diff --git a/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/.ipynb_checkpoints/Untitled-checkpoint.ipynb new file mode 100644 index 0000000..d322c25 --- /dev/null +++ b/.ipynb_checkpoints/Untitled-checkpoint.ipynb @@ -0,0 +1,473 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "82aafdbc", + "metadata": {}, + "source": [ + "### EXPLORACION DATOS" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "955fb2e5", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n" + ] + }, + { + "cell_type": "markdown", + "id": "a03463b6", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "003edfb9", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b7b14fd7", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c9bd69f0", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5ef04d91", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b8837cf2", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3d264ec8", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1aba860e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5365586f", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "075e6e92", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0667a2d1", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b1da01ec", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6cbde108", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5031166a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "aeb96b9c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "19de7e7f", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0023ef20", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "23151e45", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "67eab956", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a9218911", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58f9366b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "889dfd2e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d3704f34", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6f40be9", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e6d2fff0", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6916ace7", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1f0ca193", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4433ebfd", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d61171dd", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2ccba034", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5e7536ba", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "13c36710", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "741e26be", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2949febf", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "901e128a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "06368f41", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f05cf087", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "72a42f0a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ff8da945", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "729f977f", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2b06dc58", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "aa3a1f14", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6130956d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "df1dfc7f", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3d7ea337", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "11fc245d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d6ed95a3", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "74769452", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2ee5771b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3fecceca", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3db4872d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "aec42449", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f5750449", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45f76e03", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:ironhack] *", + "language": "python", + "name": "conda-env-ironhack-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/exploracion-checkpoint.ipynb b/.ipynb_checkpoints/exploracion-checkpoint.ipynb new file mode 100644 index 0000000..a41031a --- /dev/null +++ b/.ipynb_checkpoints/exploracion-checkpoint.ipynb @@ -0,0 +1,1868 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e920d6e1", + "metadata": {}, + "source": [ + "### EXPLORACION DATOS" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "84d445a2", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import re\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import warnings\n", + "warnings.simplefilter(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7beb8291", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeACrainsunrefill litersrefill gas
02852621,512NaNE1000045E10
1124,23021,513NaNE10000NaNNaN
211,25,53821,515NaNE10000NaNNaN
312,93,93621,514NaNE10000NaNNaN
418,54,54621,515NaNE10000NaNNaN
\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type AC \\\n", + "0 28 5 26 21,5 12 NaN E10 0 \n", + "1 12 4,2 30 21,5 13 NaN E10 0 \n", + "2 11,2 5,5 38 21,5 15 NaN E10 0 \n", + "3 12,9 3,9 36 21,5 14 NaN E10 0 \n", + "4 18,5 4,5 46 21,5 15 NaN E10 0 \n", + "\n", + " rain sun refill liters refill gas \n", + "0 0 0 45 E10 \n", + "1 0 0 NaN NaN \n", + "2 0 0 NaN NaN \n", + "3 0 0 NaN NaN \n", + "4 0 0 NaN NaN " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "medidas = pd.read_csv('measurements.csv')\n", + "medidas.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "c5f8ddd9", + "metadata": {}, + "outputs": [], + "source": [ + "medidas2= pd.read_excel('measurements2.xlsx')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a6d2381a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "distance float64\n", + "consume float64\n", + "speed int64\n", + "temp_inside float64\n", + "temp_outside int64\n", + "specials object\n", + "gas_type object\n", + "AC int64\n", + "rain int64\n", + "sun int64\n", + "refill liters float64\n", + "refill gas object\n", + "dtype: object" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "medidas2.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3987c15d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeacrainsunrefill_litersrefill_gas
028.05.02621.512NaNE1000045.0E10
112.04.23021.513NaNE10000NaNNaN
211.25.53821.515NaNE10000NaNNaN
312.93.93621.514NaNE10000NaNNaN
418.54.54621.515NaNE10000NaNNaN
.......................................
38316.03.73924.518NaNSP98000NaNNaN
38416.14.33825.031ACSP98100NaNNaN
38516.03.84525.019NaNSP98000NaNNaN
38615.44.64225.031ACSP98100NaNNaN
38714.75.02525.030ACSP98100NaNNaN
\n", + "

388 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type \\\n", + "0 28.0 5.0 26 21.5 12 NaN E10 \n", + "1 12.0 4.2 30 21.5 13 NaN E10 \n", + "2 11.2 5.5 38 21.5 15 NaN E10 \n", + "3 12.9 3.9 36 21.5 14 NaN E10 \n", + "4 18.5 4.5 46 21.5 15 NaN E10 \n", + ".. ... ... ... ... ... ... ... \n", + "383 16.0 3.7 39 24.5 18 NaN SP98 \n", + "384 16.1 4.3 38 25.0 31 AC SP98 \n", + "385 16.0 3.8 45 25.0 19 NaN SP98 \n", + "386 15.4 4.6 42 25.0 31 AC SP98 \n", + "387 14.7 5.0 25 25.0 30 AC SP98 \n", + "\n", + " ac rain sun refill_liters refill_gas \n", + "0 0 0 0 45.0 E10 \n", + "1 0 0 0 NaN NaN \n", + "2 0 0 0 NaN NaN \n", + "3 0 0 0 NaN NaN \n", + "4 0 0 0 NaN NaN \n", + ".. .. ... ... ... ... \n", + "383 0 0 0 NaN NaN \n", + "384 1 0 0 NaN NaN \n", + "385 0 0 0 NaN NaN \n", + "386 1 0 0 NaN NaN \n", + "387 1 0 0 NaN NaN \n", + "\n", + "[388 rows x 12 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "medidas2.columns = medidas2.columns.str.replace(' ','_')\n", + "medidas2.columns = medidas2.columns.str.lower()\n", + "medidas2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "91da18b4", + "metadata": {}, + "outputs": [], + "source": [ + "df = medidas2.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b1dce3d6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 388 entries, 0 to 387\n", + "Data columns (total 12 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 distance 388 non-null float64\n", + " 1 consume 388 non-null float64\n", + " 2 speed 388 non-null int64 \n", + " 3 temp_inside 376 non-null float64\n", + " 4 temp_outside 388 non-null int64 \n", + " 5 specials 93 non-null object \n", + " 6 gas_type 388 non-null object \n", + " 7 ac 388 non-null int64 \n", + " 8 rain 388 non-null int64 \n", + " 9 sun 388 non-null int64 \n", + " 10 refill_liters 13 non-null float64\n", + " 11 refill_gas 13 non-null object \n", + "dtypes: float64(4), int64(5), object(3)\n", + "memory usage: 36.5+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "7e7e6b72", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
distance388.019.65283522.6678371.311.8014.619.0216.1
consume388.04.9123711.0331723.34.304.75.312.2
speed388.041.92783513.59852414.032.7540.550.090.0
temp_inside376.021.9295211.01045519.021.5022.022.525.5
temp_outside388.011.3582476.991542-5.07.0010.016.031.0
ac388.00.0773200.2674430.00.000.00.01.0
rain388.00.1237110.3296770.00.000.00.01.0
sun388.00.0824740.2754410.00.000.00.01.0
refill_liters13.037.1153858.58728210.037.6038.039.045.0
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% 75% max\n", + "distance 388.0 19.652835 22.667837 1.3 11.80 14.6 19.0 216.1\n", + "consume 388.0 4.912371 1.033172 3.3 4.30 4.7 5.3 12.2\n", + "speed 388.0 41.927835 13.598524 14.0 32.75 40.5 50.0 90.0\n", + "temp_inside 376.0 21.929521 1.010455 19.0 21.50 22.0 22.5 25.5\n", + "temp_outside 388.0 11.358247 6.991542 -5.0 7.00 10.0 16.0 31.0\n", + "ac 388.0 0.077320 0.267443 0.0 0.00 0.0 0.0 1.0\n", + "rain 388.0 0.123711 0.329677 0.0 0.00 0.0 0.0 1.0\n", + "sun 388.0 0.082474 0.275441 0.0 0.00 0.0 0.0 1.0\n", + "refill_liters 13.0 37.115385 8.587282 10.0 37.60 38.0 39.0 45.0" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe().T" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "30a7f01a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([nan, 'AC rain', 'AC', 'rain', 'snow', 'AC snow',\n", + " 'half rain half sun', 'sun', 'AC sun', 'sun ac', 'ac', 'AC Sun',\n", + " 'ac rain'], dtype=object)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.specials.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8c522072", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "rain 32\n", + "sun 27\n", + "AC rain 9\n", + "ac 8\n", + "AC 6\n", + "snow 3\n", + "sun ac 3\n", + "AC snow 1\n", + "half rain half sun 1\n", + "AC sun 1\n", + "AC Sun 1\n", + "ac rain 1\n", + "Name: specials, dtype: int64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.specials.value_counts() #30 valores que contiene AC" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "aa3054c2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 358\n", + "1 30\n", + "Name: ac, dtype: int64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.ac.value_counts() #30 valores que contiene AC" + ] + }, + { + "cell_type": "markdown", + "id": "40011cf0", + "metadata": {}, + "source": [ + "##### Columna specials,los dummies estan bien hechos salvo la columna snow que no está contemplada, así que haremos una nueva columna" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "1887571c", + "metadata": {}, + "outputs": [], + "source": [ + "df.specials.fillna('unknown', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "93d9cb20", + "metadata": {}, + "outputs": [], + "source": [ + "df['snow'] = df['specials'].str.contains('snow', regex=True).astype(int) #Hechos los dummies tambien para snow" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "09109453", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeacrainsunrefill_litersrefill_gassnow
11812.44.63823.01snowSP98010NaNNaN1
12411.84.63823.00snowSP98010NaNNaN1
12512.26.35723.00snowSP98010NaNNaN1
18112.37.15222.50AC snowE10110NaNNaN1
\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type \\\n", + "118 12.4 4.6 38 23.0 1 snow SP98 \n", + "124 11.8 4.6 38 23.0 0 snow SP98 \n", + "125 12.2 6.3 57 23.0 0 snow SP98 \n", + "181 12.3 7.1 52 22.5 0 AC snow E10 \n", + "\n", + " ac rain sun refill_liters refill_gas snow \n", + "118 0 1 0 NaN NaN 1 \n", + "124 0 1 0 NaN NaN 1 \n", + "125 0 1 0 NaN NaN 1 \n", + "181 1 1 0 NaN NaN 1 " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[df['snow']== 1]" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "id": "e731d976", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeacrainsunsnowrefill_litersrefill_gas
028.05.02621.512unknownE10000045.0E10
112.04.23021.513unknownE100000NaNNaN
211.25.53821.515unknownE100000NaNNaN
312.93.93621.514unknownE100000NaNNaN
418.54.54621.515unknownE100000NaNNaN
\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type ac \\\n", + "0 28.0 5.0 26 21.5 12 unknown E10 0 \n", + "1 12.0 4.2 30 21.5 13 unknown E10 0 \n", + "2 11.2 5.5 38 21.5 15 unknown E10 0 \n", + "3 12.9 3.9 36 21.5 14 unknown E10 0 \n", + "4 18.5 4.5 46 21.5 15 unknown E10 0 \n", + "\n", + " rain sun snow refill_liters refill_gas \n", + "0 0 0 0 45.0 E10 \n", + "1 0 0 0 NaN NaN \n", + "2 0 0 0 NaN NaN \n", + "3 0 0 0 NaN NaN \n", + "4 0 0 0 NaN NaN " + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnas = ['distance', 'consume', 'speed', 'temp_inside', 'temp_outside',\n", + " 'specials', 'gas_type', 'ac', 'rain', 'sun','snow', 'refill_liters',\n", + " 'refill_gas']\n", + "df = df.reindex(columns=columnas)\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "cff0fb4d", + "metadata": {}, + "source": [ + "##### Conpletado el dummies de SNOW dropeo specials" + ] + }, + { + "cell_type": "code", + "execution_count": 227, + "id": "1183b59a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.966495\n", + "45.0 0.005155\n", + "37.7 0.005155\n", + "39.0 0.005155\n", + "37.6 0.002577\n", + "38.0 0.002577\n", + "38.3 0.002577\n", + "10.0 0.002577\n", + "41.0 0.002577\n", + "37.0 0.002577\n", + "37.2 0.002577\n", + "Name: refill_liters, dtype: float64" + ] + }, + "execution_count": 227, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.refill_liters.fillna('0', inplace=True)\n", + "df.refill_liters.value_counts('0')" + ] + }, + { + "cell_type": "code", + "execution_count": 228, + "id": "44594ce3", + "metadata": {}, + "outputs": [], + "source": [ + "df.to_excel('consumos.xlsx', index = False)" + ] + }, + { + "cell_type": "markdown", + "id": "11995b17", + "metadata": {}, + "source": [ + "##### Vamos a ver la matriz de correlaciones" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "id": "5c82a2b0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAAJCCAYAAABZBtbmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB5fUlEQVR4nO3dd3gc1dXH8e/ZVZdtyZLcO+692xTTSyBAqKElQGgm1FBCIBAIJYSe0EIxvEDoEHpvBmOKDW64d+NeVW11afe+f+xalmTZlrBWI2l/n+fZR7szd2bP1Ww5e++dO+acQ0RERESil8/rAERERETEW0oIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESiXIzXATQjmr9HRESkcTKvA2js1EIoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5WK8DqAmZnYrkA+0AiY7577YRbkTgSXOuQUNF52IiIhI89KoWwidc7fsKhkMOxEY0EDhiIiIiDRLjSYhNLObzGyxmX0B9A0ve87MTg3fv9vMFpjZHDO738z2B34D3GdmP5lZTzO7yMymmdlsM3vTzJIq7edhM/vezFZs32d43V/MbG54m7vDy3qa2SdmNsPMvjGzfg3+DxERERFpII2iy9jMRgJnAMMJxTQTmFFpfRpwEtDPOefMLNU5l2tm7wEfOOfeCJfLdc49Fb7/D+AC4JHwbjoA44B+wHvAG2Z2DKFWxrHOucLw8wBMAP7onFtqZmOBx4DDIvcfEBEREfFOo0gIgQOBt51zhQDhRK+yrUAx8LSZfQh8sIv9DAongqlAC+DTSuvecc4FgQVm1i687Ajg2e3P65zLNrMWwP7A/8xs+7bxe1M5ERERkcas0XQZA26XK5wrB8YAbxJq0ftkF0WfAy53zg0GbgMSKq0rqXTfKv2t/rw+INc5N6zSrX9NT2Zm481suplNnzBhwq7CFxEREWnUGktCOBk4ycwSzawlcHzlleFWuxTn3EfAVcCw8KptQMtKRVsCG8wsFvhdLZ73M+D8SmMN05xzW4Gfzey34WVmZkNr2tg5N8E5N8o5N2r8+PG1rKqIiIhI49IoEkLn3EzgNeAnQq2A31Qr0hL4wMzmAF8DV4eXvwpcZ2azzKwncDPwA/A5sKgWz/sJofGE083sJ+DP4VW/Ay4ws9nAfOCEX1w5ERERkUbOnNtlT63Ujf6RIiIijZPtuUh0axQthCIiIiLiHSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuVivA6gObnwzkyvQ6h3T9+U4XUIIiIiEmFqIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlyMV4HIFUN3CeWM49KxmfGNz8V8/GUoirr26f7Oe+4FnRtH8Pbkwr57IfQ+hg/XH9OCjF+w+eDGYtKeW9yoRdVEBERkSZGCWEjYga/O7oF/3o5j5ytQf52fio/LS1lQ2agokxBUZBXPitgeN+4KtuWB+D+F/MoKQO/L5QczlsWw4r15Q1dDREREWliPO0yNrNzzGyOmc02sxfMrJuZTQwvm2hmXcPlnjOzh83sezNbYWanhpd3MLPJZvaTmc0zswPDy/MrPcepZvZcpf08bmZfhfdzsJk9Y2YLt5cJlzvKzKaY2Uwz+5+ZtWiI/0ePjjFszg6QmRskEIQfF5QwrE/VxG9boWPlhnICgZ23LykL/fX7wO83XAPELCIiIk2fZwmhmQ0EbgIOc84NBf4EPAo875wbArwEPFxpkw7AOOA44O7wsrOAT51zw4ChwE+1eOrWwGHA1cD7wL+BgcBgMxtmZhnA34AjnHMjgOnANb+8prXXuqWPnG3Bisc5W4O0bln7Q2QGt1yYyr+uTmfBilJ+VuugiIiI1IKXXcaHAW845zIBnHPZZrYfcHJ4/QvAvZXKv+OcCwILzKxdeNk04Bkziw2v/6kWz/u+c86Z2Vxgk3NuLoCZzQe6A52BAcB3ZgYQB0ypaUdmNh4YD/Dkk09WCr3+uDo08zkHtz+dS2K8cdmpLenYxs/6LTU0JYqIiIhU4mVCaLDHXs3K60uqbYtzbrKZHQQcC7xgZvc5556vtl1CtX1u30+w2j6DhP4fAeBz59yZe6qAc24CMGH7wx/vzNzTJruVs61qi2DrVj5y84O72aJmRSWOxavLGLRPHOu3FO15AxEREYlqXo4hnAicZmbpAGaWBnwPnBFe/zvg293twMy6AZudc08B/weMCK/aZGb9zcwHnFTHuKYCB5hZr/BzJJlZnzru4xdZub6cdml+MlJ8+H0wZkA8s5eU1mrbFklGYrwBEBsD/bvHsTFLXcYiIiKyZ561EDrn5pvZncDXZhYAZgFXEuoCvg7YApy3h90cAlxnZmVAPnBOePkNwAfAGmAeUOuTQpxzW8zsD8ArZhYfXvw3YElt9/FLBR28/Gk+V52Zgs8H380uZn1mgINHhBo5v55ZTKtk42/np5IYbzgHR4xJ4JYnc0lt4eP841vis9BYwmkLS5izrCzSIYuIiEgzYK4ug9Rkd9yFe9ll3Bg9fVOG1yGIiIjsLfM6gMZOVyoRERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKGfOOa9jaC70jxQREWmczOsAGrsYrwNoTjLnTfE6hHqXMWg//vlawOswIuLG0/1ehyAiItIoqMtYREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBERESkiTCzZ8xss5nN28V6M7OHzWyZmc0xsxG12a8SQhEREZGm4zng6N2sPwboHb6NBx6vzU6VEIqIiIg0Ec65yUD2boqcADzvQqYCqWbWYU/71bWMRURERCLkw9i+ri7ljytfcjGhlr3tJjjnJtRhF52ANZUerw0v27C7jZQQioiIiESIxVqdyrsyNwGoSwK401PWtNs9baSEUERERCRCfDF1SwjrwVqgS6XHnYH1e9pIYwhFREREIsRifXW61YP3gHPCZxvvC+Q553bbXQxqIRQRERGJmPpuITSzV4BDgAwzWwv8HYgFcM49AXwE/BpYBhQC59Vmv0oIRURERCKkrmMI98Q5d+Ye1jvgsrruVwmhiIiISIR4MIbwF1FCKCIiIhIh9d1CGClKCEVEREQiRC2EzYSZTQL+7Jyb3hDPN3XWHB585mWCwSDHH34QZ598XJX1M+ct5IZ7HqZD2wwADh47ivNPOwGAbQUF3P3Ys6xYvRYz48bLLmBQ314NEfYe7dMejhzuwwxmr3BMWVR1SqSB3Yz9+oXeNKXl8MmMIJtzwe+Dsw/z4feDz2DRGsc38+s0x6eIiIhnzK+EUOooEAjywFMv8OAt19E2PY0Lr7+NcaOH06NLpyrlhvbvw303Xr3T9g8+8zJjhw/mzusup6ysnOLSkoYKfbfM4FcjfbwyKcjWIjjvSB9L1zsyt+4ok5vvePFLR3FZKHk8ZpSP/34RJBCElyYFKSsPJYRnH+5j+UbH+izv6iMiIlJbviaSEDbJeQjNLNnMPjSz2WY2z8xON7OVZnaPmf0YvvUKl21jZm+a2bTw7YBK+3gmvGyWmZ0QXp5oZq+a2Rwzew1IbKh6LVy2gs7t29GpfVtiY2M4fNxYvpk2q1bbFhQWMXvBYo4//CAAYmNjaJmcHMlwa61jGuRsg9wCCAZhwWpH705V3yDrsqC4LHR/fRa0qvRfLysP/fX5Qi2Ge55vXUREpHEwn9Xp5pWm2kJ4NLDeOXcsgJmlAPcAW51zY8zsHOBB4DjgIeDfzrlvzawr8CnQH7gJ+NI5d76ZpQI/mtkXwMVAoXNuiJkNAWY2VKW2ZOfQNiOt4nHbtNbMX7pip3LzFi/j3GtuJiMtlcvOOYN9unZi3abNpLZqyZ2PPs2yVWvou093rjr/dyQmxDdU+LvUMhG2Fu3I4rYVQsf0XZcfuo+xfOOO8mZw/pE+WreAGcsc63d3SW8REZFGxPxNo+2taUS5s7nAEeEWwQOdc3nh5a9U+rtf+P4RwKNm9hOh2btbmVlL4CjghvDySUAC0BU4CHgRwDk3B5gT8dqEhaYOqsqq/Vjou0933nziAf77rzs45Zgj+Os9DwOh7uYlK1Zx0q8O47n7bycxPp4X3v6gIcKuV93ahhLCr2bv+F84B//3WZBH3g/SMc1ok+JhgCIiInXgj/XV6eaVJpkQOueWACMJJYZ3mdkt21dVLhb+6wP2c84NC986Oee2Ebr48ymVlnd1zi2sYT+7ZGbjzWy6mU2fMGFvrkMd0jY9jc2ZO5q/NmfnkJHWukqZ5KREkhITANh/5FDKA+Xkbt1G2/TWtElvzcA+PQE4ZL9RLFmxaq9jqg/biqBV4o7MtmVSaFl1bVLg16N9vPFNkKLSndeXlMGqLY592jeN8RgiIiI+v9Xp5lmcnj3zXjCzjoS6dV8E7gdGhFedXunvlPD9z4DLK207LHz3U+AKs1AbnJkNDy+fDPwuvGwQMGRXcTjnJjjnRjnnRo0fP35vq0W/Xj1Yu2ET6zdtoaysnInf/sC4UcOrlMnKya1oSVywdAXOOVJatiC9dSptM9JZtS50ucIZcxfQvXPHvY6pPqzPhtYtISU5NA5wQFdj6bqqOXerJDjlAB/vTQ2Snb9jeVI8xMeG7sf4oUc7I2urBhGKiEjTYH6r080rTXUM4WDgPjMLAmXAJcAbQLyZ/UAo0d1+aZcrgf+Y2RxC9Z0M/BG4g9A4wznhpHAloTGHjwPPhsv/BPzYMFWCGL+fqy/8PdfccT+BYJDjDjuQfbp24u1PvwTgpF8dxldTpvP2p18S4/cTFxfLbVdfQjin5eoLfsdtDz1JeVk5Hdu14cbLL2yo0HfLOfhsZpAzDvbhC087k7kVhvcMxT1ruWPcQCMxHo4eGfqNEnTw7OdBkhPg+LGh7cxg4WrHsj1eoltERKRxMF/TaHuzmsatNUVmthIY5ZzL9CgElzlvyp5LNTEZg/bjn68FvA4jIm483e91CCIi0jA8a3qbefi4OiVaIyZ+60msTbWFUERERKTRayrzEDabhNA5193rGEREREQq83JuwbpoNgmhiIiISGPTVMYQKiEUERERiRC1EIqIiIhEOY0hFBEREYlyaiEUERERiXIaQygiIiIS5dRCKCIiIhLllBCKiIiIRDklhCIiIiJRTmMIRURERKKcpp0RERERiXLqMhYRERGJcuoyFhEREYlyaiEUERERiXJKCEVERESinLqMRURERKKcL8bvdQi1ooRQREREJFJMXcYiIiIiUU1jCEVERESinMYQioiIiEQ5tRCKiIiIRDm1EEahjEH7eR1CRNx4etM4Q0pERKSxUQthFDr5ymVeh1Dv3nq4F396aJvXYUTEQ39qyfEXL/Q6jHr3/pP9vQ5BRETClBCKiIiIRDt1GYuIiIhEN2si8xA2jbRVREREpAkyn69Ot1rt0+xoM1tsZsvM7IYa1qeY2ftmNtvM5pvZeXvap1oIRURERCKkvscQmpkf+A9wJLAWmGZm7znnFlQqdhmwwDl3vJm1ARab2UvOudJd7VcJoYiIiEik1P8YwjHAMufcCgAzexU4AaicEDqgpYX6q1sA2UD57naqhFBEREQkQiJwlnEnYE2lx2uBsdXKPAq8B6wHWgKnO+eCu9upxhCKiIiIRIiZr443G29m0yvdxlffZQ1P46o9/hXwE9ARGAY8amatdhenWghFREREIqWOLYTOuQnAhN0UWQt0qfS4M6GWwMrOA+52zjlgmZn9DPQDftxlmHWKUkRERERqLQJnGU8DeptZDzOLA84g1D1c2WrgcAAzawf0BVbsbqdqIRQRERGJkPoeQ+icKzezy4FPAT/wjHNuvpn9Mbz+CeAO4Dkzm0uoi/l651zm7varhFBEREQkUqz+O2Odcx8BH1Vb9kSl++uBo+qyTyWEIiIiIhGiaxmLiIiIRDtdy1hEREQkupnf73UItaKEUERERCRC1GUsIiIiEu0icFJJJCghFBEREYkUtRCKiIiIRDdTC6GIiIhIlFMLoYiIiEh0q+Xl6DynhNBjw/sncf7JGfh88MWUrbz9Re5OZS44JYMRA5IoKXU8+tJmVqwtoWPbWK79Q/uKMu0yYnn1oyw+mJTH6cekccR+rdiaHwDgpQ+ymLmgsKGqVKN+3fycfHACPoOp88v4YnpplfVtW/s468gEurTx8cGUEr6aWVaxLjEOzjgigQ7pPhzwyufFrNwYbOAa1GzEwGQuOq0dPp/x+be5vPFp1k5lxp/ejpGDWlBSGuSh5zawfE0xAMmJPq44uwPdOsXjHDz0/AYWryhq6CqIiEgkWTNvITSzVOAs59xj9RdOrZ63I/Cwc+7UX7Dt7cBk59wX1ZYfAvzZOXdcvQRZSz6Di37bhtv+s46s3HLu/XMXps0rYO3GHcnQiAFJdGgTy2V3rKZP93jGn9aGG/61lvWby7j23jUV+3nqju78MLugYrsPJuXy7pe5DVmdXTKD3x6SwGNvF5Kb77j2jCTmrihnU/aOpK6w2PHW18UM3mfnl+TJByewcFWAZz8qxu+DuEbyM8Zn8Mcz23Pzg6vJyinjX3/twQ9ztrFmw45kd+SgZDq2jePim5fTt0cCl/yuPX++eyUAF53ejpnzC7h7wjpi/BAf1zR+RYqISB00kRbCvYkyFbi0nuKoNefc+l+SDIa3vaV6MuilXt0S2LCljE1Z5ZQH4NuZ+YwZ3KJKmTGDk5n04zYAlqwsITnRR+tWVSe5HNw3kU2ZZWzJKW+w2OuiWzsfW/KCZG11BIIwc0n5TolffpFj9aYggWoNf/Fx0LOTn6nzQ0lyIAhFVRsXPdO7RyIbNpeyKbOM8gBMnr6VsUNbVimz79CWfDk1D4DFPxeHj18MiQk+BvVO4rPvcgEoD0BBUeNo9RQRkXpkVrebR/YmIbwb6GlmP5nZfWZ2nZlNM7M5ZnYbgJl1N7NFZva0mc0zs5fM7Agz+87MlprZmHC5W83sBTP7Mrz8ol09aXif88L3/2Bmb5nZJ+Ht7g0v95vZc+HnnGtmV4eXP2dmp4bvHx2O7Vvg5Er7TzazZ8J1mWVmJ+zF/2i30lP9ZOXuaA3Myi0nLaVqspeWEkNmbnm1MlWTqXEjWvLNjPwqy445MIV/Xd+Fy85qS3Kit79OUlr4yN22I9nJzQ+S0qJ2L/qMVj7yixxnHZnAdWcmccbh8Y2mhTA9NYbMSkl4Vk4Z6akxO5fJrnqM01vH0D4jlrxtAa46twMP3tSDK87uQHxc0+hWEBGR2jOfr043r+zNM98ALHfODQM+B3oDY4BhwEgzOyhcrhfwEDAE6AecBYwD/gzcWGl/Q4Bjgf2AW8Jdw7UxDDgdGAycbmZdwss6OecGOecGA89W3sDMEoCngOOBA4H2lVbfBHzpnBsNHArcZ2bJtYxl77mqD2v6sVC5SIwfRg9K5vufdiSEn3ybx6W3r+Lae9eQk1fOH07KiEystVRjmuNqWrgznw86t/Xx3ZxS7nulkNIyOGJUXH2G94vVVK+dqlXDAXQO/H6jZ9cEPvo6h6vu/JnikiCnHu3tcRIRkQgwX91uHqmvZz4qfJsFzCSU+PUOr/vZOTfXORcE5gMTnXMOmAt0r7SPd51zRc65TOArQsllbUx0zuU554qBBUA3YAWwj5k9YmZHA1urbdMvHNfScCwvVqvLDWb2EzAJSAC61vTEZjbezKab2fQJEybUMtwdsnIDpKfGVjxOT40he2ugWplyMiq1OqWnxpCTt6NVaviAZFasLSFv247t8rYFCLpQ4vH5lK307hpf59jqU25+kNSWO15qqS185BXULiPMzXfk5jtWbQq1MP60rJzObRvHdSEzc8vJaF3p2LSOJTu3ard9Vk4ZGWnVjnFuOZk5ZWTmlLFkZegEk+9mbqVn14SGCVxERBqOz+p28yrMetqPAXc554aFb72cc/8XXldSqVyw0uMgVU9qqZ4h1LINqcr+A0CMcy4HGEooobsMeLqG7Xa1fwNOqVSXrs65hTUVdM5NcM6Ncs6NGj9+fC3D3WHZ6mI6tImlbVoMMX4YN6IF0+YWVCkzbW4Bh4wJjUvr0z2ewuIgOZWSxgNHtODbGduqbFN5jOHYIcms3uDtoLvVm4K0SfWR1srw+2BEnxjmrajdeMdthY7cbUHapobeJH26+NmY3TjG2i1dWUTHtnG0S48lxg8HjWrFj7OrHosfZudz2L4pAPTtkUBhUZCcreXkbg2QmVNOp3ah1s6h/ZJZs6Fkp+cQEZGmzcxXp5tX9mY01jZg+wj6T4E7zOwl51y+mXUCyna9aY1OMLO7gGTgEEJd0r+ImWUApc65N81sOfBctSKLgB5m1tM5txw4s9K6T4ErzOwK55wzs+HOuVm/NJbdCQbh6Te2cMulHfH5jIlTt7JmYylHHdAKgM++28qMBYWMGJjEY7d0o6Q0yKMvba7YPi7WGNoviSde21Jlv2efkE6P8FQmW7LLeeK1zXgp6ODNScVccmJSaNqZBWVszA5ywOBQy9l3c8tomWT8+YwkEuKMIHDIsDj++WIBJaXw5qQSzj46kRg/ZOYFefnzYk/rs10wCE+8upHb/tQFn8/44rtcVm8o5eiDUgH4ZHIu0+flM2pwMhP+0TM07cx/N1Rs/+SrG7n2go7E+I1NmWU8+N/1HtVEREQiprlPTO2cywqfHDIP+Bh4GZhioTFT+cDvCbXY1daPwIeEumfvcM7tzbdjJ+BZ25Fq/7Va7MVmNh740MwygW+BQeHVdwAPAnMsVJmVQMSmo5m5oJCZC1ZXWfbZd1V7uJ/6XyaQudO2pWWOc//6807LH37B2wSwJgtWBliwsmrr53dzd/xm2Fbo+PszBdU3A2BdZpAHXvV2HsVdmTGvgBnzVlRZ9snk3CqPn3hlE7Bpp21/XlvCNf9cGbngRETEe9Fw6Trn3FnVFj1UQ7HtiRbOuT9Uur+y8jpgiXNuj/2ulbdzzj1Hpda/avMIjqhh28rP/wmhsYTVyxQBF+8pDhEREZE9au4TU4uIiIjIHjSRiakbRULonLu1+jIzGwy8UG1xiXNubIMEJSIiIrK3oqHLOJKcc3MJzScoIiIi0jQ195NKRERERGQP1EIoIiIiEuV0UomIiIhIlPM3jqtr7YkSQhEREZFIUZexiIiISJTTtDMiIiIiUU5jCEVERESinLqMRURERKKcWghFREREopzGEIqIiIhEN6cWQhEREZEopzGEIiIiIlFOCaGIiIhIdFOXsYiIiEi0UwuhiIiISJRTC6GIiIhIlNO0MyIiIiLRTWMIRURERKJdExlD2DSiFBEREWmCnPnqdKsNMzvazBab2TIzu2EXZQ4xs5/MbL6Zfb3HfTrn6lg12QX9I0VERBonz/pt8394v075QYuxx+82VjPzA0uAI4G1wDTgTOfcgkplUoHvgaOdc6vNrK1zbvPu9qsu43p02rUrvQ6h3r3+QHde+a555rpnHmAcfPL3XodR775+a38+mFnudRj17rgR+rgSkaantq1+dTAGWOacWwFgZq8CJwALKpU5C3jLObcaYE/JIKjLWERERCRyzOp227NOwJpKj9eGl1XWB2htZpPMbIaZnbOnneont4iIiEik1LGF0MzGA+MrLZrgnJtQuUgNm1XvyosBRgKHA4nAFDOb6pxbsqvnVUIoIiIiEiHO569b+VDyN2E3RdYCXSo97gysr6FMpnOuACgws8nAUEJjD2ukLmMRERGRCHFYnW61MA3obWY9zCwOOAN4r1qZd4EDzSzGzJKAscDC3e1ULYQiIiIiEVLfJ5U458rN7HLgU8APPOOcm29mfwyvf8I5t9DMPgHmAEHgaefcvN3tVwmhiIiISKREYGJq59xHwEfVlj1R7fF9wH213acSQhEREZEI0aXrRERERKJcBOYhjAglhCIiIiKRohZCERERkeimFkIRERGRKFfLqWQ8p4RQREREJELUQigiIiIS7TSGUERERCS6uSZyUTglhCIiIiIRonkIRURERKKcxhCKiIiIRDmdZSwiIiIS5dRCKCIiIhLlNIZQREREJMqpy1hEREQkyjWLLmMzSwXOcs491jDh/HJmdhUwwTlXuJsytwOTnXNfVFt+CPBn59xxkYyxJkP7JnLeiWn4fDDxh3ze/TJvpzLnnZjG8P6JlJQ6Hns1k5/XlQJw7EGtOGxsC5yDNRtLeezVLMrKHd06xnHRqenExRiBoOPpN7NYvqa0oatWxdK53/DJy3cSdEFGHHgqBx47vsr6RbMm8uXbD2Hmw+fzc/SZN9Ktz0jysjfw9tPXk5+XiZmPkQefxr5HnuNRLULGDE/livN74PPBh19s5uW31+1U5soLejB2RColJUHuenQZS1cUAHD9ZT3Zb1QaOXllnHfVTxXl/3B6F447oi25W8sBeOqlVfwwM7chqrNLi376hneev5tgMMDYQ0/h8BMuqrJ+3vQv+eT1RzCf4fPFcMI517NPv5EAFBVs5fUJt7Bh7TIM4/SL76B7n2Ee1EJExFvNpYUwFbgUaPQJIXAV8CKwy4TQOXdLg0VTC2Zwwclp/OPJTWTllXPXVR2ZPr+QdZvKKsoM75dI+4wYrrxrHb27xnPhKenc9PAGWrfyc8y4llx973rKyh1Xn92G/Ycn8/W0fH5/XGve+CyXnxYVMbxfIr8/Lo3bHt/oWT2DwQAfvXg7Z1/7DK3S2vHU7b+l77DDaNupV0WZHv335ZJhh2FmbFyzmP89fhVX/PNjfD4/R51+PR27DaSkKJ8nbz+FfQbsX2XbhuTzwVUX7cO1t81nS1YpT947hO+mZbNqbVFFmbEjUuncIYHfXTaLAX1acM34fbjkhrkAfPzVFt76eCM3Xtl7p33/74MNvPbu+gary+4EgwHeevZOLr7xKVLS2/HgTaczcOShtO+84//ee9BYBo48FDNj/arFPP/wtdzwwAcAvPPfu+g7dBznXv0g5eWllJUUe1UVERFPNZUWwj1FeTfQ08x+MrP7zOw6M5tmZnPM7DYAM+tuZovM7Gkzm2dmL5nZEWb2nZktNbMx4XK3mtkLZvZlePlFu3pSC7kvvL+5ZnZ6ePkhZvZBpXKPmtkfzOxKoCPwlZl9ZWZ+M3uu0vZXh8s/Z2anhu8fHY77W+DkSvtMNrNnwvWcZWYn/KL/bC306hrPxqxyNmeXEwjA97MKGD0wqUqZUYOSmDwj1Lq0dHUJyYk+Ulv6AfD5jbhYw+eDuDgjJy/UuuSAxITQL5KkRB854VYnr6xbMYe0tl1Ja9uFmJg4Bo39NYt/mlilTHxCMhYeeFtWUlhxv2VqWzp2Gxgqk9iCNh16si13U8NWoJL+vVqwbkMRGzaVUF7u+PLbTMaNSatSZtyYND6dtAWABUvyaZEcQ1rrWADmLNjKtm3eHo/aWL1sLuntu5DeLnTMhu/3a+ZP/6pKmcrHrLSkCAv/Ci4uzGfFohmMPfQUAGJi4khMbtWwFRARaSQcVqebV/bUQngDMMg5N8zMjgJOBcYABrxnZgcBq4FewG+B8cA04CxgHPAb4EbgxPD+hgD7AsnALDP70DlXU5PIycAwYCiQAUwzs8m7CtI597CZXQMc6pzLNLORQCfn3CCo6PquYGYJwFPAYcAy4LVKq28CvnTOnR/e7kcz+8I5V7CH/1WdpaX4ycrdkRxk5ZXTu2v8TmUyq5VJS/GzYm0p70/K4/GbO1Na5pi9pIg5S0KtMP99J5ubxrfj7OPT8Bn87ZEN9R16nWzN3USrtA4Vj1u1bs/aFbN3Krdwxud88ea/KNiWze/+9MRO63My17Jh9UI67TM0ovHuTkZ6PJuzdnS/b8kqpX/vFlXLpMWxObOkUpkS2qTFkZ1Txu6cdEx7fnVwGxYvz+c/z60kvyBQv8HXQV7OJlLTdxyzlPR2rF42Z6dyc6d9wYevPkh+XhYX/uVxALI2ryG5VWtefeIm1q9aTOd9BnLiOTcQn5C00/YiIs1d0Pxeh1ArdWnHPCp8mwXMBPoB2/u9fnbOzXXOBYH5wETnnAPmAt0r7eNd51yRcy4T+IpQclmTccArzrmAc24T8DUwug6xrgD2MbNHzOxoYGu19f3CMS8Nx/litXreYGY/AZOABKBrTU9iZuPNbLqZTZ8wYUIdwgtvX8MyV8syyYk+Rg9M4rI713LxbWtIiPNx4IjkUAX2b8l/383m0jvW8t93s/njaRl1jq1eVa8UVLQsVdZ/5JFc8c+POePyR/ny7YerrCspLuD1/1zJ0Wf+lYTEFjtt21Bq89utprq5Gv4Hlb37yUbOunQmF1w7m6ycMi77Q/dfFF+9qTHenes1ePQR3PDAB5x37SN88r9HAAgGAqz7eSH7H3kG1979JvHxiXz53tORjVdEpJFyZnW6eaUuCaEBdznnhoVvvZxz/xdeV1KpXLDS4yBVWyGrf83s6mtyV/+R8moxJ9RUyDmXQ6h1cRJwGVDTt9HunvuUSvXs6pxbuIvnmeCcG+WcGzV+/PiaiuxWVl6A9NQd/570lBhy8gI7lcmooczg3glszi5nW0GQQBB+mFNAn+6h1sWDR7Xgh7mhoZRTZhfSq1qrY0Nr1bodW7N3tFJuzdlIy9S2uyzfve9ocraspmBbDgCB8jJe/8+VDN73eAaMPCri8e7OlqwS2qbHVTxukx5HZnbpzmUy4iuViSczZ/cn9eTklREMhhLHDz7fRL/eLes38DpKSWtHbtaOY5aXtYmU1rs+Zj37jyJr0xryt+aQkt6OlLR2dOs1BIAhY49i3c81voVERJo956xON6/sKSHcBmz/ZvoUON/MWgCYWScz2/U3RM1OMLMEM0sHDiHUvVyTycDp4bGAbYCDgB+BVcAAM4s3sxTg8JpiNbMMwOecexO4GRhRbf+LgB5m1jP8+MxK6z4FrrBwM4+ZDa9jHWtt+ZoSOmTE0CYtBr8f9h+ezPT5Vc+JmT6/kINGhlr+eneNp7A4SO62AJm55fTuFk9cbOjFM7h3Ius2h7oks7eWM6BnKFce1DuBjVt231UZaR17DCZr0ypytqylvLyUeT98RN9hh1Upk7VpFS7cjLZ+1XwC5WUktUjFOce7z/6NjA492f9X53kRfhWLluXTuUMi7dvGExNjHDYug++mZVcp8920HH51SBsABvRpQUFh+R67i7ePMQQ4cGwaP6/e5blRDaJLz0FkblxN1ubQMZs15SMGjjy0SpnMjTuO2dqfF1BeXkZyy1RapbYhNb09m9f/DMDSeVNp17nnTs8hIhINHL463byy2zGEzrms8Mkh84CPgZeBKeFcKR/4PVCXgU4/Ah8S6oK9YxfjBwHeBvYDZhNqyfuLc24jgJm9DswBlhLqvt5uAvCxmW0gdMbxs2YVp/b8tVq9is1sPPChmWUC3wKDwqvvAB4E5oSTwpVARKajCQbhmbdC4/18Bl/9mM/aTWUcuV8oB/98yjZmLSxiRP9EHv5rJ0rLQtPOACxbXcrUOYXcc01HAgHHynWlfDFlGwBP/i+L805Iw+c3ysocT76RFYnwa83vj+HXv7+ZF/51AS4YZPi4U2jbqTfTvnoVgNGHnsHCGZ8x+/t38fljiI2L59Q//hszY9WSGcyZ8i5tO/fh8b+fCMDhp1xNnyEHe1KXQBAefHoF998yAJ/P+GjiJlauKeI3R7UD4L3PNjF1Rg77jkjl5cdGUFIS4O5Hl1Vsf8vVvRk2KIWUljH876mRPPvqGj6auJlLzu5Grx7JOAcbt5Rw/xPLPanfdn5/DCf/4SYm3DUeFwwy5pCTaN+lF99/Hhpuu/+RpzPnx8+ZPvk9/DExxMYlcPaV91d0l5/0hxt56dHrCZSXkdauM2dc/A8vqyMi4pmmMu2MuT0NbqqvJzK7Fch3zt3fIE/Y8Nxp1670OoZ69/oD3Xnlu4Z5jTS0Mw8wDj75e6/DqHdfv7U/H8xs/Gcy19VxIzSPvoj8Yp5lZYuXr6nTl2jfnl08iVWfsCIiIiIR0lRaCBssIXTO3Vp9mZkNBl6otrjEOTe2QYISERERiSAlhLXgnJtLaL5BERERkWbHyzOH60JdxiIiIiIRohZCERERkSinhFBEREQkyikhFBEREYlyGkMoIiIiEuWCaiEUERERiW7qMhYRERGJcuoyFhEREYlyaiEUERERiXJqIRQRERGJcmohFBEREYlyaiEUERERiXJBrwOoJSWEIiIiIhESdD6vQ6iVphGliIiISBPknNXpVhtmdrSZLTazZWZ2w27KjTazgJmduqd9KiEUERERiRCH1em2J2bmB/4DHAMMAM40swG7KHcP8Glt4lRCKCIiIhIhQVe3Wy2MAZY551Y450qBV4ETaih3BfAmsLk2O1VCKCIiIhIh9d1CCHQC1lR6vDa8rIKZdQJOAp6obZxKCEVEREQipK5jCM1svJlNr3QbX22XNWWN1dsWHwSud84FahunzjIWERERiRBXu27gSuXdBGDCboqsBbpUetwZWF+tzCjgVTMDyAB+bWblzrl3drVTJYQiIiIiERKs/yuVTAN6m1kPYB1wBnBW5QLOuR7b75vZc8AHu0sGAczVNXWVXdE/UkREpHHy7HIhX8wpqVN+cMSQ+D3Gama/JtQt7Aeecc7daWZ/BHDOPVGt7HOEEsI3drtPJYT1xh1+xo9ex1DvJr46hjP/strrMCLilXu7ctTZs7wOo9599sJwnv3K6yjq33mHwlWP5HsdRkQ8eEULr0MQae48Swg/n123hPDIoXtOCCNBXcYiIiIiEVLLM4c9p4RQREREJEJqObeg55QQioiIiERIbS9H5zUlhCIiIiIR0lRO1VBCKCIiIhIhEZh2JiKUEIqIiIhEiFoIRURERKKcxhCKiIiIRDmdZSwiIiIS5dRlLCIiIhLlNDG1iIiISJRTl7GIiIhIlFOXsYiIiEiUCwTVZSwiIiIS1dRCKCIiIhLllBCKiIiIRDmdVCIiIiIS5XSlEhEREZEopy5jERERkSinLmMRERGRKKcWQqmV0UNTuOzcrvh8xkdfbuHV9zbsVOayc7sydngqJSVB7n18BUtXFtImPY4bLt2H1qmxuKDjwy+38NbHmyq2OfFX7TjxV20JBBw/zMpjwstrGrJaAAztk8A5J7TGZ/DVjwW8N2nrTmXO/U1rhvVLoLTM8fjrWaxcVwbA0Qe05LCxyRjw5Y8FfPztNgCu/F06HdrEApCc4KOgOMhfH9zYYHUCGDW4JZec3Rmfz/hkUhavfbBppzKXnt2J0UNTKCkJcv+EVSxbVURsrPHATb2JjfXh98E303J54a1Q7Gef1J5jDkknb1s5AM/8bwPTZu/8//LKivmT+eL1OwkGgww94Lfsd/T4KuuX/PQF37z/EGY+fD4/h592I116jfIo2t3r19XPyQfFYwZTF5QxcUZZlfVtWxtnHZ5A57Y+PpxSylezQuvbphrnHp1QUS49xcfHU0v5enbV7UVEKlNCKHvkM7jy/G785c7FbMkq5bF/DmTKjBxWrSuuKDNmWAqdOyRwzlVz6N8rmT9d2J3L/7aAQMDxxAurWbqykMQEH0/cNYgZc/JYta6YYQNasv+oVC76yzzKyh2prRr+MJvBeSe15p9PbSYrL8CdV7RnxoJC1m0urygzrF8C7TNiuPreDfTqGscFJ6Vx86Ob6NwulsPGJvO3RzZRHnDccEFbZi0qYmNmOQ+/lFWx/e+PS6WwONig9fIZXH5uF264ZxmZ2WU8cntfpszMY/X6Hcds9NBWdGqXwHl/XkC/nklceV4Xrrx1CWVljr/ctYzikiB+P/z75j5Mm72VRcsLAXjr0y288dHmBq1PbQSDAT575XbO+NOztGzdjufuOpXeQw4jo2OvijLd++1H76GHY2ZsXruId566ivG3feJh1DUzg1MPiefxd4rIzXdcc3oi81aUsylnxyd2YTG8ObmEwftUfd9sznXc92pRxX5uOy+JOSvKERHZnabSZezzOoDGwMzeMbMZZjbfzMaHlx1tZjPNbLaZTYzE8/br1YJ1G0vYsLmE8oDjq++z2H9U6yplDhjVms8mZwKwcFkBLZL8pKXGkp1bxtKVoUSiqDjIqnVFZKTFAXD8kW159d0NlJWHXoW5Wxv+S6tXlzg2ZpazOTtAIABTZhcyamBSlTIjByTyzcwCAJatLiUp0UdqSx+d2sawdHUppWWOYBAWrihm9MDEnZ5j3yFJfP9TYYPUZ7u+PZNYv6mEjVtKKQ84vp6aw/4jU6qU2X9ECp9/mw3AouWFJCf5SUsJJRfFJaEENsZv+P1N48yzDSvn0LptN1LbdMEfE8eA0ceydE7Vt0RcQjJmofqUlRZV3G9surXzkZkbJGurIxCEWUvKd0r88oscazYHCe7mt0afzn4y8xw525rIJ72IeMa5ut28ohbCkPOdc9lmlghMM7N3gaeAg5xzP5tZWiSeNCMtli1ZJRWPt2SX0r9Xi2pl4tiSVVqlTEZaHNm5O7qp2rWJo1f3JBYuywegc4cEBvdryflndKa0NMiTL65h8YqCSFRhl1qn+MnKC1Q8zsorp1eX+Cpl0lJiyMrdkdBl5wZIS4lhzaYyTj86lRZJPkrLHMP6JfLz2tIq2/brEU9efoCNmQ2b7Ga0jmNLdtXj0a9ncpUy6a1jq5TJzC4jPS2W7LxyfAb/uaMvHdvF894XmRWtgwC/OSKDIw5IY8nPhUx4eR35hQEag205m2jZun3F45ap7Vj/85ydyi2e9Tlfv/MAhduy+e3lTzZkiLWWkmzk5O/4xM3Nd3RrX/ffxSP6xDBzqVoHRWTPdvfjsjFRQhhypZmdFL7fBRgPTHbO/QzgnMtuqEBq8+vAVSqUEO/j1qt789h/V1NYFHrV+f1Gi2Q/l/9tAX17JnPzVb34/ZWzIxVyjWrTPlRTGecc6zeX896krdx4UVuKS4Ks3lBKoFqb+/7DGr51EKgx6OrHrMbGsXCZoINL/raY5CQ/f/9TD7p3TmDl2mLen5jJS+9sxAHnntKB8Wd14l9Pr67v6H+hGl6UNVSy7/Aj6Tv8SFYvncbk9x7izKuei3xodVWL47cnfh8M7BHD+9978PoTkSanqYwhjPouYzM7BDgC2M85NxSYBcymxm/BnbYdb2bTzWz6hAkT6vzcmdlltEnf0WrWJi2OrJzSamVKaZMeV61MqHXQ7zduvaY3E7/N4ttpORVltmSVVjxevLwA5xwpLRs298/OC5Ce4q94nJ4SQ87Wqi1eWXnlpKfuKJOW6q8oM2laATc+tJHbn9hMfmGwSkugzwdjBiUxZXbDfyFnZpfSJq3q8ajcWhsqU1alTEZabMUx266gMMCcRfmMGtIKCHXrB8PdBR9PyqJfz6rd615q2bo923J2nLizLXcTLVPb7rJ8196jyd2ymsL8BvsdVWt5+Y7WLXZkhaktjK0Fdfu07t/Nz9otAfKLmsinvIh4qql0GUd9QgikADnOuUIz6wfsC8QDB5tZD4BddRk75yY450Y550aNHz++piK7tWh5Pp3ax9O+TRwxfuPQ/dP5fkZulTLfz8jhqIMyAOjfK5mCwkBFAvLni3uwel0Rb3xU9Szb76bnMHxgKNHo3CGBmBirOHu1oSxfW0r7jFjatPbj98N+Q5OYsaCoSpmZC4o4cESou7VX1zgKi4Lkbgu1crZKDr0001P9jB6UxPc/7ejyHtwrgfVbysjOa/gu1cUrCqscs4P3bc2UmXlVykyZmceR40IvmX49k0LHLK+clJYxJCeFEuC4WGP4wJasCZ+Msn2MIcABo1JYubaYxqJDt8Fkb15JbuYaAuWlLJj2Ib2GHFalTM7mVRUt1xtXzydQXkZicuuaduep1ZuCZKT6SGtl+H0wvE8M836u2+toRJ8YZi5Rd7GI1E7Q1e3mFXUZwyfAH81sDrAYmApsIdRt/JaZ+YDNwJH1/cTBIDzy7CruubEfPh98/NUWVq0t4rgj2gDwwRdb+GFWHmOHpfLCQ0MoLgly3xM/AzCobwuOOiiDFasKefLugQD836tr+fGnPD75KpPr/tiDp+8bRHm5457HVtR36LWq23PvZvPXC9vi84Va/NZuKuOIfUNjJL+Yms+sRcUM65fIg9d3oKTU8eT/drQoXX1OBi2S/AQCjmffyaagUmvMfl51FxOq16PPr+Wf1/XE5zM+nZzFqnXFHHtYOgAffpnFj7O3MmZYK567fwAlpUHuf2oVAGmpMVw3vhs+n+Hzwdc/5PLDT6GpZS48oxM9uyXiHGzKLOWhZxpLdzH4/DEcdfotvPbwhbhggCH7n0Kbjr2ZNfkVAIYfdCaLZ33KvKnv4vPHEBObwAkX/btRnlgSdPDm1yX88TeJ+Hzww4IyNmYH2X9Q6KPw+3nltEwyrj09kYQ4wzk4eFgsd71YSEkZxMZA3y4xvP5VyR6eSUQkxNW52c+bz06re6CyC+7wM370OoZ6N/HVMZz5l8aTnNSnV+7tylFnz/I6jHr32QvDefYrr6Oof+cdClc9ku91GBHx4BUt9lxIRPaGZ79QH/mwbonWFcd682taLYQiIiIiEaKzjEVERESiXFPpiFVCKCIiIhIhTeVKJUoIRURERCJELYQiIiIiUS4QaBpnGSshFBEREYkQtRCKiIiIRLlgExlEqIRQREREJELUQigiIiIS5ZQQioiIiES5YBPJCJUQioiIiESIayJXKvF5HYCIiIhIc+Wcq9OtNszsaDNbbGbLzOyGGtb/zszmhG/fm9nQPe1TLYQiIiIiEVLf1zI2Mz/wH+BIYC0wzczec84tqFTsZ+Bg51yOmR0DTADG7m6/SghFREREIqS2rX51MAZY5pxbAWBmrwInABUJoXPu+0rlpwKd97RTJYQiIiIiERKBaQg7AWsqPV7L7lv/LgA+3tNOlRCKiIiIRIirY0ZoZuOB8ZUWTXDOTahcpKan2cW+DiWUEI7b0/MqIRQRERGJkLr2GIeTvwm7KbIW6FLpcWdgffVCZjYEeBo4xjmXtafnVUIoIiIiEiERuHTdNKC3mfUA1gFnAGdVLmBmXYG3gLOdc0tqs1MlhCIiIiIRUt8nlTjnys3scuBTwA8845ybb2Z/DK9/ArgFSAceMzOAcufcqN3tVwmhiIiISIREYmJq59xHwEfVlj1R6f6FwIV12acSQhEREZEI0aXrRERERKJcBOYhjAglhCIiIiIREoGTSiLCmkrm2gToHykiItI41TR3X4O46pH8OuUHD17RwpNY1UJYjw497QevQ6h3X70+lgfeaZ657rUnGged9K3XYdS7yW+P46izZ3kdRr377IXhXD+hyOswIuKe8Ync/1YERp577M8n+7wOQcRzdZ2Y2itKCEVEREQiRCeViIiIiES5YHnTaP1XQigiIiISIU2kx1gJoYiIiEikaAyhiIiISJRrKrO5KCEUERERiZCmMg+hEkIRERGRCFELoYiIiEiU0xhCERERkSinhFBEREQkymliahEREZEopxZCERERkSink0pEREREopymnRERERGJcuoyFhEREYly6jIWERERiXIuGPQ6hFpRQigiIiISIRpDKCIiIhLl1GUsIiIiEuV0UomIiIhIlFNCKCIiIhLlgk4nlTQpZvY08C/n3AIv4xg9NIXLz+uG32d8OHEzr7y7YacyV5zXjbHDUykuCXLPY8tZ+nMhbdLj+OtlPUlLjcU5xwdfbObNjzd5UIOarVn8Dd+/dyfOBek3+lSGHTq+yvqls95n9qSnAIiNS2LcSbeS3rEfAC/ffRix8cn4zI/5/Jx85ZsNHv+Y4alcecE++HzGh19s4qW31u5U5soL9mHfka0pKQly1yNLWLKiYLfb9uyezLV/7ElSgp8Nm0u449+LKSwK0L5NPC88MoLV64sAWLBkGw88sTzidRw1uCWXnN0Zn8/4ZFIWr32w8+vn0rM7MXpoCiUlQe6fsIplq4qIjTUeuKk3sbE+/D74ZlouL7y1EYAbL+tOlw7xACQn+SkoDHDJ3xZHvC6706ezj9/sH4sZTFsUYNLs8irr26QYvz0kjk4ZxqfTypk8Z8f6Awb5GdMvBgN+XFTOt/MCDRz9rq1Z/A1TPvgnLhik7+hTGXbIRVXWL5v1PrMnPw1ATFwS4078O+kd+lWsDwYDvPPob0lq1Zaj//BEg8Yu0pyphbARMjMDzLmd03Xn3IUehFSFz+BPF3Tnun8sYktWKU/cNZDvp+eyal1RRZmxw1Po1D6B3185m/69W3D1hT249Kb5BAKOx19YxdKfC0lM8PHk3YOYPmdrlW29EgwG+Pad2zn2wmdITmnH24/+lm4DDqN1u14VZVq27sTxF79AfFIKqxdNZvJbt3DS5a9XrD9+/PMkJLf2Inx8Prh6fE+uuXUeW7JKmXDvML79MYtVa3f8b/cd0ZrOHRM469IZDOjTkmsu7sUfr5+9223/cmkvHvvvz8yev5VfH96OM0/sxP+9shqAdZuKueCanxqujgaXn9uFG+5ZRmZ2GY/c3pcpM/NYvb64oszooa3o1C6B8/68gH49k7jyvC5ceesSysocf7lrGcUlQfx++PfNfZg2eyuLlhfyz/+srNh+/JmdKCjyNoEygxPHxfL0h6XkFTguPymeBasCbM7d8YFdWOJ47/tSBnb3V9m2XWtjTL8YHn27hEAQzj8mjoWrg2Rt9f7DPhgM8N17d/DrC/6P5FbteOc/p9Gt/6FV32NpnTlu/PPEJ6awZvFkvnnr75x42WsV6+d99wKpbfehtDjfiyqINFvBQNNoIfR5HUCkmVl3M1toZo8BM4H/M7PpZjbfzG6rVG6SmY0K3883szvNbLaZTTWzdg0Ra79eLVi/sZgNm0soDzi+/D6bA0ZXTYIOGNWazyZnArBwaT7JyX7SUmPJzi1j6c+FABQVB1m9rpiMtNiGCHuPtqyZQ0p6V1qld8EfE0fPob9m5YKJVcq07z6C+KQUANp1HUpB3kYvQq1R/94tWbehmA2bSigvd0z8dgvjxqRXKTNuTBqffrUZCLXotUj2k946drfbdu2UyOz5WwGY/lMOB++X0bAVq6RvzyTWbyph45ZSygOOr6fmsP/IlCpl9h+RwuffZgOwaHkhyUl+0lJCvymLS0IfeDF+w++3Gp/j4LGpfDUlJ4K12LMubXxk5TmytzkCQZi9PMCAaolfQTGs3RJaX1nbVGP15iBlAQg6+HlDkEE9qm7rlS1r5tAqvSut0na8x1Yt/LJKmXbdhhOfGDqmbbsOpWDrjvdYft5G1iz+mr6jT23QuEWiQTAYrNPNK80+IQzrCzzvnBsOXOucGwUMAQ42syE1lE8GpjrnhgKTgYtqKFPvMtLi2JxVWvF4S1bpTkldRlocmzNLKh5nZpWSkRZXpUy7NnH06pHEwmUFkQ24lgryNpGc2qHicXJKewrydt2dvWjaG3Tpe1DFY8P48OkLeOvhk1n4w2u73C5Sqv/Pt2SV0Ca96v88Iz2+hmMXv9ttf15dyLgxaQAcckAGbTN27LND2wSefmAYD/9jMEP6t4pIvarE3zqOLdmV4s8uJb111ddeeuvYKmUys8tID78+fQaP/6Mvr/9nMDPnbWPR8sIq2w7um0xOXjnrN5XgpZRkyC3Y0aKXV+BISa45ga1uU46jR3sfSfEQ64e+Xf213jbSCrZupkVK+4rHya3a7fY9tnjam3Tpc2DF46kf3MWYY/6MWbR8JYg0HBd0dbp5JVq6jFc556aG759mZuMJ1b0DMACYU618KfBB+P4M4Miadhrez3iAJ598Ehi6V0FaDd8t1acvqqlM5UIJ8T5uv7YP/3luFYUed8/tjtVYEVi/fCqLp73Jby55qWLZby59meRW7SjKz+LDp88ntc0+dNhndEOFWrvjUsN2zrndbnv3o0v504X7cO5pXfnuxyzKykMrsnJK+e34aWzdVk6ffZL5518HcM6VMyN7PH/xay/0J+jgkr8tJjnJz9//1IPunRNYuXZHd/Mh+7Xmq6netg7uSm2nCNuc6/h6djkXHhtPSZljQ1aQxjM0qIZAdvke+4HF09/k+ItfBGDVwq9ISE6jTaeBrF/xYySDFIlKNYxSa5SiJSEsADCzHsCfgdHOuRwzew5IqKF8mdsxk2SAXfyfnHMTgAnbH77yxQ97FeSWrFLaVmp5apMeR1ZO2c5lMuJhcWicT0Z6HJnhMn6/cfu1vfnim0y++bHxfPkmp7SjIHfHyTEFeRtJatV2p3JZGxbz9Rs3c8z5E6qMF0xuFeqxT2yRTveBR7B5zZwGTQgr/udhbdLjyazUUhYqU1LDsSslNta3y21Xryvi2tvmA9C5YwL7jQq1FpaVO8q2hU5kWLKigHUbi+nSMZHFyyM3tiszu5Q2lVqa26TFkZ1bVq1MWbhMqOU5Iy12p9dnQWGAOYvyGTWkVUVC6PPBuFGpXHaztyeTAOQVQGqlVr2UZGNrYe2zummLA0xbHErMfzU6hryCxpERJrdqR36lYRYFWzeRvIv32OS3buboPzxZ8R7btGoWqxd+xSuLJxMoL6W0JJ+vXvsLh55+b4PFL9KcNZWTSqKtf6AVoW+zvPC4wGM8jqeKRcvz6dQhgfZt4onxG4ftn8b306smdt9Pz+Wog0Jjzfr3bkFBYaDii/svf+zBqnVF/O/DxjP+DqBN58HkZa1ia/ZaAuWlLJ/9Ed36H1alTH7Oej5/4QoOPf0eUtv0qFheVlpIaUl+xf11S74jrX2fBo1/0dJtdO6QSIe28cTEGIePa8N307KrlPl2Wja/OjT0BTygT0sKCgNk5ZTtdtvUlFB3qxmcc2pX3v00dNxSWsXgC78zO7SLp3OHBNZvKiaSFq8opFP7eNq3iSPGbxy8b2umzMyrUmbKzDyOHBdKWvv1TAq99vLKSWkZQ3JSaCxdXKwxfGBL1lQ6GWXEwJas2VBc8cPFS2u3BElPMVq3NPw+GNrTz8JVtW95TQ7/fExNNgb18DN7WeNohW/TeTBbM6u+x7r2P7RKmfzc9Xzx4pUcelrV99iYo6/hrL9O4szrJ3LYmQ/QcZ+xSgZF6pG6jBsh59xsM5sFzAdWAN95HFIVwSA8/MxK7r2pLz6f8fFXW1i5tojjjwwlGu9/vpmps3IZOyKVFx8eSklpkHseWwHAoL4tOOrgNixfVchT9w4C4OlX1vDDrLxdPl9D8fljOOCEm/n4/y4gGAzSd/QppLXvzYKprwIwYN8zmDHxMYoLc/nundsBKqaXKdqWxWcvXA6ACwToOfw4uvQ9cJfPFQmBIDz41HLu//sgfD74aOImVq4p5De/Co3Zeu/TjUydkcN+I1vzyuMjw9POLN3ttgBHHNiGk44Jja2cPDWTjyaGxnwNG5DC+Wd2JRAIXQPzgSeWsy2/vIbI6k8wCI8+v5Z/XtcTn8/4dHIWq9YVc+xhoRNgPvwyix9nb2XMsFY8d/8ASkqD3P/UKgDSUmO4bnw3fD7D54Ovf8jlh5+2Vuz7kP1ae34yyXZBB+9+V8YFx8Th84Va/DblOMb2DyW0PywM0CIRrjwpgfi4UHfyuEExPPC/YkrK4Owj40hKMAJBeOfbMopK9/CEDcTnj2H/3/yNj5+5EOeC9B11MmnterPgh/B7bOwZzAy/x759N/Qe8/n8nHT5G16GLRIVmso8hNZUrrHXBLhDT9u7LuPG6KvXx/LAO83zNXLticZBJ33rdRj1bvLb4zjq7Fleh1HvPnthONdP8H4apUi4Z3wi97/VNL406uLPJ0dbJ5Q0Yp6dAXbU2bPq9CX62QvDPYk1qloIRURERBqS83AqmbpQQigiIiISIU3lpBIlhCIiIiIRomlnRERERKJcUC2EIiIiItGtqYwh1ClgIiIiIhESiXkIzexoM1tsZsvM7IYa1puZPRxeP8fMRuxpn2ohFBEREYmQ+h5DaGZ+4D+ELqu7FphmZu855xZUKnYM0Dt8Gws8Hv67S2ohFBEREYmQCLQQjgGWOedWOOdKgVeBE6qVOQF43oVMBVLNrMPudqoWQhEREZEIicAYwk7AmkqP17Jz619NZToBG3a1UyWEIiIiIhHy7fsH1+nKI2Y2HhhfadEE59yEykVq2Kx602JtylShhFBERESkkQgnfxN2U2Qt0KXS487A+l9QpgqNIRQRERFpOqYBvc2sh5nFAWcA71Ur8x5wTvhs432BPOfcLruLQS2EIiIiIk2Gc67czC4HPgX8wDPOuflm9sfw+ieAj4BfA8uAQuC8Pe1XCaGIiIhIE+Kc+4hQ0ld52ROV7jvgsrrsU13GIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5C81dKPVA/0gREZHGybwOoLHTlUrq0al/WuF1CPXujYf24epH870OIyL+fXmLZnvMHnin+f0+ufZE4+0fA16HEREnjfFz2rUrvQ6j3r3+QHfOuXm3l09tkp6/o4PXIYjUO3UZi4iIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRLkYrwOIdsP6JXLeyen4fMbEqVt554u8ncqcf3I6wwckUVoW5NGXtvDz2lIAjjskhcP3bYkDVq8v5T8vb6Gs3LHfsGROO7o1ndrF8td/rWP5mtIGrtXO+nX1c9KB8ZjBDwvKmDizrMr6tqnGmUck0LmNjw+nljJpVmh9m1Tj3F8lVJRLT/Hx8Q+lTJ5ddfuGFIljdvZv0hg1KInygGNjZjn/eXkLhUXBBq5ZVWsWf8P3792Jc0H6jT6VYYeOr7J+6az3mT3pKQBi45IYd9KtpHfsB8DLdx9GbHwyPvNjPj8nX/lmg8e/K4vnfMP7L9yFCwYYfcipHHL8RVXWz58xkc/ffAQzw+eP4fjf3UD3viMBuPvqI4hPSMbn8+Hzx3DF7f/zogoVhvZN5LwT0/D5YOIP+bz75c6vxfNOTGN4/0RKSh2PvZrJz+tCr8VjD2rFYWNb4Bys2VjKY69mUVbu6NYhlotOTSch3seW7HIefmkLRSWuoatWxeBe8fz+2Fb4DL6eUcgH3xRUWd8hw89FJ6XSrWMsb3yxjY+/27H+whNTGNY3nq0FQW58NLOhQxdpMpQQeshncOFvM7j9sQ1k55Zz97WdmD63kLWbdiQ7wwck0qFNLFf8Yw29u8Uz/rcZ/PXf60lL8XPMQa24+q61lJY5rvlDWw4YkcykH/NZvaGU+57ZxMWnZXhYux3M4JSD43ni3SJy8x1Xn5bIvJ/L2ZSz40umsATemlzC4H2qviS35Druf62oYj+3/iGJuSvKGzT+yiJ1zOYsLuKlD7IJBuH3x6dx8hGpvPh+tmf1DAYDfPvO7Rx74TMkp7Tj7Ud/S7cBh9G6Xa+KMi1bd+L4i18gPimF1YsmM/mtWzjp8tcr1h8//nkSklt7Ef4uBYMB3v3vP7jg+qdJSWvHo7ecTv8Rh9Ku04569Rq4LwNGHIaZsWH1Yl5+9BquvffDivXjb3yO5Jbe18sMLjg5jX88uYmsvHLuuqoj0+cXsq7ya7FfIu0zYrjyrnX07hrPhaekc9PDG2jdys8x41py9b3rKSt3XH12G/YfnszX0/K5+LQMXng/m4UrSjh0TAt+c2gKr32S62k9zzm+Ffc+l0321gC3/TGDmYtKWL9lx+dAfpHjhY+2MrJ/wk7bfzOriM9/KODiU1IbMGqRpidquozNLNnMPjSz2WY2z8xON7OVZpYRXj/KzCaF799qZs+Y2SQzW2FmV0Yipl7d4tm4pYzNWeWUB+C7mQWMHpxcpczoQclMmrYNgKWrSkhK9JHayg+A32fExRo+H8THGTl5AQDWbSpj/WbvWtCq69rOR2ZekKytjkAQZi0tZ1C1xC+/yLFmc5DAbhrF+nT2k7XVkbPNu9aKSB2z2YuLCIbrvmRVMemp/oarVA22rJlDSnpXWqV3wR8TR8+hv2blgolVyrTvPoL4pBQA2nUdSkHeRi9CrZM1y+eS3q4r6W27EBMTx9B9j2HBjC+rlIlPSMbMACgtKQplJI1Qr67xbMwqZ3N2OYEAfD+rgNEDk6qUGTUoickzQq1lS1eXkJzoI7Vl6LXl8+94LcbFGTl5oQSrY9tYFq4oAWDOkiLGDq66z4bWs3Msm7MCbMkJEAjA1LlFjOgfX6XMtoIgP68rIxDY+bNh8apSCoq8beEUaQqiqYXwaGC9c+5YADNLAe7ZTfl+wKFAS2CxmT3unKvXLCstJYbM3B2/crNyy+ndreoHXXqqn6xKZbLzAqSn+Fm+ppT3vsrl8Vu7UlrmmLOokNmLi+ozvHqTmmzkVkri8vIdXdvV/bfI8N4xzFziXesgNMwxO2xsS76bVbDT8oZUkLeJ5NQOFY+TU9qzefXsXZZfNO0NuvQ9qOKxYXz49AWYQf+xp9N/7OkRjbe2tuZsIiWtfcXjlLT2rFk+Z6dy86Z/waev/5v8rVn84donKpYbxv/dcyFmxphDT2PsYac1SNw1SUup+jrLyiund9f4ncpkViuTluJnxdpS3p+Ux+M3d6a0zDF7SRFzlhQDoe7jUQMTmT6/iH2HJJOe6u3XROtWfrLCP5wAsvOC9Owc62FEIs1TNCWEc4H7zewe4APn3De2+1/+HzrnSoASM9sMtAPW1mdANT39zr9jdy7kHCQn+hg9KJnLbltNQVGQa89rx4GjWvDN9Pz6DLHR8PtgYI8YPphS6GkckT5mJx+ZSiBIozyOu3q/rF8+lcXT3uQ3l7xUsew3l75Mcqt2FOVn8eHT55PaZh867DO6oULdJedqaCmqoVqDRh3BoFFHsGLRdD5/82EuvOEZAC655SVatW5Lfl4WT99zIW067sM+/UZFOOqa1XQ0qtduV2WSE32MHpjEZXeupbAoyDXntuXAEcl8M7OAx1/L4rwT0zj1yFSmLyikvIZWNxFpfqKmy9g5twQYSSgxvMvMbgHK2fE/qD74pKTS/QA1JM9mNt7MppvZ9AkTJtQ5pqzccjIq/fpOT42p6EKsXKbyL/S0FD/ZWwMM6ZvI5uwythaEull/mFNA3x5VWwcai9wCR2rLHV9NKS2MvIK6fcn07+Zn3ZYA+R53/UTymB08ugUjBybx0PObI1+RPUhOaUdB7oaKxwV5G0lq1XanclkbFvP1Gzdz1Ln/qTJeMLlVOwASW6TTfeARbF6zcyucF1LS2pOXvaNrOy97I61Sd67Xdvv0G0XWpjUUbMsBoFXrUNkWKekMHHU4a2toXWwoWXmBKq+z9JQaXot5gaqv13CZwb0T2JxdzrZKr8U+3UOvxfWby7hzwiZueHAD380sYFOWt63yOVtDLezbpaX4yNkW2M0WIvJLRE1CaGYdgULn3IvA/cAIYCWhJBHglLru0zk3wTk3yjk3avz48XveoJplq0vo0CaWtmkxxPjhgBHJTJtXtatw+rwCDhndEoDe3eIpLA6SuzVAZk45fbolEBcbSrQG90lk3cbGM26wsjWbgrRJ8ZHW0vD7Ql2/83+u2wf68N4xzFzq7RcTRO6YDeuXyIlHpHLPUxspLfO+RaZN58HkZa1ia/ZaAuWlLJ/9Ed36H1alTH7Oej5/4QoOPf0eUtv0qFheVlpIaUl+xf11S74jrX2fBo1/VzrvM4isjavI3ryW8vJSZk/9mAEjDq1SJnPTqoqWxHUrFxAIlJHUIpXS4kJKikLHurS4kKVzv6ddl94NXoftlq8poUNGDG3SYvD7Yf/hyUyfX7UFffr8Qg4aGRrj2rtr+LW4LUBmeKhDxWuxdyLrwuOOW7UIfS2YhVqsP5+yrQFrtbMV68pol+4nI9WP3w/7Dk5k1qKSPW8oInUSTV3Gg4H7zCwIlAGXAInA/5nZjcAPDR1QMAhPv5nJ3y5pj89nfDl1G2s3lnHUAaFk4rPvtjFzQREjBiTx6M1dQtNGvBxqPVq6qoQpswu477pOBILw89oSPv9+KwBjhiRxwSkZtGrh568Xt2fl2lL+8YR3A/6DDt6cXMLFJyTiC087szE7yP4DQy+/7+eX0zLJuOa0RBLiDOfg4KGx3P1SISVlEBsDfbvG8L9J3n8JROqYXXBqBrExxs2XdqgoO+F176bI8PljOOCEm/n4/y4gGAzSd/QppLXvzYKprwIwYN8zmDHxMYoLc/nundsBKqaXKdqWxWcvXA6ACwToOfw4uvQ90LO6VOb3x/Cbc27imfsuIhgMMuqgk2jXuTdTJ4bqte/hZzBv2ufM/PZd/P4YYuMSOOuyBzAztm3N4oUHQ+eXBYPlDNvvWPoO8a5ewSA881Y2N41vh8/gqx/zWbupjCP3C70WP5+yjVkLixjRP5GH/9qJ0rLQtDMAy1aXMnVOIfdc05FAwLFyXSlfhBO/A4Yn86sDWgHw49xCvvrR2+ELwSA8/8FW/nJuGuaDyTOLWLe5nENHh052+WpaISktfNz2xwwS442gg1/tl8wNj2yhuMRxyW9T6d8jjhZJPh78c1ve+nIbk2c2zvHWIl6yGsfUyC/hTv3TCq9jqHdvPLQPVz/a+Maz1Yd/X96C5nrMHnin+b2vrz3RePvH5tlVeNIYP6ddu9LrMOrd6w9055ybN+y5YBPz/B0d9lxIGpvGOV1AIxI1XcYiIiIiUjMlhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlDPnnNcxNBf6R4qIiDRO5nUAjV2M1wE0J0f+bobXIdS7z18ayUmXL/U6jIh4+9HezfaYnfmX1V6HUe9eubcrf3pom9dhRMRDf2rJCZcs9jqMevfu4335z8deR1H/LjsGjjhzutdhRMQXr4zyOgTxiLqMRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlyMV4HEO1GDWnFpWd3weeDjydl8tr7m3Yqc+k5XRgztBUlpUHue3Ily1YWERtr/OvmvsTGGH6/8c2POTz/5oYq253663Zc/LvOnHLxT2zNDzRUlSoM75/EBae2weeDL77fyluf5+xU5oJT2zByYBIlpY5HXtjEirUldGwby5/P71BRpl16DK98mM0Hk3I589g0xgxpgXOQt62ch1/cRE5ew9YtEsfsojM7se+IVMrLg6zfVML9E1ZRUNiw9RraJ4FzTmiNz+CrHwt4b9LWncqc+5vWDOuXQGmZ4/HXs1i5rgyAow9oyWFjkzHgyx8L+PjbbQBc+bt0OrSJBSA5wUdBcZC/PrixwepUk37d/Jx8cAI+g6nzy/hiemmV9W1b+zjryAS6tPHxwZQSvppZVrEuMQ7OOCKBDuk+HPDK58Ws3Bhs4BrsMHxAEhed1g6fweff5fHmZ9k7lbnotLaMHJhMSanjoec3sGJNCQDJiT4u/317unaMwzl45IWNLP65GIBjD0nl2ENaEwg4ps8r4L9vb2nQelW3cuFkJr91J84FGbjvbxl1xPgq6xdNf48ZE58CIDY+mUN/eyttOvUjZ9MKPv7v1RXl8rLWsO8xVzL8kD80ZPhVjB7aikvP6Rr6/Pgqk1ff2/n9cNm5XRgzLIWS0iD3Pr6SZSsLiY01/n1LP2JjQ58fk3/I4fk31gNw0NjWnHNqR7p2TODymxeyZEVhQ1dLmgElhB7yGVzxh65cf9cSMrPLePSOfkyZmcfqdcUVZcYMbUWn9vH84dr59O+VzJXndePKvy+irMxx3Z1LKC4J4vfDv2/px7TZW1m4rACANmmxjBzckk2ZJZ7Vbfxpbbj10XVk5ZZz73Vd+XFuAWs37vjyHTEgiY5tYrn0tlX06Z7AxWe05fr717B+cxnX3L26Yj9P39mDH2bnA/DOxFxe+TD0pXfswSmcfkw6T7y6uUHrFYljNnPeVv7vtXUEg3DhGZ048zftefrVdQ1WLzM476TW/POpzWTlBbjzivbMWFDIus3lFWWG9UugfUYMV9+7gV5d47jgpDRufnQTndvFctjYZP72yCbKA44bLmjLrEVFbMws5+GXsiq2//1xqRQWe5c8Qaievz0kgcfeLiQ333HtGUnMXVHOpuwdcRUWO976upjB++z88XjywQksXBXg2Y+K8fsgzsNPUJ/BxWe04+8PryUrp4z7b+jGj3PyWVPpPTZyYDId2sbyx7//TJ8eCVxyZjuuuzf03rrwtLbMXFDAPU+tJ8YP8XGhDqPBfRIZO7QFV/5jJeXljpSWfk/qt10wGGDSG7dz0iXP0iK1Ha/961R6DDqM9Pa9KsqkpHfmlCteJCEphZULvubL127m9Gv+R+t2+3DWX96t2M8zfz+InkOO9Koqoc+P87py/T+XsCWrjP/c2Z/vZ+RW/fwYlkKn9gmce/U8+vdK5k8XdOWKm0OfH3/+x+Lw54fx4K19mfZTHguXFbByTRG3/msZV1/Y3bO6SdPXbLqMzSzZzD40s9lmNs/MTjezlWZ2m5nNNLO5ZtYvXDbNzN4xszlmNtXMhoSXzzWzVAvJMrNzwstfMLMj6jvmvj2TWb+pmI1bSikPOCZNzWH/kalVyuw3MpUvvgl9qS5cVkCLJD9pqaFvoeKS0JdYjN+I8RvOuYrt/nh2F556ZR2VFjWo3t0T2JBZxqascsoD8O3MbYwZklylzJghLfjqx1Ar1JKVxSQn+mjdquqXz+C+SWzcUsaWnFBiUlQpoYiP91Wpc0OI1DGbMXcbwXDVFi4rICMttmEqFNarSxwbM8vZnB0gEIApswsZNTCpSpmRAxL5ZmboB8ey1aUkJfpIbemjU9sYlq4upbTMEQzCwhXFjB6YuNNz7Dskie9/8rblols7H1vygmRtdQSCMHNJ+U6JX36RY/WmIIFquWt8HPTs5Gfq/FCLYSAIRVUbFxtU7+4JbNxSxqbMMsoD8M30bYwZ2qJKmTFDW/DV1PB77OdikpP8tG7lJzHBx8BeiXz+XR4A5QEoKApV+OiDUnnz02zKy0OvzbxtDd+7UNmmVXNIzehGSkYX/DFx9B5+LCvmTqxSpkOPESQkpQDQvvsw8vN2bnVbs2QKKRldaJXWqUHirknfXsms31jChs3hz48p2RwwKrVKmf1HpvJ5lc+PGNJSQ58HO39+hLZZvb6YtRu8+fEvzUezSQiBo4H1zrmhzrlBwCfh5ZnOuRHA48Cfw8tuA2Y554YANwLPh5d/BxwADARWAAeGl+8LTK3vgDPSYtmStaM7KjO7lIzWsTuV2ZxVWq1MHBD6tfnEP/vzv8eHMnPeVhYtD33Z7jcihazsUlasLqrvkGstLSWGzJwdrUtZOeWkp1T94k1PjSGrcpnc8orEabsDR7bgmxnbqiz73fHpPHVHdw4e1bKitbChROqYVfarg9OZNnvn7tpIap3iJ6tS13tWXvlOyXlaSgxZuTvKZOcGSEuJYc2mMvr3iKdFko+4WGNYv0TSqx3Hfj3iycsPsDGzHC+ltPCRu21HppebHySlhdVq24xWPvKLHGcdmcB1ZyZxxuHxnrYQpqfGkJmz47WYlVO+0/89VGbH/zwzp4z01BjaZ8SSlx/gynPa8+8bu3H579sRHxf6P3RsG8eAXonc95eu3Hl1F3p1S2iYCu1Cft4mWrRuX/G4RWo7CvJ2Hqax3YKpb9Ct/0E7LV8680P6jDguIjHWVkbruCqfDVuySkkPfzZUlEmLZUvlMtmlFT8QfQZP3DWAN54cyoy5W1m0vKBhApeo0JwSwrnAEWZ2j5kd6JzLCy9/K/x3BtA9fH8c8AKAc+5LIN3MUoBvgIPCt8eBwWbWCch2zuXXd8A1fQ1Vb/CyGkptLxN08McbF3LmFXPp2zOZ7p0TiI8zzjyhA8+Fx5Z4xWqoXG3a8irXP8YPowe34PtZVf/1L72fxUU3r+Tr6dv49UEpexdoHUXimFV21gntCQQcE79r2ES3NilRzXV3rN9cznuTtnLjRW254YI2rN5QSiBY9Z+y/zDvWwdhF/WsZSOzzwed2/r4bk4p971SSGkZHDEqbs8bRkpN77GdXos1lAH8PujZJYFPJudy9T9XUVziOOVXaQD4/UaLJD/X3bua597awl8u7FDDXhpSDQeopg8YYM3Sqcyf+gYHHP/nKssD5aWsmP8lvYcdHYkAa63msN0ey1T5/PjrAs64bA79avj8ENkbzSYhdM4tAUYSSgzvMrNbwqu2t6MH2DFmclefk5MJtQoeCEwCtgCnEkoUd2Jm481suplNnzBhQp1j3pJdRpv0Ha1LGWlxZOWWVStTStv0uGplqvZTFRQGmL1wG6OGpNChXTzt28Tx5F0DeOHBQbRJi+PxOwfQOqVhmzKycsvJaL3jOdNbx5CdV75TmfTKZVJjyKlUZsSAZFasKd5ll9U307ax37AWNa6LlEgcs+2OPDCNscNTuPuxnyMU/a5l5wVIT9nRIpieEkPO1qr/96y8ctJTd5RJS/VXlJk0rYAbH9rI7U9sJr8wWKUl0OeDMYOSmDLb+4QwNz9IassdH3upLXzkFdQuI8zNd+TmO1ZtCrUw/rSsnM5tvRtfl5VTXqV1uqb3WGa192FG61iyc8vJDN+WrAyNXft+1jZ6dkmo2O+UWaFW+aWrigk6aNXCu3q2SGlPfs6OLuD83E0kt2q7U7nM9YuY+OrfOO7Cx0hMbl1l3cqFk2nTeSBJLTMiHu/uVP9saJMeR1ZOtc+PrDLaVC6TtnOZ7Z8fo4c27A9iad6aTUJoZh2BQufci8D9wIjdFJ8M/C683SGEupW3OufWABlAb+fcCuBbQt3MNSaEzrkJzrlRzrlR48ePr6nIbi1eUUCn9gm0bxNHjN84ZN/WTJmRW6XMlJm5HHFgOgD9eyVTUBQgO7eclJYxJCeFPqTjYo0RA1uyZkMxK9cUc9qlczj7qnmcfdU8tmSXcslNC6okWg1h6apiOrSJo216DDF+GDeiJdPmVO3emDY3n0PHtAKgT/cECouCVZKQcaNa8s2Mqq2D289YBRg9JJm1mxp2EFckjhmEzlw+/fj23PLAckpKG37g5/K1pbTPiKVNaz9+P+w3NIkZC6oOOZi5oIgDR4TGgfbqGkdhUbCi+7VVcuijJD3Vz+hBSXz/045jPbhXAuu3lJHdwGeD12T1piBtUn2ktTL8PhjRJ4Z5K2r33thW6MjdFqRtauj3ZJ8ufjZme3eSzNJVxXRoG0vb9Fhi/HDgqJb8OKfq++XHOfkcum/4PdYjgYKiADlbA+RuDZCZU0andqH305C+SRUno/wwextD+obGj3ZsG0us3zyZpWC7dl0Hk5u5krysNQTKS1k660P2GXRYlTLbctbz4TNX8Kvf30vrtj122seSmR/Sd8SxDRXyLi1eXu3zY780vq/h8+PIyp8fhQGyc8t2/vwY1IrV64urP4XIL9aczjIeDNxnZkGgDLgEeGMXZW8FnjWzOUAhcG6ldT8A238OfwPcRSgxrHfBIDz63Gruur43Pp/x6deZrFpXzHGHh37FfjAxkx9/2srYYSn891+DKCkNcv+TKwFIS43lL3/sjs8HZqEpCH6YlbebZ2tYwSA89fpm/n5ZJ3wGE6duZc3GUn41LvSL9tNv85gxv5CRA5N5/O/dKClzPPLijnFBobFoSTzxStUziM8+IYNObWMJulBrXUOeYby9XpE4Zpef24XYWB/3/LU3EBpM/tAzqxu0Xs+9m81fL2yLzxdq8Vu7qYwj9g21wH4xNZ9Zi4oZ1i+RB6/vQEmp48n/7ejWvvqcDFok+QkEHM++k01B0Y6kdr9G0l0MoS63NycVc8mJSaFpZxaUsTE7yAGDQ4nRd3PLaJlk/PmMJBLijCBwyLA4/vliASWl8OakEs4+OpEYP2TmBXn5c+++kINBmPDqZm69ojM+H0z8Po81G0o5+sDQe+yTb/KYMa+AUYOSeeL2HqGpnZ7fMTXVU69t5przOhLjNzZmlvLwC6FWuC++z+OKszvw8M3dKS93PPi8t9ME+fwxHHLKLbz7xIUEgwEGjj2F9A69mfvdKwAMPuBMfvj0PxQX5PLV/24Lb+PnjGtDo4XKSotYs/h7Djvtds/qsF0wCI88t5q7/9oHnw8+mZTFqrXFHHdEGwA++GILP8zKY8ywFJ5/cBAlJaFpqwDSWsdy/SU9Kj4/vp6aXfH5ccCoVC7/Q1dSWsVw5196s3xlITfcvdSrakoTZQ19lmYz5o783QyvY6h3n780kpMub54fLG8/2pvmeszO/EvDJZMN5ZV7u/Knh7btuWAT9NCfWnLCJYu9DqPevft4X/7zsddR1L/LjoEjzpzudRgR8cUro7wOIVJqd/ZYFGs2XcYiIiIi8ssoIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopw557yOQerIzMY75yZ4HUd9a671guZbt+ZaL2i+dVO9mp7mWrfmWq+mSi2ETdN4rwOIkOZaL2i+dWuu9YLmWzfVq+lprnVrrvVqkpQQioiIiEQ5JYQiIiIiUU4JYdPUXMdcNNd6QfOtW3OtFzTfuqleTU9zrVtzrVeTpJNKRERERKKcWghFREREopwSQhEREZEop4RQREREJMopIRSROjOzRDPr63Uc9a251kuaHjPzm1lHM+u6/eZ1TPXBzA4zsySv45Cd6aSSJsLM+gCPA+2cc4PMbAjwG+fcPzwOba+EPxiuBbo65y4ys95AX+fcBx6H9ouY2YjdrXfOzWyoWCLFzI4H7gfinHM9zGwYcLtz7jfeRrZ3mmu9AMzsc+C3zrnc8OPWwKvOuV95GtheMrM2wEVAdyBm+3Ln3PlexVQfzOwK4O/AJiAYXuycc0O8i6p+mNnzwL5AFvBN+Patcy7H08BECWFTYWZfA9cBTzrnhoeXzXPODfI2sr1jZq8BM4BzwoluIjDFOTfM28h+GTP7Knw3ARgFzAYMGAL84Jwb51Vs9cXMZgCHAZMqvRbnNPUvq+ZaLwAzm7W9Trtb1tSY2feEEooZQGD7cufcm54FVQ/MbBkw1jmX5XUskWJmHYFTgT8DHZ1zMXvYRCJMB6DpSHLO/WhmlZeVexVMPerpnDvdzM4EcM4VWbVKNiXOuUMBzOxVYLxzbm748SBCH3zNQblzLq8JH6Zdaa71AgiaWVfn3GoAM+sONIfWgCTn3PVeBxEBa4A8r4OIBDP7PXAgMBjIBB4llNSLx5QQNh2ZZtaT8Ie4mZ0KbPA2pHpRGm4V3F6vnkCJtyHVi37bk0EA59y8cBdkczDPzM4C/OEu/iuB7z2OqT4013oB3AR8G+5pADiI5nEd2Q/M7NfOuY+8DqSerQAmmdmHVPo8dM79y7uQ6s2DwHLgCeAr59xKT6ORCuoybiLMbB9Cs7rvD+QAPwO/b+pvJjM7EvgbMAD4DDgA+INzbpKXce0tM3sFKABeJJTs/h5o4Zw709PA6kF43OdNwFGEusM/Be5wzhV7Gtheaq712s7M2hJKAn8iNKRhs3NusqdB7SUz2wYkE0qayggdN+eca+VpYHvJzP5e03Ln3G0NHUskmNlAQj9KxgG9gcXOubO9jUqUEDYxZpYM+Jxz27yOpb6YWTqhQcYGTHXOZXoc0l4zswTgEkIfegCTgcebS3IhTYuZXQj8CehMKCHcl9BY3cO8jEuij5m1IvTD/2BCXccZhD73z/U0MFFC2FSY2T+Be6udJXitc+5vngZWD8JnTHen6lmCb3kWUD0Jd4V3dc4t9jqW+mBm77ObcWdN9Wzc5lqvysxsLjCa0BfvMDPrB9zmnDvd49B+ETPr55xbtKuz+pv62fzhk9N2ek02hwTezOYA34Zvk51zaz0OScI0hrDpOMY5d+P2B865HDP7NaHu1ibLzJ4hdAbufCpNrwA06YTQzH4D3AfEAc1lCpP7w39PBtoT6g4HOBNY6UVA9aS51quyYudcsZlhZvHhZKopz7d4DaHu7wdqWOcInS3elFU+AS0BOIXmcRIh28/aN7OWNI8Tm5oNtRA2EeFfVaOdcyXhx4nAdOfcQG8j2ztmtsA5N8DrOOpbM5/CZLJz7qA9LWtqmmu9AMzsbeA84CpCr8scINY592sv45LaM7OvnXMHex3H3grPuPACkEZomNAW4Fzn3DxPAxO1EDYhLwITzexZQr+qzgf+621I9WKKmQ1wzi3wOpB61pynMGljZvs451YAmFkPoI3HMdWH5lovnHMnhe/eGu6OTAE+8TCkehNOMAYQakkDwDn3vHcR7T0zS6v00EdoTtP2HoVT3yYA1zjnvgIws0PYccKkeEgJYRPhnLs3PA7ocEK/qu5wzn3qcVj14b+EksKNhM4U3H6WYFNvSWvOU5hcTWhKjBXhx92Bi70Lp94013pV4Zz7es+lmobw2biHEEoIPwKOITQ2rUknhIQm2naEPg/LCA1duMDLgOpR8vZkEMA5Nyl8sqR4TF3G4qnwjPzXAHPZMYYQ59wqz4KqB9WmMIHQFCb/aC5nGZtZPNAv/HDR9qEMTV1zrVdzFf6RPBSY5ZwbambtgKedc8d7HNpeMbPTgE+cc1vN7GZgBKFGgCZ9sgxUDF+YSajbGEJTco1yzp3oWVACKCFsMszsZOAeoC2hX43NZb6tL5vDmXO7YmbJzrkCr+OoD2Z2mHPuy/BrcSdN9czw5lqvaGBm05xzo8Njdg8FtgHzmsHY6jnOuSFmNg74J6GTZ250zo31OLS9Fp4h4zZCcxAaoSm5btW1jL2nLuOm417geOfcQq8DqWeLzOxl4H2qzsjfpL+EzWx/4GmgBdDVzIYCFzvnLvU2sr1yMPAlUFPrS1M+M7y51qtZC1/ico6ZpQJPEepmzQd+9DKuerL9uszHAk845941s1s9jKfehBO/K72OQ3amFsImwsy+c84d4HUc9S18kkx1zjl3foMHU4/M7AdCF25/r9JZxvOcc4O8jUyk+TCzGc65keH73YFWzrk53ka198zsA2AdcAQwEigCfnTODfU0sHpgZn0ITavTnapzzzbbnqKmQi2ETcd0M3sNeIdm1JLmnDvP6xgixTm3ptpZxoFdlW1KzOxPwLOEuueeIjS+6Qbn3GeeBraXmmu9mrmpZjbaOTetqV/Gs5rTgKOB+51zuWbWAbjO45jqy/8IXcf4aZrJZ2JzoYSw6WgFFLLjJAVoBt1ZlabRqaKptxACa8Ldxs7M4gh1kTSX7v7znXMPmdmvCI1pPY9QItXUE6fmWq/m7FDgYjNbReja4c1ilgLnXCGVPtudcxuADd5FVK/KnXOPex2E7EwJYRPRjFvSPqh0PwE4CVjvUSz16Y/AQ0AnQl0/nwKXeRpR/dne7Plr4Fnn3GxrHhMuNtd6NWfHeB2A1Nn7ZnYp8DZVe7uyvQtJQGMImwwzSyA0D9VAqk7A2tRb0qowMx/whcaTNF7hVt1OQA9CU374CV2RZaSnge2l5lovkcbEzH6u9LAiAXHO7eNBOFKJz+sApNZeIDRT/a+Ar4HOhMY6NTe9ga5eB7G3zGwfM3vfzLaY2WYze9fMmssH3gXADYQupVhI6HrNzaEFu7nWS6QxuR4Y6pzrQWhIxmxCJ+CJx5QQNh29nHM3AwXOuf8Smo5gsMcx7TUz22ZmW7ffCE0/c73XcdWDl4HXgQ5AR0IDqV/xNKJ64pwLApuAAWZ2EKFW61RPg6ofnzvnZjrncgGcc1nAv70NSaTZ+Vt4wu1xwJHAc4DGFDYCGkPYdJSF/+aGr925kdBp+02ac66l1zFEiDnnXqj0+EUzu9yzaOqRmd0DnA4sYMdZgo7QBLNNTng4RhKQEZ40d/u4wVaEknkRqT/Ndo7Fpk4JYdMxIfxl9TfgPUITHt/sbUh7z8wOAH5yzhWY2e8JTfXxUFO/dB3wlZndALxKKFk6Hfhw+0Xrm/gA6hOBvs3osm4XA1cRSv4qXxpsK/AfLwISacbWmdmThOZYvCd8uUj1VjYCOqmkiTCzHs65n/e0rKkxszmEBvAPITRO8v+Ak51zB3sa2F7axcDp7S1PrikPoDazj4HfOufyvY6lPpnZFc65R7yOQ6Q5C1/n/WhgrnNuaXiOxcGa79N7SgibCDOb6ZwbUW3ZjKZ+BuT2epnZLcA659z/1VTXpqaZX5z+TUJJ/ESqThvRpC9HZWbn1LTcOfd8Q8ciItLQ1GXcyJlZP0KD9lPM7ORKq1pRafqZJmybmf0V+D1wkJn5gViPY6oPf3POvV5p4PQDhAZON/mL0xMasvCe10FEwOhK9xOAwwl1ISshFJFmTwlh49cXOI7QWZzHV1q+DbjIi4Dq2enAWcAFzrmNZtYVuM/jmOpDsx04HT7Lvdlxzl1R+bGZpRAaxiAi0uypy7iJMLP9nHNTvI5Daqc5XpzezF53zp1mZnOp+XKDTfpyYdWZWSwwxznX3+tYREQiTS2ETcdJZjafUGLxCaExXFc55170Nqy9E+4Gv4fQtWONHdcibeVpYHuvOV6c/k/hv8d5GkWEmNn77Eh0/UB/QnNJiog0e2ohbCLM7Cfn3DAzO4nQtB9XA1815RYnADNbBhzvnFvodSxSP8xsinNuP6/jqCszq3xmezmwyjm31qt4REQakub+aTq2n2jxa+CVJj6PXWWblAw2O03yZCfn3NfAIqAl0Boo9TYiEZGGoy7jpuN9M1tEqMv4UjNrAxR7HFN9mG5mrwHvUHUKk7c8i0j2VpPsdghPFXQfMInQ0IVHzOw659wbngYmItIA1GXchISvVLLVORcIT+7Zyjm30eu49oaZPVvDYuecO7/Bg5F60VTnkTSz2cCRzrnN4cdtgC+a+rAMEZHaUAthI2dmhznnvqw8B6GZVS7SpFvSnHPneR2D1Dvbc5FGybc9GQzLQsNqRCRKKCFs/A4CviQ0B6EjfBZupb9NOiE0s87AI8ABhOrzLfAnDeZv3MysPTCG0DGbVq2l+mxvotprn5jZp8Ar4cenAx95GI+ISINRl3EjZ2bXsnMiSPg+zrl/eRRavTCzz4GX2TEB8O+B3znnjvQuKtkdM7sQuIXQDxUDDgZud84942lg9SDcEj+OUL0mO+fe9jgkEZEGoYSwkTOzv4fv9iV0aa13CX1ZHU/oC+tCr2KrD9un09nTMmk8zGwxsL9zLiv8OB343jnX19vIIqupTqcjIlIb6jJu5JxztwGY2WfACOfctvDjW4H/eRhafck0s9+zo5vuTEJjt6TxWkvo0onbbQPWeBRLQ2qS0+mIiNSGEsKmoytV50UrBbp7E0q9Oh94FPg3oW7w7wGdaNK4rQN+MLN3CR2zE4AfzewaaPrDGHZD3Ski0mwpIWw6XiD0pfs2oS+mk4D/ehtSvbgDONc5lwNgZmnA/YQSRWmclodv270b/tvSg1hERKQeaAxhE2JmI4ADww8nO+dmeRlPfTCzWc654XtaJuI1vS5FpDlTC2ET4pybCcz0Oo565jOz1tVaCPW6bMTMbBRwE9CNSsfKOTfEs6DqSTOdTkdEZI/0xSteewD43szeIPQlfBpwp7chyR68BFwHzAWCHsdSb2qYTucRM6uYTsc5N8/L+EREIkldxuI5MxsAHEboS3iic26BxyHJbpjZt865cV7HUd+idTodERFQC6E0AuEEUElg0/F3M3samAiUbF/onGvSV80heqfTERFRQigidXYe0A+IZUeXcZO/jCLRO52OiIgSQhGps6HOucFeBxEBmk5HRKKWxhCKSJ2Y2VPAvzXWU0Sk+VBCKCJ1YmYLgZ7Az4TGEBrgmvq0M815Oh0RkT1RQigidWJm3Wpa7pxb1dCx1KfwWcY7TafT1OslIlIbGkMoInXinFtlZuOA3s65Z82sDdDC67jqwRbn3HteByEi4gW1EIpInZjZ34FRQF/nXB8z6wj8zzl3gMeh7RUzOxw4k+Y3nY6IyB6phVBE6uokYDjhyyg659abWXM4E7e5TqcjIrJHSghFpK5KnXPOzByAmSV7HVA9aa7T6YiI7JHP6wBEpMl53cyeBFLN7CLgC+Apj2OqD1PDl1EUEYk6aiEUkbpqA7wBbAX6ArcAR3gaUf0YB5xrZs1qOh0RkdrQSSUiUidmNtM5N6LasjlNPXFqrtPpiIjUhrqMRaRWzOwSM5sL9DWzOZVuPwNzvI5vb4UTvy7AYeH7hegzUkSihFoIRaRWzCwFaA3cBdxQadU251y2N1HVn+Y6nY6ISG0oIRQRAczsJ8LT6TjnhoeXNfmucBGR2lB3iIhISKkL/UJubtPpiIjskRJCEZGQ5jqdjojIHmnaGRGRkOY6nY6IyB5pDKGICM13Oh0RkdpQC6GIRDUzuwS4FNjHzCpPn9MS+M6bqEREGpZaCEUkqjX36XRERGpDCaGIiIhIlNNZxiIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUe7/AfUcZaoRF3dyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corr = df.corr().abs() #matriz correlaciones\n", + "\n", + "mask = np.triu(np.ones_like(corr, dtype=bool)) #Enmascaramos la diagonal superior\n", + "\n", + "f, ax = plt.subplots(figsize=(11, 9)) #Tamaño\n", + "\n", + "sns.heatmap(corr, mask=mask, cmap='coolwarm',annot=True, vmax=1, vmin=0,\n", + " square=True, linewidths=.5, cbar_kws={\"shrink\": .5})" + ] + }, + { + "cell_type": "markdown", + "id": "2337cafd", + "metadata": {}, + "source": [ + "##### Queremos mirar el consumo, lo que tienes mas peso según nuestra matriz es:\n", + "- TEMP_OUTSIDE\n", + "- RAIN\n", + "- SPEED" + ] + }, + { + "cell_type": "markdown", + "id": "4939ef28", + "metadata": {}, + "source": [ + "#### TEMP_OUTSIDE" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "id": "46473ac6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 182, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeiElEQVR4nO3deZgU1dXH8e9hWAYFIggqMuAgagwKSETUuCGC4hI33EjALcgbE2PcAzFRI3EJqNHEJeIaXIkoBhVRFBA0bqCIIhBREBFBwKiAsp/3j6qBnqF7pnumq7un5vd5nn5mar2nblefuXOr6ra5OyIiEj/18h2AiIhEQwleRCSmlOBFRGJKCV5EJKaU4EVEYqp+vgNI1LJlSy8tLc13GCIitcb06dOXu3urZMsKKsGXlpYybdq0fIchIlJrmNmnqZapi0ZEJKaU4EVEYkoJXkQkppTgRURiSgleRCSmlOBFRGJKCV5EJKaU4EVEYqqgHnSqja644gqWLFnCTjvtxLBhw/IdTl6pLkQKixJ8DS1ZsoTPP/8832EUBNXFFvpjJ4VACV7qlFwlXv2xk0IQ2wSvFpQko8QrdUlsE7w+yCJS1+kuGhGRmFKCFxGJKSV4EZGYUoIXEYkpJXgRkZhSghcRiSkleBGRmKoV98Hve/nIjLdpunwlRcDC5Ssz2n768DMzLktEpBDVigSfSwuv7ZTR+hu+agHUZ8NXn2a8bbur3s9ofRGRTKiLRkQkppTgRURiSgleRCSm1AcvKel6hEjtpha8iEhMqQUvkgb9NyO1kVrwIiIxFdsW/KaG25b7KSJS10Sa4M1sAbAS2AhscPduUZaXaPXuR+aqKMmTXD7hPKZpxkWJ5F0uWvCHu/vyHJQjIiIJYttFI1voC8hF6qaoE7wDL5qZA3e7+4iKK5jZIGAQQLt27SIOJ/taFm8CNoQ/C5O+gFykboo6wR/k7ovNbAdggpnNcfcpiSuESX8EQLdu3TzieLLuss5f5zsEkWrRf3bxF2mCd/fF4c8vzWwM0B2YUvlWIpIL+s8u/iK7D97MtjWzpmW/A0cCH0RVnoiIlBdlC35HYIyZlZXzqLuPj7A8ERFJEFmCd/dPgC5R7V9ERCqn2yRrmUJ+uKc23FEkUpcowUvW6I4iSUZ36+SPEryIREp36+SPErxIBNRdJYVACV4kAuqukkKgBC91ioaRlmTiep1ACV7qFA0jLcnE9TqBEnwdoFarSN2kBF8HqNUqUjcpwYvEQC4fgJs+/MyMy5L8UIIXkYwsvLZTRutv+KoFUJ8NX32a8bbtrno/o/WlvMhGkxQRkfxSC15EJEdyfTumEryIxEohX4/I9e2Y6qIREYkpJXgRkZhSghcRiSn1wYtIpDSyZv4owYtIpDSyZv4owYuIVFOhP/SlPngRkZhSC15E6ry4jriqBC9SR8U1qVVHXEdcVYIXqaPimtRkC/XBi4jElFrwIiI5kutnApTgRURyJNfPBETeRWNmRWb2rpk9G3VZIiKyRS764H8LzM5BOSIikiDSBG9mJcCxwL1RliMiIluLugV/K3AFoFGGRERyLLIEb2bHAV+6+/Qq1htkZtPMbNqyZcuiCkdEpM6JsgV/EHC8mS0AHgd6mtnDFVdy9xHu3s3du7Vq1SrCcERE6pbIEry7D3H3EncvBc4AJrp7/6jKExGR8vQkq4hITOXkQSd3nwxMzkVZIiISUAteRCSmlOBFRGJKCV5EJKaU4EVEYkoJXkQkppTgRURiSgleRCSmlOBFRGJKCV5EJKaU4EVEYkoJXkQkppTgRURiSgleRCSm0krwZraNmf3RzO4Jp3cPv7FJREQKVLot+AeAtcCB4fQi4M+RRCQiIlmRboLv4O7DgPUA7v49YJFFJSIiNZZugl9nZo0BBzCzDgQtehERKVDpfqPT1cB4oK2ZPULwhdpnRxWUiIjUXFoJ3t0nmNk7wAEEXTO/dfflkUYmIiI1ksltkm2AIqAhcKiZnRxNSCIikg1pteDN7H6gMzAL2BTOduCpiOISEZEaSrcP/gB37xhpJCIiklXpdtG8bmZK8CIitUi6Lfh/EiT5JQS3Rxrg7t45sshERKRG0k3w9wMDgPfZ0gcvIiIFLN0Ev9Ddx0YaiYiIZFW6CX6OmT0KPEPCE6zurrtoREQKVLoJvjFBYj8yYZ5ukxQRKWDpPsl6TqY7NrNiYArQKCxntLtfnel+RESketJ90OkBwoHGErn7uZVsthbo6e6rzKwB8KqZPe/ub1QvVBERyUS6XTTPJvxeDJwELK5sA3d3YFU42SB8bfVHQkREopFuF82TidNm9hjwUlXbmVkRMB3YDbjD3d9Mss4gYBBAu3bt0glHRETSUN3vZN0dqDIbu/tGd98HKAG6m9neSdYZ4e7d3L1bq1atqhmOiIhUlG4f/ErKd68sAX6XbiHu/rWZTQb6AB9kEqCIiFRPul00TTPdsZm1AtaHyb0x0Av4S6b7ERGR6kmri8bMDjKzbcPf+5vZLWa2SxWbtQYmmdlM4G1ggrs/W8U2IiKSJeneRXMX0MXMugBXAPcBI4HDUm3g7jOBrjWOUEREqiXdi6wbwtseTwBuc/fbgIy7bUREJHfSbcGvNLMhQH+Cr+srIrivXUREClS6LfjTCZ5M/YW7LyH4ftbhkUUlIiI1lu5dNEuAWxKmFxL0wYuISIFK9y6ak83sIzP7xsy+NbOVZvZt1MGJiEj1pdsHPwz4qbvPjjIYERHJnnT74JcquYuI1C7ptuCnmdko4Gn0jU4iIrVCugm+GfAd+kYnEZFaI7JvdBIRkfxK9y6aEjMbY2ZfmtlSM3vSzEqiDk5ERKov3YusDwBjgZ0JHnJ6JpwnIiIFKt0E38rdH3D3DeHrQUDfziEiUsDSTfDLw2GCi8JXf2BFlIGJiEjNpJvgzwVOI/gmpy+AUwBdeBURKWDp3iY5FDjL3f8HYGYtgJsIEr+IiBSgdFvwncuSO4C7f4W+zENEpKClm+DrmVnzsomwBZ9u619ERPIg3SR9M/AfMxtN8ATracB1kUUlIiI1lu6TrCPNbBrQEzDgZHf/MNLIRESkRtLuZgkTupK6iEgtkW4fvIiI1DJK8CIiMaUELyISU0rwIiIxpQQvIhJTSvAiIjEVWYI3s7ZmNsnMZpvZLDP7bVRliYjI1qIcbmADcKm7v2NmTYHpZjZBD0iJiORGZC14d//C3d8Jf18JzCb4NigREcmBnPTBm1kpweiTb+aiPBERyUGCN7MmwJPARe7+bZLlg8xsmplNW7ZsWdThiIjUGZEmeDNrQJDcH3H3p5Kt4+4j3L2bu3dr1Upf8yoiki1R3kVjwH3AbHe/JapyREQkuShb8AcBA4CeZjYjfB0TYXkiIpIgstsk3f1VgrHjRUQkD/Qkq4hITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jEVGTDBWfL+vXrubBHe0q2K8ZyMPjwN3Zr9IWEZs+evdW84uJiSkpKaNCgQc7iEJF4KvgEv2jRIjp3aEPDbZpiOcjwHYqWRl5GmUY7/6jctLuzYsUKFi1aRPv27XMWh4jEU8F30axZsyZnyT3fzIztt9+eNWvW5DsUEYmBgk/wQJ1I7mXq0rGKSLRqRYIXEZHMKcGn8N4Hcxj/8pR8hyEiUm1K8Cm8N2sO4ydOzXcYIiLVVvB30aTjrttu5rmnR7NT6zZs16IFe3XqQpOmzXji0ZGsX7+edqWl3HjrnTRuvA0vPPtv7rz1JuoVFdG0aVNGjn5mq/2tW7eea2+6nTVr1vKft97h8gsGcs2wvzN57MO02r4FmzZtYu9DjmXKM48y+NqbKG7UkA//+zFfLlvBsKsv55jePdi4cSN/uP6vTHn9bdauW8f/ndWP8waclofaEZG6qtYn+A/em8GE559h9PMT2bhhI6cc05O9OnWh99HHcurPBgBw2/DreerxR/j5Oedx1203M+Lhf7HjTq359ptvku6zYcMGXHXZBbwzcxa3XnclAHM/ns/jTz3Hb84bwMtTX6dzxx/SskVzAD5dtJiXnnyQTxZ8xlGnnkvPQw7k4dFjada0Ka+NG8Xates4/MT+9DrsJ7RvV5KbihGROq/Wd9G88/Yb9Ox9NMXFjdm2SRN69DoKgI/mzmZA3+M4sfehPPf0k8z771wAunbrzpWX/IYnHn2ITZs2pl3OWaefxCOjxwIw8vExnHnaiZuX9f3pUdSrV4/ddt2F0l1KmDtvPi+/8h8eGT2W7r37cshx/Vjxv2+YN//T7B24iEgVan0L3lPMv/LSC/nbPf9kz457M+aJx3j79dcAuPqGm5j57nRemTiBvn0O58nxk9iueYsqy2nbpjU7tNqeSa++yVvvvs+Dt/9l87KKtzaageP89c+/p3ePg6p9bCIiNVHrW/A/3m9/Jr/8AmvXrGH16lVMmTgBgNWrVtFqhx1Zv349z415cvP6CxfMp3PXffnNpYPZrkULvlj8edL9Nm2yLStXrS4375x+fTn3wsGc8tOjKCoq2jz/qWdfZNOmTXy8YCELPl3EHh3a0+uwgxgxchTr168H4KOPF7D6u++yffgiIinV+hZ8py5dObxXH07u04Od27Rlr8770KRpM35z2WD6ndCHnduUsPueP2L1qlUA3Hz9n/h0/ie4OwccdAh7dtw76X4P+0l3brrjXrr37svlFwzk1BOO5rgjezDokj9w5uknllt3j11L6dX3bL5ctoK/3/hHiosbce7P+vLpZ59zQJ/TcHdatmjOE/f/LerqEBHZrNYneICz/+9X/PqSK/j+++8465TjOfu88+nYqQtnDDhnq3VvG/FgWvts0fwHvDZuVLl5Mz+cS6eOP+SHu+1abv6B+3Vl+J9+V25evXr1GDrkIoYOuSijYxERyZbIEryZ3Q8cB3zp7smbyVlyzeBL+fijuaxbu5YT+p5Ox05dsl7G8NvvZcTIUeX63kVEClmULfgHgduBkRGWAcDwv99d7W1ffWUit9xw7ebpRmygtF0b/nVf+e6Uyy8YyOUXDNxq+3tvva7aZYuIRCmyBO/uU8ysNKr9Z8vBh/Xk4MN6bp7O5XDBIiJRyvtdNGY2yMymmdm0ZcuW5TscEZHYyHuCd/cR7t7N3bu1atUq3+GIiMRG3hO8iIhEQwleRCSmorxN8jGgB9DSzBYBV7v7fTXd74C/javpLsp56MJjqlxnm7ad2XvP3TdPn3rC0Vx+wUDueuBR/n7vQ3yy4DMWvT918+Bj7s6lV93A+IlT2aZxMff89Tq6duqY1bhFRKoS5V00/aLad641Lm7EWxOe3Gr+gft15eheh3HkKeUfqHph4lTmzV/IrFfH8dY7M7lwyFCmPvtYrsIVEQFi8iRrvuyz94+Szn/mhUn8/JTjMTP237cLX3+zki+WLqP1jrqILCK5owSfhu/XrKV7776bp8vGpkll8ZKllOy80+bpNq13ZPGSpUrwIpJTSvBpSNVFk4r71oMYVxxSWEQkarqLJgJtWu/EosVLNk9//sVSWu+4Qx4jEpG6SAk+Ascd2YNHRo/F3Xlz+nv8oFkTdc+ISM7Vui6adG5rzLaKffBHHn4wf/79xdxx38PccucDLFm2nP16ncxRPQ/hHzddS58jDmX8xKl0POhotmncmBG3DM15zCIitS7B58N3n81MOv/Xv+jPr3/Rf6v5ZsZt1/8h6rBERCqlLhoRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYUoIXEYmpWnebZJMHDs/q/ladM6nKdW687W5GPT2OoqJ61LN63P6Xq7ny+ltYsnQ5xY0asu222zDi5qHssVt7Jr36JkOG3sS69evp2qkjd998LfXr1+ebb1dyzm8G89nnX7Bh40Yu+uXZDLp4r6wei4hIIrXgq/DGtBk8/9IU3hj/BNNeGsO4UfduHkjswdtv5O2XnqL/qScw5M83s2nTJgZe9HseunM470x8mnYlO/PQE/8G4B8PPsaP9ujA2y89xYujH2DwtcNZt25dPg9NRGJOCb4KS75cxvYttqNRo4YAtGzRnJ13Kj+uzCEH7MvHCxay4n9f06hRQ3bvUArAEYceyNPjXgKCh59WrlqNu7Nq9Xc03+4H1K9f6/6BEpFaRAm+Cr0OO4hFi5ew98HHcuGQoUx5/e2t1nluwmT23nN3WrZozvr1G5j+3gcAjHnuxc2Djp1/zs+Y89EntP/x4XQ74iRu/tNg6tVT9YtIdNSErEKTbbfh9fH/4tU3p/PKf95iwPmXMXTIxQCcfcFgGhc3Ype2bbhl6BDMjIfuHM7l1wxj3bp1HHHoT6hfVATAhMmv0WWvPXnhifv5ZMFnHNPvPHqe2J9mzZrl8/BEJMaU4NNQVFTEYT/pzmE/6c7ee+7Bw2G/+oO338i+XfYut+4B3fZh4piRAEx45TXmffIpACNHjeGyCwZiZnRo347Stm2YM2cO3bt3z+3BiEidoT6CKvx33vzNSRrgvVlzaFeyc8r1v1y+AoC1a9dx8x33M3DAaQC0bdOaSa++AcDSZcv56JMF7LrrrhFGLiJ1Xa1rwadzW2NWy/vuOy75w/V8/e1K6tcvokNpO+4Ydg39Bl2cdP2/3vUA4156hU2bnEFnns7hB+8PwJCLfsl5F1/JvkechLvz599fTMuWLXN5KCJSx9S6BJ9rP+68F5PHPrLV/AmjH0y6/g1/vIwb/njZVvN33mkHnnvsnmyHJyKSkrpoRERiSgleRCSmakWCd/d8h5AzdelYRSRaBZ/gi4uLWffdyjqR+NydFStWUFxcnO9QRCQGCv4ia0lJCVNefIOS7Yoxi768jfZt9IWE6n+z9d/X4uJiSkpKchaDiMRXwSf4Bg0a8LfJ83NW3pimw3NWVrur3s9ZWSJS90TaRWNmfcxsrpnNM7PBUZYlIiLlRZbgzawIuAM4GugI9DOzjlGVJyIi5UXZgu8OzHP3T9x9HfA4cEKE5YmISAKL6u4UMzsF6OPuA8PpAcD+7n5BhfUGAYPCyR8CcyMJKH0tgeV5jqFQqC62UF1sobrYohDqYhd3b5VsQZQXWZPd87LVXxN3HwGMiDCOjJjZNHfvlu84CoHqYgvVxRaqiy0KvS6i7KJZBLRNmC4BFkdYnoiIJIgywb8N7G5m7c2sIXAGMDbC8kREJEFkXTTuvsHMLgBeAIqA+919VlTlZVHBdBcVANXFFqqLLVQXWxR0XUR2kVVERPKr4MeiERGR6lGCFxGJKSV4EZGYKtgEb2aNzeyVcMiDisvONrNlZjYjfA1MsY99zez9cCycv5kF41GaWSMzGxXOf9PMShO2GW9mX5vZsxnEepqZfWhms8zs0QxjudjMFprZ7emWl2Tf5erKzNqZ2YtmNjuMqzTJNinroJJyTjezmeFxDqtkvSHhfuea2VEJ8yeZ2Sozy+p9w0mO/y9m9kH4Oj3FNtU5/uvM7DMzW1Vh/iVhPc80s5fNbJcU20dyDiQ5/qTnsJk9Er4nH5jZ/WbWIMX+zjKzj8LXWWmUf6iZvWNmG8IHHMvmH57wGZ1hZmvM7MQk2yd9L8ysQ7jdqorbZKEupibEtdjMns5SXfwyfI9nmNmrljA8S6pYKmyftboAgjHIC/EF/Br4bYplZwO3p7GPt4ADCR66eh44Opz/K+Af4e9nAKMStjkC+CnwbJpx7g68CzQPp3fIJJZMjifdugImA73D35sA2yTZJmUdpChje2Ah0Cqc/idwRJL1OgLvAY2A9sDHQFGF2LpFda4AxwITCO4Q2xaYBjSr6fGH6x0AtAZWVZh/eFkdA+en2ldU50CS9z/pOQwcE5ZtwGPA+Un21QL4JPzZPPy9eRXllwKdgZHAKSnWaQF8VZ1zsWJ9Z6MuKmzzJHBmluqiWcLvxwPjM4wla3Xh7oXbggd+Dvy7uhubWWuCyn7dg5oZCZwYLj6BIEEBjAaOKGtNufvLwMoMijoPuMPd/xdu/2WGsWTD5roKWwz13X1CGM8qd/8uyTYp6yCFXYH/uvuycPoloG+K/T7u7mvdfT4wj2BcoiglnisdgVfcfYO7ryb4Y9MnRZyZHD/u/oa7f5Fk/qSEOn6D4KG+ciI+B8p9VlKdw+4+zkMEf2ySffHAUcAEd/8qPKcnkLz+Eve7wN1nApsqWe0U4PksnYuVSasuyphZU6An8HSSxdWpi8QvlNiWhKf308wt2ayLwkzwFjwYtau7L6hktb7hv8SjzaxtkuVtCJ6mLbMonFe27DMI7tcHviFooVbHHsAeZvaamb1hZslOgMpiqZEkdbUH8LWZPWVm75rZcEvSzUXmdTAP2NPMSs2sPkFySlXvnyVMZ+1Yk0ly/O8BR5vZNmbWkqB1XWmcWTgHEv2CoHWerLysnwNpflYqbtMAGACMT7I4qvfvDIL/GpLJyntRnboATgJerpCYt4orlFZdmNmvzexjYBhwYQaxlCszG+dlQSZ4ggF8vq5k+TNAqbt3JmhJ/jPJOpWNhZPWODlpqk/QTdMD6Afca2bbZRBLTVWsq/rAIcBlwH4ELe+zk2yXUUxhC+Z8YBQwFVgAbKjpfrOg3PG7+4vAOOA/BAnldXIUp5n1B7oByb41Jqp6qeqzksydwBR3n5pkWRT10hroRPDQY9JVslRmdeqiH6n/8FQrLne/w907AL8D/pBhPFmt/0JN8N8Dm7+YNLy4NcPMZgC4+wp3XxsuvgfYN8k+FlH+X9DEsXA2j5MTtkZ/QNA/WB2LgH+7+/qwS2IuQcJPN5aaKldXYVnvejBM8waCfz1/nCLujOrA3Z9x9/3d/UCC4/yosv2Goh6DqOLx4+7Xufs+7t6b4ANTaZxZOAcws17AlcDxCedmxfKiOAe2Ov7KmNnVQCvgkhSrRPH+nQaMcff1VZVZw/ci07rYnqD78Lmq4gplWhePk3k3XFbPy4JM8GFrscjMisPpK8MP7D6wuUVQ5nhgdpJ9fAGsNLMDwj6sM9nSNzcWKLsifgowMeyXTMnMbjCzk5IsepqgG4CwS2APgosx6cZSIxXrimAMoOZmVjZ8aE/gwySbpqwDM5uTrCwz2yH82ZzgYtC9KfZ7Rng3QHuCP3ZvZXxgaap4/GZWFH5wMbPOBBf/XkwRZ0bHn4qZdQXuJkjuW12DCeOM5BxI8v5XFudAgn7lfu6eqr/8BeBIM2sevs9HhvMq+wxUpbJWMlTj85hMJnUROpXggueaFMszrgszS2zcHUvyxkVlslIXm2VyRTaXL+A+oFeKZTcAswj6WycBeyYsm5HwezfgA4I7OW5ny9AMxcATBP3KbxH025VtMxVYRtAaWAQcFc5/FjgwSSwG3EKQRN8HzsgklnDZ2dTsLppydQX0BmaG8TwINAznX0uQhFLWAcG/uXNTlPNYeJwfVjjO44FrE6avDI9zLgl3ioTLJpP9u2g2H394XGUxvgHsk7BeTY9/WHhObAp/XhPOfwlYCswIX2NzeQ4kef9TncMbwrLL4rwqIa57E7Y/N6yXecA5CfNTfQb2C8tZDawAZiUsKwU+B+pV2KbK9yJh3UzuokmrLhLOxT4Vtq9pXdxGkJtmEOSmvdJ4XyKpC3cv6ATfFXgo33EkxPNChPuu9oc723UFHAdcGOGxTib7Cb7WHH8U50CuPitRfgaqKDeTBK+6SHhF+YUfNeLu71rwYEyRu28sgHiOqnqtzJnZxcAvCe7FrZZs1pW7p/2AV6bMbBLBRd9UfbHVUluOP5WangO5+qxE9RlIxcw6ENTJ0nS3UV1U2C78qyAiIjFTkBdZRUSk5pTgRURiSgleRCSmlOClVjOz7czsV3kot0eqUQHNbFySp5lFck4JXmq77QgeuioY7n6Mu3+d7zhElOCltrsRKBsre7iZXW5mb4cD0f0JIBwgbY6Z3WvBWOiPmFmvcIC4j8yse7jeNWb2kJlNDOefV0XZzcxsjAVjwf/DzOqF+1lgZi3Dcmeb2T0WjKH/opk1Dte50LaMIf94lBUkdZcSvNR2g4GPPRjGYgLB0AjdgX2Afc3s0HC93QieMuwM7An8DDiYYFC23yfsrzPBI+YHAleZ2c6VlN0duJRgIK0OwMlJ1tmdYDjpvQgGwiobYnkw0NWDAfN+mfbRimRACV7i5Mjw9S7wDkEiLxsbZL67v+/BGCyzCIaIdYLhHEoT9vFvd//e3ZcTPGpe2Vj2b3kwqNtGgmEcDk6yznx3nxH+Pj2hrJnAI+EIlMlGuxSpMSV4iRMDbvBwYDp3383d7wuXJY7wuClhehOUe6K74pN/lT0JmM66ieVuTCjrWOAOgpFQp4cjB4pklRK81HYrgabh7y8A55pZEwAza1M2AmYGTjCz4nBEyh4Eo3Om0t3M2od976cDr6ZTQLh+W3efBFxBcKG4SYZxilRJrQap1dx9RXix9AOCb1J6FHg9GJGXVUB/gpZzut4iGB+8HTDU3Ssb//t1gou8nYApwJg0yygCHjazHxD81/FX3XUjUdBYNCIhM7uGYLS+m/Idi0g2qItGRCSm1IIXqYSZdQIeqjB7rbvvn494RDKhBC8iElPqohERiSkleBGRmFKCFxGJKSV4EZGY+n/Fd36UyQPwYwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df['temp_bins'] = pd.qcut(df['temp_outside'], 5)\n", + "sns.barplot(x='temp_bins', y='consume', hue='gas_type',data=df)" + ] + }, + { + "cell_type": "markdown", + "id": "53f04301", + "metadata": {}, + "source": [ + "### RAIN" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "id": "9f53ff2c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 185, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAV9klEQVR4nO3dfXRX1b3n8feXgAaFekfDqBgVvCDqEBI1iF1Uap3xibG4xrpEV7mC1qHa5cN1Kcr9w951cTpLwemqbR01yENZg9XxqVW0hVovPrTKEDR4UVTU+hAgCnjVoEVA9vyRQAME+EFy8ktO3q+1ssg5v3PO/v6y4MPO/u2zT6SUkCTlT49iFyBJyoYBL0k5ZcBLUk4Z8JKUUwa8JOVUz2IX0FJZWVkaMGBAscuQpC5jyZIla1NK/Vp7rVMF/IABA6itrS12GZLUZUTE+7t6zSEaScopA16ScsqAl6Sc6lRj8K3ZtGkT9fX1bNiwodildIjS0lLKy8vp1atXsUuR1MV1+oCvr6+nb9++DBgwgIgodjmZSimxbt066uvrGThwYLHLkdTFdfohmg0bNnDIIYfkPtwBIoJDDjmk2/y2IilbnT7ggW4R7lt1p/cqKVtdIuAlSXuv04/BF0tdXR2rVq1i9OjRxS5Fahc33XQTDQ0NHHbYYUydOrXY5agD2IPfhbq6Op566qlilyG1m4aGBlauXElDQ0OxS1EHyUXA33rrrRx33HGceeaZXHLJJdxxxx1Mnz6d4cOHU1lZyfe+9z2+/PJLAB566CGGDh1KZWUlo0aNavV6Gzdu5Mc//jEPPvggVVVVPPjggwwePJg1a9YAsGXLFgYNGsTatWuZMGECV155JaeddhrHHnss8+bNA+Drr79m0qRJDB8+nGHDhnHvvfd2zA9Dkpp1+YCvra3lkUce4ZVXXuHRRx/dtpbNBRdcwOLFi1m6dCnHH388M2bMAGDKlCnMnz+fpUuX8vjjj7d6zf32248pU6YwduxY6urqGDt2LOPGjWPu3LkAPP3001RWVlJWVgbAe++9x7PPPsuTTz7JlVdeyYYNG5gxYwYHHXQQixcvZvHixUyfPp2//OUvHfATkaQmXT7gX3jhBc4//3x69+5N3759+e53vwvAsmXLOO2006ioqGDu3Lm89tprAIwcOZIJEyYwffp0vv7664Lbufzyy5kzZw4AM2fO5LLLLtv22kUXXUSPHj0YPHgwxxxzDG+88QYLFixgzpw5VFVVMWLECNatW8eKFSva8Z1L0u51+Q9Zd/XQ8AkTJvCb3/yGyspKZs+ezcKFCwG45557WLRoEU8++SRVVVXU1dVxyCGH7LGdI488kkMPPZRnnnmGRYsWbevNw85TGyOClBK/+MUvOPvss/f9zUlSG3T5Hvy3vvUtnnjiCTZs2MD69et58sknAWhsbOTwww9n06ZN24XxO++8w4gRI5gyZQplZWV8+OGHrV63b9++NDY2brfviiuuYNy4cVx00UWUlJRs2//QQw+xZcsW3nnnHd59912GDBnC2Wefzd13382mTZsAeOutt/jiiy/a++1L0i51+YAfPnw4Y8aMobKykgsuuIDq6moOOuggbr31VkaMGMGZZ57Jcccdt+34SZMmUVFRwdChQxk1ahSVlZWtXvc73/kOr7/++rYPWQHGjBnD+vXrtxueARgyZAjf/va3Offcc7nnnnsoLS3liiuu4IQTTuCkk05i6NCh/PCHP2Tz5s3Z/SAkaQexqyGOYqiurk47PvBj+fLlHH/88bs9b/369fTp04cvv/ySUaNGUVNTw0knndTu9dXW1nL99dfz/PPPb9s3YcIEzjvvPC688MJ2a6eQ9yztrUsvvZSVK1dyxBFHbPs8SV1fRCxJKVW39lqXH4MHmDhxIq+//jobNmxg/PjxmYT7bbfdxt13373dcI8kdWa5CPj7779/n8+dP38+N99883b7Bg4cyGOPPbbdvsmTJzN58uSdzp89e/Y+ty1JWcpFwLfF2Wef7UwXqZvpLss2ZBrwEfF3wH3AUCABl6eUXsyyTUnak63LNuRd1j34O4Hfp5QujIj9gAMybk+S1CyzgI+IbwCjgAkAKaWNwMas2pMkbS/LefDHAGuAWRHxSkTcFxEH7nhQREyMiNqIqN26mJckqe2yHKLpCZwEXJNSWhQRdwKTgVtaHpRSqgFqoGke/J4uevKk9p2/u2TapXs8pqSkhIqKim3bF198MZMnT+aXv/wlP/vZz3jnnXdYs2bNtsXHUkpcd911PPXUUxxwwAHMnj07k6mbkrQ7WQZ8PVCfUlrUvP0wTQHf5fTu3Zu6urqd9o8cOZLzzjuP008/fbv9v/vd71ixYgUrVqxg0aJFXHXVVSxatGin8yUpS5kN0aSUGoAPI2JI867/DLyeVXvFcOKJJzJgwICd9v/2t7/l0ksvJSI49dRT+fTTT1m9enXHFyipW8t6LZprgLkR8SpQBfzPjNvLxF//+leqqqq2fW1dm2ZXVq5cyZFHHrltu7y8vFtMyZLUuWQ6TTKlVAe0ukZCV7KrIZpdaW19nx2XFJakrHX51SQ7o/Ly8u2WIa6vr6d///5FrEhSd2TAZ2DMmDHMmTOHlBIvvfQSBx10EIcffnixy5LUzXS5tWgKmdbY3raOwW91zjnncNttt/Hzn/+cqVOn0tDQwLBhwxg9ejT33Xcfo0eP5qmnnmLQoEEccMABzJo1q8NrlqQuF/DFsKtnt1577bVce+21O+2PCO66666sy5Kk3XKIRpJyyoCXpJwy4CUppxyDlzpIe6+jtLf6rm2kBPhgbWPRa3ms77Sitr/5k4OBnmz+5H0+mFKxx+OzdNSP/y2za9uDl6ScMuAlKae63BBNe/86VcivRz/5yU+4//77KSkpoUePHtx7773cfPPNrF69mtLSUvr06cPMmTMZMmQIzzzzDDfeeCMbN27k5JNPZsaMGfTs2ZPPPvuMcePG8cEHH7B582ZuvPFGLrvssnZ9L5LUkj34PXjxxReZN28eL7/8Mq+++ipPP/30toXE5s6dy9KlSxk/fjyTJk1iy5YtjB8/ngceeIBly5Zx9NFH86tf/QqAu+66ixNOOIGlS5eycOFCbrjhBjZu9AFXkrJjwO/B6tWrKSsrY//99wegrKxsp3VlRo0axdtvv826devYf//9OfbYYwE488wzeeSRR4Cmm58aGxtJKbF+/XoOPvhgevbscr9ASepCDPg9OOuss/jwww859thj+dGPfsSzzz670zFPPPEEFRUVlJWVsWnTJmprawF4+OGHty06dvXVV7N8+XL69+9PRUUFd955Jz16+OOXlB0TZg/69OnDkiVLqKmpoV+/fowdO5bZs2cD8P3vf5+qqir+9Kc/cccddxARPPDAA1x//fWccsop9O3bd1svff78+VRVVbFq1Srq6uq4+uqr+fzzz4v4ziTlnWMEBSgpKeH000/n9NNPp6KiYtu4+ty5c6mu3n65+29+85s8//zzACxYsIC33noLgFmzZjF58mQigkGDBjFw4EDeeOMNTjnllI59M5K6DXvwe/Dmm2+yYsWKbdt1dXUcffTRuzz+448/BuCrr77i9ttv58orrwTgqKOO4o9//CMAH330EW+++SbHHHNMhpVL6u66XA8+y7u+WrN+/XquueYaPv30U3r27MmgQYOoqanhwgsvbPX4adOmMW/ePLZs2cJVV13FGWecAcAtt9zChAkTqKioIKXE7bffTllZWUe+FUndTJcL+I528skn8+c//3mn/QsXLmz1+GnTpjFt2s63Yffv358FCxa0d3mStEsO0UhSThnwkpRTXSLgU0rFLqHDdKf3KilbnT7gS0tLWbduXbcIvpQS69ato7S0tNilSLlWVrqFQ3tvpqx0S7FLyVSmH7JGxHtAI/A1sDmlVL37M3ZWXl5OfX09a9asae/yOqXS0lLKy8uLXYaUazcO+7TYJXSIjphF852U0tp9PblXr14MHDiwPeuRpG6h0w/RSJL2TdY9+AQsiIgE3JtSqtnxgIiYCEyEprs9u7qbbrqJhoYGDjvsMKZOnVrsciR1Y1kH/MiU0qqI+I/AHyLijZTScy0PaA79GoDq6uou/0lqQ0MDK1euLHYZnYL/2UnFlWnAp5RWNf/5cUQ8BpwCPLf7s5QX/mfXuWzZ78Dt/lT+ZRbwEXEg0COl1Nj8/VnAlKzak7R7Xww+q9glqINl2YM/FHgsIra2c39K6fcZtidJaiGzgE8pvQtUZnX91pw8aU5HNteqvmsbKQE+WNtY1HqWTLu0aG1L6hycJilJOeVywTn1wZSKYpfA5k8OBnqy+ZP3i1pPRz9DQOos7MFLUk4Z8JKUUw7RtDPnGkvqLAz4duZcY0mdhQGvzDSttZ3/NbelzsqAV2a6y5rbUmflh6ySlFMGvCTllAEvSTllwEtSThnwkpRTBrwk5ZQBL0k5ZcBLUk4Z8JKUUwa8JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvSTmVecBHRElEvBIR87JuS5L0Nx3Rg78OWN4B7UiSWsg04COiHPivwH1ZtiNJ2lnWPfifATcBPpRTkjpYQQEfEQdExC0RMb15e3BEnLeHc84DPk4pLdnDcRMjojYiatesWVNw4ZKk3Su0Bz8L+Ar4ZvN2PfA/9nDOSGBMRLwHPACcERH/Z8eDUko1KaXqlFJ1v379CixHkrQnhQb836eUpgKbAFJKfwVidyeklP4ppVSeUhoAXAw8k1Ia15ZiJUmFKzTgN0ZEbyABRMTf09SjlyR1Uj0LPO6fgd8DR0bEXJqGXyYU2khKaSGwcC9rkyS1QUEBn1L6Q0S8DJxK09DMdSmltZlWJklqk72ZJnkEUALsB4yKiAuyKUmS1B4K6sFHxExgGPAaf5vTnoBHM6pLktRGhY7Bn5pSOiHTSiRJ7arQIZoXI8KAl6QupNAe/K9oCvkGmqZHBpBSSsMyq0yS1CaFBvxM4B+Af8N1ZSSpSyg04D9IKT2eaSWSpHZVaMC/ERH3A0/Q4g7WlJKzaCSpkyo04HvTFOxntdjnNElJ6sQKvZP1sqwLkSS1r0JvdJpF80JjLaWULm/3iiRJ7aLQIZqWD8wuBf4bsKr9y5EktZdCh2geabkdEb8Gns6kIklSu9jXZ7IOBo5qz0IkSe2r0DH4RrYfg28Abs6kIklSuyh0iKZv1oVIktpXQUM0ETEyIg5s/n5cRPw0Io7OtjRJUlsUOgZ/N/BlRFQCNwHvA3Myq0qS1GaFBvzmlFICzgfuTCndCThsI0mdWKHz4Bsj4p+AcTQ9rq8E6JVdWZKktiq0Bz+WprVofpBSaqDp+azTMqtKktRmhc6iaQB+2mL7AxyDl6ROrdBZNBdExIqI+CwiPo+Ixoj4fA/nlEbE/4uIpRHxWkT8S/uULEkqRKFj8FOB76aUlu/Ftb8CzkgprY+IXsALEfG7lNJLe12lJGmvFRrwH+1luNM862Z982av5q+dVqSUJGWj0ICvjYgHgd+wF090ap5tswQYBNyVUlq0j3VKkvZSoQH/DeBL9vKJTimlr4GqiPg74LGIGJpSWtbymIiYCEwEOOoo1y+TpPbSIU90Sil9GhELgXOAZTu8VgPUAFRXVzuEI0ntpNBZNOUR8VhEfBwRH0XEIxFRvodz+jX33ImI3sB/Ad5oc8WSpIIUeqPTLOBxoD9NNzk90bxvdw4H/jUiXgUWA39IKc3bwzmSpHZS6Bh8v5RSy0CfHRH/uLsTUkqvAifua2GSpLYptAe/tnmZ4JLmr3HAuiwLkyS1TaEBfzlwEU1PcloNXAi06YNXSVK2Ch2iuRUYn1L6d4CIOBi4g6bglyR1QoX24IdtDXeAlNInOL4uSZ1aoQHfIyL+w9aN5h58ob1/SVIRFBrS/wv4c0Q8TNMdrBcBP8msKklSmxV6J+uciKgFzgACuCCl9HqmlUmS2qTgYZbmQDfUJamLKHQMXpLUxRjwkpRTBrwk5ZQBL0k5ZcBLUk4Z8JKUUwa8JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvSTllwEtSThnwkpRTBrwk5VRmAR8RR0bEv0bE8oh4LSKuy6otSdLOsnyu6mbghpTSyxHRF1gSEX/wSVCS1DEy68GnlFanlF5u/r4RWA4ckVV7kqTtdcgYfEQMAE4EFnVEe5KkDgj4iOgDPAL8Y0rp81ZenxgRtRFRu2bNmqzLkaRuI9OAj4heNIX73JTSo60dk1KqSSlVp5Sq+/Xrl2U5ktStZDmLJoAZwPKU0k+zakeS1Lose/AjgX8AzoiIuuav0Rm2J0lqIbNpkimlF4DI6vqSpN3zTlZJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnMgv4iJgZER9HxLKs2pAk7VqWPfjZwDkZXl+StBuZBXxK6Tngk6yuL0navaKPwUfExIiojYjaNWvWFLscScqNogd8SqkmpVSdUqru169fscuRpNwoesBLkrJhwEtSTmU5TfLXwIvAkIioj4gfZNWWJGlnPbO6cErpkqyuLUnaM4doJCmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknIq04CPiHMi4s2IeDsiJmfZliRpe5kFfESUAHcB5wInAJdExAlZtSdJ2l6WPfhTgLdTSu+mlDYCDwDnZ9ieJKmFnhle+wjgwxbb9cCIHQ+KiInAxObN9RHxZoY1dRtHQxmwtth1dAr/HMWuQDvw72cLbf/7efSuXsgy4FurOu20I6UaoCbDOrqliKhNKVUXuw6pNf797BhZDtHUA0e22C4HVmXYniSphSwDfjEwOCIGRsR+wMXA4xm2J0lqIbMhmpTS5oi4GpgPlAAzU0qvZdWeduKwlzoz/352gEhpp2FxSVIOeCerJOWUAS9JOWXA55BLRKizioiZEfFxRCwrdi3dgQGfMy4RoU5uNnBOsYvoLgz4/HGJCHVaKaXngE+KXUd3YcDnT2tLRBxRpFokFZEBnz8FLREhKf8M+PxxiQhJgAGfRy4RIQkw4HMnpbQZ2LpExHLg/7pEhDqLiPg18CIwJCLqI+IHxa4pz1yqQJJyyh68JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvFSgi7nPhNnUlTpOUWoiIoOnfxZZi1yK1lT14dXsRMSAilkfE/wZeBmZERG1EvBYR/9LiuIURUd38/fqI+ElELI2IlyLi0GLVL+2KAS81GQLMSSmdCNyQUqoGhgHfjohhrRx/IPBSSqkSeA747x1XqlQYA15q8n5K6aXm7y+KiJeBV4D/RNODU3a0EZjX/P0SYEDmFUp7qWexC5A6iS8AImIgcCMwPKX07xExGyht5fhN6W8fYH2N/5bUCdmDl7b3DZrC/rPmcfVzi1yPtM/sdUgtpJSWRsQrwGvAu8CfilyStM+cJilJOeUQjSTllAEvSTllwEtSThnwkpRTBrwk5ZQBL0k5ZcBLUk79fxwiBIKcZAT5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.barplot(data=df, y=\"consume\", x =\"rain\" , hue=\"gas_type\")" + ] + }, + { + "cell_type": "markdown", + "id": "f19e9b22", + "metadata": {}, + "source": [ + "### SPEED:" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "id": "3ec5c678", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 188, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgFklEQVR4nO3deXwU9f3H8deHcAQRFCSKEBFFrSKCaKQqKoioeNQL6tGKV5VfW9FqPQq11Yr1AkWpV0tVKJ5UFItKURTxqqigAip4ISpgFLAiYLk/vz9mkixhk+yGnd3N5P18PPaRmdnvzPez32Q/+e53Z75j7o6IiMRPg1wHICIi0VCCFxGJKSV4EZGYUoIXEYkpJXgRkZhqmOsAErVu3do7dOiQ6zBEROqMmTNnLnX3omTP5VWC79ChAzNmzMh1GCIidYaZfV7VcxqiERGJKSV4EZGYUoIXEYkpJXgRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYyqsLneqiK6+8ktLSUtq0acOwYcNyHY6ISDkl+C1UWlrKokWLch2GiMhmNEQjIhJTSvAiIjGlBC8iElNK8CIiMaUELyISU0rwIiIxFWmCN7NtzWy8mc0zs7lmdlCU9YmISIWoz4MfCUx29/5m1hjYKuL6yukCJBGp7yJL8GbWAjgMOAfA3dcCa6OqrzJdgCQi9V2UQzS7AkuA0Wb2jpnda2bNKhcys4FmNsPMZixZsiTCcERE6pcoE3xDYD/gHnfvBqwCBlcu5O6j3L3E3UuKipLeGFxERGohygS/EFjo7m+E6+MJEr6IiGRBZAne3UuBL83sR+GmI4APoqpPREQ2FfVZNBcBD4Vn0MwHzo24PhERCUWa4N39XaAkyjpERCQ5XckqIhJTuuFHJV8M3Set8uu/bQU0ZP23n6e9b/ur56RVXkQkHerBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMRUnbiSdf8rxqa9T/OlKygAvli6Iq39JzRPuyoRkbykHryISEwpwYuIxJQSvIhITCnBi4jEVJ34kjWftS7cCKwPf4qI5A8l+C10eZfvch2CiEhSGqIREYkpJXgRkZjSEI2ISJZceeWVlJaW0qZNG4YNGxZ5fUrw9UC2/6hEJLnS0lIWLVqUtfqU4OuBbP9RidQ1ce0ERZrgzWwBsALYAKx395Io6xMRqY24doKy0YM/3N2XZqEeERFJoLNoRERiKuoevAPPmZkDf3P3URHXV25j42ab/BSB+I61iiQTdYLv4e6LzWx7YIqZzXP3lxMLmNlAYCBA+/btM1bxqt2PytixJD7iOtYqkkykQzTuvjj8+Q0wAeiepMwody9x95KioqIowxERqVci68GbWTOggbuvCJePAoZGVV99kc27W80cflbadUndEdfhquzeAW54WvWs/7YV0JD1337OF0P3SWvf9lfPSas8RDtEswMwwczK6nnY3SdHWJ+IpEHDVfEXWYJ39/lA16iOLyIi1dOVrJIxcf3IL1JXKcFLxugjv0h+UYIXkUjpk13uKMGLSKT0yS53lOBFIqBea92SrSvfs30PZyX4ekDTNmSfeq11S7aufM/2PZyV4OuBuE7boIu+KqgtJBkleKlSulfaZfsqPRGpnqYLFhGJKfXgRSQt+mRXd6gHLyISU0rwIiIxpSEakRRoWELqIiV4yZhsX8QhItVTgpeMyfZFHCJSPSV4kXpKVzjHnxK81CtKahWydYWzhu5yRwle6pW4TtuQzzR0lzs6TVJEJKbUgxeJgIYlJB8owYtEQMMSkg80RCMiElNK8CIiMaUELyISU5EneDMrMLN3zOzpqOsSEZEK2ejB/waYm4V6REQkQaQJ3syKgeOAe6OsR0RENhd1D/524EpAJwOLiGRZZAnezI4HvnH3mTWUG2hmM8xsxpIlS6IKR0Sk3omyB98DOMHMFgCPAr3N7MHKhdx9lLuXuHtJUVFRhOGIiNQvkSV4dx/i7sXu3gE4HZjq7mdGVZ+IiGwqpQRvZluZ2R/N7O/h+u7hEIyIiOSpVHvwo4E1wEHh+kLgz6lW4u7T3F3/EEREsijVBN/R3YcB6wDc/X+ARRaViIhssVQT/Fozawo4gJl1JOjRi4hInkp1uuBrgMnATmb2EMEZMudEFZSIiGy5lBK8u08xs7eBAwmGZn7j7ksjjUxERLZIOqdJtgMKgMbAYWZ2SjQhiYhIJqTUgzez+4EuwPtUTDvgwBMRxSUiIlso1TH4A929U6SRiIhIRqU6RPO6mSnBi4jUIan24P9BkORLCU6PNMDdvUtkkYmIyBZJNcHfDwwA5qCpf0VE6oRUE/wX7j4x0khERCSjUk3w88zsYeApEq5gdXedRSMikqdSTfBNCRL7UQnbdJqkiEgeS/VK1nOjDkRERDIr1QudRhNONJbI3c/LeEQiIpIRqQ7RPJ2wXAicDCzOfDgiIpIpqQ7RPJ64bmaPAM9HEpGIiGREbe/JujvQPpOBiIhIZqU6Br+CTcfgS4HfRRKRiIhkRKpDNM2jDkRERDIrpSEaM+thZs3C5TPNbISZ7RxtaCIisiVSHYO/B/jBzLoCVwKfA2Mji0pERLZYqgl+vbs7cCIw0t1HAhq2ERHJY6meB7/CzIYAZxLcrq8AaBRdWCIisqVS7cGfRjAXzS/cvZTg/qzDq9vBzArN7E0zm2Vm75vZtVsYq4iIpCHVs2hKgREJ619Q8xj8GqC3u680s0bAq2b2b3efXutoRUQkZameRXOKmX1sZsvN7HszW2Fm31e3jwdWhquNwsdm89mIiEg0Uh2iGQac4O7buHsLd2/u7i1q2snMCszsXeAbYIq7v5GkzEAzm2FmM5YsWZJW8CIiUrVUE/zX7j433YO7+wZ33xcoBrqbWeckZUa5e4m7lxQVFaVbhYiIVCHVs2hmmNk44ElqcUcnd//OzKYBfYH30oxRRERqIdUE3wL4gTTu6GRmRcC6MLk3BfoAN9c2UBERSU+Ud3TaEfhHeM58A+Cf7v50DfuIiEiGpDqbZDFwB9CDoOf+KvAbd19Y1T7uPhvolokgRUQkfal+yToamAi0JbjI6alwm4iI5KlUE3yRu4929/XhYwygU15ERPJYqgl+aThNcEH4OBNYFmVgIiKyZVJN8OcBpxLcyekroD9Qmy9eRUQkS1I9TfI64Gx3/y+AmbUCbiFI/CIikodS7cF3KUvuAO7+LTpDRkQkr6Wa4BuYWcuylbAHn2rvX0REciDVJH0r8B8zG09wHvypwPWRRSUiIlss1StZx5rZDKA3YMAp7v5BpJGJiMgWSXmYJUzoSuoiInVEqmPwIiJSxyjBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jEVGQJ3sx2MrMXzWyumb1vZr+Jqi4REdlclLfdWw9c5u5vm1lzYKaZTdGNQkREsiOyHry7f+Xub4fLK4C5QLuo6hMRkU1lZQzezDoA3YA3kjw30MxmmNmMJUuWZCMcEZF6IfIEb2ZbA48Dl7j795Wfd/dR7l7i7iVFRUVRhyMiUm9EmuDNrBFBcn/I3Z+Isi4REdlUlGfRGHAfMNfdR0RVj4iIJBdlD74HMADobWbvho9jI6xPREQSRHaapLu/ClhUxxcRkerpSlYRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYUoIXEYmpKGeTzIh169Zxca9dKN62EMvCSZfL7fboKwnNnTt3s22FhYUUFxfTqFGjrMUhIvGU9wl+4cKFdOnYjsZbNceykOE7FnwdeR1lmrTda5N1d2fZsmUsXLiQXXbZJWtxiEg85f0QzerVq7OW3HPNzNhuu+1YvXp1rkMRkRjI+wQP1IvkXqY+vVYRiVadSPAiIpI+JfgqzHpvHpNfeDnXYYiI1JoSfBVmvT+PyVNfyXUYIiK1lvdn0aTinpG38syT42mzYzu2bdWKvffpytbNW/DYw2NZt24d7Tt04Kbb76Zp06149ul/cfftt9CgoIDmzZszdvxTmx1v7dp1DL3lTlavXsN/3nybKwadz5+G3cG0iQ9StF0rNm7cSOdDj+Plpx5m8NBbKGzSmA8++pRvlixj2DVXcOyRvdiwYQN/uOE2Xn79LdasXcv/nX0GFww4NQetIyL1VZ1P8O/Nepcp/36K8f+eyob1G+h/bG/23qcrRx5zHD/92QAARg6/gScefYifn3sB94y8lVEP/pMd2uzI98uXJz1m48aNuPryQbw9+31uv/4qAD789DMefeIZLrpgAC+88jpdOv2I1q1aAvD5wsU8//gY5i/4kqN/eh69Dz2IB8dPpEXz5rw2aRxr1qzl8JPOpE/Pg9mlfXF2GkZE6r06P0Tz9lvT6X3kMRQWNqXZ1lvTq8/RAHz84VwG9Duek448jGeefJxPPvoQgG4l3bnqtxfx2MMPsHHjhpTrOfu0k3lo/EQAxj46gbNOPan8uX4/OZoGDRqw264702HnYj785DNeeOk/PDR+It2P7Mehx5/Bsv8u55PPPs/cCxcRqUGd78F7Fduvuuxi/vL3f7Bnp85MeOwR3nr9NQCuufEWZr8zk5emTqFf38N5fPKLbNuyVY317NRuR7Yv2o4XX32DN9+Zw5g7by5/rvKpjWbgOLf9+fcc2atHrV+biMiWqPM9+P0O+DHTXniWNatXs2rVSl6eOgWAVStXUrT9Dqxbt45nJjxeXv6LBZ/Rpdv+XHTZYLZt1YqvFi9KetzmWzdjxcpVm2w794x+nHfxYPr/5GgKCgrKtz/x9HNs3LiRTxd8wYLPF7JHx13o07MHo8aOY926dQB8/OkCVv3wQ6ZfvohIlep8D36frt04vE9fTunbi7btdmLvLvuydfMWXHT5YM44sS9t2xWz+557sWrlSgBuveFaPv9sPu7OgT0OZc9OnZMet+fB3bnlrnvpfmQ/rhh0Pj898RiOP6oXA3/7B8467aRNyu6xawf69DuHb5Ys446b/khhYRPO+1k/Pv9yEQf2PRV3p3Wrljx2/1+ibg4RkXJ1PsEDnPN/v+bC317J//73A2f3P4FzLvgVnfbpyukDzt2s7MhRY1I6ZquW2/DapHGbbJv9wYfs0+lH/Gi3XTfZftAB3Rh+7e822dagQQOuG3IJ1w25JK3XIiKSKbFI8H8afBmffvwha9es4cR+p9Fpn64Zr2P4nfcyauy4TcbeRUTyWSwS/PA7/lbrfV99aSojbhxavt6E9XRo345/3rfpcMoVg87nikHnb7b/vbdfX+u6RUSiFIsEvyUO6dmbQ3r2Ll/P5nTBIiJRqvNn0YiISHKRJXgzu9/MvjGz96KqQ0REqhZlD34M0DfC44uISDUiS/Du/jLwbVTHFxGR6uX8S1YzGwgMBGjfvn2N5Qf8ZVJG63/g4mNrLLPVTl3ovOfu5es/PfEYrhh0PveMfpg77n2A+Qu+ZOGcV8onH3N3Lrv6RiZPfYWtmhby99uup9s+nTIat4hITXKe4N19FDAKoKSkpKqpZXKqaWET3pzy+GbbDzqgG8f06clR/Te9oOrZqa/wyWdf8P6rk3jz7dlcPOQ6Xnn6kWyFKyIC5EGCr8v27bxX0u1PPfsiP+9/AmbGj/fvynfLV/DV10vYcYeiLEcoIvWZEnwK/rd6Dd2P7Fe+XjY3TVUWl35Ncds25evtdtyBxaVfK8GLSFZFluDN7BGgF9DazBYC17j7fVHVF6Wqhmiq4r75SFPlKYVFRKIWWYJ39zOiOna+a7djGxYuLi1fX/TV1+y4w/Y5jEhE6iNdyRqB44/qxUPjJ+LuvDFzFtu02FrDMyKSdXVuDD6V0xozrfIY/FGHH8Kff38pd933ICPuHk3pkqUc0OcUju59KH+9ZSh9jziMyVNfoVOPY9iqaVNGjbgu6zGLiNS5BJ8LP3w5O+n2C39xJhf+4szNtpsZI2/4Q9RhiYhUS0M0IiIxpQQvIhJTSvAiIjGlBC8iElNK8CIiMaUELyISU3XuNMmtRx+e0eOtPPfFGsvcNPJvjHtyEgUFDWhgDbjz5mu46oYRlH69lMImjWnWbCtG3Xode+y2Cy+++gZDrruFtevW0W2fTvzt1qE0bNiQ5d+v4NyLBvPloq9Yv2EDl/zyHAZeundGX4uISCL14Gswfca7/Pv5l5k++TFmPD+BSePuLZ9IbMydN/HW809w5k9PZMifb2Xjxo2cf8nveeDu4bw99UnaF7flgcf+BcBfxzzCXnt05K3nn+C58aMZPHQ4a9euzeVLE5GYU4KvQek3S9iu1bY0adIYgNatWtK2zabzyhx64P58uuALlv33O5o0aczuHTsAcMRhB/HkpOeB4OKnFStX4e6sXPUDLbfdhoYN69wHKBGpQ5Tga9CnZw8WLi6l8yHHcfGQ63j59bc2K/PMlGl03nN3Wrdqybp165k5K7jP+IRnniufdOxX5/6MeR/PZ5f9DqfkiJO59drBNGig5heR6KgLWYOtm23F65P/yatvzOSl/7zJgF9dznVDLgXgnEGDaVrYhJ13aseI64ZgZjxw93Cu+NMw1q5dyxGHHUzDggIApkx7ja5778mzj93P/AVfcuwZF9D7pDNp0aJFLl+eiMSYEnwKCgoK6Hlwd3oe3J3Oe+7Bg+G4+pg7b2L/rp03KXtgyb5MnTAWgCkvvcYn8z8HYOy4CVw+6HzMjI67tKfDTu2YN28e3bt3z+6LEZF6Q2MENfjok8/KkzTArPfn0b64bZXlv1m6DIA1a9Zy6133c/6AUwHYqd2OvPjqdAC+XrKUj+cvYNddd40wchGp7+pcDz6V0xozWt8PP/DbP9zAd9+voGHDAjp2aM9dw/7EGQMvTVr+tntGM+n5l9i40Rl41mkcfsiPARhyyS+54NKr2P+Ik3F3/vz7S2ndunU2X4qI1DN1LsFn235d9mbaxIc22z5l/Jik5W/84+Xc+MfLN9vets32PPPI3zMdnohIlTREIyISU0rwIiIxVScSvLvnOoSsqU+vVUSilfcJvrCwkLU/rKgXic/dWbZsGYWFhbkORURiIO+/ZC0uLubl56ZTvG0hZtHXt8G+j76SUMPlm/9/LSwspLi4OGsxiEh85X2Cb9SoEX+Z9lnW6pvQfHjW6mp/9Zys1SUi9U+kQzRm1tfMPjSzT8xscJR1iYjIpiJL8GZWANwFHAN0As4ws05R1SciIpuKsgffHfjE3ee7+1rgUeDECOsTEZEEFtXZKWbWH+jr7ueH6wOAH7v7oErlBgIDw9UfAR9GElDqWgNLcxxDvlBbVFBbVFBbVMiHttjZ3YuSPRHll6zJznnZ7L+Ju48CRkUYR1rMbIa7l+Q6jnygtqigtqigtqiQ720R5RDNQmCnhPViYHGE9YmISIIoE/xbwO5mtouZNQZOByZGWJ+IiCSIbIjG3deb2SDgWaAAuN/d34+qvgzKm+GiPKC2qKC2qKC2qJDXbRHZl6wiIpJbeT8XjYiI1I4SvIhITCnBi4jEVF4keDNramYvhdMbYGaTzew7M3u6Urn7zGyWmc02s/FmtnUVx7vZzN4LH6clbO9tZm+H2/9hZg3D7S3NbEJ43DfNrHMKMSeNxQJ/CeffmW1m+1Wx/y5m9oaZfWxm48IzjTCz08J9n06yT3k7mdnOZjbTzN41s/fN7Jc1HTvJ8c4Oy3xsZmen8Jp/aWZzwjpfTZx6wsyGhXHMDV//ZtdBmFmTMJ5Pwvg6hNs7hsdcWVMMtWiLI8LfeVnMu2WiLRL2629mbmYl4XqVsWSjLRK2tTCzRWZ2Z8K2VN8/6f5dnGNmS8K43zWzsosbc94WZrYhIa6JCeWiaoudzeyF8LjTzKw44bkaj5XJtgCCOchz/QAuBH6TsH4E8BPg6UrlWiQsjwAGJznWccAUgjOEmgEzgBYE/8y+BPYIyw0FfhEuDweuCZf3BF5IIeaksQDHAv8muNDrQOCNKvb/J3B6uPxX4FcJz/Wq/NortxPQGGgSLm8NLADa1nTshGO1AuaHP1uGyy3TeM0nAJPD5YOB1wjOlioAXgd6Jdn/18Bfw+XTgXGVnl9Zm7+ZGtriI2CvhPrHZKItwv2aAy8D04GSmmLJRlskbBsJPAzcmeb7pzZ/F+ck1pOwPedtUdW+EbbFY8DZ4XJv4IF0jpXJtnD3/OjBAz8H/lW24u4vACsqF3L37yHoJQNNSXJlLMHEZi+5+3p3XwXMAvoC2wFr3P2jsNwUoF/CPi+EdcwDOpjZDtUFXE0sJwJjPTAd2NbMdkzcN9ynNzA+3PQP4KTq6guVt5O7r3X3NeH2JoSfxtI49tHAFHf/1t3/S9AefaurvOw1h5pR8ZodKCR8QwONgK+THOLEMB7C+I5I1tNPUY1tkRBbi3B5G5JfbJd2W4SuA4YBq8srqz6WRJG0BYCZ7Q/sADyXWCjF909t22Iz+dAW1cQWVVuU5xLgRSrm30r1WJlsi9wneAuGD3Z19wUplh8NlBL0tO9IUmQWcIyZbWVmrYHDCa6oXQo0KvsoDfSn4krbWcAp4fG7AzsTXHlbm1jaEXxSKLMw3JZoO+A7d19fTZnKdW3WTma2k5nNDuu72d0Xp3HsVOJMFseFZvYpQWK7GMDdXyf4Y/4qfDzr7nOrqzOMb3kYb1rSaAuA84FJZrYQGADcVF1coVR+H92Andw92VBaVbEkrTOTbWFmDYBbgSuqKF/T+6dWfxdAv4ThjvIr2HPZFqFCM5thZtPN7KRK5aNoi1lUdBxPBpqb2XZpHCsjbVEm5wmeYLKe71It7O7nAm2BucBpSZ5/DpgE/Ad4hGC4YL0Hn29OB24zszcJPiGUJcGbgJZm9i5wEfBOwnPpxpLKHDwpzdNTyWbt5O5funsXYDfg7PBTR6rHrk0MuPtd7t4R+B3wBwALxrX3Ivin2A7obWaHZarOJFJtC4BLgWPdvRgYTfBxfIviCpPobcBlyZ6vJpZa11mNym3xa2CSu3+ZrHBN759axvUU0CF8zc9T0QPNdVsAtPdgrpifAbebWceE2KJoi8uBnmb2DtATWESQSyJ9X1YlHxL8/wg+3qfM3TcA46j4T1n5+evdfV93P5KgwT4Ot7/u7oe6e3eCsdOy7d+7+7nuvi9wFlAEpHQbqSSxpDIHz1KCoZuG1ZSprMp2CntF7wOHpnHsLZ0r6FEqhn5OBqa7+0p3X0nwHcSB1dUZxrcN8G0adZZJqS3MrAjo6u5vhE+PI/i+oMq4QjW1RXOgMzDNzBYQvNaJCZ8ON4ulujoz3BYHAYPCuG4BzjKzTT611PD+Sfvvwt2XJQzF/B3YP0mZXLRFWb24+3xgGtCt0vOZbovF7n6Ku3cDrgq3LU/jWJlqCyAPEnw4HlVgZtUmeQvsVrZM8CXsvCTlCsKPRJhZF6AL4VikmW0f/mxC0AP9a7i+rVWcaXI+8HLCGN0LZtauUh3VxTKR4E1lZnYgsNzdv6r0mp1gSKN/uOlsahg3rNxOZlZsZk3D5ZZAD+DDNI79LHCUBWcQtQSOCrdhZjea2cmVdzCz3RNWjyP8Bwl8QdBraWhmjQh6LsmGaCaG8RDGNzWMNy2ptgXwX2AbM9sj3PXIKuJKqy3cfbm7t3b3Du7egeBL1hPcfUY1sWSlLdz95+7ePozrcoLvgwan+v5Jty3C7YnfMZ1A2Ma5bovwNTQJl1uH9X8QcVu0Dj/hAQwB7q/pWJVkpC3KeRrfyEb1AO4D+iSsvwIsIfiPvJDgC4oGBGdqzAHeAx4i/CYcKAHuDZcLgQ/Cx3Rg34TjDif44/sQuCRh+0EEyWoe8ATht9thnZ8DTSvFW10sRnAnq0/D50sS9ptExdkduwJvAp8QfPPeJKFcL5KfRVPeTgTJajbBmN9sYGBCuaTHTmyncP28sMwnwLkJ258GDkpS/0iCXti7BP9E9g63FwB/C9v2A2BEwj5DCZJf2e/msbC+NwnGS2t1hkAabXFy+HuYRdCD2zUTbVEplmlUnEVTXSyRt0Wl7ecQnt1Ciu+fWv5d3Bj+XcwK/y72zIe2IPi0Vva7n0PFWXNRtkV/glzyEXAvm76vqzpWJG3h7nmT4LsRnk6UTw+Cj+EjclBvL5In+Ky0E8GXpLlo73TeyGoLtYXaooZHzodoANz9HeBFS7hQIx+4+3vu/tts1mnBhVl3EwwvVI4nK+3k7kdHefzKLLyIg+SnVialtqigtqigtqi0X/hfQUREYiYvevAiIpJ5SvAiIjGlBC8iElNK8CIpsGBmwJJqnk86y5+ZDTWzPtFFJlK1yO7JKiLg7lfnOgapv9SDlzrLzJqZ2TMWzOv9ngVz6S+w4H4Ab4aPsisWi8zscTN7K3z0SDjG/eG2d8zsxHB7UzN71IIJtMYRzDhYUzy3WjD3/AsWTJOAmY0xs/7h8gIzuzYsM8fM9gy397SKOcvfMbPmETWZ1DNK8FKX9QUWu3tXd+8MTA63f+/BfEN3AreH20YCt7n7AQTzjtwbbr+K4HLwAwhmHh1uZs2AXwE/eDBR1vUkmV+lkmbA2+6+H/AScE0V5ZaGZe4hmEqA8OeFHsyFdCjBFdwiW0wJXuqyOUCfsMd+qAeTOkEwi2jZz4PC5T7AneHFIhOBFmFP+ShgcLh9GsGl4u2Bw4AHAdx9NsGl9tXZSDBpFeF+h1RR7onw50ygQ7j8GjDCzC4GtvWKqZ5FtojG4KXOcvePLLi5xbHAjWZWdoOLxKv3ypYbEMwdsknvOJxsqp+7f1hpe+XjpB1eFdvLZl3cQPj+c/ebzOwZgtcx3cz6eHDjGZEtoh681Flm1pZgGOVBgqlxy+5/e1rCz9fD5eeAQQn77hsuPgtcFCb6sht5QDCd9M/DbZ0JZiWtTgMqZvD8GfBqGq+jo7vPcfebCW4xuWeq+4pURz14qcv2IRgz3wisIxg3Hw80MbM3CJLuGWHZi4G7LLi7UEOCBP5Lgtvu3Q7MDpP8AuB4gjHy0WH5dwlm9qvOKmBvM5tJcBeeZDeQqMolZnY4Qa/+A4L59EW2mOaikVix4EYXJe6+NNexiOSahmhERGJKPXiRNIRDP00qbR7g7nNyEY9IdZTgRURiSkM0IiIxpQQvIhJTSvAiIjGlBC8iElP/D3YhEHM5flsmAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df['speed_bins'] = pd.qcut(df['speed'], 5)\n", + "sns.barplot(x='speed_bins', y='consume', hue='gas_type',data=df)" + ] + }, + { + "cell_type": "markdown", + "id": "49e00630", + "metadata": {}, + "source": [ + "### Vamos a separar unos y otros en 2 DF para verlo por separado:" + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "id": "ce4450f1", + "metadata": {}, + "outputs": [], + "source": [ + "e10 = df[df.gas_type == 'E10']\n", + "sp98 = df[df.gas_type == 'SP98']" + ] + }, + { + "cell_type": "markdown", + "id": "ad375692", + "metadata": {}, + "source": [ + "### PARA E10:" + ] + }, + { + "cell_type": "code", + "execution_count": 233, + "id": "cebdca87", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU8UlEQVR4nO3df5RcZX3H8c+HhCQoIEjWiglxEWktrUjqGrFYRUTAX6DIUWgRENocaz1Qa0tFTyvVUnuCpdqjpxoQNIpgC6JIixg1lGqDsIE0ISZRJBETCFlANKkaDPn2j/ssO9nMzN7ZmTs78/B+nTNnZ+7ce5/nPnPns3eeufcZR4QAAPnZa6orAACoBgEPAJki4AEgUwQ8AGSKgAeATE2f6grUmj17dgwODk51NQCgb6xYseLhiBio91xPBfzg4KCGh4enuhoA0Dds/7jRc3TRAECmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADLVUxc6Ab3owgsv1JYtW/TsZz9bixYtmurqAKUR8MAEtmzZos2bN091NYCW0UUDAJki4AEgU3TR1KCvFUBOCPga9LUCyAldNACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BM9cWFToceurEr5cydu1MzZkgbNuzsSpkbNgxWXgaApy6O4AEgUwQ8AGSqL7po0H0MvAb0PwIedTHwGtD/6KIBgEwR8ACQKbpo0Lc4fRZojiN4AMhUpUfwtjdK2ibpCUk7I2KoyvIAAGO60UXzqoh4uAvltG3nzoN2+wsA/Yw++Bpbtrx3qqsAAB1TdcCHpG/YDkmfjojF42ewvVDSQkmaN29exdUB0A4ugOsvVQf8MRHxgO1nSVpqe11E3FY7Qwr9xZI0NDQUFden73HmCKYSF8D1l0oDPiIeSH+32r5B0gJJtzVcYP166dhj95h8zYO/qqiGU+zYWS0v0q22mPnoBnmvxxW7ZmjHjtOrL5C2GDOJtuiWi9at044dOzRzzZq671X0lspOk7T9dNv7jd6XdIKke6oqDwCwO0dU0yti+3mSbkgPp0v6YkRc0myZoaGhGB4e3mN6t7olum0y3RLd66J5v2bMeEiPP/4b2rTpHyovj7YY08vdVWeddZY2b96sOXPmaMmSJVNdHUiyvaLRKeiVddFExH2SXlTV+gEAzXElKwBkioAHgEwR8ACQKQIeADLFUAWoi3F5xtAW6FcEPOpiXJ4xtAX6FQEPZIAhLLqvH8blIeABYBL6YVwevmQFgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmeI0SQBZ4ZqAMRzBA0CmOIIHUBrj8vQXAh5AaYzL01/oogGATBHwAJApAh4AMkXAA0Cm+JIVACahH84oIuABYBL64YwiumgAIFMEPABkioAHgExVHvC2p9m+2/ZNVZcFABjTjSP4CySt7UI5AIAalQa87bmSXi/piirLAQDsqeoj+I9JulDSrorLAQCMU1nA236DpK0RsWKC+RbaHrY9PDIyUlV1AOApp8oj+GMknWx7o6RrJR1n+wvjZ4qIxRExFBFDAwMDFVYHAJ5aKgv4iLgoIuZGxKCk0yV9OyLOrKo8AMDuOA8eADLVlbFoIuJWSbd2oywAQIEjeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkqlTA236a7b+xfXl6fHj6QQ8AQI8qewR/laQdkl6WHm+S9PeV1AgA0BFlA/6wiFgk6deSFBG/lOTKagUAaFvZgH/c9j6SQpJsH6biiB4A0KPK/uDHByV9XdIhtq9W8Xur51RVKQBA+0oFfEQstX2XpKNVdM1cEBEPV1ozAEBbWjlNco6kaZJmSHqF7VOrqRIAoBNKHcHbvlLSkZLWSNqVJoekL1dULwBAm8r2wR8dEUdUWhMAQEeV7aJZbpuAB4A+UvYI/nMqQn6LitMjLSki4sjKagYAaEvZgL9S0tslrdZYHzwAoIeVDfj7I+LGSmsCAOiosgG/zvYXJX1NNVewRgRn0QBAjyob8PuoCPYTaqZxmiQA9LCyV7K+o+qKAAA6q+yFTlcpDTRWKyLObbLMLEm3SZqZyrkuIj44yXoCAFpUtovmppr7syS9WdIDEyyzQ9JxEbHd9t6SvmP75oi4fRL1BAC0qGwXzfW1j21fI+mbEywTkranh3un2x6fAgAA1Zjsb7IeLmneRDPZnmZ7paStkpZGxPfqzLPQ9rDt4ZGRkUlWBwAwXtnfZN1m++ejNxWnS/71RMtFxBMRcZSkuZIW2P7dOvMsjoihiBgaGBhosfoAgEbKdtHs104hEfGY7VslnSTpnnbWBQAop+wR/DG2n57un2n7MtvPnWCZAdsHpPv7SDpe0ro26wsAKKlsH/y/SvqF7RdJulDSjyUtmWCZgyUts71K0p0q+uBvmmAZAECHlD1NcmdEhO1TJH08Ij5j++xmC0TEKknz264hAGBSygb8NtsXSTpTxc/1TVNx2iMAoEeV7aJ5m4oLl86LiC0qfp/10spqBQBoW9mzaLZIuqzm8f2auA8eADCFyp5Fc6rtH9r+WToXfls6Hx4A0KPK9sEvkvTGiFhbZWUAAJ1Ttg/+IcIdAPpL2SP4YdtfkvQV8YtOANAXygb8/pJ+IX7RCQD6Br/oBACZKnsWzVzbN9jeavsh29fbnlt15QAAk1f2S9arJN0o6TkqLnL6WpoGAOhRZQN+ICKuioid6fZZSQzeDgA9rGzAP5yGCZ6WbmdKeqTKigEA2lM24M+V9FZJWyQ9KOk0SXzxCgA9rOxpkh+WdHZE/FSSbD9T0kdVBD8AoAeVPYI/cjTcJSkiHhVjvQNATysb8HvZPnD0QTqCL3v0DwCYAmVD+p8k/Y/t61RcwfpWSZdUVisAQNvKXsm6xPawpOMkWdKpEfH9SmsGAGhL6W6WFOiEOgD0ibJ98ACAPkPAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgExVFvC2D7G9zPZa22tsX1BVWQCAPVU5nsxOSe+NiLts7ydphe2lXAELAN1R2RF8RDwYEXel+9skrVXxc38AgC7oSh+87UEVwwt/r85zC20P2x4eGRnpRnUA4Cmh8oC3va+k6yX9eUT8fPzzEbE4IoYiYmhggJ95BYBOqTTgbe+tItyvjogvV1kWAGB3VZ5FY0mfkbQ2Ii6rqhwAQH1VHsEfI+ntko6zvTLdXldheQCAGpWdJhkR31Hx4yAAgCnAlawAkCkCHgAyRcADQKYIeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BMEfAAkCkCHgAyRcADQKYqC3jbV9reavueqsoAADRW5RH8ZyWdVOH6AQBNVBbwEXGbpEerWj8AoDn64AEgU1Me8LYX2h62PTwyMjLV1QGAbEx5wEfE4ogYioihgYGBqa4OAGRjygMeAFCNKk+TvEbSckm/ZXuT7fOqKgsAsKfpVa04Is6oat0AgInRRQMAmSLgASBTBDwAZIqAB4BMEfAAkCkCHgAyRcADQKYIeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BMVRrwtk+yvd72vbbfV2VZAIDdVRbwtqdJ+qSk10o6QtIZto+oqjwAwO6qPIJfIOneiLgvIh6XdK2kUyosDwBQY3qF654j6Sc1jzdJeun4mWwvlLQwPdxue32FdSpjtqSHu1GQ3Y1S2kJbjKEtxtAWY3qhLZ7b6IkqA75edWKPCRGLJS2usB4tsT0cEUNTXY9eQFuMoS3G0BZjer0tquyi2STpkJrHcyU9UGF5AIAaVQb8nZIOt32o7RmSTpd0Y4XlAQBqVNZFExE7bb9b0i2Spkm6MiLWVFVeB/VMd1EPoC3G0BZjaIsxPd0WjtijWxwAkAGuZAWATBHwAJApAh4AMtWzAW97H9v/lYY8GP/cObZHbK9Mtz9usI4X216dxsL5F7u4VMD2TNtfStO/Z3uwZpmv237M9k0l69luXd5j+37bnyhTXoN179ZWtp+oqU/dM5eatUGTcs5I27AqtdPsBvNdlNa73vaJNdOX2d5uu6PnDdfZ/kW219heW9vW45aZzPZfYvsntrePm/4K23fZ3mn7tCbLV7IP1Nn+uvuw7XensqPRa5fmO9v2D9Pt7BLlN9x+2/NsfyO9Ft+v186NXgvbh6V9ePv4ZZrUpWxbOL2eP0h1O79DbfEXaTtX2f6W7eem6a+qeU+utP0r22+qsi0kSRHRkzdJfybpggbPnSPpEyXWcYekl6m46OpmSa9N098l6VPp/umSvlSzzKslvVHSTSXr2VZdWllH2baStL3EMg3boMH80yVtlTQ7PV4k6eI68x0h6X8lzZR0qKQfSZpW8/ytkoaq2lck/b6k76o4c2uapOWSjm13+9N8R0s6eHz7ShqUdKSkJZJO6/Y+UOf1r7sPS5qf6rpx9HWss65nSrov/T0w3T9wgvIbbn96vV+T7u8r6WmtvhZl9udJtMU7Un33So+f1aG2eNXoNkr603r7VVrfo1W3RUT07hG8pD+S9NXJLmz7YEn7R8TyKFpmiaQ3padPkfS5dP86Sa8ePZqKiG9J2jbZcidRl06YTFs1bIMGnG5PT/Ptr/oXrp0i6dqI2BERGyTdq2JcoirVbn9ImiVphop/MntLeqhBPVvZfkXE7RHxYJ3pGyNilaRdjZateB/Y7fVvtA9HxN0RsXGCdZ0oaWlEPBoRP5W0VNJJzRZotP0uBhecHhFL03zbI+IXdVbR8mvRRKm2UBG+H4qIXWm+rXXmmUxbLKvZxttVXOA53mmSbu5CW/RmwLu4MOp5E+yMb0kfg66zfUid5+eouJp21KY0bfS5n0jF+fqSfibpoDaq3E5d2tKgrWbZHrZ9e72PgTV1Kt0GEfFrFW+K1SqC/QhJn2m23qRj21rP+O2PiOWSlkl6MN1uiYi1zerZoX1gIpXsAyXfK63o5Ov3m5Ies/1l23fbvtR1ulzVodeixbY4TNLb0vvkZtuHN6tX0mpbnKfik9p4p0u6psEyHd0vezLgVQzg81iT578maTAijpT0TY39x6vVbCycUuPklNRuXdpVr63mRTE+xh9K+pjtw9qtk+29VQT8fEnPkbRK0kXtrrcDdtt+28+X9NsqjpzmSDrO9ivqLNftelZV3kTvlVZ1sp7TJf2BpL+U9BJJz1PRFVVVma20xUxJv0rvk8slXdnJetk+U9KQpEvHTT9Y0gtVXABad9HJlllPrwb8L1V8zJb05JdbK22vlKSIeCQidqSnL5f04jrr2KTdPx7VjoXz5Dg5tqdLeoaKPrGWdaAu7dqtrVKdHkh/71PRBzq/QZ1aaYOj0jp/lLoY/k1Ff3fD9SZVj0E0fvvfLOn21B2wXcUR1NF1luvYPlBSVfvAHq9/mzr5+m2SdHcUQ4bvlPQVSb/XrMw2X4tW2mKTpOvT/RtUfIfQsF5JqbawfbykD0g6uSYbRr1V0g3pE3GjenVsv+zJgE/9XdNsz0qPPxARR0XEUdKT/wVHnSxpj4/gqa90m+2jUx/WWRrrm7tR0ug34qdJ+nYKrYZsf8T2m+tMb7cubRnfVrYPtD0z3Z8t6RhJ36+zaMM2sL2uzvybJR1heyA9fo3qbGta7+npbIBDJR2u4svFSozffkn3S3ql7enpU8crm9Szle1vt56V7AN1tr9dt0g6Ie1HB0o6IU1r+B5o4k5JB9bsM8epxX2xFS22xVdSfaRiH/lBnXlabgvb8yV9WkW41+vXP0ONu2ekDrXFk1r5RrabNxX9u8c3eO4jktaoOFtjmaQX1Dy3sub+kKR7VJzJ8QmNDc0wS9K/q/gC8A4V/Xajy/y3pBEVRwObJJ2Ypt8k6WWdrkt67hy1dxbNk22l4qh6darPaknn1cz3IRU7XsM2UPExd32Dct6pIixXqeiaOihNP1nFF1aj830gbed61Zwpkp67VZ0/i6Z2+6epeIOtVREml3Vw+xelfWJX+ntxmv6S9Pj/JD0iaU039wGNe6802YfPT493qjgSvaKmXlfULH9uapd7Jb2jZnqj90Cz7X9N2l9WS/qspBllX4uadbRyFk3ZtjhA0n+kei2X9KIOtcU3VXypvzLdbqx5blDFgdJe45appC0ioqcDfr6kz091PWrqc0uF6570m7vTbSXpDZLOr3Bbb1XnA75vtr+KfaBb75Uq3wMTlNtKwNMWNbcqf/CjLRFxt4sLY6ZFxBM9UJ8TJ56rdbbfo+LI+PqJ5m2kk20VEaUu8JoM28tUfNHWqP9xUvpl+xtpdx/o1nulqvdAI+nkgOtV/zTXumiLccul/woAgMz05JesAID2EfAAkCkCHgAyRcCjr9k+wPa7pqDcY91gxFHb/2n7gC5XCdgDAY9+d4CKEfh6RkS8LiIem+p6AAQ8+t0/ShodK/tS239l+840+NvfSZLtQdvrbF9h+x7bV9s+3vZ3XYzzvSDNd7Htz9v+dpr+JxOUvb/tG1yM//0p23ul9Wy0PTuVu9b25S7Gp/+G7X3SPOd7bNzwa6tsIDx1EfDod++T9KMohrFYqmJohAUqxs55cc1AY8+X9HEVY468QMVAbC9XMRDW+2vWd6Sk16sYt/1vbT+nSdkLJL1XxeBRh0k6tc48h0v6ZET8joqBsN5SU+/5UQxS987SWwu0gIBHTk5It7sl3aUiyEeHgd0QEaujGP97jaRvRXERyGoVl5CP+mpE/DIiHlYx9ESzsezviGIgrSdUjC/y8jrzbIiIlen+ipqyVkm6Oo06uLOlrQRKIuCRE0v6SKSB6SLi+RExOmZ97ah+u2oe75J2u6J7/JV/za4ELDNvbblP1JT1ekmfVDH66Io0ciDQUQQ8+t02Sful+7dIOtf2vpJke47tZ7W4vlNsz7J9kKRjVYyI2MgC24emvve3SfpOmQLS/IdExDJJF6r4onjfFusJTIijBvS1iHgkfVl6j4qx378oaXkxIq+2SzpTxZFzWXeoGGVwnqQPRxpbv4HlKr7kfaGk21SMK17GNElfsP0MFZ86/pmzblAFxqIBEtsXqxit76NTXRegE+iiAYBMcQQPNGH7hZI+P27yjoh46VTUB2gFAQ8AmaKLBgAyRcADQKYIeADIFAEPAJn6f76SMkWE29GIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "e10['temp_bins'] = pd.qcut(e10['temp_outside'], 5)\n", + "temp = sns.barplot(x='temp_bins', y='consume',data=e10, color='blue')\n", + "temp.axhline(y = e10.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": 213, + "id": "6be1273d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAANYklEQVR4nO3dbYxcZRnG8euiW16sJWoYqbaURSRV1CKyooYEIxqCChqJQU0QeYn7SQKJWvWDGFFjUpXIBySpULARUANikEQUo5WogMwWUOrWaAiFLo7dWpUWtKVw+2GGdJbubs929tkzvff/Szad2Z2Z507T/nPy7JkzjggBAPI5pO4BAABlEHgASIrAA0BSBB4AkiLwAJDUQN0DdDvqqKNicHCw7jEA4KAxMjKyLSIak/2srwI/ODioZrNZ9xgAcNCwvXmqn7FFAwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgqb56oxOA/FatWqVWq6UlS5Zo9erVdY+TGoEHMKdarZbGxsbqHmNeYIsGAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkioaeNsvs32r7U22R22/o+R6AIC9Sl+q4GpJd0XEh20fKuklhdcDAHQUC7ztIyWdLulCSYqI3ZJ2l1oPADBRyS2a10gal3SD7QdtX2d7UcH1AABdSgZ+QNJbJF0bESdLelrS51/8INvDtpu2m+Pj4wXHAYD5pWTgt0jaEhH3d+7fqnbwJ4iINRExFBFDjUaj4DgAML8UC3xEtCQ9YXtF51vvlvTnUusBACYqfRbNpZJu6pxB86ikiwqvBwDoKBr4iHhI0lDJNQAAk+OdrACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSpd/oBKDj8SvfVPcIfWHP9ldIGtCe7Zv5O5G0/Io/FXttjuABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJFX0Az9sPyZph6TnJO2JiKGS6wEA9pqLT3R6V0Rsm4N1AABd+Mi+hFatWqVWq6UlS5Zo9erVdY8DoCal9+BD0i9sj9genuwBtodtN203x8fHC48zP7RaLY2NjanVatU9CoAaOSLKvbj96oh40vYrJd0t6dKIuGeqxw8tXhzNU04pNs98Mbppk3bt2qXDDjtMr3/d6+oeBx3/2/xA3SP0hSd2DujZ562Fh4SOeemeusep3eHHvrWn5/s3vxmZ6vebRbdoIuLJzp9bbd8u6VRJUwYeQH5Efe4UC7ztRZIOiYgdndtnSrpy2ietWCGtX19qpHnj6xdcoLGxMS1dulTr1q2rexx0bL3yTXWPgD60/Ir1vb2APeWPSh7BHy3pdrcXH5B0c0TcVXA9nfJZYiZJi7ft0AJJj2/bwd+JpJFvXFD3CEAtigU+Ih6VdFKp1wcATI93sgJAUgQeAJIi8ACQFO9kTej5QxdN+BPA/ETgE3r6hDPrHgFAH2CLBgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJBU8cDbXmD7Qdt3ll4LALDXXBzBXyZpdA7WAQB0KRp428skvV/SdSXXAQDsq/QR/LclrZL0/FQPsD1su2m7OT4+XngcAJg/KgXe9ktsf9H2dzv3T7B99n6ec7akrRExMt3jImJNRAxFxFCj0ag8OABgelWP4G+QtEvSOzr3t0j66n6ec5qkD9h+TNIPJJ1h+/sHMiQAYOaqBv74iFgt6VlJioj/SvJ0T4iIL0TEsogYlPRRSb+KiPN7GRYAUF3VwO+2fYSkkCTbx6t9RA8A6FMDFR/3JUl3STrG9k1qb79cWHWRiFgvaf0MZwMA9KBS4CPibtsbJL1d7a2ZyyJiW9HJAAA9mclpkkslLZB0qKTTbZ9bZiQAwGyodARve62klZI2au857SHpx4XmAgD0qOoe/Nsj4sSikwAAZlXVLZp7bRN4ADiIVD2C/57akW+pfXqkJUVErCw2GQCgJ1UDv1bSxyX9SdNcVwYA0D+qBv7xiLij6CQAgFlVNfCbbN8s6afqegdrRHAWDQD0qaqBP0LtsJ/Z9T1OkwSAPlb1nawXlR4EADC7qr7R6QZ1LjTWLSIunvWJAACzouoWTfcHZh8u6UOSnpz9cQAAs6XqFs1t3fdt3yLpl0UmAgDMigP9TNYTJC2fzUEAALOr6h78Dk3cg29J+lyRiQAAs6LqFs3i0oMAAGZXpS0a26fZXtS5fb7tq2wfW3Y0AEAvqu7BXyvpGdsnSVolabOkdcWmAgD0rGrg90RESPqgpKsj4mpJbNsAQB+reh78DttfkHS+2h/Xt0DSwnJjAQB6VfUI/iNqX4vmkohoqf35rN8oNhUAoGdVz6JpSbqq6/7jYg8eAPpa1bNozrX9V9v/sf2U7R22n9rPcw63/QfbD9veaPvLszMyAKCKqnvwqyWdExGjM3jtXZLOiIidthdK+q3tn0XEfTOeEgAwY1UD/48Zxl2ds252du4u7Hztc0VKAEAZVQPftP1DST/RDD7RqXO2zYik10q6JiLun+Qxw5KGJWn5ci5vAwCzpepZNEdKekbtT3Q6p/N19v6eFBHPRcSbJS2TdKrtN07ymDURMRQRQ41Go/LgAIDpzcknOkXEv22vl3SWpEd6eS0AQDVVz6JZZvt221tt/8P2bbaX7ec5Ddsv69w+QtJ7JG3qeWIAQCVVt2hukHSHpFer/Sann3a+N51XSfq17T9KekDS3RFx536eAwCYJVV/ydqIiO6g32j78umeEBF/lHTygQ4GAOhN1SP4bZ3LBC/ofJ0v6Z8lBwMA9KZq4C+WdJ7an+T0d0kfltTTL14BAGVV3aL5iqRPRMS/JMn2KyR9U+3wAwD6UNUj+JUvxF2SImK72F8HgL5WNfCH2H75C3c6R/BVj/4BADWoGulvSfq97VvVvp7MeZK+VmwqAEDPqr6TdZ3tpqQzJFnSuRHx56KTAQB6UnmbpRN0og4AB4mqe/AAgIMMgQeApAg8ACRF4AEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUsUCb/sY27+2PWp7o+3LSq0FANhXyc9V3SPp0xGxwfZiSSO27+aToABgbhQ7go+Iv0fEhs7tHZJGJS0ttR4AYKI52YO3PSjpZEn3T/KzYdtN283x8fG5GAcA5oXigbf9Ukm3Sbo8Ip568c8jYk1EDEXEUKPRKD0OAMwbRQNve6Hacb8pIn5cci0AwEQlz6KxpOsljUbEVaXWAQBMruQR/GmSPi7pDNsPdb7eV3A9AECXYqdJRsRvJbnU6wMApsc7WQEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApIoF3vZa21ttP1JqDQDA1Eoewd8o6ayCrw8AmEaxwEfEPZK2l3p9AMD02IMHgKRqD7ztYdtN283x8fG6xwGANGoPfESsiYihiBhqNBp1jwMAadQeeABAGSVPk7xF0r2SVtjeYvuSUmsBAPY1UOqFI+JjpV4bALB/bNEAQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEkReABIqmjgbZ9l+y+2/2b78yXXAgBMVCzwthdIukbSeyWdKOljtk8stR4AYKKSR/CnSvpbRDwaEbsl/UDSBwuuBwDoMlDwtZdKeqLr/hZJb3vxg2wPSxru3N1p+y8FZ5pPjpK0re4h+oG/+Ym6R8C++Pf5gi+511c4dqoflAz8ZFPHPt+IWCNpTcE55iXbzYgYqnsOYDL8+5wbJbdotkg6puv+MklPFlwPANClZOAfkHSC7eNsHyrpo5LuKLgeAKBLsS2aiNhj+1OSfi5pgaS1EbGx1HrYB9te6Gf8+5wDjthnWxwAkADvZAWApAg8ACRF4BPiEhHoV7bX2t5q+5G6Z5kPCHwyXCICfe5GSWfVPcR8QeDz4RIR6FsRcY+k7XXPMV8Q+Hwmu0TE0ppmAVAjAp9PpUtEAMiPwOfDJSIASCLwGXGJCACSCHw6EbFH0guXiBiV9CMuEYF+YfsWSfdKWmF7i+1L6p4pMy5VAABJcQQPAEkReABIisADQFIEHgCSIvAAkBSBByqyfR0XbsPBhNMkgS62rfb/i+frngXoFUfwmPdsD9oetf0dSRskXW+7aXuj7S93PW697aHO7Z22v2b7Ydv32T66rvmBqRB4oG2FpHURcbKkT0fEkKSVkt5pe+Ukj18k6b6IOEnSPZI+OXejAtUQeKBtc0Tc17l9nu0Nkh6U9Aa1PzjlxXZLurNze0TSYPEJgRkaqHsAoE88LUm2j5P0GUlvjYh/2b5R0uGTPP7Z2PsLrOfE/yX0IY7ggYmOVDv2/+nsq7+35nmAA8ZRB9AlIh62/aCkjZIelfS7mkcCDhinSQJAUmzRAEBSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEn9H8Vp/toUTVPWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "rain = sns.barplot(data=e10, y=\"consume\", x =\"rain\")\n", + "rain.axhline(y=e10.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": 235, + "id": "7bc5ef69", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXeElEQVR4nO3de5wlZX3n8c9vBmdAhIjSSmQYR9AECeGiLQtxdRGJISRqVDboBhEkOy/vuKuLujd3zbLqoCgbXTdEAfFKArpBNChBwJgA2gPDdVAJjGEGWmbiBfAyk8Ff/qin6TNnzqX6Un0pPu/X67y6Tp2qep5++pxv13mq6qnITCRJ7bNkvisgSWqGAS9JLWXAS1JLGfCS1FIGvCS11C7zXYFOe++9d65atWq+qyFJi8batWu3ZOZIr9cWVMCvWrWKsbGx+a6GJC0aEfH9fq/ZRSNJLWXAS1JLGfCS1FIGvCS1lAEvSS3VaMBHxOMj4uKIuCMi1kfEUU2WJ0ma1PRpkucAl2fmCRGxDHhsw+VJkorGAj4i9gSeD5wCkJnbgG1NlSdJ2lGTe/D7A5uB8yPiUGAtcHpm/rRzoYhYDawGWLlyZYPVGe6MM85gfHycffbZhzVr1sxrXSRppprsg98FeBbwscw8HPgp8M7uhTLz3MwczczRkZGeV9vOmfHxcTZt2sT4+Pi81kOSZkOTAb8R2JiZ15fnF1MFviRpDjQW8Jk5DtwTEb9eZr0QuL2p8iRJO2r6LJo3A58pZ9DcBZzacHmSpKLRgM/MdcBok2VIknrzSlZJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaqmmhwueFU972oY5KWfFiu0sWwZ33719Tsq8++5VjZch6dHLPXhJaikDXpJayoCXpJZaFH3wmntnnHEG4+Pj7LPPPqxZs2a+qyNpGgx49TQ+Ps6mTZvmuxqSZsAuGklqKQNeklrKgJekljLgJamlPMgqSdOwGM40M+AlaRoWw5lmdtFIUks1ugcfERuAB4GHge2ZOdpkeZKkSXPRRfOCzNwyB+VIkjrYB99h+/Yn7vBzIXLoZEl1NR3wCXwtIhL4s8w8t3uBiFgNrAZYuXJlw9UZbHz8bfNaviTNpsjM5jYe8ZTMvDcingRcAbw5M7/Rb/nRPfbIsWc/e6f51133i8bqOJ+OPHLXKa8zV22xfPndxJJt5C+XsXXr0xovbzptIc2n9XfcwdatW1m+fDnPPPDAeatHXHPN2n7HNxvdg8/Me8vP+yPii8ARQN+Al7Sw/cNdd7Ft2zaWLVvGAfvvP9/V6WnudoKSWAK/+HnOSZnT2QlqbA8+InYHlmTmg2X6CuA9mXl5v3VGR0dzbGxsp/lz1e8816bT7zx3ffD/mWXLfsC2bU9m48b/3Xh59sEvDieffDKbNm1i33335cILL5zv6vT0aPuMRMS87ME/GfhiREyU89lB4S5Jml2NBXxm3gUc2tT2JUmDeSWrJLWUAS9JLeWFTtIQi2HUQKkXA149LYareufKYhg1UOrFgFdPXtUrDbYYdoIMeKkFHKNo7i2GnSAPskpSSxnwktRSBrwktZQBL0kt5UFWLVoeWJQGcw9eklrKgJeklrKLRlJti+HiHk0y4CXVthgu7tEku2gkqaUMeElqKbtopCHsd9ZiZcBLQ9jvrMXKLhpJaikDXpJayoCXpJYy4CWppQx4SWopA16SWqrxgI+IpRFxY0Rc1nRZkqRJc7EHfzqwfg7KkSR1aDTgI2IF8HvAx5ssR5K0s6b34D8MnAH8suFyJEldGgv4iPh94P7MXDtkudURMRYRY5s3b26qOpL0qNPkHvxzgZdExAbg88AxEfHp7oUy89zMHM3M0ZGRkQarI0mPLo0FfGa+KzNXZOYq4JXA1zPzpKbKkyTtyPPgJaml5mS44My8Grh6LsqSJFXcg5ekljLgJamlDHhJaikDXpJayoCXpJaqFfAR8diI+G8R8efl+TPKlaqSpAWq7h78+cBW4KjyfCPwvxqpkSRpVtQN+AMycw3wzwCZ+XMgGquVJGnG6gb8tojYDUiAiDiAao9ekrRA1b2S9d3A5cB+EfEZqoHETmmqUpKkmasV8Jl5RUTcABxJ1TVzemZuabRmkqQZmcppkvsCS4FlwPMj4uXNVEmSNBtq7cFHxHnAIcBtTN6dKYEvNFQvSdIM1e2DPzIzD2q0JpKkWVW3i+baiDDgJWkRqbsH/0mqkB+nOj0ygMzMQxqrmSRpRuoG/HnAq4FbmOyDlyQtYHUD/h8z89JGayJJmlV1A/6OiPgs8CU6rmDNTM+ikaQFqm7A70YV7C/qmOdpkpK0gNW9kvXUpisiSZpddS90Op8y0FinzHztrNdIkjQr6nbRXNYxvSvwMuDe2a+OJGm21O2iuaTzeUR8DvibRmokSZoV070n6zOAlbNZEUnS7KrbB/8gO/bBjwPvaKRGkqRZUbeLZo+pbjgidgW+ASwv5Vycme+e6nYkSdNTq4smIp4bEbuX6ZMi4uyIeOqQ1bYCx2TmocBhwHERceSMaitJqq1uH/zHgJ9FxKHAGcD3gQsHrZCVh8rTx5THTqdaSpKaUTfgt2dmAi8FzsnMc4Ch3TYRsTQi1gH3A1dk5vU9llkdEWMRMbZ58+YpVF2SNEjdgH8wIt4FnAR8OSKWUu2RD5SZD2fmYcAK4IiIOLjHMudm5mhmjo6MjEyh6pKkQeoG/IlUfeqnZeY41f1Zz6pbSGb+GLgaOG6K9ZMkTVOtgM/M8cw8OzP/tjz/x8wc2AcfESMR8fgyvRtwLHDHDOsrSaqp7lk0L4+I70XETyLigYh4MCIeGLLarwJXRcTNwLep+uAvG7KOJGmW1B2LZg3w4sxcX3fDmXkzcPi0aiVJmrG6ffA/mEq4S5LmX909+LGIuAj4/3hHJ0laFOoG/J7Az/COTpK0aHhHJ0lqqbpn0ayIiC9GxP0R8YOIuCQiVjRdOUnS9NU9yHo+cCnwFKqLnL5U5kmSFqi6AT+Smedn5vbyuABwXAFJWsDqBvyWMkzw0vI4CfinJismSZqZugH/WuAPqe7kdB9wAuCBV0lawOqeJvknwGsy80cAEfEE4ANUwS9JWoDq7sEfMhHuAJn5QxyGQJIWtLoBvyQi9pp4Uvbg6+79S5LmQd2Q/iDw9xFxMdUVrH8InNlYrSRJM1b3StYLI2IMOAYI4OWZeXujNZMkzUjtbpYS6Ia6JC0SdfvgJUmLjAEvSS1lwEtSSxnwktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLdVYwEfEfhFxVUSsj4jbIuL0psqSJO2sySF/twNvy8wbImIPYG1EXOEgZZI0Nxrbg8/M+zLzhjL9ILAe2Lep8iRJO5qTPviIWEV1B6jr56I8SdIcBHxEPA64BHhrZj7Q4/XVETEWEWObN29uujqS9KjRaMBHxGOowv0zmfmFXstk5rmZOZqZoyMjI01WR5IeVZo8iyaATwDrM/PspsqRJPXW5B78c4FXA8dExLryOL7B8iRJHRo7TTIzv0l1/1ZJ0jzwSlZJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaikDXpJaqrGAj4jzIuL+iLi1qTIkSf01uQd/AXBcg9uXJA3QWMBn5jeAHza1fUnSYPPeBx8RqyNiLCLGNm/ePN/VkaTWmPeAz8xzM3M0M0dHRkbmuzqS1BrzHvCSpGYY8JLUUk2eJvk54Frg1yNiY0Sc1lRZkqSd7dLUhjPzVU1tW5I0nF00ktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLWXAS1JLGfCS1FIGvCS1lAEvSS1lwEtSSxnwktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLWXAS1JLGfCS1FIGvCS1lAEvSS1lwEtSSxnwktRSBrwktVSjAR8Rx0XEdyLizoh4Z5NlSZJ21FjAR8RS4KPA7wIHAa+KiIOaKk+StKMm9+CPAO7MzLsycxvweeClDZYnSeqwS4Pb3he4p+P5RuBfdS8UEauB1eXpQxHxnQbrVMfewJa5KChiLkqZEdtikm0xybaYtBDa4qn9Xmgy4HtVJ3eakXkucG6D9ZiSiBjLzNH5rsdCYFtMsi0m2RaTFnpbNNlFsxHYr+P5CuDeBsuTJHVoMuC/DTwjIp4WEcuAVwKXNlieJKlDY100mbk9It4EfBVYCpyXmbc1Vd4sWjDdRQuAbTHJtphkW0xa0G0RmTt1i0uSWsArWSWppQx4SWopA16SWmpBBHxE7BYR15ThDYiIyyPixxFxWddyn4iImyLi5oi4OCIe12d774+IW8vjxI75x0TEDWX+JyNilzJ/r4j4YtnutyLi4Bp17lmXiDgwIq6NiK0R8fYB67+w1GVdRHwzIp5e5p9Yxu65rMc6j7RTRDw1ItaW9W+LiNd1LPemso2MiL0H1GFNWXd9RPyfiMGXlUTE6yLilo46H9TxWs8271p/eURcVOp2fUSsKvMPKNt8aFD502yLnn/zHtt7TUR8rzxeM4V6nFDaebRr/p4RsSkiPjKV9WfaFnXKj4g/Hbb9uvUvy54SEZtLvddFxB93vPZwx/yeZ9E19b4YVH5EXBARd3e8dlif7U3pfRERKyPiqoi4MapsOL7jtaGft9lsCwAyc94fwBuB0zuevxB4MXBZ13J7dkyfDbyzx7Z+D7iC6gyh3YExYE+qf2b3AL9WlnsPcFqZPgt4d5k+ELiyRp171gV4EvAc4Ezg7QPW/y7wzDL9BuCCjteO7v7du9sJWAYsL9OPAzYATynPDwdWlXl79yn/t4C/ozrDaSlwLXD0FH7nlwCXD2rzHuu/Afh/ZfqVwEVdrz80nfdMv7YY9Dfv2tYTgLvKz73K9F416rAH8A3gOmC067VzgM8CH5nm+tNqi2HlA6PAp4Ztv079O5Y9pd9ydX6Ppt4Xg9YFLgBOGLKtKb8vqM6qeX2ZPgjYUKZrfd5msy0yc2HswQN/BPzVxJPMvBJ4sHuhzHwAoPzn240eV8ZSNeo1mbk9M38K3AQcBzwR2JqZ3y3LXQG8omOdK0sZdwCrIuLJgyrcry6ZeX9mfhv45yG/c1L94wH4FepdBPZIO2XmtszcWuYvp+PbWGbemJkbapS/KyUcgccAPxi4Qvmdi92ZbP9+bd7tpcAny/TFwAuHfWsYoE5bDPqbd/od4IrM/GFm/qgs16v+3f4EWAP8onNmRDwbeDLwtemsPw07fH76lV/2as8Czhi0sSnUf7Y08r6YBdN5X/T7XNf9vM1mW8x/wEd1EdT+NQJpYvnzgXGqPe0/7bHITcDvRsRjo+qeeAHVFbVbgMd0fJU+gckrbW8CXl62fwTV2A4rZqEug/wx8JWI2Ai8GnjfkLJ2aqeI2C8ibqbaS31/Zta+UjgzrwWuAu4rj69m5vph60XEGyPiH6iC6S1ldr827/bI+ESZuR34CVUIT8kU2mLQ37xnvYqNZd6gOhwO7JeZ3d2IS4APAv9pOutPVXdbDCn/TcClmXnfgO3Vqn8Pr4jJ7srONt41IsYi4rqI+IM+6zb2vhhS/pmlzh+KiOWD6lUMfV8A/wM4qXyuvwK8Gab0eZuVtpgw7wFPNVjPj+sunJmnUn39Xg/s1NebmV+jati/Bz5H9VVoe1bfb14JfCgivkX1DWF7We19wF4RsY7qD3Jjx2vTrssQ/wE4PjNXAOdTdfMMslM7ZeY9mXkI8HTgNcO+dXSKqs//mVT/yPYFjomI5w9bLzM/mpkHAO8A/muZ17PNexXba5N169yhVlsM+ZtPu14lBD8EvK3Hy28AvpKZ9/R4rc76U9XdFj3Lj4inAP+W4TsiQ+vfw5eAVaX9/4bJPVCAlVmN1fLvgA9HxAE91m/sfTGg/HdR7Zg9h6oL5h2zVK9XUXW3rgCOBz4VEUum8HmbrbYAFkbA/5zqq0ttmfkwcBG9v26TmWdm5mGZ+dtUDfa9Mv/azHxeZh5B1fc5Mf+BzDw1Mw8DTgZGgLtnoy69RMQIcGhmXl9mXUTVRzdI33Yqe6u3Ac+rWwfgZcB1mflQZj4E/DVw5BTW/zzwBx116NnmXR4Znyiqg52/AvxwCmVOqN0W/f7m/epVDBs3aQ/gYODqiNhA1W6Xlm8KRwFvKvM/AJwcEd3fzgatP1XdbdGv/MOp/vndWV57bETc2WN7deq/g8z8p44usj8Hnt3x2r3l513A1aUe3Rp7X/QrPzPvy8pWqh2sIwbVq6gzntZpwF+UMq4t9dmb+p+32WqLylQ67Jt6UH0l2bVr3tF0HGikCo2nd0x/APhAj20tBZ5Ypg8BbgV2Kc+fVH4up+pzP6Y8fzywrEz/e+DCju1dCezbVcbQulB9Vet5kJXqYOQWJg/+nQZc0u9379VOVG+23cr0XlQHbX+za/kN9D/IeiLV3tYuVP2BVwIvLq+9F3hZj3We0TH9YmBsWJt3rf9GdjyA9Bddr0/lYFqttuj3N+/a1hOo/qHvVR53A08Y1BZd619N10HSMv8U6h2k3Gn96bZF3fLrbL97/QHvi1/tmJ4Isom/xcTB772p/rkeNIfvi77lT9SZ6vP7YeB9s/G+oAruU8r0M6n+IQQDPm9NtUVmLpiA/wRwbMfzvwU2U/1H3kh1sGMJ1VHoW6gC5DOUMzWozgz4eJneFbi9PK4DDuvY7llU3SnfAd7aMf+o8se/A/gC5Uh5KfP7lPDoWH5QXfYpdX6A6uvixo7XvsLkmS4vK+vfRPUB379j+0fTO+AfaSfgt4Gby/o3A6s7lntLKXd7eYN9vEc7LQX+rLTH7cDZHetfBhzVo/xzqPaO11H1J/5GjTZ/D/CSjuX+ErgT+Fbn7zyND3Ldtuj3N3+kLcrz15Z63QmcOqwtuupyNTUCvrMthq0/3bYYVH6/7Xe3xYD693tfvLe8L24q74sDy/zfYvI9fgsdZzDN0ftiUPlfZ/Lz+2ngcbPxvqA64eDvSpnrgBfV+Lw10haZCyfgDwc+Nd/16FGvgzv/EHNY7tH0Dvg5aSeqA0Dz0d5T+SDbFraFbTHksRD64MnMG4GrouNCjYUgM2/NzP84l2VGdZHQ/wV+1KM+c9JOmfk7TW6/28RFHAw5TbOTbTHJtphkW3StV/4rSJJaZkHswUuSZp8BL0ktZcBLUksZ8FINEXH1oAuR+o3yFxHviYhjm6uZ1F9j92SVBJn53+e7Dnr0cg9ei1ZE7B4RX45qXP5boxpLf0NUY9N/qzwmxtkfiYhLIuLb5fHcjm2cV+bdGBEvLfN3i4jPl8GoLqIaMXRYfT4Y1djzV5bhKCbGHT+hTG+IiP9ZlrklIg4s8/9NTI5LfmNE7NFQk+lRxoDXYnYccG9mHpqZBwOXl/kPZDX2zEeoLkOH6ircD2Xmc6jGDfp4mf9fgK+X+S8AzoqI3YHXAz/LagCtM+kYX6WP3YEbMvNZwDXAu/sst6Us8zFg4oYwbwfemNVYSM+juoJbmjEDXovZLcCxZY/9eZn5kzL/cx0/jyrTxwIfKReLXArsWfaUXwS8s8y/mupS8ZXA86kuYSczb6YaAmGQX1INGkdZ71/3We4L5edaqpuyQHVp+9kR8Rbg8VkNEyvNmH3wWrQy87tR3ZzieOC9ETFxg4rOq/cmppdQjR2yw95xRATwisz8Ttf87u1MuXp95k+Muvgw5fOXme+LiC9T/R7XRcSxWd14RpoR9+C1aJUxzn+WmZ+mGtHzWeWlEzt+Xlumv0Z1w4uJdQ8rk18F3lyCfuJGHFANLfxHZd7BVKNkDrKE6oYiUI09/s0p/B4HZOYtmfl+qtsdHlh3XWkQ9+C1mP0mVZ/5L6lukfh6qtucLY+I66lC91Vl2bcAH43qrk+7UAX466hum/dh4OYS8huA36fqIz+/LL+OamS/QX4K/EZErKW6C89UbgDz1oh4AdVe/e1UQ85KM+ZYNGqVcqOK0czcMt91keabXTSS1FLuwUtTULp+um/Q/OrMvGU+6iMNYsBLUkvZRSNJLWXAS1JLGfCS1FIGvCS11L8Ac6xOYdlAIRIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "e10['speed_bins'] = pd.qcut(e10['speed'], 5)\n", + "speed = sns.barplot(x='speed_bins', y='consume',data=e10,color='blue')\n", + "speed.axhline(y=e10.consume.mean(), c=\"red\", label=\"mean\");\n" + ] + }, + { + "cell_type": "markdown", + "id": "ad82d327", + "metadata": {}, + "source": [ + "### PARA SP98" + ] + }, + { + "cell_type": "code", + "execution_count": 226, + "id": "1abebf39", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVgUlEQVR4nO3dfbRldX3f8feHAQQRlcg1qAMZRDAhEbFMEGqqBp/wuVqXYoL1gYSVJllaly3Rpm2siU0yprS2spoQEKNBYVXFB2KESQSNBsThQZ5GIgolIFcGlTAkFh349o+9hzlzOefOOfeefR/2vF9r3XXPw97799u/s8/n7vs7v/07qSokSf2zx3JXQJLUDQNeknrKgJeknjLgJamnDHhJ6qk9l7sCgw488MBat27dcldDklaNK6+88u6qmhn23IoK+HXr1rFp06blroYkrRpJ/u+o5+yikaSeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6akVd6KSV47TTTmN2dpaDDjqIDRs2LHd1JC2AAT/AUNthdnaWO+64Y7mrIWkRDPgBhpqkPrEPXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SecpiktAteH6HVyoCXdsHrI7Ra2UUjST1lwEtSTxnwktRTq6IP/tazD12ScrbduxbYm2333rIkZa475ZbOy5C0+/IMXpJ6yoCXpJ5aFV002sHuKknj8gxeknrKgJeknjLgJamnDHhJ6qlOP2RNciuwFXgA2FZV67ssT5K0w1KMovnFqrp7CcrRbsYRRdL8HCY54HH7bdvptyStZl0HfAEXJyngT6rqzI7LW5R3nDC73FWQpKnpOuCfVVXfSfJ4YGOSb1TVlwYXSHIqcCrAIYcc0nF1JGn30ekomqr6Tvv7LuAC4Nghy5xZVeurav3MzEyX1ZGk3UqqqpsNJ/sBe1TV1vb2RuA9VfX5Ueus33//2nTMMQ97/P/deXkndVxu+zzhuInXWaq2+Pb3HsGPHtiDvdc8yJMfd3/n5dkWOyykLbT7yhe/eOWoEYpddtH8JHBBku3lfHS+cJckTVdnAV9V3waePtFKT30qXHrpwx6eXaLhcEtt3SmXTrzOUrXF7312Ld/dujc/uf+P+K8vv73z8myLHRbSFtqNNSfRQzlMUkM5ZFRa/Qx4DeWQUWn1cy4aSeopA16SesouGmkX/DxCq5UBL+2Cn0fscNpppzE7O8tBBx3Ehg0blrs62gUDXtLYZmdnueOOO5a7GhqTffCS1FMGvCT1lAEvST1lwEtSTxnwktRTjqKRpAVYDUNGDXhJWoDVMGTUgJd64NYlmjp5271rgb3Zdu8tS1LmulNu6byMPrMPXpJ6yoCXpJ4y4CWppwx4SeopA16SespRNJLGthrmxndE0Q4GvKSxOTf+6mIXjST1lAEvST1lwEtSTxnwktRTBrwk9ZSjaCRpAVbDkNHOAz7JGmATcEdVvazr8iRpKayGIaNL0UXzNmDzEpQjSRrQacAnWQu8FDiry3IkSQ/X9Rn8/wBOAx4ctUCSU5NsSrJpy5YtHVdHknYfnQV8kpcBd1XVlfMtV1VnVtX6qlo/MzPTVXUkabfT5Rn8s4BXJLkVOA84Icmfd1ieJGlAZwFfVe+qqrVVtQ44CfhCVZ3cVXmSpJ15oZMk9dSSXOhUVZcCly5FWZKkhmfwktRTBrwk9ZQBL0k9ZcBLUk8Z8JLUUwa8JPWUAS9JPWXAS1JPGfCS1FMGvCT1lAEvST1lwEtST40V8EkemeQ/JfnT9v7h7Rd6SJJWqHHP4M8B7geOb+/fDvxeJzWSJE3FuAF/WFVtAH4MUFU/BNJZrSRJizZuwP8oyb5AASQ5jOaMXpK0Qo37hR+/A3weODjJuTTft/qmriolSVq8sQK+qjYmuQo4jqZr5m1VdXenNZMkLcokwySfBKwB9gaeneTV3VRJkjQNY53BJ/kgcBRwA/Bg+3ABn+yoXpKkRRq3D/64qjqy05pIkqZq3C6ay5IY8JK0iox7Bv9nNCE/SzM8MkBV1VGd1UyStCjjBvwHgTcA17GjD16StIKNG/C3VdVnOq2JJGmqxg34byT5KPBZBq5grSpH0UjSCjVuwO9LE+wvHHjMYZKStIKNeyXrmyfdcJJ9gC8Bj2jL+XhV/c6k25EkLcy4FzqdQzvR2KCqess8q90PnFBV9yXZC/hykr+sqssXVlVJ0iTG7aK5cOD2PsCrgO/Mt0JVFXBfe3ev9udhfyQkSd0Yt4vmE4P3k3wM+KtdrZdkDXAl8BTgjKr66pBlTgVOBTjkkEPGqY4kaQwL/U7Ww4FdpnFVPVBVRwNrgWOT/NyQZc6sqvVVtX5mZmaB1ZEkzTVuH/xWdu5emQV+a9xCquqeJJcCJwLXT1JBSdLCjNtFs/+kG04yA/y4Dfd9gecDfzjpdiRJCzNWF02SZyXZr719cpLTk/zULlZ7AnBJkmuBrwEbq+rCXawjSZqScUfR/G/g6UmeDpwGnA18GHjOqBWq6lrgGYuuoSRpQcb9kHVbO+zxlcD7q+r9wMTdNpKkpTPuGfzWJO8CTqb5ur41NOPaJUkr1Lhn8K+juTL1lKqapfl+1vd1VitJ0qKNO4pmFjh94P5tNH3wkqQVatxRNK9O8s0k/5Dk3iRbk9zbdeUkSQs3bh/8BuDlVbW5y8pIkqZn3D747xrukrS6jHsGvynJ+cCn8BudJGlVGDfgHw38E36jkyStGp19o5MkaXmNO4pmbZILktyV5LtJPpFkbdeVkyQt3Lgfsp4DfAZ4Is1FTp9tH5MkrVDjBvxMVZ1TVdvanw8BfjuHJK1g4wb83e00wWvan5OB73VZMUnS4owb8G8BXkvzTU53Aq8B/OBVklawcYdJ/i7wxqr6AUCSnwD+iCb4JUkr0Lhn8EdtD3eAqvo+fpmHJK1o4wb8HkkO2H6nPYMf9+xfkrQMxg3p/wb8bZKP01zB+lrgvZ3VSpK0aONeyfrhJJuAE4AAr66qGzutmSRpUcbuZmkD3VCXpFVi3D54SdIqY8BLUk8Z8JLUUwa8JPWUAS9JPWXAS1JPGfCS1FOdBXySg5NckmRzkhuSvK2rsiRJD9flfDLbgHdU1VVJ9geuTLLRK2AlaWl0dgZfVXdW1VXt7a3AZpqv+5MkLYEl6YNPso5meuGvDnnu1CSbkmzasmXLUlRHknYLnQd8kkcBnwD+bVXdO/f5qjqzqtZX1fqZGb/mVZKmpdOAT7IXTbifW1Wf7LIsSdLOuhxFE+BsYHNVnd5VOZKk4bo8g38W8AbghCTXtD8v6bA8SdKAzoZJVtWXab4cRJK0DLySVZJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppzoL+CQfTHJXkuu7KkOSNFqXZ/AfAk7scPuSpHl0FvBV9SXg+11tX5I0v2Xvg09yapJNSTZt2bJluasjSb2x7AFfVWdW1fqqWj8zM7Pc1ZGk3lj2gJckdcOAl6Se6nKY5MeAy4CnJrk9ySldlSVJerg9u9pwVb2+q21LknbNLhpJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppzoN+CQnJrkpyc1J3tllWZKknXUW8EnWAGcALwaOBF6f5MiuypMk7azLM/hjgZur6ttV9SPgPOCVHZYnSRqQqupmw8lrgBOr6lfa+28AnllVvzlnuVOBU9u7TwVu6qRC4zsQuHuZ67BS2BY72BY72BY7rIS2+Kmqmhn2xJ4dFpohjz3sr0lVnQmc2WE9JpJkU1WtX+56rAS2xQ62xQ62xQ4rvS267KK5HTh44P5a4DsdlidJGtBlwH8NODzJoUn2Bk4CPtNheZKkAZ110VTVtiS/CVwErAE+WFU3dFXeFK2Y7qIVwLbYwbbYwbbYYUW3RWcfskqSlpdXskpSTxnwktRTBrwk9dSKDfgk+yb5Yjvlwdznfi3JdUmuSfLlUVMgJDmmXe7mJP8zSdrHH5Hk/PbxryZZN7DO55Pck+TCCer62iQ3JrkhyUcnrMvbk9yW5APjljdk2zu1VZJDklycZHNbr3VD1hnZBvOU87ok17b7uWGe5d7VbvemJC8aePySJPclmeq44SH7/4dJrm9/XjdinYXs/3uT/H2S++Y8vtjjcVHHwJD9H3oMJzk7ydfb1/DjSR41YntvTPLN9ueNY5T/7CRXJdnWXuA4+NyG9njZPLjPc5YZ+lokOaxt0/vmrjOFtnheW+ftr9lTptQWI4+FUXWZs/7U2gKAqlqRP8BvAG8b8dyjB26/Avj8iOWuAI6nuejqL4EXt4//OvDH7e2TgPMH1nke8HLgwjHreThwNXBAe//xk9Slfe5NwAem1VbApcAL2tuPAh45ZJ2RbTCijMcBtwEz7f0/A543ZLkjga8DjwAOBb4FrJlTt/VdHSvAS4GNNCPE9gM2DR4vC93/drnjgCcA903zeFzsMTDk9R96DM+p5+nAO4ds6yeAb7e/D2hvH7CL8tcBRwEfBl4z8Pg/B75CM4puDXAZ8NxJX4u57T2ltvg74GcGyv/QlNpi5LEwqi5dtUVVrdwzeOCXgU8Pe6Kq7h24ux9DrpBN8gSaxr6smpb5MPAv26dfSRNQAB8Hnrf9zKKq/hrYOkE9fxU4o6p+0K5/14R1mYaH2qo9Y9izqja29bmvqv5pyDoj22CEJwN/V1Vb2vt/BfyrEds9r6rur6pbgJtp5iXq0uCxciTwxaraVlX/SPPH5sQR9Zxk/6mqy6vqziGPL/Z4XKyd3iujjuHt9Wz3c99h9QReBGysqu+3x/RGhrff4HZvraprgQfnPgXsA+xN8wd/L+C7QzYx8Wsxj7Haoq3bo9vbj2H4RZgLaYuRx8KY2TLNtliZAZ/mwqgnV9Wt8yzzG0m+BWwA3jpkkSfRXE273e3tY9uf+3toxusD/0BzhroQRwBHJPlKksuTDDsA5qvLogxpqyOAe5J8MsnVSd6XId1cTN4GNwM/nWRdkj1pwungIcs9tN3W1PZ1mCH7/3XgxUkemeRA4Bd3Vc8pHAOLPR4XbJz3ypzlzwFmgZ8G/teQRab2+lXVZcAlwJ3tz0VVtXm+MhfzWkzYFr8CfC7J7cAbgD+Yr16tsdpijGNhPlM9LldkwNNM4HPPfAtU1RlVdRjwW8B/HLLIfHPhjDVPzpj2pOmmeS7weuCsJI+doC6LNbet9gT+BfDvgJ+nOfN+05D1JqpTewbzb4Dzgb8BbgW2LXa7U7DT/lfVxcDngL8FPkbTLdB5PRd5PC7GLt8rOxVY9WbgicBmYNjnE1OrZ9uv/TM005Q8CTghybM7LHOStng78JKqWgucQ9NlNZV6jXEszGeqx8lKDfgf0vxrBzz04dY1Sa4Zsux5DP9X93aaA2u7wblwHponpz0bfQzw/QXW9Xbg01X147ZL4iaawB+3Lou1U1u1ZV1dzTTN24BPAf9sRL0naoOq+mxVPbOqjqfZz2/Ot91W13MQzd1/quq9VXV0Vb2A5g0zbz2ncAwMWsjxuBgP2/9dqaoHaP5QD+tim+br9yrg8rab8D6azx2Om6/MRb4WY7VFkhng6VX11fah82k+LxhZr9akbTHqWJjPVI/LFRnw7dnimiT7tPd/u33DHg2QZDBAX8qQN3DbV7o1yXFtH9a/Zkff3GeA7Z+Ivwb4QtsvOlKS30/yqiFPfYqmG4C2S+AImg9jxq3LosxtK5o5gA5oD2KAE4Abh6w6sg2SfGNYWUke3/4+gObDoLNGbPekdjTAoTR/7K6YeMfGNHf/k6xJ8rj29lE0H/5dPKKeE+3/KFM4HhdsyOs/qo7ZPlKkLf/lwLD9vAh4YZID2tf5he1j870HRrkNeE6SPZPsBTyH5j+HuSZ+Pw4zblsAPwAek+SI9v4LRtRr4rYY51jYham0xUMm+UR2KX+As4Hnj3ju/cANwDU0fXw/O/DcNQO31wPX04zk+AA7pmbYB/g/NP3KV9D0221f52+ALTRnA7cDL2ofvxA4fkhdQvPv3Y3AdcBJk9Slfe5NLG4UzU5tRXPAXtvW50PA3u3j7wFeMV8b0Pybe9OIcj7W7ueNc/bzFcB7Bu7/drufNzEwUqR97lKmP4rmof1v92t7HS8Hjh5YbrH7v6E9Jh5sf797GsfjYo+BIa//w45hmpO5r7THxPXAubQjPtp6nTWw/lvadrkZePPA46PeAz/flvOPwPeAG9rH1wB/QhOeNwKnT/JaDCw7ySiaXbZF+/ir2rb4entMPnlKbTHfsTCqLp20RVWt6IB/BvCR5a7HQH0u6nDbC35zT7utgJcBb+1wXy9l+gG/ava/i2Ngqd4rXb4HdlHuJAFvWwz8dPmFH4tSVVenuTBmTTV9hstdnxfteqnJJXk78GvAJxa6jWm2VVWNfYHXpJJcQvOh74+nud3Vsv+jLPYYWKr3SlfvgVGSHEbTJsOGVg5lW8xZr/2rIEnqmRX5IaskafEMeEnqKQNeknrKgNeqluSxSX59Gcp9bkbMCpjkc0OuZpaWnAGv1e6xNBddrRhV9ZKqume56yEZ8Frt/gDYPlf2+5L8+yRfSzPn+X8BaCdI+0aSs9LMEX9ukue3E8R9M8mx7XLvTvKRJF9oH//VXZT96CQXpJlz/4+T7NFu59YkB7blbk7yp2nmRL84yb7tMm9t17s2yXldNpB2Xwa8Vrt3At+qZhqLjTRTIxwLHA0cMzC51VNorjI8imYmxV8CfoFmUrb/MLC9o2guMT8e+M9JnjhP2ccC7wCeBhwGvHrIMofTTCf9szQTYW2f/+WdwDOq6iiaMfDS1Bnw6pMXtj9XA1fRBPn2uUFuqarrqupBmkvJ/7qai0Cuo/nCiu0+XVU/rKq7aS41n28u+yuqmdTtAZppHH5hyDK3VNU17e0rB8q6Fjg3yckMn+1SWjQDXn0S4PernZiuqp5SVWe3z90/sNyDA/cfhJ2u6J575d98VwKOs+xguQ8MlPVS4AzgGODKduZAaaoMeK12W4H929sXAW9J+12jSZ60fQbMCbwyyT7tjJTPpZmdc5Rjkxza9r2/DvjyOAW0yx9cVZcAp9F8UDz0+1GlxfCsQataVX2v/bD0epr5xj8KXNbMiMt9wMk0Z87jugL4C+AQ4Herar75vy+j+ZD3acCXgAvGLGMN8OdJHkPzX8d/d9SNuuBcNFIrybtpZuv7o+WuizQNdtFIUk95Bi/NI8nTgI/Mefj+qnrmctRHmoQBL0k9ZReNJPWUAS9JPWXAS1JPGfCS1FP/HwjjPzMa+kVsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sp98['temp_bins'] = pd.qcut(sp98['temp_outside'], 5)\n", + "temp = sns.barplot(x='temp_bins', y='consume',data=sp98,color=\"orange\")\n", + "temp.axhline(y = sp98.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": 220, + "id": "1cf0c4ab", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAANcklEQVR4nO3df6zddX3H8deLFgZ2dM70arcWvM6QJmwW2e4YhsQxtpC6LZoRwzRB/EHWv7awRNfJH9PIZpZUR8Yfm0mHLTZD1IAsyB9sLK7pfgDbbYFpbclMY7HFa29XlYJLa+G1P85pem97e/tt7/3cc/q+z0dy03PuPed83mnKk28+93u+x0kEAKjnokEPAABog8ADQFEEHgCKIvAAUBSBB4Cilg56gKlWrFiR0dHRQY8BABeMHTt2HEoyMtPPhirwo6OjGh8fH/QYAHDBsL3vTD9jiwYAiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFFD9UYnAPVt2LBBExMTWrlypTZu3DjocUoj8AAW1MTEhA4cODDoMRaFpls0tl9v+yHbe2zvtv2OlusBAE5qfQR/r6THk7zX9iWSXtd4PQBAX7PA214u6Z2SPiRJSY5JOtZqPQDAdC23aH5B0qSkLbafsX2f7WWnPsj2etvjtscnJycbjgMAi0vLwC+V9MuSPpfkWkmvSPr4qQ9KsinJWJKxkZEZL2kMADgPLQO/X9L+JE/37z+kXvABAAugWeCTTEj6ru01/W/9pqRvtVoPADBd67No/kjSA/0zaPZK+nDj9QAAfU0Dn+RZSWMt1wAAzIxr0QBAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIpPdAIWyAt3v23QIwyF44ffIGmpjh/ex9+JpCs/8Y1mr80RPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCK4nLBABbUiktfk3S8/ydaIvAAFtTH1v5w0CMsGk0Db/s7ko5IelXS8SRjLdcDAJy0EEfwv5Hk0AKsAwCYgl+yAkBRrQMfSf9ke4ft9TM9wPZ62+O2xycnJxuPAwCLR+stmhuSvGj7jZKesL0nyfapD0iySdImSRobG0vjeRaFDRs2aGJiQitXrtTGjRsHPQ6AAWka+CQv9v88aPsRSddJ2j77szBXExMTOnDgwKDHADBgzQJve5mki5Ic6d++WdLdsz7p+eelG29sNdKicdeePTp69Kh+atcu/j6HyBv37R30CBhGX7+x2Uu3PIJ/k6RHbJ9Y54tJHm+4HgBgimaBT7JX0jXn9KQ1a6Rt25rMs5j85e2368CBA1q1apW2bt066HHQd/Dutw16BAyhKz+xbW4v0DuInhGnSQJAUaUuVfArf8LRqiRdfuiIlkh64dAR/k4k7fjM7YMeARgIjuABoCgCDwBFEXgAKIrAA0BRBB4Aiip1Fg16Xrtk2bQ/ASxOBL6gV666edAjABgCbNEAQFEEHgCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKKp54G0vsf2M7cdarwUAOGkhjuDvlLR7AdYBAEzRNPC2V0v6HUn3tVwHAHC61kfwfy1pg6TXzvQA2+ttj9sen5ycbDwOACwezQJv+3clHUyyY7bHJdmUZCzJ2MjISKtxAGDRaXkEf4Okd9v+jqQvSbrJ9t83XA8AMEWzwCe5K8nqJKOS3ifp60lua7UeAGA6zoMHgKKWLsQiSbZJ2rYQawEAejiCB4CiOgXe9uts/5ntv+vfv6p/lgwAYEh1PYLfIumopHf07++X9BdNJgIAzIuugX9rko2SfiJJSf5PkptNBQCYs66BP2b7MkmRJNtvVe+IHgAwpLqeRfNJSY9LusL2A+q9ielDrYYCAMxdp8AnecL2TknXq7c1c2eSQ00nAwDMybmcJrlK0hJJl0h6p+1b2owEAJgPnY7gbW+WtFbSLp28MmQkfbXRXACAOeq6B399kqubTgIAmFddt2ietE3gAeAC0vUI/gvqRX5CvdMjLSlJ1jabDAAwJ10Dv1nSByR9Q7N8OhMAYHh0DfwLSR5tOgkAYF51Dfwe21+U9DVNeQdrEs6iAYAh1TXwl6kX9punfI/TJAFgiHV9J+uHWw8CAJhfXd/otEX9C41NleQj8z4RAGBedN2ieWzK7Usl/Z6kF+d/HADAfOm6RfPw1Pu2H5T0z00mAgDMi/P9TNarJF05n4MAAOZX1z34I5q+Bz8h6U+bTAQAmBddt2gubz0IAGB+ddqisX2D7WX927fZvsf2m9uOBgCYi6578J+T9GPb10jaIGmfpK2zPcH2pbb/0/ZztnfZ/tQcZwUAnIOugT+eJJLeI+neJPdKOtu2zVFJNyW5RtLbJa2zff15TwoAOCddz4M/YvsuSbep93F9SyRdPNsT+v9DeLl/9+L+12lvlgIAtNH1CP731TsivyPJhHqfz/qZsz3J9hLbz0o6KOmJJE+f76AAgHPTKfBJJpLck+Rf+/dfSDLrHnz/ca8mebuk1ZKus/1Lpz7G9nrb47bHJycnz3F8AMCZdD2L5hbb/2P7R7Zfsn3E9ktdF0nyQ0nbJK2b4WebkowlGRsZGen6kgCAs+i6RbNR0ruT/EyS5UkuT7J8tifYHrH9+v7tyyT9lqQ9c5oWANBZ11+yfj/J7nN87Z+T9IX+L2QvkvSVJI+d5TkAgHnSNfDjtr8s6R/U8ROdkvy3pGvnNB0A4Lx1DfxyST8Wn+gEABcMPtEJAIrqehbNatuP2D5o+/u2H7a9uvVwAIDz1/Usmi2SHpX08+q9yelr/e8BAIZU18CPJNmS5Hj/635JnLQOAEOsa+AP9S8TvKT/dZuk/205GABgbroG/iOSblXvk5y+J+m9kvjFKwAMsa6nSf65pA8m+YEk2X6DpM+qF34AwBDqegS/9kTcJSnJYfEmJgAYal0Df5Htnz1xp38E3/XoHwAwAF0j/VeS/sP2Q+q9g/VWSZ9uNhUAYM66vpN1q+1xSTdJsqRbknyr6WQAgDnpvM3SDzpRB4ALRNc9eADABYbAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCKIvAAUFSzwNu+wva/2N5te5ftO1utBQA4XcsP7Tgu6aNJdtq+XNIO209wmWEAWBjNjuCTfC/Jzv7tI5J2S1rVaj0AwHQLsgdve1S9z3B9eoafrbc9bnt8cnJyIcYBgEWheeBt/7SkhyX9cZKXTv15kk1JxpKMjYyMtB4HABaNpoG3fbF6cX8gyVdbrgUAmK7lWTSW9HlJu5Pc02odAMDMWh7B3yDpA5Jusv1s/+u3G64HAJii2WmSSf5Nklu9PgBgdryTFQCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCKahZ425ttH7T9zVZrAADOrOUR/P2S1jV8fQDALJoFPsl2SYdbvT4AYHYD34O3vd72uO3xycnJQY8DAGUMPPBJNiUZSzI2MjIy6HEAoIyBBx4A0AaBB4CiWp4m+aCkJyWtsb3f9h2t1gIAnG5pqxdO8v5Wrw0AODu2aACgKAIPAEUReAAoisADQFEEHgCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgqKaBt73O9vO2v2374y3XAgBM1yzwtpdI+htJ75J0taT327661XoAgOlaHsFfJ+nbSfYmOSbpS5Le03A9AMAUSxu+9ipJ351yf7+kXzv1QbbXS1rfv/uy7ecbzrSYrJB0aNBDDAN/9oODHgGn49/nCZ/0XF/hzWf6QcvAzzR1TvtGsknSpoZzLEq2x5OMDXoOYCb8+1wYLbdo9ku6Ysr91ZJebLgeAGCKloH/L0lX2X6L7UskvU/Sow3XAwBM0WyLJslx238o6R8lLZG0OcmuVuvhNGx7YZjx73MBODltWxwAUADvZAWAogg8ABRF4AviEhEYVrY32z5o+5uDnmUxIPDFcIkIDLn7Ja0b9BCLBYGvh0tEYGgl2S7p8KDnWCwIfD0zXSJi1YBmATBABL6eTpeIAFAfga+HS0QAkETgK+ISEQAkEfhykhyXdOISEbslfYVLRGBY2H5Q0pOS1tjeb/uOQc9UGZcqAICiOIIHgKIIPAAUReABoCgCDwBFEXgAKIrAAx3Zvo8Lt+FCwmmSwBS2rd5/F68NehZgrjiCx6Jne9T2btt/K2mnpM/bHre9y/anpjxum+2x/u2XbX/a9nO2n7L9pkHND5wJgQd61kjamuRaSR9NMiZpraRft712hscvk/RUkmskbZf0Bws3KtANgQd69iV5qn/7Vts7JT0j6RfV++CUUx2T9Fj/9g5Jo80nBM7R0kEPAAyJVyTJ9lskfUzSryb5ge37JV06w+N/kpO/wHpV/LeEIcQRPDDdcvVi/6P+vvq7BjwPcN446gCmSPKc7Wck7ZK0V9K/D3gk4LxxmiQAFMUWDQAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFDU/wO4cRJ59dm8/wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "rain = sns.barplot(data=sp98, y=\"consume\", x =\"rain\")\n", + "rain.axhline(y=sp98.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": 224, + "id": "5275b59e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAYrUlEQVR4nO3de5glZX3g8e+PO3IRhA63YRgFRAlBMB1WllVxJEhQdFUSZAMPIO48KhrdNSG4u9EsCSuCImwkbibcvCCS5ZIFRIQgI9EAOsBwHUCFUbm0DFEZEJEM/PaPepuuOZzurp7u6kvx/TzPeU5Vnap6f+c9dX7nrffUJTITSVL3rDPTAUiS2mGCl6SOMsFLUkeZ4CWpo0zwktRR6810AHVbb711LliwYKbDkKQ54+abb34sMwf6vTarEvyCBQtYunTpTIchSXNGRPx4tNfsopGkjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR01q050mmnHH388Q0NDbLvttpxyyikzHY4kTYoJvmZoaIiHHnpopsOQpClhF40kdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6qtUEHxFbRMRFEXFPRCyPiH3bLE+SNKLta9GcAVyVmYdGxAbAS1ouT5JUtJbgI2Jz4A3A0QCZ+QzwTFvlSZLW1GYXzSuAlcC5EXFrRJwVEZu0WJ4kqabNBL8e8FrgC5m5N/Ar4ITemSJiUUQsjYilK1eubDEcSXpxaTPBPwg8mJk3lfGLqBL+GjJzcWYOZubgwMBAi+FI0otLawk+M4eAn0bEbmXSm4G72ypPkrSmto+i+TBwfjmC5n7gmLVZyYqzXz6lQY1m9ap5wAasXvXAtJS54NgHWi9D0otXqwk+M5cBg22WIUnqzzNZJamjTPCS1FEmeEnqKBO8JHWUCV6SOsoEL0kdZYKXpI4ywUtSR5ngJamjTPCS1FEmeEnqKBO8JHWUCV6SOsoEL0kd1fb14OeUrTZZvcazJM1lJviajy0cmukQJGnK2EUjSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooD5OUpLVw/PHHMzQ0xLbbbsspp5wy0+H01WqCj4gVwBPAs8DqzBxsszxJmi5DQ0M89NBDMx3GmKajBf+mzHxsGsqRJNXYBy9JHdV2gk/g6oi4OSIWtVyWJKmm7S6a/TLz4Yj4LeCaiLgnM6+vz1AS/yKA+fPntxyOJL14tNqCz8yHy/OjwKXAPn3mWZyZg5k5ODAw0GY4kvSi0loLPiI2AdbJzCfK8IHAiWMudO+9sP/+L5i87SOPtBHizPvy/jMdgdQ5Tz9y47SUc8K/bsgzz67DBrct5endNmq9vI22e92El2mzi2Yb4NKIGC7nq5l5VYvlSZJqWkvwmXk/8JoJLbTbbrBkyQsmD5398qkJapZZcOySmQ5B6pzpyhd/ffk8fvbEBmyz2TP8r0MebL28UfNF1Yjuy8MkJamjvFSB+poLp2FLGpsJXn3NhdOwJY3NBC+Nw72ZEdbFiK02Wb3G82xkgpfG4d7MCOtixMcWDs10COPyT1ZJ6igTvCR1lF00c8yKaTrGd/WqecAGrF71wLSUueDYB1ovQ3qxsQUvSR1lC15zlnsz0thM8FIH+GOnfuyikaSOMsFLUkeZ4CWpo+yDV19z4TRsSWMzwauvuXAa9nTxx05zlQleGoc/dpqrTPCSGnNvZm4xwUtqzL2ZucWjaCSpo0zwktRRJnhJ6igTvCR1VOsJPiLWjYhbI+KKtsuSJI2Yjhb8R4Dl01COJKmm1QQfEfOAtwJntVmOJOmF2m7Bnw4cDzzXcjmSpB6NEnxEvCQi/iIi/r6M7xoRbxtnmbcBj2bmzePMtygilkbE0pUrVzYOXJI0tqYt+HOB3wD7lvEHgb8eZ5n9gLdHxArga8DCiPhK70yZuTgzBzNzcGBgoGE4kqTxNE3wO2fmKcC/AWTmr4EYa4HM/HhmzsvMBcB7gG9l5hGTCVaS1FzTBP9MRGwMJEBE7EzVopckzVJNLzb2SeAqYMeIOJ+q++XopoVk5hJgyQRjkyRNQqMEn5nXRMQtwOuoumY+kpmPtRqZJGlSJnKY5A7AusAGwBsi4l3thCRJmgqNWvARcQ6wJ3AXI8e0J3BJS3FJkiapaR/86zJz91YjkSRNqaZdNDdEhAlekuaQpi34L1Il+SGqwyMDyMzcs7XIJEmT0jTBnwMcCdyB15WRpDmhaYL/SWZe1mokkqQp1TTB3xMRXwUup3YGa2Z6FI0kzVJNE/zGVIn9wNo0D5OUpFms6Zmsx7QdiCRpajU90elcyoXG6jLzvVMekSRpSjTtoqnfMHsj4J3Aw1MfjiRpqjTtorm4Ph4RFwD/1EpEkqQpsbb3ZN0VmD+VgUiSplbTPvgnWLMPfgj481YikiRNiaZdNJu1HYgkaWo16qKJiP0iYpMyfEREnBYRO7UbmiRpMpr2wX8BeCoiXgMcD/wY+FJrUUmSJq1pgl+dmQm8AzgjM88A7LaRpFms6XHwT0TEx4EjqG7Xty6wfnthSZImq2kL/jCqa9Ecm5lDVPdnPbW1qCRJk9b0KJoh4LTa+E+wD16SZrWmR9G8KyJ+EBGPR8SqiHgiIla1HZwkae017YM/BTgkM5c3XXFEbARcD2xYyrkoMz858RAlSWujaYL/2USSe/EbYGFmPhkR6wPfiYhvZOaNE1yPJGktNE3wSyPiQuAfaXhHp3JY5ZNldP3yeMElhyVJ7Wia4DcHnmKCd3Qqh1PeDOwCnJmZN/WZZxGwCGD+fK9fJklTpdU7OmXms8BeEbEFcGlE7JGZd/bMsxhYDDA4OGgLX5KmSNOjaOZFxKUR8WhE/CwiLo6IeU0LycxfAkuAg9YuTEnSRDU90elc4DJge6qTnC4v00YVEQOl5U5EbAwcANyz1pFKkiakaYIfyMxzM3N1eZwHDIyzzHbAdRFxO/B94JrMvGKcZSRJU6Tpn6yPRcQRwAVl/HDgX8daIDNvB/aeRGySpElo2oJ/L/BHVHdyegQ4FFirP14lSdOjaQv+r4CjMvMXABHxMuAzVIlfkjQLNW3B7zmc3AEy8+fY/SJJs1rTBL9ORGw5PFJa8E1b/5KkGdA0SX8W+JeIuIjqDNY/Ak5qLSpJ0qQ1PZP1SxGxFFgIBPCuzLy71cgkSZPSuJulJHSTuiTNEU374CVJc4wJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4Seqo1hJ8ROwYEddFxPKIuCsiPtJWWZKkF2rzxtmrgY9l5i0RsRlwc0Rc463+JGl6tNaCz8xHMvOWMvwEsBzYoa3yJElrmpY++IhYAOwN3NTntUURsTQilq5cuXI6wpGkF4XWE3xEbApcDHw0M1f1vp6ZizNzMDMHBwYG2g5Hkl40Wk3wEbE+VXI/PzMvabMsSdKa2jyKJoCzgeWZeVpb5UiS+muzBb8fcCSwMCKWlcfBLZYnSapp7TDJzPwOEG2tX5I0Ns9klaSOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjrKBC9JHWWCl6SOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjrKBC9JHWWCl6SOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjqqtQQfEedExKMRcWdbZUiSRtdmC/484KAW1y9JGkNrCT4zrwd+3tb6JUljm/E++IhYFBFLI2LpypUrZzocSeqMGU/wmbk4Mwczc3BgYGCmw5GkzpjxBC9JaocJXpI6qs3DJC8AbgB2i4gHI+LYtsqSJL3Qem2tODMPb2vdkqTx2UUjSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdVSrCT4iDoqIeyPihxFxQptlSZLW1FqCj4h1gTOBPwB2Bw6PiN3bKk+StKY2W/D7AD/MzPsz8xnga8A7WixPklQTmdnOiiMOBQ7KzPeV8SOBf5eZH+qZbxGwqIzuBtzbSkDNbQ08NsMxzBbWxQjrYoR1MWI21MVOmTnQ74X1Wiw0+kx7wa9JZi4GFrcYx4RExNLMHJzpOGYD62KEdTHCuhgx2+uizS6aB4Eda+PzgIdbLE+SVNNmgv8+sGtEvDwiNgDeA1zWYnmSpJrWumgyc3VEfAj4JrAucE5m3tVWeVNo1nQXzQLWxQjrYoR1MWJW10Vrf7JKkmaWZ7JKUkeZ4CWpo0zwktRRsyLBR8TGEfHtcnkDIuKqiPhlRFzRM995EfFARCwrj71GWd+nI+LO8jisNn1hRNxSpn8xItYr07eMiEsj4vaI+F5E7NEg5vPLdXbujIhzImL9Mv2lEXF5RNwWEXdFxDHjrOdvIuLJ2vhh5do9V/SZ9/l6ioi9IuKGUsbtPe/zzeV9LouI70TELmOUv3lEPBQRn2/wnt8fEXfU1rt77bX5EXF1RCyPiLsjYkGf5edHxHURcWuJ+eAyfeeyzid7lxkjlnpd7BQRN5d13BUR76/NFxFxUkTcV2L7k1HWd0pZdnlE/O+I6HceR7/lDo2IjIjBMj5qLD3LbRgRF5bP+qbh+ppsXdSmveBzjYizy3Z5e0RcFBGbjrK+oyLiB+VxVIPyj46IlbXv5fDJjaNuo9NVFxHxbC2uy2rz9f3+TkFd7BQR15b3uyQi5k1kXVNZFwBk5ow/gOOAj9TG3wwcAlzRM995wKHjrOutwDVURwhtAiwFNqf6Mfsp8Moy34nAsWX4VOCTZfhVwLUNYj6Y6mSuAC4APlCm/zfg02V4APg5sMEo6xgEvgw82TN9/9733ltPwCuBXcvw9sAjwBZl/D7g1WX4g8B5Y7yPM4CvAp9v8J43rw2/HbiqNr4E+P0yvCnwkj7LL67V0+7Aip7XnxwvhlHqYgNgw1rZK4Dty/gxwJeAdcr4b/VZ178Hvkt1tNe6wA3A/g1i2Ay4HrgRGBwvlp5lPwj8nzL8HuDCqaiLsT7Xns/vNOCEPut6GXB/ed6yDG85TvlH99t+xtpGp6suRluWUb6/U1AX/xc4qgwvBL48kXVNZV1k5uxowQN/DPy/4ZHMvBZ4Yi3XtTvw7cxcnZm/Am4DDgK2An6TmfeV+a4B3l1b5tpS9j3AgojYZqxCMvPKLIDvUZ3IBdXZupuVFuCmVAl+de/ypYVxKnD8BN7b8/WUmfdl5g/K8MPAo1Q/KMMxbF6GX8ooJ5hFxO8C2wBXNyk8M1fVRjcp5VBa8utl5jVlvicz86l+q2gSV0P1ungmM39Tpm/ImnumHwBOzMznyryPjhLXRpTkDKwP/KxBDH8FnAI8/fyKxo6l7h3AF8vwRcCbm+419LHG92e0z3X48yvlbEyfM8uBtwDXZObPM/MXVN+Tg9YmqHG20brW6mKM2Eb7/tatTV08n0uA6xi5/lbTdU1lXcx8go/qJKhXZOaKhoucVHZ/PhcRG/Z5/TbgDyLiJRGxNfAmqjNqHwPWH96VBg5l5Ezb24B3lXj2AXai/wfeL/71gSOBq8qkzwOvpkped1C1Jp7rs+iHgMsy85GG5YxaTyXmDYAflUnvA66MiAdLbCf3WWYd4LPAnzUpv7bccRHxI6rENtzd8UrglxFxSVTdL6fWuwtq/hI4osR1JfDhiZRdi+EFdRERO0bE7VR7aZ8uCQVgZ+CwiFgaEd+IiF1715eZN1B9GR8pj29m5vJxYtgb2DEz+3WljRZL3Q7ldTJzNfA4VSNkQnrrYrzPNSLOBYao9lT/Zqy4igfLtPG8u9b1s2Pvi3220b5lTmVdFBuVz/7GiPiPfZbp/f72jatoUhe3MdJwfCdVY2+rCaxrSupi2IwneKqL9fyy4bwfp9owf49qV+fPe2fIzKupkse/UO163QCsLr/U7wE+FxHfo9pDGG5ZnwxsGRHLqJLOrfRpdY/ib4HrM/Ofy/hbgGVUu6R7AZ+PiM3rC0TE9sAf0v8LNpq+9RQR21F18xxT+yH5L8DBmTkPOJdqd7zXB4ErM/OnfV4bVWaemZk7U9X9/yiT1wNeD/wp1WfzCqrd9l6HU3UXzaPaRf5ySUgT9YK6yMyfZuaewC7AUbU9sA2Bp7O6XsjfA+f0riyq/yheTfWjvgOwMCLeMFrhJebPAR/r9/oYsayxmn6LjlbmGHrrYszPNTOPodo2lwP9+sTXJq7LgQXlPf8TIy3QaoX9t9HJltlPv+/I/PLZ/yfg9IjYuef13u/vZOP6U+CNEXEr8EbgIapc0nRdU1UXZckJ9Oe08aDqj1rRZ/r+9OmHbvp6bb6vUiW73ukHAv/QZ3pQ9Ztu3mDdnwT+kdK/W6Z9HXh9bfxbwD49y72VqhW1ojyeo7q08qjvrV89UXV33AL8YW3aAPCj2vh84O4+sZ8P/KSU/xiwCjh5Ap/bOsDjZfh1wJLaa0cCZ/ZZ5i6qVu/w+P3U+sRp2L842jZTe/1cyn81wD1UyWf4s328z/x/BvxFbfwTwPFjrP+lpc6GP7+nqfbYBseKpWf6N4F9y/B6ZX0x2bpo+rlSJZ9+//McDvxdbfzvgMMnsF2sW6/jftvodNVFn9fPq38W9Pn+TnFdbAo8OJF1TVVdPD//RGZu60G1S7JRz7T9ezdAYLvyHMDpo2y46wJbleE9gTup+oehJBOqVt21wMIyvgXlj1DgPwNfqq3vWmCHPuW8j2ovYeOe6V8A/rIMb0P1C771OO+/6Z+sz9cT1e7utcBHe+YZ3iiG/0w+Frh4nPKPZs0/4z4FvLPPfLvWhg8Bltbq/DZgoIyfCxzXZ/lvAEeX4eFurLXaeHvqYt7w50D1Jb8P+J0yfjLw3lq9fr/Pug6janmuR9X/fi1wyFh10bP8Ekb+ZB01lp5ljmPNP9P+oef1taqL0T5Xqu/MLrXhzwCf6bPMy4AHSuxbluGXjbNdbFcbfidw41jb6HTVRYl/+A/vrYEfALuX8b7f3ymoi60Z+UP/JKr/f8ZcV1t1kTl7EvzZwAG18X8GVgK/puqrekuZ/i2qfu07ga8Am5bpg8BZZXgj4O7yuBHYq7beU6l2Te+tb3TAvuXDvwe4hPLvNlUr9cf9NgKq3a4fUXXHLAM+UaZvT/Xn1nCcR9SWuZL+R1Q0TfDP1xNwBPBvtfKXDb9Xqi/ZHVRJdwlVv+Qa9dSz3qNZM8FfQWlF9Mx3BlUrfBlVn/Vv1177feD2Uu55jPxgngi8vQzvTnW0ym1lHQdO4otcr4vhsm8rz4tq821BtVd1B1V33Wv6bDPrUrWolpft5rTx6qInliWMJPixYqnXxUZUR1z8kOpPvldMRV2M9rlSbcvfrW2X51P2Unu3C+C9Ja4fUnWrjLddfKpsF7eV7eJVDbbR1uuC6uio4e/BHZSj5sb5/k62Lg6lyiX3AWdRfmDGWVcrdZE5exL83pTDiWbTA9iD2pd9Gsvdn/4JflrqiepPxpmo74l8ka0L68K6GOcxG/5kJTNvBa4b5ciLGZOZd2bmf53OMsvJIH8L/KJPPNNST5n5ljbX32v4JA6aHZoIWBd11sUI66JnufKrIEnqmFnRgpckTT0TvCR1lAlekjrKBC81UK4MODjG632v8hcRJ0bEAe1FJo2utXuySoLM/MRMx6AXL1vwmrMiYpOI+HpU1zi/M6pr6a+I6n4A3yuPXcq8AxFxcUR8vzz2q63jnDLt1oh4R5m+cUR8rVxA60Kqqy+OF89no7oO/7URMVCmnRcRh5bhFRHxP8s8d0TEq8r0N8bINctvjYjNWqoyvciY4DWXHQQ8nJmvycw9GLki4KrM3Ifqyp6nl2lnAJ/LzN+jutrfWWX6fwe+Vaa/CTg1IjahuszwU1ldQOsk4HfHiWUT4JbMfC3wbarrnPTzWJnnC1QXpqI8H5eZe1FdtO3XTd68NB4TvOayO4ADSov99Zn5eJl+Qe153zJ8ANWVPZcBlwGbl5bygcAJZfoSqlPF5wNvoLocBpl5O9VlB8byHHBhGf4K8B9Gme+S8nwzsKAMfxc4Laq7TW2R1WVipUmzD15zVmbeF9XNLQ4GPhURwze4qJ+9Nzy8DtW1Q9ZoHUdEAO/OzHt7pveuZ8LhjTJ9+GYgz1K+f5l5ckR8nep93BgRB2R14xlpUmzBa84q19V/KjO/QnV1xNeWlw6rPd9Qhq+musnK8LJ7lcFvAh8uiX74Rh5Q3Yrvj8u0PaiuTDqWdaguNAXVtce/M4H3sXNm3pGZn6a6xeSrmi4rjcUWvOay36HqM3+O6qqFH6C6zdmGEXETVdI9vMz7J8CZ5U5L61El8PdT3XbvdOD2kuRXAG+j6iM/t8y/jOrKfmP5FfDbEXEz1V14+t5gehQfjYg3UbXq76a6rLI0aV6LRp0SESuoLt372EzHIs00u2gkqaNswUsTULp+em/2fmRm3jET8UhjMcFLUkfZRSNJHWWCl6SOMsFLUkeZ4CWpo/4/CKKPxxBgCvUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sp98['speed_bins'] = pd.qcut(sp98['speed'], 5)\n", + "speed = sns.barplot(x='speed_bins', y='consume',data=sp98, color=\"orange\")\n", + "speed.axhline(y=sp98.