diff --git a/Data Exploration and Conclusions.ipynb b/Data Exploration and Conclusions.ipynb
new file mode 100644
index 0000000..921947d
--- /dev/null
+++ b/Data Exploration and Conclusions.ipynb
@@ -0,0 +1,2170 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 236,
+ "id": "df82347c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import seaborn as sns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 171,
+ "id": "d8a59692",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df= pd.read_excel('measurements2.xlsx')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 172,
+ "id": "035c15e6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " AC | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill liters | \n",
+ " refill gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28.0 | \n",
+ " 5.0 | \n",
+ " 26 | \n",
+ " 21.5 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45.0 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12.0 | \n",
+ " 4.2 | \n",
+ " 30 | \n",
+ " 21.5 | \n",
+ " 13 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11.2 | \n",
+ " 5.5 | \n",
+ " 38 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12.9 | \n",
+ " 3.9 | \n",
+ " 36 | \n",
+ " 21.5 | \n",
+ " 14 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18.5 | \n",
+ " 4.5 | \n",
+ " 46 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " 16.0 | \n",
+ " 3.7 | \n",
+ " 39 | \n",
+ " 24.5 | \n",
+ " 18 | \n",
+ " NaN | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 384 | \n",
+ " 16.1 | \n",
+ " 4.3 | \n",
+ " 38 | \n",
+ " 25.0 | \n",
+ " 31 | \n",
+ " AC | \n",
+ " SP98 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 385 | \n",
+ " 16.0 | \n",
+ " 3.8 | \n",
+ " 45 | \n",
+ " 25.0 | \n",
+ " 19 | \n",
+ " NaN | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 386 | \n",
+ " 15.4 | \n",
+ " 4.6 | \n",
+ " 42 | \n",
+ " 25.0 | \n",
+ " 31 | \n",
+ " AC | \n",
+ " SP98 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 387 | \n",
+ " 14.7 | \n",
+ " 5.0 | \n",
+ " 25 | \n",
+ " 25.0 | \n",
+ " 30 | \n",
+ " AC | \n",
+ " SP98 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
388 rows × 12 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type \\\n",
+ "0 28.0 5.0 26 21.5 12 NaN E10 \n",
+ "1 12.0 4.2 30 21.5 13 NaN E10 \n",
+ "2 11.2 5.5 38 21.5 15 NaN E10 \n",
+ "3 12.9 3.9 36 21.5 14 NaN E10 \n",
+ "4 18.5 4.5 46 21.5 15 NaN E10 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "383 16.0 3.7 39 24.5 18 NaN SP98 \n",
+ "384 16.1 4.3 38 25.0 31 AC SP98 \n",
+ "385 16.0 3.8 45 25.0 19 NaN SP98 \n",
+ "386 15.4 4.6 42 25.0 31 AC SP98 \n",
+ "387 14.7 5.0 25 25.0 30 AC SP98 \n",
+ "\n",
+ " AC rain sun refill liters refill gas \n",
+ "0 0 0 0 45.0 E10 \n",
+ "1 0 0 0 NaN NaN \n",
+ "2 0 0 0 NaN NaN \n",
+ "3 0 0 0 NaN NaN \n",
+ "4 0 0 0 NaN NaN \n",
+ ".. .. ... ... ... ... \n",
+ "383 0 0 0 NaN NaN \n",
+ "384 1 0 0 NaN NaN \n",
+ "385 0 0 0 NaN NaN \n",
+ "386 1 0 0 NaN NaN \n",
+ "387 1 0 0 NaN NaN \n",
+ "\n",
+ "[388 rows x 12 columns]"
+ ]
+ },
+ "execution_count": 172,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "id": "6fb31237",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "numpy.float64"
+ ]
+ },
+ "execution_count": 82,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "type(df.distance[0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "id": "44f0e14c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "distance 0\n",
+ "consume 0\n",
+ "speed 0\n",
+ "temp_inside 12\n",
+ "temp_outside 0\n",
+ "specials 295\n",
+ "gas_type 0\n",
+ "AC 0\n",
+ "rain 0\n",
+ "sun 0\n",
+ "refill liters 375\n",
+ "refill gas 375\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 83,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "id": "7dc9a17a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "MediaConsumos= df.groupby(['gas_type']).mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "id": "0f7ff9b1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " AC | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill liters | \n",
+ "
\n",
+ " \n",
+ " | gas_type | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | E10 | \n",
+ " 21.096250 | \n",
+ " 4.931250 | \n",
+ " 43.506250 | \n",
+ " 21.917197 | \n",
+ " 10.11875 | \n",
+ " 0.043750 | \n",
+ " 0.100000 | \n",
+ " 0.075000 | \n",
+ " 39.6000 | \n",
+ "
\n",
+ " \n",
+ " | SP98 | \n",
+ " 18.639912 | \n",
+ " 4.899123 | \n",
+ " 40.820175 | \n",
+ " 21.938356 | \n",
+ " 12.22807 | \n",
+ " 0.100877 | \n",
+ " 0.140351 | \n",
+ " 0.087719 | \n",
+ " 35.5625 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside AC \\\n",
+ "gas_type \n",
+ "E10 21.096250 4.931250 43.506250 21.917197 10.11875 0.043750 \n",
+ "SP98 18.639912 4.899123 40.820175 21.938356 12.22807 0.100877 \n",
+ "\n",
+ " rain sun refill liters \n",
+ "gas_type \n",
+ "E10 0.100000 0.075000 39.6000 \n",
+ "SP98 0.140351 0.087719 35.5625 "
+ ]
+ },
+ "execution_count": 85,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "MediaConsumos"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "463a21ec",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#¿que nos interesa?\n",
+ "#consumo por kilometro a la misma velocidad\n",
+ "#precio\n",
+ "#specialidades"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 134,
+ "id": "df5d762b",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ ":3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
+ " meane10=e10.mean()\n",
+ ":4: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
+ " meansp=sp.mean()\n"
+ ]
+ }
+ ],
+ "source": [
+ "e10= df[df.gas_type=='E10']\n",
+ "sp= df[df.gas_type=='SP98']\n",
+ "meane10=e10.mean()\n",
+ "meansp=sp.mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 124,
+ "id": "d3634051",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "consumonormale10=(meane10.consume/meane10.speed)*40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 125,
+ "id": "81dfeaff",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "consumonormalsp=(meansp.consume/meansp.speed)*40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 126,
+ "id": "0c04f810",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "4.533831346070967\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(consumonormale10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 127,
+ "id": "e079a5bb",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "4.800687654453636\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(consumonormalsp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5301d2ab",
+ "metadata": {},
+ "source": [
+ "#### Primera conclusión:\n",
+ "A misma velocidad consume más el sp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 129,
+ "id": "7d20ea65",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "consumonormaldiste10=(meane10.consume/meane10.distance)*1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 132,
+ "id": "83fae437",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "consumonormaldistsp=(meansp.consume/meansp.distance)*1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 133,
+ "id": "7fc317f9",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.23375007406529597\n",
+ "0.26282971364032093\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(consumonormaldiste10)\n",
+ "print(consumonormaldistsp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4e4eddbb",
+ "metadata": {},
+ "source": [
+ "### Segunda conclusión:\n",
+ "A misma distancia se consume más con sp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 173,
+ "id": "3e673bcf",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def limpieza(x):\n",
+ " if x== 'SP98':\n",
+ " return 1\n",
+ " if x== 'E10':\n",
+ " return 0\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 174,
+ "id": "806222ba",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.gas_type=df.gas_type.apply(limpieza)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 175,
+ "id": "ebfd14dc",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " AC | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill liters | \n",
+ " refill gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28.0 | \n",
+ " 5.0 | \n",
+ " 26 | \n",
+ " 21.5 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45.0 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12.0 | \n",
+ " 4.2 | \n",
+ " 30 | \n",
+ " 21.5 | \n",
+ " 13 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11.2 | \n",
+ " 5.5 | \n",
+ " 38 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12.9 | \n",
+ " 3.9 | \n",
+ " 36 | \n",
+ " 21.5 | \n",
+ " 14 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18.5 | \n",
+ " 4.5 | \n",
+ " 46 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " 16.0 | \n",
+ " 3.7 | \n",
+ " 39 | \n",
+ " 24.5 | \n",
+ " 18 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 384 | \n",
+ " 16.1 | \n",
+ " 4.3 | \n",
+ " 38 | \n",
+ " 25.0 | \n",
+ " 31 | \n",
+ " AC | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 385 | \n",
+ " 16.0 | \n",
+ " 3.8 | \n",
+ " 45 | \n",
+ " 25.0 | \n",
+ " 19 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 386 | \n",
+ " 15.4 | \n",
+ " 4.6 | \n",
+ " 42 | \n",
+ " 25.0 | \n",
+ " 31 | \n",
+ " AC | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 387 | \n",
+ " 14.7 | \n",
+ " 5.0 | \n",
+ " 25 | \n",
+ " 25.0 | \n",
+ " 30 | \n",
+ " AC | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
388 rows × 12 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type \\\n",
+ "0 28.0 5.0 26 21.5 12 NaN 0 \n",
+ "1 12.0 4.2 30 21.5 13 NaN 0 \n",
+ "2 11.2 5.5 38 21.5 15 NaN 0 \n",
+ "3 12.9 3.9 36 21.5 14 NaN 0 \n",
+ "4 18.5 4.5 46 21.5 15 NaN 0 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "383 16.0 3.7 39 24.5 18 NaN 1 \n",
+ "384 16.1 4.3 38 25.0 31 AC 1 \n",
+ "385 16.0 3.8 45 25.0 19 NaN 1 \n",
+ "386 15.4 4.6 42 25.0 31 AC 1 \n",
+ "387 14.7 5.0 25 25.0 30 AC 1 \n",
+ "\n",
+ " AC rain sun refill liters refill gas \n",
+ "0 0 0 0 45.0 E10 \n",
+ "1 0 0 0 NaN NaN \n",
+ "2 0 0 0 NaN NaN \n",
+ "3 0 0 0 NaN NaN \n",
+ "4 0 0 0 NaN NaN \n",
+ ".. .. ... ... ... ... \n",
+ "383 0 0 0 NaN NaN \n",
+ "384 1 0 0 NaN NaN \n",
+ "385 0 0 0 NaN NaN \n",
+ "386 1 0 0 NaN NaN \n",
+ "387 1 0 0 NaN NaN \n",
+ "\n",
+ "[388 rows x 12 columns]"
+ ]
+ },
+ "execution_count": 175,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 176,
+ "id": "218383fc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "corr=df.corr()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 177,
+ "id": "a044885a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ ":4: FutureWarning: this method is deprecated in favour of `Styler.format(precision=..)`\n",
+ " (corr\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " gas_type | \n",
+ " AC | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill liters | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | distance | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " | consume | \n",
+ " -0.13 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " | speed | \n",
+ " 0.56 | \n",
+ " -0.23 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " | temp_inside | \n",
+ " 0.08 | \n",
+ " -0.16 | \n",
+ " 0.06 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " | temp_outside | \n",
+ " 0.09 | \n",
+ " -0.32 | \n",
+ " 0.02 | \n",
+ " 0.36 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " | gas_type | \n",
+ " -0.05 | \n",
+ " -0.02 | \n",
+ " -0.10 | \n",
+ " 0.01 | \n",
+ " 0.15 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " | AC | \n",
+ " -0.03 | \n",
+ " 0.10 | \n",
+ " -0.04 | \n",
+ " 0.30 | \n",
+ " 0.17 | \n",
+ " 0.11 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " | rain | \n",
+ " -0.02 | \n",
+ " 0.25 | \n",
+ " 0.01 | \n",
+ " -0.04 | \n",
+ " -0.19 | \n",
+ " 0.06 | \n",
+ " 0.24 | \n",
+ " nan | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " | sun | \n",
+ " 0.08 | \n",
+ " -0.17 | \n",
+ " 0.08 | \n",
+ " 0.25 | \n",
+ " 0.35 | \n",
+ " 0.02 | \n",
+ " 0.09 | \n",
+ " -0.11 | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ " | refill liters | \n",
+ " 0.13 | \n",
+ " 0.10 | \n",
+ " 0.05 | \n",
+ " 0.03 | \n",
+ " -0.08 | \n",
+ " -0.24 | \n",
+ " nan | \n",
+ " -0.49 | \n",
+ " nan | \n",
+ " nan | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 177,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mask = np.zeros_like(corr, dtype=bool)\n",
+ "mask[np.triu_indices_from(mask)] = True\n",
+ "corr[mask] = np.nan\n",
+ "(corr\n",
+ " .style\n",
+ " .background_gradient(cmap='coolwarm', axis=None, vmin=-1, vmax=1)\n",
+ " .highlight_null(null_color='#f1f1f1') \n",
+ " .set_precision(2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "504d58e6",
+ "metadata": {},
+ "source": [
+ "No enseña correlación entre consume y gas type"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "999b54ee",
+ "metadata": {},
+ "source": [
+ "#### Siguiente paso\n",
+ "Enriquecer datos con el precio de la gasolina. Aquí vamos a hacer la suposición, de que los dos tipos de gasolina que se muertan con sin plomo 98, uno siendo el estándar y el otro con ethanol 10.\n",
+ "Tras una extensiva búsqueda en internet he llegado a la conclusión de que no se puede hallar el precio de la e10 a día de hoy, pero cómo nos dicen que es más barata la e10, y es la que menos se consume, vamos a suponer que es más rentable económicamente la gasolina e10, dado que se consume menos con esta y es más barata. Para hacer estas conclusiones más fiables, vamos a intentar igualar las condiciones de prueba, tomando una temperatura normalizada, y eliminando los datos que contengan factores especiales como lluvia o aire acondicionado."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 179,
+ "id": "15e7a7f4",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([nan, 'AC rain', 'AC', 'rain', 'snow', 'AC snow',\n",
+ " 'half rain half sun', 'sun', 'AC sun', 'sun ac', 'ac', 'AC Sun',\n",
+ " 'ac rain'], dtype=object)"
+ ]
+ },
+ "execution_count": 179,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.specials.unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 180,
+ "id": "fe498e37",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "30"
+ ]
+ },
+ "execution_count": 180,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.AC.sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 184,
+ "id": "a42647d6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "indexes = df[ df['AC'] == 1 ].index"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 185,
+ "id": "c45243b9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.drop(indexes, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 186,
+ "id": "7e9a54fc",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " AC | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill liters | \n",
+ " refill gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28.0 | \n",
+ " 5.0 | \n",
+ " 26 | \n",
+ " 21.5 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45.0 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12.0 | \n",
+ " 4.2 | \n",
+ " 30 | \n",
+ " 21.5 | \n",
+ " 13 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11.2 | \n",
+ " 5.5 | \n",
+ " 38 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12.9 | \n",
+ " 3.9 | \n",
+ " 36 | \n",
+ " 21.5 | \n",
+ " 14 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18.5 | \n",
+ " 4.5 | \n",
+ " 46 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 380 | \n",
+ " 8.3 | \n",
+ " 5.0 | \n",
+ " 52 | \n",
+ " 24.5 | \n",
+ " 27 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 381 | \n",
+ " 5.5 | \n",
+ " 3.7 | \n",
+ " 33 | \n",
+ " 24.5 | \n",
+ " 28 | \n",
+ " sun | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 382 | \n",
+ " 13.6 | \n",
+ " 3.7 | \n",
+ " 33 | \n",
+ " 24.5 | \n",
+ " 28 | \n",
+ " sun | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " 16.0 | \n",
+ " 3.7 | \n",
+ " 39 | \n",
+ " 24.5 | \n",
+ " 18 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 385 | \n",
+ " 16.0 | \n",
+ " 3.8 | \n",
+ " 45 | \n",
+ " 25.0 | \n",
+ " 19 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
358 rows × 12 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type \\\n",
+ "0 28.0 5.0 26 21.5 12 NaN 0 \n",
+ "1 12.0 4.2 30 21.5 13 NaN 0 \n",
+ "2 11.2 5.5 38 21.5 15 NaN 0 \n",
+ "3 12.9 3.9 36 21.5 14 NaN 0 \n",
+ "4 18.5 4.5 46 21.5 15 NaN 0 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "380 8.3 5.0 52 24.5 27 NaN 1 \n",
+ "381 5.5 3.7 33 24.5 28 sun 1 \n",
+ "382 13.6 3.7 33 24.5 28 sun 1 \n",
+ "383 16.0 3.7 39 24.5 18 NaN 1 \n",
+ "385 16.0 3.8 45 25.0 19 NaN 1 \n",
+ "\n",
+ " AC rain sun refill liters refill gas \n",
+ "0 0 0 0 45.0 E10 \n",
+ "1 0 0 0 NaN NaN \n",
+ "2 0 0 0 NaN NaN \n",
+ "3 0 0 0 NaN NaN \n",
+ "4 0 0 0 NaN NaN \n",
+ ".. .. ... ... ... ... \n",
+ "380 0 0 0 NaN NaN \n",
+ "381 0 0 1 NaN NaN \n",
+ "382 0 0 1 NaN NaN \n",
+ "383 0 0 0 NaN NaN \n",
+ "385 0 0 0 NaN NaN \n",
+ "\n",
+ "[358 rows x 12 columns]"
+ ]
+ },
+ "execution_count": 186,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 181,
+ "id": "fccc4d0c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "32"
+ ]
+ },
+ "execution_count": 181,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.sun.sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 187,
+ "id": "d2f3a1b5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "indexes2 = df[ df['sun'] == 1 ].index\n",
+ "df.drop(indexes2, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 182,
+ "id": "31f562ad",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "48"
+ ]
+ },
+ "execution_count": 182,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.rain.sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 188,
+ "id": "a22c68c5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "indexes3 = df[ df['rain'] == 1 ].index\n",
+ "df.drop(indexes3, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 189,
+ "id": "ce6c8a2a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " AC | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill liters | \n",
+ " refill gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28.0 | \n",
+ " 5.0 | \n",
+ " 26 | \n",
+ " 21.5 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45.0 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12.0 | \n",
+ " 4.2 | \n",
+ " 30 | \n",
+ " 21.5 | \n",
+ " 13 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11.2 | \n",
+ " 5.5 | \n",
+ " 38 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12.9 | \n",
+ " 3.9 | \n",
+ " 36 | \n",
+ " 21.5 | \n",
+ " 14 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18.5 | \n",
+ " 4.5 | \n",
+ " 46 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 375 | \n",
+ " 11.9 | \n",
+ " 3.7 | \n",
+ " 33 | \n",
+ " 25.0 | \n",
+ " 19 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 376 | \n",
+ " 14.5 | \n",
+ " 4.3 | \n",
+ " 36 | \n",
+ " 25.0 | \n",
+ " 22 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 380 | \n",
+ " 8.3 | \n",
+ " 5.0 | \n",
+ " 52 | \n",
+ " 24.5 | \n",
+ " 27 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " 16.0 | \n",
+ " 3.7 | \n",
+ " 39 | \n",
+ " 24.5 | \n",
+ " 18 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 385 | \n",
+ " 16.0 | \n",
+ " 3.8 | \n",
+ " 45 | \n",
+ " 25.0 | \n",
+ " 19 | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
295 rows × 12 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type \\\n",
+ "0 28.0 5.0 26 21.5 12 NaN 0 \n",
+ "1 12.0 4.2 30 21.5 13 NaN 0 \n",
+ "2 11.2 5.5 38 21.5 15 NaN 0 \n",
+ "3 12.9 3.9 36 21.5 14 NaN 0 \n",
+ "4 18.5 4.5 46 21.5 15 NaN 0 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "375 11.9 3.7 33 25.0 19 NaN 1 \n",
+ "376 14.5 4.3 36 25.0 22 NaN 1 \n",
+ "380 8.3 5.0 52 24.5 27 NaN 1 \n",
+ "383 16.0 3.7 39 24.5 18 NaN 1 \n",
+ "385 16.0 3.8 45 25.0 19 NaN 1 \n",
+ "\n",
+ " AC rain sun refill liters refill gas \n",
+ "0 0 0 0 45.0 E10 \n",
+ "1 0 0 0 NaN NaN \n",
+ "2 0 0 0 NaN NaN \n",
+ "3 0 0 0 NaN NaN \n",
+ "4 0 0 0 NaN NaN \n",
+ ".. .. ... ... ... ... \n",
+ "375 0 0 0 NaN NaN \n",
+ "376 0 0 0 NaN NaN \n",
+ "380 0 0 0 NaN NaN \n",
+ "383 0 0 0 NaN NaN \n",
+ "385 0 0 0 NaN NaN \n",
+ "\n",
+ "[295 rows x 12 columns]"
+ ]
+ },
+ "execution_count": 189,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 190,
+ "id": "4e0d4a0c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ ":3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
+ " meane10=e10.mean()\n",
+ ":4: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
+ " meansp=sp.mean()\n"
+ ]
+ }
+ ],
+ "source": [
+ "e10= df[df.gas_type==0]\n",
+ "sp= df[df.gas_type==1]\n",
+ "meane10=e10.mean()\n",
+ "meansp=sp.mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 200,
+ "id": "c445b9f3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "diste10=(meane10.consume/meane10.distance)*1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 201,
+ "id": "19deeb38",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "distsp=(meansp.consume/meansp.distance)*1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 202,
+ "id": "95644aa8",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.2267600155581485\n",
+ "0.2768685499843636\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(diste10)\n",
+ "print(distsp)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 221,
+ "id": "42c8ce6d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = {'TipoDeGasolina':['E10', 'SP98'],'ConsumoMismaDistancia': [diste10, distsp]}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 222,
+ "id": "1cb4e068",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dframe = pd.DataFrame(data)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 232,
+ "id": "e111dbc7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " TipoDeGasolina | \n",
+ " ConsumoMismaDistancia | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " E10 | \n",
+ " 0.226760 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " SP98 | \n",
+ " 0.276869 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " TipoDeGasolina ConsumoMismaDistancia\n",
+ "0 E10 0.226760\n",
+ "1 SP98 0.276869"
+ ]
+ },
+ "execution_count": 232,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dframe"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 238,
+ "id": "40d2d10a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 238,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUc0lEQVR4nO3df7RdZX3n8ffHID86INhJ6ihJCGqsRlHBC9NCHWXEtcBpQa0VGK21Y42dFlvrjykuu2gX7XSgWO1oaRH7A+soP2TUxhpLp4LYQZEEBUJAnJhBEnAk/oJaqxD4zh9npxwO5yY3uXffk8vzfq11Vs5+9nP2/j7n3NzP3Xuf85xUFZKkdj1m0gVIkibLIJCkxhkEktQ4g0CSGmcQSFLj9pl0Abtr8eLFtWLFikmXIUkLyvXXX//Nqloybt2CC4IVK1awfv36SZchSQtKkq9Nt85TQ5LUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxvQVBkr9IcneSm6dZnyTvSbIpyU1JjuqrFknS9Po8IrgIOHEn608CVna31cCf9liLJGkavQVBVX0W+PZOupwC/FUNXAsckuSJfdUjSRpvkp8sPhTYMrS8tWv7+mjHJKsZHDWwfPnyPd/hsuXctXXLrjtKe2DRY/fjgft/OOky9Cj2pKXLuHPLHXO+3QUxxURVXQhcCDA1NbXHX6l219YtnPq+z81ZXdKwS99wrD9f6tWlbzi2l+1O8l1DdwLLhpaXdm2SpHk0ySBYA7yme/fQTwD3VNUjTgtJkvrV26mhJBcDLwQWJ9kK/DbwWICqugBYC7wE2AR8H/jFvmqRJE2vtyCoqtN3sb6AX+1r/5KkmfGTxZLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTG9RoESU5McluSTUnOHLN+eZKrknwpyU1JXtJnPZKkR+otCJIsAs4HTgJWAacnWTXS7beAy6rqSOA04E/6qkeSNF6fRwTHAJuqanNV3QdcApwy0qeAx3X3Dwbu6rEeSdIYfQbBocCWoeWtXduw3wFenWQrsBZ447gNJVmdZH2S9du2beujVklq1qQvFp8OXFRVS4GXAB9M8oiaqurCqpqqqqklS5bMe5GS9GjWZxDcCSwbWl7atQ17HXAZQFV9HtgfWNxjTZKkEX0GwTpgZZLDk+zL4GLwmpE+dwAvAkjyDAZB4LkfSZpHvQVBVW0HzgCuAG5l8O6gjUnOTnJy1+0twOuT3AhcDLy2qqqvmiRJj7RPnxuvqrUMLgIPt501dP8W4Lg+a5Ak7dykLxZLkibMIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXG9BkGSE5PclmRTkjOn6fPKJLck2Zjkw33WI0l6pH362nCSRcD5wIuBrcC6JGuq6pahPiuBtwPHVdV3kvxYX/VIksbr84jgGGBTVW2uqvuAS4BTRvq8Hji/qr4DUFV391iPJGmMPoPgUGDL0PLWrm3Y04CnJbkmybVJTuyxHknSGL2dGtqN/a8EXggsBT6b5Iiq+u5wpySrgdUAy5cvn+cSJenRrc8jgjuBZUPLS7u2YVuBNVV1f1X9X+ArDILhYarqwqqaqqqpJUuW9FawJLWozyBYB6xMcniSfYHTgDUjfT7O4GiAJIsZnCra3GNNkqQRMwqCJMfNpG1YVW0HzgCuAG4FLquqjUnOTnJy1+0K4FtJbgGuAt5WVd/anQFIkmZnptcI3gscNYO2h6mqtcDakbazhu4X8ObuJkmagJ0GQZKfBI4FliQZ/mX9OGBRn4VJkubHro4I9gUO7PodNNR+L/CKvoqSJM2fnQZBVV0NXJ3koqr62jzVJEmaRzO9RrBfkguBFcOPqap/30dRkqT5M9Mg+AhwAfBnwAP9lSNJmm8zDYLtVfWnvVYiSZqImX6g7BNJfiXJE5P86I5br5VJkubFTI8IfqH7921DbQU8eW7LkSTNtxkFQVUd3nchkqTJmFEQJHnNuPaq+qu5LUeSNN9memro6KH7+wMvAr4IGASStMDN9NTQG4eXkxzC4BvHJEkL3J5OQ/1PgNcNJOlRYKbXCD7B4F1CMJhs7hnAZX0VJUmaPzO9RvDOofvbga9V1dYe6pEkzbMZnRrqJp/7MoMZSB8P3NdnUZKk+TPTbyh7JXAd8HPAK4EvJHEaakl6FJjpqaF3AEdX1d0ASZYAfw9c3ldhkqT5MdN3DT1mRwh0vrUbj5Uk7cVmekTwt0muAC7ulk9l5LuIJUkL066+s/ipwBOq6m1JXg78VLfq88CH+i5OktS/XR0R/BHwdoCq+ijwUYAkR3TrfqbH2iRJ82BX5/mfUFUbRhu7thW9VCRJmle7CoJDdrLugDmsQ5I0IbsKgvVJXj/amOSXgOv7KUmSNJ92dY3gTcDHkryKh37xTwH7Ai/rsS5J0jzZaRBU1TeAY5McDzyra/5kVV3Ze2WSpHkx0+8juAq4qudaJEkT4KeDJalxBoEkNc4gkKTGGQSS1DiDQJIa12sQJDkxyW1JNiU5cyf9fjZJJZnqsx5J0iP1FgRJFgHnAycBq4DTk6wa0+8g4NeBL/RViyRpen0eERwDbKqqzVV1H3AJcMqYfr8LnAv8oMdaJEnT6DMIDgW2DC1v7dr+RZKjgGVV9cmdbSjJ6iTrk6zftm3b3FcqSQ2b2MXiJI8B3gW8ZVd9q+rCqpqqqqklS5b0X5wkNaTPILgTWDa0vLRr2+EgBvMXfSbJ7cBPAGu8YCxJ86vPIFgHrExyeJJ9gdOANTtWVtU9VbW4qlZU1QrgWuDkqlrfY02SpBG9BUFVbQfOAK4AbgUuq6qNSc5OcnJf+5Uk7Z4ZzT66p6pqLbB2pO2safq+sM9aJEnj+cliSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuN6DYIkJya5LcmmJGeOWf/mJLckuSnJp5Mc1mc9kqRH6i0IkiwCzgdOAlYBpydZNdLtS8BUVT0buBz4g77qkSSN1+cRwTHApqraXFX3AZcApwx3qKqrqur73eK1wNIe65EkjdFnEBwKbBla3tq1Ted1wKfGrUiyOsn6JOu3bds2hyVKkvaKi8VJXg1MAeeNW19VF1bVVFVNLVmyZH6Lk6RHuX163PadwLKh5aVd28MkOQF4B/CCqvphj/VIksbo84hgHbAyyeFJ9gVOA9YMd0hyJPA+4OSqurvHWiRJ0+gtCKpqO3AGcAVwK3BZVW1McnaSk7tu5wEHAh9JckOSNdNsTpLUkz5PDVFVa4G1I21nDd0/oc/9S5J2ba+4WCxJmhyDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktS4XoMgyYlJbkuyKcmZY9bvl+TSbv0Xkqzosx5J0iP1FgRJFgHnAycBq4DTk6wa6fY64DtV9VTg3cC5fdUjSRqvzyOCY4BNVbW5qu4DLgFOGelzCvCB7v7lwIuSpMeaJEkj9ulx24cCW4aWtwL/dro+VbU9yT3Avwa+OdwpyWpgdbf4vSS37WlRl77h2D196DiLGam1Aa2NebfGO8c/X5PS2msMC2jMs/hb+bDpVvQZBHOmqi4ELpx0HaOSrK+qqUnXMZ9aG3Nr4wXH3KI+Tw3dCSwbWl7atY3tk2Qf4GDgWz3WJEka0WcQrANWJjk8yb7AacCakT5rgF/o7r8CuLKqqseaJEkjejs11J3zPwO4AlgE/EVVbUxyNrC+qtYAfw58MMkm4NsMwmIh2etOV82D1sbc2njBMTcn/gEuSW3zk8WS1DiDQJIaZxBMYwbTY7w5yS1Jbkry6SSHde2HJflikhuSbEzyy/Nf/e7b0/EOrX9ckq1J/nj+qp6d2Yw5yQPda3xDktE3Qey1Zjnm5Un+LsmtXZ8V81r8HpjF/+Pjh17fG5L8IMlL530A86WqvI3cGFzc/irwZGBf4EZg1Uif44Ef6e7/Z+DS7v6+wH7d/QOB24EnTXpMfY13aP1/Bz4M/PGkxzMfYwa+N+kxTGDMnwFe3N0/cEe/vfU2Fz/XXfuPMngzy1493tncPCIYb5fTY1TVVVX1/W7xWgafk6Cq7quqH3bt+7Ewjrr2eLwASZ4HPAH4u3mqdy7MaswL1B6PuZsnbJ+q+l9dv+8N9dtbzdVr/ArgUwtgvHtsIfySmoRx02McupP+rwM+tWMhybIkN3XbOLeq7uqlyrmzx+NN8hjgD4G39lZdP2b1GgP7J1mf5NoFdMpgNmN+GvDdJB9N8qUk53UTS+7NZvsa73AacPEc1rXXWRBTTOzNkrwamAJesKOtqrYAz07yJODjSS6vqm9Mqsa5NGa8vwKsraqtj9b5Ase9xsBhVXVnkicDVybZUFVfnUyFc2/MmPcBng8cCdwBXAq8lsFngRa8aV5jkjwROILB56EetTwiGG8m02OQ5ATgHcDJQ6eD/kV3JHAzg/9Ae7PZjPcngTOS3A68E3hNknP6LXdOzOo1rqo7u383Mzh3fmSfxc6R2Yx5K3BDd5plO/Bx4Kh+y521ufh//ErgY1V1f29V7g0mfZFib7wx+OtnM3A4D11keuZInyMZXIhaOdK+FDigu/944CvAEZMeU1/jHenzWhbOxeLZvMaP56E3BCwG/g8jFyH3xtssx7yo67+kW/5L4FcnPaa+xju0/lrg+EmPpe+bp4bGqJlNj3Eeg3dOfKQ7JXJHVZ0MPAP4wyQFBHhnVW2YyEBmaJbjXZDm4DV+X5IHGRxVn1NVt0xkILthNmOuqgeSvBX4dAYrrgfeP5mRzMxsf667t8cuA66eRP3zySkmJKlxXiOQpMYZBJLUOINAkhpnEEhS4wwCSWqcQaBeJPk3SS5J8tUk1ydZm+Rpk65rZ5L8TpJK8tShtjd1bVPd8tokh/RYw45ZTTcmuTHJW7ppPEgyleQ9O3nsiiT/sYeadrpfLXwGgeZc9z7zjwGfqaqnVNXzgLczmJhub7eBh39l6s8BG3csVNVLquq7Pe7/n6vquVX1TODFwEnAb3f7Xl9Vv7aTx64A5jwIZrBfLXAGgfpwPHB/VV2wo6GqbgT+dzdZ2c1JNiQ5FSDJC5N8JsnlSb6c5ENdmJDknKH54t/ZtV2U5BU7tp3ke0PbuTrJXyfZ3D32VUmu6/b3lK7fiiRXDs1Bv3yo9o/TzVDZ9b8H+ObQvm