diff --git a/Network_training/CNN.py b/Network_training/CNN.py index 9d30600..557b412 100644 --- a/Network_training/CNN.py +++ b/Network_training/CNN.py @@ -61,7 +61,10 @@ def max_pool_2x2(x): train_step = tf.train.AdagradOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) -sess.run(tf.global_variables_initializer()) +if(tf.__version__.startswith("0.") and int(tf.__version__.split(".")[1])<12): ### For tf version < 0.12.0 + sess.run(tf.initialize_all_variables()) +else: ### For tf version >= 0.12.0 + sess.run(tf.global_variables_initializer()) for i in range(20000): batch = data.next_batch(50) if i % 100 == 0: diff --git a/Network_training/SNN.py b/Network_training/SNN.py index abc8e6e..e61c64a 100644 --- a/Network_training/SNN.py +++ b/Network_training/SNN.py @@ -14,7 +14,11 @@ cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.0001).minimize(cross_entropy) sess = tf.Session() -init = tf.initialize_all_variables() +if(tf.__version__.startswith("0.") and int(tf.__version__.split(".")[1])<12): ### For tf version < 0.12.0 + init = tf.initialize_all_variables() +else: ### For tf version >= 0.12.0 + init = tf.global_variables_initializer() + # saver = tf.train.Saver() # saver.restore(sess, "D:\Code\Python\model.ckpt") sess.run(init)