From b334695cf59c3567871ef98596a2d14d04772b2b Mon Sep 17 00:00:00 2001 From: eduardo Date: Thu, 13 Jan 2022 17:55:13 +0100 Subject: [PATCH] Eduardo Rivera --- Data Exploration and Conclusions.ipynb | 2170 ++++++++++++++++++++++++ 1 file changed, 2170 insertions(+) create mode 100644 Data Exploration and Conclusions.ipynb diff --git a/Data Exploration and Conclusions.ipynb b/Data Exploration and Conclusions.ipynb new file mode 100644 index 0000000..921947d --- /dev/null +++ b/Data Exploration and Conclusions.ipynb @@ -0,0 +1,2170 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 236, + "id": "df82347c", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "id": "d8a59692", + "metadata": {}, + "outputs": [], + "source": [ + "df= pd.read_excel('measurements2.xlsx')" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "id": "035c15e6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeACrainsunrefill litersrefill gas
028.05.02621.512NaNE1000045.0E10
112.04.23021.513NaNE10000NaNNaN
211.25.53821.515NaNE10000NaNNaN
312.93.93621.514NaNE10000NaNNaN
418.54.54621.515NaNE10000NaNNaN
.......................................
38316.03.73924.518NaNSP98000NaNNaN
38416.14.33825.031ACSP98100NaNNaN
38516.03.84525.019NaNSP98000NaNNaN
38615.44.64225.031ACSP98100NaNNaN
38714.75.02525.030ACSP98100NaNNaN
\n", + "

388 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type \\\n", + "0 28.0 5.0 26 21.5 12 NaN E10 \n", + "1 12.0 4.2 30 21.5 13 NaN E10 \n", + "2 11.2 5.5 38 21.5 15 NaN E10 \n", + "3 12.9 3.9 36 21.5 14 NaN E10 \n", + "4 18.5 4.5 46 21.5 15 NaN E10 \n", + ".. ... ... ... ... ... ... ... \n", + "383 16.0 3.7 39 24.5 18 NaN SP98 \n", + "384 16.1 4.3 38 25.0 31 AC SP98 \n", + "385 16.0 3.8 45 25.0 19 NaN SP98 \n", + "386 15.4 4.6 42 25.0 31 AC SP98 \n", + "387 14.7 5.0 25 25.0 30 AC SP98 \n", + "\n", + " AC rain sun refill liters refill gas \n", + "0 0 0 0 45.0 E10 \n", + "1 0 0 0 NaN NaN \n", + "2 0 0 0 NaN NaN \n", + "3 0 0 0 NaN NaN \n", + "4 0 0 0 NaN NaN \n", + ".. .. ... ... ... ... \n", + "383 0 0 0 NaN NaN \n", + "384 1 0 0 NaN NaN \n", + "385 0 0 0 NaN NaN \n", + "386 1 0 0 NaN NaN \n", + "387 1 0 0 NaN NaN \n", + "\n", + "[388 rows x 12 columns]" + ] + }, + "execution_count": 172, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "6fb31237", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "numpy.float64" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(df.distance[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "44f0e14c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "distance 0\n", + "consume 0\n", + "speed 0\n", + "temp_inside 12\n", + "temp_outside 0\n", + "specials 295\n", + "gas_type 0\n", + "AC 0\n", + "rain 0\n", + "sun 0\n", + "refill liters 375\n", + "refill gas 375\n", + "dtype: int64" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "7dc9a17a", + "metadata": {}, + "outputs": [], + "source": [ + "MediaConsumos= df.groupby(['gas_type']).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "0f7ff9b1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsideACrainsunrefill liters
gas_type
E1021.0962504.93125043.50625021.91719710.118750.0437500.1000000.07500039.6000
SP9818.6399124.89912340.82017521.93835612.228070.1008770.1403510.08771935.5625
\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside AC \\\n", + "gas_type \n", + "E10 21.096250 4.931250 43.506250 21.917197 10.11875 0.043750 \n", + "SP98 18.639912 4.899123 40.820175 21.938356 12.22807 0.100877 \n", + "\n", + " rain sun refill liters \n", + "gas_type \n", + "E10 0.100000 0.075000 39.6000 \n", + "SP98 0.140351 0.087719 35.5625 " + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "MediaConsumos" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "463a21ec", + "metadata": {}, + "outputs": [], + "source": [ + "#¿que nos interesa?\n", + "#consumo por kilometro a la misma velocidad\n", + "#precio\n", + "#specialidades" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "id": "df5d762b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", + " meane10=e10.mean()\n", + ":4: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", + " meansp=sp.mean()\n" + ] + } + ], + "source": [ + "e10= df[df.gas_type=='E10']\n", + "sp= df[df.gas_type=='SP98']\n", + "meane10=e10.mean()\n", + "meansp=sp.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "id": "d3634051", + "metadata": {}, + "outputs": [], + "source": [ + "consumonormale10=(meane10.consume/meane10.speed)*40" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "id": "81dfeaff", + "metadata": {}, + "outputs": [], + "source": [ + "consumonormalsp=(meansp.consume/meansp.speed)*40" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "id": "0c04f810", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4.533831346070967\n" + ] + } + ], + "source": [ + "print(consumonormale10)" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "id": "e079a5bb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4.800687654453636\n" + ] + } + ], + "source": [ + "print(consumonormalsp)" + ] + }, + { + "cell_type": "markdown", + "id": "5301d2ab", + "metadata": {}, + "source": [ + "#### Primera conclusión:\n", + "A misma velocidad consume más el sp" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "id": "7d20ea65", + "metadata": {}, + "outputs": [], + "source": [ + "consumonormaldiste10=(meane10.consume/meane10.distance)*1" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "id": "83fae437", + "metadata": {}, + "outputs": [], + "source": [ + "consumonormaldistsp=(meansp.consume/meansp.distance)*1" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "id": "7fc317f9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.23375007406529597\n", + "0.26282971364032093\n" + ] + } + ], + "source": [ + "print(consumonormaldiste10)\n", + "print(consumonormaldistsp)" + ] + }, + { + "cell_type": "markdown", + "id": "4e4eddbb", + "metadata": {}, + "source": [ + "### Segunda conclusión:\n", + "A misma distancia se consume más con sp" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "id": "3e673bcf", + "metadata": {}, + "outputs": [], + "source": [ + "def limpieza(x):\n", + " if x== 'SP98':\n", + " return 1\n", + " if x== 'E10':\n", + " return 0\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 174, + "id": "806222ba", + "metadata": {}, + "outputs": [], + "source": [ + "df.gas_type=df.gas_type.apply(limpieza)" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "id": "ebfd14dc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeACrainsunrefill litersrefill gas
028.05.02621.512NaN000045.0E10
112.04.23021.513NaN0000NaNNaN
211.25.53821.515NaN0000NaNNaN
312.93.93621.514NaN0000NaNNaN
418.54.54621.515NaN0000NaNNaN
.......................................
38316.03.73924.518NaN1000NaNNaN
38416.14.33825.031AC1100NaNNaN
38516.03.84525.019NaN1000NaNNaN
38615.44.64225.031AC1100NaNNaN
38714.75.02525.030AC1100NaNNaN
\n", + "

388 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type \\\n", + "0 28.0 5.0 26 21.5 12 NaN 0 \n", + "1 12.0 4.2 30 21.5 13 NaN 0 \n", + "2 11.2 5.5 38 21.5 15 NaN 0 \n", + "3 12.9 3.9 36 21.5 14 NaN 0 \n", + "4 18.5 4.5 46 21.5 15 NaN 0 \n", + ".. ... ... ... ... ... ... ... \n", + "383 16.0 3.7 39 24.5 18 NaN 1 \n", + "384 16.1 4.3 38 25.0 31 AC 1 \n", + "385 16.0 3.8 45 25.0 19 NaN 1 \n", + "386 15.4 4.6 42 25.0 31 AC 1 \n", + "387 14.7 5.0 25 25.0 30 AC 1 \n", + "\n", + " AC rain sun refill liters refill gas \n", + "0 0 0 0 45.0 E10 \n", + "1 0 0 0 NaN NaN \n", + "2 0 0 0 NaN NaN \n", + "3 0 0 0 NaN NaN \n", + "4 0 0 0 NaN NaN \n", + ".. .. ... ... ... ... \n", + "383 0 0 0 NaN NaN \n", + "384 1 0 0 NaN NaN \n", + "385 0 0 0 NaN NaN \n", + "386 1 0 0 NaN NaN \n", + "387 1 0 0 NaN NaN \n", + "\n", + "[388 rows x 12 columns]" + ] + }, + "execution_count": 175, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "id": "218383fc", + "metadata": {}, + "outputs": [], + "source": [ + "corr=df.corr()" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "id": "a044885a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":4: FutureWarning: this method is deprecated in favour of `Styler.format(precision=..)`\n", + " (corr\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 distanceconsumespeedtemp_insidetemp_outsidegas_typeACrainsunrefill liters
distancenannannannannannannannannannan
consume-0.13nannannannannannannannannan
speed0.56-0.23nannannannannannannannan
temp_inside0.08-0.160.06nannannannannannannan
temp_outside0.09-0.320.020.36nannannannannannan
gas_type-0.05-0.02-0.100.010.15nannannannannan
AC-0.030.10-0.040.300.170.11nannannannan
rain-0.020.250.01-0.04-0.190.060.24nannannan
sun0.08-0.170.080.250.350.020.09-0.11nannan
refill liters0.130.100.050.03-0.08-0.24nan-0.49nannan
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mask = np.zeros_like(corr, dtype=bool)\n", + "mask[np.triu_indices_from(mask)] = True\n", + "corr[mask] = np.nan\n", + "(corr\n", + " .style\n", + " .background_gradient(cmap='coolwarm', axis=None, vmin=-1, vmax=1)\n", + " .highlight_null(null_color='#f1f1f1') \n", + " .set_precision(2))" + ] + }, + { + "cell_type": "markdown", + "id": "504d58e6", + "metadata": {}, + "source": [ + "No enseña correlación entre consume y gas type" + ] + }, + { + "cell_type": "markdown", + "id": "999b54ee", + "metadata": {}, + "source": [ + "#### Siguiente paso\n", + "Enriquecer datos con el precio de la gasolina. Aquí vamos a hacer la suposición, de que los dos tipos de gasolina que se muertan con sin plomo 98, uno siendo el estándar y el otro con ethanol 10.\n", + "Tras una extensiva búsqueda en internet he llegado a la conclusión de que no se puede hallar el precio de la e10 a día de hoy, pero cómo nos dicen que es más barata la e10, y es la que menos se consume, vamos a suponer que es más rentable económicamente la gasolina e10, dado que se consume menos con esta y es más barata. Para hacer estas conclusiones más fiables, vamos a intentar igualar las condiciones de prueba, tomando una temperatura normalizada, y eliminando los datos que contengan factores especiales como lluvia o aire acondicionado." + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "id": "15e7a7f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([nan, 'AC rain', 'AC', 'rain', 'snow', 'AC snow',\n", + " 'half rain half sun', 'sun', 'AC sun', 'sun ac', 'ac', 'AC Sun',\n", + " 'ac rain'], dtype=object)" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.specials.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "id": "fe498e37", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "30" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.AC.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "id": "a42647d6", + "metadata": {}, + "outputs": [], + "source": [ + "indexes = df[ df['AC'] == 1 ].index" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "id": "c45243b9", + "metadata": {}, + "outputs": [], + "source": [ + "df.drop(indexes, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 186, + "id": "7e9a54fc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeACrainsunrefill litersrefill gas
028.05.02621.512NaN000045.0E10
112.04.23021.513NaN0000NaNNaN
211.25.53821.515NaN0000NaNNaN
312.93.93621.514NaN0000NaNNaN
418.54.54621.515NaN0000NaNNaN
.......................................
3808.35.05224.527NaN1000NaNNaN
3815.53.73324.528sun1001NaNNaN
38213.63.73324.528sun1001NaNNaN
38316.03.73924.518NaN1000NaNNaN
38516.03.84525.019NaN1000NaNNaN
\n", + "

358 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type \\\n", + "0 28.0 5.0 26 21.5 12 NaN 0 \n", + "1 12.0 4.2 30 21.5 13 NaN 0 \n", + "2 11.2 5.5 38 21.5 15 NaN 0 \n", + "3 12.9 3.9 36 21.5 14 NaN 0 \n", + "4 18.5 4.5 46 21.5 15 NaN 0 \n", + ".. ... ... ... ... ... ... ... \n", + "380 8.3 5.0 52 24.5 27 NaN 1 \n", + "381 5.5 3.7 33 24.5 28 sun 1 \n", + "382 13.6 3.7 33 24.5 28 sun 1 \n", + "383 16.0 3.7 39 24.5 18 NaN 1 \n", + "385 16.0 3.8 45 25.0 19 NaN 1 \n", + "\n", + " AC rain sun refill liters refill gas \n", + "0 0 0 0 45.0 E10 \n", + "1 0 0 0 NaN NaN \n", + "2 0 0 0 NaN NaN \n", + "3 0 0 0 NaN NaN \n", + "4 0 0 0 NaN NaN \n", + ".. .. ... ... ... ... \n", + "380 0 0 0 NaN NaN \n", + "381 0 0 1 NaN NaN \n", + "382 0 0 1 NaN NaN \n", + "383 0 0 0 NaN NaN \n", + "385 0 0 0 NaN NaN \n", + "\n", + "[358 rows x 12 columns]" + ] + }, + "execution_count": 186, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "id": "fccc4d0c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "32" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.sun.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 187, + "id": "d2f3a1b5", + "metadata": {}, + "outputs": [], + "source": [ + "indexes2 = df[ df['sun'] == 1 ].index\n", + "df.drop(indexes2, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "id": "31f562ad", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "48" + ] + }, + "execution_count": 182, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.rain.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "id": "a22c68c5", + "metadata": {}, + "outputs": [], + "source": [ + "indexes3 = df[ df['rain'] == 1 ].index\n", + "df.drop(indexes3, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 189, + "id": "ce6c8a2a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeACrainsunrefill litersrefill gas
028.05.02621.512NaN000045.0E10
112.04.23021.513NaN0000NaNNaN
211.25.53821.515NaN0000NaNNaN
312.93.93621.514NaN0000NaNNaN
418.54.54621.515NaN0000NaNNaN
.......................................
37511.93.73325.019NaN1000NaNNaN
37614.54.33625.022NaN1000NaNNaN
3808.35.05224.527NaN1000NaNNaN
38316.03.73924.518NaN1000NaNNaN
38516.03.84525.019NaN1000NaNNaN
\n", + "

295 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type \\\n", + "0 28.0 5.0 26 21.5 12 NaN 0 \n", + "1 12.0 4.2 30 21.5 13 NaN 0 \n", + "2 11.2 5.5 38 21.5 15 NaN 0 \n", + "3 12.9 3.9 36 21.5 14 NaN 0 \n", + "4 18.5 4.5 46 21.5 15 NaN 0 \n", + ".. ... ... ... ... ... ... ... \n", + "375 11.9 3.7 33 25.0 19 NaN 1 \n", + "376 14.5 4.3 36 25.0 22 NaN 1 \n", + "380 8.3 5.0 52 24.5 27 NaN 1 \n", + "383 16.0 3.7 39 24.5 18 NaN 1 \n", + "385 16.0 3.8 45 25.0 19 NaN 1 \n", + "\n", + " AC rain sun refill liters refill gas \n", + "0 0 0 0 45.0 E10 \n", + "1 0 0 0 NaN NaN \n", + "2 0 0 0 NaN NaN \n", + "3 0 0 0 NaN NaN \n", + "4 0 0 0 NaN NaN \n", + ".. .. ... ... ... ... \n", + "375 0 0 0 NaN NaN \n", + "376 0 0 0 NaN NaN \n", + "380 0 0 0 NaN NaN \n", + "383 0 0 0 NaN NaN \n", + "385 0 0 0 NaN NaN \n", + "\n", + "[295 rows x 12 columns]" + ] + }, + "execution_count": 189, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 190, + "id": "4e0d4a0c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", + " meane10=e10.mean()\n", + ":4: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", + " meansp=sp.mean()\n" + ] + } + ], + "source": [ + "e10= df[df.gas_type==0]\n", + "sp= df[df.gas_type==1]\n", + "meane10=e10.mean()\n", + "meansp=sp.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 200, + "id": "c445b9f3", + "metadata": {}, + "outputs": [], + "source": [ + "diste10=(meane10.consume/meane10.distance)*1" + ] + }, + { + "cell_type": "code", + "execution_count": 201, + "id": "19deeb38", + "metadata": {}, + "outputs": [], + "source": [ + "distsp=(meansp.consume/meansp.distance)*1" + ] + }, + { + "cell_type": "code", + "execution_count": 202, + "id": "95644aa8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.2267600155581485\n", + "0.2768685499843636\n" + ] + } + ], + "source": [ + "print(diste10)\n", + "print(distsp)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 221, + "id": "42c8ce6d", + "metadata": {}, + "outputs": [], + "source": [ + "data = {'TipoDeGasolina':['E10', 'SP98'],'ConsumoMismaDistancia': [diste10, distsp]}" + ] + }, + { + "cell_type": "code", + "execution_count": 222, + "id": "1cb4e068", + "metadata": {}, + "outputs": [], + "source": [ + "dframe = pd.DataFrame(data)" + ] + }, + { + "cell_type": "code", + "execution_count": 232, + "id": "e111dbc7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TipoDeGasolinaConsumoMismaDistancia
0E100.226760
1SP980.276869
\n", + "
" + ], + "text/plain": [ + " TipoDeGasolina ConsumoMismaDistancia\n", + "0 E10 0.226760\n", + "1 SP98 0.276869" + ] + }, + "execution_count": 232, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dframe" + ] + }, + { + "cell_type": "code", + "execution_count": 238, + "id": "40d2d10a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 238, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUc0lEQVR4nO3df7RdZX3n8ffHID86INhJ6ihJCGqsRlHBC9NCHWXEtcBpQa0VGK21Y42dFlvrjykuu2gX7XSgWO1oaRH7A+soP2TUxhpLp4LYQZEEBUJAnJhBEnAk/oJaqxD4zh9npxwO5yY3uXffk8vzfq11Vs5+9nP2/j7n3NzP3Xuf85xUFZKkdj1m0gVIkibLIJCkxhkEktQ4g0CSGmcQSFLj9pl0Abtr8eLFtWLFikmXIUkLyvXXX//Nqloybt2CC4IVK1awfv36SZchSQtKkq9Nt85TQ5LUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxvQVBkr9IcneSm6dZnyTvSbIpyU1JjuqrFknS9Po8IrgIOHEn608CVna31cCf9liLJGkavQVBVX0W+PZOupwC/FUNXAsckuSJfdUjSRpvkp8sPhTYMrS8tWv7+mjHJKsZHDWwfPnyPd/hsuXctXXLrjtKe2DRY/fjgft/OOky9Cj2pKXLuHPLHXO+3QUxxURVXQhcCDA1NbXHX6l219YtnPq+z81ZXdKwS99wrD9f6tWlbzi2l+1O8l1DdwLLhpaXdm2SpHk0ySBYA7yme/fQTwD3VNUjTgtJkvrV26mhJBcDLwQWJ9kK/DbwWICqugBYC7wE2AR8H/jFvmqRJE2vtyCoqtN3sb6AX+1r/5KkmfGTxZLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTG9RoESU5McluSTUnOHLN+eZKrknwpyU1JXtJnPZKkR+otCJIsAs4HTgJWAacnWTXS7beAy6rqSOA04E/6qkeSNF6fRwTHAJuqanNV3QdcApwy0qeAx3X3Dwbu6rEeSdIYfQbBocCWoeWtXduw3wFenWQrsBZ447gNJVmdZH2S9du2beujVklq1qQvFp8OXFRVS4GXAB9M8oiaqurCqpqqqqklS5bMe5GS9GjWZxDcCSwbWl7atQ17HXAZQFV9HtgfWNxjTZKkEX0GwTpgZZLDk+zL4GLwmpE+dwAvAkjyDAZB4LkfSZpHvQVBVW0HzgCuAG5l8O6gjUnOTnJy1+0twOuT3AhcDLy2qqqvmiRJj7RPnxuvqrUMLgIPt501dP8W4Lg+a5Ak7dykLxZLkibMIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXG9BkGSE5PclmRTkjOn6fPKJLck2Zjkw33WI0l6pH362nCSRcD5wIuBrcC6JGuq6pahPiuBtwPHVdV3kvxYX/VIksbr84jgGGBTVW2uqvuAS4BTRvq8Hji/qr4DUFV391iPJGmMPoPgUGDL0PLWrm3Y04CnJbkmybVJTuyxHknSGL2dGtqN/a8EXggsBT6b5Iiq+u5wpySrgdUAy5cvn+cSJenRrc8jgjuBZUPLS7u2YVuBNVV1f1X9X+ArDILhYarqwqqaqqqpJUuW9FawJLWozyBYB6xMcniSfYHTgDUjfT7O4GiAJIsZnCra3GNNkqQRMwqCJMfNpG1YVW0HzgCuAG4FLquqjUnOTnJy1+0K4FtJbgGuAt5WVd/anQFIkmZnptcI3gscNYO2h6mqtcDakbazhu4X8ObuJkmagJ0GQZKfBI4FliQZ/mX9OGBRn4VJkubHro4I9gUO7PodNNR+L/CKvoqSJM2fnQZBVV0NXJ3koqr62jzVJEmaRzO9RrBfkguBFcOPqap/30dRkqT5M9Mg+AhwAfBnwAP9lSNJmm8zDYLtVfWnvVYiSZqImX6g7BNJfiXJE5P86I5br5VJkubFTI8IfqH7921DbQU8eW7LkSTNtxkFQVUd3nchkqTJmFEQJHnNuPaq+qu5LUeSNN9memro6KH7+wMvAr4IGASStMDN9NTQG4eXkxzC4BvHJEkL3J5OQ/1PgNcNJOlRYKbXCD7B4F1CMJhs7hnAZX0VJUmaPzO9RvDOofvbga9V1dYe6pEkzbMZnRrqJp/7MoMZSB8P3NdnUZKk+TPTbyh7JXAd8HPAK4EvJHEaakl6FJjpqaF3AEdX1d0ASZYAfw9c3ldhkqT5MdN3DT1mRwh0vrUbj5Uk7cVmekTwt0muAC7ulk9l5LuIJUkL066+s/ipwBOq6m1JXg78VLfq88CH+i5OktS/XR0R/BHwdoCq+ijwUYAkR3TrfqbH2iRJ82BX5/mfUFUbRhu7thW9VCRJmle7CoJDdrLugDmsQ5I0IbsKgvVJXj/amOSXgOv7KUmSNJ92dY3gTcDHkryKh37xTwH7Ai/rsS5J0jzZaRBU1TeAY5McDzyra/5kVV3Ze2WSpHkx0+8juAq4qudaJEkT4KeDJalxBoEkNc4gkKTGGQSS1DiDQJIa12sQJDkxyW1JNiU5cyf9fjZJJZnqsx5J0iP1FgRJFgHnAycBq4DTk6wa0+8g4NeBL/RViyRpen0eERwDbKqqzVV1H3AJcMqYfr8LnAv8oMdaJEnT6DMIDgW2DC1v7dr+RZKjgGVV9cmdbSjJ6iTrk6zftm3b3FcqSQ2b2MXiJI8B3gW8ZVd9q+rCqpqqqqklS5b0X5wkNaTPILgTWDa0vLRr2+EgBvMXfSbJ7cBPAGu8YCxJ86vPIFgHrExyeJJ9gdOANTtWVtU9VbW4qlZU1QrgWuDkqlrfY02SpBG9BUFVbQfOAK4AbgUuq6qNSc5OcnJf+5Uk7Z4ZzT66p6pqLbB2pO2safq+sM9aJEnj+cliSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuN6DYIkJya5LcmmJGeOWf/mJLckuSnJp5Mc1mc9kqRH6i0IkiwCzgdOAlYBpydZNdLtS8BUVT0buBz4g77qkSSN1+cRwTHApqraXFX3AZcApwx3qKqrqur73eK1wNIe65EkjdFnEBwKbBla3tq1Ted1wKfGrUiyOsn6JOu3bds2hyVKkvaKi8VJXg1MAeeNW19VF1bVVFVNLVmyZH6Lk6RHuX163PadwLKh5aVd28MkOQF4B/CCqvphj/VIksbo84hgHbAyyeFJ9gVOA9YMd0hyJPA+4OSqurvHWiRJ0+gtCKpqO3AGcAVwK3BZVW1McnaSk7tu5wEHAh9JckOSNdNsTpLUkz5PDVFVa4G1I21nDd0/oc/9S5J2ba+4WCxJmhyDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktS4XoMgyYlJbkuyKcmZY9bvl+TSbv0Xkqzosx5J0iP1FgRJFgHnAycBq4DTk6wa6fY64DtV9VTg3cC5fdUjSRqvzyOCY4BNVbW5qu4DLgFOGelzCvCB7v7lwIuSpMeaJEkj9ulx24cCW4aWtwL/dro+VbU9yT3Avwa+OdwpyWpgdbf4vSS37WlRl77h2D196DiLGam1Aa2NebfGO8c/X5PS2msMC2jMs/hb+bDpVvQZBHOmqi4ELpx0HaOSrK+qqUnXMZ9aG3Nr4wXH3KI+Tw3dCSwbWl7atY3tk2Qf4GDgWz3WJEka0WcQrANWJjk8yb7AacCakT5rgF/o7r8CuLKqqseaJEkjejs11J3zPwO4AlgE/EVVbUxyNrC+qtYAfw58MMkm4NsMwmIh2etOV82D1sbc2njBMTcn/gEuSW3zk8WS1DiDQJIaZxBMYwbTY7w5yS1Jbkry6SSHde2HJflikhuSbEzyy/Nf/e7b0/EOrX9ckq1J/nj+qp6d2Yw5yQPda3xDktE3Qey1Zjnm5Un+LsmtXZ8V81r8HpjF/+Pjh17fG5L8IMlL530A86WqvI3cGFzc/irwZGBf4EZg1Uif44Ef6e7/Z+DS7v6+wH7d/QOB24EnTXpMfY13aP1/Bz4M/PGkxzMfYwa+N+kxTGDMnwFe3N0/cEe/vfU2Fz/XXfuPMngzy1493tncPCIYb5fTY1TVVVX1/W7xWgafk6Cq7quqH3bt+7Ewjrr2eLwASZ4HPAH4u3mqdy7MaswL1B6PuZsnbJ+q+l9dv+8N9dtbzdVr/ArgUwtgvHtsIfySmoRx02McupP+rwM+tWMhybIkN3XbOLeq7uqlyrmzx+NN8hjgD4G39lZdP2b1GgP7J1mf5NoFdMpgNmN+GvDdJB9N8qUk53UTS+7NZvsa73AacPEc1rXXWRBTTOzNkrwamAJesKOtqrYAz07yJODjSS6vqm9Mqsa5NGa8vwKsraqtj9b5Ase9xsBhVXVnkicDVybZUFVfnUyFc2/MmPcBng8cCdwBXAq8lsFngRa8aV5jkjwROILB56EetTwiGG8m02OQ5ATgHcDJQ6eD/kV3JHAzg/9Ae7PZjPcngTOS3A68E3hNknP6LXdOzOo1rqo7u383Mzh3fmSfxc6R2Yx5K3BDd5plO/Bx4Kh+y521ufh//ErgY1V1f29V7g0mfZFib7wx+OtnM3A4D11keuZInyMZXIhaOdK+FDigu/944CvAEZMeU1/jHenzWhbOxeLZvMaP56E3BCwG/g8jFyH3xtssx7yo67+kW/5L4FcnPaa+xju0/lrg+EmPpe+bp4bGqJlNj3Eeg3dOfKQ7JXJHVZ0MPAP4wyQFBHhnVW2YyEBmaJbjXZDm4DV+X5IHGRxVn1NVt0xkILthNmOuqgeSvBX4dAYrrgfeP5mRzMxsf667t8cuA66eRP3zySkmJKlxXiOQpMYZBJLUOINAkhpnEEhS4wwCSWqcQaBeJPk3SS5J8tUk1ydZm+Rpk65rZ5L8TpJK8tShtjd1bVPd8tokh/RYw45ZTTcmuTHJW7ppPEgyleQ9O3nsiiT/sYeadrpfLXwGgeZc9z7zjwGfqaqnVNXzgLczmJhub7eBh39l6s8BG3csVNVLquq7Pe7/n6vquVX1TODFwEnAb3f7Xl9Vv7aTx64A5jwIZrBfLXAGgfpwPHB/VV2wo6GqbgT+dzdZ2c1JNiQ5FSDJC5N8JsnlSb6c5ENdmJDknKH54t/ZtV2U5BU7tp3ke0PbuTrJXyfZ3D32VUmu6/b3lK7fiiRXDs1Bv3yo9o/TzVDZ9b8H+ObQvm5PsjjJv0ryye6v9puHxnJ7kv/W/VW/PslRSa7ojox+uetzYLffL3Z1PWxGzKHn7G5gNYMpPNKN72+6bbwgD82V/6UkBwHnAM/v2n6jG+c/dPv5YpJjZ/B8H53kc924rkty0Mh+j0ny+W6fn0vy43vw86G9jJ8sVh+exeCTp6NeDjwXeA6DqRnWJflst+5I4JnAXcA1wHFJbgVeBjy9qmqGp2Sew+CTv99mML3An1XVMUl+HXgj8CbgvcAHquoDSf4T8B7gpd3j7wW2JHkWg0C4FPjFMfs5Ebirqv4DQJKDh9bdUVXPTfJu4CLgOGB/BvNOXQD8AHhZVd2bZDFwbZI1NebTnVW1OYNZPn9sZNVbGUzxcE2SA7ttngm8tap+uqvpRxh8f8APkqxkMIPmVPf4cc/3dd14T62qdUkeB/zzyH6/DDy/+9TuCcDvAz875vnRAuIRgebTTwEXV9UDNZiN9Wrg6G7ddVW1taoeBG5gcJrjHga/4P48ycuBmcwHv66qvl6DycO+ykPfkbCh2yYMJsr7cHf/g11dwy5hcHropQxOcY2zAXhxknOTPL+q7hlat2aozxeq6h+rahvwwy7MAvx+BlOV/z2DqZF397TZNcC7kvwacEgNJoIb9Vjg/Uk2AB8BVg2tG/d8/zjw9apaB1BV947Z7sEMpmO4GXg3gzDRAmcQqA8bgeft5mOGZ318gMGXoGxn8OUilwM/Dfxtt3473c9uBhdS951mOw8OLT/IzI+A/wb4eQZ/2d87rkNVfYXB7JsbgN9LctaYGob3P1zDq4AlwPOq6rnANxgcMTxCBtNcPwDcPbL/c4BfAg4Arkny9DEP/41u289hcCQw3fP0ADN/bn4XuKqqngX8zHR1a2ExCNSHK4H9kqze0ZDk2cB3gVOTLEqyBPh3wHXTbaQ75XFwVa1l8EvtOd2q23koaE5m8Jfv7vgcD10QfhXwD8Mra/BNVL8J/Ned1PYk4PtV9T8YTFy2O1MyHwzcXVX3JzkeOGxcp+45uoDBjK41su4pVbWhqs4F1gFPB/4ROGhkP1/v/ur/eQYTr+3MbcATkxzd7eOgJKMBcTAPTeX82l1sTwuE1wg057rz+S8D/ijJbzI4vXM7g/PzBzKYDriA/1JV/2+av2Zh8Evtr5Psz+B0ypu79vd37TcyOEr4p90s8Y3AXyZ5G7CNMdcAquqSXWzjCOC8DGYgvZ/B993O1IeAT3SnbNYzOO++wwFJbmAQbtsZnLp615htvKkLkQcZHIF9qrv/QPe8XAT8CfA/k7yGGTxPVXVfd9H7vUkOYHB94ISRbn8AfCDJbwGfnPGItVdz9lFJapynhiSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJatz/B2Pts6Bih8SoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [] + }, + { + "cell_type": "markdown", + "id": "c2dcd09a", + "metadata": {}, + "source": [ + "Por distancia sigue consumiendo más sp" + ] + }, + { + "cell_type": "code", + "execution_count": 194, + "id": "bbd44684", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.11372583791452384\n", + "0.11946026986506746\n" + ] + } + ], + "source": [ + "speede10=(meane10.consume/meane10.speed)*1\n", + "speedsp=(meansp.consume/meansp.speed)*1\n", + "print(speede10)\n", + "print(speedsp)" + ] + }, + { + "cell_type": "markdown", + "id": "9c6390e3", + "metadata": {}, + "source": [ + "Lo mismo por velocidad, aunque la diferencia parece reducirse" + ] + }, + { + "cell_type": "code", + "execution_count": 196, + "id": "7116d92c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "12.38030888030888\n", + "10.744336569579287\n" + ] + } + ], + "source": [ + "tempe10=(meane10.consume/meane10.temp_outside)*25\n", + "tempsp=(meansp.consume/meansp.temp_outside)*25\n", + "print(tempe10)\n", + "print(tempsp)" + ] + }, + { + "cell_type": "markdown", + "id": "5e25781c", + "metadata": {}, + "source": [ + "Aquí en cambio, vemos como el consumo de e10 se ve más afectado por una mayor temperatura que el sp." + ] + }, + { + "cell_type": "code", + "execution_count": 207, + "id": "d46a505a", + "metadata": {}, + "outputs": [], + "source": [ + "totale10=(meane10.consume/(meane10.temp_outside*meane10.speed*meane10.distance))*1\n", + "totalsp=(meansp.consume/(meansp.temp_outside*meansp.speed*meansp.distance))*1" + ] + }, + { + "cell_type": "code", + "execution_count": 208, + "id": "d8d2a3aa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.0005328895532414408\n", + "0.0006021792113958752\n" + ] + } + ], + "source": [ + "print(totale10)\n", + "print(totalsp)" + ] + }, + { + "cell_type": "markdown", + "id": "80cfd9e8", + "metadata": {}, + "source": [ + "#### Conclusion Final\n", + "En igualdad de condiciones en cuanto a temperatura fuera, velocidad, distancia y condiciones especiales, parece que se consume menos con e10. Es cierto, que la muestra es ciertamente pequeña, y el consumo se puede deber a muchas otras cosas como el coche y el tipo de motor, no solamente el tipo de gasolina, por lo que con estos datos concluir que el e10 resulta en un consumo menor resulta peligroso." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f559b524", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Ironhack", + "language": "python", + "name": "ironhack" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}