Skip to content

A small question regarding conv_cond_concat #40

@miqbal23

Description

@miqbal23

Hi, recently I've been studying your code, especially on the conditional DCGAN you made for MNIST dataset.

I see that you concatenated the condition on every layer right after BatchNorm and ReLu, but I still get puzzled with the conv_cond_concat function that you use to concat the condition into hidden layer. On some layer, you simply use T.concatenate to join them, but on the other layer, you join them using conv_cond_concat function as described below

def conv_cond_concat(x, y):
    """ 
    concatenate conditioning vector on feature map axis 
    """
    return T.concatenate([x, y*T.ones((x.shape[0], y.shape[1], x.shape[2], x.shape[3]))], axis=1)

My questions are,

  • why using this function, instead of simple T.concatenate?
  • judging from reshaping of y, I assume you are depth-concatenating it. Am I correct?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions