Skip to content

Question about the neg samples #27

@cocoshe

Description

@cocoshe

###============== Point-text Matching ===================###
text_input_ids_world = concat_all_gather(text_tokens.input_ids) # [bs, 32]
text_attention_mask_world = concat_all_gather(text_tokens.attention_mask) # [bs, 32]
point_embeds_world = all_gather_with_grad(point_embeds) # [bs, 257, 1408]
with torch.no_grad():
sim_t2p[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)
sim_p2t[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000)
weights_t2p = F.softmax(sim_t2p, dim=1)
weights_p2t = F.softmax(sim_p2t, dim=1)
# select a negative point for each text
point_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2p[b], 1).item()
point_embeds_neg.append(point_embeds_world[neg_idx])
point_embeds_neg = torch.stack(point_embeds_neg, dim=0)
# select a negative text for each point
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_p2t[b], 1).item()
text_ids_neg.append(text_input_ids_world[neg_idx])
text_atts_neg.append(text_attention_mask_world[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)

The neg_idx seems to select the most similar point sample for each text sample, and the most similar text sample for each point sample.

Why the "most similar" instead of "least similar"?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions