Skip to content

Inquiry About Neuron Activation Processing #8

@zlkqz

Description

@zlkqz

I hope this message finds you well. I am reaching out to share my experience using the tool available at [https://monitor.transluce.org/dashboard/chat ] and to seek your assistance regarding some challenges I have encountered during my own implementation.

I have found the neuron searching through the activation mode on your platform to be extremely helpful. However, when I attempted to replicate this using my own code, I faced difficulties in obtaining the corresponding neuron activations. Despite using the same input text, the activation values I obtained were inconsistent with those produced by your tool.

After seeing the code you have published on GitHub, I noticed that you apply a straightforward approach of taking the maximum and minimum 1e-4 quantile of the activation values.(is that so?)

Image

I implemented the same method in my code, yet I am unable to find the corresponding neurons in my outputs.

One observation I made is that the highest neuron activations in my results tend to concentrate in the last few layers of the model. The top 5 neuron activations per layer are as follows:

[0.271484375, 0.1962890625, 0.11572265625, 0.0712890625, 0.06884765625, 0.06689453125, 0.06201171875, 0.0556640625, 0.052490234375, 0.05029296875]
1 torch.Size([14336]) torch.Size([14336])
Layer 1
[0.1513671875, 0.107421875, 0.06591796875, 0.064453125, 0.064453125, 0.061767578125, 0.050537109375, 0.049560546875, 0.046875, 0.0439453125]
2 torch.Size([14336]) torch.Size([14336])
Layer 2
[0.392578125, 0.216796875, 0.1474609375, 0.1220703125, 0.12060546875, 0.12060546875, 0.11767578125, 0.10205078125, 0.07421875, 0.0732421875]
3 torch.Size([14336]) torch.Size([14336])
Layer 3
[0.416015625, 0.26953125, 0.216796875, 0.2001953125, 0.1953125, 0.1884765625, 0.1494140625, 0.1474609375, 0.134765625, 0.130859375]
4 torch.Size([14336]) torch.Size([14336])
Layer 4
[0.62109375, 0.283203125, 0.2431640625, 0.2177734375, 0.181640625, 0.1689453125, 0.16796875, 0.158203125, 0.142578125, 0.1318359375]
5 torch.Size([14336]) torch.Size([14336])
Layer 5
[0.494140625, 0.279296875, 0.263671875, 0.240234375, 0.1923828125, 0.19140625, 0.1884765625, 0.1865234375, 0.177734375, 0.17578125]
6 torch.Size([14336]) torch.Size([14336])
Layer 6
[1.28125, 0.244140625, 0.216796875, 0.20703125, 0.2060546875, 0.19921875, 0.193359375, 0.1884765625, 0.181640625, 0.177734375]
7 torch.Size([14336]) torch.Size([14336])
Layer 7
[0.33984375, 0.298828125, 0.298828125, 0.2890625, 0.2734375, 0.2421875, 0.2314453125, 0.21875, 0.21484375, 0.2138671875]
8 torch.Size([14336]) torch.Size([14336])
Layer 8
[0.515625, 0.453125, 0.443359375, 0.345703125, 0.345703125, 0.32421875, 0.318359375, 0.29296875, 0.287109375, 0.26953125]
9 torch.Size([14336]) torch.Size([14336])
Layer 9
[0.55859375, 0.53125, 0.384765625, 0.30078125, 0.296875, 0.296875, 0.28515625, 0.27734375, 0.263671875, 0.2578125]
10 torch.Size([14336]) torch.Size([14336])
Layer 10
[1.359375, 0.60546875, 0.3515625, 0.306640625, 0.3046875, 0.30078125, 0.251953125, 0.251953125, 0.2470703125, 0.24609375]
11 torch.Size([14336]) torch.Size([14336])
Layer 11
[0.7265625, 0.4609375, 0.435546875, 0.380859375, 0.376953125, 0.333984375, 0.333984375, 0.27734375, 0.267578125, 0.259765625]
12 torch.Size([14336]) torch.Size([14336])
Layer 12
[0.69140625, 0.5625, 0.4609375, 0.359375, 0.341796875, 0.32421875, 0.298828125, 0.296875, 0.255859375, 0.2431640625]
13 torch.Size([14336]) torch.Size([14336])
Layer 13
[1.1015625, 0.73046875, 0.466796875, 0.3515625, 0.3515625, 0.318359375, 0.28515625, 0.28515625, 0.283203125, 0.263671875]
14 torch.Size([14336]) torch.Size([14336])
Layer 14
[1.6640625, 0.69140625, 0.38671875, 0.35546875, 0.330078125, 0.306640625, 0.294921875, 0.28125, 0.27734375, 0.2734375]
15 torch.Size([14336]) torch.Size([14336])
Layer 15
[0.62890625, 0.46484375, 0.4296875, 0.388671875, 0.38671875, 0.373046875, 0.296875, 0.2890625, 0.287109375, 0.27734375]
16 torch.Size([14336]) torch.Size([14336])
Layer 16
[0.76171875, 0.69921875, 0.65234375, 0.5703125, 0.546875, 0.53515625, 0.53125, 0.439453125, 0.421875, 0.404296875]
17 torch.Size([14336]) torch.Size([14336])
Layer 17
[1.7890625, 0.9453125, 0.77734375, 0.77734375, 0.734375, 0.68359375, 0.431640625, 0.400390625, 0.3984375, 0.388671875]
18 torch.Size([14336]) torch.Size([14336])
Layer 18
[0.7734375, 0.7109375, 0.70703125, 0.66015625, 0.58984375, 0.5703125, 0.48828125, 0.4609375, 0.421875, 0.408203125]
19 torch.Size([14336]) torch.Size([14336])
Layer 19
[1.6171875, 1.15625, 0.96875, 0.5546875, 0.53125, 0.4609375, 0.458984375, 0.41796875, 0.39453125, 0.36328125]
20 torch.Size([14336]) torch.Size([14336])
Layer 20
[1.109375, 0.77734375, 0.7421875, 0.4453125, 0.404296875, 0.375, 0.341796875, 0.33984375, 0.33203125, 0.310546875]
21 torch.Size([14336]) torch.Size([14336])
Layer 21
[0.84765625, 0.7421875, 0.5859375, 0.546875, 0.5, 0.486328125, 0.44921875, 0.404296875, 0.37890625, 0.32421875]
22 torch.Size([14336]) torch.Size([14336])
Layer 22
[0.95703125, 0.9140625, 0.7890625, 0.73046875, 0.59375, 0.51171875, 0.484375, 0.46875, 0.466796875, 0.46484375]
23 torch.Size([14336]) torch.Size([14336])
Layer 23
[0.78125, 0.609375, 0.6015625, 0.51953125, 0.41796875, 0.416015625, 0.3828125, 0.369140625, 0.3671875, 0.35546875]
24 torch.Size([14336]) torch.Size([14336])
Layer 24
[3.625, 2.078125, 1.2265625, 1.0078125, 0.98046875, 0.81640625, 0.7421875, 0.609375, 0.5234375, 0.5078125]
25 torch.Size([14336]) torch.Size([14336])
Layer 25
[3.25, 1.09375, 0.66015625, 0.65625, 0.625, 0.58984375, 0.5703125, 0.55859375, 0.55078125, 0.50390625]
26 torch.Size([14336]) torch.Size([14336])
Layer 26
[1.2578125, 1.1484375, 0.91015625, 0.78515625, 0.60546875, 0.5546875, 0.51171875, 0.431640625, 0.423828125, 0.392578125]
27 torch.Size([14336]) torch.Size([14336])
Layer 27
[1.5078125, 0.92578125, 0.75, 0.63671875, 0.6328125, 0.5703125, 0.55859375, 0.55859375, 0.5078125, 0.50390625]
28 torch.Size([14336]) torch.Size([14336])
Layer 28
[1.9140625, 1.890625, 1.59375, 1.515625, 1.46875, 1.4609375, 1.2421875, 0.97265625, 0.90625, 0.84375]
29 torch.Size([14336]) torch.Size([14336])
Layer 29
[2.8125, 2.25, 1.9609375, 1.6875, 1.6640625, 1.3125, 1.2109375, 1.1171875, 1.109375, 0.9921875]
30 torch.Size([14336]) torch.Size([14336])
Layer 30
[7.90625, 2.96875, 2.75, 2.640625, 2.546875, 2.28125, 2.28125, 2.015625, 1.84375, 1.8203125]
31 torch.Size([14336]) torch.Size([14336])
Layer 31
[7.34375, 5.90625, 5.90625, 5.84375, 5.71875, 5.59375, 4.90625, 4.71875, 4.5, 4.375]

This pattern may be indicative of an issue within my code. As such, I would like to inquire whether there are any additional processing steps performed on the neuron activations in your implementation. For instance, do you apply any normalization or other techniques that might affect the activation values?

Your guidance on this matter would be greatly appreciated as it would significantly aid my understanding and facilitate the accurate replication of your results.

Thank you for your time and assistance. I look forward to your response.

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions