X7ve99DV1cXd3Q2bdqEsrIyzJs3j9/X73//e3z961/Hc889h0suuUTLQywoJlbaJQHUN4qF8mwggLrAiNhU2CUB1B9hhpQSKn8RBKFn0nKFmzt3LlauXIm1a9di+/bteOedd7Bu3Tp89atf5R1gp0+fxpw5c7ijU15ejuuuuw633XYbXn/9dezYsQNr1qxBS0sLPv3pTwMALrroIsybNw9f+9rX8NFHH+GVV17B3XffjZtvvpm7N88++yyuvvpqPPLII1i2bBkcDgccDgcGB8fPuyl0JsrB1FP9oXudggKIPrUT46mQHaDBeA4QF0DFaT8ngiAIraTtI/7vfvc7zJkzBxdeeCG+8IUvYPny5Xjqqaf4971eLw4ePIiRkeDF98c//jEuvfRSXHbZZTjvvPPQ0NCAP/3pT/z7RqMRL774IoxGI1paWvCv//qvuPrqq3HffffxY5566in4fD7cfPPNaGxs5H9uueWWdD3UnCUogEI3e9MgRCIWFXapXDowGs8Bkkpg08gBIghCh6RtOllVVRWeffbZqN+fMmUKRFEM+ZrNZsMTTzyBJ554IurtJk+ejJdeeinq97ds2aL5XAuV5kopmKp0gAIBER4mgGgXGBEBVgKLlwE6JbfAT6kmB4ggCP1BV7gCZiIXQEEHiO1uAoASmt5LRKBCRQg6EBBxakB6XU2kGUAEQegQEkAFjLIExtw4NtulqtgCK7XBExFQUwLrGXbD4wvAaBDQKA9PJAiC0BMkgAqYxgobBAEY9frRK8906XS6AQB1pYUzEoDQhpoS2EnZVWwos8FkpLcZgiD0B70zFTBWkxH1pdKnc1YGY1u+2c4nggiHO0AxBBDLlVH5iyAIvUICqMAJb4Xv4gKIHCAiMsEMUPQSGBPULGdGEAShN0gAFTjhrfCsBEYOEBENVgJzefy8YzCcoAAiB4ggCH1CAqjAaSiXLlCOQcn5oRIYEY8ymxlF8oyoIxGW6QJUAiMIQv+QACpwGuRSFxM+JICIeBgMApZNqwIAvHO4J+Ixp6kERhCEziEBVOAwB6iDO0CsBEYZICI6n5oiCaCPT41fMUMzgAiCyAVIABU4bEZLp3MM/oCI7mHKABHxmddYBgDY3+Ec9z02A8ggAA00A4ggCJ1CAqjAYReoriE3uoYkEWQQgOpiS5bPjNAzc2UBdLTHxZfnMtgMoMbyIphpBhBBEDqF3p0KnJoSK4wGAf6AiHcP9wIAmqvsNLyOiEl9mRWVdjP8ARGHu0KD0CwAPYHKXwRB6Bi6yhU4RoPApz4//8FJAMCZzRVZPCMiFxAEATPqpC3v4Z1g1AJPEEQuQAKI4GWw7W19AIDWefXZPB0iR5heywSQK+TrBxxDId8nCILQIySACDQoAs9Gg4BzZ9Zm8WyIXCEogEIdoIMOKRjNgtIEQRB6hAQQEdKps3RyJcrlVQcEEYtptcUAgKMKB8jnD6CtR/p/ViIjCILQIySAiBAH6PzZdVk8EyKXYA7Q0e5hBAIiAOB43wi8fhFFZiMmVFAGiCAI/UICiAiZ1ts6lwQQoY6JlUUwGwW4fQGclgcfso6w6XXFMBiEbJ4eQRBETEzZPgEi+1w4tw5f/8xULGoux8z60myfDpEjmIwGTKkuxqGuYRzuGkZzlZ0LoBkUgCYIQueQA0TAZjZi/RfnYdXiCdk+FSLHmD+hHEBwJQYLRFP+hyAIvUMCiCCIhFk4URJAu09LAojNAGquoiWoBEHoGxJABEEkDAtCn+yTpj+fpiGIBEHkCCSACIJIGLbu4lT/CHz+ABzOMenrFeQAEQShb0gAEQSRMKzV3eXx44BjCP6ACLMxuF6FIAhCr5AAIggiYWxmI2pKLACAD45Jq1Qay4uoBZ4gCN1DAoggiKSoKZHcHtYJRgMQCYLIBUgAEQSRFNWyA/TRqQEAwVwQQRCEniEBRBBEUjAHiG2Fb1TsliMIgtArJIAIgkgKJoAYtRSAJggiByABRBBEUrASGKO2hAQQQRD6hwQQQRBJQQ4QQRC5CAkggiCSItzxIQFEEEQuQAKIIIikCC+BhTtCBEEQeoQEEEEQSaEUPHaLEcVWUxbPhiAIQh0kgAiCSAqlA2Qx0VsKQRC5Ab1bEQSRFFaTkf+dFmAQBJErkAAiCIIgCKLgIAFEEETK8PnFbJ8CQRCEKkgAEQSRNAsmlAMALlnYmOUzIQiCUAe1axAEkTS/uuYsvLzHgS8vmZDtUyEIglAFCSCCIJKmrsyGa86Zku3TIAiCUA2VwAiCIAiCKDhIABEEQRAEUXCQACIIgiAIouAgAUQQBEEQRMFBAoggCIIgiIKDBBBBEARBEAUHCSCCIAiCIAoOEkAEQRAEQRQcJIAIgiAIgig4SAARBEEQBFFwkAAiCIIgCKLgIAFEEARBEETBQQKIIAiCIIiCg7bBR0EURQCA0+nM8pkQBEEQBKEWdt1m1/FokACKwtDQEACgubk5y2dCEARBEIRWhoaGUF5eHvX7ghhPIhUogUAA7e3tKC0thSAIKbtfp9OJ5uZmnDx5EmVlZSm7XyK90POWu9Bzl5vQ85ab6OF5E0URQ0NDaGpqgsEQPelDDlAUDAYDJk6cmLb7Lysro3/UOQg9b7kLPXe5CT1vuUm2n7dYzg+DQtAEQRAEQRQcJIAIgiAIgig4SABlGKvVinvuuQdWqzXbp0JogJ633IWeu9yEnrfcJJeeNwpBEwRBEARRcJADRBAEQRBEwUECiCAIgiCIgoMEEEEQBEEQBQcJIIIgCIIgCg4SQBnmiSeewJQpU2Cz2bBs2TJs374926dUsNx7770QBCHkz5w5c/j3x8bGcPPNN6O6uholJSW47LLL0NnZGXIfJ06cwCWXXAK73Y66ujrcfvvt8Pl8mX4oec+bb76JL37xi2hqaoIgCNiwYUPI90VRxPr169HY2IiioiK0trbi0KFDIcf09fXhqquuQllZGSoqKnDddddheHg45JiPP/4Y5557Lmw2G5qbm/HQQw+l+6HlNfGet2uvvXbcv8GVK1eGHEPPW2Z58MEH8alPfQqlpaWoq6vD6tWrcfDgwZBjUvXeuGXLFixZsgRWqxUzZszAM888k+6HFwIJoAzy/PPP47bbbsM999yDDz/8EIsWLcKKFSvQ1dWV7VMrWM444wx0dHTwP2+//Tb/3je/+U387W9/wwsvvIA33ngD7e3t+PKXv8y/7/f7cckll8Dj8eDdd9/Fb37zGzzzzDNYv359Nh5KXuNyubBo0SI88cQTEb//0EMP4bHHHsOTTz6Jbdu2obi4GCtWrMDY2Bg/5qqrrsLevXuxadMmvPjii3jzzTdxww038O87nU5cdNFFmDx5Mnbs2IEf/vCHuPfee/HUU0+l/fHlK/GeNwBYuXJlyL/B3//+9yHfp+cts7zxxhu4+eab8d5772HTpk3wer246KKL4HK5+DGpeG9sa2vDJZdcgvPPPx+7du3Crbfeiuuvvx6vvPJK5h6sSGSMs88+W7z55pv5//v9frGpqUl88MEHs3hWhcs999wjLlq0KOL3BgYGRLPZLL7wwgv8a/v37xcBiFu3bhVFURRfeukl0WAwiA6Hgx/zs5/9TCwrKxPdbndaz72QASD++c9/5v8fCATEhoYG8Yc//CH/2sDAgGi1WsXf//73oiiK4r59+0QA4vvvv8+Pefnll0VBEMTTp0+LoiiK//Vf/yVWVlaGPHff+c53xNmzZ6f5ERUG4c+bKIriNddcI65atSrqbeh5yz5dXV0iAPGNN94QRTF174133HGHeMYZZ4T8rCuuuEJcsWJFuh8ShxygDOHxeLBjxw60trbyrxkMBrS2tmLr1q1ZPLPC5tChQ2hqasK0adNw1VVX4cSJEwCAHTt2wOv1hjxfc+bMwaRJk/jztXXrVixYsAD19fX8mBUrVsDpdGLv3r2ZfSAFTFtbGxwOR8hzVV5ejmXLloU8VxUVFTjrrLP4Ma2trTAYDNi2bRs/5rzzzoPFYuHHrFixAgcPHkR/f3+GHk3hsWXLFtTV1WH27Nm46aab0Nvby79Hz1v2GRwcBABUVVUBSN1749atW0Pugx2TyeshCaAM0dPTA7/fH/KCAID6+no4HI4snVVhs2zZMjzzzDPYuHEjfvazn6GtrQ3nnnsuhoaG4HA4YLFYUFFREXIb5fPlcDgiPp/se0RmYL/rWP+2HA4H6urqQr5vMplQVVVFz2cWWblyJX77299i8+bN+M///E+88cYbuPjii+H3+wHQ85ZtAoEAbr31VnzmM5/B/PnzASBl743RjnE6nRgdHU3HwxkHbYMnCpaLL76Y/33hwoVYtmwZJk+ejD/84Q8oKirK4pkRRGHw1a9+lf99wYIFWLhwIaZPn44tW7bgwgsvzOKZEQBw8803Y8+ePSHZyHyCHKAMUVNTA6PROC4p39nZiYaGhiydFaGkoqICs2bNwuHDh9HQ0ACPx4OBgYGQY5TPV0NDQ8Tnk32PyAzsdx3r31ZDQ8O4ZgOfz4e+vj56PnXEtGnTUFNTg8OHDwOg5y2brFu3Di+++CJef/11TJw4kX89Ve+N0Y4pKyvL2AdQEkAZwmKxYOnSpdi8eTP/WiAQwObNm9HS0pLFMyMYw8PDOHLkCBobG7F06VKYzeaQ5+vgwYM4ceIEf75aWlqwe/fukDfoTZs2oaysDPPmzcv4+RcqU6dORUNDQ8hz5XQ6sW3btpDnamBgADt27ODHvPbaawgEAli2bBk/5s0334TX6+XHbNq0CbNnz0ZlZWWGHk1hc+rUKfT29qKxsREAPW/ZQBRFrFu3Dn/+85/x2muvYerUqSHfT9V7Y0tLS8h9sGMyej3MWNyaEJ977jnRarWKzzzzjLhv3z7xhhtuECsqKkKS8kTm+Na3viVu2bJFbGtrE9955x2xtbVVrKmpEbu6ukRRFMUbb7xRnDRpkvjaa6+JH3zwgdjS0iK2tLTw2/t8PnH+/PniRRddJO7atUvcuHGjWFtbK955553Zekh5y9DQkLhz505x586dIgDxRz/6kbhz507x+PHjoiiK4g9+8AOxoqJC/Mtf/iJ+/PHH4qpVq8SpU6eKo6Oj/D5WrlwpnnnmmeK2bdvEt99+W5w5c6Z45ZVX8u8PDAyI9fX14te+9jVxz5494nPPPSfa7Xbx5z//ecYfb74Q63kbGhoSv/3tb4tbt24V29raxFdffVVcsmSJOHPmTHFsbIzfBz1vmeWmm24Sy8vLxS1btogdHR38z8jICD8mFe+NR48eFe12u3j77beL+/fvF5944gnRaDSKGzduzNhjJQGUYX7605+KkyZNEi0Wi3j22WeL7733XrZPqWC54oorxMbGRtFisYgTJkwQr7jiCvHw4cP8+6Ojo+I3vvENsbKyUrTb7eI//dM/iR0dHSH3cezYMfHiiy8Wi4qKxJqaGvFb3/qW6PV6M/1Q8p7XX39dBDDuzzXXXCOKotQK/93vflesr68XrVareOGFF4oHDx4MuY/e3l7xyiuvFEtKSsSysjJxzZo14tDQUMgxH330kbh8+XLRarWKEyZMEH/wgx9k6iHmJbGet5GREfGiiy4Sa2trRbPZLE6ePFlcu3btuA+E9LxllkjPFwDx6aef5sek6r3x9ddfFxcvXixaLBZx2rRpIT8jEwiiKIqZ85sIgiAIgiCyD2WACIIgCIIoOEgAEQRBEARRcJAAIgiCIAii4CABRBAEQRBEwUECiCAIgiCIgoMEEEEQBEEQBQcJIIIgCIIgCg4SQARBEARBFBwkgAiCIAiCKDhIABEEQRAEUXCQACIIgiAIouAgAUQQBEEQRMHx/wHUZRIiaiDv4gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.plot(fno(test_x[sample, :, ::4])[0] - test_y[sample, 0, ::4], label=\"Difference\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nIczZgivtNas", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "84b0ec34-b5f4-4c09-abdd-e9b3020c8fdb" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Array(0.01634491, dtype=float32)" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ], + "source": [ + "# Compute the error as reported in the FNO paper\n", + "test_pred = jax.vmap(fno)(test_x)\n", + "\n", + "def relative_l2_norm(pred, ref):\n", + " diff_norm = jnp.linalg.norm(pred - ref)\n", + " ref_norm = jnp.linalg.norm(ref)\n", + " return diff_norm / ref_norm\n", + "\n", + "rel_l2_set = jax.vmap(relative_l2_norm)(test_pred, test_y)\n", + "rel_l2_set.shape\n", + "jnp.mean(rel_l2_set) # ~1e-2\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wqGdOzQ-uVwS", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "outputId": "ddf7e720-0aed-4640-92be-2b8aa3438036" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA5idJREFUeJzs3Xd4VFX6wPHvvVMzmfRegYQeepUmqBQrgg1QRLH3gmvBdXXddX/2tmtHsCAIForSEQFp0iG00JKQkF4nmZlMv78/JgSQAAkkTALn8zx5ZjK5c+4bLjPz5pT3SIqiKAiCIAiCIDQTsq8DEARBEARBqA+RvAiCIAiC0KyI5EUQBEEQhGZFJC+CIAiCIDQrInkRBEEQBKFZEcmLIAiCIAjNikheBEEQBEFoVkTyIgiCIAhCs6L2dQANzePxkJubS0BAAJIk+TocQRAEQRDqQFEUKisriY2NRZbP3Ldy0SUvubm5JCQk+DoMQRAEQRDOQXZ2NvHx8Wc85qJLXgICAgDvLx8YGNigbTudTpYtW8bw4cPRaDQN2rbQeMR1a57EdWuexHVrnprCdauoqCAhIaHmc/xMLrrk5dhQUWBgYKMkLwaDgcDAQPGibEbEdWuexHVrnsR1a56a0nWry5QPMWFXEARBEIRmRSQvgiAIgiA0KyJ5EQRBEAShWRHJiyAIgiAIzYpIXgRBEARBaFZE8iIIgiAIQrMikhdBEARBEJoVkbwIgiAIgtCsiORFEARBEIRmRSQvgiAIgiA0KyJ5EQRBEAShWRHJiyAIgiAIzcpFtzGjIAhNQ5nFwYb0EjKKLZRbHfhp1SSF+3NZUhjRQXpfhycIQjMmkhdBEBrUn+klfLrqMGsOFuFRTv25JMHlbSKYOKAlg9tG1GkHWUEQhBOJ5EUQhAZRanHw7wV7mbs9p+axdlEBpMQFEm7UYbG72JVjIvWoidUHilh9oIiBrcP558iOtI4M8GHkgiA0NyJ5EQThvO06auLB6VvINdmQJBjXJ5EHL0+iRZj/KcdmFluY/ucRpm84wtpDxVz337W8fENHbu+TKHphBEGoE5G8CIJwXuZtz+H5n1Oxuzwkhfvz3phudEsIPu3xLcP9+cf1Hbm7f0tenLuLNQeL+fvc3RwqNPOP6zoiyyKBEQThzMRqI0EQzonL7eG1BXt5avYO7C4PV7aPZN5jA86YuJwoIdTANxP78PzV7QH4al0mz/y4E5fb04hRC4JwMRA9L4Ig1JvN6eaJ77ezbG8BAI9d0ZpJw9rWu9dEliUeHpJMdJCOZ39MZe72HDyKwnu3dWuEqAVBuFiI5EUQhHox213c981m/kwvRauWef+2blzXJea82hzdPR6DVs2jM7Yxf0cusiTx+qiODRSxIAgXGzFsJAhCndmcbu7/Zgt/ppdi1Kn5ZmKf805cjhmREs1Ht3dHJUvM3Z7D5Hl7al1qLQiCIJIXQRDqRFEUnvlxJxvSSzDq1My4ry/9ksMa9BxXd4rhf+OOJTC5zDos4xEZjCAIfyGSF0EQ6uTzP9JZmJqHRiXxxYSedK3jxNz6urZzDB+O7YZKlthYJPPWsgONch5BEJovkbwIgnBWaw4W8daSNABeviGF/snhjXq+67vE8uboFACmrjvCj1uyG/V8giA0LyJ5EQThjEotDp6atQOPArf2jGd838QLct4bu8UyIt67bPrFubvYnFl6Qc4rCELTJ5IXQRDO6F+/7qHE4qBdVAD/HtXpglbBvTrew9UpUTjdCk98vx2T1XnBzi0IQtMlkhdBEE7r97QC5u3IRZbgzVu6oNeoLuj5ZQneGJ1Cq3B/8kw2Xpy7C0URE3gF4VInkhdBEGpVaXPy0tzdANwzoFWdK+c2NH+dmg/GdEMtSyzclcecbTlnf5IgCBc1kbwIglCrt5bsJ9dkIzHUwKThbX0aS9eEYJ4a2gaAfy3YS1Gl3afxCILgWyJ5EQThFFuPlPHdxiMAvH5TZwxa3xfjfmhwMh1jAjFVOfnXgr2+DkcQBB8SyYsgCCdxuj28OGcXigI394hnQOvGXRZdV2qVzJs3d0GW4NeduaxMK/R1SIIg+IhIXgRBOMmUNensL6gkxKDh79d18HU4J+kcH8Q9A1oB8I/5u7E53T6OSBAEXxDJiyAINY6UWPjwt4MAvHRdR0L9tT6O6FSThrclOlDP0bIqpq7N8HU4giD4gEheBEEAvHsXvTRvN3aXhwGtw7ipR5yvQ6qVQavm+WvaAfDJykMUVth8HJEgCBeaSF4EQQBg4a481hwsRquWeW1U5wtajK6+buwaR7eEYCwON28v3e/rcARBuMBE8iIIAjanm9cXefcuemRIMq3C/X0c0ZnJssTLN3QE4KdtR9mTa/JxRIIgXEgieREEgalrM8gpryImSM+Dlyf7Opw66ZEYwg1dY1EU+KB6no4gCJcGkbwIwiWusNLGJysPAfD81e3x017YLQDOx5NXtUGWYPneAnYdFb0vgnCpEMmLIFzi3lm6H4vDTdeEYEZ2jfV1OPXSOtLIqG7eicXvLRdzXwThUiGSF0G4hO3MLufHrUcBePn6jshy052kezqPV/e+rNxfxIGCSl+HIwjCBSCSF0G4RHk8Ci//sgdFgZu6x9GzRYivQzonrcL9Gd4xGoCv12f6NhhBEC4IkbwIwiVq1uZsdmaXY9SpeeGa9r4O57zcPaAlAHO2HcVkdfo2GEEQGt0FSV4+/vhjWrZsiV6vp2/fvmzatOm0x86ZM4devXoRHByMv78/3bp1Y/r06RciTEG4ZJRaHLy11Ls0etKwtkQG6n0c0fnp2yqU9tEB2JweZm/J8nU4giA0skZPXmbPns2kSZN45ZVX2LZtG127dmXEiBEUFta+qVpoaCh///vf2bBhA6mpqUycOJGJEyeydOnSxg5VEC4Z7y3fT7nVSfvoACb0a+HrcM6bJElMrO59+Wb9EdwexbcBCYLQqBo9eXnvvfe4//77mThxIh07duSzzz7DYDAwbdq0Wo8fMmQIo0ePpkOHDiQnJ/Pkk0/SpUsX1q5d29ihCsIl4UBBJTM3ensnXrkhBbXq4hg9vrFbHMEGDTnlVfy2r8DX4QiC0IjUjdm4w+Fg69atTJ48ueYxWZYZOnQoGzZsOOvzFUXh999/Z//+/bz55pu1HmO327Hb7TXfV1RUAOB0OnE6G3bs+1h7Dd2u0LjEdTvZfxbsxaPAsA6R9EoMbLL/LvW9bipgTM94Pl+TwVdr07mybVgjRiecjni9NU9N4brV59yNmrwUFxfjdruJioo66fGoqCjS0tJO+zyTyURcXBx2ux2VSsUnn3zCsGHDaj329ddf59VXXz3l8WXLlmEwGM7vFziN5cuXN0q7QuMS1w32lUusPqhCJSn00eWyaFGur0M6q/pctxg7SKj4M6OMr35eRJRfIwYmnJF4vTVPvrxuVqu1zsc2avJyrgICAtixYwdms5kVK1YwadIkkpKSGDJkyCnHTp48mUmTJtV8X1FRQUJCAsOHDycwMLBB43I6nSxfvpxhw4ah0WgatG2h8Yjr5uX2KHz88QbAzIR+Lbm7emfmpupcr9sa63ZWpBWRZ0hmYhP/HS9G4vXWPDWF63Zs5KQuGjV5CQ8PR6VSUVBw8vhzQUEB0dHRp32eLMu0bt0agG7durFv3z5ef/31WpMXnU6HTqc75XGNRtNoF6Ax2xYaz6V+3eZtyeZAoZkgPw1PDm3bbP4t6nvdxvdryYq0IuZsz+X5azqg1zSf7Q4uJpf666258uV1q895G3WmnlarpWfPnqxYsaLmMY/Hw4oVK+jXr1+d2/F4PCfNaxEEoX5sTjfvLT8AwKNXJBNs0Po4osZzeZsI4kP8MFU5WZCa5+twBEFoBI2+zGDSpElMmTKFb775hn379vHwww9jsViYOHEiABMmTDhpQu/rr7/O8uXLSU9PZ9++fbz77rtMnz6d8ePHN3aognDR+np9JnkmG7FBeib0a+nrcBqVSpYY1ycRgBkbj/g4GkEQGkOjz3kZM2YMRUVFvPzyy+Tn59OtWzeWLFlSM4k3KysLWT6eQ1ksFh555BGOHj2Kn58f7du357vvvmPMmDGNHaogXJTKrY6aXaMnDW93SQyj3NYrgQ9+O8D2rHL25JpIiQ3ydUiCIDSgCzJh97HHHuOxxx6r9WerVq066fvXXnuN11577QJEJQiXhmlrM6iwuWgXFcDo7nG+DueCiAjQMSIlmgWpeczcmMV/Rnf2dUiCIDSgi6M6lSAItTJVOflqXSYATw1tg6oZ7hp9ru7o660cPG97Dma7y8fRCILQkETyIggXsa/XZVJpd9E2ysiIlNOv8LsYXZYUSlKEPxaHm3nbc3wdjiAIDUgkL4Jwkaq0OZm6Nh2Ax69sg3wJ9bqAd7+jY70vMzZmoShivyNBuFiI5EUQLlLfbjhChc1FcoQ/13aO8XU4PnFzjzh0apl9eRVszy73dTiCIDQQkbwIwkXIbHcxZc3xXpdLaa7LiYINWq7vEgvAjD+zfByNIAgNRSQvgnARmvHnEcqtTlqF+3N9l0uz1+WYOy7z1nxZkJpLudXh42gEQWgIInkRhIuM3eVm6toMAB4ekoxadWm/zLsnBNMhJhC7y8PP28TEXUG4GFza72qCcBGavyOXwko7UYE6RnW7NOq6nIkkSYy/7HjFXTFxVxCaP5G8CMJFxONR+OIP71yXewa0QqsWL3GAG7vF4a9VkV5kYUN6ia/DEQThPIl3NkG4iKzcX8ihQjMBOjXj+ib6Opwmw6hTM6q6uvCMjWLiriA0dyJ5EYSLyOervb0ut/dNJFDvm23tm6pjNV+W7s6nqFLsUi8IzZlIXgThIrEtq4xNmaVoVBITB7TydThNTsfYQLonBuPyKPywJdvX4QiCcB5E8iIIF4kvqntdbuwWR3SQ3sfRNE3j+niH0n7eelRM3BWEZkwkL4JwEcgotrB0bz4AD1ye5ONomq5rO8fgp1GRXmxhW1a5r8MRBOEcieRFEC4CU9akoyhwVftI2kYF+DqcJsuoU3NNJ+8GlT9vO+rjaARBOFcieRGEZq6o0s5PW70fxKLX5exu6RkPwK87c7E53T6ORhCEcyGSF0Fo5qZvyMTh8tA1IZg+rUJ9HU6Td1lSGHHBflTaXCzfW+DrcARBOAcieRGEZqzK4Wb6n0cAePDyJCTp0tyAsT5kWWJ0dc0XMXQkCM2TSF4EoRn7adtRyqxOEkL9GJES7etwmo2bq4eO/jhQREGFzcfRCIJQXyJ5EYRmyu1RmFa9AeO9A1qhkkWvS121CvenZ4sQPArM2y42axSE5kYkL4LQTP22r4CMYgtBfhpu7ZXg63CanZt7eHtfft4mar4IQnMjkhdBaKamVG/AeEffRPx1ah9H0/xc1yUGnVrmQIGZXTkmX4cjCEI9iORFEJqhbVllbDlShkYlcXf/lr4Op1kK8tMwvHqe0LGl5oIgNA8ieRGEZujLNce3AogMFFsBnKtjNV/mbc8RNV8EoRkRyYsgNDNZJVaW7PZuBXD/IFGU7nwMbB1OXLAfFTYXi3fn+TocQRDqSCQvgtDMTFuXgUeBy9tG0C5abAVwPlSyxJje3snO328UO00LQnMhkhdBaEbKrQ5+2OL9kH1A9Lo0iNt6JSBLsCmzlEOFlb4ORxCEOhDJiyA0IzM2ZmF1uOkQE8iA1mG+DueiEB2k58r2UQDM2iR6XwShORDJiyA0E3aXm6/XZwJw/6BWYiuABjSuj3fo6OdtR7G7xMRdQWjqRPIiCM3ELztyKaq0Ex2o5/ousb4O56IyuG0EMUF6yqxOlu4RmzUKQlMnkhdBaAYURWFq9VYAdw9oiVYtXroNSa2Sa6oUf78xy8fRCIJwNuIdUBCagQ2HS0jLr8RPo2Jc70Rfh3NRGtM7AUmCDeklZBRbfB2OIAhnIJIXQWgGjvW63NorniCDxsfRXJzigv0Y0jYCgJkbj/g4GkEQzkQkL4LQxKUXmVmRVgggtgJoZOMvawHA7M3ZWB0uH0cjCMLpiORFEJq4YyuMrmofSVKE0bfBXOSuaBdJizADFTYXc7bl+DocQRBOQyQvgtCEmaxOftzi3TTw3oGtfBzNxU+WJe7q1xLwJo2Kovg2IEEQaiWSF0Fown7Ykk2V00376AD6JYuidBfCrb3i8deqOFRoZs3BYl+HIwhCLUTyIghNlMejMHOTd9nuXf1biqJ0F0iAXlOzbPrDFQdF74sgNEEXJHn5+OOPadmyJXq9nr59+7Jp06bTHjtlyhQGDRpESEgIISEhDB069IzHC8LFav1h75Jdo07NyK6iKN2F9PCQZPQama1Hyli5v9DX4QiC8BeNnrzMnj2bSZMm8corr7Bt2za6du3KiBEjKCys/Q1h1apVjBs3jpUrV7JhwwYSEhIYPnw4OTli8pxwaZlRvVx3dPc4/HVqH0dzaYkK1HNX9cqut5cewOMRvS+C0JQ0evLy3nvvcf/99zNx4kQ6duzIZ599hsFgYNq0abUeP2PGDB555BG6detG+/bt+fLLL/F4PKxYsaKxQxWEJsNkdbJ8r7dM/e19RVE6X3jo8mQCdGr25VWwYFeer8MRBOEEjZq8OBwOtm7dytChQ4+fUJYZOnQoGzZsqFMbVqsVp9NJaGhoY4UpCE3Ob/sKcHkU2kYZ6RAT6OtwLkkh/lruvzwJgPeW7cfp9vg4IkEQjmnUvuji4mLcbjdRUVEnPR4VFUVaWlqd2nj++eeJjY09KQE6kd1ux26313xfUVEBgNPpxOl0nmPktTvWXkO3KzSu5njdFu/KBWB4h8hmFXdDagrX7c6+8Xy9PoPMEitztmZxU/c4n8XSXDSF6ybUX1O4bvU5d5MeSH/jjTeYNWsWq1atQq/X13rM66+/zquvvnrK48uWLcNgMDRKXMuXL2+UdoXG1Vyum90Nq/erAAlD6QEWLTrg65B8ytfXbWCYxC8WFW8v2o0mdycqseirTnx93YRz48vrZrVa63xsoyYv4eHhqFQqCgpO3mK+oKCA6OjoMz73nXfe4Y033uC3336jS5cupz1u8uTJTJo0qeb7ioqKmkm+gYEN293udDpZvnw5w4YNQ6MR+8s0F83tui3enY9zUyqJoX7cd8vAS3aJdFO5boPtLta8t4ZiqxMSunNtlxifxdIcNJXrJtRPU7hux0ZO6qJRkxetVkvPnj1ZsWIFo0aNAqiZfPvYY4+d9nlvvfUW//nPf1i6dCm9evU64zl0Oh06ne6UxzUaTaNdgMZsW2g8zeW6LdtXBMA1nWPQarU+jsb3fH3dgjUaJg5oxXvLDzBl7RFG90i4ZBPK+vD1dRPOjS+vW33O2+irjSZNmsSUKVP45ptv2LdvHw8//DAWi4WJEycCMGHCBCZPnlxz/Jtvvsk//vEPpk2bRsuWLcnPzyc/Px+z2dzYoQqCz9mcblZWb8J4dcqZeyeFC2dCvxYYtCr25VXwh6i6Kwg+1+jJy5gxY3jnnXd4+eWX6datGzt27GDJkiU1k3izsrLIyzu+DPHTTz/F4XBwyy23EBMTU/P1zjvvNHaoguBzfxwowuJwExOkp2t8sK/DEaoFG7SM7e1dsv7ZqsM+jkYQhAsyYfexxx477TDRqlWrTvo+MzOz8QMShCZqYXU9kWs7xyDLYmiiKblvUCu+3ZDJhvQSdmSX0y0h2NchCcIlS+xtJAhNhM3p5rfqwnTXi0mhTU5ssB8ju3m3aRC9L4LgW016qbQgXEpWphVicbiJC/YTf9U3UQ8NTmbetmz27t1J3uZsYpQisFeArcJ766wCjR/oAiA0CaI6QXRnUJ+6qEAQhHMnkhdBaCKOlaC/vkuMWM3SlHg8kLUBMlbT9sh69vltRqfYYGEdn68xQGI/SBoMbUZAZPtGDVcQLgUieRGEJsDqcPH7Pu8qo+vEkFHTUJoB276F1NlQcXxjWB1gVzRkEEOr1inoAsJAHwi6QG+vi7MKbOVQfADydoK1BA6v8H4tfxliukH38dDtDtA2TiFNQbjYieRFEJqAFfsKqXK6SQw10DkuyNfhXLocFti3AHbMgIzVxx/XBUHb4dCiPyT2486fitmUVcGD4UlMvqbD6dtTFCjcC+mr4fDvkL4S8nZ4v1a/Cf0fhz4Pgqb2CuKCINROJC+C0AQsTBVDRj5VsAf+/BT2zAXHsZpSEiRfCT0mQNurT0owHhhSwKZvtzDjzyweGdKaIL/TFNeSJIhK8X71ewQsJbDrR/jzEyg/4u2J2fIV3PABJA1p7N9SEC4aInkRBB8z212s3C+GjHwiayOseQcOLjv+WEhL6Ho7dB0LIS1qfdqV7SNpE2nkYKGZGRuP8MiQ1nU7n38YXPYQ9L4XUn+A3/8NZRnw7Y0w6BkY8iKoxNuyIJyNWCotCD72294C7C4PSeH+dIxp2P24hNOoyIOf74dpw72JiyRDx1Fw9yJ4YgcMef60iQuALEs8NDgZgGlrM7E53fU7v0oD3e+ARzdBT2+1cda8C9+O9MYmCMIZieRFEHxsQfWQ0XViyKjxuZ2w/n/wUS/Y9QMgQfc74bEtcNs30HKAd6inDkZ2iyU2SE+x2c5PW4+eWzz6QO+Q0S1fgTYAjqyDzwZCxppza08QLhEieREEHyqzOFh9wDtkdH2XWB9Hc5FLXw2fDoBlL3nntcT1ggdWwo0fQVhyvZvTqGTuvzwJgHeW7afYbD/32DrdBA+uhuguYC32DiP9+al3wq8gCKcQyYsg+NCC1FycboWOMYG0iw7wdTgXJ9NR+PFu75BM8X4whMHIj+De5RDb/byaHn9ZCzrEBFJudfLvBXvPL86wZLh3GXQZC4oblrwAcx8Ep+382hWEi5BIXgTBh37e5q0fclOPOB9HchFyu2Ddh/BRb+8qIkmGPg/A41uhx50gn//bn0Yl8+bNnZElmL8jl9/TCs6zQT8Y/Rlc/QZIKm+Nme/HgsN63rEKwsVEJC+C4COHi8zsyC5HJUvc2E0kLw0qZytMGeJdiuy0QsJl8MBquPZt8Atp0FN1iQ/m3oGtAHhp7m7Mdtf5NShJcNnDMP4n0Ph7a8PMvE30wAjCCUTyIgg+Mmebd5Ln4LYRRASIvW8ahLMKlkyGL4dC/i5vonLjx3DPEojp0minnTSsHYmhBnJNNt5ektYwjSZfCXfO9U7kzVwDc+4DTz1XNQnCRUokL4LgAx6PwtzqIaObe8T7OJqLRMEe+OIKbwE4xQOdb4NHN3tL8TfyKi4/rYr/G90ZgG//PMLWI6UN03BiXxg3E1Ra2PcrLJwkJvEKAiJ5EQSf+DO9hFyTjUC9mqs6RPo6nOZNUWDjF97EpWgfGKPgjp/h5ilgjLhgYQxsE84tPeNRFHj+513YXQ3US9LqcrhpCiDB1q9h1esN064gNGMieREEHzg2Uff6rrHoNSofR9OMWUrg+3Gw+Flw2727Nj+8HtoM9Uk4L13XgXCjlkOFZj5ZebjhGk4ZBde9672/+k3YPqPh2haEZkgkL4JwgVnsLhbv9hamu1msMjp3mevg0/5wYLF3WOXqN+H22eAf7rOQgg1a/jkyBYBPVh3iQEFlwzXe+164/Fnv/V+fhCPrG65tQWhmRPIiCBfY0j35WB1uWoYZ6JHYsCtfLgmKAhs/99ZtMedDeFu4/3fvnkFNoELxdZ1jGNohEqdb4fmfU3F7GnCOypAXoeON4HHCrDugNKPh2haEZkQkL4Jwgf1cvcroph7xYjuA+nLaYN4jsPg58Lig0y3wwCqI7uzryGpIksS/R3XCqFOzPauc6RsyG65xWYZRn0FMN6gq9Q6ZOSwN174gNBMieRGECyi3vIr1h0sAGN1dDBnVi+kofHU17JzpLTg3/D9w85eg9fd1ZKeICfLj+WvaA/DW0v3klFc1XONaA4z7HozR3gnKC//WcG0LQjMhkhdBuIDmbs9BUaBvq1ASQg2+Dqf5yFwLnw+G3O3gF+qtf9L/sSYxTHQ6d/RJpFeLEKwON5Pn7MLTkMNHgbFwy1RvErdzJmz/ruHaFoRmQCQvgnCBKIpSU5hO1HapO3nLVO9GhdZi7/DQA6sgaYivwzorWZZ44+YuaNUyfxwo4s2lDVS87piWA+GKF733F/4NCs5zbyVBaEZE8iIIF0jqUROHiyzoNTLXdI72dThNn8dF5+xvUS19/vj8lnuWQUgLX0dWZ60jjbx5s3c+zuer05m1KathTzDwGW8lXlcV/HgX2M0N274gNFEieRGEC+TYRN0RKdEE6DU+jqaJs1ei+mE8ScW/eb8f+s/q+S3Nb6htdPd4nryqDQAvzdvN2oPFDde4LMPoLyAgBooPePdyEoRLgEheBOECcLg8/LIzF/CuMhLOoDwbpo5APvwbLkmL6+avYODTTXp+y9k8NbQNN3aLxeVReOi7rezNrWi4xo0R3p2oAbZMhUMrGq5tQWiiRPIiCBfA72mFlFudRAboGNjad0XUmrycbfDlVVC4B8U/knVtXkRpf4OvozpvkiTx1i1duCwpFLPdxUPfbT3/3adPlDQE+jzgvT//Magqa7i2BaEJEsmLIFwAxybqju4eh0puvj0IjWr/EvjqWjAXQGQKronLKPdP8nVUDUanVvH5nb2IC/Yjq9TKP3/Z07AnGPoqhCZDZS4sfqFh2xaEJkYkL4LQyEotDlbuLwTEkNFpbfsWZt3unXjaeijcswSCLr5/qyA/De+P6YYswU9bj7IwNa/hGtcaYPTn3uXTqbNg34KGa1sQmhiRvAhCI/t1Zy5Ot0KnuEDaRQf4OpymRVFg9dvwy+OguKHbHTBuFugDfR1Zo+nTKpRHhrQGYPKcVHIbsoBdQm8Y8JT3/uLnRPVd4aIlkhdBaGSitstpeNywcBKsfM37/aC/wY0fg+riX4n15NA2dI0PosLmYtIPOxp2/6PBz0FwIlTkwNr3G65dQWhCRPIiCI3oUGElO4+aUMsSN3SN9XU4TYezCn6YAFumARJc+w5c9Y9mvaKoPjQqmQ/GdsdPo+LP9FKmrElvwMb9vFsnAGz4GCoLGq5tQWgiRPIiCI3o5205AAxpF0G4UefjaJqIqjKYPhrSFoBKC7d+DX3u93VUF1yrcH/+ObIjAO8u28+uo6aGa7zDDRDfG5xW+OPthmtXEJoIkbwIQiNxexTmbfcmL2LIqJrpKEy7GrI2gC7Iu0dRyihfR+Uzt/VK4OqUaJxuhSdnb6fK4W6YhiUJrqouWLf1ayjLbJh2BaGJEMmLIDSSDYdLyDPZCPLTcGWHSF+H43vFh2DqCChK81aEvWexd3+eS4zT48RkN1FcVUy+JZ9nrokmMgjSiyz8a0EDLp9udbl36wCPE1a+3nDtCkIToPZ1AIJwsTo2UfeGrjHo1CofR+Nj+bth+iiwFEFYG7hzjndS6UVMURQOlx9mZ9FOUotT2Veyj0JrIaW2UhT+MkE3FvzDIpiT1QrNsmt4eego1HIDvD1f9TIc/h1SZ8OAJyGq4/m3KQhNgEheBKERmO0uFu/OB0RtF45uge9uApvJuyv0+LnekvYXIafbyZaCLazMXsmq7FXkWc5cx0Uja3B5XCgoyLoitLoi5uZtYvn3H3Jru9Hc0eEOovyjzj2g2O7Q8UbYOx9WvwG3fXvubQlCEyKSF0FoBEt251PldJMU7k/3hGBfh+M7GX/AzLHgtEB8H7jjR/AL9nVUDW5fyT7mHprLwvSFVDiO71ukU+noEtGFLuFd6BzembiAOML9wgnSBqGW1UiShKIomOwmdhTt4N01v5BetR4z5Xy15yum75vO9UnX82i3R4n2P8edyIdM9iYve3+BogMQ0baBfmtB8B2RvAhCI/h5q3fI6KYecUiXyPLfUxxYCrPvBLcdWg2GsTNBZ/R1VA3G7DAz//B85h6cy/6y/TWPh+pDGZIwhCHxQ7gs9jL81H5nbEeSJIL1wQxJGMLAMZfz9A9bWXx4JdqwtWDIYN6heSzNXMpDXR9iQscJ9R9OiuwA7a/3ru5a+z6M/vRcfl1BaFIuyITdjz/+mJYtW6LX6+nbty+bNm067bF79uzh5ptvpmXLlkiSxAcffHAhQhSEBnO0zMqG9BIARl+qQ0a7f/aW+3fbod21cPsPF03ikmPO4e3NbzP0p6G8sekN9pftRyNruLrl1Xw29DN+v/V3Xu3/KlckXnHWxOWv1CqZD8b0YmTb4ViPPEhV5sPE6TtQ5ari/a3vc+/Se8m35Nc/6EGTvLeps6HsSP2fLwhNTKMnL7Nnz2bSpEm88sorbNu2ja5duzJixAgKCwtrPd5qtZKUlMQbb7xBdPQ5dpMKgg/9sjMXgMuSQokLrt+H10Vh27fw073gcUHnW73zLDR6X0d13g6XH+bZ1c9y7Zxr+Xbvt1icFpKCkpjcZzIrb1vJ24PfZkDcAFTy+U3OVskS79zSlXF9EnFVtSBt+5308n8If40/2wq3MWbBGNJN9SxqF9cTkq7wbsGw/r/nFZ8gNAWNnry899573H///UycOJGOHTvy2WefYTAYmDZtWq3H9+7dm7fffpuxY8ei04miXkLz8+tO7yTNUd3ifByJD2z4xLtPEQr0vNu7UWAzL/efacrkhTUvMHr+aJZkLsGjeOgX049Ph37K3BvncnuH2wnSBTXoOWVZ4v9Gd+K5q9sBMiu3tCTGPJlWga0ptZXy8PKHKbTW/gfgaQ16xnu7bTpUnkPvjSA0IY0658XhcLB161YmT55c85gsywwdOpQNGzY0yDnsdjt2u73m+4oK72Q5p9OJ0+lskHMcc6y9hm5XaFwX8rodKjSzL68CjUriqnbhl9T/FXndB6hWefcpcl/2KJ4r/wluj/frHPj69VZoLeTT1E/5NeNXPIr3d7gi/goe7PwgbUO8k17dLjduGqiwXC3uH9CC+CAdz8/ZzfZ0NYbcOwhvO4VcSy4PL3+YL4d9iVFTx+G4uL6o4noj52zGve5/eK76Z6PE7OvrJpybpnDd6nPuRk1eiouLcbvdREWdvNQvKiqKtLS0BjnH66+/zquvvnrK48uWLcNgMDTIOf5q+fLljdKu0LguxHVblC0DMm0D3axfden8P2mT/ysd834EYF/0TRyw9YHFixuk7Qv9erMrdtbY1rDOvg4n3jfTdup2XKW/ilhzLIc2HOIQhy5oTH/rBDMPqThc6Uf2vjsIbPUpB8oP8Mi8RxhjGFPnSeFRukFcxmaUTV+y3NIRp7rx5iGJ98nmyZfXzWq11vnYZr/aaPLkyUyaNKnm+4qKChISEhg+fDiBgYENei6n08ny5csZNmwYGk3z7gq/lFyo66YoCh98uA6wMvGqrlzbNabRztWUyOv/i2q7N3FxD36R1gMn0boB2r3Qrze3x80v6b/waeqnFNuLAega3pWnuj9F14iujX7+sxnvUfh2YxbvLDtIZdYE/Ft+zm7nbq5pfQ3j2o2rWyPKNShfLkNduJsRwZl4Ln+uweMU75PNU1O4bsdGTuqiUZOX8PBwVCoVBQUn72paUFDQYJNxdTpdrXNjNBpNo12AxmxbaDyNfd1255jIKLGi18hc0zkWjabZ/21wdms/gJX/8t6/4iVUg5+loWsJX4jX2/qc9byz9R0Olh0EIN4Yz9M9n2ZYi2FNaqn7/Ze35or20TzzQwB7C65BH72Ad7a+R1JgCgMTe9atkcufgZ8motr8BaqBT4AuoFFiFe+TzZMvr1t9ztuoE3a1Wi09e/ZkxYoVNY95PB5WrFhBv379GvPUgnDB/Vq9yuiq9lH46y6BxGXdh/DbK977V/wdBj/r23jOwcGygzz020M8+NuDHCw7SKA2kGd7Pcv8UfMZ3nJ4k0pcjmkdaeTnh/vzeM+JuCs7oeDm4eXP8GtqRt0a6HgjhCaDrRy21L5wQhCaukZfbTRp0iSmTJnCN998w759+3j44YexWCxMnDgRgAkTJpw0odfhcLBjxw527NiBw+EgJyeHHTt2cOjQhR1jFoT68HiUmuTlhkthuGjdf2F59a7FQ16EwQ0//NCYTHYTr/35Grf8egvrctahltWM7zCeRTctYkLKBLQqra9DPCO1SuaJoW35+oZ3ULlDQF3C337/D3/7cSdmu+vMT5ZVMPBp7/0/PwWXo/EDFoQG1uh/Ho4ZM4aioiJefvll8vPz6datG0uWLKmZxJuVlYUsH8+hcnNz6d69e83377zzDu+88w6DBw9m1apVjR2uIJyTbVll5JpsGHVqhrS7yHeQXvdfWP4P7/0hk2HI876Npx7cHjdzDs3hv9v+S7m9HIBhLYbxVI+nSAxsfhtF9mkRx8fD3+KhFfejDdnI3LSObMks5b/jutMlPvj0T+xyG/z+GlTmeQsKdqvjnBlBaCIuSN/2Y489xmOPPVbrz/6akLRs2RJFUWo9VhCaqmOF6YanRKHXXMQ7SK//3/HEZfALMOQF38ZTDzuLdvJ/G/+PvSV7AWgd3JoX+75I7+jePo7s/AyIv4zxHcbz3b7v8I/7mcxDCdz86Xr+Nrwd9w9KQpZrGfpS66Dvg7DiVe817ToWmuAQmSCczgXZHkAQLmYut4dFu7yF6UZ2jfVxNI1owyew7CXv/cHPwxWTz3x8E2Gym3hl/SuMXzSevSV7MWqMvNDnBX684cdmn7gc82SPJ2kV1ApFVUFS++U43QqvL07jrq82UVhhq/1JvSaCxh8K98Dh3y9swIJwnkTyIgjnaVNGKcVmByEGDQNah/s6nMaxaQosrU5WLn/WO1zUxCmKwpKMJYycN5I5B+cAMKr1KH4d/St3dLij/hscNmF6tZ7/DPgPEhJFygYeGO5Cr5FZc7CYaz5cw8q0Wqrx+oVAjwne+2LLAKGZEcmLIJynRbu9vS4jUqLRqC7Cl9SWr2DR37z3Bz7tXVnUxIcYTHYTz/3xHM/+8SyltlKSg5L59ppv+feAfxPud3EmmJ0jOjOuvXfuytryz/n5kd50iAmkxOJg4tebeWX+bmzOv1QDvuxhkFSQvgryUi980IJwji7Cd1pBuHDcHoUlu711jK7pfBGuMtr+HSx4ynu/32Nw1StNPnHZmLeRm3+5mSWZS1BJKh7u+jA/3vAj3SO7n/3Jzdzj3R8n0hBJdmU2K/JmMveR/kwc0BKAbzYc4caP1pGWf0IhsJAWkDLKe3/DRxc8XkE4VyJ5EYTzsCWzlGKznSA/Df2Tw3wdTsPaORvmV0+07/MgDH+tSScudredtze/zX3L7qPAWkCLwBZMv2Y6j3R7BE0z3xyyroxaIy/2eRGAr3Z/RbY5nVduSOHrib0JN+rYX1DJyI/W8dW6jOMLI/pVX+PdP4PpqI8iF4T6EcmLIJyHYxN1h3WMuriGjHb/DPMeAhTodQ9c82aTTlx2FO7gtl9v49u93wJwa9tb+eH6H+gc0dnHkV14VyZeyZCEIbgUF29ufhNFURjSLpIlTw3iinYROFweXv11Lw9M34rF7oK4HtByEHhcsPEzX4cvCHVyEb3bCsKF5fEoLN6dD8C1nRtmu4smYe8v8PP9oHig+51w7btNNnGxOq28vvF1JiyeQLopnVB9KP+78n+83O9lDJrG2Zi1qZMkied6P4dG1rAxbyN/HP0DgHCjjml39+bVkSlo1TLL9xZw86frySmvgv6Pe5+85WuwmXwXvCDUkUheBOEcbcsqo7DSToBOffGsMtq/GH6aCIobuo6DG/4LctN8m1ibs5ZR80cxM20mCgo3Jt/IL6N+YUjCEF+H5nMJAQmM7zgegHe2vIPT490dW5Ik7urfklkPXEa4UUdafiU3frSWHfreENEeHJWw9Rtfhi4IddI035UEoRlYtMvb6zKsYxQ69UVQmO7gcvhhgnf4oNMtcOPHTTJxKbOVMXnNZB7+7WHyLHnEGeP4fNjnvDbwNYJ0Qb4Or8l4oPMDhOpDyazI5If9P5z0sx6JIcx/bAAdYgIpNjsYN2UT+1pVL5sWWwYIzUDTe2cShGbAO2Tkne9yUawy2rcAZt0Bbgd0GAmjP/fugdOEKIrCovRFjJo/igXpC5CQuLPjncwZOYf+sf19HV6TY9QaebTbowB8suMTTPaTh4Pigv346aF+XN42giqnm5vWxlOlC4PKXNgz1xchC0KdieRFEM7BjqPl5Jls+GtVDGrTzIeMtnwFP9wJbju0vx5umQaqplXALd+Sz+O/P87za56n1FZK6+DWfHftdzzX+zmfz23xWK3Y9h/Aum0blj//pGr3Hpy5uShu99mf3MhuanMTrYNbU+GoYErqlFN+7q9TM/WuXtzcI54qj5r/ma8CQNnwPxDbtAhNWNN6hxKEZmJx9Sqjqzo0472MFAVWvwWr/s/7fY8JcN37TSpx8Sgefjz4I//d8V8sTgtqWc0DXR7gvk73+WT5s+J2Y0tLw7p5M9YtW7Dv3YczN7fWYyWdDm2LFujatsXQqxeG3r3QJiUhXcDJz2pZzTO9nuHh3x5m9v7Z3N3p7lOK9GlUMu/c2oXoIB3frRzKE+q56PN34TryJ+qW/S5YrIJQH03nXUoQmglFUWrmuzTbVUYet7dq7pZp3u8vf7bJVc7NqshimnkamZszAega0ZVX+79KcnDyBY3DbTZj+eMPKlf8jvmPP/BUVp5yjCo4GDkoEEmjwVNRiau0FMVux37gAPYDB6hYsAAATVwcASNGEDhiOPouXS5IIjMgdgBdIrqQWpTK1F1Teb7PqbuAS5LEsyPaExPkx68L+3OrajVbfnyLLk/+iEErPiaEpkf8rxSEetqVYyKnvAo/jYrBbSN9HU79OW0w5z7Y9ysgwbVvQ5/7fR1VDbfHzXf7vuN/2/+H3W3HT+3Hkz2eZGy7sagu0Dwct9lC5W/LqVi4CMuff4LTWfMz2WjE0LMnht698OvaFW3r1qhDQk56vuJy4czNxZ6ejm3XbqxbtlC1YwfOnBxKp02jdNo0tK1aETJ2DEGjRqEKaryJxpIk8Wi3R3lw+YP8eOBH7ul0DxGGiFqPHX9ZCza4noDfVtPDvJr7Pl/C+xOHEWbUNVp8gnAuRPIiCPV0rNflyvaR+Gmb2ZBRVTnMuh2OrAOVFm6acrw8fBNwqOwQL69/mV3FuwBIVifz4bUf0iKkRaOfW3E4MK9dR8WCX6n8fSWK7fhuzNqWLQkYehXGK6/Cr2sXJNWZr7ukVqNNTESbmEjAkCEAeKqqMK9ZQ+XSZVSuXIkjI4OC19+g8L33Cb75JsIefBBNVFSj/G79YvrRPbI72wu3M3X3VF7o88Lpjx04FPPObhiLdtA5fz43f+rPN/f0oUWYf6PEJgjnQiQvglAP3iEj73yXa5vbKqOKPPjuZijcA7pAGDsDWl3u66gAcHqcTNs1jc9SP8PlcRGgCeDpHk+jSdMQa4xt1HPb0tIo/+FHKhYuxG06viJH27IlgTdcT+DVV6NLPv+hKtnPj8DhwwkcPhy32UzFggWUzZqNPS2NspnfU/7Tz4TcOZ7whx9GZTSe9/lOJEkSj3R7hPuX3c+P+39kYspEovxPnygZBz4Mcx9kgnYFn5XcwE2frGfa3b3pmhDcoHEJwrkSq40EoR725FaQVWpFp5YZ0q72rvcmqfggTB3uTVyMUTBxUZNJXPaW7GXcgnF8tOMjXB4XQ+KHMPfGuYxKHtVoc0I8VivlP/9Mxm1jyBg1mrKZM3GbTKgiwgm9awItf/yRpMWLiHj00QZJXP5KZTQSMnYsrebOIfGbb/Dr1RPF4aB06jQOX3MN5fPmHd97qIH0je5Lj8geODwOvtz15ZkP7jgKDGFEKSVMDN9HicXB2C/+ZGVaYYPGJAjnSiQvglAPv6Z6V5Zc2T4Sf10z6bg8usWbuJiyIDQZ7l0G0b7f88futvPfbf/l9oW3s79sP8G6YN4c9Cb/vfK/Z+wVOK9zZmSQ/69/c3DQ5eT9/SVsqamg0RBwzdUkfPklbVatImryZPw6d7ogk2klScK/bx9aTJ9O/GefommRiLuomLwXJpP9wIM4Cwoa9FzH6r78fPBn8i35pz9Yo/euPgNeCF/LoDbhVDnd3PftFn7YnN1gMQnCuRLJiyDUkaIoLEz1Dhld36VxhzIazMHl8M0NUFUKsT28iUtIS19Hxc6indz2621M2TUFt+JmRMsRzLtxHtcmXdvgSYOiKFg2bSL7kUdJv/Y6ymbOxGOxoElMJPJvz9Bm1Uri338f48ABZ53L0lgkSSJgyBCSfv2ViEmTkLRaLGvWkH7DSCqWLGmw8/SJ6UOvqF44Pc6z9770ugckGXXmH0y9PoSbesTh9ig893MqH/52sMF7hgShPkTyIgh1tCO7nKNlVRi0Kq5s3wxWGW2bDjPHgNMKyVfBXb+Cv28L6lW5qnhr81vcuehO0k3phOnD+GDIB7wz+B3C/MIa9FyK241p4UIyb76FrAl3Yf79d1AUjEOGkDhtKslLFhN2332owxr2vOdD1moJf+B+Ws2dg75zZzwVFeQ89TSF777bYEXvHun2CABzD86l0HqGYaDgRGgzHABt6ne8e2tXHr3CO4T2/m8HeHHuLlxuT4PEJAj1JZIXQaijBdW9LkM7RDXtVUbHis/98tjxDRbHzQJdw04Cra+tBVu55ZdbmL53OgoKI5NHMn/UfK5qcVWDnkdxuzH9uoD0G0aS+8zfsO3di6TXEzxuLEmLFpHw2af49++P1AT3bTpGl5xMy+9nEnrvPQCUTPmS7AcfOmlC8bnqFdWL7pHdcXgcfLPnLJswVg8dsWMmksfFsyPa8+9RnZAl+H5TNg9O34rV4TrvmAShvpruq1cQmhCP58Qhoya8ysjtggVPwcr/eL8f9AyM+hTUWp+FZHVaeXPTm0xcMpGsyiwiDZF8fNXH/Gfgfxp0I0Vv0vIr6dffQO6zz+JIT0cOCiL8icdpvfJ3Yl55BV1SqwY7X2OT1Gqinn2W2HffQdLrsaxdS+bYcaet6FvndiWJB7o8AMCPB36k1FZ6+oPbDPdO8LYUeXccB+68rAWfju+JTi2zIq2QcVM2UmK2n1dMglBfInkRhDrYcqSM/AobATo1g5vqKiOH1btH0dav8RafeweuetmnVXP/OPoHo+aP4rt936GgMLr1aObdOI/L4xtupZPicmH65ZfqpOU5HBkZqIKCiHjqKVqv+I2IRx45pYhccxJ03XW0/H4m6uhoHBkZZI67HfvBg+fV5oDYAaSEpVDlquK7vd+d/kCVBrrd7r2/7duah0ekRDPz/r4EGzTszC7n5k/Xk11qPa+YBKE+RPIiCHWwoHqV0bCUKHTqJjhkVJEHX18H+xeBWg9jpvu0am5xVTF/W/03Hl3xKHmWPGL9Y/l06Kf8a8C/CNAGNMg5FLf7eNLy3PPHk5annyZ5xQrCH3qwweul+Iq+Qwdafj8TbXIyroICMsffSdXuPefc3om9LzPTZp6y4/RJut/pvT30G5iO1jzcs0UoPz/cn/gQPzJLrEz8ejNmuxhCEi4MkbwIwlm4Pcf3MrqhKa4yyt0BU66E3G3gFwoT5kOHG3wSikfx8OOBHxk5byRLM5ciSzJ3p9zN3BvnMjBuYIOco2ZOy7GkJTMTVXAwEZMmeZOWBx9AZbz4qsFqYmJoOeM7/Lp2xWMykXXvvdj27Tvn9oYkDKFNSBssTgvfp31/+gPDkqHlIECB7TNO+lFyhJGfH+5PVKCOQ4Vm/vbDTrEKSbggRPIiCGexMb2EYrOdYIOGAa19u1rnFHvnw7SroTIXItrD/b9D4mU+CSW9PJ2JSybyrw3/otJRScewjnx/3fc80+sZDBrDebeveDyYFi4kfeSN3jktx3paJk0i+bffCH/g/osyaTmRKjiYhKlT8evWzZvATLwH2/7959SWLMk80Nnb+/Ldvu+wOC2nP7jHXd7b7dO9m3qeICpQz6fje6JRSSzZk89nf2ScUzyCUB8ieRGEs/i1eqLu1SnRaNVN5CWjKLD6bfhhAriqoPUwbw2X0As/IdXmsvHxjo+5+deb2Va4DT+1H8/1fo4Z186gY1jH825f8XioWLyY9JHe1UOOw4eRq+e0JK9YcUkkLSdSGf1JmPIF+i5dcJeXk3X3ROzp6efU1rAWw2gZ2BKT3cTs/bNPf2CHG0AfDKZsSF95yo97JIbwrxs7AfDBikMcqjincAShzprIO7EgNE1Ot4clu5tYYTqnDebcDytf835/2SNw+2zQN97OxKezKnsVo+aP4rOd3j2JLo+/nPk3zufOjneils+vArHi8WBM3UX2zbeQ8/QkHIcOIwcGEvHkE7Re8Vv1nJZLJ2k5kSoggMQvp6BPScFdVkbWfffhLKh/6X6VrOK+zvcB8M2eb6hyVdV+oEYPXcZ4758wcfdE4/okcnOPeDwKTD+owlTlrPU4QWgIInkRhDNYd6iYMquTMH8tlyWF+jocqCzwTszd9SPIarj+A7j6dZAv7CTi7IpsHl3xKI///jg55hyiDFG8O/hdPrryI2KM57eUXPF4qFi2jOxbbyN2xgwchw4hBwQQ/thj3qSlETYubI5UgYEkTPkCbYsWuHLzyH7gAdyVlfVu59qka4kzxlFqK2XOwTmnP/BYzZe0RWAuqvWQV29MoUWogXKHxEvz94r5L0KjaSabswiCbxwrTHdN52jUKh/n+vm7YOZYqDjq7cIfM/2Cb65oc9mYunsq03ZNw+FxoJbV3NXxLh7o8sB5z2tRFAXz779T9NHH2Ksnorp1OsIn3k3EPfegCgxsiF/htOd22t1YTQ6sFQ4cVS5cTg8upxuXw4MkgUoto9LIqNQyeqMGQ4AWv0AtWr3qguyDVBt1aCgJU78kc+w47Pv3k/PU0yR88Xm9tjnQyBru7Xwv/9rwL6btnsatbW9Fq6qlLlB0J4jrCTlbIXUW9H/8lEOMOjXv3dqZW7/4kyV7CvhhSzZjeieez68oCLUSyYsgnIbd5WbpniayyihtIfx8PzgtENbGO0wU1vC7HZ+OoigsyVzCB1s/INfiXTbeL6Yfk/tOplXQ+c2zURQF88pVFH/0Eba9ewGQ/f0JuuMONsdE0+6WW1BpNOf9O9Scq8xO4ZEKyvIslOZZKS/wfjnt51Z+X62RCYoyEBptICTGn4iEAKKSAvEzXpjCgNr4eBI+/4wj4+/Esm4dxR9/TMQTT9SrjRuTb+SznZ9RaC1k/uH53Nr21toP7DHBm7xs/Qb6PVZrDaEu8UFcn+DhlywV//xlLz1bhNI6UvSUCQ1LJC+CcBprDhRTaXMRFaijd0sfDRkpCqz7AH57FVAg6Qq49WvwC75gIewo3MHbW94mtSgVgChDFM/1fo5hLYadV4+DoiiYV6+m+KOPse3eDYBsMBAyfjyhE+9GMRrxLFp0XrF73B7yMyrIO1ROQUYFBZkVWE2O0x6v0aswBGjRGdSotSrUGm9vC4Db5cHt8uByeLCZnVgrHThtblxODyVHzZQcNZ/UVlCkHzHJQSR0DCWhQ2ijJjN+KSnE/OtVcp99juJPPkXfpQsBQ4bU+flalZZ7Ot3DG5veYOquqYxqPQqNXEvC2OlmWPIilByErD+hRb9a27siVqFYHcr69FKe+H47cx/t3zTrIwnNlkheBOE0jhWmu7ZzDLLsg2EBlx1+fRJ2Vtfg6H0/XP0GqC7MyzbHnMMHWz9gSaZ3V2M/tR/3drqXCSkT8FP7nXO7NT0tn32GLdWbEEkGA6F33E7oPffUVMN1Os9twmdlqY2sPSVk7y0lO60MR9XJhdMkWSIszp+wOCMh0QZCov0JiTZgDNGj0dXvA9bpcGMps1NWYKUs30JZroWCzArK8q2YCqswFVaRtiEfJIhsEUjLzmG06RVFcNT5Lx3/q6AbbqBq+3bKZn5P7nPP02rOz2jj4+v8/Jva3MQXqV+QY85hccZiRiaPPPUgXQB0Gg3bv/NO3D1N8iJL8NbNnbjh4w3szavgrSX7+cf157/yTBCOEcmLINTC5nSzfG8B4KNVRuYimD0esv8ESQXXvHnBKuZanVa+SP2C6Xun4/A4kJAY3WY0j3V7jAjDuW+NoLjdVC5bRvHnX2BPSwNA8vMj5PZxhN17L+rQc+vdcjnd5B4sJ2tPKVl7SynLO7leid5fQ1zbYKJaBRGVFEhEYgCaBtpYU6NVERxlIDjKQKsux2sA2SxOCjIryNlfRtaeUkpyzBRmVlCYWcGmXzMITzDSumck7frGYAzRNUgsAJEvvEDVnj3YdqZy9IknaDlzJrJeX6fn+qn9uCvlLt7f+j5TUqdwXavrUNU2EbzHXd7kZc9cuOaN065yiwrU8/YtXbnv2y1MXZvBwDbhXNGuGezGLjQLInkRhFqsTCvE4nATF+xHj8TgC3vygj3eibmmLNAFwW1fQ/KVF+TUq7JX8Z+N/yHf4p3r0ze6L8/2fpZ2oe3OuU3F6cS0YCElX3yBI8NbwEw2GAi543ZC774bdVhYvdusKK4iI7WYrD2l5B4ow+X01PxMkiCqVRCJKaEkdgwjokXABe850/traJESRouUMPrfBJZyO0f2lHB4WxFH95VSnG2mONvMpl8ySO4ZSfdhiUQknv+2CbJWS/wHH5Ax+ibse/eR/9prxL72Wp2fP6bdGKbumkpmRSbLjyzn6lZXn3pQfG+I6ABF+2DXT9D73tO2N7RjFHf1a8E3G47wtx92svipQUQG1C2ZEoQzEcmLINRiwQk7SF/QlSRpC2HOA+AwQ2gSjJsNEW0b/bQFlgLe2PQGv2X9BkCcMY4X+rzA4PjB5/z7exwOTHPmUDLlS5w5OQDIQUGE3nknoePvQBUcXOe2FI9CYVYlmanFZOwsoiTn5N4V/2BdTbIS3z4EvX/DTPBtKP7BOjoOiKXjgFiqzA7Stxexf2M+eYdMHNxcwMHNBbTqGk7v61qddxKjiYkh9t13yL7vfkw//YyhZy+CR4+qW5waf8Z3HM8nOz7h89TPGd5yOLL0l1V2kuSduLt0snfo6AzJC8DkazuwMaOUtPxKnvlhJ99M7OObYVjhoiKSF0H4C4vdxYq0Czxk5PHA6jdg9Zve71sOgtu+BUPjThR2e9zM2j+L/23/HxanBbWk5q6Uu3iw64PnPK/FY7VS/uOPlEydhqvQWzhNFRZG2MS7CR47rs6F5VxOD1WFKv6YdZCs3aUnTbSVZInY1kG06BROYqdQQmP8fbZcub78jFpSBsWRMiiOoqxKti/P4uCWAjJ2FpOxs5j2/WPoNyoZQ+C5T/A1DhhA+OOPUfzf/5H/739j6NEdbYsWdXruHR3u4Ns933Ko/BCrsldxZWItvX5dboPl/4C8HVCwF6JOP59Fr1Hxv3Hduf5/a1lzsJgv1qTz0OALt1JOuDiJ5EUQ/mJFWiE2p4cWYQY6xTVebZEaVeUw90E44J0YS9+HYPhroGrc3oN9Jft4dcOr7Cnx7k7cNaIrL/d7mbYh59bT4zabKZsxk9Kvv8ZdVgaAOjqasHvvJfiWm5H9zp4MuZ0esvaVcmir98PcaTNQgncIS6NTkZgSRquu4bToFNbkelfORURiAMPvTaH3dS3ZvDCTg5sLSFufR8aOIvqOTCLl8rhz7qUIf/BBrOs3YN2yhZxn/kbLmTOQtGdPiAK1gYxrP44pu6bwReoXXJFwxamJoX84tL0a0hbAzpne/69n0CYqgH+OTGHynF28vXQ/vVuG0LNFEyj6KDRbInkRhL9YsNO7yuiCDBkVpsGs26H0MKj13oq53cY16imtTisf7/iY7/Z9h0fxEKAJ4KmeT3FL21tOHSKoA1dZGWXTp1P63Qw8Fd5NbTQJCYTdfx9Bo0Yhn+UD0+3ykL2vlMNbC0nfWXzS6iCVzkO7PnEkd4skrm1IzbLli01ItD/D702hyxXxrP5+P8XZZv6YdYCDWwq46q6OBEXUvxdMUqmIffst0keNxrZ7N0X/+4jIZybV6bnjO47nu33fsadkD+tz1zMgbsCpB3W7vTp5mQ1X/fOsq+DG9k5g/eESft2ZyxPf72DhEwMJNlyYWjjCxeeCvBN8/PHHtGzZEr1eT9++fdm0adMZj//xxx9p3749er2ezp07s+g8az0IQl1V2JysOuAtfd7oQ0Zpi+DLq7yJS1AC3LOk0ROXVdmruHH+jXy791s8ioerW17N/FHzua3dbfVOXFxFRRS8/TaHrhpK8Sef4qmoQJucTOxbb5K8eBEht9122sRFURRyD5bx+/R9fPXcWhZ+nEran/k4qlz4B2npcmU8I5/uSvQVFgbe1prElLCLNnE5UXRSELdO7s3lY9ui0anIO2Ri1mub2LMm55xK7WtiYoj5178AKPnySyx//lmn54XqQ2sK1X2e+nnt524zHAzhYCmEwyvO2qYkSfzf6E60CDOQU17Fcz+liu0DhHPW6O8Gs2fPZtKkSbzyyits27aNrl27MmLECAoLa99EbP369YwbN457772X7du3M2rUKEaNGsXu6iJWgtCYlu8pwOHykBzhT/vo81/9UStFgbUfeHtcHGbv/JYHVkFs98Y5H94JuU+vfJrHf3+cfEs+ccY4Ph36KW8Pfrvey5+dubnk//s1Dg0dRunUaShWK7oOHYj78EOSfv2FoJEjkdS1/xVeUVzFpgUZfPePDcx9dzv71uVht7owBGrpPCSe0c/04K7XBzDotrZEJwXWVsD1oifLEp2HxDP2H32IbROMy+5m1Yz9LJ2yG4fNdfYG/iJwxHCCb70VFIXc557HXV5ep+fdlXIXWlnL9sLtbCnYcuoBKo137gvAjhl1ajNAr+Hj23ugVcks21vAN+sz6/ZLCMJfNPqw0Xvvvcf999/PxIkTAfjss89YuHAh06ZN44UXXjjl+A8//JCrr76aZ599FoB///vfLF++nI8++ojPPvusscMVLnHHCtPd0DW2cYaMTik8d1914bnGmb/RkBNyHUeOUDxlCqZ588Hl/RD169qVsIcfwjj49KuSHDYXh7cVkrYhn9yD5TWPa3QqWveMpG3faGLbBDfYChSnw05VhQm7xYLdYsFmMWO3WnDYqvC4XLhdLjxuN26XC8XjQVapUGk0qNRqVGo1ap0OvTEAP2OA9zYgEENgEJJ8YXt+AsP9GPV0d3asyObPeYc5vK2I0lwL1zzUmZDo+u2mHTX5BaxbtuDIyCDvlX8S98H7Z/3/HWmIZHSb0czeP5tpu6fRO7r3qQd1ux3+/AT2LwZraZ0mmHeKC2Lyte159de9/N+iNHq1DKVT3IXfEV1o3ho1eXE4HGzdupXJkyfXPCbLMkOHDmXDhg21PmfDhg1MmnTyuOyIESOYN29ercfb7XbsdnvN9xXVY+5Op/OcK3SezrH2GrpdoXHV9bqVW52sOVgMwNUdIxv+OluKUP10N/LRjSiSCs/w/8PT617wAJ6G/z+VVprGa5teY2+pd7+gLuFd+Hufv9MmuA0odf9/bD94kLIvp2JessS7Kgrw69ObkAcewK9PHyRJwuU6uUdAURQKMyvZty6f9O1FuBzVdVgkiGsbTNu+UbTsElZT0dbtduH+y9ZCp7tuTrud8vxcyvJyMRXkYS4tprK0BHNJMebSEmzm+u+sfDaySk1AWDgB4REEhkcQGBlNWFwCYQktCIqMatTEptOQGCJa+LN86j7K8q389OYWht7Tgfj2IXVvRKMh8vX/4+j4O6lcupTSOXMIHFlLBd2/uKPdHfyw/wfW5qxlf/F+koKSTj4grD3qqM5IBbtw7/wBT6976/R6u6N3HOsOFvFbWhGPztjG3If7EqBv/hOwm7Om8PlWn3M3avJSXFyM2+0mKirqpMejoqJIq66w+Vf5+fm1Hp+fn1/r8a+//jqvvvrqKY8vW7YMg6HhS3ADLF++vFHaFRrX2a7bhgIJl0dFrEFh/+bV7G/AcwdWZdE3/QM0jmKcKgObWz5GUWEMNMJ8LrtiZ4VtBRvsG1BQ0KNnuN9wejl7cXD9QQ5ysE7t6I4eJez33zHu2VvzmLl9O0qvuBJbyxZQUgKLF5/0HI8LrLkaLFkanJXHq7Oq/T0Y4pwYYp1IfpUcLMrm4FmmSSgeD46KcuZ88Qm20mIcpjKcFeW4rJYzPxFAllFpdcgaLbJWh0qrRVJrkGS5+kvlTTgkCcXjQfG4UTwe8Li9vTN2Ox6HrfrWjsftwlSYj6nw1PchSaVGGxyKX0QU+ogo9BHRqPXnvn3C6QT1lHBt1+Mog0Wf7CK4ox1jYv0+aEKvuorwpUvJ+9e/+bOiAlcdqhp30HRgr3Mvry9/ndGG0af8PEndmc7somLN5/xRGFPz+Nleb1caYatWxZFSK3d/uoJ72nouyWHCpsaXn29Wq7XOxzb71UaTJ08+qaemoqKChIQEhg8fTmBgwy5zdTqdLF++nGHDhqFpoF1uhcZX1+v2w9dbgRLG9m/DtYOTTntcfUk5W1B9/yiSoxIlpBXcNpPe4W0arP0TrT66mo+2fES+3fshOzxxOM/0fIYIv7rPa6nasoXSKV9StX699wFJwn/oUELvvw9dhw61Pqc428zedXkc3lJUszuzSiOT1D2cDgNiiGoVcNZhCnNpCbn795J7YB+FGYcpzsrE5ah9E0W90UhwTBzBUTEERkRiDA2r/grHGBqGztBwdV88bjfmshIqi4uoKC6isriI8vxcSrKzKM3Nxu10Yi8pxF5SCGm7AAiOjqVVj9607n0Z0cltG6xnxn29hz++P8jBzYWU79ETH5HEZaOT6jzkpowYQU5hIbbt2+m4bDlx06aedn7SMbFFsdyz/B52uXbx5pVvEqr/S8Jj6Y3y3x8IsaZzbe8knMHJdX6fbNvTxLgvN5FaKpMf3J57B7Ss0+8hNLym8Pl2bOSkLho1eQkPD0elUlFQUHDS4wUFBURHR9f6nOjo6Hodr9Pp0OlO3RtEo9E02gVozLaFxnOm61ZstrMhvQSAG7vHN9z1zdoIM28FRyUk9kMaOxNNIxSey7fk88amN1iR5e3OiDPG8fe+f2dQ/KA6PV9RFCxr11H8+WdUbdnqfVClIuj66wh74AF0yacWFXM63BzaUsDuP3IpzDz+phMcZaDT5XG0uyz6tLVYFEWhvCCPo3t3k5O2h6NpezAV1NKroVYTndSa6KQ2RLRoRWhsPCGxcRgCL+AcCY0GXUwcYTFxp/zI43ZTlp9LQfohcvfvJSdtL8VHsyjPz2X7ovlsXzQfY0gorfv0J+XyK4lKbnNeSZVGA8PuSSE01sjG+ensXpVLZbGdEfd3qtumkhoNcW+/RcaNo7Bt307FN98Q/tBDZ3xKr5hedA7vzK7iXcw5PIeHuz188gHBsdBmBOxfiGb3bLjilepTnf19slercF6+IYV/zNvN28sO0j0xlL5J9d8uQmg4vvx8q895GzV50Wq19OzZkxUrVjBq1CgAPB4PK1as4LHHHqv1Of369WPFihU89dRTNY8tX76cfv1q371UEBrC4t35eBToEh9Ei7D6TYY8rSMbYMYtx1cU3T4btA3UdrVjE3L/u+2/WF1W1JKaCSkTeKjrQ3WakFuzw/Mnn2CrXtEnaTQE3XQTYffdizYh4ZTnlOSa2bMml/3VS5sBZJVEcvcIUgbFEds2uNYPaLvVQtbunRxJ3U7mzm2YCk/+I0WSZCJatCKuQ0di2rQnLL4F67dt57rrr2+yfyzIKpV37ktcAh0HXQGAzWwma89ODm5cT/q2TZjLStmxdAE7li4gLD6RTkOG0mHQFfgH12POygkkSaLXNS0JjjSw4uu9HNldwi8f7uD6x7qgM5z930kbH0/UP14i74XJFH30Mf4DBuDXufMZzzeh4wSe/eNZZu2fxT2d70Gn+ssfjN1uh/0LIfUHGPz3ev0+4/smsu1IGXO35/DY99tZ+PhAIgPF/kfCmTX6sNGkSZO466676NWrF3369OGDDz7AYrHUrD6aMGECcXFxvP766wA8+eSTDB48mHfffZfrrruOWbNmsWXLFr744ovGDlW4hJ1YmK5BZK6DGbeC0wKtBsO4WaBt2DlYe0v28q8N/6qpkNsloguv9HulThVyFY+HyhUrKP7kU+z79gHVOzzfdhuh90xE85d5Z26nh8PbC9n9Rw55h0w1jweG60kZFEf7fjGnlLNXPB4K0g+RuXMbmanbyD2Q5p1XUk1WqYlp0474DinEtU8htm0HdCfMU3M6nUg7dtb/H8bH9EYjbfsOoG3fAbicTrJ27SBt3WoOblxPydEsVn83jTXff0O7foPoed0oopJan9N5WveMxBiiY8FHO8lPNzHv/e3c8Hi3Om0rEHTjjZhXr6Zy8RJyn32OVnN+Rj7DHMGhLYYS4x9DniWPhekLuanNTScf0GY4GMLAXICUvrJev4ckSfxndCf25lawv6CSZ37cybf39Gk22z0IvtHoycuYMWMoKiri5ZdfJj8/n27durFkyZKaSblZWVnIJ4wH9+/fn5kzZ/LSSy/x4osv0qZNG+bNm0enTp0aO1ThElVQYWNTZikA1zVEYbrMtdWJi9W7G/TYmaBpuAmcJruJ/23/Hz/s/wEFpV4VchWPh8ply7xJy4EDwLEdnu8gdOLdqP8ygbO8wMqetbmkbcjDZvZODpVkiVZdwkkZFEtCh1CkE+ZbuBwOsnbv5NDmDRzeugmrqfyk9kJi4mjZtQctu/YgoWNnNPqL+y9stUZDUo/eJPXoje0eM/vXr2H3quXkHzrAvrWr2Ld2FXHtU+g98maSevSu9wd2dFIQoyZ155cPd1CcbWbuu9sY+WQ3AkLP/O8qSRIxr7xC1bbtODIzKXjrLWL++c/T/x6ymjs63ME7W97h2z3fMrr16JNjVWuh822w8VPk1Fmgv7lev4dBq+aT8T249sM1rDlYzM/bcrilZ3y92hAuLZJykZU4rKioICgoCJPJ1CgTdhctWsS1117bZLuxhVOd7bp9tS6DV3/dS4/EYOY8UksZ9PrI3QFfX++d49J6KIyZAZqG+YD2KB5+OfwL7299n1KbN9m6puU1PNv72bMWmlPcbioWL6H4s09xHDoMgGw0EjrhTkLuvBN1yPEhDLfbQ+bOYnb/kcPRtLKax40hOjoOjKVD/1iMIceHDaoqK0jftpnDWzaSuXMbTrut5mdaPz8SO3WrTli6ExRZ+9y12vz1unkcbjxmJ54qF4rdjcfhRrG7URxuPHa3t/ifxzsUduw+gKSWQS0hqeWaL1mvQjZokPzUyNVf0gXc6bgg/RBbF85j/4Y1eKrXiMe0bsfAcRNI7NS13u2VF1iZ/+F2zKV2jKE6bnyyO8FRZ+/ps2zYQNbEewCI//QTAq644rTHVjoqGfbTMCxOC58O/ZSBcQNPPiAvFT4fhKLSsrjjBwwbeVu93yc/W32YNxanEeSnYfmky4kMuLiT26akKXy+1efzu9mvNhKE87UgNQ9ogO0ASg7Ddzd7E5eWgxo0cdlfup//bPwP2wu3A5AUlMSLfV+kb0zfMz5PcbmoWLiQ4k8/w5GZCYAcGEjohAmE3jkeVdDxia8VJVXsXZvLvnV5WCuqV/lI0CIljJTL42iREoqs8vbsmArzObR5I4e3/MnRtD0nDQcZw8Jp3asvyb0uI6FjJ1TqM78RKoqCx+LEXWbHVWbDXWbDVWbHVW6j3dFAitO247E4URyeM7ZzvmR/Naognfcr2HurDtWjiTSgDvfzJkENJCqpNdc+/jcG3XE32xf/yvYlC8g7tJ8f//13Ejt1YeDYu4hp067O7QVHGbjpbz355cMdlBdYa3pgwuKMZ3yef79+hN59N6Vff03e31/C75f5qMPDaz02QBvATW1uYvre6Xy759tTk5eYLlBd8yWu7E/gtjrHf8x9A1uxIDWX3TkVvDJ/D5+O71nvNoRLg0hehEtaTnkVW4+UIUlw3fnMd6nIg+mjwFoM0V2qh4rOP3GpdFTy8Y6P+T7tezyKBz+1Hw91fYg7O9yJ5gxVeRWnE9Mvv1L8+ec4s7IAUAUFETrxbkLuuANVgHfrA49HIWt3CbvX5HBkdwlU98P6BWrp2D+GjgNjCQz38xadyzjMoc0bOLRlI8VZmSedLyKxJcm9L6N1r8uIbJVc6/CH4nTjLKrCVWjFWWjFVVSFs9CKu9SG4qw9MTGixs3xIpSoZWSDGlmnQtKqam4lrYykkkECJMnbi1IdguLyVH8p3lunB8XmwlPlwmN1oTi8PR8eiwuPxYUzt5Y6MhKow/xQRxrQJgagTQhAGx+AXJcVPmcQEBrO5XdMpOd1o9g49wd2Ll9M1u5UZr70DB0GDmHQ7XcTEFZ7MnFqW3pGP9ODXz7cQUmOmbnvbWPkE92IbHHmv2Ajnn4Ky/r12A8cIO+lfxD/6SenHb66vf3tfLf3OzbkbSDdlH5q0bpu42DpLhJL19Yp5r9Sq2TeurkrIz9ay+Ld+Szelcc1nRtoHppwURHJi3BJW1i9HUCflqFEnesKh6oy+O4mKM+C0CQY/zPoz2/IUlEUFqQv4N0t71Ji8y7hHt5iOM/2fpZo/9MPvSgOB+Xz5lHy+Rc4c3IAUIWEEHrPRELG3Y7K6F3tZCm3s3ddLnvX5mIuO54cxLcPIWVQHK26hYPiJnvPLjbN38jhrRsxlxTXHCfJMvHtU0judRmte/c9aThIURRcJVU48yw4cs04cy3eJKXMVpMcnUICVaAWVYgedYgeVYgOjGq270+l9+WXoQv2QzZqvIlKA0/kVFwePFUu3JUO3Ca796vce99V4k2wFJsbV3EVruIqbHtLamLWRPujTQxAlxyMLjkY1WmWhp+Nf3AIV058kJ7XjWLDTzPZ88fv7Fu7ioObN9DnxlvodcNNaLSnloT4K0OgllGTurPgo50UZFQw7/3tXP9oV2LbBJ/2ObJOR+zbb5N5662YV62ifPZsQsaOrfXY+IB4BicMZlX2KmalzeLFvi+