diff --git a/graph_net/auto_fault_locator.py b/graph_net/auto_fault_locator.py index cf541ccb7..979fb80a0 100644 --- a/graph_net/auto_fault_locator.py +++ b/graph_net/auto_fault_locator.py @@ -23,9 +23,9 @@ def __init__(self, args): self.machine = args.machine self.port = args.port - def get_one_step_cmd(self, config_str): - config_b64 = convert_json_to_b64_string(config_str) - return [ + def execute_one_step_cmd(self, test_config): + test_config_b64_str = convert_json_to_b64_string(test_config) + cmd = [ sys.executable, "-m", "graph_net.subgraph_decompose_and_evaluation_step", @@ -36,7 +36,7 @@ def get_one_step_cmd(self, config_str): "--framework", self.framework, "--test-config", - config_b64, + test_config_b64_str, "--decompose-method", self.decompose_method, "--tolerance", @@ -45,49 +45,78 @@ def get_one_step_cmd(self, config_str): self.max_subgraph_size, ] - def run_remote_test_reference(self): + print(f"[AutoFaultLocator] Executing: {' '.join(cmd)}", flush=True) + result = subprocess.run(cmd, check=True, text=True) + return result + + def run_test_reference_device(self, is_remote): print( - "\n>>> [Step 1] Run Remote Reference Device (Decomposition And Evaluation)\n" + "\n>>> [AutoFaultLocator 2/1] Run Test Reference Device (Decomposition And Evaluation)\n", + flush=True, ) - test_remote_reference_device_config_str = { - "test_module_name": "test_remote_reference_device", - "test_remote_reference_device_arguments": { + test_module_name = ( + "test_remote_reference_device" if is_remote else "test_reference_device" + ) + test_reference_device_config = { + "test_module_name": test_module_name, + f"{test_module_name}_arguments": { "model-path": None, "reference-dir": None, "compiler": "nope", "device": self.reference_device, - "op-lib": "default", "warmup": 5, "trials": 20, "seed": 123, - "machine": self.machine, - "port": self.port, }, } - - cmd = self.get_one_step_cmd(test_remote_reference_device_config_str) - print(f"Executing: {' '.join(cmd)}") - result = subprocess.run(cmd, check=True, text=True) + if args.framework == "torch": + test_reference_device_config[f"{test_module_name}_arguments"].update( + {"op-lib": "default"} + ) + if is_remote: + test_reference_device_config[f"{test_module_name}_arguments"].update( + { + "machine": self.machine, + "port": self.port, + } + ) + + result = self.execute_one_step_cmd(test_reference_device_config) assert ( result.returncode == 0 ), f"Run Remote Reference Device failed with return code {result.returncode}" - def run_local_test_target(self): - print("\n>>> [Step 2] Run Local Target Device (Evaluation And Analysis)\n") + def run_test_target_device(self, is_remote): + print( + "\n>>> [AutoFaultLocator 2/2] Run Test Target Device (Evaluation And Analysis)\n", + flush=True, + ) - test_target_device_config_str = { - "test_module_name": "test_target_device", - "test_target_device_arguments": { + test_module_name = ( + "test_remote_target_device" if is_remote else "test_target_device" + ) + test_target_device_config = { + "test_module_name": test_module_name, + f"{test_module_name}_arguments": { "model-path": None, "reference-dir": None, + "compiler": "nope", "device": self.target_device, + "warmup": 5, + "trials": 20, + "seed": 123, }, } - - cmd = self.get_one_step_cmd(test_target_device_config_str) - print(f"Executing: {' '.join(cmd)}") - result = subprocess.run(cmd, check=True, text=True) + if is_remote: + test_target_device_config[f"{test_module_name}_arguments"].update( + { + "machine": self.machine, + "port": self.port, + } + ) + + result = self.execute_one_step_cmd(test_target_device_config) assert ( result.returncode == 0 ), f"Run Local Target Device failed with return code {result.returncode}" @@ -114,8 +143,8 @@ def analyze_and_decide_next(self): def main(args): locator = AutoFaultLocator(args) while True: - locator.run_remote_test_reference() - locator.run_local_test_target() + locator.run_test_reference_device(is_remote=False) + locator.run_test_target_device(is_remote=True) should_continue = locator.analyze_and_decide_next() if not should_continue: break diff --git a/graph_net/subgraph_decompose_and_evaluation_step.py b/graph_net/subgraph_decompose_and_evaluation_step.py index a6223d8b6..80b3fe881 100755 --- a/graph_net/subgraph_decompose_and_evaluation_step.py +++ b/graph_net/subgraph_decompose_and_evaluation_step.py @@ -9,7 +9,7 @@ import glob from dataclasses import dataclass, field, asdict from typing import List, Dict -from graph_net_bench.analysis_util import get_incorrect_models +from graph_net_bench.analysis_util import get_incorrect_models, get_min_passed_tolerance from graph_net.graph_net_root import get_graphnet_root from graph_net_bench import path_utils @@ -297,6 +297,64 @@ def update_running_state_with_incorrect_models( ) +class ToleranceRecord: + model_name2subgraph_tolerance_record = {} + filename = "tolerance_record.json" + + @classmethod + def load(cls, pass_id, output_dir): + if pass_id >= 0: + work_dir = get_decompose_workspace_path(output_dir, pass_id) + filepath = os.path.join(work_dir, cls.filename) + with open(filepath, "r") as f: + data = json.load(f) + cls.model_name2subgraph_tolerance_record = data + + @classmethod + def save(cls, pass_id, output_dir): + work_dir = get_decompose_workspace_path(output_dir, pass_id) + filepath = os.path.join(work_dir, cls.filename) + print(f"Save tolerance record to: {filepath}.") + with open(filepath, "w") as f: + json.dump(cls.model_name2subgraph_tolerance_record, f, indent=4) + + @classmethod + def update(cls, pass_id, output_dir, decompose_config, log_path): + cls.load(pass_id - 1, output_dir) + + subgraph_path2tolerance = get_min_passed_tolerance(log_path) + running_state = decompose_config.get_running_state(pass_id) + for