5PsjjJv0ryye6v9puHxnJ7kv/W/VW/PslRSa7ojox+uetzYLffL3Z1PWxGzKHn7G5gNYMpPNKN72+6bbwgD82V/6UkBwHnAM/v2n6jG+c/dPv5YpJjZ/B8H53kc924rkty0Mh+j0ny+W6fn0vy43vw86G9jJ8sVh+exeCTp6NeDjwXeA6DqRnWJflst+5I4JnAXcA1wHFJbgVeBjy9qmqGp2Sew+CTv99mML3An1XVMUl+HXgj8CbgvcAHquoDSf4T8B7gpd3j7wW2JHkWg0C4FPjFMfs5Ebirqv4DQJKDh9bdUVXPTfJu4CLgOGB/BvNOXQD8AHhZVd2bZDFwbZI1NebTnVW1OYNZPn9sZNVbGUzxcE2SA7ttngm8tap+uqvpRxh8f8APkqxkMIPmVPf4cc/3dd14T62qdUkeB/zzyH6/DDy/+9TuCcDvAz875vnRAuIRgebTTwEXV9UDNZiN9Wrg6G7ddVW1taoeBG5gcJrjHga/4P48ycuBmcwHv66qvl6DycO+ykPfkbCh2yYMJsr7cHf/g11dwy5hcHropQxOcY2zAXhxknOTPL+q7hlat2aozxeq6h+rahvwwy7MAvx+BlOV/z2DqZF397TZNcC7kvwacEgNJoIb9Vjg/Uk2AB8BVg2tG/d8/zjw9apaB1BV947Z7sEMpmO4GXg3gzDRAmcQqA8bgeft5mOGZ318gMGXoGxn8OUilwM/Dfxtt3473c9uBhdS951mOw8OLT/IzI+A/wb4eQZ/2d87rkNVfYXB7JsbgN9LctaYGob3P1zDq4AlwPOq6rnANxgcMTxCBtNcPwDcPbL/c4BfAg4Arkny9DEP/41u289hcCQw3fP0ADN/bn4XuKqqngX8zHR1a2ExCNSHK4H9kqze0ZDk2cB3gVOTLEqyBPh3wHXTbaQ75XFwVa1l8EvtOd2q23koaE5m8Jfv7vgcD10QfhXwD8Mra/BNVL8J/Ned1PYk4PtV9T8YTFy2O1MyHwzcXVX3JzkeOGxcp+45uoDBjK41su4pVbWhqs4F1gFPB/4ROGhkP1/v/ur/eQYTr+3MbcATkxzd7eOgJKMBcTAPTeX82l1sTwuE1wg057rz+S8D/ijJbzI4vXM7g/PzBzKYDriA/1JV/2+av2Zh8Evtr5Psz+B0ypu79vd37TcyOEr4p90s8Y3AXyZ5G7CNMdcAquqSXWzjCOC8DGYgvZ/B993O1IeAT3SnbNYzOO++wwFJbmAQbtsZnLp615htvKkLkQcZHIF9qrv/QPe8XAT8CfA/k7yGGTxPVXVfd9H7vUkOYHB94ISRbn8AfCDJbwGfnPGItVdz9lFJapynhiSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJatz/B2Pts6Bih8SoAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c2dcd09a",
+ "metadata": {},
+ "source": [
+ "Por distancia sigue consumiendo más sp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 194,
+ "id": "bbd44684",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.11372583791452384\n",
+ "0.11946026986506746\n"
+ ]
+ }
+ ],
+ "source": [
+ "speede10=(meane10.consume/meane10.speed)*1\n",
+ "speedsp=(meansp.consume/meansp.speed)*1\n",
+ "print(speede10)\n",
+ "print(speedsp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9c6390e3",
+ "metadata": {},
+ "source": [
+ "Lo mismo por velocidad, aunque la diferencia parece reducirse"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 196,
+ "id": "7116d92c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "12.38030888030888\n",
+ "10.744336569579287\n"
+ ]
+ }
+ ],
+ "source": [
+ "tempe10=(meane10.consume/meane10.temp_outside)*25\n",
+ "tempsp=(meansp.consume/meansp.temp_outside)*25\n",
+ "print(tempe10)\n",
+ "print(tempsp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5e25781c",
+ "metadata": {},
+ "source": [
+ "Aquí en cambio, vemos como el consumo de e10 se ve más afectado por una mayor temperatura que el sp."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 207,
+ "id": "d46a505a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "totale10=(meane10.consume/(meane10.temp_outside*meane10.speed*meane10.distance))*1\n",
+ "totalsp=(meansp.consume/(meansp.temp_outside*meansp.speed*meansp.distance))*1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 208,
+ "id": "d8d2a3aa",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.0005328895532414408\n",
+ "0.0006021792113958752\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(totale10)\n",
+ "print(totalsp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "80cfd9e8",
+ "metadata": {},
+ "source": [
+ "#### Conclusion Final\n",
+ "En igualdad de condiciones en cuanto a temperatura fuera, velocidad, distancia y condiciones especiales, parece que se consume menos con e10. Es cierto, que la muestra es ciertamente pequeña, y el consumo se puede deber a muchas otras cosas como el coche y el tipo de motor, no solamente el tipo de gasolina, por lo que con estos datos concluir que el e10 resulta en un consumo menor resulta peligroso."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f559b524",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Ironhack",
+ "language": "python",
+ "name": "ironhack"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}