efEDn21CWv0yINR1n0X6Irf9cxY6xgTw0OJmPVh7iH/P30D85nKA6rKISLi0ieREuaTVDRl3PccjIaYOZY6FwLxij4c55YIw8r5gOlh3kPxv/w9YCb72VloEtmdxnMv3j+p/2OR6HA9PPP1P8xRRced7fSRUeTtg99xAydgyywYDiUcjaW8KeNblk7CxG8XgzCb2/hvb9Y0gZGItfgELG9i0s/mgjGdu34Kg6XvFSo9PTsmsPknv1JalHb/wCAlHcHpyFVVi2FuDMNePIteDMM6PY3LXGKRvUqCMM3qGYSAOaSD/UYX6ognWnDMs4nU5MRU60iQGoG3EMXlLLqAK0qAK0EHvqMIuiKHgqHTgLrThzLTiyK3FkVeA2OXDmWXDmWbBszPcmM3FG9K2D0bUJQdcyCElVv0QrKDKKqx95mu5X38DvX39B7v69rP9hBrt+X8bld0ykXb9BZ03e9P4aRj7ZjUWfpJJzoJxf/7uDax7uTGLH09dP0bdrS+Qzkyh4/Q0K3ngTQ5++6JJa1Xrs7e1vZ1X2KuYfms8T3Z/AqD3h38wYgZI8FOngEuRdsyD2tXr9/sc8dmVrFu/O43CRhdcW7uXtW+s/D0i4uInkRbhkHSmxkHrUhCzBNZ3qPpG0hqLAL49B9p+gD4I750JIi3OOx+K08MmOT5ixbwZuxY1epefBrg8yoeMEtKral7+6Kyspnz2b0m+n46reqV0dEUHY/fcRfOutyH5+VFU62Lf0CHvW5FBRfHwybUzrIFIGxRHZQuLIzi389uU3ZO/Zhcd9fJ8iQ1AwyT370Lp3PxJSuiCZPdizKrGtKKQi+zDOfAu4a+lOUUloov3RxPijjTWiifYmK7K/ptktgZUkCVWgDlWgDn3r4xObXSY7jqxKHBkmbIfLcRVYcR414zxqpnLVUWR/NX4p4fh1CkeXHOQd1qqjqKTWjH31Tfav/4M/ZnxNZXERCz98ix1LF3DFXQ+cdXm1Vq/m+se6svjz3WTtKWHhJ6mMuK8TSd1OP7E75M47Ma9ejWX9BnKffZaWs75HqiVpvCzmMloFtSLDlMH8w/O5o8MdJ/3c02Uc8sElyKmzYeg/QVX/jxm9RsVbt3Thls828OPWo4zsFsugNvXb/Vy4uInkRbhkHet16Z8cTrjx7F3yp/jjHdj1I8hquG06RHU8pzgURWFJ5hLe2fwOhVXeBOSqxKt4rvdzxBpr7xFy5udT+u10ymfPxmPxztFQR0d7k5ZbbgGNlpy0MvatP8zhHUV4XN4EQ+unpm3fKGJbuyg+ksrmedMpSD90UtuhsfEk976M5G59CNPH4sw2Y99dQdGi7XjMp+6lI+lUaGKrk5RYI5oYfzSRhtNOcHW5XNhsNux2+0m3NpsNh8OBy+XC7XbjcDjIyclh6dKleDwe3NWrciRJqkmAjt3KslxTGfTYl1arRaPRoNfrMRgM+Pn5YTAY0Ol0DZJAqYN0qDvrMHT2zklxV9ixHSrHfrAc2/5SPBYXlk35WDblI/mp8esYhqF7JLqkoDqtbJIkifYDBpPcqy+bf5nD5l9+JidtL9+9+DSdhgxj4Ng7z1joTq1Vce3DnVk+bQ+HtxWx5IvdXHVXB9r1rT1Rl2SZmNdfJ33kjdj27KHo44+JPKFY6IlxjWs/jv/b+H/MSpvFuPbjTlqir7QZhl0dgM5SCIeWQ7trzvq71qZni1Du6teSr9dn8sLPu1j29OX468RHluAl/icIl6xjycsNXc9hQuCeubCyukv82ncgafA5xXC4/DD/t/H/2JS/CYCEgAQm95l82rL+tv0HKJ02DdPChVC9k7O2dTJhE+8h8IbrMZU62bjoKPs35mMpPz6XJSLBQHSSGad1HwfXfcOWuSdUt5UkYtu0p03nfiRGdkRbqcGeVYlzRinF7pKTA1BJaGONaFsEeieuxhlRhehB8m6qZjKZMJmyMeeYsVgsmM2n3jpOs1/R6RRW9yg1FFmWMRqNhISEEBwcfNJteHg4/v7nVgVZFajDv0cU/j2iUNwK9oxyqnYVU7WnBI/ZiXVrAdatBaiCtPh1i8S/eySa6LOfS6PT0//W2+l0xTDWzPyatHWr2b1yGQf+XMNlN42l+zUjTzusplLLDL83hZXaNNL+zOe3r/ficrhJGXTqVgcAmqgoYl59lZynnqLkiykYBw3C0PPUFT8jk0fy4bYPyazIZEPuBgbEnVBiQKUlO6Q/rYuWwrbp55y8ADw7oh3L9xaQU17F20v388+RKefclnBxEcmLcEk6VGhmX14FalliREo9h4xytsLc6v1gLnsEek2s9/mtTiufpX7G9D3TcSkudCod93W+j4mdJp5Sel1RFKwbN1EybSqWP9bUPG7o3ZvQe+9B3bMfh7YWkfZe6kl7DGl0dsKii/G4Msg7sIvs1Kqan6k1Ojp0GECL2K4ES+F48uy4t9lxUMSJqYVs1KBtEYgm3ogtHKx+LorNFZhM2ZgyTZTvKK9OWEy4XC7qQ6vVotfr0ev16HQ69Ho9Wq0WtVqNSqVClmWysrJo06YNWq0WlUpV8+/x11uPx4PL5cLpdOJwOHA6nTX3bTYbVqsVq9WKy+XC4/FQUVFBRUUFR44cOSUuf39/IiIiiIyMJDIykqioKKKjo+tV+0JSSehbh6BvHULwja2xZ5io2lmENbUIt8mBefVRzKuPoon2x9A9Er9uEaiDztz7FxgewXVPPEu3Edez8usvKEg/yB8zviJ1xRKuuOsBknr0rvV5skrmygkd0OhU7Fqdw6oZ+7FbXXQfnlhrD1Tg1SMwjxqFad48cp97nlbz56EynjwXyF/jz6jWo5ixbwYz02aenLwAWWGDvcnLgSVQWQABJ1dsrit/nZrXb+rMhGmb+GZDJjd0jaFni4bfG0xofkTyIlySFlSvMhrUJpxgw9nLqdcw5cD3t4PL5i2JPrx+ExIVRWH5keW8tfktCqze3o8h8UN4rs9zJAScvI+Q4nJRuWwZJVOnYdvj3QIAWSZg2DBC7p5IkSqOdX/mkfHTejwupbo4WxEBwXm4HOmU52VQWb3XoU420Cq8K0lx3QjRRKMySVCpwH5w4k14PJIHW6SEJRwsBicVqirKLCZKS0spyyjD4zl7nRWj0UhQUBBGoxGj0Yi/v/8p948N3chn2Wn5WNGsIUOGNFjRLIfDQVVVFRUVFZSVlVFeXl5zW1paislkwmKxYLFYyKyuiwPe3prIyEji4uKIjY0lNjaWyMjImoTqTCRZQp8cjD45mOAbkrHtL8WyvRBbWinOfAumxRmYlmSgSwrCv3c0finhSJrT/9vEtevAHf95lz1//M7a77+hPD+PuW++SlKP3gy5635Cok8dapRkiUFj26LRq9m29Agb5h7GVFzF5WPboqplLk7US3/HunkzzpwcCl77D7FvvH7KMWPbjWXGvhmsObqG7IpsEgKP//+t9IvHE9sTOXcr7PweBj511n+n07m8bQS39Iznp61Hee6nVBY+MQi95vyWqAvNn0hehEuOoijnVpjOYYHvx4I5HyI7ws1TQa77m+jBsoO8vfltNuRtALw7P7/Q5wWGJAw56TiP1Ur5nLmUfv01zqNHAZD0eoJvGo1yzTgOZ8KymflUVZagKE48ziw0umzcjnTslnIcJokgbTjJAd2ID29PmC4Wjb36w78CXLgpliyY/GyYAp2UqyyUOSsxWSrwmDxgolYqlYrg4GCCgoJO+AokMFCDv78aP4MM2HC7zLjdFlwuC253Lm63BY/HgcvtpKzMRUmpE8XjxKM4UDxOFMUNSN76LMggyUhIeBQFne4oh9N3otEYUckGVCo/VCoDKrURrSYEjSYEjSYUjSYYWa7DpoRaLVqtlqCgIBJq2XTSbrdTXFxMYWEhRUVFFBYWkpeXh8ViIT8/n/z8fLZu9a4C02g0xMfHk5iYSGJiIvHx8bXucH8iSSPj18k7iddjdWLdVYx1eyGOzArsh03YD5uQDYcx9IjCv080msjaq+RKskynIUNp06c/f86ZxbZF80nftpkjqdvpdcNN9B112ylbL0iSRL/RyfgFaFj38yH2rsmloqiKqx/odMqGjiqjkdi33+LI+DsxzZuHcchgAq+++qRjWga1ZEDcANblrGPW/lk82/vZk37u6Tbem7xsnw4DnoTzmGf00nUdWLW/iMNFFj5eeYhnhte9gJ9wcRLbA9RDUyifLNTfX69bWn4FV3+wBq1KZss/hhKor8O19LjhhwmQtgAM4XD/73VeWVRcVczHOz5mzsE5eBQPWlnLPZ3v4d5O96JXH/+AcZWUUDZjBmUzZuI2eTMIVXAwfmMmUJR8BQdSKyg5akbxVOB2ZoAnA7cjGzUyYbo4wnVxRBjiCdPFokKNCzflkpUyyUy5bMGkt1EmWzA5zKeNVa2WiYzUERqqIjBIwegPej83Wq0DWbLicpXjcJbhdJbjdJbicpmqkw/fU6sD0GhC0GrD0emi0eti0Omi0Omi0em932u1EXVKck6kKAomk4nc3FxycnLIzc0lNzcXu91+0nGSJBETE0NiYiItWrQgMTGxzvNnXKU2rNsKsGwuwG063q62ZSD+faIxdA5HOkNvQ0lONiu//oIjqd4KzMawcIbceS9tLxtY69BQRmoxy6buwWV3ExJt4LpHuxAUcWqiVPjhh5R8+hlyUBBJ8+ehiT55iPWPo3/w6IpHCdAE8Nutv2HQGI6/3q4ahObDTt7NSScugRb96vRvcTpLdufx0HfbUMsSvzw2kI6xDfv+fqlrCp9vYnsAQTiD+Tu8Q0aD20XULXFRFFj8vDdxUWlh7Iw6JS42l43pe6fz5a4vsbq89VKGJg7l6Z5PkxiYWHOc48gRSr76CtPceSjVH4iqhJZUXX8f2XISR/aW4tmzBbczHY8zA6PsIVwXR7ihLWG6K/DXhlAuWSmXLByRzeyQ9lAuW6iQqk6IxoNWtqHVVhFqtGI0uggOlvA3utDpqlCpzHg8ZbhcpZxYSa7K5v06G0lSo1L5o1b5o1L7o1IZT7hvQJZ1yLIGWdIiyRpkSVN9q0aS1Cgo3vMqnuq5LB5cbhcHDqTROjkRBRtudxVutxW324rLVVmdQJXhdJYBCi5XJS5XJVVVWWeIVEavj8HPL7H6qwV+fokYqr9XqwNq+d0kgoODCQ4OpmNH74oyj8dDcXExR44cISsriyNHjlBRUVGT2Pz5558AREVFkZSURKtWrWjRosVpe2bUoXoCh7Yg4MpEbAfKsGzKx5ZWgiOzAkdmBeW/pOPfMxL/frFowk/d5DMsLoGbX/wXh7b8yapvvqSiqIAFH7xJQspirrz7AcITW550fKsu4dz8bA8WfpxKWb6Vn97YyjUPdT6lmF3EI49gWbMW2+7d5E6eTOLUqUgnDPcNjBtIQkAC2ZXZLMxYyK1tbz3+ZF0ApIyGHd95e1/OM3m5ulMM13SKZvHufJ7/OZW5j/RHXY/l58LFRfS81ENTyEyF+jvxuqlUaga9tZKc8io+uaMH19al9PiqN2HV/wES3DIVOp15x1yP4mFRxiI+3PYh+RbvpJOUsBSe7f0sPaOOr9yo2rmTki+nUvnbb6AoKEhYuw+npMt1HMlXsFUeRnIdIVi2E64LJ1gXg8YvBLPKRZlsplyyUCZZqJQsaPRV6HQW9DoLOp0Vnc7i/d6vCr3ehixbkaTaX+oeJBzosKHHhh675I9LHY1bHYlTHYZTDsIjG/HIRtyyPx7ZgFvS45b8cEs6XGhRqpfKHvsbv2Yp8wlfGllCJ8voZAmtdML96scNKhmjSiZArSJApUKveFj723JuvOZqtNrTz0tSFDcuVwUORxlOZyl2RyF2ewF2Wx52ewE2ez52ez52ewGKcupS7xNpNKEYDEn4+yfjb0jG4J+Mv6E1en0s0ll27C4vL69JZLKysigqKjrp57IsExcXR1JSEklJScTFxaFWn/7vR7fJjmVLAZbN+bhPWDmmaxuCsV8M+nahtS65djrsbJ7/M5vn/4TL6UCSZXpceyP9b70drf7kxMdisrPok1QKj1QiqySuuLM97S87+TVhz8gg46abUaqqiHzhecLuvvukn3+z5xve2fIObUPa8tMNP+FyuY6/T+ZthWkjQGOAZ/afd+XpwkobQ99dTYXNxQvXtOehwcnn1Z5wXFP4fKvP57dIXuqhKVxcof5OvG7bsisY88WfBOjUbH5p6Nkn/m3+EhY+471/7TvQ5/4zHr6tYBtvb36b3SW7AYj2j+bJHk9ybatrkSUZxe3GvHo1JdOmUbVlKwpg9o+jpOcojmrDkaryCZKr0PvpkPWB2DUyFdpSrPpC3H4laI8lJnpLdYJiRaez4pQ0VGLEQgAW/LFgxIyx5r4FIxYpgCopBIsUhBV/qtBhUzRUKSoUmm7hOLUEASoVRrWKELWKMK2aUI2aMI2aUI3Ke/+ExyK1aoLUp24joCgeHI4SqqqOUFWVTVVVVvXXEaxVWTidJaeJAGRZX5PUGAzJGI1tCTB2QK9POG3NGLPZTEZGBunp6WRkZFBeXn7SzzUaDS1atKBVq1YkJSURHR1d+55QHgXbwTIsG/Kw7S+t6RhTheox9o3B0Cuq1m0JTIUFrPr2Sw5t9s6xMoaFc+VdD9C6T7+TzuN0uFnx9V4Ob/MmWz2vaUHfG5JOSozKZs0m/5//RNJoaDFzJn6dj5f9N9lNXPXjVdjddr65+hs6h3Y+/j6pVsNHvaHkINzwIfS8+7T/xnX145Zsnv0pFZ1aZtGTg0iOOPPmk0LdNIXPNzFsJAinMW+Hd7+fazpHnz1x2TMXFv7Ne3/w82dMXLIrsnl/2/ssP7IcAIPawH2d7+POjneiV+txlZVR+tNPlM+ajTMnhypdKHmtr8PUIhnJz4IUVIB/wAFchlJs+lJcflbcfmDXqTGrjFQQVP0Vi4nAE773ftmkU4cSaiiK9wPPrYCn+nuPgqQAHgU8LiRFQfIo6CUJP1nGT5bRV/eI6GUJjSyjlkAtS2iQvLeShFYto1XJaFQysiwhyyDLEpJK8n4vVd+qZFyAQ/Fg9yjYPR4cHqXmvt2jYHV7MLvdmN0eKl3eWwCXAmUuN2UuN9l1u8z4yRJROg3RWg3RuuqvmvvtiQ3uTGKUFvUJH9Aul5mqqiNYLIexWA9jtRzGYj2E1XoEj8eG2bwXs3nvSedRqYwYje0wGjsQYGyPMaAjRv+2qFR+GI1GOnfuTOfOnQEoLS09KZmxWq0cOnSIQ4e8RQKNRiOtW7emTZs2JCcno6+ecCvJEn7tQvFrF4qrpArzxjzv3JhSm3el0vIjGLpFYOwXi/aEXaSDIqO48W9/J337Zn6f9hmmwgJ+ee//aNW9F1fd81DNflQarYoR93Vi4y/pbF1yhK2Lj1BeUMVVd3dAo/W+RoLH3IZl3Voql/9GzlNP0WrOzzU7kgfpgri21bXMPTSXWWmz6Ny/8/F/IEmCHnfC8pe9NV8aIHm5pWc8v+zMZc3BYv72405+eqg/qjoU/RMuLqLnpR6aQmYq1N+x63bVsBH0e2s1lTYXM+/vS//kM+zWm74KvrsFPE7odQ9c916tqyVMdhNfpH7BzLSZuDwuZEnmpjY38Wi3Rwn3C6cqNZXSGTPI37GSsjZxmFoEYQqXMBmh0k+NWaunUh1IKaGUEUIZYZQTjNltRHGD5PSAS6m+9SC5FHB6kFwebzLiVpCqb2W3gsrjvT32mMftwe1qGi9xnVrGoFVh0Krx06owaFX4aVQnPRagVxOo1xDkp8FfK7FnTyq9+/ZC66dFUks4VBJmFMpcbkqcLkqdLu+tw/t9idOFyVW3CcQqCWJ1WhL1WhKqvxL9qm/1WqJ0GlSShMfjwmbLrklqLJaDmM37sVgOoSi1FdyTMRhaEhDQicDALgQGdCYgIAWV6niC6fF4KCwsrElmMjMzcTqPD2lJkkRiYiJt2rShTZs2REZGntRb4nG4qdpZhHl9Ls6847tgaxMDMPaPxa9T+EkVjp12Gxvn/sjmX37G43ah1mi57Oax9LphNCr18feytD/zWDk9DY9bIbJFANc+0gX/6voz7ooKMm6+BWd2NsYrriD+449q5r/sLdnLmAVjUMtqFt24iE0rNx1/nzQXwnsdwOOChzeccyXqE+WWVzHi/T+otLt4/ur2PDxEDB+dr6bw+SaGjUTyIpzg2HVTtejJY7N2EhOkZ93zVyKf7q+13O3w9fXgMEPHG+GWr05ZEm132/l+3/dM2TWFCoe3Tsrg2D7cmjSSotJyDuQcIVeCUp0/ZVIAJY4QTM4gzA5/cAIOD5LDg+R0e+87PeBUvEmJy4N09pIq50WrltHIEhq1t9dEq5JRq7w9KrX9FSvVMqzkVhRcbg9Ot4LL4711uj043R5cbgWXp3HeWjQqiVB/LWH+OsKMWsKNOsL8tYQZvd8HGjRIOhVOtUSVWqLE7SbP4aTA7iTf7iSv+stxlrc+jSSRqNeSZNCRZNCR7Fd9a9ARrdWgKC6s1nQqzfswm/dhrkyj0ryv1uEnSVLh79+WwIDOBAZ2JTCwC/7+bWpWPrlcLo4cOcLBgwc5dOgQxcXFJz0/MDCQ1q1b0759e1q1alXz/qMoCo6sSszrc6naXVyzz5Rs1ODfNwbjZTHeDSerleRks2Lqp2TvSQW8W0Fcde8jJHbqUnNM7sFyFn+2C5vFiTFEx3WPdiE83juR2bZ3L5ljx6E4HET+7RnC7ruv5nl3LLqD1KJUHunyCLFZsSe/T866wzvh/bJH4OpTa8acix+2ZPPcT6loVTK/Pj6QdtGnTrYW6q4pfL6J5EUkL8IJjl23haZYlu0t5MHBSUy+pkPtBxcf8k4wtBZDq8vhjp9A7f3LU1EUimwWfjg0n6WHN2J1hOJyR2J1hWJxGLHY/fA4JHC4vYmJw+PtJTnHV5gkQaBeU9MbEeh37FaDUaeu7rFQ4ac94b7m5J4N789V6DUqNLKMRuVNTi7E5oiKotQkNHaXB4vdRZXTjdXhxupwUeXw3q+q/t7qdFNpc1FR5cRU5aTc6iA7vxhJ50+lzYWpynlOCVGQn4aYID1RgXqiA/VEBemJCtShN6hxa1VUaSVK8JBtd5Jd5SDL5iDH7qh1v8ljDCqZJL+Tk5q2/nraGPSo3KWYK/dQUbGLispdVFTsxOEoOqUNWdYREJBCUFAPgoN6EhTUE63Wu/NzaWkphw4d4uDBg2RkZJxUvVir1dK6dWs6dOhAmzZtaoaX3JUOLJvyMW/Mw1NR3SOkkjB0jcA4MA5t9Y7ZiqKQtnYVq6ZPxWoqB6DDoCsYPP6emr2SygutLPw4lfICKxqdiuH3ptCyi7ensmz2D+S/8gqoVLT4+isMvb2VfX89/Csvrn2RKEMUj2ge4Ybrbjj+Prl/CXw/BvxC4Zm0mtfU+VAUhfu+2cKKtEI6xQUy95EBaMTqo3PWFD7fRPIikhfhBE6nk59+WcTL2zQ43QqLnxxEh5ha/m9U5FEybTQ7bAZ2h13GgfhhZFU4KKx0YbJI2GwqPA6QbG7vsEw9aCSFIIOGyGADUUYdYUYdof7amq9gP+9QSeCxL70af6369L1Dl4C/vt4URcHqcGOqclJqcVBstlNidlBi8d4W/eX7ErMDh7tuXVhatUxUoI64YD/iQwzEBvthDNCCXoVFJ1MiK2TYHKRX2ciynT6xkYBEvZZ2/nra+etp76+nrUFPgroch3kXFZWpVFR4v9zuU+vt+Pm19CYywT0JDuqJwZCEy+UmMzOTAwcOkJaWRmVlZc3xsizTqlUr2rdvT7t27QgMDERxe6jaU4J5bQ6OrOPH6pKCMA6MQ9/eu0rJZjazdta37PxtMSgKOn9/Bo69iy5DRyDLKmwWJ0un7OZoWhmSBANuaUOXK+MByH3+eSp++RV1RASt5s5BHR6Ow+1g2E/DKLWVMs4wjmdHPXv8fdLtgg86QWUe3Pq1dwl1AyissDHs/T8wVTl5emhbnhzapkHavRQ1hc83kbyI5EU4gdPp5MVpi/kxQ0VimIGJV7XmUKmFI+Vm8srNlFTasVg9OG0KOOv+cpBVHnQaN/4qFyGKmzCbizBzBX4uB8ERwXTs0pZeA1OIDPUX5czPwfm+3hRFoaLKRX6FjfwKGwUmW839fJP3q6DCRonl7BtFqmSJ6EA98SF+xIb4EWDUIhvU2HUyFVqJHNwcqLJT6qx9vo0MtPTT1SQ1Hfx1JKtKCHGkUlGxDZNpKxbLwVOep1YHExzUg6CgngSH9Mbon0JBQQn79u0jLS3tlOGlhIQEOnbsSMeOHQkKCsKeVYF5XS5Vu4q8k7UBVZgeY/9Y/HtFIevU5B3az29ffkJhxmEAopPbMPS+R4lKao3b7eGPWQfYu8ZbGyllUCyDxrZFstvIuO02HIcOY7jsMhKnfomkUvHhtg/5cteXJKmT+Om2n06+biv+BWveheSr4M45dbiCdTN/Rw5PztqBWpaY9+gAOsUFNVjbl5Km8PkmkheRvFwyFEWhzOqkoML7QXTUVMXhUiuZ5VbyTDaKK+1UmB04bPWoAiuDSudBp3Xip7FjVFURjI1op0ILq454m44QmwWshZQ7yjG5VRiDokge0JdOQ7oTHO1/QYZlLnYX6vVmd7kprLCTZ7KRW17F0TIrR8uqyCmv8t6WVZ21B0erkkkI9SMmxA9joA4Maqx6mSK1Qobipvw0+0IZVDId/fV0CjDQwU8hUckgyr6FqsotVFTsxOM5uUKgLPsRHNST4JA+hAT3xeGI48CBw6SlpXG0eiuJY+Lj40lJSaFDhw4Y8cOyIRfzpnyUKu8QlKRT4d87GmP/WORgDTuWLmLd7Ok4qqxIkkzX4dcyYMx4dAZ/dq7IZt3Ph0CBhA4hjLi/E+RlkXHrbShWK+GPPEzEE0+QZ87j6jlX41E8/HTdT7QLP6GMf2k6/Lc7IMFTuyD41O0ZzoWiKDwyYxuLd+fTPjqA+Y8NQKcWfyzUV1P4fBPJi0heLgoOl6cmKcmr/is5p7yKzPIqjpZXUVxpx2R24KnjPAhFArQykk5Cp3fgr6siUFtJsKqSECoJcZkJt9kItwQSYI0l1BNMoFsHNjNmWyEl9jzKnGZsUjB+UihxcbF0uLYfLfom1SwpFRpOU3m9eTwKRWZ7TVLj/Tr5vvMMw4hqWSI62I/QIB1aowann5pSDWSrPdh08imr2GSgtUFPJ6OONpoKEpSDRNnWoVSsxeksPflYWU9QUA9Cgvug1XYmK0vFvn0Hyco6ucpwXFwcKSkptG/dDm26HfPaXFzF1RWYJfBLCcM4MA5HoIvV06eyf/0fABiCghly5720HziEzNRilk3be9KWAvz5O7nPevc0SpjyBcZBg3h8xeOsOrqKMW3H8FK/l07+x/j6eshcA0NehCHPn8PVqF2J2c7w9/+gxOLg0SuSeXZE+wZr+1LRFF5vInkRyUuTZ7a7yDdVkW+yk2eqoqC6Oz/PZONoeRX5Jhsm65mroZ5I0cooOhWKTkbWgUFXRZCukjB9CZHaIiKkEiLcJoxmB4pVR5U1ELUlkiBnOKEeI6GKkWCPAY/dTJk9nxJ7LqX2PCrdCpI6DpUqilC3RKvkUFrf0JvInmJjuMbWXF5vbo9CbnkVR0qsZJZYOFJiIbPEypESC0dKrNhdp++10ahkwoJ16AO0OPzUFGsVKvUyikED2pMnn8ZoNbT3c9NKlU+8M5Vw6++EuA4gn7CdgyzrCArsjp+hG2WlEezf7+TIkZyT2omNjaVjx44k6+NQ7zRjP1h+PJ54IwED4iiScljxzeeU5Xp7cxI6duaqex/BowSz6JNUzGV29P4arnm4M9J3H1A+azaq4GBazZ3Dn85DPLLyEfzV/qy4bQX+mhP2d9o5G+Y+AMGJ8MROOMvO4vVxbO8jlSwx5+H+dE0IbrC2LwVN4fUmkheRvPiMx6NQanXUzCmomV9wwm2eqQqLvW7DOIoEil4FepU3OdGrkHUKAToLofpSonRFxOpyiZILCHaY8K+yobKoqKoKpMoaSFVVIJ6qIMI8gYQqRkKVAEI8/oQoRuzOSkrteZTY8yi151LmKMAjByOr45HV8RicOiKrcklsH0zy6AEYe3QVw0EX0MXwevN4FAoqbWQWW2uSmsxiC+nFZjJLrDjOkNj46dVoAzQ4/FRU6GUUfzWKwftF9URufxnaaC20IJMYxxbi3buJIxst3sRflrX4+3fGbmvB0aMGDh3y4HYf7yWMiYmhfWIbEsuC0ey1eisCAnKgFkOfKA6Wbmb9r7NwOezIKhW9rh9N56GjWT71gHdLAbXEkLGt0b/3FLa9e/Hr2pXoaV9yzZwbKPYU81LflxjTfszxX8pZBe+0A7sJ7pwHyVc06L/3499v59edubSJNPLr4wPFXLN6aAqvN5G8iOSlUThcHgorjw/j1JagFFbY67zCQ1FLNQmJoldB9X1JB0G6CiL0xURpCoiUConA+xXmLkVt9WCvCqhJUKzVt3i0BONPqNtISHVvSqjHiAEtdredMntuTaJSas/H7rEiqSJrkhW1FEFoRRYhlQdp1Smc2FHD8L+sL9IZ9p8RGs/F/no71mNzuMhMepE3oUkvspBeZCG/4vS7YUoSqP29SY3boEbxV+Px996ilVFJkKAqI8FzgARPGi3IpAUZBGBGkjTIchJlpRFkZekxmcLxeLz/tlGRUST7xRGXYyDI7F3KLGlk1O0D2J61nD07VgIQEB7BwHETObI7mPQd3gnD3QaEEPbfh1AqKwgaP54P21awqGoRrYNbM2fknJOT/gWTYEv1HmG3TGvQf9Myy/+3d9fxcZT5A8c/M7NucW2Tpu7u1ICWthR3KXC4HJzBwY8T7DgOPQEODjg43O2wUq5Qo+6eatImTeO2rjO/PyZNm3pLkk3a5/3qvNZmZ57N09397iPfJ8xZf59PlTfEzWM788dzf3pCvFNFW3i/ieBFBC/HTe/G0QOT/QOSvWNNSuuDVPtCHMv/Fg3AJOtByX7BiWZWwCKDRSbRVEe6obIxKNl/S9JqiUUc+HwO/D49SNEDlATCYSsg4TBYSVYdJIZtjd0+CZoNBRkVlfpYFZXeosbuH2+0DpCaBCuyoQP2YB0p1ZtIqNuItbuJ7pddS8LEScgNuTOE+DmZ329H4wtFKazyUVDlo+CA4MYfPkKrpUFCbWid0eyGJtdTjPXkajvoRGFjQJNGNdFQJuUVidTXpeN2pxOLGUlxJpEXSSO3PpFkzYGERCxDYtXOmRSUrQGgQ6++pOZNY8tSvTydciDv3V+jqBF2Tr+ch7vMxB/18/JZL3Na9mn7yrhnNbxyur5C+z1bwJbcrH+7H/LLuenNFQC8e/NIxnQ7QiZtoVFbeL+JtY2ERoFwrKG1JNQ4+LXCs9/1hvt9R/pA3J8E6n6tJPuCE7nxumSWSVbcpGqlpGnlpFFJamNwUkkyVRiIoakOQqFE3B4bPq+DQCCNXYGubA440TS9udeoGEk2usiO2kkMWBoDFTMNGUbRCCoBqoK7KXAXUhMqpT5ciYoKyA3BSjeMFj1YUVRIqt1KSs1ykmrepKJDkMRzz2P4la9hTGreD1FBOFF2s4F+HRIOmvaraRrl7hAFlV52NAQ2hVV6a83uWj9qVEN2R8B98Hgxr1Fmo70TG2xdUG1GNLuCyRolx7abzjk76ZSzk1xtBYleD/66FArr01kXS8OmpdIpmELninSGWSczqPeZrC+dT8GWNZRs2URO37FU7enHrmIr7rMeo8+cP5PzyRdc9chUXqv/hrc3vd00eMkaBJn9oWw9rPsIRt3erH+7ib0zmD4yl3eXFnHPR2uZ+etxJNoOvyq50D6J4KWdCkVjVHpClLtDVDQEIuUNQUnFfoGKOxg9+sEaSAYJ1awcEJzITVtOTDKSBMmSlzQqSdFKSNXKSaeiMUBJoRqDuve8JmKxVILBBNxuK7X13dgTGEwg4CIa3ZdlU5Zlki0JdJSdJBptJHhNJGsOHJqlSWr6iCFMXbSC0roCqgO7qQ2VEdm7vowko5iykCxDMRpykA3ZSJIJq7+M1LKNpNR8Q0L9dopSo+wekUPqzx7m7H4TxTgWod2QJInMBAuZCRZOO6BFIRiJUVTjp7DKx84qHzur9aBmZ7WPcncIKaIi1YWhDhQCjc8rJoEi82A023BUmwFsMknWejp03EMXawGd1FVUuf1U1NuJ1nck09OdvOSh9E8ex7balWzPX03UsALFMpKa4EBWjvoDA1Y+y9TX1vH2BbCgZAEFdQV0Seyy90XA4Ovg23th9dsw8rZDrhv2U/zhnN4s3lFNQZWPP3y+gX9ePVi8z08yInhpI6IxlVq/njm02huiuuGyxhduuB7Ws4r69PvqjmMmjqxIKBYDMbNMxCTrAYl5bzeO0nibhoXcJDRSZD9p1JCilZKiFjdpOUnRKjFq+wdFRjQtlVAoAZ+3A7vq8vD79e6eUMgGB6yLk2B1kWtzkRSzk+A1kRS24dJsKP6mMw+ipih1WhVl9QVUuHdRGyojpO770DVanBhcndHCaUhKJrIhC0kyomgRkmrySaleTHLNJqzBGnanwILe4Oyscf7Vz9Ox61nHXUeC0JZZjAo9Mpz0yDh4jR9fKMrOal9jYFNY5aegSm+9cfsjSCEVKRRGrtV/CHhQ2EwOm8lBk/VB8waLisPmJzGpnhRlO+lRL91TDQysORerJ8Au9zoqo+vwmcaxYvA99Nv0H36/OIOHx5fzbv67PDD6gX0FGnAZ/O+PUL5B70bqMKRZ/xY2k4F/XDmIi19cxDfrSxm1NIVrR3Vq1nMI8SWClxYQUzU8wQi1fn19lrpAhPqG6zX+CDUNAUhVQ0BS7Q1RF4gc03iS/UmyhKGhRSRs0ltN9nbdsH+AYpCa/LIxESNd8ZBKOcnqHpLV3aRSRapWSQpVJFONIda0G0mSrGhaGuFwGh5vJ+pqDXi9NgIBB+HwwQGKwWAg2Z5IosOBK2bF6Tfh9BhJ0uwYgwf8t5Mh6lCp02qodBdRUrGVugMCFVlRcKbl4DB3IOBNJhpNR5JdaJKEwQKOSBXJxfNIrtlIYn0BshalOBW+Hibh6SpxuqGWXypJWK/7ClK7Hd8fWhDaObvZQN/sBPpmH5x9tt4fobDaR2GVl8JKH/kVXgpqfJTXB/H6IkgqSP4Yqh/cWHFjpYhMAL5rOIaclIA1IwWnEiMhHMTmLmbFsKvpX7yaIWsX8F/+x12D7iLJqq+dhDUJep8HGz7RW1+aOXgBGNAxkfum9uQvMzbzp6820ifLxdBOSc1+HiE+RPByjDzBCEt2VLK8UqJy8S48IbUxMKnzRxou9RYRd/D4A5G9jGYFxaygmWSiRpmwQdJzmJhkNJPebbP3NsamCa5kNJKVMMmyj2TqSNQqccVKSFBLSdJqSKKWJGpw4EE6oDdJlh3IUiqxWAdCoZ7U+MzU1ynU1SkEg/aGLp6mAYokSSS4EuiYkkCi4sAVs+H0m3DUyNiCRiTvIVYndhiIOVU8ai0V9bvYtXs9NZ49aDSdoeRITiMppS+SkonfnUTQn0QobCDU0ENkUqIk120kqXwtKTWbsITqiEmQnyPx1VCJzT2TcUdzecH/I71DHjxkYbhxBqTknVjFCMJJKsFmZJAtkUGHyIsSiamU1QfZVuVlRbmbzVUedlbXUVkfwudTiQU1JBXUkIQvZMIHlGEFQxIY4Ieeo4BRkA9D/7yQJIeFdKeF7AQLHaXLSYnGSFpRSWJWIUkuJ4k2I0l2E0k2I1aj8pO7em4Z14W1xfV8s76Un7+7kk/vOI2OSbafdMxTjaZpBCIx3IEonqD+/eYORjHIEuO6p8WtXGK20THaUuZhyj/mH9dzjEZZD0aMejCiGiTCikRwv4AEk9I0GDnEQnwyGolKjCQ5SJLkIYkaEtVynLFiPTBBD0wSqEPh0NOUDYYkZDkNTU0mHHbg91uprzdQXQ0ej4lY7PAD2mw2GymJySSaXSTKdlxhC06vCVu1hBw+zH8fg4wh3ULEFsWj1lLpLqJo93oqSgsP3tVkJim7MxZHDqqajqcukXCg6aqzsqSRGCnDVbKGpJrNJLgLkDUVnwVWd5FY2U1ifVcDQ7tP4JLul7Du07ncVvssJimG2nEE3yVex6QLrjzlZq20Z21h9oNwZL5IjKWlO5lfsI0NZTWU+aA+YsUXthIJGZBCMX0h0+jxf80YFZmk/YKZJJsJl8WIw2LAaTHgMO+91Fded1gMOM36pcO8b2FTbyjKxS8uZGu5l86pdj66bTRpzp++qnVbtXc190Akhi8UxR+O4g3F8IeieENR/OFYw+W++33hKJ5AhMLde3AkpuAN6Su8exoCldghspj3yHDwv99MaNayi9lGLSBkgIRkCxEtitFu0VtFFAgqoBpltIaN/S6DR1gRWEEjxaCSpIRJkrwkSB4StBocaiXOWCn22G5cWg0J1OHEg3yEZFYGgwuDIQ1J6oqqJhAO2/H7zXg9RurqJKqqVKLRIydrcjqdJCUmkWhzkWBw4NSsOAJGHPUKSlUUreZQ59dAljCkWpGSDISMAepClZTVFlBcvJG6bXsOea6E9CycqXnIxmyC/mTc1Q489RKe+n37yLJGklyPq3QdCXvWkFBfgKLq43xKM83M662xqpvC1g7QMaETF3W/iEe7XkCaNRX3zEeZUPc3kMDf/XyMF79I+H+zj/j6BUE4fnajwpm5XTkzt2vjfT6fj28+eh3VvofdljpqnTK1RielsQzKQ+nUhJLwhWxoYSCiIoVVpIiqX4+oEFaRNL3Vp8ITosITOqGySRKYDTJWo4JRkVFkicIqH+Oemk3/Dgk4LUYsRhmLUdE3g4JRkVBkCYMiY5AlDIqEUdafqz8mY1AkDLK+3/G2DO0NLGKq2nCpEYmpxFSNqKoRjWlEVbXhun4ZiakEIyqhqEowEiMYiRGKqoQaLoP7Xer7xTjGFVMOQYba2sP/PU0KBpOCwSgTtcc3fBDByzGy24yUD085/OMyJCgqiUoElxTEKflwSl4cWj12tQZbrAJrrARHbA8J1OPAgxzR4Cjjbo3GJAyGrshyKpqWSCzmJBS04fUaqa9XqKmJUV8f4sgNaAqyLJOUlERSQhIJVicuxY5LteAMmbF5FKTaCLFtB66uGwNiet4WRQ9S5GQjQWMQT7SGKk8xpWXbqdqwk5DPd8gzO1PSSEjPxWjNIhpJwV2TQMhvIFR6wN/PqZBs8uAq34Rl448463YiNwwK1iwmivslM6tDDSs6q1QnxDArNiZ3msx93S9iWMYw/UMkEoTPb8e17gMA/mu/nAuveplI7DgWZRQE4ScxmUyYk3OYNu02FGSW/uMjSstqCDkjuJ3LwFGOxV4PiVH8NgNeo5Makqlt2Kq1FGpjydREEglGLPsCm7AKMU2/HdOQoipE910SVffdp4GmQTCif/HvLxhRWb7z0F/QJxtFljCZFAwGGYNRRjHISAZZn1mqSGiKRFSRiMoQkSGARswgg0FGM0j6j3GDrI+bVCQC+wVrdmt8W69E8HKMEtQqrrevQXMXkWEPYY9VYImWYlfLcODBGIvq3/XHQJZNGI1ZGJQUJDkRTXMRjdoIh60EAya8XgNuj0RdbQyfL3iIwCTGgSdTFIWEhAQSnAkkWBw4DTYcWLFHzdiDBixeBa0+jFqyf7SkAcEmHU2SWcGQagWnTMgUwhurpcq7m7Ly7VRt3EXA4z7ka5IkmcTMLBIycrE4slC1NHz1LmpLVarKmpZfViTSchyk2AI4K7dgWf09yvZ1TffpmE1R/3S+ztjDj2nVRAzVAPRO7sPt3S9mWpdpuEz7NSvW7oKProPSNcSQ+UPkRoac/mt97RQRvAhCXMhGhdH3XsWOf/6buYvLSbcmkOYYRNRmp0p2E5A9RA01JFvryLbuwWrZgsXqwWrxYrF60JxRPFICHlzUk4C7yebad11KwoODKAY9alHRg5mYBqoGDZdS7IDrex+LaUiqpn8k7r3U9CBI0UDSQNb0Lnyp4bakaUhIyOitEvundJAOuLJ/+4wsS0iypN8pSfqCsZKkz+qS9L01uaEIkoQqgyZDVIKoLBGVICajDzFQJDRZaryOrAck+98+9M/KI5MAlwJOBZxKDKcUxi6HcRDAhh8bHjKMMtD7BI7ePETwcoxscoSzvI/qS74GDnxUwWBIRlESkSQnmmZHVe1Eo1YiYRPBkJFAwIjPZ8DrkfB4YkSjh/pC1YBQw7aPJEk4HA6cdgd2ix2nyYZDseHEiiNiwhY0YqoHtSqEtufA7p0oEG0S6sg2A4YUK1KikYgxjE91UxeooKqumKqyXdQuLyESOkx6ckkiMT2TlI65OFOzUYxpRMIJeOosVBcHKdu1/5n06zaXicyuCaRnGnHVbse0Zg7BT39E9Xj27WowYBs2jPohXfk4tYAvIytQqQDAaXRxcZdpXNz9YvqkHCLd99b/wWe3QLCOqDmJn3luZ4U8kD/0zzz0axAEoVV1ufNmipZeSHntaFaEd2Ku2E6uoydj7X1IMA/BHQhQJbmplr3UmfyUKT68ET+SFMNi8WKxeHGafaSaK7FYdmF3hDGb/ShKPZIUhYZ4I4IJH3Z8sh2fyY4fOz4cDZd2/JILH4nURaz4NStRxYbBbCeEmZBmIqAZCGgKEW2/3FLx+7MdE5MEZlnCJIFF1jBJGmZJxSxFsckxbFIEqxTBIoWwakEs+DFrPiyaB5PqbthqMcZqMEarsEseLASRo5r+9XEYVmsecE1rvcyDiODlGIVCVmKx8ykv92G1pBMMGvD5JNxuDZ9P48CZOAfT31r7UxQFu92O3WbHYbNjN1qxK1bsmhlrzIQ1bMASVDB5JbT6CFrloQKeQwQnDiNKohlDkgXZZSRiCOOLuqn3VVBdW0J1RRE160vw1dYctrSSLJOQnkFydkc9UEnJBjmFoM9BdUmIil1uSgr2vp4YNMT3BqNMao6T9DwnGXkukrQqWLUQ35y5BNauJappje8HJTkZx/jx2CeMZ21niVcL32N1xYeNf6ahGUO5pPslTOo0CavBenAh1RjMfQLmP6Xf7jCU55P/wMLlQc7tl4HTIgZ5CkJbIEkS/f76LJx/Do6kc9mZcylbAwvZXP8GNsVBlq0r3Zy5dLX0hIZ8TyEi1Eo+6s0h6pQwtREPZbU1hEL7/7jTMBpDmM0+TGY/dnuUhASJdHsMszmMoviQpArUWB0x1UvjAtz7f/MdIjqJIRPCQggTUYzEMBDdb1MlG6psJyZbULEQlU2oGJEkBSQFUEAyNGwKevYsGjcABXXfJqnImopMDEmLoGhhJC2CTBhJCyNrYQxqAAMBjGoAg+ZHUd0YCSNrKoeZp3ECFbX3ioxBcSIrNiTJjiTZQbOhalZiMQvRiIlIOL2ZTnpiRPByjKJRhUULE4D98yTs/W+o17jVasVms2G327HZbNisNqxGC1bZhAUjZtWIOWzAHJIx+SUkTwzVE0atjLDfqvb7nxWIHtStoySYUFxmFJcJJdGMnGAiLAfwhOqo95ZTW1lKXdkeaneUUFdehho7fPhsS0gkKasDSVkdSM7uQFJ2RxxJGYQCNqpLAlTsdFO40Y23JgS4GzadLEskd7CTnucio5OL9DwniYkKgRXL8M79Cu+L86gqK2tyPnPv3jhOn4BzwgQMfXvzXfEsXlv/CtuXbgfAKBs5v+v5XNf3OrokdDl8hfiq4NOboUBfLI7htxCZ9CjvPr0AgIuHdDj8cwVBaHVp6Xls+M0Uxv/pS2yBCrb0voZoZCiavJwd9WvY4VmDIhno2XkUPbuOweFPxFxqJLMOqNOPoUkaoTQZb4qKxxamTvJR66unqrqKmmo3NdVQfJjzK4pGSoqBxEQjTqeCNxpkzZ4KJCVClwwDwztbkeUAquolGvUQi/mJxQLEYn5UtZ5YLEDjB7XGoXrv40aSjCiKFUW2IisWZNmKJJmRMKNhAs2EqhnQVDMxVZ9dGosaiESMhCMKoaCE369RVeUDrPj9UWJHWWA3JcXOhOadbHRcWix4qamp4Re/+AVfffUVsixzySWX8Oyzz+JwOA77nFdeeYX33nuPVatW4fF4qK2tJTExsaWKeFycTicjRoyguKiYgX0HYDdYMKtGrKoBU1jBGJLBGyXmCaO6I8T2hFF9+wclKvt3CR30f16WUJymhsBED05klwklQQ9SsMl4g7XU15RTV1ZCXXkpdTtKqS8vpb6iHPUI4zoMJjNJmVkkZXfcL0jRAxaDyUpVsZeKXW4qdnrYutJNXXnBwQeRICnDRnpDkJLeyUVqjgODUSFSWop33jy8b8+laskStP1+GUkWC/bRo3GcfjqOCeMxZmYSiAb47/b/8uaX91PiLQHAZrBxRc8ruKbPNaTbjhLR71oEn9wInlIw2uC852DAZfy4uZwqb5gUuymu+QcEQTi0C6f9hr8v+R+3fLsES7iGTcN/RSh0Dokdx5HmeZ5Ct4lNBQvYVLAAV1o6Q848j645Q6E0QnBHHdFyP5YKDUuFRCpmwIxkTceUMwS5rwWPI0q9IUBtoJ66ujrq6uqor6+nvr6eWEyloiJGRcW+z0or+iSMPWXwxVoAOwZDJlarFYvFcsBmxmKRMRo1FCWGokSR5RiKoiEroMgasqwhSSqaFkWf7KD/AIX9x8RIaJqGpmmomoamaqiaiqZqaMhomoKmyqiqhKpKRKPos5CiEI3ol5GISjQqEw5DOKzfDoVChEIhwuEwsWMe5xehadOTAuybuCHLcuPfwmq1NtkSEg5OeNiaWix4mT59OqWlpcyaNYtIJMINN9zArbfeynvvvXfY5/j9fqZOncrUqVP53e9+11JFOyFKXYxBa1Po53Yg74wC3sbHDqz+JiSQ7UYUpwnZadovQGloOWkITmJGFW9NNe6qCtyVxXiqK3EXV+CuqqC+ohxPdRVHynynGAwkZGSRmJFJYmY2iRmZJGV3JDm7A87kVCRZJhKKUV3iparYw+YlXip2baKmxId6iHl1zmRLY5CSnuciPdeJyar/d9FiMQJr11HzxTy8c+cS2rKlyXMN2Vk4Tz8dx+mnYxsxonGF5vpQPR+ue4V389+lJqh3WSVbkrmm9zVc3vNyEsxHeTOoKiz8O8x+DLQYpPaAy96EDH0czGer9EDovIHZGBX5SEcSBCEOcpw5KBdMZX7RDMZv3MrQDc+ycdS91Fe72K38jqGZ7yMlB1hbBO7KCuZ++BrzlTfpNmwkfc+YRMfOQ4jtDhAq9hDe5SZS4kULRAltrYWt+hdaCpBqMWPM6owpy4Gxrx05xUzAHMMd8TYGM16vF6/Xy67yGvZU1mGVIpikGNFoFI/Hg2f/MXntlMlk0md/mc1H3CwWC0ajkY1rNnDasFHYJDOmqIIhBJo/SswbQfXpW6w2guqNoCSZ4bSjl6GltEjwkp+fz8yZM1m+fDnDhg0D4Pnnn2fatGk888wzZGdnH/J5v/71rwGYO3duSxTrJ5HMCmp9GLkhepasBhSnEcWxLyiRHXqQsv912W4ECYJeD+6qSuqqKvBUVuDeWtkQqFTiqa7EX1931DIYLVYSM/cPULL0LTMLZ3IKkrzvCzvgCVNV7GX7Sg9Vu/OpKvZQV+4/ZPxjdRr1AKWTi/ROesBiczVNWhetraX++4V4f5yPb/6PxOr2K68sYx00SG9dOX0C5u7dm+Q/qPBX8Pamt/loy0f4o34AOjg6cH3f67mw24VYDJajV4CvGj6/FbZ/r98ecCWc81cw6y157mCEWZvKAdFlJAht2Q39b+S6qTPpXK6SU7KVUbvfpGDcr9i2ooK1wemkV+7gsnsnUlq8lXU/fEd5wTa2Ll3I1qULsdgddB02ih6jx9DprEHIkkKkzE+4yE24yEOk1Eekwo8WjBIudBMubDo70mhSyEyx0DE1DUNyDnIHE0pvE+9tLOXVNbsJGzX+87OBZNgVgsEggUCAYDDYZItEIkSj0UNusVissdVj7yzR/WeL7r0uyzKyLKMoyiGv771tNBobN4PB0OT2gY/tDURMBhMmScEQUyCioQUiqP4oMb9+qfojqL4oqnu/2/4oaiDAeDUX8vcQZv/2l7apRYKXxYsXk5iY2Bi4AEyaNAlZllm6dCkXXXRRs51rb1PZXm63/p81EokQiTTfOHHNKuG6qRcLVi9hwtQzMO03xz0cCOCtqcJbU4a3phrvjmq8NdV660lVJd7qqsPP3tmP0WzBmZqGMzUNV2oajhT90pWaTkJGJlZXwkFJkWIRlbqKACXbSqkt81O920d1iRdf3aH/61ldRlI7OEjpaCc110l6rgN7kvmg44aDQUIbNuBbuBD/ggWENmxs0vIjO53Yxo7BPn4CtrFjUPbr3otG9WbSXe5dvJX/Fl8Xfk2kIcFct8Ru3NDnBs7KPQuDbACNo9aTVLwE5fNbkDylaAYLsSlPog28Wp+f2PDcr9eUEIqqdEm10yvd1uSYe6835/8HoeWJemufjlZv3V3dGZQ7ir9dtISn35Jg6QIGDOhNzvVXsODtNVREuvLpcwUMPbcHlz54BjUlu9g493u2L1uEv76OjfO+Z+O87zFaLHTs059O/QeT238QicP0MXJaVCVaGSBa5ida7ida5idWEyRWF0ILx/QAp7TpBOKpwFScEIHgqwWoThNWmxGbVUG2mpCsNmSzAkYZyaYgmWQk4wGboSFDuiSBrA9SpmFKtLT3/oZuItR9l6jsd11Di6poERUtque32XtdC6tofu2A+2JowQBqMIoWihEJxQiHf+LoXaOMbDMg243IdgOyzbjvul2/LtkNKA5js783j+d4LbI8wF/+8hfefPNNthzQnZCens4jjzzCHXfcccTnz507lzPOOOOYxrw8/PDDPPLIIwfd/95772GzNd8aFrFgEO/unUT9PmIBH1H/3s2Leox/cMVixWBzYLA7MNr1S4PdgbHhPtl0cBCxlxaDqF8m4pGJePUt6pWJ+huTAxzEYFMxumIYXSqmhkvFfISuJ48H29at2Ldsxb5tG4rf3+TxYFYW/p498PXsSaBTJ1AOnbW3JFrC/NB8NkU2oTUM+umkdGK8ZTw9DD2OPSulptKtYga993yCjIrHnMXyznfhseYctOvzG2W2u2XOyYkxueNJteKFIJx0tke284bvDcZvlLjry4bM2VdegTUzSuWmZIrDgwAw2FUSegexpsXQVJVAZRm+okK8xYXEgk1zVhgcTmwZHbCkZWBJzcDodDX5rJFUMIVkzEEFS1DGFFQwRiRMYRljwyYf5rO0PVIljZhBI6ZoRA0qUaNG1KARM6hEDVrDbbXhvn37aIfocddUlVgoSCwYIBrwEwv4kWQFZ+fmXeTW7/dz9dVXN//yAPfffz9PPvnkEffJz88/nkP+ZL/73e+4++67G2+73W5ycnKYPHlys65tVF28i3c/e/uwj5tsNhzJKTiSUvXL5BScKal6S0pKKs6UVAymo2ckDAejuCuD1FX4qSvzU1Pqp7bUj7sqgHaYgNpkVUjKtJOUZSM5205qjp3kbDsmy5GrVw0GCa5eQ2DZUvwLFxE6oO5kpxPb6NHYxo7FNuY0DOmHH0iraRpLypbwVv5bLC1b2nj/uOxxXN/neganDz7qa2/CV4Xy1V3Ie/RuIrXfpVjOfoZxpoMHfO+pC7B98Y8A3Hf56WQnNp1WHYlEmDVrFmeddZZYI6cdEfXWPh1LvWmaxpKZS5jfdzPnRwaS++1asj7+hMynH2dk3a/YUjOAxdG7CPhkqlfYyO2XzOiLu5CQpr+3NVWlclchu9avoWj9Gkq3bibq9eD2bsa9YzMAVpeLrO69SO/cjZScXFJzOuFKTW/SvX5gmdbuqOG3b6/GosLNQ3OY2jUFNRBDC0RRQzG0yN7WEP16ky0ca0xup6k0JMvTE9BoexPfyQ2tMHsT1TW5jn59bxZco57pdv+WHf0+ad9tk4JkUZAtCpLZoF83K0hmRW8JOlI9hUIE3PX46+vwu+vx1tawbtUKOqSnE/J68NfX6Y+76wl6PGgHfAElZXdk2p2/PJ7/Gke1t+fkWBxX8HLPPfdw/fXXH3GfLl26kJmZSUVFRZP7o9EoNTU1ZGY2b+Kwvf18B9rbF9hckjKz6TRwCLVeP30GDSYhLR1HSirO5FScKSmYrMfeyhOLqNRXBagr91NX4ae+3E9dRYC6Cj/++sP3NJosCsnZdpKz7CRnOxou7dgSTMfUmqFFowTWr8e/dCm+xUsIrF6NFm56PkvfvtjHjcUxfjzWAQOQDEf+LxJRI3y38zve2PAGW2r1ljZFUji789nc0O8GeiT1OIa/yAF2zIHPbwdvGRgscPZTyEOuQz7Ma/x6wy4ARnVJplPa4QPW5v4/IbQOUW/t09Hq7ab+N3Hv/Ht5bPhu3jGei+/Lryn/vz9guvUsegc/oGuuieUJf2HdD8UUbahhd34tfcd1YOjZnbAnmOnQoxcdevTitEuuJBzwU7xpPbvzN7Jn62bKC7YRcLspWLmMgpXL9pXJbNHHDWZmNRk36ExNxZ6YxPDemdx8fh8e+O8G/m/VLjoOyWL0kMMvC9MWaJpGNBwi6PUS9NYSrPIQ9HoJeD2EfF6CXg8Bjxv/3kClvg5/ff1hhzIcPvsXWF0JOBKTsCclk5TVodnfl8dzvOMKXtLS0khLO/oU1NGjR1NXV8fKlSsZOnQoALNnz0ZVVUaOHHk8p2wzzDYbF9z7ADNmzGDEUVa51TSNkD+KpzqIuzqgX1YFqa/0U1fux1MdPNLEIaxOI4kZNhIzbI0BSnKWA3visQUpe6mBAIH16wmsWoV/5SoCq1ahHrAGkSEjA/uoUdhPG419zBgMqanHdGx/xM+n2z7l7U1vU+rTFyqyGqxc3P1iru1zLR0cJzBoNhqG2Y/Couf026k94dL/QGa/wz5F0zQ+X63PMrp4cMfjP6cgCHExqdMkOjg6UOItYcF1AxkfCOGZNYvi15aSO8aEje8Yc9df6DNmBAs+3kbRxhrWz91N/qI9DDgzh8Fn5WKx65/DJquNrkNH0nWo/v0SjUSoKNzBni2bqNhVSFXRTmpKiomEglTuKqRy18Gr24M+KcKemMStURNFfpm3nv6RuhFdSU5KwGyzY7bbMdvsGExmDCYjisGIwWRCMRhRGm4fZL8Pe1VViUUixKIRYtFow/XoAfeFCQcDRAIBwsGgfj0YIBwIEGm4HQ74CQcCBBuCk9gJjj1RjEZsCYnYXIlYnS6qPR569OmLIym54f4E/TJBf1w5yo/Z1tQiJenduzdTp07llltu4aWXXiISiXDXXXdx5ZVXNs40KikpYeLEibz11luMGDECgLKyMsrKyti+XU9Ytn79epxOJ7m5uSQnJ7dEUU9YKBDFUx3AXRVsGqRUB/FUBQgHjzzP3mhRSEzXA5SEdGvj9cR0K2bbiUWz0epq/KtWEVi1Gv+qlQQ3boJo0wR1SkICtpEjsY8ehW3kKEyd844rINrj3cP7m9/n022f4gnrUwmTLclM7z2dK3pecfTpzodTsRn+ezvsWa3fHnYjTH4MTEdu0VpTXMf2Ci8Wo8xUsRyAILQbBtnA9X2v57Glj/HWlne49OnPUH8RxPfjjxQvSCd3QjnW5a+SdPYTnPeLQezeXMOSLwooL3SzauYu1v5QTI/hGfQ/vSNpuc6mxzYaye7Ri+wevRrvi0Wj1JWXUl9epifxLCttuF2Kp6aaaChEJBigriyAGegO4IdN321o1b/LiZIVBYvDicXu0C8djia39SAkAZsrEVuiHrCYrNbGz/9IJMKMGTMYc5Qf521Fi4VR7777LnfddRcTJ05sTFL33HPPNT4eiUTYsmUL/v0Ghb700ktNBt+OHz8egNdff/2o3VUtra7Cz8JPtlG+08ab8xYT8h9h0YcGVpcJV4oFZ4oFV4oVV6qFpEwbCek2bK7ja0U5kBaNEtq+ncCatQTWriWwejXhnTsP2s+Qno516BBsg4dgHToES+/eh+3zPey5NI3VFat5J/8dfij6AbWh7zPPlcd1fa/j/K7nY1ZOcIXRSBB+/Css+DuoEbAmwfn/hN7nHtPTP1qxG4Bp/bJwieUABKFdubDbhfxr7b8o8Zbw/Z65TH3uWYpuuYXAipUUz00mx/Q+1jP/CGYHHXslc0nPJHauq2LZ14VUFXvJX1RK/qJSMru46DO2A10Gp2G2HvprTTEYSOmQQ0qHgwf8A4QDfnx1tfhqa/HV11JcUsHrc/IhHGBAuoneKUa9G8bn01tKIhGikTDRhuuxSPiIyUJBX8BWMRpRjAa9tcZgRDEY9Pv2u26yWjGaLfqlxYrJasVk2XfdaLFgttr2BSl2B0aL9Sd9pxxKYy9Cjf4j3VMTxFsTxFMTwuowMuHqns16vuPRYsFLcnLyERPS5eXlHbRa8sMPP8zDDz/cUkX6SSQJdq6rRs9AqAcuFoexITix4kqx4ErVrzsbAhaj6dCzcU5EpKKCwNq1BNeuJbB2HYENG9ACB60Qibl7d6xDhmAbOgTrkKEYO2Sf8H/ocCzMdzu/4538d9hUvanx/lFZo7im9zWM6zgOWfoJyeAK58PXv4FqvaWNHmfruVsSjq3LKRCO8dXaPQBcOkx0GQlCe2MxWLiq11W8sOYF/rPhP5zd+WxyXnqJohtuILh+A0XfWcgZ8jdsVz8I6NOPOw9MI29AKmU76lk/r4QdqyooK3BTVuBm7nubye2TQreh6eT2TcbqMB2lBPuYrDZMVhtJWfrnT09A7V3GrW+vZGEMnpkwkMuGHvlzRlNV/cuioaxtnapq+OpCeGqC1Ff6cO8w8eOH2/DVRhoDlUjo0AGZK/UY8nO1oLbTgdXGOZIsnHZpV7YUrueMKWNJSnccdTbPiYp5PATz8wlu2Ehg3Tp9QcPS0oP2kx0OrAP6Yxk4EOvAgdgGD0ZphpTNO+t38um2T/lyx5eNmXDNiplzu5zL9N7T6Z7U/aedwF8D/3sA1ryj33ZkwrSnoPf5jW/8YzFzYyneUJScZCujOrftQXWCIBzaVb2u4j8b/sOW2i0s2rOIMR3GkPv66xRffQGBrXso+sv7dMw9E8fYsY3PkSSJrG6JZHVLxHdpN/IXlrJ1WRm1ZX52rqti57oqkCA910lO72Ry+yaT0TkB5SgzcA40uW8md57RlRfm7OD+T9eR4TIfcemR423VbmnRcExvNWnSchJqvO2tC+kzoRqZcW8tO+g4VqcRZ7IFR7IFZ8Mmgpd2QjHI9JuQTZFvDclZdozG5vnTRaurCW7KJ7hpkx6wbNpEpKjo4B1lWW9VGTgQ68ABWAcOxNSlS7O9WUKxEN/v+p5Ptn7CivIVjfen29K5qtdVXNL9EpIsST/tJJoG6z6C734H/mpA0se2THoILMcfdH20XO8yumxoDrLc9n/lCIJwsARzApd0v4R38t/hxbUvclr2aSgOB7lvvMPuS8bhKzVSfOttZD74IElXXnHQ8+0JZoZNy2Po2Z2o2eNj+8oKCtdWUV3ipWKXh4pdHlbO3IVikEnNcegLyea5SMt1kpBuRTnKUiL3nNWT4poAX67dwx3vrOL9W0bRv2N81/UBiEVV/O4wfne4sfXEUxPE2xCkeGqCBDxHH8gryxL2JDOOJDP1gSp69utCYpodR7K5MVAxNGMvQnMRwUsr0SIRwkVFhLZtI7R1W2OgEi0vP+T+xuxszH16Yx2gt6pY+/VFttubvVw76nbwydZP+KrgK+pD9QDIksy4DuO4tMeljO0wVs+E+1PVFMDXd+9bBTqtN5z3LOSe2Oyzomo/iwuqkSS45ChNuYIgtG039ruRT7d9yrrKdcwpnsOZuWciJ2fR8RdTKX35K9y7bJQ9/DDhwgLS77sP6RAJMiVJIqWDg5QODkae3wVffYjiTTUUbaqhOL+GoDdCeaGb8kI36/c+R5ZwpVpIzLDpLQtJZhyJZuxJFhyJZmwuE0aLwtOXDaDSE2JxQTVXv7qEN24YwdBOP/HH3AFiEZWgP0LIHyXk0y+D/ggBT6QhSAnhr9eDFX99mKDv2GYYGc2KPpShIRBxJJv120n68AZbghlZlhoH7A6flndqD9g9VWmqSqSkpDFICW3bRmj7dsIFBWiHms4mSZg6dcLSpw+Wvn2w9OmDuVcvDEnN+8bYXzAaZNauWXyy9RNWVaxqvD/TnsnF3S/mom4XkWlvppk7sQgs/ifMfQKiQVDMMOE+OO2XYDj2/ugDfbJKb3UZ2y2VDgckpRMEoX1Js6VxTe9r+Pf6f/P86ueZ0HECiqwgn3Yb2WvfxpygUrnOQc2bbxHeuYvsv/4VxXHkH3P2BDO9RmfRa3QWmqZRXxGgYpebip0eyne6qSrxEg3FqK8IUF9x8PjBvSRZwmw1cLZVYUDYRo03yvt/XcnG3EQyk6woRhnFIKMoeuuvptGwarR+Q9P0sSWxcIxIWCUajhENq0Qjejr/aChGKBAlegJp/WVZwpZgwuYy6YHJfkGKM1kPTsw2Q7sYf3O8RPBygjRNI1pRsS9A2bvt2HHIgbQAks2GuVs3zN26YenVC0vfPph79jrqm7A5qJrKirIVfF3wNbN2zcIb0VfFViSF8R3Hc2mPSxmTPQZFbsbmwfJN8N87oHSNfrvzeDj3H5DS9ScdNqZqfLKiGIDLhh165oAgCO3L9f2u58MtH7K9bjvfFH7D+V3Ph8z+SJ1OI1VahGnYZPa8uxLvvHnsvPIKOv7jH5i7HVt6ekmSGnNn9Rih/zDTNA1fXZi6ch91FQG8tUF8dSG8taHGy0gohqZqBH0Rgr4ILsCF/hnp2e7Gw7FnhD22goLZZsBsM2KxGbDYjZjtRmwJJuwuc2OgYnOZsCeY9cDkFO0yF8HLMYpWVVH3zQzSZ89m9wcfEt6xA/UwqYwlkwlT1656oNK9O+bu3TB374ExO6vVB3TtqNvBVzu+4pvCbyjz7RuI1cHRgYu7X8yF3S4k3Xb4tP8nJBaFRc/qrS2xMFgSYerjMPCq4xqQeziLdlSxpz6Iy2Jgcp+Mn15eQRDizmVycVP/m/j7yr/zwuoXmJo3FZNigtF3QtEiXOosjK99zO7f3Et4+w4KL7uczIceJPHCC0/ofJIk6d1ESWY69jr0PtFwrLH7JuSPEvJH8XnDfLWqhKU7qlE0cJkMnNE9je6pdiSpIdW//g9JlpAaFmY0GBUMJhmDScFo2nfdYJIx24x60GJtu8GIpmnEqqsJFRQQLihAMhhIvPTSuJVHBC/HKFpdQ9Xjj5MINCZVVhRMeXn7ApRu3TF3744pN+eoafVbUlWgipmFM/lyx5fk1+xbr8hpdDI5bzLndjmXIRlDfto058Op2Ky3tuxp6I7qMVUf2+JsvgRye3O7XDCoAxZj2xtIJgjCibmq11W8u+ld9vj0ZJg/6/sz6Hk2JHeBmgKssbV0/vwz9tx3H75Fiym9/3f4ly4j84E/IjfjQrx76cGFgj2xaR6rfqdls2h7FX/8YgMrK33M2bGbcXIqfzynDz0znYc5WvsRra0ltHkzwc1bCG3bRriggFBBQZMf7KauXUXw0h6YO+dhP+MMioA+U6dg69UbU+c8ZNOJj9toTt6wl9nFs5lRMIMlpUuIafrcfINkYGyHsZzb9VxOzzn9xJPJHU0sCoufhzl/0VtbzAlw9pMw8MpmaW3Zq84f5ruNegvSZSK3iyCcVKwGK3cNvosHFz3IS2tf4twu55JiTYFRP4cZv4UlL2AYfhM5//431a+8QuXz/6T+88/xr1xJxv3/h+OMM1ptfMdp3VKZ+avxvDxvB8/P2c6P26o4+9n5XDY0h1+f1Z2shLY/Fk+LRgnv2kVw82b8m/LpsGABhX/9G7ED1iZsJEkYO3bE1KUzlh7xS1AHIng5ZpLJRNZzz7J6xgycbSR9cjgW5seSH5lRMIN5u+cRioUaH+uf2p9zu5zL1M5TSba08NIKlVv11paShinW3SfrrS2u7GY/1X9XlxCOqvTOctG/Q/ynKwqC0Lwu6HYBH2z5gE3Vm3h+9fM8fNrDMGg6zHkManfC5m+Q+pxP6h13YB0ylD333kukqIjdP78T66BBpP3ql9hGjWqVIMZkkPnFxO6cNzCbJ2du5tsNZXy4opjP15Rw7ahO3HF6V1IdLfSD8TjF3G6CmzcT2ryF4Bb9MrR9O1po3/eGHdibks6Ym4ulZ0/MPXpg7tYVU5cumDp1QrbEN7/LXiJ4aWdiaowV5SuYUTiDWTtn4Yl4Gh/Lc+VxTpdzmNZ5Grmu3JYvjBrTZxLNfgxiITC79LEtg6Y3a2vLXpqm8cFyfaDulcNzTsoR9IJwqpMlmftH3M91317HZ9s+44qeV9A7pTcMuwl+fAYWvwB9zgfAPnIEXWbMoPrll6h5620Ca9ZQdMON2IYPJ+XWW7GPHdMqnxN5qXb+dc1QVu6q5clvN7NsZw2vLSjk/WVF3DimMzeP60yirXVa6TVVJVJURHC/ICW4ZTPRPQcnOgV9Iomle3eMPXqwLRJhyCUXY+/dp1UmkvwUInhpB2JqjNUVq/mh6Ae+2/kdlYHKxsfSbelM6zyNaZ2n0Su5V+t9oVduhS9+DruX67e7ToTzn4OEluvKWbe7ns1lHswGmQsHncCq1YIgtAuD0wdzduez+bbwW55Y9gRvTH0DacQt+orzxUtg9wroOAwAxWEn/Z57SLr2Wqpf+Td1H36If/ly/MuXY+7eneTrr8d13rmt0sU/tFMSH942ivnbqvjr/7awbnc9/5yzndcXFnLN6E7cMq5Ls7bExOrrCW3dSnDL1obLzYS2bjvsjFdjdjbmXr0w9+yBpWcvLL16YszNRZJlIpEIK2bMwDpoEEob6Fk4GhG8tFGRWISlZUv5ftf3zCme05imH/RR+ZPzJjOt8zSGZgxtmYG3hxMN6x8g857a19oy5TEYfG2LtLbsb2+ry7T+WSSc4MrbgiC0D3cPvZu5xXNZVbGKT7Z9wmU9LoP+l8Gad2HR83D5m032N6ank/nHP5By041Uv/469Z98SmjbNkr/8Acq/v53Ei+8gIQLLzzm6dUnSpIkJvRIY3z3VL7bWM6zP2wjv9TNy/MKeHPRTqaP7MRt47uQ7jr27hctEiFUWEhob5CydQuhLVuJlh2cyh9AMpv1iSS9ejYGKeaePVFcruZ6mXEngpc2xB/xs2jPIr4v+p75xfObdAm5TC5OzzmdszqdxZjsMRiVOHx571oMX/8aKjfrt1uhtWUvXyjKl2tKALhiuMjtIggnu0x7Jr8Y/AueWv4Uf13xV8Z1GEfm6Dv14CX/S338S1LeQc8zZmWR+fvfk3bXXdR9/DE1b79DtKyM6ldfo/rV17D0749r6hTsY8dh7tG9xVqrJUliar9MpvTN4If8Cp6fvY21u+t5bUEh7yzZxe0TunLH6V0bZ0xqqkq0sopI0S5ChYWEd+4iXFhIeOdOwsXFEI0e8jzG7GzMe8em9OiOpVcvTJ06xXXGa2s4uV9dO1Afqmf+7vl8v+t7Fu1ZRDDWOBGbVGsqE3MnMjF3IsMyh2GU49Ta4K+B7x+CVW/pt22p+tiW/pe1eGvLXt+sL8UXjpGXYmNk5xYegCwIQptwda+r+W7nd6ytXMsjix/hxYkvInU9E3bMhiUvwdlPHPa5istFyk03kXzddXjmzqX+v1/gnTeP4Pr1BNevh6efwZCejnXgQL2FondvzN27Y8zKatYvfkmSmNgtifEp3Vm+poCvZq+jfvtuatd9w3v/8DDEEsJRX02kvBwOlYW9gWy360FKzx5YevTQr3fvjuJs/1OzT4QIXuKgKlDF7KLZ/FD0A8tKlxHV9kXUHRwdmJQ7iUmdJjEgbUDrdgkdSI3Bqjfhhz9BoFa/b8h1MOkRsLVuAPFhQ5fRFcNzxUBdQThFKLLCn8b8icu+vIwFJQv4YscXXDj6Tj14Wf02nH4/WBOPeAzJaMR11lm4zjqLaHU17m9n4v1xPv6ly4hWVOCZNQvPrFn7nVTBmJWFMacjxoxMlMTEhi0ByWhsSPmvNawDAFowgBoIoPr8qH59i9XXE6upIVpbQ6ymFtWjt6InAz87RBkjB5zb1Lkzprw8TJ3zMOflYercGUNmpvjs248IXlpJibeEH3b9wA9FP7C6YjUa+5Yh75bYjUmdJjExdyI9k3q2jf+gu1fCN3fvS+2f3hfOeQY6ndbqRdlW7mHlrloUWeKSoWKgriCcSrokdOGOQXfw7Kpn+cvSv9B/2nt0Te8DFZv0H1djfnXMxzKkpJB8zXSSr5mOGgoRWL2G4OZ8QvmbCW7eTLiwEC0cJrJ7N5Hdu5v3hcgySlIShpQUjFlZkJHJUp+RGRUaZZZE6pzJXDFlMLed2UMk3zwGInhpIZqmkV+Tz9ziucwtntsk0y3oeVj2dgnlJeTFo4iH5quGHx6GVW8Dmj4g94w/wPCbQYnPf5e9rS4Te6WT7mwbOQYEQWg9N/S9gSWlS1haupRfz/0NH4y4GfvXd8PSl/UEdicwBlA2m7GPGol91L6V7fVxJ5VEdu8mXFRMtLKSWF2dvtXXo0UjSEh6d3nDJlssyHYbss2GZNMvFacLJTkJQ3IySnIySlISSkLCQcvD5ACDKjw8+MVGNu2o5u9zCvh0bRm/n9abs/pkoLTRpQLaAhG8NKNgNMiysmXMLZ7LvN3zqPDvy1IoSzJDM4Y2BizNtmpzc1FjsOI/MPvPEKzT7xt4NZz1CDiaee2j4xCKxvhstT5Q98oRYqCuIJyKFFnhyXFPcvnXl7PTvZMHPOv5qz0dyV0CGz+HAZc3y3kkWcaYkYExIwPb0KHNcsyj6Zbu5N2bR/LN+lIe/XoTRTV+bn9nJR2TrEzrn8WEHmkM7ZQkWmMOIIKXn6gqUMX83fOZWzyXJaVLCET3za+3GqyMzhrN6TmnMyFnQstnuj1ROxfCt/8H5ev125n9YdozkDsqvuUCZm0qp8YXJtNlYXz3tHgXRxCEOEmxpvDXCX/lhu9uYFbRD7zYfQR3rvlanzbdipMHWoIkSZw7IJvTe6bz4pztvLu0iN21AV6ZX8Ar8wswG2SG5SVxWtdURndNYVDHRORTvFVGBC/HSdM0ttZuZWHZQuYVz2N91fom41cybBl6sNJxAiOyRrTcWkLNob4EZj0IGz7Rb1sS4cw/wtAb4tZFdKB3luwC9HWMDEocBy8LghB3g9IH8cCoB3ho0UO8VL+ODq5ELixbBzsXQOdx8S7eT+YwG7hvai9+ObE7szaVM3dLJfO3VVLpCbFwezULt1cD0CHRyiVDO3L9aXkk29vG+nqtrW18Q7UDxe5i3tz4Jt+5v6Pu27omj/VN6cuEnAmc3vH01s1ye6KiYT2t//xnIOIDJBh6PZz5ANhT4l26RlvLPSwpqEGW4KoRrbDcgSAIbd7F3S9mt2c3/17/bx5JSSAzHGDU4n+eFMHLXhajwnkDszlvYDaaprGj0suiHdUs2l7Nwu1VlNQFeO6Hbby7ZBePXtiPaf2zWqVc/oifVRWrWLJnCXajnTsG3dEq5z0UEbwco1AsxIdbPwTArJgZlTWKCTkTmNBxAum2+I0JOW6FP8I390DVFv12ziiY9hRkDYxvuQ7h7cV6q8tZfTLITmz7K7QKgtA67hp8F7s9u/l257f8JiON/+z8gd6VWyGtR7yL1uwkSaJbupNu6U6uG51HMBLju41lvDBnO1vLvfz83VVcO6oTfzy3N2ZD846LiagRNlRtYEnpEpbsWcK6qnVEVT21R7otndsH3h63H+sieDlGXRO78rPePyNWFOOOc+7AZW1naZa9lTDrAVj7vn7bngaT/wwDrmiTfcWeYITPVulTFa8bnRffwgiC0KbIksyjYx+l3F/OqopV3JaZzn8WPEm3i16Ld9FanMWocMGgDkztl8lzP2zjhTk7eHvJLtaV1PPi9CF0+Ak/9DRNY1vdNlZUrGBp2VJWlK3AH/U32SfLnsWorFGMzBqJqqkoUnwGEovg5RhJksSvBv+KGaUzsBraUSuAqsKqN+D7RxpmEUkw7AaY+CBYk+JcuMP7bFUJvnCMrml2TuvadrqyBEFoG8yKmX9O/Ce3fH0VGz27uKV2Ma+WrqBr1rB4F61VmA0K907pxbBOyfz6wzWsLa7j3Od+5N/XDWNY3rFNDtE0jUJ3ISvKVrBkzxIWuRfhm+Frsk+iOZERmSMYmTWSUVmjyHHmtImhESJ4OZmVroOvfwMlK/TbmQPg3L83rsbaVmmaxtsNA3WvG53XJt4ogiC0PU6Tk5envcON75/OVgWunXUrz0z8J6d1aP1kmvFyRq90vv7FWH7+7irWl9Rz7WvLePnaoYzvcfDsTE3TKPIUsaxsGctLl7O8fDlVgaom+1gUC0Mzhja2rvRM7hnfTO+HIYKXk1GgDuY9CUtfAk0FkxPO/AMMv6XNzCI6ksU7qtle4cVuUrh4iMioKwjC4SVYEnl10N38atmjrLbA7d/fzu0Db+e2AbehyKdGbpScZBsf3Taa299Zybytldz05nKev2oIk/ums6NuB2sq17CyfCXLy5Y3yT8GYJJNDEwfyNC0oUQKI9xyzi3YLfY4vZJj1/a/yYRjF4vqXURz/gJ+fUodfS+CKX8BV3Zci3Y83moYqHvRkA44LXFajFIQhHYjacDV/HvuUzwe8fKp08G/1v6LVeWr+NOYP5HtaD+ffT+F1aTw7FV9uPOTL1hetpK75/0H+5oSgjFvk/2MspEBaQMYkTmC4ZnDGZA2ALNiJhKJMKN4BialfUy9FsHLyWLHbPjuD/p6HwCpPWHqX6DbpPiW6ziV1QeZlV8OwLWj8uJbGEEQ2gfFgHnkbTz8vz8y1JDEow6FpWVLufCLC/nl4F9yVa+rTqpWGFVT2e3ZzdbarU22Yo++lIq5YQJsMAZGyczgjIEMSh/EiMwRDEwbiMXQ/pdZEcFLe1e1Hf73R9j6rX7bmgSn/14flHsC633E2/vLioipGiPykumZeWou9S4IwgkY8jOY/zTnle2g/zlP8VDVIlZVrOLJ5U/ybeG3/H7k7+mb2jfepTxu7rCbbbXbmgQp22q3Ncnmvr90WzqD0gazuzSd5VsS0EJZTO0zmMsGn1zLq4jgpb3yVcOPz8CyV0CNgmzQx7RMuA9sbXQZgqOIxFQ+WF4EwDWjO8W5NIIgtCsWF4z+Bcz5M3lLXuH1OxbzyY7/8veVf2dd1Tqu/OZKzu58NncOupNOrrb1+RJVo+zx7mGneyc763ey072TXe5d7KzfSUWg4pDPMckmuiV1o0dSj8ate1L3xmVoVFXjgS828O7SIu79ZB2RmMbVI0+eZJ8ieGlvwn5Y+i9Y8A8IufX7uk/Rc7a08wRN328qp9wdItVhYmrfNrZwpSAIbd+o22HJi1C9HXn9x1w+eDoTOk7gudXP8dWOr/i28Fu+LfyWIelDmNZ5GqOzR7fa1F9N06gN1bKzXg9MCt2FjdeLPEWNyd8OJdue3Ric9EjWA5VcZy4G+fBf4bIs8ecL+2FUZN5YtJPff76eqKqeNHmzRPDSXsSisOYdmPsEeEr1+zL7w6RHoNvE+JatmeydHn3F8BxMhrY3NU8QhDbO7ISxv9bXbJv3BPS/jAx7Bo+NfYxrel/DP9f8kwUlC1hVsYpVFasAPena8MzhDEgdQL+0fvRI7IHxBLrcNU3DF/FRG6yl1FdKibeEPb49lHhKGoMVT9hz+KIrZjq5OtHJ1Yk8Vx55CXmNly7TiSVFlSSJh87rg1GR+PePhTz4xUbCUZWbx3U5oeO1JSJ4aeuiIVj3ISx8Fqq36/cl5urrEPW7FOST40t+e4W+dock1jESBOGnGH4LLH4B6opg5esw8jYAeqf05oWJL1DuK+ebwm+Yv3s+ayvXUuor5csdX/Llji8BvTume1J3Mu2ZpFpTsRvtGGUjqqYSiAYO2upCddQEa6gN1hJRI0csmoRElj2LvIS8g4KUTHtmi+RTkSSJ30/rjVGReXHuDv78TT6hqMqdZ3Rr9nO1JhG8tFXBeljxOiz5F3jL9PusyTD+Xhh+Exja8GrVJ+DdpXqry8Re6XRMssW5NIIgtFsmG5x+v56gc+4TMPBKsCQ0Ppxhz+DGfjdyY78bGxcaXF2xmg1VG1hftR5P2MPG6o1srN54Qqe3Gqxk2DLIdmTTwdGBbEc2uc5c8hLyyHXmxmWmjyRJ3DulJ2aDwt+/38rT320hEI5xz+Qe7TYJqAhe2hpPmR6wrPjPvjEtzmwY/XN95WfzyTcDxx+O8slKfR2j6aPa1kA6QRDaocHXwZKX9AVoF/wdJj18yN1sRhtjO4xlbIexwL4MtNtqt1EZqKQqUEUgGiAcC2OQDVgNViyKBavBitWoX080J5JsSSbJkkSSJanNLh8jSRK/mtQdi1Hm8W8388852wlGYvzhnN7tMoARwUtbUbUdFj0Laz+AWFi/L7UnjPkV9L8MDO0jcdCJ+GrtHjzBKDnJViZ0PziltSAIwnFRDHDWI/D+lfqPweE3Q0LHoz5NkqTGcScnq9smdMViVHjoy428uqCQYDTGn87vF+9iHTcRvMRb1TY9lf/6TwBNvy9nlD7orPuUk2ZMy5G8u1SfHj19ZCdkuf39AhAEoQ3qMRU6jYVdC2D2n+Gil+JdojbjZ6flYTHK3P/Zet5ZUkQoovLo+b3jXazjIoKXeKneAfOegvUf6esPAfQ4Ww9ackfFtWitad3uOtbtrsekyFw29Oi/jARBEI6JJMHkP8G/z9RbtEf9HLIGxLtUbcYVw3MxGxTu+XgtH6/cTTQWY3w7SrwrgpfWVlMA857WZxBpMf2+ntP0AWZZA+Nbtjh4d4ne6nJ2/0xSHCfXIGRBEOKsw1Dodwls+FTPRH7dF3pQIwBw4eAOmAwyv3h/NZ+vKaUkTeZsVaM95GZv0T6Jmpoapk+fjsvlIjExkZtuugmv13vE/X/xi1/Qs2dPrFYrubm5/PKXv6S+vr4li9k6agrhv3fC88Ng7Xt64NJjKtw6F656/5QMXOoDEb5cuwfQu4wEQRCa3cQHQTFD4TzY9EW8S9PmTOufxXNXDkaRJZZVyvzhi42oqhbvYh1ViwYv06dPZ+PGjcyaNYuvv/6a+fPnc+uttx52/z179rBnzx6eeeYZNmzYwBtvvMHMmTO56aabWrKYLctdqk/Z++cwPcmcFoNuZ8HNs+HqDyF7cLxLGDf/XV1CIBKjR4aD4XlJ8S6OIAgno6Q8vTseYObvIHT4H9CnqnMGZPG3S/sjo/Hpqj386etN8S7SUbVYt1F+fj4zZ85k+fLlDBs2DIDnn3+eadOm8cwzz5CdffAy5f369ePTTz9tvN21a1cee+wxrrnmGqLRKAZDO+rl8tfAwn/A0ldg7wJaXc/UF03MGR7XorUFmqY15naZPrJTu5yqJwhCOzH2N/q4l7pdMP8pOOtP8S5RmzOtfybLV63m3R0KbyzaSa9MJ1e24YShLRYNLF68mMTExMbABWDSpEnIsszSpUu56KKLjuk49fX1uFyuwwYuoVCIUCjUeNvt1nOjRCIRIpEjZzs8XnuPd8TjhjzIy15GXvoCUkhPBa12HIF6xh/Rck/be6BmLVd7tGJXLVvLvViNMuf1T2/2utrfMdWb0OaIemuf2ma9GZAmP47ho6vRFr9AtO/lkNYz3oVqUyKRCMPTNFJzu/CP2QU8+OVGeqTb6N8h4ehPbsYyHKsWC17KyspIT09vejKDgeTkZMrKyo7pGFVVVTz66KNH7Gp6/PHHeeSRRw66/3//+x82W8tkap01a9ZB9ymxEJ2rZtG9/BuUmA+AeksO+dmXUe4aCBvqYMOMFilPe/TWNhmQGZgU5cfZB/89W8Kh6k1o+0S9tU9tsd5GJAwmq341de/dzKJu94vBu4fQyb+VfkkyG2rh5teX8Nv+MeytNILX7/cf877HHbzcf//9PPnkk0fcJz8//3gPexC3280555xDnz59ePjhhw+73+9+9zvuvvvuJs/Lyclh8uTJuFwntpjV4UQiEWbNmsVZZ52F0dhQm5EA8qo3kBc/h+SrBEBL6U5s/H3Yel/A0BZYq6K9q/aF+e2yeYDGfRePbvHI/pD1JrR5ot7apzZdb3X90F4+jTRvPud08qP1uyzeJWoz9tbblMlnMf5MuPilpeyq8TOzPoN/XzOkVXJw7e05ORbHHbzcc889XH/99Ufcp0uXLmRmZlJRUdHk/mg0Sk1NDZmZmUd8vsfjYerUqTidTj7//PMjvgHMZjNm88FTbI1GY4u9cYxGI0ZJhVVvwY9/3bfKc1JnOP1+pP6XYZCVFjn3yeCLtUVEYhoDOiYwJC+11c7bkv8nhJYj6q19apP1ltYVxv0W5vwZw/9+D93OBOeRv49ONUajEZvNyMvXDeWCfy5k/rZq3ltRwg1jOrfKuY/VcQcvaWlppKUdPYX76NGjqaurY+XKlQwdOhSA2bNno6oqI0eOPOzz3G43U6ZMwWw28+WXX2KxtK2sOZIWQ1r9Niz8G9QX63cm5MCE+2DgVXACS6mfSlRV471lezPqtt3BYIIgnKTG/Aryv4SydfDFXTD9Y9F9dAi9Ml388ZzePPDFRh7/djOndU2lZ2bbWVuvxfo0evfuzdSpU7nllltYtmwZCxcu5K677uLKK69snGlUUlJCr169WLZsGaAHLpMnT8bn8/Haa6/hdrspKyujrKyMWCzWUkU9NpqGtGUGZ+T/HsOM3+iBizMbzvkr/GIVDLlOBC7HYOGOKnZV+3GaDZw38OAZZ4IgCC3KYIKLX9Fzv2yfBQv+Fu8StVnXjOrEmb3SCUdVfvXBakLRhu/hgrlQtCSuZWvRARnvvvsuvXr1YuLEiUybNo2xY8fyyiuvND4eiUTYsmVL4yCdVatWsXTpUtavX0+3bt3Iyspq3IqLi1uyqEe3+RsMn1yHM1SKZkuBKY/DL1frC36dxIsmNre9GXUvHtIBm6kdTX0XBOHkkd4bzn5Cv/7Do7Dl2/iWp42SJIknLxlAit3E5jIPr3wxGz68Bt66AL76FcTiN6OsRb89kpOTee+99w77eF5eHpq2L5Pf6aef3uR2m9JjKmrWYLapOXS59lmMjuR4l6jdKXcHmZVfDsD0USKjriAIcTTsRihbDyv+A5/eAjfP0oMaoYk0p5m/nZfD9k8e5tp1/wMpBpICXU6HWDhuPQ5iKsyxUgzEbviOzdmXgrnt9Pu1Jx8sKyamaozIS6ZHhvgbCoIQZ1OfhE5jIOyBdy8HT3m8S9S2RIKw4B9M+HYyNxm+xSTFWCINpP5ns+HsJ8Fkj1vRRPByPMS05xMWjal8sLxhoO4oMVBXEIQ2wGCCy9+G5C5QXwTvXwFhX7xLFX+qCms/1Je1+f4hCNWjpvfl/2yPcGXg//jt/Gjce0nEt/Fx2FXtJxznccPt1ZwtlZTWB0m2m5jaT0xNFAShjbCnwPRPwJoMe1brXUjqKfpBr2lIW7+Fl8fB57fqE1NcHeDCfyHf/iPXXXMDRkVi1qZy/vxNflwXcBTByzHaXetn+mvLeTFfoT7QltJetw9vLd4JwGVDO2I2iBw4giC0ISld4aoP9BlIW77RB6OqarxL1Xo0DalgLuO3PoLh42uhfAOYXTDxIfjFShh0NcgKfbMTeOi8vgB8n1+OJxiNW5HFdI9jVOEJEYjEKA9K3PjmSj66/TQsRvElfCy2lHn4cVsVsqRPvRMEQWhzckfCJf+Gj6+H1W/ruV/OfRbkk/w3/q5FMPvPGHYtJAnQjDakkbfBab8E28ETU64Z1YkEq5G+2S4SbPFLD3KS10rzGZKbxHs3Dcdm0FhX4uahLzbGu0jtxusLCwGY0jeTnOSWWW9KEAThJ+tzAVz8b31846q34OtfQSx+rQstRtNgxxx441x4/WzYtRBNMbMjbQrRn6+ASQ8fMnDZ67yB2XRJc7ReeQ9BBC/HoWemk+u7q0gSfLiimKUF1fEuUptXVh/ks9UlANw4tuXTSwuCIPwk/S9tGsC8fSF4K+NdquahqrD5G3h1ov66dv4IsgGGXk/058vY0HE6ONKPepi2QAQvx6lnosYVwzoC8NCXG4nGTqF+0RPw4tzthKMqI/KSGdYpKd7FEQRBOLr+l8Llb4HJoX/BvzxO/9JvrwJ1sOQleGEEfHA1lKwEgxVG3g6/WgvnPasPzG1HxJiXE3D3pG58u6GczWUePltdwuXDcuJdpDZpT12AD5bpmZF/fVZ3JLF+iCAI7UXv8yC1h55Rtmqr/qXf+zw4+2lwZcW7dEenaVC6Vk/Ct/5jiOiZ7DG79Mzwo34OjqOvU9hWiZaXE5BkM3HXGd0AePb7bYSjovXlUF6Ys51wTGVk52RO69p6q0cLgiA0i7SecNt8GHu33r2S/5We++R/D7TdhHa1O2H+0/DCSHhlAqx6Uw9c0nrra/HdvQkmPdSuAxcQLS8n7JpRnfj3jwWU1AX4cHkR147Oi3eR2pSSugAfrdBbXX5zVo84l0YQBOEEGa36l32/S/Qp1CUrYNFzsPRl6HcxDL0BckbEd2Xq6h2wdSZs+hKK91swUTFDr3P0lpZOp51Uq2eL4OUEWU0Kd53ZjQe/2Mg/52znsmE5Yur0fv76vy1EYhqju6QwqktKvIsjCILw02T2g5u/h63fwY/PwO7lsPZ9fUvrrQcyvc+H9F4tX5ZIEHYv08uydSZUb9/vQQk6j4cBl+vdXJaEli9PHIjg5Se4YngOL8/TW1/eWbKLm8d1iXeR2oQNJfV83jDD6P/OboU3siAIQmuQJOg5FXpM0Qe9rvgPbPgUKvNhzmP6ltJdDx46nQYdh0NCzk/LFaNp4C2HPWugaDEULYE9q/RFEfeSjZA3BnpMhT4Xto8xOT+RCF5+ArNB4ZcTu/F/n67nuR+2ce6AbDITLPEuVlxpmsZj3+SjaXD+wGwG5STGu0iCIAjNS5Kg4zB9m/IY5H8N+V/quVOqt+nbitf0fU0OfexMUh44MsGZCbYUMFrA0LBpGsRCEA1C0A2eUnDv0cevVGwC/yHSctjTodskPZDqeiZYXK35F4g7Ebz8RJcM6ch7S4tYu7ue//t0HW/cMPyUnlUzZ0sFiwuqMSky907pGe/iCIIgtCxrEgy5Vt+C9VA4H3Ythl0LoXwjhL16K03JyhM/hyRDSjfIGQm5oyF3lL6Y5Cn8XSOCl5/IoMj89fKBTHtuAfO2VvL+smKuHnlqrpocjan8ZcZmAG4Ykyey6QqCcGqxJOjjTHqfp9+ORaCmQG89qS8Bbxl4yiBQC9GGlpZIUA9CDGa9FcZkB2cWuLIhoSOk94a0XvrAYaGRCF6aQbd0J/dN6cmfv8nn0a83MaJzMt3S45s6OR7eX1bE9goviTYjP2+YSi4IgnDKUox6l1GaaIVubiLPSzO5cUxnxnRLIRCJ8Yv3VxOMnFpLqld6Qjz13RYAfjOpBwnW+C3YJQiCIJzcRPDSTGRZ4u+XDyLFbiK/1M3vP1uPpmnxLlareeybTXiCUfp3SBArRwuCIAgtSgQvzSjdZeG5qwajyBKfrS7hxbk74l2kVrFoexX/XbMHSYLHLuqHIp+6g8gEQRCElieCl2Y2plsqj5zfF4Cnv9ty0q88HYrG+OMXGwC4ZmQnBnRMjG+BBEEQhJOeCF5awDWjOnFFw2KNv/ts/Uk9/uXf8wsoqPSR6jDzWzE1WhAEQWgFInhpIb8/pzdpTjMFVT7+OXv70Z/QDhVV+3m+4bX98ZzeYpCuIAiC0CpE8NJCEqxGHr1A7z56ad4O8kvdcS5R89I0jYe+3EAoqnJa1xQuGJQd7yIJgiAIpwgRvLSgqf2ymNI3g6iqcf+n64jG1HgXqdl8t7GMOVsqMSoSf7qg3ymdVVgQBEFoXSJ4aWF/uqAfTouBtbvrG7tY2jtvKMrDX24C4LbxXU/JhHyCIAhC/IjgpYVluCz8+cJ+ADw/extztlTEuUQ/3WPf5FPmDpKTbOWuM0UmXUEQBKF1ieClFVwwqAMXD+mAqsEtb67g1R8L2m0Cu1mbynl/WRGSBE9cPACLUYl3kQRBEIRTjAheWskTFw/ggkHZRFWNP3+Tz4NfbGx3AUylJ8T9n64D4JZxXRjTLTXOJRIEQRBORSJ4aSUmg8w/rhjEw+f1QZLg7SW7ePzbze0mgNE0fdBxtS9Mr0wn90zuEe8iCYIgCKcoEby0IkmSuH5MZ564uD8Ar8wvaDdLCLy/rJgfNldgUmT+ceUgzAbRXSQIgiDEhwhe4uCK4bk8eG4fQF9C4Jt1pXEu0ZHtqPTy6Nf67KL7pvakV6YrziUSBEEQTmUieImTG8d25oYxeQDc/dEaVhfVxrdAhxGKxvjl+6sJRGKM6ZbCjWM6x7tIgiAIwilOBC9x9Mdz+nBmr3RCUZVb3lrJ7lp/vIt0kKdmbmHjHjdJNiN/u3wQslgxWhAEQYgzEbzEkSJLPHfVYHplOqnyhrjpjRV4gpF4F6vRqz8W8NqCQgCevGQAGS5LnEskCIIgCCJ4iTuH2cB/rh9OmtPMlnIPv/14bZuYgfTR8mL+/E0+AL+d3IPJfTPjXCJBEARB0IngpQ3ITrTy6nXDMCoS320s5+OVu+Nanq/X7eH+z/bmc+nMnWeILLqCIAhC2yGClzZiYE4id5/VE4A/fbWJ4pr4jH95Z8kufvn+alQNrhiWw++n9RaLLgqCIAhtSosGLzU1NUyfPh2Xy0ViYiI33XQTXq/3iM+57bbb6Nq1K1arlbS0NC644AI2b97cksVsM24d34XheUl4Q1Hu+XgtMbX1uo80TeOv/9vCH/+7AVWDK4fn8JeL+4vARRAEQWhzWjR4mT59Ohs3bmTWrFl8/fXXzJ8/n1tvvfWIzxk6dCivv/46+fn5fPfdd2iaxuTJk4nFYi1Z1DZBkSX+dvkg7CaFZYU1vLagoFXO6w5GuO3tlY2rXv9qYncev7g/iphZJAiCILRBLRa85OfnM3PmTF599VVGjhzJ2LFjef755/nggw/Ys2fPYZ936623Mn78ePLy8hgyZAh//vOfKS4uZufOnS1V1DYlJ9nGAw0J7J75biuby9wter6t5R4u/OdC/repHJMi8+Ql/fnNWT1Ei4sgCILQZrVY8LJ48WISExMZNmxY432TJk1ClmWWLl16TMfw+Xy8/vrrdO7cmZycnJYqaptzxfAcJvZKJxxT+dl/lrF+d32zn0NVNd5ZsosLX1hIQZWP7AQLH90+miuG5zb7uQRBEAShORla6sBlZWWkp6c3PZnBQHJyMmVlZUd87osvvsh9992Hz+ejZ8+ezJo1C5PJdMh9Q6EQoVCo8bbbrbdURCIRIpHmzZmy93jNfdxDeeyC3hTV+NhW4eOSlxbx8Lm9uGxox2Y59pYyDw98uYnVxXpQNLpLMn+/fAApdlOrvLbW1pr1JjQfUW/tk6i39qkt1NvxnFvSjjOpyP3338+TTz55xH3y8/P57LPPePPNN9myZUuTx9LT03nkkUe44447Dvv8+vp6KioqKC0t5ZlnnqGkpISFCxdisRycJO3hhx/mkUceOej+9957D5vNdoyvqm3yR+Hd7TIbavUGstHpKpd0VjGeYHtZOAYzd8vMKZVQNQmzrHFOrsq4TA0xvEUQBEGIJ7/fz9VXX019fT0u15HX0Dvu4KWyspLq6uoj7tOlSxfeeecd7rnnHmpr963ZE41GsVgsfPzxx1x00UXHdL5wOExSUhKvvvoqV1111UGPH6rlJScnh6qqqqO++OMViUSYNWsWZ511FkajsVmPfTiqqvHyj4X844ftqBr0znTy+EV96Zt97K9NVTW+Wl/G37/fRkldEICzeqfzwDm9yEo4+bPmxqPehJ9O1Fv7JOqtfWoL9eZ2u0lNTT2m4OW4u43S0tJIS0s76n6jR4+mrq6OlStXMnToUABmz56NqqqMHDnymM+naRqapjUJUPZnNpsxm80H3W80GlusAlry2Ifyy0k9GdwpmV++v5r8Mg8Xv7SE60bn8cuJ3Um2H7o7DfRFFb/bWM4r83ewoUTvTstOsPDw+X1PyYy5rV1vQvMQ9dY+iXprn+JZb8dz3hYbsNu7d2+mTp3KLbfcwrJly1i4cCF33XUXV155JdnZ2QCUlJTQq1cvli1bBkBBQQGPP/44K1eupKioiEWLFnHZZZdhtVqZNm1aSxW1XRjXPY3vfjOe8wZmo2rwxqKdTHh6Di/N24EvFG2yb4UnyN9nbWXME7P55fur2VDixmE2cO+Unvxwz+mnZOAiCIIgnDxabMAuwLvvvstdd93FxIkTkWWZSy65hOeee67x8UgkwpYtW/D79WyyFouFH3/8kX/84x/U1taSkZHB+PHjWbRo0UGDf09F6U4Lz181mCuG5fDYjHzyS9088e1mXpi9nUG5iXRMslHtDTF3SyXhmApAhsvMFcNy+NlpeaQ4Dm6hEgRBEIT2pkWDl+TkZN57773DPp6Xl9dkEcLs7GxmzJjRkkU6KYztnsrXvxjL56tL+Ofsbeys9vPjtqom+wzJTeTGsZ2Z0jcToyJWgRAEQRBOHi0avAgtR5ElLh3akYsHd2BdST35pW4q3CFsJoURnZMZmJMY7yIKgiAIQosQwUs7J8sSg3ISGSSCFUEQBOEUIfoTBEEQBEFoV0TwIgiCIAhCuyKCF0EQBEEQ2hURvAiCIAiC0K6I4EUQBEEQhHZFBC+CIAiCILQrIngRBEEQBKFdEcGLIAiCIAjtigheBEEQBEFoV0TwIgiCIAhCuyKCF0EQBEEQ2hURvAiCIAiC0K6I4EUQBEEQhHblpFtVWtM0ANxud7MfOxKJ4Pf7cbvdGI3GZj++0DJEvbVPot7aJ1Fv7VNbqLe939t7v8eP5KQLXjweDwA5OTlxLokgCIIgCMfL4/GQkJBwxH0k7VhCnHZEVVX27NmD0+lEkqRmPbbb7SYnJ4fi4mJcLlezHltoOaLe2idRb+2TqLf2qS3Um6ZpeDwesrOzkeUjj2o56VpeZFmmY8eOLXoOl8sl3pTtkKi39knUW/sk6q19ine9Ha3FZS8xYFcQBEEQhHZFBC+CIAiCILQrIng5DmazmYceegiz2RzvogjHQdRb+yTqrX0S9dY+tbd6O+kG7AqCIAiCcHITLS+CIAiCILQrIngRBEEQBKFdEcGLIAiCIAjtigheBEEQBEFoV0TwcoxeeOEF8vLysFgsjBw5kmXLlsW7SKe0hx9+GEmSmmy9evVqfDwYDHLnnXeSkpKCw+Hgkksuoby8vMkxioqKOOecc7DZbKSnp3PvvfcSjUZb+6Wc1ObPn895551HdnY2kiTx3//+t8njmqbx4IMPkpWVhdVqZdKkSWzbtq3JPjU1NUyfPh2Xy0ViYiI33XQTXq+3yT7r1q1j3LhxWCwWcnJyeOqpp1r6pZ3UjlZv119//UHvv6lTpzbZR9Rb63v88ccZPnw4TqeT9PR0LrzwQrZs2dJkn+b6bJw7dy5DhgzBbDbTrVs33njjjZZ+eU2I4OUYfPjhh9x999089NBDrFq1ioEDBzJlyhQqKiriXbRTWt++fSktLW3cFixY0PjYb37zG7766is+/vhj5s2bx549e7j44osbH4/FYpxzzjmEw2EWLVrEm2++yRtvvMGDDz4Yj5dy0vL5fAwcOJAXXnjhkI8/9dRTPPfcc7z00kssXboUu93OlClTCAaDjftMnz6djRs3MmvWLL7++mvmz5/Prbfe2vi42+1m8uTJdOrUiZUrV/L000/z8MMP88orr7T46ztZHa3eAKZOndrk/ff+++83eVzUW+ubN28ed955J0uWLGHWrFlEIhEmT56Mz+dr3Kc5PhsLCws555xzOOOMM1izZg2//vWvufnmm/nuu+9a78VqwlGNGDFCu/POOxtvx2IxLTs7W3v88cfjWKpT20MPPaQNHDjwkI/V1dVpRqNR+/jjjxvvy8/P1wBt8eLFmqZp2owZMzRZlrWysrLGff71r39pLpdLC4VCLVr2UxWgff755423VVXVMjMztaeffrrxvrq6Os1sNmvvv/++pmmatmnTJg3Qli9f3rjPt99+q0mSpJWUlGiapmkvvviilpSU1KTe/u///k/r2bNnC7+iU8OB9aZpmvazn/1Mu+CCCw77HFFvbUNFRYUGaPPmzdM0rfk+G++77z6tb9++Tc51xRVXaFOmTGnpl9RItLwcRTgcZuXKlUyaNKnxPlmWmTRpEosXL45jyYRt27aRnZ1Nly5dmD59OkVFRQCsXLmSSCTSpM569epFbm5uY50tXryY/v37k5GR0bjPlClTcLvdbNy4sXVfyCmqsLCQsrKyJvWUkJDAyJEjm9RTYmIiw4YNa9xn0qRJyLLM0qVLG/cZP348JpOpcZ8pU6awZcsWamtrW+nVnHrmzp1Leno6PXv25I477qC6urrxMVFvbUN9fT0AycnJQPN9Ni5evLjJMfbu05rfiSJ4OYqqqipisViTigTIyMigrKwsTqUSRo4cyRtvvMHMmTP517/+RWFhIePGjcPj8VBWVobJZCIxMbHJc/avs7KyskPW6d7HhJa39+98pPdWWVkZ6enpTR43GAwkJyeLuoyjqVOn8tZbb/HDDz/w5JNPMm/ePM4++2xisRgg6q0tUFWVX//614wZM4Z+/foBNNtn4+H2cbvdBAKBlng5BznpVpUWTg1nn3124/UBAwYwcuRIOnXqxEcffYTVao1jyQTh5HfllVc2Xu/fvz8DBgyga9euzJ07l4kTJ8axZMJed955Jxs2bGgyFvBkIlpejiI1NRVFUQ4ajV1eXk5mZmacSiUcKDExkR49erB9+3YyMzMJh8PU1dU12Wf/OsvMzDxkne59TGh5e//OR3pvZWZmHjQwPhqNUlNTI+qyDenSpQupqals374dEPUWb3fddRdff/01c+bMoWPHjo33N9dn4+H2cblcrfbjUQQvR2EymRg6dCg//PBD432qqvLDDz8wevToOJZM2J/X62XHjh1kZWUxdOhQjEZjkzrbsmULRUVFjXU2evRo1q9f3+QDdtasWbhcLvr06dPq5T8Vde7cmczMzCb15Ha7Wbp0aZN6qqurY+XKlY37zJ49G1VVGTlyZOM+8+fPJxKJNO4za9YsevbsSVJSUiu9mlPb7t27qa6uJisrCxD1Fi+apnHXXXfx+eefM3v2bDp37tzk8eb6bBw9enSTY+zdp1W/E1ttaHA79sEHH2hms1l74403tE2bNmm33nqrlpiY2GQ0ttC67rnnHm3u3LlaYWGhtnDhQm3SpElaamqqVlFRoWmapt1+++1abm6uNnv2bG3FihXa6NGjtdGjRzc+PxqNav369dMmT56srVmzRps5c6aWlpam/e53v4vXSzopeTwebfXq1drq1as1QPvb3/6mrV69Wtu1a5emaZr2xBNPaImJidoXX3yhrVu3Trvgggu0zp07a4FAoPEYU6dO1QYPHqwtXbpUW7Bggda9e3ftqquuany8rq5Oy8jI0K699lptw4YN2gcffKDZbDbt5ZdfbvXXe7I4Ur15PB7tt7/9rbZ48WKtsLBQ+/7777UhQ4Zo3bt314LBYOMxRL21vjvuuENLSEjQ5s6dq5WWljZufr+/cZ/m+GwsKCjQbDabdu+992r5+fnaCy+8oCmKos2cObPVXqsIXo7R888/r+Xm5momk0kbMWKEtmTJkngX6ZR2xRVXaFlZWZrJZNI6dOigXXHFFdr27dsbHw8EAtrPf/5zLSkpSbPZbNpFF12klZaWNjnGzp07tbPPPluzWq1aamqqds8992iRSKS1X8pJbc6cORpw0Pazn/1M0zR9uvQDDzygZWRkaGazWZs4caK2ZcuWJseorq7WrrrqKs3hcGgul0u74YYbNI/H02SftWvXamPHjtXMZrPWoUMH7Yknnmitl3hSOlK9+f1+bfLkyVpaWppmNBq1Tp06abfccstBP+ZEvbW+Q9UZoL3++uuN+zTXZ+OcOXO0QYMGaSaTSevSpUuTc7QGSdM0rfXaeQRBEARBEH4aMeZFEARBEIR2RQQvgiAIgiC0KyJ4EQRBEAShXRHBiyAIgiAI7YoIXgRBEARBaFdE8CIIgiAIQrsighdBEARBENoVEbwIgiAIgtCuiOBFEARBEIR2RQQvgiAIgiC0KyJ4EQRBEAShXRHBiyAIgiAI7cr/A0xfgDW8ssN1AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "evolution = []\n", + "current_x = test_x[sample, :, ::4]\n", + "\n", + "final_time = 10\n", + "\n", + "for _ in range(final_time):\n", + " evolution.append(fno(current_x))\n", + " current_x = fno(current_x)\n", + "\n", + "evolution.append(fno(current_x))\n", + "\n", + "for ev in evolution:\n", + " plt.plot(ev[0])\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "source": [ + "# Resolution-dependent error\n", + "\n", + "twos = [1, 2, 4, 8, 16, 32, 64, 128]\n", + "error = []\n", + "xaxis = []\n", + "\n", + "\n", + "for two in twos:\n", + " xaxis.append(8192/two)\n", + " test_x, test_y = a_with_mesh[1000:1200][:, :, ::two], u[1000:1200][:, :, ::two]\n", + " test_pred = jax.vmap(fno)(test_x)\n", + " rel_l2_set = jax.vmap(relative_l2_norm)(test_pred, test_y)\n", + " error.append(jnp.mean(rel_l2_set))\n" + ], + "metadata": { + "id": "mVCvHdjqGJu3" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "plt.plot(xaxis, error, 'o')\n", + "plt.ylim(0, 0.11)\n", + "plt.xscale('log', base=2)\n", + "plt.grid()\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 434 + }, + "id": "jIash7cJ71EG", + "outputId": "29c80755-c68d-4bc4-9ad7-710be560a538" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGhCAYAAABCse9yAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJvRJREFUeJzt3X9Y1Xf9//EHIIJsYk2SI8jEFqmIgynCsG2uhWDzatEPM6thzMtdK2muU2xhTj5ermg2DUuLrMuuy2t5afaDmTPyRGOuYONSXLusue1bbi7dAZ1TFCaecd7fP7w4DTkgB8/hvOB9v12XV533eb1fvp5P3+e8H3uf94EIy7IsAQAAGCwy3AsAAAC4GgILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxRoV7AcHg9Xp18uRJjR07VhEREeFeDgAAGADLsnT+/HklJSUpMrL/aygjIrCcPHlSKSkp4V4GAAAYhDfffFOTJk3qd8yICCxjx46VdLng+Pj4oM7t8Xi0f/9+FRQUKDo6OqhzDwd2r1+iB3avX6IHdq9fogehqr+trU0pKSm+83h/RkRg6f4YKD4+PiSBJS4uTvHx8bY9SO1cv0QP7F6/RA/sXr9ED0Jd/0Bu5+CmWwAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGG9QgWXLli1KTU1VbGyscnNz1dTU1OfYf/7zn/rc5z6n1NRURUREqKqq6prnBAAA9hJwYNm1a5ecTqcqKirU3NyszMxMFRYWqrW11e/4jo4OffjDH9YPfvADORyOoMwJAADsJeDAsnHjRi1fvlwlJSVKT09XdXW14uLitG3bNr/j58yZox/+8If64he/qJiYmKDMCQAA7GVUIIMvXbqkQ4cOqby83LctMjJS+fn5amxsHNQCBjNnZ2enOjs7fY/b2tokSR6PRx6PZ1Dr6Ev3fMGed7iwe/0SPbB7/RI9sHv9Ej0IVf2BzBdQYDl9+rS6urqUmJjYY3tiYqKOHj0ayFTXNGdlZaXWrl3ba/v+/fsVFxc3qHVcjcvlCsm8w4Xd65fogd3rl+iB3euX6EGw6+/o6Bjw2IACiynKy8vldDp9j9va2pSSkqKCggLFx8cH9e/yeDxyuVyaP3++oqOjgzr3cGD3+iV6YPf6JXpg9/olehCq+rs/IRmIgAJLQkKCoqKi1NLS0mN7S0tLnzfUhmLOmJgYv/fDREdHh+xACuXcw4Hd65fogd3rl+iB3euX6EGw6w9kroBuuh09erRmz56turo63zav16u6ujrl5eUFMlVI5wQAACNLwB8JOZ1OLV26VNnZ2crJyVFVVZXa29tVUlIiSSouLlZycrIqKyslXb6p9l//+pfv/584cUIvvviirr/+en3kIx8Z0JwAAMDeAg4sixcv1qlTp7RmzRq53W5lZWWptrbWd9Ps8ePHFRn5vws3J0+e1C233OJ7/MQTT+iJJ57QvHnzVF9fP6A5AQCAvQ3qptvS0lKVlpb6fa47hHRLTU2VZVnXNCcAALA3fpcQAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGC8QQWWLVu2KDU1VbGxscrNzVVTU1O/43fv3q1p06YpNjZWM2fO1L59+3o8f+HCBZWWlmrSpEkaM2aM0tPTVV1dPZilAQCAESjgwLJr1y45nU5VVFSoublZmZmZKiwsVGtrq9/xDQ0NWrJkiZYtW6bDhw+rqKhIRUVFOnLkiG+M0+lUbW2tnnzySb388st66KGHVFpaqj179gy+MgAAMGIEHFg2btyo5cuXq6SkxHclJC4uTtu2bfM7ftOmTVqwYIHKyso0ffp0rVu3TrNmzdLmzZt9YxoaGrR06VLdeeedSk1N1f3336/MzMyrXrkBAAD2MCqQwZcuXdKhQ4dUXl7u2xYZGan8/Hw1Njb63aexsVFOp7PHtsLCQtXU1Pgez507V3v27NF9992npKQk1dfX69VXX9WPfvQjv3N2dnaqs7PT97itrU2S5PF45PF4AinpqrrnC/a8w4Xd65fogd3rl+iB3euX6EGo6g9kvoACy+nTp9XV1aXExMQe2xMTE3X06FG/+7jdbr/j3W637/FPfvIT3X///Zo0aZJGjRqlyMhI/eIXv9Add9zhd87KykqtXbu21/b9+/crLi4ukJIGzOVyhWTe4cLu9Uv0wO71S/TA7vVL9CDY9Xd0dAx4bECBJVR+8pOf6Pnnn9eePXs0efJkHThwQCtWrFBSUpLy8/N7jS8vL+9x1aatrU0pKSkqKChQfHx8UNfm8Xjkcrk0f/58RUdHB3Xu4cDu9Uv0wO71S/TA7vVL9CBU9Xd/QjIQAQWWhIQERUVFqaWlpcf2lpYWORwOv/s4HI5+x7/77rtatWqV/vCHP2jhwoWSpJtvvlkvvviinnjiCb+BJSYmRjExMb22R0dHh+xACuXcw4Hd65fogd3rl+iB3euX6EGw6w9kroBuuh09erRmz56turo63zav16u6ujrl5eX53ScvL6/HeOnyJaXu8d33nURG9lxKVFSUvF5vIMsDAAAjVMAfCTmdTi1dulTZ2dnKyclRVVWV2tvbVVJSIkkqLi5WcnKyKisrJUkrV67UvHnztGHDBi1cuFA7d+7UwYMHtXXrVklSfHy85s2bp7KyMo0ZM0aTJ0/Ws88+q+3bt2vjxo1BLBUAAAxXAQeWxYsX69SpU1qzZo3cbreysrJUW1vru7H2+PHjPa6WzJ07Vzt27NDq1au1atUqpaWlqaamRhkZGb4xO3fuVHl5ub785S/rzJkzmjx5sr73ve/pgQceCEKJAABguBvUTbelpaUqLS31+1x9fX2vbYsWLdKiRYv6nM/hcOhXv/rVYJYCAABsgN8lBAAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYb1CBZcuWLUpNTVVsbKxyc3PV1NTU7/jdu3dr2rRpio2N1cyZM7Vv375eY15++WXdc889GjdunK677jrNmTNHx48fH8zyAADACBNwYNm1a5ecTqcqKirU3NyszMxMFRYWqrW11e/4hoYGLVmyRMuWLdPhw4dVVFSkoqIiHTlyxDfm3//+t2677TZNmzZN9fX1eumll/Too48qNjZ28JUBAIARI+DAsnHjRi1fvlwlJSVKT09XdXW14uLitG3bNr/jN23apAULFqisrEzTp0/XunXrNGvWLG3evNk35rvf/a7uvvturV+/Xrfccotuuukm3XPPPZowYcLgKwMAACPGqEAGX7p0SYcOHVJ5eblvW2RkpPLz89XY2Oh3n8bGRjmdzh7bCgsLVVNTI0nyer16+umn9fDDD6uwsFCHDx/WlClTVF5erqKiIr9zdnZ2qrOz0/e4ra1NkuTxeOTxeAIp6aq65wv2vMOF3euX6IHd65fogd3rl+hBqOoPZL6AAsvp06fV1dWlxMTEHtsTExN19OhRv/u43W6/491utySptbVVFy5c0A9+8AM99thjevzxx1VbW6vPfvazeuaZZzRv3rxec1ZWVmrt2rW9tu/fv19xcXGBlDRgLpcrJPMOF3avX6IHdq9fogd2r1+iB8Guv6OjY8BjAwosoeD1eiVJn/70p/XNb35TkpSVlaWGhgZVV1f7DSzl5eU9rtq0tbUpJSVFBQUFio+PD+r6PB6PXC6X5s+fr+jo6KDOPRzYvX6JHti9foke2L1+iR6Eqv7uT0gGIqDAkpCQoKioKLW0tPTY3tLSIofD4Xcfh8PR7/iEhASNGjVK6enpPcZMnz5df/vb3/zOGRMTo5iYmF7bo6OjQ3YghXLu4cDu9Uv0wO71S/TA7vVL9CDY9QcyV0A33Y4ePVqzZ89WXV2db5vX61VdXZ3y8vL87pOXl9djvHT5klL3+NGjR2vOnDl65ZVXeox59dVXNXny5ECWBwAARqiAPxJyOp1aunSpsrOzlZOTo6qqKrW3t6ukpESSVFxcrOTkZFVWVkqSVq5cqXnz5mnDhg1auHChdu7cqYMHD2rr1q2+OcvKyrR48WLdcccd+vjHP67a2lr98Y9/VH19fXCqBAAAw1rAgWXx4sU6deqU1qxZI7fbraysLNXW1vpurD1+/LgiI/934Wbu3LnasWOHVq9erVWrViktLU01NTXKyMjwjfnMZz6j6upqVVZW6sEHH9TUqVP1u9/9TrfddlsQSgQAAMPdoG66LS0tVWlpqd/n/F0VWbRokRYtWtTvnPfdd5/uu+++wSwHAACMcPwuIQAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgvEEFli1btig1NVWxsbHKzc1VU1NTv+N3796tadOmKTY2VjNnztS+ffv6HPvAAw8oIiJCVVVVg1kaAAAYgQIOLLt27ZLT6VRFRYWam5uVmZmpwsJCtba2+h3f0NCgJUuWaNmyZTp8+LCKiopUVFSkI0eO9Br7hz/8Qc8//7ySkpICrwQAAIxYowLdYePGjVq+fLlKSkokSdXV1Xr66ae1bds2fec73+k1ftOmTVqwYIHKysokSevWrZPL5dLmzZtVXV3tG3fixAl94xvf0J///GctXLiw3zV0dnaqs7PT97itrU2S5PF45PF4Ai2pX93zBXve4cLu9Uv0wO71S/TA7vVL9CBU9QcyX0CB5dKlSzp06JDKy8t92yIjI5Wfn6/Gxka/+zQ2NsrpdPbYVlhYqJqaGt9jr9ere++9V2VlZZoxY8ZV11FZWam1a9f22r5//37FxcUNsJrAuFyukMw7XNi9foke2L1+iR7YvX6JHgS7/o6OjgGPDSiwnD59Wl1dXUpMTOyxPTExUUePHvW7j9vt9jve7Xb7Hj/++OMaNWqUHnzwwQGto7y8vEcIamtrU0pKigoKChQfHz/QcgbE4/HI5XJp/vz5io6ODurcw4Hd65fogd3rl+iB3euX6EGo6u/+hGQgAv5IKNgOHTqkTZs2qbm5WREREQPaJyYmRjExMb22R0dHh+xACuXcw4Hd65fogd3rl+iB3euX6EGw6w9kroBuuk1ISFBUVJRaWlp6bG9paZHD4fC7j8Ph6Hf8c889p9bWVt14440aNWqURo0apTfeeEPf+ta3lJqaGsjyAADACBVQYBk9erRmz56turo63zav16u6ujrl5eX53ScvL6/HeOnyZ2Dd4++991699NJLevHFF31/kpKSVFZWpj//+c+B1gMAAEaggD8ScjqdWrp0qbKzs5WTk6Oqqiq1t7f7vjVUXFys5ORkVVZWSpJWrlypefPmacOGDVq4cKF27typgwcPauvWrZKk8ePHa/z48T3+jujoaDkcDk2dOvVa6wMAACNAwIFl8eLFOnXqlNasWSO3262srCzV1tb6bqw9fvy4IiP/d+Fm7ty52rFjh1avXq1Vq1YpLS1NNTU1ysjICF4VAABgRBvUTbelpaUqLS31+1x9fX2vbYsWLdKiRYsGPP/rr78+mGUBAIARit8lBAAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYb1CBZcuWLUpNTVVsbKxyc3PV1NTU7/jdu3dr2rRpio2N1cyZM7Vv3z7fcx6PR4888ohmzpyp6667TklJSSouLtbJkycHszQAADACBRxYdu3aJafTqYqKCjU3NyszM1OFhYVqbW31O76hoUFLlizRsmXLdPjwYRUVFamoqEhHjhyRJHV0dKi5uVmPPvqompub9fvf/16vvPKK7rnnnmurDAAAjBijAt1h48aNWr58uUpKSiRJ1dXVevrpp7Vt2zZ95zvf6TV+06ZNWrBggcrKyiRJ69atk8vl0ubNm1VdXa1x48bJ5XL12Gfz5s3KycnR8ePHdeONN/aas7OzU52dnb7HbW1tki5frfF4PIGW1K/u+YI973Bh9/olemD3+iV6YPf6JXoQqvoDmS/CsixroIMvXbqkuLg4/fa3v1VRUZFv+9KlS3X27Fk99dRTvfa58cYb5XQ69dBDD/m2VVRUqKamRv/4xz/8/j1/+ctfVFBQoLNnzyo+Pr7X8//3f/+ntWvX9tq+Y8cOxcXFDbQcAAAQRh0dHfrSl76kc+fO+T3fv19AV1hOnz6trq4uJSYm9tiemJioo0eP+t3H7Xb7He92u/2Ov3jxoh555BEtWbKkz8WXl5fL6XT6Hre1tSklJUUFBQVXLThQHo9HLpdL8+fPV3R0dFDnHg7sXr9ED+xev0QP7F6/RA9CVX/3JyQDEfBHQqHk8Xj0hS98QZZl6Wc/+1mf42JiYhQTE9Nre3R0dMgOpFDOPRzYvX6JHti9foke2L1+iR4Eu/5A5goosCQkJCgqKkotLS09tre0tMjhcPjdx+FwDGh8d1h544039Ne//jXoV0oAAMDwFdC3hEaPHq3Zs2errq7Ot83r9aqurk55eXl+98nLy+sxXpJcLleP8d1h5bXXXtNf/vIXjR8/PpBlAQCAES7gj4ScTqeWLl2q7Oxs5eTkqKqqSu3t7b5vDRUXFys5OVmVlZWSpJUrV2revHnasGGDFi5cqJ07d+rgwYPaunWrpMth5fOf/7yam5u1d+9edXV1+e5vueGGGzR69Ohg1QoAAIapgAPL4sWLderUKa1Zs0Zut1tZWVmqra313Vh7/PhxRUb+78LN3LlztWPHDq1evVqrVq1SWlqaampqlJGRIUk6ceKE9uzZI0nKysrq8Xc988wzuvPOOwdZGgAAGCkGddNtaWmpSktL/T5XX1/fa9uiRYu0aNEiv+NTU1MVwDerAQCADfG7hAAAQJ+6vJZeOHZGh05H6IVjZ9TlDc9FBqO+1gwApnn/m/X4Y2eU95EJioqMCPeyhozd65fs3YPaI29p7R//pbfOXZQUpe2vHdTEcbGq+FS6FmRMHNK1EFj6YeeDFJB4DZj0Zh0Odq9fsncPao+8pa892awrr6e4z13U155s1s++MmtIexDQj+Y3VVtbm8aNGzegH+07UD0P0svscpC+n8fj0b59+3T33Xfb8ocldXktNf6/Vu1/7gUV3J5rqxO23V8Dfb1Zd//rD/Wb9VCze/2SvXvQ5bV02+N/7fH6f78ISY5xsfrbI3dd03tiIOdv7mHxo/sgvfIfqjtV1h55K0wrG1qmfG4ZLrVH3tJtj/9VX9l2UNtfi9JXth3UbY//1Rb//nZ/DXR5La394796nagk+bat/eO/Ruxrwu71S/Sg6diZPsOKdLkHb527qKZjZ4ZsTQSWK9j9IO1m55O1ZO8TNq8BM9+sh5Ld65foQev5vmsfzLhgILBcwe4HqWTvk7XECZvXgJlv1kPJ7vVL9GDC2NigjgsGAssV7H6Q2v1kLXHCtvtrQDLzzXoo2b1+iR7kTLlBE8fFqq+7UyJ0+Z62nCk3DNmaCCxXsPtBaveTtcQJ2+6vAcnMN+uhZPf6JXoQFRmhik+lS1KvHnQ/rvhU+pB+CYHAcgW7H6R2P1lLnLDt/hqQzHyzHkp2r1+iB5K0IGOifvaVWXKM6/le5xgXG5ZvSBFYrmD3g9TuJ2uJE7bdXwPdTHuzHmp2r1+iB9LlHvztkbv05H3ZKk7r0pP3Zetvj9wVltr5OSx9sOvPoOj+7r373EW/97EE67v3puu+8VhSjz7Y4ecvdLPra+BKdv5ZPBL1S/RACt3P5Ark/M1Puu3DgoyJmp/usN1B2v1f1197slkR8n+yttN/XV95wnbY6IRt19fAlaIiI5Q75Qa9/bKl3Ck3UL/N6pfogSkILP2w60HKyfoyTtj2fQ0AMA+BBX5xsr6MEzYAmIHAgj5xsgYAmIJvCQEAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGG1Rg2bJli1JTUxUbG6vc3Fw1NTX1O3737t2aNm2aYmNjNXPmTO3bt6/H85Zlac2aNZo4caLGjBmj/Px8vfbaa4NZGgAAGIECDiy7du2S0+lURUWFmpublZmZqcLCQrW2tvod39DQoCVLlmjZsmU6fPiwioqKVFRUpCNHjvjGrF+/Xj/+8Y9VXV2tF154Qdddd50KCwt18eLFwVcGAABGjIADy8aNG7V8+XKVlJQoPT1d1dXViouL07Zt2/yO37RpkxYsWKCysjJNnz5d69at06xZs7R582ZJl6+uVFVVafXq1fr0pz+tm2++Wdu3b9fJkydVU1NzTcUBAICRYVQggy9duqRDhw6pvLzcty0yMlL5+flqbGz0u09jY6OcTmePbYWFhb4wcuzYMbndbuXn5/ueHzdunHJzc9XY2KgvfvGLvebs7OxUZ2en7/G5c+ckSWfOnJHH4wmkpKvyeDzq6OjQ22+/rejo6KDOPRzYvX6JHti9foke2L1+iR6Eqv7z589Lunzx4moCCiynT59WV1eXEhMTe2xPTEzU0aNH/e7jdrv9jne73b7nu7f1NeZKlZWVWrt2ba/tU6ZMGVghAADAGOfPn9e4ceP6HRNQYDFFeXl5j6s2Xq9XZ86c0fjx4xURERHUv6utrU0pKSl68803FR8fH9S5hwO71y/RA7vXL9EDu9cv0YNQ1W9Zls6fP6+kpKSrjg0osCQkJCgqKkotLS09tre0tMjhcPjdx+Fw9Du++39bWlo0ceLEHmOysrL8zhkTE6OYmJge2z7wgQ8EUkrA4uPjbXmQdrN7/RI9sHv9Ej2we/0SPQhF/Ve7stItoJtuR48erdmzZ6uurs63zev1qq6uTnl5eX73ycvL6zFeklwul2/8lClT5HA4eoxpa2vTCy+80OecAADAXgL+SMjpdGrp0qXKzs5WTk6Oqqqq1N7erpKSEklScXGxkpOTVVlZKUlauXKl5s2bpw0bNmjhwoXauXOnDh48qK1bt0qSIiIi9NBDD+mxxx5TWlqapkyZokcffVRJSUkqKioKXqUAAGDYCjiwLF68WKdOndKaNWvkdruVlZWl2tpa302zx48fV2Tk/y7czJ07Vzt27NDq1au1atUqpaWlqaamRhkZGb4xDz/8sNrb23X//ffr7Nmzuu2221RbW6vY2NgglHhtYmJiVFFR0esjKLuwe/0SPbB7/RI9sHv9Ej0wof4IayDfJQIAAAgjfpcQAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgCcOzYMX384x9Xenq6Zs6cqfb29nAvaci88sorysrK8v0ZM2aMLX+b9o9+9CPNmDFD6enpevDBBwf0C7tGkieeeEIzZsxQRkaGnnzyyXAvZ0h85jOf0Qc/+EF9/vOf7/Xc3r17NXXqVKWlpemXv/xlGFY3NPrrQX/PjRR91fjmm2/qzjvvVHp6um6++Wbt3r07TCsMvb56cPbsWWVnZysrK0sZGRn6xS9+EbpFWBiwO+64wzpw4IBlWZb19ttvWx6PJ8wrCo/z589b48ePty5cuBDupQyp1tZW68Mf/rD17rvvWu+99541d+5cq6GhIdzLGjIvvfSSdcstt1jvvvuu1dHRYeXm5lrvvPNOuJcVcs8884y1Z88e63Of+1yP7R6Px0pLS7P++9//WufPn7c++tGPWqdPnw7TKkOrrx5c7bmRoq8aT548aR0+fNiyLMt66623rKSkpBH7vthXD9577z2rvb3dsizLunDhgpWamhqy1wFXWAbon//8p6Kjo3X77bdLkm644QaNGjUsf3fkNduzZ48+8YlP6Lrrrgv3Uobce++9p4sXL8rj8cjj8WjChAnhXtKQefnll5WXl6fY2FiNGTNGmZmZqq2tDfeyQu7OO+/U2LFje21vamrSjBkzlJycrOuvv16f/OQntX///jCsMPT66sHVnhsp+qpx4sSJvt9553A4lJCQoDNnzgzx6oZGXz2IiopSXFycJKmzs1OWZYXsyjOB5X0qKys1Z84cjR07VhMmTFBRUZFeeeUVSdJrr72m66+/Xp/61Kc0a9Ysff/73w/zaoOvv/rf7ze/+Y0WL14chhWGXn89+NCHPqRvf/vbuvHGG5WUlKT8/HzddNNNYV5xcPVXf0ZGhurr63X27Fm98847qq+v14kTJ8K84ms30OP+SidPnlRycrLvcXJy8rDtx2B7MFIEo/5Dhw6pq6tLKSkpIVplaF1LD86ePavMzExNmjRJZWVlSkhICMkaCSzv8+yzz2rFihV6/vnn5XK55PF4VFBQoPb2dr333nt67rnn9NOf/lSNjY1yuVxyuVzhXnJQ9Vd/t7a2NjU0NOjuu+8O40pDp78evPPOO9q7d69ef/11nThxQg0NDTpw4EC4lxxU/dXffd/OXXfdpc9+9rO69dZbFRUVFe4lX7OBHPcjnd17cK31nzlzRsXFxb7fkTccXUsPPvCBD+gf//iHjh07ph07dqilpSU0iwzJB00jRGtrqyXJevbZZ62GhgaroKDA99z69eut9evXh3F1off++rtt377d+vKXvxzGVQ2t9/fgN7/5jfX1r3/d99z69eutxx9/PIyrCz1/x0C3ZcuWWXv37g3DqkLLX83PPPNMr8/u//73v1tFRUW+xytXrrR+/etfD9k6Q2mgPRjIc8NRIPVfvHjRuv32263t27cP5RJDLtBjoNvXvvY1a/fu3SFZE1dY+nHu3DlJl+9XmTNnjlpbW/XOO+/I6/XqwIEDmj59ephXGFrvr7/bSP44yJ/39yAlJUUNDQ26ePGiurq6VF9fr6lTp4Z5haF15THQ2toq6fK3xpqamlRYWBi2tYWKv+Pen5ycHB05ckQnTpzQhQsX9Kc//WnE9GOgPRipBlq/ZVn66le/qrvuukv33nvvUCxtyAy0By0tLTp//rxvnwMHDoTufTEkMWgE6OrqshYuXGh97GMf823bt2+flZGRYc2YMcP65je/GcbVhZ6/+s+ePWtNmDDB6uzsDOPKho6/HqxatcqaNm2alZ6ebn3jG9+wvF5vGFcYWv7qv/XWW63p06db2dnZ1sGDB8O4utDwV/MnPvEJKyEhwRozZoyVnJzc45thTz31lJWWlmbddNNN1s9//vNwLDnoAu1Bf88NR4HU/9xzz1kRERFWZmam789LL70UrqUHTSA9eOGFF6zMzEzr5ptvtmbOnGlVV1eHbF0Elj488MAD1uTJk60333wz3EsJC7vXb1n0wI7127HmK9m9B3av37LM7QGBxY8VK1ZYkyZNsv7zn/+EeylhYff6LYse2LF+O9Z8Jbv3wO71W5bZPSCwvI/X67VWrFhhJSUlWa+++mq4lzPk7F6/ZdEDO9Zvx5qvZPce2L1+yxoePbDnTz7rw4oVK7Rjxw499dRTGjt2rNxutyRp3LhxGjNmTJhXF3p2r1+iB3as3441X8nuPbB7/dIw6UG4E5NJJPn986tf/SrcSxsSdq/fsuiBHeu3Y81XsnsP7F6/ZQ2PHkRYls1+exsAABh2+DksAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABjv/wMkvwM0Qo7R8wAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "5agYcWRx773J" + }, + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "cce40a53674844a7adf1db99fed5f788": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8defc036f3bd4cd19e99730f872138b4", + "IPY_MODEL_88bbc3d3f779410c82d576e59f6fe318", + "IPY_MODEL_f45c0411fc5648f7bf4dd2d6f07e30a4" + ], + "layout": "IPY_MODEL_13cf91be1b304ede9d2e7184ec3886c9" + } + }, + "8defc036f3bd4cd19e99730f872138b4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_191d9a1b52d74f829bd3fe49fa9ec056", + "placeholder": "​", + "style": "IPY_MODEL_ed62e5ba392345e6a297eaa53f12099b", + "value": "100%" + } + }, + "88bbc3d3f779410c82d576e59f6fe318": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef6ce49eb4b849aca7004bea6083befe", + "max": 200, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fb31e044d6f445bb92cd33436add91b6", + "value": 200 + } + }, + "f45c0411fc5648f7bf4dd2d6f07e30a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6d68817751e64fdc9797a7d4be6ad7f5", + "placeholder": "​", + "style": "IPY_MODEL_b19e99ed98044b1bbf5d2aa7651cbb36", + "value": " 200/200 [00:33<00:00,  6.54it/s]" + } + }, + "13cf91be1b304ede9d2e7184ec3886c9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "191d9a1b52d74f829bd3fe49fa9ec056": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ed62e5ba392345e6a297eaa53f12099b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ef6ce49eb4b849aca7004bea6083befe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb31e044d6f445bb92cd33436add91b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6d68817751e64fdc9797a7d4be6ad7f5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b19e99ed98044b1bbf5d2aa7651cbb36": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file