subgraph_path, tolerance in subgraph_path2tolerance.items(): + model_name, subgraph_idx = extract_model_name_and_subgraph_idx( + subgraph_path + ) + if model_name not in running_state.model_name2record: + continue + + split_positions = running_state.model_name2record[ + model_name + ].get_split_positions(decompose_config.decompose_method) + assert len(split_positions) >= 2 + subgraph_split_point = int(split_positions[1]) + if model_name not in cls.model_name2subgraph_tolerance_record: + cls.model_name2subgraph_tolerance_record[model_name] = {} + cls.model_name2subgraph_tolerance_record[model_name][ + subgraph_split_point + ] = tolerance + + cls.model_name2subgraph_tolerance_record = dict( + sorted(cls.model_name2subgraph_tolerance_record.items()) + ) + for ( + model_name, + subgraph_tolerance_record, + ) in cls.model_name2subgraph_tolerance_record.items(): + cls.model_name2subgraph_tolerance_record[model_name] = dict( + sorted(subgraph_tolerance_record.items(), key=lambda x: int(x[0])) + ) + cls.save(pass_id, output_dir) + + def get_rectfied_model_path(model_path): graphnet_root = get_graphnet_root() return os.path.join(graphnet_root, model_path.split("GraphNet/")[-1]) @@ -792,6 +850,10 @@ def main(args): print_incorrect_models( decompose_config, current_pass_id, log_prompt="[Analysis]" ) + + ToleranceRecord.update( + current_pass_id, base_output_dir, decompose_config, log_path + ) print_summary_and_suggestion(decompose_config, current_pass_id) # --- Step 5: Save States --- diff --git a/graph_net/test/get_incorrect_models_test.sh b/graph_net/test/get_incorrect_models_test.sh index cb62d99d4..bbb37b637 100755 --- a/graph_net/test/get_incorrect_models_test.sh +++ b/graph_net/test/get_incorrect_models_test.sh @@ -1,6 +1,5 @@ #!/bin/bash - SCRIPT_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd) GRAPH_NET_DIR=$(dirname "$SCRIPT_DIR") PROJECT_ROOT=$(dirname "$GRAPH_NET_DIR") @@ -8,14 +7,21 @@ PROJECT_ROOT=$(dirname "$GRAPH_NET_DIR") # 将项目根目录加入Python路径 export PYTHONPATH="$PROJECT_ROOT:$PYTHONPATH" -TOLERANCE_LIST=(-2 -1 0 1 2) LOG_FILE_PATH="log_file_for_test.txt" python3 - < int: + model_path2tolerance = {} + samples = parse_logs_to_data(log_file_path) + + for sample in samples: + model_path = sample.get("model_path") + for tolerance in range(-10, 5, 1): + is_correct, fail_type = check_sample_correctness(sample, tolerance) + if is_correct: + model_path2tolerance[model_path] = tolerance + break + + if type == "ESt": + for sample in samples: + model_path = sample.get("model_path") + if ( + model_path not in model_path2tolerance + or model_path2tolerance[model_path] > 1 + ): + model_path2tolerance[model_path] = 1 + + return model_path2tolerance diff --git a/graph_net_rpc/sample_remote_executor.py b/graph_net_rpc/sample_remote_executor.py index 7758fd324..242fc8a43 100644 --- a/graph_net_rpc/sample_remote_executor.py +++ b/graph_net_rpc/sample_remote_executor.py @@ -25,10 +25,10 @@ def __init__(self, machine: str, port: int): def _get_stub(self): if self._stub is None: - # Default is 4MB (4194304), increase it to 320MB + # Default is 4MB (4194304), increase it to 1024MB options = [ - ("grpc.max_send_message_length", 320 * 1024 * 1024), - ("grpc.max_receive_message_length", 320 * 1024 * 1024), + ("grpc.max_send_message_length", 1024 * 1024 * 1024), + ("grpc.max_receive_message_length", 1024 * 1024 * 1024), ] self._channel = grpc.insecure_channel( f"{self.machine}:{self.port}", options=options diff --git a/paddle_samples/PaddleX/PP-ShiTuV2_det/subgraph_1/weight_meta.py b/paddle_samples/PaddleX/PP-ShiTuV2_det/subgraph_1/weight_meta.py index 00e09a96c..6a6595ce9 100644 --- a/paddle_samples/PaddleX/PP-ShiTuV2_det/subgraph_1/weight_meta.py +++ b/paddle_samples/PaddleX/PP-ShiTuV2_det/subgraph_1/weight_meta.py @@ -551,10 +551,10 @@ class Program_weight_tensor_parameter_46: original_name = "batch_norm2d_85.w_2" shape = [128] dtype = "float32" - min_val = float("58247.6") - max_val = float("20544400000.0") - mean = float("675237000.0") - std = float("2138970000.0") + min_val = float("-582.476") + max_val = float("2054.44") + mean = float("675.237") + std = float("213.897") data = None @@ -612,9 +612,9 @@ class Program_weight_tensor_parameter_51: shape = [128] dtype = "float32" min_val = float("0.000582512") - max_val = float("3249090000.0") - mean = float("60770300.0") - std = float("377372000.0") + max_val = float("3249.09") + mean = float("607.703") + std = float("377.372") data = None @@ -671,10 +671,10 @@ class Program_weight_tensor_parameter_56: original_name = "batch_norm2d_83.w_2" shape = [128] dtype = "float32" - min_val = float("2857.87") - max_val = float("412905000.0") - mean = float("15818900.0") - std = float("54657900.0") + min_val = float("-28.5787") + max_val = float("412.905") + mean = float("158.189") + std = float("54.6579") data = None @@ -732,9 +732,9 @@ class Program_weight_tensor_parameter_61: shape = [128] dtype = "float32" min_val = float("0.00900684") - max_val = float("3556900000.0") - mean = float("43511400.0") - std = float("330022000.0") + max_val = float("3556.90") + mean = float("435.114") + std = float("330.022") data = None @@ -792,9 +792,9 @@ class Program_weight_tensor_parameter_66: shape = [128] dtype = "float32" min_val = float("1872.14") - max_val = float("47439700.0") - mean = float("2879840.0") - std = float("7270230.0") + max_val = float("4743.97") + mean = float("2879.84") + std = float("727.023") data = None @@ -852,9 +852,9 @@ class Program_weight_tensor_parameter_71: shape = [128] dtype = "float32" min_val = float("0.219354") - max_val = float("10336600000.0") - mean = float("92021900.0") - std = float("912436000.0") + max_val = float("1033.66") + mean = float("920.219") + std = float("91.2436") data = None @@ -911,10 +911,10 @@ class Program_weight_tensor_parameter_76: original_name = "batch_norm2d_79.w_2" shape = [128] dtype = "float32" - min_val = float("9659.32") - max_val = float("2853920000.0") - mean = float("67779800.0") - std = float("311856000.0") + min_val = float("96.5932") + max_val = float("2853.92") + mean = float("677.798") + std = float("311.856") data = None @@ -972,9 +972,9 @@ class Program_weight_tensor_parameter_81: shape = [128] dtype = "float32" min_val = float("0.00619647") - max_val = float("8816430000000.0") - mean = float("70110200000.0") - std = float("776208000000.0") + max_val = float("8816.43") + mean = float("701.102") + std = float("776.208") data = None @@ -983,10 +983,10 @@ class Program_weight_tensor_parameter_82: original_name = "batch_norm2d_78.w_1" shape = [128] dtype = "float32" - min_val = float("-121377.0") - max_val = float("1669060.0") - mean = float("15548.7") - std = float("148946.0") + min_val = float("-12137.7") + max_val = float("16690.6") + mean = float("1554.87") + std = float("1489.46") data = None @@ -1053,10 +1053,8 @@ class Program_weight_tensor_parameter_88: original_name = "batch_norm2d_77.w_2" shape = [128] dtype = "float32" - min_val = float("1256560000.0") - max_val = float("2.75381e+20") - mean = float("6.70377e+18") - std = float("inf") + min_val = float("125.656") + max_val = float("2753.81") data = None @@ -1065,10 +1063,10 @@ class Program_weight_tensor_parameter_89: original_name = "batch_norm2d_77.w_1" shape = [128] dtype = "float32" - min_val = float("-18448400000.0") - max_val = float("13078200000.0") - mean = float("-31256100.0") - std = float("2219470000.0") + min_val = float("-1844.84") + max_val = float("1307.82") + mean = float("-312.561") + std = float("221.947") data = None @@ -1089,10 +1087,10 @@ class Program_weight_tensor_parameter_91: original_name = "batch_norm2d_76.b_0" shape = [128] dtype = "float32" - min_val = float("-274863.0") - max_val = float("103392.0") - mean = float("-3753.37") - std = float("32628.5") + min_val = float("-2748.63") + max_val = float("1033.92") + mean = float("-375.337") + std = float("326.285") data = None @@ -1101,10 +1099,10 @@ class Program_weight_tensor_parameter_92: original_name = "batch_norm2d_76.w_0" shape = [128] dtype = "float32" - min_val = float("-116014.0") - max_val = float("105656.0") - mean = float("-1460.97") - std = float("22152.4") + min_val = float("-1160.14") + max_val = float("1056.56") + mean = float("-146.097") + std = float("221.524") data = None @@ -1114,9 +1112,7 @@ class Program_weight_tensor_parameter_93: shape = [128] dtype = "float32" min_val = float("1.40568e-05") - max_val = float("4.05002e+20") - mean = float("1.03691e+19") - std = float("inf") + max_val = float("4050.02") data = None @@ -1125,10 +1121,10 @@ class Program_weight_tensor_parameter_94: original_name = "batch_norm2d_76.w_1" shape = [128] dtype = "float32" - min_val = float("-33518000000.0") - max_val = float("9649450000.0") - mean = float("-209845000.0") - std = float("3196110000.0") + min_val = float("-3351.80") + max_val = float("9649.45") + mean = float("-209.845") + std = float("319.611") data = None @@ -1173,10 +1169,8 @@ class Program_weight_tensor_parameter_98: original_name = "batch_norm2d_75.w_2" shape = [128] dtype = "float32" - min_val = float("37547100000.0") - max_val = float("2.3025e+21") - mean = float("4.36871e+19") - std = float("inf") + min_val = float("375.471") + max_val = float("2302.50") data = None @@ -1185,10 +1179,10 @@ class Program_weight_tensor_parameter_99: original_name = "batch_norm2d_75.w_1" shape = [128] dtype = "float32" - min_val = float("-3777800000.0") - max_val = float("25793100000.0") - mean = float("647896000.0") - std = float("3109750000.0") + min_val = float("-3777.80") + max_val = float("2579.31") + mean = float("647.896") + std = float("310.975") data = None @@ -1234,9 +1228,7 @@ class Program_weight_tensor_parameter_103: shape = [128] dtype = "float32" min_val = float("4.68528e-06") - max_val = float("6.52868e+22") - mean = float("5.83095e+20") - std = float("inf") + max_val = float("6528.68") data = None @@ -1245,10 +1237,10 @@ class Program_weight_tensor_parameter_104: original_name = "batch_norm2d_74.w_1" shape = [128] dtype = "float32" - min_val = float("-36490500000.0") - max_val = float("482921000000.0") - mean = float("3732870000.0") - std = float("42791300000.0") + min_val = float("-3649.05") + max_val = float("4829.21") + mean = float("373.287") + std = float("427.913") data = None @@ -1293,10 +1285,8 @@ class Program_weight_tensor_parameter_108: original_name = "batch_norm2d_73.w_2" shape = [128] dtype = "float32" - min_val = float("39533200000.0") - max_val = float("2.72523e+20") - mean = float("6.79091e+18") - std = float("inf") + min_val = float("395.332") + max_val = float("2725.23") data = None @@ -1305,10 +1295,10 @@ class Program_weight_tensor_parameter_109: original_name = "batch_norm2d_73.w_1" shape = [128] dtype = "float32" - min_val = float("-4719580000.0") - max_val = float("9380190000.0") - mean = float("36117900.0") - std = float("1408010000.0") + min_val = float("-4719.58") + max_val = float("9380.19") + mean = float("361.179") + std = float("1408.01") data = None @@ -1354,9 +1344,7 @@ class Program_weight_tensor_parameter_113: shape = [128] dtype = "float32" min_val = float("4.3711e-05") - max_val = float("6.69868e+20") - mean = float("1.90444e+19") - std = float("inf") + max_val = float("6698.68") data = None @@ -1365,10 +1353,10 @@ class Program_weight_tensor_parameter_114: original_name = "batch_norm2d_72.w_1" shape = [128] dtype = "float32" - min_val = float("-32210600000.0") - max_val = float("19296400000.0") - mean = float("-222346000.0") - std = float("3712630000.0") + min_val = float("-3221.06") + max_val = float("1929.64") + mean = float("-222.346") + std = float("371.263") data = None @@ -1413,10 +1401,8 @@ class Program_weight_tensor_parameter_118: original_name = "batch_norm2d_71.w_2" shape = [128] dtype = "float32" - min_val = float("131404000000.0") - max_val = float("6.8141e+21") - mean = float("1.01263e+20") - std = float("inf") + min_val = float("131.404") + max_val = float("6814.10") data = None @@ -1425,10 +1411,10 @@ class Program_weight_tensor_parameter_119: original_name = "batch_norm2d_71.w_1" shape = [128] dtype = "float32" - min_val = float("-44285100000.0") - max_val = float("3857900000.0") - mean = float("-921017000.0") - std = float("5922380000.0") + min_val = float("-4428.51") + max_val = float("3857.90") + mean = float("-921.017") + std = float("592.238") data = None @@ -1474,9 +1460,7 @@ class Program_weight_tensor_parameter_123: shape = [128] dtype = "float32" min_val = float("3.88607e-06") - max_val = float("3.93957e+20") - mean = float("1.01325e+19") - std = float("inf") + max_val = float("3939.57") data = None @@ -1485,10 +1469,10 @@ class Program_weight_tensor_parameter_124: original_name = "batch_norm2d_70.w_1" shape = [128] dtype = "float32" - min_val = float("-30152100000.0") - max_val = float("10858700000.0") - mean = float("-434912000.0") - std = float("4031290000.0") + min_val = float("-3015.21") + max_val = float("1085.87") + mean = float("-434.912") + std = float("403.129") data = None @@ -1556,9 +1540,9 @@ class Program_weight_tensor_parameter_130: shape = [128] dtype = "float32" min_val = float("3228.36") - max_val = float("101589000.0") - mean = float("4930090.0") - std = float("14493200.0") + max_val = float("10158.9") + mean = float("4930.090") + std = float("1449.32") data = None @@ -1616,9 +1600,9 @@ class Program_weight_tensor_parameter_135: shape = [128] dtype = "float32" min_val = float("0.003342") - max_val = float("260327000.0") - mean = float("5286810.0") - std = float("29247200.0") + max_val = float("2603.27") + mean = float("528.681") + std = float("2924.72") data = None @@ -1676,9 +1660,9 @@ class Program_weight_tensor_parameter_140: shape = [128] dtype = "float32" min_val = float("818.739") - max_val = float("44282300.0") - mean = float("1670460.0") - std = float("6291510.0") + max_val = float("4428.23") + mean = float("1670.46") + std = float("629.151") data = None @@ -1736,9 +1720,9 @@ class Program_weight_tensor_parameter_145: shape = [128] dtype = "float32" min_val = float("0.00133377") - max_val = float("6346100000.0") - mean = float("54220400.0") - std = float("558920000.0") + max_val = float("6346.10") + mean = float("542.204") + std = float("5589.20") data = None @@ -1796,9 +1780,9 @@ class Program_weight_tensor_parameter_150: shape = [128] dtype = "float32" min_val = float("473.663") - max_val = float("19018900.0") - mean = float("1142690.0") - std = float("3006780.0") + max_val = float("19018.9") + mean = float("1142.69") + std = float("3006.78") data = None @@ -1856,9 +1840,9 @@ class Program_weight_tensor_parameter_155: shape = [128] dtype = "float32" min_val = float("0.00890485") - max_val = float("924151000.0") - mean = float("10677200.0") - std = float("84650300.0") + max_val = float("9241.51") + mean = float("1067.72") + std = float("8465.03") data = None @@ -1916,9 +1900,9 @@ class Program_weight_tensor_parameter_160: shape = [128] dtype = "float32" min_val = float("287.46") - max_val = float("42264800.0") - mean = float("830575.0") - std = float("4131720.0") + max_val = float("4226.48") + mean = float("830.575") + std = float("413.172") data = None @@ -1976,9 +1960,9 @@ class Program_weight_tensor_parameter_165: shape = [128] dtype = "float32" min_val = float("0.000128292") - max_val = float("7539160000000.0") - mean = float("120339000000.0") - std = float("872477000000.0") + max_val = float("7539.16") + mean = float("1203.39") + std = float("872.477") data = None @@ -1987,10 +1971,10 @@ class Program_weight_tensor_parameter_166: original_name = "batch_norm2d_62.w_1" shape = [128] dtype = "float32" - min_val = float("-5927410.0") - max_val = float("3255460.0") - mean = float("-21456.2") - std = float("605831.0") + min_val = float("-5927.41") + max_val = float("3255.46") + mean = float("-2145.62") + std = float("605.831") data = None @@ -2096,9 +2080,9 @@ class Program_weight_tensor_parameter_175: shape = [128] dtype = "float32" min_val = float("0.000156346") - max_val = float("391558000.0") - mean = float("3072800.0") - std = float("34472500.0") + max_val = float("3915.58") + mean = float("307.28") + std = float("344.725") data = None @@ -2216,9 +2200,9 @@ class Program_weight_tensor_parameter_185: shape = [128] dtype = "float32" min_val = float("5.86101e-05") - max_val = float("12261400000000.0") - mean = float("105002000000.0") - std = float("1081960000000.0") + max_val = float("12261.4") + mean = float("1050.02") + std = float("10819.6") data = None @@ -2227,10 +2211,10 @@ class Program_weight_tensor_parameter_186: original_name = "batch_norm2d_30.w_1" shape = [128] dtype = "float32" - min_val = float("-528399.0") - max_val = float("1345590.0") + min_val = float("-5283.99") + max_val = float("1345.59") mean = float("-1085.89") - std = float("134658.0") + std = float("1346.58") data = None @@ -2275,10 +2259,10 @@ class Program_weight_tensor_parameter_190: original_name = "batch_norm2d_58.w_2" shape = [128] dtype = "float32" - min_val = float("14777.6") - max_val = float("6550930000.0") - mean = float("152320000.0") - std = float("760843000.0") + min_val = float("147.776") + max_val = float("6550.93") + mean = float("1523.20") + std = float("760.843") data = None @@ -2656,9 +2640,9 @@ class Program_weight_tensor_parameter_225: shape = [128] dtype = "float32" min_val = float("3.53324e-11") - max_val = float("61754200000.0") - mean = float("882636000.0") - std = float("5662340000.0") + max_val = float("6175.42") + mean = float("882.636") + std = float("5662.34") data = None @@ -2715,10 +2699,8 @@ class Program_weight_tensor_parameter_230: original_name = "batch_norm2d_50.w_2" shape = [128] dtype = "float32" - min_val = float("10737900000.0") - max_val = float("7.12963e+20") - mean = float("9.05393e+18") - std = float("inf") + min_val = float("1073.79") + max_val = float("7129.63") data = None @@ -2727,10 +2709,10 @@ class Program_weight_tensor_parameter_231: original_name = "batch_norm2d_50.w_1" shape = [128] dtype = "float32" - min_val = float("-6512240000.0") - max_val = float("32799100000.0") - mean = float("166414000.0") - std = float("3188900000.0") + min_val = float("-6512.24") + max_val = float("3279.91") + mean = float("1664.14") + std = float("3188.90") data = None @@ -3035,10 +3017,10 @@ class Program_weight_tensor_parameter_260: original_name = "batch_norm2d_47.w_2" shape = [128] dtype = "float32" - min_val = float("1289980000.0") - max_val = float("1.01952e+19") - mean = float("1.77883e+17") - std = float("1.09482e+18") + min_val = float("128.998") + max_val = float("10195.2") + mean = float("1778.83") + std = float("109.482") data = None @@ -3047,10 +3029,10 @@ class Program_weight_tensor_parameter_261: original_name = "batch_norm2d_47.w_1" shape = [128] dtype = "float32" - min_val = float("-969451000.0") - max_val = float("1719590000.0") - mean = float("19588100.0") - std = float("230945000.0") + min_val = float("-9694.51") + max_val = float("17195.9") + mean = float("1958.81") + std = float("2309.45") data = None @@ -3096,9 +3078,7 @@ class Program_weight_tensor_parameter_265: shape = [128] dtype = "float32" min_val = float("0.000180454") - max_val = float("2.04952e+21") - mean = float("1.68005e+19") - std = float("inf") + max_val = float("2049.52") data = None @@ -3107,10 +3087,10 @@ class Program_weight_tensor_parameter_266: original_name = "batch_norm2d_46.w_1" shape = [128] dtype = "float32" - min_val = float("-760651000.0") - max_val = float("48053000000.0") - mean = float("482595000.0") - std = float("4368170000.0") + min_val = float("-7606.51") + max_val = float("4805.30") + mean = float("482.595") + std = float("4368.17") data = None @@ -3155,10 +3135,8 @@ class Program_weight_tensor_parameter_270: original_name = "batch_norm2d_42.w_2" shape = [128] dtype = "float32" - min_val = float("29624000000.0") - max_val = float("3.50963e+20") - mean = float("8.11164e+18") - std = float("inf") + min_val = float("296.240") + max_val = float("3509.63") data = None @@ -3167,10 +3145,10 @@ class Program_weight_tensor_parameter_271: original_name = "batch_norm2d_42.w_1" shape = [128] dtype = "float32" - min_val = float("-25856000000.0") - max_val = float("31882100000.0") - mean = float("-168986000.0") - std = float("3911860000.0") + min_val = float("-2585.60") + max_val = float("3188.21") + mean = float("-1689.86") + std = float("3911.86") data = None @@ -3475,10 +3453,8 @@ class Program_weight_tensor_parameter_300: original_name = "batch_norm2d_36.w_2" shape = [128] dtype = "float32" - min_val = float("5133710000.0") - max_val = float("6.86238e+20") - mean = float("1.13767e+19") - std = float("inf") + min_val = float("51.3371") + max_val = float("6862.38") data = None @@ -3487,10 +3463,10 @@ class Program_weight_tensor_parameter_301: original_name = "batch_norm2d_36.w_1" shape = [128] dtype = "float32" - min_val = float("-10862500000.0") - max_val = float("21049400000.0") - mean = float("215672000.0") - std = float("2658170000.0") + min_val = float("-1086.25") + max_val = float("21049.4") + mean = float("2156.72") + std = float("2658.17") data = None @@ -3795,10 +3771,8 @@ class Program_weight_tensor_parameter_330: original_name = "batch_norm2d_29.w_2" shape = [128] dtype = "float32" - min_val = float("34782800000.0") - max_val = float("1.29377e+22") - mean = float("1.87313e+20") - std = float("inf") + min_val = float("347.828") + max_val = float("12937.7") data = None @@ -3807,10 +3781,10 @@ class Program_weight_tensor_parameter_331: original_name = "batch_norm2d_29.w_1" shape = [128] dtype = "float32" - min_val = float("-196325000000.0") - max_val = float("43131900000.0") - mean = float("-956323000.0") - std = float("18669900000.0") + min_val = float("-1963.25") + max_val = float("4313.19") + mean = float("-956.323") + std = float("1866.99") data = None @@ -3855,10 +3829,8 @@ class Program_weight_tensor_parameter_335: original_name = "batch_norm2d_28.w_2" shape = [128] dtype = "float32" - min_val = float("12554200000.0") - max_val = float("4.2572e+20") - mean = float("7.03993e+18") - std = float("inf") + min_val = float("125.542") + max_val = float("4257.20") data = None @@ -3867,10 +3839,10 @@ class Program_weight_tensor_parameter_336: original_name = "batch_norm2d_28.w_1" shape = [128] dtype = "float32" - min_val = float("-6273210000.0") - max_val = float("5488470000.0") - mean = float("-65105300.0") - std = float("1089890000.0") + min_val = float("-6273.21") + max_val = float("5488.47") + mean = float("-651.053") + std = float("1089.89") data = None @@ -3915,10 +3887,8 @@ class Program_weight_tensor_parameter_340: original_name = "batch_norm2d_27.w_2" shape = [128] dtype = "float32" - min_val = float("20311000000.0") - max_val = float("1.84851e+21") - mean = float("3.34316e+19") - std = float("inf") + min_val = float("20.3110") + max_val = float("1848.51") data = None @@ -3927,10 +3897,10 @@ class Program_weight_tensor_parameter_341: original_name = "batch_norm2d_27.w_1" shape = [128] dtype = "float32" - min_val = float("-32024200000.0") - max_val = float("21390200000.0") - mean = float("129123000.0") - std = float("3778280000.0") + min_val = float("-3202.42") + max_val = float("21390.2") + mean = float("1291.23") + std = float("3778.28") data = None @@ -3975,10 +3945,8 @@ class Program_weight_tensor_parameter_345: original_name = "batch_norm2d_26.w_2" shape = [1280] dtype = "float32" - min_val = float("6039170000.0") - max_val = float("6.78926e+20") - mean = float("2.28536e+18") - std = float("inf") + min_val = float("60.3917") + max_val = float("6789.26") data = None @@ -3987,10 +3955,10 @@ class Program_weight_tensor_parameter_346: original_name = "batch_norm2d_26.w_1" shape = [1280] dtype = "float32" - min_val = float("-14069300000.0") - max_val = float("7056590000.0") - mean = float("-8576950.0") - std = float("746888000.0") + min_val = float("-1406.93") + max_val = float("7056.59") + mean = float("-857.695") + std = float("7468.88") data = None @@ -4084,9 +4052,7 @@ class Program_weight_tensor_parameter_354: shape = [1280] dtype = "float32" min_val = float("3.36739e-06") - max_val = float("6.40361e+20") - mean = float("1.15563e+18") - std = float("inf") + max_val = float("6403.61") data = None @@ -4095,10 +4061,10 @@ class Program_weight_tensor_parameter_355: original_name = "batch_norm2d_25.w_1" shape = [1280] dtype = "float32" - min_val = float("-5005020000.0") - max_val = float("11081300000.0") - mean = float("100970.0") - std = float("432630000.0") + min_val = float("-5005.02") + max_val = float("11081.3") + mean = float("1009.70") + std = float("4326.30") data = None @@ -4143,10 +4109,8 @@ class Program_weight_tensor_parameter_359: original_name = "batch_norm2d_24.w_2" shape = [1280] dtype = "float32" - min_val = float("1812810.0") - max_val = float("3.21017e+21") - mean = float("6.6749e+18") - std = float("inf") + min_val = float("18.12810") + max_val = float("3210.17") data = None @@ -4155,10 +4119,10 @@ class Program_weight_tensor_parameter_360: original_name = "batch_norm2d_24.w_1" shape = [1280] dtype = "float32" - min_val = float("-16396500000.0") - max_val = float("20826700000.0") - mean = float("36435300.0") - std = float("1141100000.0") + min_val = float("-1639.65") + max_val = float("20826.7") + mean = float("3643.53") + std = float("11411.0") data = None @@ -4252,9 +4216,7 @@ class Program_weight_tensor_parameter_368: shape = [640] dtype = "float32" min_val = float("1.61123e-07") - max_val = float("1.73247e+22") - mean = float("2.78801e+19") - std = float("inf") + max_val = float("1732.47") data = None @@ -4263,10 +4225,10 @@ class Program_weight_tensor_parameter_369: original_name = "batch_norm2d_23.w_1" shape = [640] dtype = "float32" - min_val = float("-42998100000.0") - max_val = float("39908100000.0") - mean = float("-17340100.0") - std = float("2350230000.0") + min_val = float("-4299.81") + max_val = float("3990.81") + mean = float("-1734.01") + std = float("2350.23") data = None @@ -4311,10 +4273,8 @@ class Program_weight_tensor_parameter_373: original_name = "batch_norm2d_22.w_2" shape = [640] dtype = "float32" - min_val = float("1290730000.0") - max_val = float("8.78844e+20") - mean = float("2.72846e+18") - std = float("inf") + min_val = float("12.9073") + max_val = float("8788.44") data = None @@ -4323,10 +4283,10 @@ class Program_weight_tensor_parameter_374: original_name = "batch_norm2d_22.w_1" shape = [640] dtype = "float32" - min_val = float("-24967400000.0") - max_val = float("15440700000.0") - mean = float("-87857400.0") - std = float("1512910000.0") + min_val = float("-2496.74") + max_val = float("15440.7") + mean = float("-878.574") + std = float("15129.1") data = None @@ -4372,9 +4332,7 @@ class Program_weight_tensor_parameter_378: shape = [640] dtype = "float32" min_val = float("2.85619e-06") - max_val = float("1.25829e+23") - mean = float("1.97856e+20") - std = float("inf") + max_val = float("12582.9") data = None @@ -4383,10 +4341,10 @@ class Program_weight_tensor_parameter_379: original_name = "batch_norm2d_21.w_1" shape = [640] dtype = "float32" - min_val = float("-11284800000.0") - max_val = float("103528000000.0") - mean = float("205898000.0") - std = float("4183220000.0") + min_val = float("-1128.48") + max_val = float("10352.8") + mean = float("2058.98") + std = float("4183.22") data = None @@ -4431,10 +4389,8 @@ class Program_weight_tensor_parameter_383: original_name = "batch_norm2d_20.w_2" shape = [640] dtype = "float32" - min_val = float("313117000.0") - max_val = float("3.12437e+22") - mean = float("6.42489e+19") - std = float("inf") + min_val = float("31.3117") + max_val = float("3124.37") data = None @@ -4443,10 +4399,10 @@ class Program_weight_tensor_parameter_384: original_name = "batch_norm2d_20.w_1" shape = [640] dtype = "float32" - min_val = float("-13702700000.0") - max_val = float("70694600000.0") - mean = float("181567000.0") - std = float("3102160000.0") + min_val = float("-1370.27") + max_val = float("7069.46") + mean = float("1815.67") + std = float("3102.16") data = None @@ -4492,9 +4448,7 @@ class Program_weight_tensor_parameter_388: shape = [640] dtype = "float32" min_val = float("7.95316e-07") - max_val = float("2.20108e+21") - mean = float("5.93378e+18") - std = float("inf") + max_val = float("2201.08") data = None @@ -4503,10 +4457,10 @@ class Program_weight_tensor_parameter_389: original_name = "batch_norm2d_19.w_1" shape = [640] dtype = "float32" - min_val = float("-14660200000.0") - max_val = float("41376300000.0") - mean = float("3122360.0") - std = float("1908930000.0") + min_val = float("-1466.02") + max_val = float("4137.63") + mean = float("312.236") + std = float("1908.93") data = None @@ -4551,10 +4505,8 @@ class Program_weight_tensor_parameter_393: original_name = "batch_norm2d_18.w_2" shape = [640] dtype = "float32" - min_val = float("1108370000.0") - max_val = float("5.8681e+20") - mean = float("3.0167e+18") - std = float("inf") + min_val = float("11.0837") + max_val = float("5868.10") data = None @@ -4563,10 +4515,10 @@ class Program_weight_tensor_parameter_394: original_name = "batch_norm2d_18.w_1" shape = [640] dtype = "float32" - min_val = float("-23696700000.0") - max_val = float("11167400000.0") - mean = float("17698800.0") - std = float("1192040000.0") + min_val = float("-2369.67") + max_val = float("11167.4") + mean = float("1769.88") + std = float("11920.4") data = None @@ -4612,9 +4564,7 @@ class Program_weight_tensor_parameter_398: shape = [640] dtype = "float32" min_val = float("1.64366e-05") - max_val = float("2.62001e+20") - mean = float("1.07981e+18") - std = float("inf") + max_val = float("2620.01") data = None @@ -4623,10 +4573,10 @@ class Program_weight_tensor_parameter_399: original_name = "batch_norm2d_17.w_1" shape = [640] dtype = "float32" - min_val = float("-41680700000.0") - max_val = float("3437810000.0") - mean = float("-89032600.0") - std = float("1735380000.0") + min_val = float("-4168.07") + max_val = float("3437.81") + mean = float("-890.326") + std = float("1735.38") data = None @@ -4671,10 +4621,8 @@ class Program_weight_tensor_parameter_403: original_name = "batch_norm2d_16.w_2" shape = [640] dtype = "float32" - min_val = float("698022000.0") - max_val = float("8.75483e+19") - mean = float("9.29516e+17") - std = float("inf") + min_val = float("69.8022") + max_val = float("8754.83") data = None @@ -4683,10 +4631,10 @@ class Program_weight_tensor_parameter_404: original_name = "batch_norm2d_16.w_1" shape = [640] dtype = "float32" - min_val = float("-6894760000.0") - max_val = float("4684640000.0") - mean = float("-33198100.0") - std = float("540811000.0") + min_val = float("-6894.76") + max_val = float("4684.64") + mean = float("-331.981") + std = float("5408.11") data = None @@ -4732,9 +4680,7 @@ class Program_weight_tensor_parameter_408: shape = [640] dtype = "float32" min_val = float("1.1929e-06") - max_val = float("3.93504e+20") - mean = float("1.88509e+18") - std = float("inf") + max_val = float("3935.04") data = None @@ -4743,10 +4689,10 @@ class Program_weight_tensor_parameter_409: original_name = "batch_norm2d_15.w_1" shape = [640] dtype = "float32" - min_val = float("-9042340000.0") - max_val = float("16873600000.0") - mean = float("51932200.0") - std = float("1074300000.0") + min_val = float("-9042.34") + max_val = float("16873.6") + mean = float("5193.22") + std = float("10743.0") data = None @@ -4791,10 +4737,8 @@ class Program_weight_tensor_parameter_413: original_name = "batch_norm2d_14.w_2" shape = [640] dtype = "float32" - min_val = float("1423200000.0") - max_val = float("4.42497e+20") - mean = float("1.82884e+18") - std = float("inf") + min_val = float("14.2320") + max_val = float("4424.97") data = None @@ -4803,10 +4747,10 @@ class Program_weight_tensor_parameter_414: original_name = "batch_norm2d_14.w_1" shape = [640] dtype = "float32" - min_val = float("-11531700000.0") - max_val = float("10098100000.0") - mean = float("-4629380.0") - std = float("1126350000.0") + min_val = float("-1153.17") + max_val = float("10098.1") + mean = float("-462.938") + std = float("11263.5") data = None @@ -4852,9 +4796,7 @@ class Program_weight_tensor_parameter_418: shape = [640] dtype = "float32" min_val = float("0.000284452") - max_val = float("6.8432e+21") - mean = float("1.23178e+19") - std = float("inf") + max_val = float("6843.20") data = None @@ -4863,10 +4805,10 @@ class Program_weight_tensor_parameter_419: original_name = "batch_norm2d_13.w_1" shape = [640] dtype = "float32" - min_val = float("-52727100000.0") - max_val = float("32822800000.0") - mean = float("-74949700.0") - std = float("2727810000.0") + min_val = float("-5272.71") + max_val = float("3282.28") + mean = float("-749.497") + std = float("2727.81") data = None @@ -4911,10 +4853,8 @@ class Program_weight_tensor_parameter_423: original_name = "batch_norm2d_12.w_2" shape = [640] dtype = "float32" - min_val = float("5812160000.0") - max_val = float("8.35144e+20") - mean = float("4.67478e+18") - std = float("inf") + min_val = float("58.1216") + max_val = float("8351.44") data = None @@ -4923,10 +4863,10 @@ class Program_weight_tensor_parameter_424: original_name = "batch_norm2d_12.w_1" shape = [640] dtype = "float32" - min_val = float("-21357400000.0") - max_val = float("19106800000.0") - mean = float("-14194600.0") - std = float("1680160000.0") + min_val = float("-2135.74") + max_val = float("1910.68") + mean = float("-141.946") + std = float("1680.16") data = None @@ -4972,9 +4912,7 @@ class Program_weight_tensor_parameter_428: shape = [320] dtype = "float32" min_val = float("4.15695e-08") - max_val = float("5.23365e+20") - mean = float("3.4446e+18") - std = float("inf") + max_val = float("5233.65") data = None @@ -4983,10 +4921,10 @@ class Program_weight_tensor_parameter_429: original_name = "batch_norm2d_11.w_1" shape = [320] dtype = "float32" - min_val = float("-14413500000.0") - max_val = float("10180900000.0") - mean = float("30528800.0") - std = float("1377360000.0") + min_val = float("-1441.35") + max_val = float("10180.9") + mean = float("3052.88") + std = float("13773.6") data = None @@ -5031,10 +4969,8 @@ class Program_weight_tensor_parameter_433: original_name = "batch_norm2d_10.w_2" shape = [320] dtype = "float32" - min_val = float("1546490000.0") - max_val = float("1.64206e+23") - mean = float("6.03107e+20") - std = float("inf") + min_val = float("15.4649") + max_val = float("1642.06") data = None @@ -5043,10 +4979,10 @@ class Program_weight_tensor_parameter_434: original_name = "batch_norm2d_10.w_1" shape = [320] dtype = "float32" - min_val = float("-416065000000.0") - max_val = float("99026300000.0") - mean = float("-1221850000.0") - std = float("24383200000.0") + min_val = float("-4160.65") + max_val = float("9902.63") + mean = float("-1221.85") + std = float("2438.32") data = None @@ -5092,9 +5028,7 @@ class Program_weight_tensor_parameter_438: shape = [320] dtype = "float32" min_val = float("0.110365") - max_val = float("3.00155e+21") - mean = float("2.22167e+19") - std = float("inf") + max_val = float("3001.55") data = None @@ -5103,10 +5037,10 @@ class Program_weight_tensor_parameter_439: original_name = "batch_norm2d_9.w_1" shape = [320] dtype = "float32" - min_val = float("-7671760000.0") - max_val = float("90259200000.0") - mean = float("604382000.0") - std = float("6808880000.0") + min_val = float("-7671.76") + max_val = float("9025.92") + mean = float("604.382") + std = float("6808.88") data = None @@ -5151,10 +5085,8 @@ class Program_weight_tensor_parameter_443: original_name = "batch_norm2d_8.w_2" shape = [320] dtype = "float32" - min_val = float("24902000000.0") - max_val = float("6.12093e+21") - mean = float("4.71114e+19") - std = float("inf") + min_val = float("24.9020") + max_val = float("6120.93") data = None @@ -5163,10 +5095,10 @@ class Program_weight_tensor_parameter_444: original_name = "batch_norm2d_8.w_1" shape = [320] dtype = "float32" - min_val = float("-15461400000.0") - max_val = float("57228900000.0") - mean = float("276379000.0") - std = float("4405570000.0") + min_val = float("-1546.14") + max_val = float("5722.89") + mean = float("276.379") + std = float("4405.57") data = None @@ -5212,9 +5144,7 @@ class Program_weight_tensor_parameter_448: shape = [160] dtype = "float32" min_val = float("0.00149326") - max_val = float("1.16217e+23") - mean = float("7.49654e+20") - std = float("inf") + max_val = float("1162.17") data = None @@ -5223,10 +5153,10 @@ class Program_weight_tensor_parameter_449: original_name = "batch_norm2d_7.w_1" shape = [160] dtype = "float32" - min_val = float("-179041000000.0") - max_val = float("5518870000.0") - mean = float("-1501810000.0") - std = float("14392900000.0") + min_val = float("-1790.41") + max_val = float("5518.87") + mean = float("-1501.81") + std = float("14392.9") data = None @@ -5271,10 +5201,8 @@ class Program_weight_tensor_parameter_453: original_name = "batch_norm2d_6.w_2" shape = [160] dtype = "float32" - min_val = float("37523100000.0") - max_val = float("7.09867e+21") - mean = float("8.02912e+19") - std = float("inf") + min_val = float("37.5231") + max_val = float("7098.67") data = None @@ -5283,10 +5211,10 @@ class Program_weight_tensor_parameter_454: original_name = "batch_norm2d_6.w_1" shape = [160] dtype = "float32" - min_val = float("-70317900000.0") - max_val = float("40189100000.0") - mean = float("-286138000.0") - std = float("7667220000.0") + min_val = float("-7031.79") + max_val = float("4018.91") + mean = float("-2861.38") + std = float("7667.22") data = None @@ -5332,9 +5260,7 @@ class Program_weight_tensor_parameter_458: shape = [160] dtype = "float32" min_val = float("5.88099") - max_val = float("4.35754e+23") - mean = float("3.37242e+21") - std = float("inf") + max_val = float("4357.54") data = None @@ -5343,10 +5269,10 @@ class Program_weight_tensor_parameter_459: original_name = "batch_norm2d_5.w_1" shape = [160] dtype = "float32" - min_val = float("-1002460000000.0") - max_val = float("138202000000.0") - mean = float("-7099590000.0") - std = float("81248300000.0") + min_val = float("-10024.6") + max_val = float("1382.02") + mean = float("-7099.59") + std = float("8124.83") data = None @@ -5391,10 +5317,8 @@ class Program_weight_tensor_parameter_463: original_name = "batch_norm2d_4.w_2" shape = [160] dtype = "float32" - min_val = float("10782800000.0") - max_val = float("8.59511e+21") - mean = float("2.0735e+20") - std = float("inf") + min_val = float("10.7828") + max_val = float("8595.11") data = None @@ -5403,10 +5327,10 @@ class Program_weight_tensor_parameter_464: original_name = "batch_norm2d_4.w_1" shape = [160] dtype = "float32" - min_val = float("-55967000000.0") - max_val = float("24376500000.0") - mean = float("-1380990000.0") - std = float("7539840000.0") + min_val = float("-5596.70") + max_val = float("2437.65") + mean = float("-1380.99") + std = float("7539.84") data = None @@ -5452,9 +5376,7 @@ class Program_weight_tensor_parameter_468: shape = [80] dtype = "float32" min_val = float("0.00285509") - max_val = float("6.28874e+23") - mean = float("8.72561e+21") - std = float("inf") + max_val = float("6288.74") data = None @@ -5463,10 +5385,10 @@ class Program_weight_tensor_parameter_469: original_name = "batch_norm2d_3.w_1" shape = [80] dtype = "float32" - min_val = float("-824200000000.0") - max_val = float("116249000000.0") - mean = float("-10789600000.0") - std = float("93473500000.0") + min_val = float("-8242.00") + max_val = float("11624.9") + mean = float("-1078.96") + std = float("9347.35") data = None @@ -5511,10 +5433,8 @@ class Program_weight_tensor_parameter_473: original_name = "batch_norm2d_2.w_2" shape = [80] dtype = "float32" - min_val = float("29321900000.0") - max_val = float("7.11039e+23") - mean = float("9.04831e+21") - std = float("inf") + min_val = float("29.3219") + max_val = float("7110.39") data = None @@ -5523,10 +5443,10 @@ class Program_weight_tensor_parameter_474: original_name = "batch_norm2d_2.w_1" shape = [80] dtype = "float32" - min_val = float("-925988000000.0") - max_val = float("53176100000.0") - mean = float("-12275300000.0") - std = float("103743000000.0") + min_val = float("-9259.88") + max_val = float("5317.61") + mean = float("-1227.53") + std = float("10374.3") data = None