diff --git a/code/mnm_analysis/mnm_methods/mnm_regression.ipynb b/code/mnm_analysis/mnm_methods/mnm_regression.ipynb index f0947d3b3..f57c1f5be 100644 --- a/code/mnm_analysis/mnm_methods/mnm_regression.ipynb +++ b/code/mnm_analysis/mnm_methods/mnm_regression.ipynb @@ -555,6 +555,8 @@ "# to determine if follow up analysis will be continued or to simply return NULL\n", "# If this is negative we use a default way to determine this cutoff which is conservative but still useful\n", "parameter: skip_analysis_pip_cutoff = []\n", + "# Modify Finemapping parameters\n", + "parameter: finemapping_extra_opts = \"\"\n", "# Skip fine-mapping\n", "parameter: skip_fine_mapping = False\n", "# Skip TWAS weights computation\n", @@ -993,6 +995,7 @@ " # fine-mapping results summary\n", " signal_cutoff = ${pip_cutoff},\n", " coverage = c(${\",\".join([str(x) for x in coverage])}),\n", + " finemapping_extra_opts = ${finemapping_extra_opts if finemapping_extra_opts else \"list(refine = TRUE)\"},\n", " # TWAS weights and CV for TWAS weights\n", " twas_weights = FALSE, \n", " max_cv_variants=${max_cv_variants},\n", @@ -1029,6 +1032,7 @@ " # fine-mapping results summary\n", " signal_cutoff = ${pip_cutoff},\n", " coverage = c(${\",\".join([str(x) for x in coverage])}),\n", + " finemapping_extra_opts = ${finemapping_extra_opts if finemapping_extra_opts else \"list(refine = TRUE)\"},\n", " # TWAS weights and CV for TWAS weights\n", " twas_weights = TRUE, \n", " max_cv_variants=${max_cv_variants},\n",