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "85b3b89a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c26695b8", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "412ed922", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7bbb125", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21d14b52", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6bec4a2", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "04861611", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "989e1e39", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "82ef7544", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d42faf4a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f41bf684", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b0a75376", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "500d8f35", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f45cf0c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2a32f8a9", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "68415019", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "066dc6ef", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "986aad20", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "02b15eca", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2bd3c963", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6ef550c0", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e0b1d35", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2b28f4ba", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "909e680b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "84905456", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa638212", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3246e422", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "faf5df41", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6f2c3605", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a6dac03b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2b924b2", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "84ea053b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8e5d2897", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0d038256", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "22a5944f", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bf41f88a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dcab6538", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1de78fd", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "631b85dc", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8cbe705", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7c5ec95a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a5fe2fe", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "92d4fe5a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49462e23", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:ironhack] *", + "language": "python", + "name": "conda-env-ironhack-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Cobify.twb b/Cobify.twb new file mode 100644 index 0000000..48f0a77 --- /dev/null +++ b/Cobify.twb @@ -0,0 +1,3228 @@ + + + + + + <_.fcp.AccessibleZoneTabOrder.true...AccessibleZoneTabOrder /> + <_.fcp.AnimationOnByDefault.true...AnimationOnByDefault /> + + <_.fcp.MarkAnimation.true...MarkAnimation /> + <_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy /> + <_.fcp.ObjectModelTableType.true...ObjectModelTableType /> + <_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel /> + + + + + + + + + + + <_.fcp.AnimationOnByDefault.false...style> + <_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'> + <_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' /> + + + + + + + + + + + <_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='excel-direct.0fd46bp16b6a2b13qqvuh0qqyk4v' name='Con' table='[Sheet1$]' type='table'> + + + + + + + + + + + + + + + + + + <_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='excel-direct.0fd46bp16b6a2b13qqvuh0qqyk4v' name='Con' table='[Sheet1$]' type='table'> + + + + + + + + + + + + + + + + + + + + + 0 + [Con] + + Count + true + + 1 + "A1:N389:no:A1:N389:1" + 0 + 1 + 4033 + + + + distance + 5 + [distance] + [Con] + distance + 0 + real + Sum + 15 + true + + "R8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + consume + 5 + [consume] + [Con] + consume + 1 + real + Sum + 15 + true + + "R8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + speed + 20 + [speed] + [Con] + speed + 2 + integer + Sum + true + + "I8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + temp_inside + 5 + [temp_inside] + [Con] + temp_inside + 3 + real + Sum + 15 + true + + "R8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + temp_outside + 20 + [temp_outside] + [Con] + temp_outside + 4 + integer + Sum + true + + "I8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + gas_type + 130 + [gas_type] + [Con] + gas_type + 5 + string + Count + true + + + "WSTR" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + ac + 20 + [ac] + [Con] + ac + 6 + integer + Sum + true + + "I8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + rain + 20 + [rain] + [Con] + rain + 7 + integer + Sum + true + + "I8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + sun + 20 + [sun] + [Con] + sun + 8 + integer + Sum + true + + "I8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + snow + 20 + [snow] + [Con] + snow + 9 + integer + Sum + true + + "I8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + refill_liters + 5 + [refill_liters] + [Con] + refill_liters + 10 + real + Sum + 15 + true + + "R8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + refill_gas + 20 + [refill_gas] + [Con] + refill_gas + 11 + integer + Sum + true + + "I8" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + temp_bins + 130 + [temp_bins] + [Con] + temp_bins + 12 + string + Count + true + + + "WSTR" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + speed_bins + 130 + [speed_bins] + [Con] + speed_bins + 13 + string + Count + true + + + "WSTR" + + <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D] + + + + + + + + <_.fcp.ObjectModelTableType.true...column caption='consumos' datatype='table' name='[__tableau_internal_object_id__].[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]' role='measure' type='quantitative' /> + + + + + + + + + + + + + + + + + + + + + + 0 + 1 + + + 14 + 76 + + + -5 + 31 + + + + + + + + + + + + <_.fcp.ObjectModelTableType.true...column caption='consumos' datatype='table' name='[__tableau_internal_object_id__].[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]' role='measure' type='quantitative' /> + + + + + + + + + + + + <_.fcp.ObjectModelTableType.false...column caption='consumos' datatype='integer' name='[__tableau_internal_object_id__].[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]' role='measure' type='quantitative' /> + + + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk] + + + + + + + + + + + + + + + + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk] + ([federated.1hf7whd0lppe0j1cun4pz1rrpaca].[__tableau_internal_object_id__].[cnt:Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D:ok] * [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]) +
+ +
+ + + + <formatted-text> + <run>Distance</run> + </formatted-text> + + + + + + + + + + + + + + + + + + + + + + + + + + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:distance:qk] + + + + + + + + + + + + + + + + + + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[avg:consume:qk] + + + + "E10" + 4.933548387096776 + + + + +
+ +
+ + + + <formatted-text> + <run>Rain</run> + </formatted-text> + + + + + + + + + + + + + + + + + + + + + + + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk] + + + + + + + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk] +
+ +
+ + + + <formatted-text> + <run>Temp</run> + </formatted-text> + + + + + + + + + + + + + + + + + + + + + + + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk] + + + + + + + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk] + [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk] +
+ +
+
+ + + \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeACrainsunrefill litersrefill gas
02852621,512NaNE1000045E10
1124,23021,513NaNE10000NaNNaN
211,25,53821,515NaNE10000NaNNaN
312,93,93621,514NaNE10000NaNNaN
418,54,54621,515NaNE10000NaNNaN
\n", + "" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type AC \\\n", + "0 28 5 26 21,5 12 NaN E10 0 \n", + "1 12 4,2 30 21,5 13 NaN E10 0 \n", + "2 11,2 5,5 38 21,5 15 NaN E10 0 \n", + "3 12,9 3,9 36 21,5 14 NaN E10 0 \n", + "4 18,5 4,5 46 21,5 15 NaN E10 0 \n", + "\n", + " rain sun refill liters refill gas \n", + "0 0 0 45 E10 \n", + "1 0 0 NaN NaN \n", + "2 0 0 NaN NaN \n", + "3 0 0 NaN NaN \n", + "4 0 0 NaN NaN " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "medidas = pd.read_csv('measurements.csv')\n", + "medidas.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "c5f8ddd9", + "metadata": {}, + "outputs": [], + "source": [ + "medidas2= pd.read_excel('measurements2.xlsx')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a6d2381a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "distance float64\n", + "consume float64\n", + "speed int64\n", + "temp_inside float64\n", + "temp_outside int64\n", + "specials object\n", + "gas_type object\n", + "AC int64\n", + "rain int64\n", + "sun int64\n", + "refill liters float64\n", + "refill gas object\n", + "dtype: object" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "medidas2.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3987c15d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeacrainsunrefill_litersrefill_gas
028.05.02621.512NaNE1000045.0E10
112.04.23021.513NaNE10000NaNNaN
211.25.53821.515NaNE10000NaNNaN
312.93.93621.514NaNE10000NaNNaN
418.54.54621.515NaNE10000NaNNaN
.......................................
38316.03.73924.518NaNSP98000NaNNaN
38416.14.33825.031ACSP98100NaNNaN
38516.03.84525.019NaNSP98000NaNNaN
38615.44.64225.031ACSP98100NaNNaN
38714.75.02525.030ACSP98100NaNNaN
\n", + "

388 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type \\\n", + "0 28.0 5.0 26 21.5 12 NaN E10 \n", + "1 12.0 4.2 30 21.5 13 NaN E10 \n", + "2 11.2 5.5 38 21.5 15 NaN E10 \n", + "3 12.9 3.9 36 21.5 14 NaN E10 \n", + "4 18.5 4.5 46 21.5 15 NaN E10 \n", + ".. ... ... ... ... ... ... ... \n", + "383 16.0 3.7 39 24.5 18 NaN SP98 \n", + "384 16.1 4.3 38 25.0 31 AC SP98 \n", + "385 16.0 3.8 45 25.0 19 NaN SP98 \n", + "386 15.4 4.6 42 25.0 31 AC SP98 \n", + "387 14.7 5.0 25 25.0 30 AC SP98 \n", + "\n", + " ac rain sun refill_liters refill_gas \n", + "0 0 0 0 45.0 E10 \n", + "1 0 0 0 NaN NaN \n", + "2 0 0 0 NaN NaN \n", + "3 0 0 0 NaN NaN \n", + "4 0 0 0 NaN NaN \n", + ".. .. ... ... ... ... \n", + "383 0 0 0 NaN NaN \n", + "384 1 0 0 NaN NaN \n", + "385 0 0 0 NaN NaN \n", + "386 1 0 0 NaN NaN \n", + "387 1 0 0 NaN NaN \n", + "\n", + "[388 rows x 12 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "medidas2.columns = medidas2.columns.str.replace(' ','_')\n", + "medidas2.columns = medidas2.columns.str.lower()\n", + "medidas2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "91da18b4", + "metadata": {}, + "outputs": [], + "source": [ + "df = medidas2.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b1dce3d6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 388 entries, 0 to 387\n", + "Data columns (total 12 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 distance 388 non-null float64\n", + " 1 consume 388 non-null float64\n", + " 2 speed 388 non-null int64 \n", + " 3 temp_inside 376 non-null float64\n", + " 4 temp_outside 388 non-null int64 \n", + " 5 specials 93 non-null object \n", + " 6 gas_type 388 non-null object \n", + " 7 ac 388 non-null int64 \n", + " 8 rain 388 non-null int64 \n", + " 9 sun 388 non-null int64 \n", + " 10 refill_liters 13 non-null float64\n", + " 11 refill_gas 13 non-null object \n", + "dtypes: float64(4), int64(5), object(3)\n", + "memory usage: 36.5+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "7e7e6b72", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
distance388.019.65283522.6678371.311.8014.619.0216.1
consume388.04.9123711.0331723.34.304.75.312.2
speed388.041.92783513.59852414.032.7540.550.090.0
temp_inside376.021.9295211.01045519.021.5022.022.525.5
temp_outside388.011.3582476.991542-5.07.0010.016.031.0
ac388.00.0773200.2674430.00.000.00.01.0
rain388.00.1237110.3296770.00.000.00.01.0
sun388.00.0824740.2754410.00.000.00.01.0
refill_liters13.037.1153858.58728210.037.6038.039.045.0
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% 75% max\n", + "distance 388.0 19.652835 22.667837 1.3 11.80 14.6 19.0 216.1\n", + "consume 388.0 4.912371 1.033172 3.3 4.30 4.7 5.3 12.2\n", + "speed 388.0 41.927835 13.598524 14.0 32.75 40.5 50.0 90.0\n", + "temp_inside 376.0 21.929521 1.010455 19.0 21.50 22.0 22.5 25.5\n", + "temp_outside 388.0 11.358247 6.991542 -5.0 7.00 10.0 16.0 31.0\n", + "ac 388.0 0.077320 0.267443 0.0 0.00 0.0 0.0 1.0\n", + "rain 388.0 0.123711 0.329677 0.0 0.00 0.0 0.0 1.0\n", + "sun 388.0 0.082474 0.275441 0.0 0.00 0.0 0.0 1.0\n", + "refill_liters 13.0 37.115385 8.587282 10.0 37.60 38.0 39.0 45.0" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe().T" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "30a7f01a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([nan, 'AC rain', 'AC', 'rain', 'snow', 'AC snow',\n", + " 'half rain half sun', 'sun', 'AC sun', 'sun ac', 'ac', 'AC Sun',\n", + " 'ac rain'], dtype=object)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.specials.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8c522072", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "rain 32\n", + "sun 27\n", + "AC rain 9\n", + "ac 8\n", + "AC 6\n", + "snow 3\n", + "sun ac 3\n", + "AC snow 1\n", + "half rain half sun 1\n", + "AC sun 1\n", + "AC Sun 1\n", + "ac rain 1\n", + "Name: specials, dtype: int64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.specials.value_counts() #30 valores que contiene AC" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "aa3054c2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 358\n", + "1 30\n", + "Name: ac, dtype: int64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.ac.value_counts() #30 valores que contiene AC" + ] + }, + { + "cell_type": "markdown", + "id": "40011cf0", + "metadata": {}, + "source": [ + "##### Columna specials,los dummies estan bien hechos salvo la columna snow que no está contemplada, así que haremos una nueva columna" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "1887571c", + "metadata": {}, + "outputs": [], + "source": [ + "df.specials.fillna('unknown', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "93d9cb20", + "metadata": {}, + "outputs": [], + "source": [ + "df['snow'] = df['specials'].str.contains('snow', regex=True).astype(int) #Hechos los dummies tambien para snow" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "09109453", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeacrainsunrefill_litersrefill_gassnow
11812.44.63823.01snowSP98010NaNNaN1
12411.84.63823.00snowSP98010NaNNaN1
12512.26.35723.00snowSP98010NaNNaN1
18112.37.15222.50AC snowE10110NaNNaN1
\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type \\\n", + "118 12.4 4.6 38 23.0 1 snow SP98 \n", + "124 11.8 4.6 38 23.0 0 snow SP98 \n", + "125 12.2 6.3 57 23.0 0 snow SP98 \n", + "181 12.3 7.1 52 22.5 0 AC snow E10 \n", + "\n", + " ac rain sun refill_liters refill_gas snow \n", + "118 0 1 0 NaN NaN 1 \n", + "124 0 1 0 NaN NaN 1 \n", + "125 0 1 0 NaN NaN 1 \n", + "181 1 1 0 NaN NaN 1 " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[df['snow']== 1]" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "id": "e731d976", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
distanceconsumespeedtemp_insidetemp_outsidespecialsgas_typeacrainsunsnowrefill_litersrefill_gas
028.05.02621.512unknownE10000045.0E10
112.04.23021.513unknownE100000NaNNaN
211.25.53821.515unknownE100000NaNNaN
312.93.93621.514unknownE100000NaNNaN
418.54.54621.515unknownE100000NaNNaN
\n", + "
" + ], + "text/plain": [ + " distance consume speed temp_inside temp_outside specials gas_type ac \\\n", + "0 28.0 5.0 26 21.5 12 unknown E10 0 \n", + "1 12.0 4.2 30 21.5 13 unknown E10 0 \n", + "2 11.2 5.5 38 21.5 15 unknown E10 0 \n", + "3 12.9 3.9 36 21.5 14 unknown E10 0 \n", + "4 18.5 4.5 46 21.5 15 unknown E10 0 \n", + "\n", + " rain sun snow refill_liters refill_gas \n", + "0 0 0 0 45.0 E10 \n", + "1 0 0 0 NaN NaN \n", + "2 0 0 0 NaN NaN \n", + "3 0 0 0 NaN NaN \n", + "4 0 0 0 NaN NaN " + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnas = ['distance', 'consume', 'speed', 'temp_inside', 'temp_outside',\n", + " 'specials', 'gas_type', 'ac', 'rain', 'sun','snow', 'refill_liters',\n", + " 'refill_gas']\n", + "df = df.reindex(columns=columnas)\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "cff0fb4d", + "metadata": {}, + "source": [ + "##### Conpletado el dummies de SNOW dropeo specials" + ] + }, + { + "cell_type": "code", + "execution_count": 227, + "id": "1183b59a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.966495\n", + "45.0 0.005155\n", + "37.7 0.005155\n", + "39.0 0.005155\n", + "37.6 0.002577\n", + "38.0 0.002577\n", + "38.3 0.002577\n", + "10.0 0.002577\n", + "41.0 0.002577\n", + "37.0 0.002577\n", + "37.2 0.002577\n", + "Name: refill_liters, dtype: float64" + ] + }, + "execution_count": 227, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.refill_liters.fillna('0', inplace=True)\n", + "df.refill_liters.value_counts('0')" + ] + }, + { + "cell_type": "code", + "execution_count": 228, + "id": "44594ce3", + "metadata": {}, + "outputs": [], + "source": [ + "df.to_excel('consumos.xlsx', index = False)" + ] + }, + { + "cell_type": "markdown", + "id": "11995b17", + "metadata": {}, + "source": [ + "##### Vamos a ver la matriz de correlaciones" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "id": "5c82a2b0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAAJCCAYAAABZBtbmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB5fUlEQVR4nO3dd3gc1dXH8e/ZVZdtyZLcO+692xTTSyBAqKElQGgm1FBCIBAIJYSe0EIxvEDoEHpvBmOKDW64d+NeVW11afe+f+xalmTZlrBWI2l/n+fZR7szd2bP1Ww5e++dO+acQ0RERESil8/rAERERETEW0oIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESiXIzXATQjmr9HRESkcTKvA2js1EIoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5WK8DqAmZnYrkA+0AiY7577YRbkTgSXOuQUNF52IiIhI89KoWwidc7fsKhkMOxEY0EDhiIiIiDRLjSYhNLObzGyxmX0B9A0ve87MTg3fv9vMFpjZHDO738z2B34D3GdmP5lZTzO7yMymmdlsM3vTzJIq7edhM/vezFZs32d43V/MbG54m7vDy3qa2SdmNsPMvjGzfg3+DxERERFpII2iy9jMRgJnAMMJxTQTmFFpfRpwEtDPOefMLNU5l2tm7wEfOOfeCJfLdc49Fb7/D+AC4JHwbjoA44B+wHvAG2Z2DKFWxrHOucLw8wBMAP7onFtqZmOBx4DDIvcfEBEREfFOo0gIgQOBt51zhQDhRK+yrUAx8LSZfQh8sIv9DAongqlAC+DTSuvecc4FgQVm1i687Ajg2e3P65zLNrMWwP7A/8xs+7bxe1M5ERERkcas0XQZA26XK5wrB8YAbxJq0ftkF0WfAy53zg0GbgMSKq0rqXTfKv2t/rw+INc5N6zSrX9NT2Zm481suplNnzBhwq7CFxEREWnUGktCOBk4ycwSzawlcHzlleFWuxTn3EfAVcCw8KptQMtKRVsCG8wsFvhdLZ73M+D8SmMN05xzW4Gfzey34WVmZkNr2tg5N8E5N8o5N2r8+PG1rKqIiIhI49IoEkLn3EzgNeAnQq2A31Qr0hL4wMzmAF8DV4eXvwpcZ2azzKwncDPwA/A5sKgWz/sJofGE083sJ+DP4VW/Ay4ws9nAfOCEX1w5ERERkUbOnNtlT63Ujf6RIiIijZPtuUh0axQthCIiIiLiHSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuVivA6gObnwzkyvQ6h3T9+U4XUIIiIiEmFqIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlyMV4HIFUN3CeWM49KxmfGNz8V8/GUoirr26f7Oe+4FnRtH8Pbkwr57IfQ+hg/XH9OCjF+w+eDGYtKeW9yoRdVEBERkSZGCWEjYga/O7oF/3o5j5ytQf52fio/LS1lQ2agokxBUZBXPitgeN+4KtuWB+D+F/MoKQO/L5QczlsWw4r15Q1dDREREWliPO0yNrNzzGyOmc02sxfMrJuZTQwvm2hmXcPlnjOzh83sezNbYWanhpd3MLPJZvaTmc0zswPDy/MrPcepZvZcpf08bmZfhfdzsJk9Y2YLt5cJlzvKzKaY2Uwz+5+ZtWiI/0ePjjFszg6QmRskEIQfF5QwrE/VxG9boWPlhnICgZ23LykL/fX7wO83XAPELCIiIk2fZwmhmQ0EbgIOc84NBf4EPAo875wbArwEPFxpkw7AOOA44O7wsrOAT51zw4ChwE+1eOrWwGHA1cD7wL+BgcBgMxtmZhnA34AjnHMjgOnANb+8prXXuqWPnG3Bisc5W4O0bln7Q2QGt1yYyr+uTmfBilJ+VuugiIiI1IKXXcaHAW845zIBnHPZZrYfcHJ4/QvAvZXKv+OcCwILzKxdeNk04Bkziw2v/6kWz/u+c86Z2Vxgk3NuLoCZzQe6A52BAcB3ZgYQB0ypaUdmNh4YD/Dkk09WCr3+uDo08zkHtz+dS2K8cdmpLenYxs/6LTU0JYqIiIhU4mVCaLDHXs3K60uqbYtzbrKZHQQcC7xgZvc5556vtl1CtX1u30+w2j6DhP4fAeBz59yZe6qAc24CMGH7wx/vzNzTJruVs61qi2DrVj5y84O72aJmRSWOxavLGLRPHOu3FO15AxEREYlqXo4hnAicZmbpAGaWBnwPnBFe/zvg293twMy6AZudc08B/weMCK/aZGb9zcwHnFTHuKYCB5hZr/BzJJlZnzru4xdZub6cdml+MlJ8+H0wZkA8s5eU1mrbFklGYrwBEBsD/bvHsTFLXcYiIiKyZ561EDrn5pvZncDXZhYAZgFXEuoCvg7YApy3h90cAlxnZmVAPnBOePkNwAfAGmAeUOuTQpxzW8zsD8ArZhYfXvw3YElt9/FLBR28/Gk+V52Zgs8H380uZn1mgINHhBo5v55ZTKtk42/np5IYbzgHR4xJ4JYnc0lt4eP841vis9BYwmkLS5izrCzSIYuIiEgzYK4ug9Rkd9yFe9ll3Bg9fVOG1yGIiIjsLfM6gMZOVyoRERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKGfOOa9jaC70jxQREWmczOsAGrsYrwNoTjLnTfE6hHqXMWg//vlawOswIuLG0/1ehyAiItIoqMtYREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBERESkiTCzZ8xss5nN28V6M7OHzWyZmc0xsxG12a8SQhEREZGm4zng6N2sPwboHb6NBx6vzU6VEIqIiIg0Ec65yUD2boqcADzvQqYCqWbWYU/71bWMRURERCLkw9i+ri7ljytfcjGhlr3tJjjnJtRhF52ANZUerw0v27C7jZQQioiIiESIxVqdyrsyNwGoSwK401PWtNs9baSEUERERCRCfDF1SwjrwVqgS6XHnYH1e9pIYwhFREREIsRifXW61YP3gHPCZxvvC+Q553bbXQxqIRQRERGJmPpuITSzV4BDgAwzWwv8HYgFcM49AXwE/BpYBhQC59Vmv0oIRURERCKkrmMI98Q5d+Ye1jvgsrruVwmhiIiISIR4MIbwF1FCKCIiIhIh9d1CGClKCEVEREQiRC2EzYSZTQL+7Jyb3hDPN3XWHB585mWCwSDHH34QZ598XJX1M+ct5IZ7HqZD2wwADh47ivNPOwGAbQUF3P3Ys6xYvRYz48bLLmBQ314NEfYe7dMejhzuwwxmr3BMWVR1SqSB3Yz9+oXeNKXl8MmMIJtzwe+Dsw/z4feDz2DRGsc38+s0x6eIiIhnzK+EUOooEAjywFMv8OAt19E2PY0Lr7+NcaOH06NLpyrlhvbvw303Xr3T9g8+8zJjhw/mzusup6ysnOLSkoYKfbfM4FcjfbwyKcjWIjjvSB9L1zsyt+4ok5vvePFLR3FZKHk8ZpSP/34RJBCElyYFKSsPJYRnH+5j+UbH+izv6iMiIlJbviaSEDbJeQjNLNnMPjSz2WY2z8xON7OVZnaPmf0YvvUKl21jZm+a2bTw7YBK+3gmvGyWmZ0QXp5oZq+a2Rwzew1IbKh6LVy2gs7t29GpfVtiY2M4fNxYvpk2q1bbFhQWMXvBYo4//CAAYmNjaJmcHMlwa61jGuRsg9wCCAZhwWpH705V3yDrsqC4LHR/fRa0qvRfLysP/fX5Qi2Ge55vXUREpHEwn9Xp5pWm2kJ4NLDeOXcsgJmlAPcAW51zY8zsHOBB4DjgIeDfzrlvzawr8CnQH7gJ+NI5d76ZpQI/mtkXwMVAoXNuiJkNAWY2VKW2ZOfQNiOt4nHbtNbMX7pip3LzFi/j3GtuJiMtlcvOOYN9unZi3abNpLZqyZ2PPs2yVWvou093rjr/dyQmxDdU+LvUMhG2Fu3I4rYVQsf0XZcfuo+xfOOO8mZw/pE+WreAGcsc63d3SW8REZFGxPxNo+2taUS5s7nAEeEWwQOdc3nh5a9U+rtf+P4RwKNm9hOh2btbmVlL4CjghvDySUAC0BU4CHgRwDk3B5gT8dqEhaYOqsqq/Vjou0933nziAf77rzs45Zgj+Os9DwOh7uYlK1Zx0q8O47n7bycxPp4X3v6gIcKuV93ahhLCr2bv+F84B//3WZBH3g/SMc1ok+JhgCIiInXgj/XV6eaVJpkQOueWACMJJYZ3mdkt21dVLhb+6wP2c84NC986Oee2Ebr48ymVlnd1zi2sYT+7ZGbjzWy6mU2fMGFvrkMd0jY9jc2ZO5q/NmfnkJHWukqZ5KREkhITANh/5FDKA+Xkbt1G2/TWtElvzcA+PQE4ZL9RLFmxaq9jqg/biqBV4o7MtmVSaFl1bVLg16N9vPFNkKLSndeXlMGqLY592jeN8RgiIiI+v9Xp5lmcnj3zXjCzjoS6dV8E7gdGhFedXunvlPD9z4DLK207LHz3U+AKs1AbnJkNDy+fDPwuvGwQMGRXcTjnJjjnRjnnRo0fP35vq0W/Xj1Yu2ET6zdtoaysnInf/sC4UcOrlMnKya1oSVywdAXOOVJatiC9dSptM9JZtS50ucIZcxfQvXPHvY6pPqzPhtYtISU5NA5wQFdj6bqqOXerJDjlAB/vTQ2Snb9jeVI8xMeG7sf4oUc7I2urBhGKiEjTYH6r080rTXUM4WDgPjMLAmXAJcAbQLyZ/UAo0d1+aZcrgf+Y2RxC9Z0M/BG4g9A4wznhpHAloTGHjwPPhsv/BPzYMFWCGL+fqy/8PdfccT+BYJDjDjuQfbp24u1PvwTgpF8dxldTpvP2p18S4/cTFxfLbVdfQjin5eoLfsdtDz1JeVk5Hdu14cbLL2yo0HfLOfhsZpAzDvbhC087k7kVhvcMxT1ruWPcQCMxHo4eGfqNEnTw7OdBkhPg+LGh7cxg4WrHsj1eoltERKRxMF/TaHuzmsatNUVmthIY5ZzL9CgElzlvyp5LNTEZg/bjn68FvA4jIm483e91CCIi0jA8a3qbefi4OiVaIyZ+60msTbWFUERERKTRayrzEDabhNA5193rGEREREQq83JuwbpoNgmhiIiISGPTVMYQKiEUERERiRC1EIqIiIhEOY0hFBEREYlyaiEUERERiXIaQygiIiIS5dRCKCIiIhLllBCKiIiIRDklhCIiIiJRTmMIRURERKKcpp0RERERiXLqMhYRERGJcuoyFhEREYlyaiEUERERiXJKCEVERESinLqMRURERKKcL8bvdQi1ooRQREREJFJMXcYiIiIiUU1jCEVERESinMYQioiIiEQ5tRCKiIiIRDm1EEahjEH7eR1CRNx4etM4Q0pERKSxUQthFDr5ymVeh1Dv3nq4F396aJvXYUTEQ39qyfEXL/Q6jHr3/pP9vQ5BRETClBCKiIiIRDt1GYuIiIhEN2si8xA2jbRVREREpAkyn69Ot1rt0+xoM1tsZsvM7IYa1qeY2ftmNtvM5pvZeXvap1oIRURERCKkvscQmpkf+A9wJLAWmGZm7znnFlQqdhmwwDl3vJm1ARab2UvOudJd7VcJoYiIiEik1P8YwjHAMufcCgAzexU4AaicEDqgpYX6q1sA2UD57naqhFBEREQkQiJwlnEnYE2lx2uBsdXKPAq8B6wHWgKnO+eCu9upxhCKiIiIRIiZr443G29m0yvdxlffZQ1P46o9/hXwE9ARGAY8amatdhenWghFREREIqWOLYTOuQnAhN0UWQt0qfS4M6GWwMrOA+52zjlgmZn9DPQDftxlmHWKUkRERERqLQJnGU8DeptZDzOLA84g1D1c2WrgcAAzawf0BVbsbqdqIRQRERGJkPoeQ+icKzezy4FPAT/wjHNuvpn9Mbz+CeAO4Dkzm0uoi/l651zm7varhFBEREQkUqz+O2Odcx8BH1Vb9kSl++uBo+qyTyWEIiIiIhGiaxmLiIiIRDtdy1hEREQkupnf73UItaKEUERERCRC1GUsIiIiEu0icFJJJCghFBEREYkUtRCKiIiIRDdTC6GIiIhIlFMLoYiIiEh0q+Xl6DynhNBjw/sncf7JGfh88MWUrbz9Re5OZS44JYMRA5IoKXU8+tJmVqwtoWPbWK79Q/uKMu0yYnn1oyw+mJTH6cekccR+rdiaHwDgpQ+ymLmgsKGqVKN+3fycfHACPoOp88v4YnpplfVtW/s468gEurTx8cGUEr6aWVaxLjEOzjgigQ7pPhzwyufFrNwYbOAa1GzEwGQuOq0dPp/x+be5vPFp1k5lxp/ejpGDWlBSGuSh5zawfE0xAMmJPq44uwPdOsXjHDz0/AYWryhq6CqIiEgkWTNvITSzVOAs59xj9RdOrZ63I/Cwc+7UX7Dt7cBk59wX1ZYfAvzZOXdcvQRZSz6Di37bhtv+s46s3HLu/XMXps0rYO3GHcnQiAFJdGgTy2V3rKZP93jGn9aGG/61lvWby7j23jUV+3nqju78MLugYrsPJuXy7pe5DVmdXTKD3x6SwGNvF5Kb77j2jCTmrihnU/aOpK6w2PHW18UM3mfnl+TJByewcFWAZz8qxu+DuEbyM8Zn8Mcz23Pzg6vJyinjX3/twQ9ztrFmw45kd+SgZDq2jePim5fTt0cCl/yuPX++eyUAF53ejpnzC7h7wjpi/BAf1zR+RYqISB00kRbCvYkyFbi0nuKoNefc+l+SDIa3vaV6MuilXt0S2LCljE1Z5ZQH4NuZ+YwZ3KJKmTGDk5n04zYAlqwsITnRR+tWVSe5HNw3kU2ZZWzJKW+w2OuiWzsfW/KCZG11BIIwc0n5TolffpFj9aYggWoNf/Fx0LOTn6nzQ0lyIAhFVRsXPdO7RyIbNpeyKbOM8gBMnr6VsUNbVimz79CWfDk1D4DFPxeHj18MiQk+BvVO4rPvcgEoD0BBUeNo9RQRkXpkVrebR/YmIbwb6GlmP5nZfWZ2nZlNM7M5ZnYbgJl1N7NFZva0mc0zs5fM7Agz+87MlprZmHC5W83sBTP7Mrz8ol09aXif88L3/2Bmb5nZJ+Ht7g0v95vZc+HnnGtmV4eXP2dmp4bvHx2O7Vvg5Er7TzazZ8J1mWVmJ+zF/2i30lP9ZOXuaA3Myi0nLaVqspeWEkNmbnm1MlWTqXEjWvLNjPwqy445MIV/Xd+Fy85qS3Kit79OUlr4yN22I9nJzQ+S0qJ2L/qMVj7yixxnHZnAdWcmccbh8Y2mhTA9NYbMSkl4Vk4Z6akxO5fJrnqM01vH0D4jlrxtAa46twMP3tSDK87uQHxc0+hWEBGR2jOfr043r+zNM98ALHfODQM+B3oDY4BhwEgzOyhcrhfwEDAE6AecBYwD/gzcWGl/Q4Bjgf2AW8Jdw7UxDDgdGAycbmZdwss6OecGOecGA89W3sDMEoCngOOBA4H2lVbfBHzpnBsNHArcZ2bJtYxl77mqD2v6sVC5SIwfRg9K5vufdiSEn3ybx6W3r+Lae9eQk1fOH07KiEystVRjmuNqWrgznw86t/Xx3ZxS7nulkNIyOGJUXH2G94vVVK+dqlXDAXQO/H6jZ9cEPvo6h6vu/JnikiCnHu3tcRIRkQgwX91uHqmvZz4qfJsFzCSU+PUOr/vZOTfXORcE5gMTnXMOmAt0r7SPd51zRc65TOArQsllbUx0zuU554qBBUA3YAWwj5k9YmZHA1urbdMvHNfScCwvVqvLDWb2EzAJSAC61vTEZjbezKab2fQJEybUMtwdsnIDpKfGVjxOT40he2ugWplyMiq1OqWnxpCTt6NVaviAZFasLSFv247t8rYFCLpQ4vH5lK307hpf59jqU25+kNSWO15qqS185BXULiPMzXfk5jtWbQq1MP60rJzObRvHdSEzc8vJaF3p2LSOJTu3ard9Vk4ZGWnVjnFuOZk5ZWTmlLFkZegEk+9mbqVn14SGCVxERBqOz+p28yrMetqPAXc554aFb72cc/8XXldSqVyw0uMgVU9qqZ4h1LINqcr+A0CMcy4HGEooobsMeLqG7Xa1fwNOqVSXrs65hTUVdM5NcM6Ncs6NGj9+fC3D3WHZ6mI6tImlbVoMMX4YN6IF0+YWVCkzbW4Bh4wJjUvr0z2ewuIgOZWSxgNHtODbGduqbFN5jOHYIcms3uDtoLvVm4K0SfWR1srw+2BEnxjmrajdeMdthY7cbUHapobeJH26+NmY3TjG2i1dWUTHtnG0S48lxg8HjWrFj7OrHosfZudz2L4pAPTtkUBhUZCcreXkbg2QmVNOp3ah1s6h/ZJZs6Fkp+cQEZGmzcxXp5tX9mY01jZg+wj6T4E7zOwl51y+mXUCyna9aY1OMLO7gGTgEEJd0r+ImWUApc65N81sOfBctSKLgB5m1tM5txw4s9K6T4ErzOwK55wzs+HOuVm/NJbdCQbh6Te2cMulHfH5jIlTt7JmYylHHdAKgM++28qMBYWMGJjEY7d0o6Q0yKMvba7YPi7WGNoviSde21Jlv2efkE6P8FQmW7LLeeK1zXgp6ODNScVccmJSaNqZBWVszA5ywOBQy9l3c8tomWT8+YwkEuKMIHDIsDj++WIBJaXw5qQSzj46kRg/ZOYFefnzYk/rs10wCE+8upHb/tQFn8/44rtcVm8o5eiDUgH4ZHIu0+flM2pwMhP+0TM07cx/N1Rs/+SrG7n2go7E+I1NmWU8+N/1HtVEREQiprlPTO2cywqfHDIP+Bh4GZhioTFT+cDvCbXY1daPwIeEumfvcM7tzbdjJ+BZ25Fq/7Va7MVmNh740MwygW+BQeHVdwAPAnMsVJmVQMSmo5m5oJCZC1ZXWfbZd1V7uJ/6XyaQudO2pWWOc//6807LH37B2wSwJgtWBliwsmrr53dzd/xm2Fbo+PszBdU3A2BdZpAHXvV2HsVdmTGvgBnzVlRZ9snk3CqPn3hlE7Bpp21/XlvCNf9cGbngRETEe9Fw6Trn3FnVFj1UQ7HtiRbOuT9Uur+y8jpgiXNuj/2ulbdzzj1Hpda/avMIjqhh28rP/wmhsYTVyxQBF+8pDhEREZE9au4TU4uIiIjIHjSRiakbRULonLu1+jIzGwy8UG1xiXNubIMEJSIiIrK3oqHLOJKcc3MJzScoIiIi0jQ195NKRERERGQP1EIoIiIiEuV0UomIiIhIlPM3jqtr7YkSQhEREZFIUZexiIiISJTTtDMiIiIiUU5jCEVERESinLqMRURERKKcWghFREREopzGEIqIiIhEN6cWQhEREZEopzGEIiIiIlFOCaGIiIhIdFOXsYiIiEi0UwuhiIiISJRTC6GIiIhIlNO0MyIiIiLRTWMIRURERKJdExlD2DSiFBEREWmCnPnqdKsNMzvazBab2TIzu2EXZQ4xs5/MbL6Zfb3HfTrn6lg12QX9I0VERBonz/pt8394v075QYuxx+82VjPzA0uAI4G1wDTgTOfcgkplUoHvgaOdc6vNrK1zbvPu9qsu43p02rUrvQ6h3r3+QHde+a555rpnHmAcfPL3XodR775+a38+mFnudRj17rgR+rgSkaantq1+dTAGWOacWwFgZq8CJwALKpU5C3jLObcaYE/JIKjLWERERCRyzOp227NOwJpKj9eGl1XWB2htZpPMbIaZnbOnneont4iIiEik1LGF0MzGA+MrLZrgnJtQuUgNm1XvyosBRgKHA4nAFDOb6pxbsqvnVUIoIiIiEiHO569b+VDyN2E3RdYCXSo97gysr6FMpnOuACgws8nAUEJjD2ukLmMRERGRCHFYnW61MA3obWY9zCwOOAN4r1qZd4EDzSzGzJKAscDC3e1ULYQiIiIiEVLfJ5U458rN7HLgU8APPOOcm29mfwyvf8I5t9DMPgHmAEHgaefcvN3tVwmhiIiISKREYGJq59xHwEfVlj1R7fF9wH213acSQhEREZEI0aXrRERERKJcBOYhjAglhCIiIiKRohZCERERkeimFkIRERGRKFfLqWQ8p4RQREREJELUQigiIiIS7TSGUERERCS6uSZyUTglhCIiIiIRonkIRURERKKcxhCKiIiIRDmdZSwiIiIS5dRCKCIiIhLlNIZQREREJMqpy1hEREQkyjWLLmMzSwXOcs491jDh/HJmdhUwwTlXuJsytwOTnXNfVFt+CPBn59xxkYyxJkP7JnLeiWn4fDDxh3ze/TJvpzLnnZjG8P6JlJQ6Hns1k5/XlQJw7EGtOGxsC5yDNRtLeezVLMrKHd06xnHRqenExRiBoOPpN7NYvqa0oatWxdK53/DJy3cSdEFGHHgqBx47vsr6RbMm8uXbD2Hmw+fzc/SZN9Ktz0jysjfw9tPXk5+XiZmPkQefxr5HnuNRLULGDE/livN74PPBh19s5uW31+1U5soLejB2RColJUHuenQZS1cUAHD9ZT3Zb1QaOXllnHfVTxXl/3B6F447oi25W8sBeOqlVfwwM7chqrNLi376hneev5tgMMDYQ0/h8BMuqrJ+3vQv+eT1RzCf4fPFcMI517NPv5EAFBVs5fUJt7Bh7TIM4/SL76B7n2Ee1EJExFvNpYUwFbgUaPQJIXAV8CKwy4TQOXdLg0VTC2Zwwclp/OPJTWTllXPXVR2ZPr+QdZvKKsoM75dI+4wYrrxrHb27xnPhKenc9PAGWrfyc8y4llx973rKyh1Xn92G/Ycn8/W0fH5/XGve+CyXnxYVMbxfIr8/Lo3bHt/oWT2DwQAfvXg7Z1/7DK3S2vHU7b+l77DDaNupV0WZHv335ZJhh2FmbFyzmP89fhVX/PNjfD4/R51+PR27DaSkKJ8nbz+FfQbsX2XbhuTzwVUX7cO1t81nS1YpT947hO+mZbNqbVFFmbEjUuncIYHfXTaLAX1acM34fbjkhrkAfPzVFt76eCM3Xtl7p33/74MNvPbu+gary+4EgwHeevZOLr7xKVLS2/HgTaczcOShtO+84//ee9BYBo48FDNj/arFPP/wtdzwwAcAvPPfu+g7dBznXv0g5eWllJUUe1UVERFPNZUWwj1FeTfQ08x+MrP7zOw6M5tmZnPM7DYAM+tuZovM7Gkzm2dmL5nZEWb2nZktNbMx4XK3mtkLZvZlePlFu3pSC7kvvL+5ZnZ6ePkhZvZBpXKPmtkfzOxKoCPwlZl9ZWZ+M3uu0vZXh8s/Z2anhu8fHY77W+DkSvtMNrNnwvWcZWYn/KL/bC306hrPxqxyNmeXEwjA97MKGD0wqUqZUYOSmDwj1Lq0dHUJyYk+Ulv6AfD5jbhYw+eDuDgjJy/UuuSAxITQL5KkRB854VYnr6xbMYe0tl1Ja9uFmJg4Bo39NYt/mlilTHxCMhYeeFtWUlhxv2VqWzp2Gxgqk9iCNh16si13U8NWoJL+vVqwbkMRGzaVUF7u+PLbTMaNSatSZtyYND6dtAWABUvyaZEcQ1rrWADmLNjKtm3eHo/aWL1sLuntu5DeLnTMhu/3a+ZP/6pKmcrHrLSkCAv/Ci4uzGfFohmMPfQUAGJi4khMbtWwFRARaSQcVqebV/bUQngDMMg5N8zMjgJOBcYABrxnZgcBq4FewG+B8cA04CxgHPAb4EbgxPD+hgD7AsnALDP70DlXU5PIycAwYCiQAUwzs8m7CtI597CZXQMc6pzLNLORQCfn3CCo6PquYGYJwFPAYcAy4LVKq28CvnTOnR/e7kcz+8I5V7CH/1WdpaX4ycrdkRxk5ZXTu2v8TmUyq5VJS/GzYm0p70/K4/GbO1Na5pi9pIg5S0KtMP99J5ubxrfj7OPT8Bn87ZEN9R16nWzN3USrtA4Vj1u1bs/aFbN3Krdwxud88ea/KNiWze/+9MRO63My17Jh9UI67TM0ovHuTkZ6PJuzdnS/b8kqpX/vFlXLpMWxObOkUpkS2qTFkZ1Txu6cdEx7fnVwGxYvz+c/z60kvyBQv8HXQV7OJlLTdxyzlPR2rF42Z6dyc6d9wYevPkh+XhYX/uVxALI2ryG5VWtefeIm1q9aTOd9BnLiOTcQn5C00/YiIs1d0Pxeh1ArdWnHPCp8mwXMBPoB2/u9fnbOzXXOBYH5wETnnAPmAt0r7eNd51yRcy4T+IpQclmTccArzrmAc24T8DUwug6xrgD2MbNHzOxoYGu19f3CMS8Nx/litXreYGY/AZOABKBrTU9iZuPNbLqZTZ8wYUIdwgtvX8MyV8syyYk+Rg9M4rI713LxbWtIiPNx4IjkUAX2b8l/383m0jvW8t93s/njaRl1jq1eVa8UVLQsVdZ/5JFc8c+POePyR/ny7YerrCspLuD1/1zJ0Wf+lYTEFjtt21Bq89utprq5Gv4Hlb37yUbOunQmF1w7m6ycMi77Q/dfFF+9qTHenes1ePQR3PDAB5x37SN88r9HAAgGAqz7eSH7H3kG1979JvHxiXz53tORjVdEpJFyZnW6eaUuCaEBdznnhoVvvZxz/xdeV1KpXLDS4yBVWyGrf83s6mtyV/+R8moxJ9RUyDmXQ6h1cRJwGVDTt9HunvuUSvXs6pxbuIvnmeCcG+WcGzV+/PiaiuxWVl6A9NQd/570lBhy8gI7lcmooczg3glszi5nW0GQQBB+mFNAn+6h1sWDR7Xgh7mhoZRTZhfSq1qrY0Nr1bodW7N3tFJuzdlIy9S2uyzfve9ocraspmBbDgCB8jJe/8+VDN73eAaMPCri8e7OlqwS2qbHVTxukx5HZnbpzmUy4iuViSczZ/cn9eTklREMhhLHDz7fRL/eLes38DpKSWtHbtaOY5aXtYmU1rs+Zj37jyJr0xryt+aQkt6OlLR2dOs1BIAhY49i3c81voVERJo956xON6/sKSHcBmz/ZvoUON/MWgCYWScz2/U3RM1OMLMEM0sHDiHUvVyTycDp4bGAbYCDgB+BVcAAM4s3sxTg8JpiNbMMwOecexO4GRhRbf+LgB5m1jP8+MxK6z4FrrBwM4+ZDa9jHWtt+ZoSOmTE0CYtBr8f9h+ezPT5Vc+JmT6/kINGhlr+eneNp7A4SO62AJm55fTuFk9cbOjFM7h3Ius2h7oks7eWM6BnKFce1DuBjVt231UZaR17DCZr0ypytqylvLyUeT98RN9hh1Upk7VpFS7cjLZ+1XwC5WUktUjFOce7z/6NjA492f9X53kRfhWLluXTuUMi7dvGExNjHDYug++mZVcp8920HH51SBsABvRpQUFh+R67i7ePMQQ4cGwaP6/e5blRDaJLz0FkblxN1ubQMZs15SMGjjy0SpnMjTuO2dqfF1BeXkZyy1RapbYhNb09m9f/DMDSeVNp17nnTs8hIhINHL463byy2zGEzrms8Mkh84CPgZeBKeFcKR/4PVCXgU4/Ah8S6oK9YxfjBwHeBvYDZhNqyfuLc24jgJm9DswBlhLqvt5uAvCxmW0gdMbxs2YVp/b8tVq9is1sPPChmWUC3wKDwqvvAB4E5oSTwpVARKajCQbhmbdC4/18Bl/9mM/aTWUcuV8oB/98yjZmLSxiRP9EHv5rJ0rLQtPOACxbXcrUOYXcc01HAgHHynWlfDFlGwBP/i+L805Iw+c3ysocT76RFYnwa83vj+HXv7+ZF/51AS4YZPi4U2jbqTfTvnoVgNGHnsHCGZ8x+/t38fljiI2L59Q//hszY9WSGcyZ8i5tO/fh8b+fCMDhp1xNnyEHe1KXQBAefHoF998yAJ/P+GjiJlauKeI3R7UD4L3PNjF1Rg77jkjl5cdGUFIS4O5Hl1Vsf8vVvRk2KIWUljH876mRPPvqGj6auJlLzu5Grx7JOAcbt5Rw/xPLPanfdn5/DCf/4SYm3DUeFwwy5pCTaN+lF99/Hhpuu/+RpzPnx8+ZPvk9/DExxMYlcPaV91d0l5/0hxt56dHrCZSXkdauM2dc/A8vqyMi4pmmMu2MuT0NbqqvJzK7Fch3zt3fIE/Y8Nxp1670OoZ69/oD3Xnlu4Z5jTS0Mw8wDj75e6/DqHdfv7U/H8xs/Gcy19VxIzSPvoj8Yp5lZYuXr6nTl2jfnl08iVWfsCIiIiIR0lRaCBssIXTO3Vp9mZkNBl6otrjEOTe2QYISERERiSAlhLXgnJtLaL5BERERkWbHyzOH60JdxiIiIiIRohZCERERkSinhFBEREQkyikhFBEREYlyGkMoIiIiEuWCaiEUERERiW7qMhYRERGJcuoyFhEREYlyaiEUERERiXJqIRQRERGJcmohFBEREYlyaiEUERERiXJBrwOoJSWEIiIiIhESdD6vQ6iVphGliIiISBPknNXpVhtmdrSZLTazZWZ2w27KjTazgJmduqd9KiEUERERiRCH1em2J2bmB/4DHAMMAM40swG7KHcP8Glt4lRCKCIiIhIhQVe3Wy2MAZY551Y450qBV4ETaih3BfAmsLk2O1VCKCIiIhIh9d1CCHQC1lR6vDa8rIKZdQJOAp6obZxKCEVEREQipK5jCM1svJlNr3QbX22XNWWN1dsWHwSud84FahunzjIWERERiRBXu27gSuXdBGDCboqsBbpUetwZWF+tzCjgVTMDyAB+bWblzrl3drVTJYQiIiIiERKs/yuVTAN6m1kPYB1wBnBW5QLOuR7b75vZc8AHu0sGAczVNXWVXdE/UkREpHHy7HIhX8wpqVN+cMSQ+D3Gama/JtQt7Aeecc7daWZ/BHDOPVGt7HOEEsI3drtPJYT1xh1+xo9ex1DvJr46hjP/strrMCLilXu7ctTZs7wOo9599sJwnv3K6yjq33mHwlWP5HsdRkQ8eEULr0MQae48Swg/n123hPDIoXtOCCNBXcYiIiIiEVLLM4c9p4RQREREJEJqObeg55QQioiIiERIbS9H5zUlhCIiIiIR0lRO1VBCKCIiIhIhEZh2JiKUEIqIiIhEiFoIRURERKKcxhCKiIiIRDmdZSwiIiIS5dRlLCIiIhLlNDG1iIiISJRTl7GIiIhIlFOXsYiIiEiUCwTVZSwiIiIS1dRCKCIiIhLllBCKiIiIRDmdVCIiIiIS5XSlEhEREZEopy5jERERkSinLmMRERGRKKcWQqmV0UNTuOzcrvh8xkdfbuHV9zbsVOayc7sydngqJSVB7n18BUtXFtImPY4bLt2H1qmxuKDjwy+38NbHmyq2OfFX7TjxV20JBBw/zMpjwstrGrJaAAztk8A5J7TGZ/DVjwW8N2nrTmXO/U1rhvVLoLTM8fjrWaxcVwbA0Qe05LCxyRjw5Y8FfPztNgCu/F06HdrEApCc4KOgOMhfH9zYYHUCGDW4JZec3Rmfz/hkUhavfbBppzKXnt2J0UNTKCkJcv+EVSxbVURsrPHATb2JjfXh98E303J54a1Q7Gef1J5jDkknb1s5AM/8bwPTZu/8//LKivmT+eL1OwkGgww94Lfsd/T4KuuX/PQF37z/EGY+fD4/h592I116jfIo2t3r19XPyQfFYwZTF5QxcUZZlfVtWxtnHZ5A57Y+PpxSylezQuvbphrnHp1QUS49xcfHU0v5enbV7UVEKlNCKHvkM7jy/G785c7FbMkq5bF/DmTKjBxWrSuuKDNmWAqdOyRwzlVz6N8rmT9d2J3L/7aAQMDxxAurWbqykMQEH0/cNYgZc/JYta6YYQNasv+oVC76yzzKyh2prRr+MJvBeSe15p9PbSYrL8CdV7RnxoJC1m0urygzrF8C7TNiuPreDfTqGscFJ6Vx86Ob6NwulsPGJvO3RzZRHnDccEFbZi0qYmNmOQ+/lFWx/e+PS6WwONig9fIZXH5uF264ZxmZ2WU8cntfpszMY/X6Hcds9NBWdGqXwHl/XkC/nklceV4Xrrx1CWVljr/ctYzikiB+P/z75j5Mm72VRcsLAXjr0y288dHmBq1PbQSDAT575XbO+NOztGzdjufuOpXeQw4jo2OvijLd++1H76GHY2ZsXruId566ivG3feJh1DUzg1MPiefxd4rIzXdcc3oi81aUsylnxyd2YTG8ObmEwftUfd9sznXc92pRxX5uOy+JOSvKERHZnabSZezzOoDGwMzeMbMZZjbfzMaHlx1tZjPNbLaZTYzE8/br1YJ1G0vYsLmE8oDjq++z2H9U6yplDhjVms8mZwKwcFkBLZL8pKXGkp1bxtKVoUSiqDjIqnVFZKTFAXD8kW159d0NlJWHXoW5Wxv+S6tXlzg2ZpazOTtAIABTZhcyamBSlTIjByTyzcwCAJatLiUp0UdqSx+d2sawdHUppWWOYBAWrihm9MDEnZ5j3yFJfP9TYYPUZ7u+PZNYv6mEjVtKKQ84vp6aw/4jU6qU2X9ECp9/mw3AouWFJCf5SUsJJRfFJaEENsZv+P1N48yzDSvn0LptN1LbdMEfE8eA0ceydE7Vt0RcQjJmofqUlRZV3G9surXzkZkbJGurIxCEWUvKd0r88oscazYHCe7mt0afzn4y8xw525rIJ72IeMa5ut28ohbCkPOdc9lmlghMM7N3gaeAg5xzP5tZWiSeNCMtli1ZJRWPt2SX0r9Xi2pl4tiSVVqlTEZaHNm5O7qp2rWJo1f3JBYuywegc4cEBvdryflndKa0NMiTL65h8YqCSFRhl1qn+MnKC1Q8zsorp1eX+Cpl0lJiyMrdkdBl5wZIS4lhzaYyTj86lRZJPkrLHMP6JfLz2tIq2/brEU9efoCNmQ2b7Ga0jmNLdtXj0a9ncpUy6a1jq5TJzC4jPS2W7LxyfAb/uaMvHdvF894XmRWtgwC/OSKDIw5IY8nPhUx4eR35hQEag205m2jZun3F45ap7Vj/85ydyi2e9Tlfv/MAhduy+e3lTzZkiLWWkmzk5O/4xM3Nd3RrX/ffxSP6xDBzqVoHRWTPdvfjsjFRQhhypZmdFL7fBRgPTHbO/QzgnMtuqEBq8+vAVSqUEO/j1qt789h/V1NYFHrV+f1Gi2Q/l/9tAX17JnPzVb34/ZWzIxVyjWrTPlRTGecc6zeX896krdx4UVuKS4Ks3lBKoFqb+/7DGr51EKgx6OrHrMbGsXCZoINL/raY5CQ/f/9TD7p3TmDl2mLen5jJS+9sxAHnntKB8Wd14l9Pr67v6H+hGl6UNVSy7/Aj6Tv8SFYvncbk9x7izKuei3xodVWL47cnfh8M7BHD+9978PoTkSanqYwhjPouYzM7BDgC2M85NxSYBcymxm/BnbYdb2bTzWz6hAkT6vzcmdlltEnf0WrWJi2OrJzSamVKaZMeV61MqHXQ7zduvaY3E7/N4ttpORVltmSVVjxevLwA5xwpLRs298/OC5Ce4q94nJ4SQ87Wqi1eWXnlpKfuKJOW6q8oM2laATc+tJHbn9hMfmGwSkugzwdjBiUxZXbDfyFnZpfSJq3q8ajcWhsqU1alTEZabMUx266gMMCcRfmMGtIKCHXrB8PdBR9PyqJfz6rd615q2bo923J2nLizLXcTLVPb7rJ8196jyd2ymsL8BvsdVWt5+Y7WLXZkhaktjK0Fdfu07t/Nz9otAfKLmsinvIh4qql0GUd9QgikADnOuUIz6wfsC8QDB5tZD4BddRk75yY450Y550aNHz++piK7tWh5Pp3ax9O+TRwxfuPQ/dP5fkZulTLfz8jhqIMyAOjfK5mCwkBFAvLni3uwel0Rb3xU9Szb76bnMHxgKNHo3CGBmBirOHu1oSxfW0r7jFjatPbj98N+Q5OYsaCoSpmZC4o4cESou7VX1zgKi4Lkbgu1crZKDr0001P9jB6UxPc/7ejyHtwrgfVbysjOa/gu1cUrCqscs4P3bc2UmXlVykyZmceR40IvmX49k0LHLK+clJYxJCeFEuC4WGP4wJasCZ+Msn2MIcABo1JYubaYxqJDt8Fkb15JbuYaAuWlLJj2Ib2GHFalTM7mVRUt1xtXzydQXkZicuuaduep1ZuCZKT6SGtl+H0wvE8M836u2+toRJ8YZi5Rd7GI1E7Q1e3mFXUZwyfAH81sDrAYmApsIdRt/JaZ+YDNwJH1/cTBIDzy7CruubEfPh98/NUWVq0t4rgj2gDwwRdb+GFWHmOHpfLCQ0MoLgly3xM/AzCobwuOOiiDFasKefLugQD836tr+fGnPD75KpPr/tiDp+8bRHm5457HVtR36LWq23PvZvPXC9vi84Va/NZuKuOIfUNjJL+Yms+sRcUM65fIg9d3oKTU8eT/drQoXX1OBi2S/AQCjmffyaagUmvMfl51FxOq16PPr+Wf1/XE5zM+nZzFqnXFHHtYOgAffpnFj7O3MmZYK567fwAlpUHuf2oVAGmpMVw3vhs+n+Hzwdc/5PLDT6GpZS48oxM9uyXiHGzKLOWhZxpLdzH4/DEcdfotvPbwhbhggCH7n0Kbjr2ZNfkVAIYfdCaLZ33KvKnv4vPHEBObwAkX/btRnlgSdPDm1yX88TeJ+Hzww4IyNmYH2X9Q6KPw+3nltEwyrj09kYQ4wzk4eFgsd71YSEkZxMZA3y4xvP5VyR6eSUQkxNW52c+bz06re6CyC+7wM370OoZ6N/HVMZz5l8aTnNSnV+7tylFnz/I6jHr32QvDefYrr6Oof+cdClc9ku91GBHx4BUt9lxIRPaGZ79QH/mwbonWFcd682taLYQiIiIiEaKzjEVERESiXFPpiFVCKCIiIhIhTeVKJUoIRURERCJELYQiIiIiUS4QaBpnGSshFBEREYkQtRCKiIiIRLlgExlEqIRQREREJELUQigiIiIS5ZQQioiIiES5YBPJCJUQioiIiESIayJXKvF5HYCIiIhIc+Wcq9OtNszsaDNbbGbLzOyGGtb/zszmhG/fm9nQPe1TLYQiIiIiEVLf1zI2Mz/wH+BIYC0wzczec84tqFTsZ+Bg51yOmR0DTADG7m6/SghFREREIqS2rX51MAZY5pxbAWBmrwInABUJoXPu+0rlpwKd97RTJYQiIiIiERKBaQg7AWsqPV7L7lv/LgA+3tNOlRCKiIiIRIirY0ZoZuOB8ZUWTXDOTahcpKan2cW+DiWUEI7b0/MqIRQRERGJkLr2GIeTvwm7KbIW6FLpcWdgffVCZjYEeBo4xjmXtafnVUIoIiIiEiERuHTdNKC3mfUA1gFnAGdVLmBmXYG3gLOdc0tqs1MlhCIiIiIRUt8nlTjnys3scuBTwA8845ybb2Z/DK9/ArgFSAceMzOAcufcqN3tVwmhiIiISIREYmJq59xHwEfVlj1R6f6FwIV12acSQhEREZEI0aXrRERERKJcBOYhjAglhCIiIiIREoGTSiLCmkrm2gToHykiItI41TR3X4O46pH8OuUHD17RwpNY1UJYjw497QevQ6h3X70+lgfeaZ657rUnGged9K3XYdS7yW+P46izZ3kdRr377IXhXD+hyOswIuKe8Ync/1YERp577M8n+7wOQcRzdZ2Y2itKCEVEREQiRCeViIiIiES5YHnTaP1XQigiIiISIU2kx1gJoYiIiEikaAyhiIiISJRrKrO5KCEUERERiZCmMg+hEkIRERGRCFELoYiIiEiU0xhCERERkSinhFBEREQkymliahEREZEopxZCERERkSink0pEREREopymnRERERGJcuoyFhEREYly6jIWERERiXIuGPQ6hFpRQigiIiISIRpDKCIiIhLl1GUsIiIiEuV0UomIiIhIlFNCKCIiIhLlgk4nlTQpZvY08C/n3AIv4xg9NIXLz+uG32d8OHEzr7y7YacyV5zXjbHDUykuCXLPY8tZ+nMhbdLj+OtlPUlLjcU5xwdfbObNjzd5UIOarVn8Dd+/dyfOBek3+lSGHTq+yvqls95n9qSnAIiNS2LcSbeS3rEfAC/ffRix8cn4zI/5/Jx85ZsNHv+Y4alcecE++HzGh19s4qW31u5U5soL9mHfka0pKQly1yNLWLKiYLfb9uyezLV/7ElSgp8Nm0u449+LKSwK0L5NPC88MoLV64sAWLBkGw88sTzidRw1uCWXnN0Zn8/4ZFIWr32w8+vn0rM7MXpoCiUlQe6fsIplq4qIjTUeuKk3sbE+/D74ZlouL7y1EYAbL+tOlw7xACQn+SkoDHDJ3xZHvC6706ezj9/sH4sZTFsUYNLs8irr26QYvz0kjk4ZxqfTypk8Z8f6Awb5GdMvBgN+XFTOt/MCDRz9rq1Z/A1TPvgnLhik7+hTGXbIRVXWL5v1PrMnPw1ATFwS4078O+kd+lWsDwYDvPPob0lq1Zaj//BEg8Yu0pyphbARMjMDzLmd03Xn3IUehFSFz+BPF3Tnun8sYktWKU/cNZDvp+eyal1RRZmxw1Po1D6B3185m/69W3D1hT249Kb5BAKOx19YxdKfC0lM8PHk3YOYPmdrlW29EgwG+Pad2zn2wmdITmnH24/+lm4DDqN1u14VZVq27sTxF79AfFIKqxdNZvJbt3DS5a9XrD9+/PMkJLf2Inx8Prh6fE+uuXUeW7JKmXDvML79MYtVa3f8b/cd0ZrOHRM469IZDOjTkmsu7sUfr5+9223/cmkvHvvvz8yev5VfH96OM0/sxP+9shqAdZuKueCanxqujgaXn9uFG+5ZRmZ2GY/c3pcpM/NYvb64oszooa3o1C6B8/68gH49k7jyvC5ceesSysocf7lrGcUlQfx++PfNfZg2eyuLlhfyz/+srNh+/JmdKCjyNoEygxPHxfL0h6XkFTguPymeBasCbM7d8YFdWOJ47/tSBnb3V9m2XWtjTL8YHn27hEAQzj8mjoWrg2Rt9f7DPhgM8N17d/DrC/6P5FbteOc/p9Gt/6FV32NpnTlu/PPEJ6awZvFkvnnr75x42WsV6+d99wKpbfehtDjfiyqINFvBQNNoIfR5HUCkmVl3M1toZo8BM4H/M7PpZjbfzG6rVG6SmY0K3883szvNbLaZTTWzdg0Ra79eLVi/sZgNm0soDzi+/D6bA0ZXTYIOGNWazyZnArBwaT7JyX7SUmPJzi1j6c+FABQVB1m9rpiMtNiGCHuPtqyZQ0p6V1qld8EfE0fPob9m5YKJVcq07z6C+KQUANp1HUpB3kYvQq1R/94tWbehmA2bSigvd0z8dgvjxqRXKTNuTBqffrUZCLXotUj2k946drfbdu2UyOz5WwGY/lMOB++X0bAVq6RvzyTWbyph45ZSygOOr6fmsP/IlCpl9h+RwuffZgOwaHkhyUl+0lJCvymLS0IfeDF+w++3Gp/j4LGpfDUlJ4K12LMubXxk5TmytzkCQZi9PMCAaolfQTGs3RJaX1nbVGP15iBlAQg6+HlDkEE9qm7rlS1r5tAqvSut0na8x1Yt/LJKmXbdhhOfGDqmbbsOpWDrjvdYft5G1iz+mr6jT23QuEWiQTAYrNPNK80+IQzrCzzvnBsOXOucGwUMAQ42syE1lE8GpjrnhgKTgYtqKFPvMtLi2JxVWvF4S1bpTkldRlocmzNLKh5nZpWSkRZXpUy7NnH06pHEwmUFkQ24lgryNpGc2qHicXJKewrydt2dvWjaG3Tpe1DFY8P48OkLeOvhk1n4w2u73C5Sqv/Pt2SV0Ca96v88Iz2+hmMXv9ttf15dyLgxaQAcckAGbTN27LND2wSefmAYD/9jMEP6t4pIvarE3zqOLdmV4s8uJb111ddeeuvYKmUys8tID78+fQaP/6Mvr/9nMDPnbWPR8sIq2w7um0xOXjnrN5XgpZRkyC3Y0aKXV+BISa45ga1uU46jR3sfSfEQ64e+Xf213jbSCrZupkVK+4rHya3a7fY9tnjam3Tpc2DF46kf3MWYY/6MWbR8JYg0HBd0dbp5JVq6jFc556aG759mZuMJ1b0DMACYU618KfBB+P4M4Miadhrez3iAJ598Ehi6V0FaDd8t1acvqqlM5UIJ8T5uv7YP/3luFYUed8/tjtVYEVi/fCqLp73Jby55qWLZby59meRW7SjKz+LDp88ntc0+dNhndEOFWrvjUsN2zrndbnv3o0v504X7cO5pXfnuxyzKykMrsnJK+e34aWzdVk6ffZL5518HcM6VMyN7PH/xay/0J+jgkr8tJjnJz9//1IPunRNYuXZHd/Mh+7Xmq6netg7uSm2nCNuc6/h6djkXHhtPSZljQ1aQxjM0qIZAdvke+4HF09/k+ItfBGDVwq9ISE6jTaeBrF/xYySDFIlKNYxSa5SiJSEsADCzHsCfgdHOuRwzew5IqKF8mdsxk2SAXfyfnHMTgAnbH77yxQ97FeSWrFLaVmp5apMeR1ZO2c5lMuJhcWicT0Z6HJnhMn6/cfu1vfnim0y++bHxfPkmp7SjIHfHyTEFeRtJatV2p3JZGxbz9Rs3c8z5E6qMF0xuFeqxT2yRTveBR7B5zZwGTQgr/udhbdLjyazUUhYqU1LDsSslNta3y21Xryvi2tvmA9C5YwL7jQq1FpaVO8q2hU5kWLKigHUbi+nSMZHFyyM3tiszu5Q2lVqa26TFkZ1bVq1MWbhMqOU5Iy12p9dnQWGAOYvyGTWkVUVC6PPBuFGpXHaztyeTAOQVQGqlVr2UZGNrYe2zummLA0xbHErMfzU6hryCxpERJrdqR36lYRYFWzeRvIv32OS3buboPzxZ8R7btGoWqxd+xSuLJxMoL6W0JJ+vXvsLh55+b4PFL9KcNZWTSqKtf6AVoW+zvPC4wGM8jqeKRcvz6dQhgfZt4onxG4ftn8b306smdt9Pz+Wog0Jjzfr3bkFBYaDii/svf+zBqnVF/O/DxjP+DqBN58HkZa1ia/ZaAuWlLJ/9Ed36H1alTH7Oej5/4QoOPf0eUtv0qFheVlpIaUl+xf11S74jrX2fBo1/0dJtdO6QSIe28cTEGIePa8N307KrlPl2Wja/OjT0BTygT0sKCgNk5ZTtdtvUlFB3qxmcc2pX3v00dNxSWsXgC78zO7SLp3OHBNZvKiaSFq8opFP7eNq3iSPGbxy8b2umzMyrUmbKzDyOHBdKWvv1TAq99vLKSWkZQ3JSaCxdXKwxfGBL1lQ6GWXEwJas2VBc8cPFS2u3BElPMVq3NPw+GNrTz8JVtW95TQ7/fExNNgb18DN7WeNohW/TeTBbM6u+x7r2P7RKmfzc9Xzx4pUcelrV99iYo6/hrL9O4szrJ3LYmQ/QcZ+xSgZF6pG6jBsh59xsM5sFzAdWAN95HFIVwSA8/MxK7r2pLz6f8fFXW1i5tojjjwwlGu9/vpmps3IZOyKVFx8eSklpkHseWwHAoL4tOOrgNixfVchT9w4C4OlX1vDDrLxdPl9D8fljOOCEm/n4/y4gGAzSd/QppLXvzYKprwIwYN8zmDHxMYoLc/nundsBKqaXKdqWxWcvXA6ACwToOfw4uvQ9cJfPFQmBIDz41HLu//sgfD74aOImVq4p5De/Co3Zeu/TjUydkcN+I1vzyuMjw9POLN3ttgBHHNiGk44Jja2cPDWTjyaGxnwNG5DC+Wd2JRAIXQPzgSeWsy2/vIbI6k8wCI8+v5Z/XtcTn8/4dHIWq9YVc+xhoRNgPvwyix9nb2XMsFY8d/8ASkqD3P/UKgDSUmO4bnw3fD7D54Ovf8jlh5+2Vuz7kP1ae34yyXZBB+9+V8YFx8Th84Va/DblOMb2DyW0PywM0CIRrjwpgfi4UHfyuEExPPC/YkrK4Owj40hKMAJBeOfbMopK9/CEDcTnj2H/3/yNj5+5EOeC9B11MmnterPgh/B7bOwZzAy/x759N/Qe8/n8nHT5G16GLRIVmso8hNZUrrHXBLhDT9u7LuPG6KvXx/LAO83zNXLticZBJ33rdRj1bvLb4zjq7Fleh1HvPnthONdP8H4apUi4Z3wi97/VNL406uLPJ0dbJ5Q0Yp6dAXbU2bPq9CX62QvDPYk1qloIRURERBqS83AqmbpQQigiIiISIU3lpBIlhCIiIiIRomlnRERERKJcUC2EIiIiItGtqYwh1ClgIiIiIhESiXkIzexoM1tsZsvM7IYa1puZPRxeP8fMRuxpn2ohFBEREYmQ+h5DaGZ+4D+ELqu7FphmZu855xZUKnYM0Dt8Gws8Hv67S2ohFBEREYmQCLQQjgGWOedWOOdKgVeBE6qVOQF43oVMBVLNrMPudqoWQhEREZEIicAYwk7AmkqP17Jz619NZToBG3a1UyWEIiIiIhHy7fsH1+nKI2Y2HhhfadEE59yEykVq2Kx602JtylShhFBERESkkQgnfxN2U2Qt0KXS487A+l9QpgqNIRQRERFpOqYBvc2sh5nFAWcA71Ur8x5wTvhs432BPOfcLruLQS2EIiIiIk2Gc67czC4HPgX8wDPOuflm9sfw+ieAj4BfA8uAQuC8Pe1XCaGIiIhIE+Kc+4hQ0ld52ROV7jvgsrrsU13GIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5C81dKPVA/0gREZHGybwOoLHTlUrq0al/WuF1CPXujYf24epH870OIyL+fXmLZnvMHnin+f0+ufZE4+0fA16HEREnjfFz2rUrvQ6j3r3+QHfOuXm3l09tkp6/o4PXIYjUO3UZi4iIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRLkYrwOIdsP6JXLeyen4fMbEqVt554u8ncqcf3I6wwckUVoW5NGXtvDz2lIAjjskhcP3bYkDVq8v5T8vb6Gs3LHfsGROO7o1ndrF8td/rWP5mtIGrtXO+nX1c9KB8ZjBDwvKmDizrMr6tqnGmUck0LmNjw+nljJpVmh9m1Tj3F8lVJRLT/Hx8Q+lTJ5ddfuGFIljdvZv0hg1KInygGNjZjn/eXkLhUXBBq5ZVWsWf8P3792Jc0H6jT6VYYeOr7J+6az3mT3pKQBi45IYd9KtpHfsB8DLdx9GbHwyPvNjPj8nX/lmg8e/K4vnfMP7L9yFCwYYfcipHHL8RVXWz58xkc/ffAQzw+eP4fjf3UD3viMBuPvqI4hPSMbn8+Hzx3DF7f/zogoVhvZN5LwT0/D5YOIP+bz75c6vxfNOTGN4/0RKSh2PvZrJz+tCr8VjD2rFYWNb4Bys2VjKY69mUVbu6NYhlotOTSch3seW7HIefmkLRSWuoatWxeBe8fz+2Fb4DL6eUcgH3xRUWd8hw89FJ6XSrWMsb3yxjY+/27H+whNTGNY3nq0FQW58NLOhQxdpMpQQeshncOFvM7j9sQ1k55Zz97WdmD63kLWbdiQ7wwck0qFNLFf8Yw29u8Uz/rcZ/PXf60lL8XPMQa24+q61lJY5rvlDWw4YkcykH/NZvaGU+57ZxMWnZXhYux3M4JSD43ni3SJy8x1Xn5bIvJ/L2ZSz40umsATemlzC4H2qviS35Druf62oYj+3/iGJuSvKGzT+yiJ1zOYsLuKlD7IJBuH3x6dx8hGpvPh+tmf1DAYDfPvO7Rx74TMkp7Tj7Ud/S7cBh9G6Xa+KMi1bd+L4i18gPimF1YsmM/mtWzjp8tcr1h8//nkSklt7Ef4uBYMB3v3vP7jg+qdJSWvHo7ecTv8Rh9Ku04569Rq4LwNGHIaZsWH1Yl5+9BquvffDivXjb3yO5Jbe18sMLjg5jX88uYmsvHLuuqoj0+cXsq7ya7FfIu0zYrjyrnX07hrPhaekc9PDG2jdys8x41py9b3rKSt3XH12G/YfnszX0/K5+LQMXng/m4UrSjh0TAt+c2gKr32S62k9zzm+Ffc+l0321gC3/TGDmYtKWL9lx+dAfpHjhY+2MrJ/wk7bfzOriM9/KODiU1IbMGqRpidquozNLNnMPjSz2WY2z8xON7OVZpYRXj/KzCaF799qZs+Y2SQzW2FmV0Yipl7d4tm4pYzNWeWUB+C7mQWMHpxcpczoQclMmrYNgKWrSkhK9JHayg+A32fExRo+H8THGTl5AQDWbSpj/WbvWtCq69rOR2ZekKytjkAQZi0tZ1C1xC+/yLFmc5DAbhrF+nT2k7XVkbPNu9aKSB2z2YuLCIbrvmRVMemp/oarVA22rJlDSnpXWqV3wR8TR8+hv2blgolVyrTvPoL4pBQA2nUdSkHeRi9CrZM1y+eS3q4r6W27EBMTx9B9j2HBjC+rlIlPSMbMACgtKQplJI1Qr67xbMwqZ3N2OYEAfD+rgNEDk6qUGTUoickzQq1lS1eXkJzoI7Vl6LXl8+94LcbFGTl5oQSrY9tYFq4oAWDOkiLGDq66z4bWs3Msm7MCbMkJEAjA1LlFjOgfX6XMtoIgP68rIxDY+bNh8apSCoq8beEUaQqiqYXwaGC9c+5YADNLAe7ZTfl+wKFAS2CxmT3unKvXLCstJYbM3B2/crNyy+ndreoHXXqqn6xKZbLzAqSn+Fm+ppT3vsrl8Vu7UlrmmLOokNmLi+ozvHqTmmzkVkri8vIdXdvV/bfI8N4xzFziXesgNMwxO2xsS76bVbDT8oZUkLeJ5NQOFY+TU9qzefXsXZZfNO0NuvQ9qOKxYXz49AWYQf+xp9N/7OkRjbe2tuZsIiWtfcXjlLT2rFk+Z6dy86Z/waev/5v8rVn84donKpYbxv/dcyFmxphDT2PsYac1SNw1SUup+jrLyiund9f4ncpkViuTluJnxdpS3p+Ux+M3d6a0zDF7SRFzlhQDoe7jUQMTmT6/iH2HJJOe6u3XROtWfrLCP5wAsvOC9Owc62FEIs1TNCWEc4H7zewe4APn3De2+1/+HzrnSoASM9sMtAPW1mdANT39zr9jdy7kHCQn+hg9KJnLbltNQVGQa89rx4GjWvDN9Pz6DLHR8PtgYI8YPphS6GkckT5mJx+ZSiBIozyOu3q/rF8+lcXT3uQ3l7xUsew3l75Mcqt2FOVn8eHT55PaZh867DO6oULdJedqaCmqoVqDRh3BoFFHsGLRdD5/82EuvOEZAC655SVatW5Lfl4WT99zIW067sM+/UZFOOqa1XQ0qtduV2WSE32MHpjEZXeupbAoyDXntuXAEcl8M7OAx1/L4rwT0zj1yFSmLyikvIZWNxFpfqKmy9g5twQYSSgxvMvMbgHK2fE/qD74pKTS/QA1JM9mNt7MppvZ9AkTJtQ5pqzccjIq/fpOT42p6EKsXKbyL/S0FD/ZWwMM6ZvI5uwythaEull/mFNA3x5VWwcai9wCR2rLHV9NKS2MvIK6fcn07+Zn3ZYA+R53/UTymB08ugUjBybx0PObI1+RPUhOaUdB7oaKxwV5G0lq1XanclkbFvP1Gzdz1Ln/qTJeMLlVOwASW6TTfeARbF6zcyucF1LS2pOXvaNrOy97I61Sd67Xdvv0G0XWpjUUbMsBoFXrUNkWKekMHHU4a2toXWwoWXmBKq+z9JQaXot5gaqv13CZwb0T2JxdzrZKr8U+3UOvxfWby7hzwiZueHAD380sYFOWt63yOVtDLezbpaX4yNkW2M0WIvJLRE1CaGYdgULn3IvA/cAIYCWhJBHglLru0zk3wTk3yjk3avz48XveoJplq0vo0CaWtmkxxPjhgBHJTJtXtatw+rwCDhndEoDe3eIpLA6SuzVAZk45fbolEBcbSrQG90lk3cbGM26wsjWbgrRJ8ZHW0vD7Ql2/83+u2wf68N4xzFzq7RcTRO6YDeuXyIlHpHLPUxspLfO+RaZN58HkZa1ia/ZaAuWlLJ/9Ed36H1alTH7Oej5/4QoOPf0eUtv0qFheVlpIaUl+xf11S74jrX2fBo1/VzrvM4isjavI3ryW8vJSZk/9mAEjDq1SJnPTqoqWxHUrFxAIlJHUIpXS4kJKikLHurS4kKVzv6ddl94NXoftlq8poUNGDG3SYvD7Yf/hyUyfX7UFffr8Qg4aGRrj2rtr+LW4LUBmeKhDxWuxdyLrwuOOW7UIfS2YhVqsP5+yrQFrtbMV68pol+4nI9WP3w/7Dk5k1qKSPW8oInUSTV3Gg4H7zCwIlAGXAInA/5nZjcAPDR1QMAhPv5nJ3y5pj89nfDl1G2s3lnHUAaFk4rPvtjFzQREjBiTx6M1dQtNGvBxqPVq6qoQpswu477pOBILw89oSPv9+KwBjhiRxwSkZtGrh568Xt2fl2lL+8YR3A/6DDt6cXMLFJyTiC087szE7yP4DQy+/7+eX0zLJuOa0RBLiDOfg4KGx3P1SISVlEBsDfbvG8L9J3n8JROqYXXBqBrExxs2XdqgoO+F176bI8PljOOCEm/n4/y4gGAzSd/QppLXvzYKprwIwYN8zmDHxMYoLc/nundsBKqaXKdqWxWcvXA6ACwToOfw4uvQ90LO6VOb3x/Cbc27imfsuIhgMMuqgk2jXuTdTJ4bqte/hZzBv2ufM/PZd/P4YYuMSOOuyBzAztm3N4oUHQ+eXBYPlDNvvWPoO8a5ewSA881Y2N41vh8/gqx/zWbupjCP3C70WP5+yjVkLixjRP5GH/9qJ0rLQtDMAy1aXMnVOIfdc05FAwLFyXSlfhBO/A4Yn86sDWgHw49xCvvrR2+ELwSA8/8FW/nJuGuaDyTOLWLe5nENHh052+WpaISktfNz2xwwS442gg1/tl8wNj2yhuMRxyW9T6d8jjhZJPh78c1ve+nIbk2c2zvHWIl6yGsfUyC/hTv3TCq9jqHdvPLQPVz/a+Maz1Yd/X96C5nrMHnin+b2vrz3RePvH5tlVeNIYP6ddu9LrMOrd6w9055ybN+y5YBPz/B0d9lxIGpvGOV1AIxI1XcYiIiIiUjMlhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlDPnnNcxNBf6R4qIiDRO5nUAjV2M1wE0J0f+bobXIdS7z18ayUmXL/U6jIh4+9HezfaYnfmX1V6HUe9eubcrf3pom9dhRMRDf2rJCZcs9jqMevfu4335z8deR1H/LjsGjjhzutdhRMQXr4zyOgTxiLqMRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlyMV4HEO1GDWnFpWd3weeDjydl8tr7m3Yqc+k5XRgztBUlpUHue3Ily1YWERtr/OvmvsTGGH6/8c2POTz/5oYq253663Zc/LvOnHLxT2zNDzRUlSoM75/EBae2weeDL77fyluf5+xU5oJT2zByYBIlpY5HXtjEirUldGwby5/P71BRpl16DK98mM0Hk3I589g0xgxpgXOQt62ch1/cRE5ew9YtEsfsojM7se+IVMrLg6zfVML9E1ZRUNiw9RraJ4FzTmiNz+CrHwt4b9LWncqc+5vWDOuXQGmZ4/HXs1i5rgyAow9oyWFjkzHgyx8L+PjbbQBc+bt0OrSJBSA5wUdBcZC/PrixwepUk37d/Jx8cAI+g6nzy/hiemmV9W1b+zjryAS6tPHxwZQSvppZVrEuMQ7OOCKBDuk+HPDK58Ws3Bhs4BrsMHxAEhed1g6fweff5fHmZ9k7lbnotLaMHJhMSanjoec3sGJNCQDJiT4u/317unaMwzl45IWNLP65GIBjD0nl2ENaEwg4ps8r4L9vb2nQelW3cuFkJr91J84FGbjvbxl1xPgq6xdNf48ZE58CIDY+mUN/eyttOvUjZ9MKPv7v1RXl8rLWsO8xVzL8kD80ZPhVjB7aikvP6Rr6/Pgqk1ff2/n9cNm5XRgzLIWS0iD3Pr6SZSsLiY01/n1LP2JjQ58fk3/I4fk31gNw0NjWnHNqR7p2TODymxeyZEVhQ1dLmgElhB7yGVzxh65cf9cSMrPLePSOfkyZmcfqdcUVZcYMbUWn9vH84dr59O+VzJXndePKvy+irMxx3Z1LKC4J4vfDv2/px7TZW1m4rACANmmxjBzckk2ZJZ7Vbfxpbbj10XVk5ZZz73Vd+XFuAWs37vjyHTEgiY5tYrn0tlX06Z7AxWe05fr717B+cxnX3L26Yj9P39mDH2bnA/DOxFxe+TD0pXfswSmcfkw6T7y6uUHrFYljNnPeVv7vtXUEg3DhGZ048zftefrVdQ1WLzM476TW/POpzWTlBbjzivbMWFDIus3lFWWG9UugfUYMV9+7gV5d47jgpDRufnQTndvFctjYZP72yCbKA44bLmjLrEVFbMws5+GXsiq2//1xqRQWe5c8Qaievz0kgcfeLiQ333HtGUnMXVHOpuwdcRUWO976upjB++z88XjywQksXBXg2Y+K8fsgzsNPUJ/BxWe04+8PryUrp4z7b+jGj3PyWVPpPTZyYDId2sbyx7//TJ8eCVxyZjuuuzf03rrwtLbMXFDAPU+tJ8YP8XGhDqPBfRIZO7QFV/5jJeXljpSWfk/qt10wGGDSG7dz0iXP0iK1Ha/961R6DDqM9Pa9KsqkpHfmlCteJCEphZULvubL127m9Gv+R+t2+3DWX96t2M8zfz+InkOO9Koqoc+P87py/T+XsCWrjP/c2Z/vZ+RW/fwYlkKn9gmce/U8+vdK5k8XdOWKm0OfH3/+x+Lw54fx4K19mfZTHguXFbByTRG3/msZV1/Y3bO6SdPXbLqMzSzZzD40s9lmNs/MTjezlWZ2m5nNNLO5ZtYvXDbNzN4xszlmNtXMhoSXzzWzVAvJMrNzwstfMLMj6jvmvj2TWb+pmI1bSikPOCZNzWH/kalVyuw3MpUvvgl9qS5cVkCLJD9pqaFvoeKS0JdYjN+I8RvOuYrt/nh2F556ZR2VFjWo3t0T2JBZxqascsoD8O3MbYwZklylzJghLfjqx1Ar1JKVxSQn+mjdquqXz+C+SWzcUsaWnFBiUlQpoYiP91Wpc0OI1DGbMXcbwXDVFi4rICMttmEqFNarSxwbM8vZnB0gEIApswsZNTCpSpmRAxL5ZmboB8ey1aUkJfpIbemjU9sYlq4upbTMEQzCwhXFjB6YuNNz7Dskie9/8rblols7H1vygmRtdQSCMHNJ+U6JX36RY/WmIIFquWt8HPTs5Gfq/FCLYSAIRVUbFxtU7+4JbNxSxqbMMsoD8M30bYwZ2qJKmTFDW/DV1PB77OdikpP8tG7lJzHBx8BeiXz+XR4A5QEoKApV+OiDUnnz02zKy0OvzbxtDd+7UNmmVXNIzehGSkYX/DFx9B5+LCvmTqxSpkOPESQkpQDQvvsw8vN2bnVbs2QKKRldaJXWqUHirknfXsms31jChs3hz48p2RwwKrVKmf1HpvJ5lc+PGNJSQ58HO39+hLZZvb6YtRu8+fEvzUezSQiBo4H1zrmhzrlBwCfh5ZnOuRHA48Cfw8tuA2Y554YANwLPh5d/BxwADARWAAeGl+8LTK3vgDPSYtmStaM7KjO7lIzWsTuV2ZxVWq1MHBD6tfnEP/vzv8eHMnPeVhYtD33Z7jcihazsUlasLqrvkGstLSWGzJwdrUtZOeWkp1T94k1PjSGrcpnc8orEabsDR7bgmxnbqiz73fHpPHVHdw4e1bKitbChROqYVfarg9OZNnvn7tpIap3iJ6tS13tWXvlOyXlaSgxZuTvKZOcGSEuJYc2mMvr3iKdFko+4WGNYv0TSqx3Hfj3iycsPsDGzHC+ltPCRu21HppebHySlhdVq24xWPvKLHGcdmcB1ZyZxxuHxnrYQpqfGkJmz47WYlVO+0/89VGbH/zwzp4z01BjaZ8SSlx/gynPa8+8bu3H579sRHxf6P3RsG8eAXonc95eu3Hl1F3p1S2iYCu1Cft4mWrRuX/G4RWo7CvJ2Hqax3YKpb9Ct/0E7LV8680P6jDguIjHWVkbruCqfDVuySkkPfzZUlEmLZUvlMtmlFT8QfQZP3DWAN54cyoy5W1m0vKBhApeo0JwSwrnAEWZ2j5kd6JzLCy9/K/x3BtA9fH8c8AKAc+5LIN3MUoBvgIPCt8eBwWbWCch2zuXXd8A1fQ1Vb/CyGkptLxN08McbF3LmFXPp2zOZ7p0TiI8zzjyhA8+Fx5Z4xWqoXG3a8irXP8YPowe34PtZVf/1L72fxUU3r+Tr6dv49UEpexdoHUXimFV21gntCQQcE79r2ES3NilRzXV3rN9cznuTtnLjRW254YI2rN5QSiBY9Z+y/zDvWwdhF/WsZSOzzwed2/r4bk4p971SSGkZHDEqbs8bRkpN77GdXos1lAH8PujZJYFPJudy9T9XUVziOOVXaQD4/UaLJD/X3bua597awl8u7FDDXhpSDQeopg8YYM3Sqcyf+gYHHP/nKssD5aWsmP8lvYcdHYkAa63msN0ey1T5/PjrAs64bA79avj8ENkbzSYhdM4tAUYSSgzvMrNbwqu2t6MH2DFmclefk5MJtQoeCEwCtgCnEkoUd2Jm481suplNnzBhQp1j3pJdRpv0Ha1LGWlxZOWWVStTStv0uGplqvZTFRQGmL1wG6OGpNChXTzt28Tx5F0DeOHBQbRJi+PxOwfQOqVhmzKycsvJaL3jOdNbx5CdV75TmfTKZVJjyKlUZsSAZFasKd5ll9U307ax37AWNa6LlEgcs+2OPDCNscNTuPuxnyMU/a5l5wVIT9nRIpieEkPO1qr/96y8ctJTd5RJS/VXlJk0rYAbH9rI7U9sJr8wWKUl0OeDMYOSmDLb+4QwNz9IassdH3upLXzkFdQuI8zNd+TmO1ZtCrUw/rSsnM5tvRtfl5VTXqV1uqb3WGa192FG61iyc8vJDN+WrAyNXft+1jZ6dkmo2O+UWaFW+aWrigk6aNXCu3q2SGlPfs6OLuD83E0kt2q7U7nM9YuY+OrfOO7Cx0hMbl1l3cqFk2nTeSBJLTMiHu/uVP9saJMeR1ZOtc+PrDLaVC6TtnOZ7Z8fo4c27A9iad6aTUJoZh2BQufci8D9wIjdFJ8M/C683SGEupW3OufWABlAb+fcCuBbQt3MNSaEzrkJzrlRzrlR48ePr6nIbi1eUUCn9gm0bxNHjN84ZN/WTJmRW6XMlJm5HHFgOgD9eyVTUBQgO7eclJYxJCeFPqTjYo0RA1uyZkMxK9cUc9qlczj7qnmcfdU8tmSXcslNC6okWg1h6apiOrSJo216DDF+GDeiJdPmVO3emDY3n0PHtAKgT/cECouCVZKQcaNa8s2Mqq2D289YBRg9JJm1mxp2EFckjhmEzlw+/fj23PLAckpKG37g5/K1pbTPiKVNaz9+P+w3NIkZC6oOOZi5oIgDR4TGgfbqGkdhUbCi+7VVcuijJD3Vz+hBSXz/045jPbhXAuu3lJHdwGeD12T1piBtUn2ktTL8PhjRJ4Z5K2r33thW6MjdFqRtauj3ZJ8ufjZme3eSzNJVxXRoG0vb9Fhi/HDgqJb8OKfq++XHOfkcum/4PdYjgYKiADlbA+RuDZCZU0andqH305C+SRUno/wwextD+obGj3ZsG0us3zyZpWC7dl0Hk5u5krysNQTKS1k660P2GXRYlTLbctbz4TNX8Kvf30vrtj122seSmR/Sd8SxDRXyLi1eXu3zY780vq/h8+PIyp8fhQGyc8t2/vwY1IrV64urP4XIL9aczjIeDNxnZkGgDLgEeGMXZW8FnjWzOUAhcG6ldT8A238OfwPcRSgxrHfBIDz63Gruur43Pp/x6deZrFpXzHGHh37FfjAxkx9/2srYYSn891+DKCkNcv+TKwFIS43lL3/sjs8HZqEpCH6YlbebZ2tYwSA89fpm/n5ZJ3wGE6duZc3GUn41LvSL9tNv85gxv5CRA5N5/O/dKClzPPLijnFBobFoSTzxStUziM8+IYNObWMJulBrXUOeYby9XpE4Zpef24XYWB/3/LU3EBpM/tAzqxu0Xs+9m81fL2yLzxdq8Vu7qYwj9g21wH4xNZ9Zi4oZ1i+RB6/vQEmp48n/7ejWvvqcDFok+QkEHM++k01B0Y6kdr9G0l0MoS63NycVc8mJSaFpZxaUsTE7yAGDQ4nRd3PLaJlk/PmMJBLijCBwyLA4/vliASWl8OakEs4+OpEYP2TmBXn5c+++kINBmPDqZm69ojM+H0z8Po81G0o5+sDQe+yTb/KYMa+AUYOSeeL2HqGpnZ7fMTXVU69t5przOhLjNzZmlvLwC6FWuC++z+OKszvw8M3dKS93PPi8t9ME+fwxHHLKLbz7xIUEgwEGjj2F9A69mfvdKwAMPuBMfvj0PxQX5PLV/24Lb+PnjGtDo4XKSotYs/h7Djvtds/qsF0wCI88t5q7/9oHnw8+mZTFqrXFHHdEGwA++GILP8zKY8ywFJ5/cBAlJaFpqwDSWsdy/SU9Kj4/vp6aXfH5ccCoVC7/Q1dSWsVw5196s3xlITfcvdSrakoTZQ19lmYz5o783QyvY6h3n780kpMub54fLG8/2pvmeszO/EvDJZMN5ZV7u/Knh7btuWAT9NCfWnLCJYu9DqPevft4X/7zsddR1L/LjoEjzpzudRgR8cUro7wOIVJqd/ZYFGs2XcYiIiIi8ssoIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopw557yOQerIzMY75yZ4HUd9a671guZbt+ZaL2i+dVO9mp7mWrfmWq+mSi2ETdN4rwOIkOZaL2i+dWuu9YLmWzfVq+lprnVrrvVqkpQQioiIiEQ5JYQiIiIiUU4JYdPUXMdcNNd6QfOtW3OtFzTfuqleTU9zrVtzrVeTpJNKRERERKKcWghFREREopwSQhEREZEop4RQREREJMopIRSROjOzRDPr63Uc9a251kuaHjPzm1lHM+u6/eZ1TPXBzA4zsySv45Cd6aSSJsLM+gCPA+2cc4PMbAjwG+fcPzwOba+EPxiuBbo65y4ys95AX+fcBx6H9ouY2YjdrXfOzWyoWCLFzI4H7gfinHM9zGwYcLtz7jfeRrZ3mmu9AMzsc+C3zrnc8OPWwKvOuV95GtheMrM2wEVAdyBm+3Ln3PlexVQfzOwK4O/AJiAYXuycc0O8i6p+mNnzwL5AFvBN+Patcy7H08BECWFTYWZfA9cBTzrnhoeXzXPODfI2sr1jZq8BM4BzwoluIjDFOTfM28h+GTP7Knw3ARgFzAYMGAL84Jwb51Vs9cXMZgCHAZMqvRbnNPUvq+ZaLwAzm7W9Trtb1tSY2feEEooZQGD7cufcm54FVQ/MbBkw1jmX5XUskWJmHYFTgT8DHZ1zMXvYRCJMB6DpSHLO/WhmlZeVexVMPerpnDvdzM4EcM4VWbVKNiXOuUMBzOxVYLxzbm748SBCH3zNQblzLq8JH6Zdaa71AgiaWVfn3GoAM+sONIfWgCTn3PVeBxEBa4A8r4OIBDP7PXAgMBjIBB4llNSLx5QQNh2ZZtaT8Ie4mZ0KbPA2pHpRGm4V3F6vnkCJtyHVi37bk0EA59y8cBdkczDPzM4C/OEu/iuB7z2OqT4013oB3AR8G+5pADiI5nEd2Q/M7NfOuY+8DqSerQAmmdmHVPo8dM79y7uQ6s2DwHLgCeAr59xKT6ORCuoybiLMbB9Cs7rvD+QAPwO/b+pvJjM7EvgbMAD4DDgA+INzbpKXce0tM3sFKABeJJTs/h5o4Zw709PA6kF43OdNwFGEusM/Be5wzhV7Gtheaq712s7M2hJKAn8iNKRhs3NusqdB7SUz2wYkE0qayggdN+eca+VpYHvJzP5e03Ln3G0NHUskmNlAQj9KxgG9gcXOubO9jUqUEDYxZpYM+Jxz27yOpb6YWTqhQcYGTHXOZXoc0l4zswTgEkIfegCTgcebS3IhTYuZXQj8CehMKCHcl9BY3cO8jEuij5m1IvTD/2BCXccZhD73z/U0MFFC2FSY2T+Be6udJXitc+5vngZWD8JnTHen6lmCb3kWUD0Jd4V3dc4t9jqW+mBm77ObcWdN9Wzc5lqvysxsLjCa0BfvMDPrB9zmnDvd49B+ETPr55xbtKuz+pv62fzhk9N2ek02hwTezOYA34Zvk51zaz0OScI0hrDpOMY5d+P2B865HDP7NaHu1ibLzJ4hdAbufCpNrwA06YTQzH4D3AfEAc1lCpP7w39PBtoT6g4HOBNY6UVA9aS51quyYudcsZlhZvHhZKopz7d4DaHu7wdqWOcInS3elFU+AS0BOIXmcRIh28/aN7OWNI8Tm5oNtRA2EeFfVaOdcyXhx4nAdOfcQG8j2ztmtsA5N8DrOOpbM5/CZLJz7qA9LWtqmmu9AMzsbeA84CpCr8scINY592sv45LaM7OvnXMHex3H3grPuPACkEZomNAW4Fzn3DxPAxO1EDYhLwITzexZQr+qzgf+621I9WKKmQ1wzi3wOpB61pynMGljZvs451YAmFkPoI3HMdWH5lovnHMnhe/eGu6OTAE+8TCkehNOMAYQakkDwDn3vHcR7T0zS6v00EdoTtP2HoVT3yYA1zjnvgIws0PYccKkeEgJYRPhnLs3PA7ocEK/qu5wzn3qcVj14b+EksKNhM4U3H6WYFNvSWvOU5hcTWhKjBXhx92Bi70Lp94013pV4Zz7es+lmobw2biHEEoIPwKOITQ2rUknhIQm2naEPg/LCA1duMDLgOpR8vZkEMA5Nyl8sqR4TF3G4qnwjPzXAHPZMYYQ59wqz4KqB9WmMIHQFCb/aC5nGZtZPNAv/HDR9qEMTV1zrVdzFf6RPBSY5ZwbambtgKedc8d7HNpeMbPTgE+cc1vN7GZgBKFGgCZ9sgxUDF+YSajbGEJTco1yzp3oWVACKCFsMszsZOAeoC2hX43NZb6tL5vDmXO7YmbJzrkCr+OoD2Z2mHPuy/BrcSdN9czw5lqvaGBm05xzo8Njdg8FtgHzmsHY6jnOuSFmNg74J6GTZ250zo31OLS9Fp4h4zZCcxAaoSm5btW1jL2nLuOm417geOfcQq8DqWeLzOxl4H2qzsjfpL+EzWx/4GmgBdDVzIYCFzvnLvU2sr1yMPAlUFPrS1M+M7y51qtZC1/ico6ZpQJPEepmzQd+9DKuerL9uszHAk845941s1s9jKfehBO/K72OQ3amFsImwsy+c84d4HUc9S18kkx1zjl3foMHU4/M7AdCF25/r9JZxvOcc4O8jUyk+TCzGc65keH73YFWzrk53ka198zsA2AdcAQwEigCfnTODfU0sHpgZn0ITavTnapzzzbbnqKmQi2ETcd0M3sNeIdm1JLmnDvP6xgixTm3ptpZxoFdlW1KzOxPwLOEuueeIjS+6Qbn3GeeBraXmmu9mrmpZjbaOTetqV/Gs5rTgKOB+51zuWbWAbjO45jqy/8IXcf4aZrJZ2JzoYSw6WgFFLLjJAVoBt1ZlabRqaKptxACa8Ldxs7M4gh1kTSX7v7znXMPmdmvCI1pPY9QItXUE6fmWq/m7FDgYjNbReja4c1ilgLnXCGVPtudcxuADd5FVK/KnXOPex2E7EwJYRPRjFvSPqh0PwE4CVjvUSz16Y/AQ0AnQl0/nwKXeRpR/dne7Plr4Fnn3GxrHhMuNtd6NWfHeB2A1Nn7ZnYp8DZVe7uyvQtJQGMImwwzSyA0D9VAqk7A2tRb0qowMx/whcaTNF7hVt1OQA9CU374CV2RZaSnge2l5lovkcbEzH6u9LAiAXHO7eNBOFKJz+sApNZeIDRT/a+Ar4HOhMY6NTe9ga5eB7G3zGwfM3vfzLaY2WYze9fMmssH3gXADYQupVhI6HrNzaEFu7nWS6QxuR4Y6pzrQWhIxmxCJ+CJx5QQNh29nHM3AwXOuf8Smo5gsMcx7TUz22ZmW7ffCE0/c73XcdWDl4HXgQ5AR0IDqV/xNKJ64pwLApuAAWZ2EKFW61RPg6ofnzvnZjrncgGcc1nAv70NSaTZ+Vt4wu1xwJHAc4DGFDYCGkPYdJSF/+aGr925kdBp+02ac66l1zFEiDnnXqj0+EUzu9yzaOqRmd0DnA4sYMdZgo7QBLNNTng4RhKQEZ40d/u4wVaEknkRqT/Ndo7Fpk4JYdMxIfxl9TfgPUITHt/sbUh7z8wOAH5yzhWY2e8JTfXxUFO/dB3wlZndALxKKFk6Hfhw+0Xrm/gA6hOBvs3osm4XA1cRSv4qXxpsK/AfLwISacbWmdmThOZYvCd8uUj1VjYCOqmkiTCzHs65n/e0rKkxszmEBvAPITRO8v+Ak51zB3sa2F7axcDp7S1PrikPoDazj4HfOufyvY6lPpnZFc65R7yOQ6Q5C1/n/WhgrnNuaXiOxcGa79N7SgibCDOb6ZwbUW3ZjKZ+BuT2epnZLcA659z/1VTXpqaZX5z+TUJJ/ESqThvRpC9HZWbn1LTcOfd8Q8ciItLQ1GXcyJlZP0KD9lPM7ORKq1pRafqZJmybmf0V+D1wkJn5gViPY6oPf3POvV5p4PQDhAZON/mL0xMasvCe10FEwOhK9xOAwwl1ISshFJFmTwlh49cXOI7QWZzHV1q+DbjIi4Dq2enAWcAFzrmNZtYVuM/jmOpDsx04HT7Lvdlxzl1R+bGZpRAaxiAi0uypy7iJMLP9nHNTvI5Daqc5XpzezF53zp1mZnOp+XKDTfpyYdWZWSwwxznX3+tYREQiTS2ETcdJZjafUGLxCaExXFc55170Nqy9E+4Gv4fQtWONHdcibeVpYHuvOV6c/k/hv8d5GkWEmNn77Eh0/UB/QnNJiog0e2ohbCLM7Cfn3DAzO4nQtB9XA1815RYnADNbBhzvnFvodSxSP8xsinNuP6/jqCszq3xmezmwyjm31qt4REQakub+aTq2n2jxa+CVJj6PXWWblAw2O03yZCfn3NfAIqAl0Boo9TYiEZGGoy7jpuN9M1tEqMv4UjNrAxR7HFN9mG5mrwHvUHUKk7c8i0j2VpPsdghPFXQfMInQ0IVHzOw659wbngYmItIA1GXchISvVLLVORcIT+7Zyjm30eu49oaZPVvDYuecO7/Bg5F60VTnkTSz2cCRzrnN4cdtgC+a+rAMEZHaUAthI2dmhznnvqw8B6GZVS7SpFvSnHPneR2D1Dvbc5FGybc9GQzLQsNqRCRKKCFs/A4CviQ0B6EjfBZupb9NOiE0s87AI8ABhOrzLfAnDeZv3MysPTCG0DGbVq2l+mxvotprn5jZp8Ar4cenAx95GI+ISINRl3EjZ2bXsnMiSPg+zrl/eRRavTCzz4GX2TEB8O+B3znnjvQuKtkdM7sQuIXQDxUDDgZud84942lg9SDcEj+OUL0mO+fe9jgkEZEGoYSwkTOzv4fv9iV0aa13CX1ZHU/oC+tCr2KrD9un09nTMmk8zGwxsL9zLiv8OB343jnX19vIIqupTqcjIlIb6jJu5JxztwGY2WfACOfctvDjW4H/eRhafck0s9+zo5vuTEJjt6TxWkvo0onbbQPWeBRLQ2qS0+mIiNSGEsKmoytV50UrBbp7E0q9Oh94FPg3oW7w7wGdaNK4rQN+MLN3CR2zE4AfzewaaPrDGHZD3Ski0mwpIWw6XiD0pfs2oS+mk4D/ehtSvbgDONc5lwNgZmnA/YQSRWmclodv270b/tvSg1hERKQeaAxhE2JmI4ADww8nO+dmeRlPfTCzWc654XtaJuI1vS5FpDlTC2ET4pybCcz0Oo565jOz1tVaCPW6bMTMbBRwE9CNSsfKOTfEs6DqSTOdTkdEZI/0xSteewD43szeIPQlfBpwp7chyR68BFwHzAWCHsdSb2qYTucRM6uYTsc5N8/L+EREIkldxuI5MxsAHEboS3iic26BxyHJbpjZt865cV7HUd+idTodERFQC6E0AuEEUElg0/F3M3samAiUbF/onGvSV80heqfTERFRQigidXYe0A+IZUeXcZO/jCLRO52OiIgSQhGps6HOucFeBxEBmk5HRKKWxhCKSJ2Y2VPAvzXWU0Sk+VBCKCJ1YmYLgZ7Az4TGEBrgmvq0M815Oh0RkT1RQigidWJm3Wpa7pxb1dCx1KfwWcY7TafT1OslIlIbGkMoInXinFtlZuOA3s65Z82sDdDC67jqwRbn3HteByEi4gW1EIpInZjZ34FRQF/nXB8z6wj8zzl3gMeh7RUzOxw4k+Y3nY6IyB6phVBE6uokYDjhyyg659abWXM4E7e5TqcjIrJHSghFpK5KnXPOzByAmSV7HVA9aa7T6YiI7JHP6wBEpMl53cyeBFLN7CLgC+Apj2OqD1PDl1EUEYk6aiEUkbpqA7wBbAX6ArcAR3gaUf0YB5xrZs1qOh0RkdrQSSUiUidmNtM5N6LasjlNPXFqrtPpiIjUhrqMRaRWzOwSM5sL9DWzOZVuPwNzvI5vb4UTvy7AYeH7hegzUkSihFoIRaRWzCwFaA3cBdxQadU251y2N1HVn+Y6nY6ISG0oIRQRAczsJ8LT6TjnhoeXNfmucBGR2lB3iIhISKkL/UJubtPpiIjskRJCEZGQ5jqdjojIHmnaGRGRkOY6nY6IyB5pDKGICM13Oh0RkdpQC6GIRDUzuwS4FNjHzCpPn9MS+M6bqEREGpZaCEUkqjX36XRERGpDCaGIiIhIlNNZxiIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUe7/AfUcZaoRF3dyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corr = df.corr().abs() #matriz correlaciones\n", + "\n", + "mask = np.triu(np.ones_like(corr, dtype=bool)) #Enmascaramos la diagonal superior\n", + "\n", + "f, ax = plt.subplots(figsize=(11, 9)) #Tamaño\n", + "\n", + "sns.heatmap(corr, mask=mask, cmap='coolwarm',annot=True, vmax=1, vmin=0,\n", + " square=True, linewidths=.5, cbar_kws={\"shrink\": .5})" + ] + }, + { + "cell_type": "markdown", + "id": "2337cafd", + "metadata": {}, + "source": [ + "##### Queremos mirar el consumo, lo que tienes mas peso según nuestra matriz es:\n", + "- TEMP_OUTSIDE\n", + "- RAIN\n", + "- SPEED" + ] + }, + { + "cell_type": "markdown", + "id": "4939ef28", + "metadata": {}, + "source": [ + "#### TEMP_OUTSIDE" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "id": "46473ac6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 182, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeiElEQVR4nO3deZgU1dXH8e9hWAYFIggqMuAgagwKSETUuCGC4hI33EjALcgbE2PcAzFRI3EJqNHEJeIaXIkoBhVRFBA0bqCIIhBREBFBwKiAsp/3j6qBnqF7pnumq7un5vd5nn5mar2nblefuXOr6ra5OyIiEj/18h2AiIhEQwleRCSmlOBFRGJKCV5EJKaU4EVEYqp+vgNI1LJlSy8tLc13GCIitcb06dOXu3urZMsKKsGXlpYybdq0fIchIlJrmNmnqZapi0ZEJKaU4EVEYkoJXkQkppTgRURiSgleRCSmlOBFRGJKCV5EJKaU4EVEYqqgHnSqja644gqWLFnCTjvtxLBhw/IdTl6pLkQKixJ8DS1ZsoTPP/8832EUBNXFFvpjJ4VACV7qlFwlXv2xk0IQ2wSvFpQko8QrdUlsE7w+yCJS1+kuGhGRmFKCFxGJKSV4EZGYUoIXEYkpJXgRkZhSghcRiSkleBGRmKoV98Hve/nIjLdpunwlRcDC5Ssz2n768DMzLktEpBDVigSfSwuv7ZTR+hu+agHUZ8NXn2a8bbur3s9ofRGRTKiLRkQkppTgRURiSgleRCSm1AcvKel6hEjtpha8iEhMqQUvkgb9NyO1kVrwIiIxFdsW/KaG25b7KSJS10Sa4M1sAbAS2AhscPduUZaXaPXuR+aqKMmTXD7hPKZpxkWJ5F0uWvCHu/vyHJQjIiIJYttFI1voC8hF6qaoE7wDL5qZA3e7+4iKK5jZIGAQQLt27SIOJ/taFm8CNoQ/C5O+gFykboo6wR/k7ovNbAdggpnNcfcpiSuESX8EQLdu3TzieLLuss5f5zsEkWrRf3bxF2mCd/fF4c8vzWwM0B2YUvlWIpIL+s8u/iK7D97MtjWzpmW/A0cCH0RVnoiIlBdlC35HYIyZlZXzqLuPj7A8ERFJEFmCd/dPgC5R7V9ERCqn2yRrmUJ+uKc23FEkUpcowUvW6I4iSUZ36+SPEryIREp36+SPErxIBNRdJYVACV4kAuqukkKgBC91ioaRlmTiep1ACV7qFA0jLcnE9TqBEnwdoFarSN2kBF8HqNUqUjcpwYvEQC4fgJs+/MyMy5L8UIIXkYwsvLZTRutv+KoFUJ8NX32a8bbtrno/o/WlvMhGkxQRkfxSC15EJEdyfTumEryIxEohX4/I9e2Y6qIREYkpJXgRkZhSghcRiSn1wYtIpDSyZv4owYtIpDSyZv4owYuIVFOhP/SlPngRkZhSC15E6ry4jriqBC9SR8U1qVVHXEdcVYIXqaPimtRkC/XBi4jElFrwIiI5kutnApTgRURyJNfPBETeRWNmRWb2rpk9G3VZIiKyRS764H8LzM5BOSIikiDSBG9mJcCxwL1RliMiIluLugV/K3AFoFGGRERyLLIEb2bHAV+6+/Qq1htkZtPMbNqyZcuiCkdEpM6JsgV/EHC8mS0AHgd6mtnDFVdy9xHu3s3du7Vq1SrCcERE6pbIEry7D3H3EncvBc4AJrp7/6jKExGR8vQkq4hITOXkQSd3nwxMzkVZIiISUAteRCSmlOBFRGJKCV5EJKaU4EVEYkoJXkQkppTgRURiSgleRCSmlOBFRGJKCV5EJKaU4EVEYkoJXkQkppTgRURiSgleRCSm0krwZraNmf3RzO4Jp3cPv7FJREQKVLot+AeAtcCB4fQi4M+RRCQiIlmRboLv4O7DgPUA7v49YJFFJSIiNZZugl9nZo0BBzCzDgQtehERKVDpfqPT1cB4oK2ZPULwhdpnRxWUiIjUXFoJ3t0nmNk7wAEEXTO/dfflkUYmIiI1ksltkm2AIqAhcKiZnRxNSCIikg1pteDN7H6gMzAL2BTOduCpiOISEZEaSrcP/gB37xhpJCIiklXpdtG8bmZK8CIitUi6Lfh/EiT5JQS3Rxrg7t45sshERKRG0k3w9wMDgPfZ0gcvIiIFLN0Ev9Ddx0YaiYiIZFW6CX6OmT0KPEPCE6zurrtoREQKVLoJvjFBYj8yYZ5ukxQRKWDpPsl6TqY7NrNiYArQKCxntLtfnel+RESketJ90OkBwoHGErn7uZVsthbo6e6rzKwB8KqZPe/ub1QvVBERyUS6XTTPJvxeDJwELK5sA3d3YFU42SB8bfVHQkREopFuF82TidNm9hjwUlXbmVkRMB3YDbjD3d9Mss4gYBBAu3bt0glHRETSUN3vZN0dqDIbu/tGd98HKAG6m9neSdYZ4e7d3L1bq1atqhmOiIhUlG4f/ErKd68sAX6XbiHu/rWZTQb6AB9kEqCIiFRPul00TTPdsZm1AtaHyb0x0Av4S6b7ERGR6kmri8bMDjKzbcPf+5vZLWa2SxWbtQYmmdlM4G1ggrs/W8U2IiKSJeneRXMX0MXMugBXAPcBI4HDUm3g7jOBrjWOUEREqiXdi6wbwtseTwBuc/fbgIy7bUREJHfSbcGvNLMhQH+Cr+srIrivXUREClS6LfjTCZ5M/YW7LyH4ftbhkUUlIiI1lu5dNEuAWxKmFxL0wYuISIFK9y6ak83sIzP7xsy+NbOVZvZt1MGJiEj1pdsHPwz4qbvPjjIYERHJnnT74JcquYuI1C7ptuCnmdko4Gn0jU4iIrVCugm+GfAd+kYnEZFaI7JvdBIRkfxK9y6aEjMbY2ZfmtlSM3vSzEqiDk5ERKov3YusDwBjgZ0JHnJ6JpwnIiIFKt0E38rdH3D3DeHrQUDfziEiUsDSTfDLw2GCi8JXf2BFlIGJiEjNpJvgzwVOI/gmpy+AUwBdeBURKWDp3iY5FDjL3f8HYGYtgJsIEr+IiBSgdFvwncuSO4C7f4W+zENEpKClm+DrmVnzsomwBZ9u619ERPIg3SR9M/AfMxtN8ATracB1kUUlIiI1lu6TrCPNbBrQEzDgZHf/MNLIRESkRtLuZgkTupK6iEgtkW4fvIiI1DJK8CIiMaUELyISU0rwIiIxpQQvIhJTSvAiIjEVWYI3s7ZmNsnMZpvZLDP7bVRliYjI1qIcbmADcKm7v2NmTYHpZjZBD0iJiORGZC14d//C3d8Jf18JzCb4NigREcmBnPTBm1kpweiTb+aiPBERyUGCN7MmwJPARe7+bZLlg8xsmplNW7ZsWdThiIjUGZEmeDNrQJDcH3H3p5Kt4+4j3L2bu3dr1Upf8yoiki1R3kVjwH3AbHe/JapyREQkuShb8AcBA4CeZjYjfB0TYXkiIpIgstsk3f1VgrHjRUQkD/Qkq4hITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jEVGTDBWfL+vXrubBHe0q2K8ZyMPjwN3Zr9IWEZs+evdW84uJiSkpKaNCgQc7iEJF4KvgEv2jRIjp3aEPDbZpiOcjwHYqWRl5GmUY7/6jctLuzYsUKFi1aRPv27XMWh4jEU8F30axZsyZnyT3fzIztt9+eNWvW5DsUEYmBgk/wQJ1I7mXq0rGKSLRqRYIXEZHMKcGn8N4Hcxj/8pR8hyEiUm1K8Cm8N2sO4ydOzXcYIiLVVvB30aTjrttu5rmnR7NT6zZs16IFe3XqQpOmzXji0ZGsX7+edqWl3HjrnTRuvA0vPPtv7rz1JuoVFdG0aVNGjn5mq/2tW7eea2+6nTVr1vKft97h8gsGcs2wvzN57MO02r4FmzZtYu9DjmXKM48y+NqbKG7UkA//+zFfLlvBsKsv55jePdi4cSN/uP6vTHn9bdauW8f/ndWP8waclofaEZG6qtYn+A/em8GE559h9PMT2bhhI6cc05O9OnWh99HHcurPBgBw2/DreerxR/j5Oedx1203M+Lhf7HjTq359ptvku6zYcMGXHXZBbwzcxa3XnclAHM/ns/jTz3Hb84bwMtTX6dzxx/SskVzAD5dtJiXnnyQTxZ8xlGnnkvPQw7k4dFjada0Ka+NG8Xates4/MT+9DrsJ7RvV5KbihGROq/Wd9G88/Yb9Ox9NMXFjdm2SRN69DoKgI/mzmZA3+M4sfehPPf0k8z771wAunbrzpWX/IYnHn2ITZs2pl3OWaefxCOjxwIw8vExnHnaiZuX9f3pUdSrV4/ddt2F0l1KmDtvPi+/8h8eGT2W7r37cshx/Vjxv2+YN//T7B24iEgVan0L3lPMv/LSC/nbPf9kz457M+aJx3j79dcAuPqGm5j57nRemTiBvn0O58nxk9iueYsqy2nbpjU7tNqeSa++yVvvvs+Dt/9l87KKtzaageP89c+/p3ePg6p9bCIiNVHrW/A/3m9/Jr/8AmvXrGH16lVMmTgBgNWrVtFqhx1Zv349z415cvP6CxfMp3PXffnNpYPZrkULvlj8edL9Nm2yLStXrS4375x+fTn3wsGc8tOjKCoq2jz/qWdfZNOmTXy8YCELPl3EHh3a0+uwgxgxchTr168H4KOPF7D6u++yffgiIinV+hZ8py5dObxXH07u04Od27Rlr8770KRpM35z2WD6ndCHnduUsPueP2L1qlUA3Hz9n/h0/ie4OwccdAh7dtw76X4P+0l3brrjXrr37svlFwzk1BOO5rgjezDokj9w5uknllt3j11L6dX3bL5ctoK/3/hHiosbce7P+vLpZ59zQJ/TcHdatmjOE/f/LerqEBHZrNYneICz/+9X/PqSK/j+++8465TjOfu88+nYqQtnDDhnq3VvG/FgWvts0fwHvDZuVLl5Mz+cS6eOP+SHu+1abv6B+3Vl+J9+V25evXr1GDrkIoYOuSijYxERyZbIEryZ3Q8cB3zp7smbyVlyzeBL+fijuaxbu5YT+p5Ox05dsl7G8NvvZcTIUeX63kVEClmULfgHgduBkRGWAcDwv99d7W1ffWUit9xw7ebpRmygtF0b/nVf+e6Uyy8YyOUXDNxq+3tvva7aZYuIRCmyBO/uU8ysNKr9Z8vBh/Xk4MN6bp7O5XDBIiJRyvtdNGY2yMymmdm0ZcuW5TscEZHYyHuCd/cR7t7N3bu1atUq3+GIiMRG3hO8iIhEQwleRCSmorxN8jGgB9DSzBYBV7v7fTXd74C/javpLsp56MJjqlxnm7ad2XvP3TdPn3rC0Vx+wUDueuBR/n7vQ3yy4DMWvT918+Bj7s6lV93A+IlT2aZxMff89Tq6duqY1bhFRKoS5V00/aLad641Lm7EWxOe3Gr+gft15eheh3HkKeUfqHph4lTmzV/IrFfH8dY7M7lwyFCmPvtYrsIVEQFi8iRrvuyz94+Szn/mhUn8/JTjMTP237cLX3+zki+WLqP1jrqILCK5owSfhu/XrKV7776bp8vGpkll8ZKllOy80+bpNq13ZPGSpUrwIpJTSvBpSNVFk4r71oMYVxxSWEQkarqLJgJtWu/EosVLNk9//sVSWu+4Qx4jEpG6SAk+Ascd2YNHRo/F3Xlz+nv8oFkTdc+ISM7Vui6adG5rzLaKffBHHn4wf/79xdxx38PccucDLFm2nP16ncxRPQ/hHzddS58jDmX8xKl0POhotmncmBG3DM15zCIitS7B58N3n81MOv/Xv+jPr3/Rf6v5ZsZt1/8h6rBERCqlLhoRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYUoIXEYmpWnebZJMHDs/q/ladM6nKdW687W5GPT2OoqJ61LN63P6Xq7ny+ltYsnQ5xY0asu222zDi5qHssVt7Jr36JkOG3sS69evp2qkjd998LfXr1+ebb1dyzm8G89nnX7Bh40Yu+uXZDLp4r6wei4hIIrXgq/DGtBk8/9IU3hj/BNNeGsO4UfduHkjswdtv5O2XnqL/qScw5M83s2nTJgZe9HseunM470x8mnYlO/PQE/8G4B8PPsaP9ujA2y89xYujH2DwtcNZt25dPg9NRGJOCb4KS75cxvYttqNRo4YAtGzRnJ13Kj+uzCEH7MvHCxay4n9f06hRQ3bvUArAEYceyNPjXgKCh59WrlqNu7Nq9Xc03+4H1K9f6/6BEpFaRAm+Cr0OO4hFi5ew98HHcuGQoUx5/e2t1nluwmT23nN3WrZozvr1G5j+3gcAjHnuxc2Djp1/zs+Y89EntP/x4XQ74iRu/tNg6tVT9YtIdNSErEKTbbfh9fH/4tU3p/PKf95iwPmXMXTIxQCcfcFgGhc3Ype2bbhl6BDMjIfuHM7l1wxj3bp1HHHoT6hfVATAhMmv0WWvPXnhifv5ZMFnHNPvPHqe2J9mzZrl8/BEJMaU4NNQVFTEYT/pzmE/6c7ee+7Bw2G/+oO338i+XfYut+4B3fZh4piRAEx45TXmffIpACNHjeGyCwZiZnRo347Stm2YM2cO3bt3z+3BiEidoT6CKvx33vzNSRrgvVlzaFeyc8r1v1y+AoC1a9dx8x33M3DAaQC0bdOaSa++AcDSZcv56JMF7LrrrhFGLiJ1Xa1rwadzW2NWy/vuOy75w/V8/e1K6tcvokNpO+4Ydg39Bl2cdP2/3vUA4156hU2bnEFnns7hB+8PwJCLfsl5F1/JvkechLvz599fTMuWLXN5KCJSx9S6BJ9rP+68F5PHPrLV/AmjH0y6/g1/vIwb/njZVvN33mkHnnvsnmyHJyKSkrpoRERiSgleRCSmakWCd/d8h5AzdelYRSRaBZ/gi4uLWffdyjqR+NydFStWUFxcnO9QRCQGCv4ia0lJCVNefIOS7Yoxi768jfZt9IWE6n+z9d/X4uJiSkpKchaDiMRXwSf4Bg0a8LfJ83NW3pimw3NWVrur3s9ZWSJS90TaRWNmfcxsrpnNM7PBUZYlIiLlRZbgzawIuAM4GugI9DOzjlGVJyIi5UXZgu8OzHP3T9x9HfA4cEKE5YmISAKL6u4UMzsF6OPuA8PpAcD+7n5BhfUGAYPCyR8CcyMJKH0tgeV5jqFQqC62UF1sobrYohDqYhd3b5VsQZQXWZPd87LVXxN3HwGMiDCOjJjZNHfvlu84CoHqYgvVxRaqiy0KvS6i7KJZBLRNmC4BFkdYnoiIJIgywb8N7G5m7c2sIXAGMDbC8kREJEFkXTTuvsHMLgBeAIqA+919VlTlZVHBdBcVANXFFqqLLVQXWxR0XUR2kVVERPKr4MeiERGR6lGCFxGJKSV4EZGYKtgEb2aNzeyVcMiDisvONrNlZjYjfA1MsY99zez9cCycv5kF41GaWSMzGxXOf9PMShO2GW9mX5vZsxnEepqZfWhms8zs0QxjudjMFprZ7emWl2Tf5erKzNqZ2YtmNjuMqzTJNinroJJyTjezmeFxDqtkvSHhfuea2VEJ8yeZ2Sozy+p9w0mO/y9m9kH4Oj3FNtU5/uvM7DMzW1Vh/iVhPc80s5fNbJcU20dyDiQ5/qTnsJk9Er4nH5jZ/WbWIMX+zjKzj8LXWWmUf6iZvWNmG8IHHMvmH57wGZ1hZmvM7MQk2yd9L8ysQ7jdqorbZKEupibEtdjMns5SXfwyfI9nmNmrljA8S6pYKmyftboAgjHIC/EF/Br4bYplZwO3p7GPt4ADCR66eh44Opz/K+Af4e9nAKMStjkC+CnwbJpx7g68CzQPp3fIJJZMjifdugImA73D35sA2yTZJmUdpChje2Ah0Cqc/idwRJL1OgLvAY2A9sDHQFGF2LpFda4AxwITCO4Q2xaYBjSr6fGH6x0AtAZWVZh/eFkdA+en2ldU50CS9z/pOQwcE5ZtwGPA+Un21QL4JPzZPPy9eRXllwKdgZHAKSnWaQF8VZ1zsWJ9Z6MuKmzzJHBmluqiWcLvxwPjM4wla3Xh7oXbggd+Dvy7uhubWWuCyn7dg5oZCZwYLj6BIEEBjAaOKGtNufvLwMoMijoPuMPd/xdu/2WGsWTD5roKWwz13X1CGM8qd/8uyTYp6yCFXYH/uvuycPoloG+K/T7u7mvdfT4wj2BcoiglnisdgVfcfYO7ryb4Y9MnRZyZHD/u/oa7f5Fk/qSEOn6D4KG+ciI+B8p9VlKdw+4+zkMEf2ySffHAUcAEd/8qPKcnkLz+Eve7wN1nApsqWe0U4PksnYuVSasuyphZU6An8HSSxdWpi8QvlNiWhKf308wt2ayLwkzwFjwYtau7L6hktb7hv8SjzaxtkuVtCJ6mLbMonFe27DMI7tcHviFooVbHHsAeZvaamb1hZslOgMpiqZEkdbUH8LWZPWVm75rZcEvSzUXmdTAP2NPMSs2sPkFySlXvnyVMZ+1Yk0ly/O8BR5vZNmbWkqB1XWmcWTgHEv2CoHWerLysnwNpflYqbtMAGACMT7I4qvfvDIL/GpLJyntRnboATgJerpCYt4orlFZdmNmvzexjYBhwYQaxlCszG+dlQSZ4ggF8vq5k+TNAqbt3JmhJ/jPJOpWNhZPWODlpqk/QTdMD6Afca2bbZRBLTVWsq/rAIcBlwH4ELe+zk2yXUUxhC+Z8YBQwFVgAbKjpfrOg3PG7+4vAOOA/BAnldXIUp5n1B7oByb41Jqp6qeqzksydwBR3n5pkWRT10hroRPDQY9JVslRmdeqiH6n/8FQrLne/w907AL8D/pBhPFmt/0JN8N8Dm7+YNLy4NcPMZgC4+wp3XxsuvgfYN8k+FlH+X9DEsXA2j5MTtkZ/QNA/WB2LgH+7+/qwS2IuQcJPN5aaKldXYVnvejBM8waCfz1/nCLujOrA3Z9x9/3d/UCC4/yosv2Goh6DqOLx4+7Xufs+7t6b4ANTaZxZOAcws17AlcDxCedmxfKiOAe2Ov7KmNnVQCvgkhSrRPH+nQaMcff1VZVZw/ci07rYnqD78Lmq4gplWhePk3k3XFbPy4JM8GFrscjMisPpK8MP7D6wuUVQ5nhgdpJ9fAGsNLMDwj6sM9nSNzcWKLsifgowMeyXTMnMbjCzk5IsepqgG4CwS2APgosx6cZSIxXrimAMoOZmVjZ8aE/gwySbpqwDM5uTrCwz2yH82ZzgYtC9KfZ7Rng3QHuCP3ZvZXxgaap4/GZWFH5wMbPOBBf/XkwRZ0bHn4qZdQXuJkjuW12DCeOM5BxI8v5XFudAgn7lfu6eqr/8BeBIM2sevs9HhvMq+wxUpbJWMlTj85hMJnUROpXggueaFMszrgszS2zcHUvyxkVlslIXm2VyRTaXL+A+oFeKZTcAswj6WycBeyYsm5HwezfgA4I7OW5ny9AMxcATBP3KbxH025VtMxVYRtAaWAQcFc5/FjgwSSwG3EKQRN8HzsgklnDZ2dTsLppydQX0BmaG8TwINAznX0uQhFLWAcG/uXNTlPNYeJwfVjjO44FrE6avDI9zLgl3ioTLJpP9u2g2H394XGUxvgHsk7BeTY9/WHhObAp/XhPOfwlYCswIX2NzeQ4kef9TncMbwrLL4rwqIa57E7Y/N6yXecA5CfNTfQb2C8tZDawAZiUsKwU+B+pV2KbK9yJh3UzuokmrLhLOxT4Vtq9pXdxGkJtmEOSmvdJ4XyKpC3cv6ATfFXgo33EkxPNChPuu9oc723UFHAdcGOGxTib7Cb7WHH8U50CuPitRfgaqKDeTBK+6SHhF+YUfNeLu71rwYEyRu28sgHiOqnqtzJnZxcAvCe7FrZZs1pW7p/2AV6bMbBLBRd9UfbHVUluOP5WangO5+qxE9RlIxcw6ENTJ0nS3UV1U2C78qyAiIjFTkBdZRUSk5pTgRURiSgleRCSmlOClVjOz7czsV3kot0eqUQHNbFySp5lFck4JXmq77QgeuioY7n6Mu3+d7zhElOCltrsRKBsre7iZXW5mb4cD0f0JIBwgbY6Z3WvBWOiPmFmvcIC4j8yse7jeNWb2kJlNDOefV0XZzcxsjAVjwf/DzOqF+1lgZi3Dcmeb2T0WjKH/opk1Dte50LaMIf94lBUkdZcSvNR2g4GPPRjGYgLB0AjdgX2Afc3s0HC93QieMuwM7An8DDiYYFC23yfsrzPBI+YHAleZ2c6VlN0duJRgIK0OwMlJ1tmdYDjpvQgGwiobYnkw0NWDAfN+mfbRimRACV7i5Mjw9S7wDkEiLxsbZL67v+/BGCyzCIaIdYLhHEoT9vFvd//e3ZcTPGpe2Vj2b3kwqNtGgmEcDk6yznx3nxH+Pj2hrJnAI+EIlMlGuxSpMSV4iRMDbvBwYDp3383d7wuXJY7wuClhehOUe6K74pN/lT0JmM66ieVuTCjrWOAOgpFQp4cjB4pklRK81HYrgabh7y8A55pZEwAza1M2AmYGTjCz4nBEyh4Eo3Om0t3M2od976cDr6ZTQLh+W3efBFxBcKG4SYZxilRJrQap1dx9RXix9AOCb1J6FHg9GJGXVUB/gpZzut4iGB+8HTDU3Ssb//t1gou8nYApwJg0yygCHjazHxD81/FX3XUjUdBYNCIhM7uGYLS+m/Idi0g2qItGRCSm1IIXqYSZdQIeqjB7rbvvn494RDKhBC8iElPqohERiSkleBGRmFKCFxGJKSV4EZGY+n/Fd36UyQPwYwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df['temp_bins'] = pd.qcut(df['temp_outside'], 5)\n", + "sns.barplot(x='temp_bins', y='consume', hue='gas_type',data=df)" + ] + }, + { + "cell_type": "markdown", + "id": "53f04301", + "metadata": {}, + "source": [ + "### RAIN" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "id": "9f53ff2c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 185, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAV9klEQVR4nO3dfXRX1b3n8feXgAaFekfDqBgVvCDqEBI1iF1Uap3xibG4xrpEV7mC1qHa5cN1Kcr9w951cTpLwemqbR01yENZg9XxqVW0hVovPrTKEDR4UVTU+hAgCnjVoEVA9vyRQAME+EFy8ktO3q+1ssg5v3PO/v6y4MPO/u2zT6SUkCTlT49iFyBJyoYBL0k5ZcBLUk4Z8JKUUwa8JOVUz2IX0FJZWVkaMGBAscuQpC5jyZIla1NK/Vp7rVMF/IABA6itrS12GZLUZUTE+7t6zSEaScopA16ScsqAl6Sc6lRj8K3ZtGkT9fX1bNiwodildIjS0lLKy8vp1atXsUuR1MV1+oCvr6+nb9++DBgwgIgodjmZSimxbt066uvrGThwYLHLkdTFdfohmg0bNnDIIYfkPtwBIoJDDjmk2/y2IilbnT7ggW4R7lt1p/cqKVtdIuAlSXuv04/BF0tdXR2rVq1i9OjRxS5Fahc33XQTDQ0NHHbYYUydOrXY5agD2IPfhbq6Op566qlilyG1m4aGBlauXElDQ0OxS1EHyUXA33rrrRx33HGceeaZXHLJJdxxxx1Mnz6d4cOHU1lZyfe+9z2+/PJLAB566CGGDh1KZWUlo0aNavV6Gzdu5Mc//jEPPvggVVVVPPjggwwePJg1a9YAsGXLFgYNGsTatWuZMGECV155JaeddhrHHnss8+bNA+Drr79m0qRJDB8+nGHDhnHvvfd2zA9Dkpp1+YCvra3lkUce4ZVXXuHRRx/dtpbNBRdcwOLFi1m6dCnHH388M2bMAGDKlCnMnz+fpUuX8vjjj7d6zf32248pU6YwduxY6urqGDt2LOPGjWPu3LkAPP3001RWVlJWVgbAe++9x7PPPsuTTz7JlVdeyYYNG5gxYwYHHXQQixcvZvHixUyfPp2//OUvHfATkaQmXT7gX3jhBc4//3x69+5N3759+e53vwvAsmXLOO2006ioqGDu3Lm89tprAIwcOZIJEyYwffp0vv7664Lbufzyy5kzZw4AM2fO5LLLLtv22kUXXUSPHj0YPHgwxxxzDG+88QYLFixgzpw5VFVVMWLECNatW8eKFSva8Z1L0u51+Q9Zd/XQ8AkTJvCb3/yGyspKZs+ezcKFCwG45557WLRoEU8++SRVVVXU1dVxyCGH7LGdI488kkMPPZRnnnmGRYsWbevNw85TGyOClBK/+MUvOPvss/f9zUlSG3T5Hvy3vvUtnnjiCTZs2MD69et58sknAWhsbOTwww9n06ZN24XxO++8w4gRI5gyZQplZWV8+OGHrV63b9++NDY2brfviiuuYNy4cVx00UWUlJRs2//QQw+xZcsW3nnnHd59912GDBnC2Wefzd13382mTZsAeOutt/jiiy/a++1L0i51+YAfPnw4Y8aMobKykgsuuIDq6moOOuggbr31VkaMGMGZZ57Jcccdt+34SZMmUVFRwdChQxk1ahSVlZWtXvc73/kOr7/++rYPWQHGjBnD+vXrtxueARgyZAjf/va3Offcc7nnnnsoLS3liiuu4IQTTuCkk05i6NCh/PCHP2Tz5s3Z/SAkaQexqyGOYqiurk47PvBj+fLlHH/88bs9b/369fTp04cvv/ySUaNGUVNTw0knndTu9dXW1nL99dfz/PPPb9s3YcIEzjvvPC688MJ2a6eQ9yztrUsvvZSVK1dyxBFHbPs8SV1fRCxJKVW39lqXH4MHmDhxIq+//jobNmxg/PjxmYT7bbfdxt13373dcI8kdWa5CPj7779/n8+dP38+N99883b7Bg4cyGOPPbbdvsmTJzN58uSdzp89e/Y+ty1JWcpFwLfF2Wef7UwXqZvpLss2ZBrwEfF3wH3AUCABl6eUXsyyTUnak63LNuRd1j34O4Hfp5QujIj9gAMybk+S1CyzgI+IbwCjgAkAKaWNwMas2pMkbS/LefDHAGuAWRHxSkTcFxEH7nhQREyMiNqIqN26mJckqe2yHKLpCZwEXJNSWhQRdwKTgVtaHpRSqgFqoGke/J4uevKk9p2/u2TapXs8pqSkhIqKim3bF198MZMnT+aXv/wlP/vZz3jnnXdYs2bNtsXHUkpcd911PPXUUxxwwAHMnj07k6mbkrQ7WQZ8PVCfUlrUvP0wTQHf5fTu3Zu6urqd9o8cOZLzzjuP008/fbv9v/vd71ixYgUrVqxg0aJFXHXVVSxatGin8yUpS5kN0aSUGoAPI2JI867/DLyeVXvFcOKJJzJgwICd9v/2t7/l0ksvJSI49dRT+fTTT1m9enXHFyipW8t6LZprgLkR8SpQBfzPjNvLxF//+leqqqq2fW1dm2ZXVq5cyZFHHrltu7y8vFtMyZLUuWQ6TTKlVAe0ukZCV7KrIZpdaW19nx2XFJakrHX51SQ7o/Ly8u2WIa6vr6d///5FrEhSd2TAZ2DMmDHMmTOHlBIvvfQSBx10EIcffnixy5LUzXS5tWgKmdbY3raOwW91zjnncNttt/Hzn/+cqVOn0tDQwLBhwxg9ejT33Xcfo0eP5qmnnmLQoEEccMABzJo1q8NrlqQuF/DFsKtnt1577bVce+21O+2PCO66666sy5Kk3XKIRpJyyoCXpJwy4CUppxyDlzpIe6+jtLf6rm2kBPhgbWPRa3ms77Sitr/5k4OBnmz+5H0+mFKxx+OzdNSP/y2za9uDl6ScMuAlKae63BBNe/86VcivRz/5yU+4//77KSkpoUePHtx7773cfPPNrF69mtLSUvr06cPMmTMZMmQIzzzzDDfeeCMbN27k5JNPZsaMGfTs2ZPPPvuMcePG8cEHH7B582ZuvPFGLrvssnZ9L5LUkj34PXjxxReZN28eL7/8Mq+++ipPP/30toXE5s6dy9KlSxk/fjyTJk1iy5YtjB8/ngceeIBly5Zx9NFH86tf/QqAu+66ixNOOIGlS5eycOFCbrjhBjZu9AFXkrJjwO/B6tWrKSsrY//99wegrKxsp3VlRo0axdtvv826devYf//9OfbYYwE488wzeeSRR4Cmm58aGxtJKbF+/XoOPvhgevbscr9ASepCDPg9OOuss/jwww859thj+dGPfsSzzz670zFPPPEEFRUVlJWVsWnTJmprawF4+OGHty06dvXVV7N8+XL69+9PRUUFd955Jz16+OOXlB0TZg/69OnDkiVLqKmpoV+/fowdO5bZs2cD8P3vf5+qqir+9Kc/cccddxARPPDAA1x//fWccsop9O3bd1svff78+VRVVbFq1Srq6uq4+uqr+fzzz4v4ziTlnWMEBSgpKeH000/n9NNPp6KiYtu4+ty5c6mu3n65+29+85s8//zzACxYsIC33noLgFmzZjF58mQigkGDBjFw4EDeeOMNTjnllI59M5K6DXvwe/Dmm2+yYsWKbdt1dXUcffTRuzz+448/BuCrr77i9ttv58orrwTgqKOO4o9//CMAH330EW+++SbHHHNMhpVL6u66XA8+y7u+WrN+/XquueYaPv30U3r27MmgQYOoqanhwgsvbPX4adOmMW/ePLZs2cJVV13FGWecAcAtt9zChAkTqKioIKXE7bffTllZWUe+FUndTJcL+I528skn8+c//3mn/QsXLmz1+GnTpjFt2s63Yffv358FCxa0d3mStEsO0UhSThnwkpRTXSLgU0rFLqHDdKf3KilbnT7gS0tLWbduXbcIvpQS69ato7S0tNilSLlWVrqFQ3tvpqx0S7FLyVSmH7JGxHtAI/A1sDmlVL37M3ZWXl5OfX09a9asae/yOqXS0lLKy8uLXYaUazcO+7TYJXSIjphF852U0tp9PblXr14MHDiwPeuRpG6h0w/RSJL2TdY9+AQsiIgE3JtSqtnxgIiYCEyEprs9u7qbbrqJhoYGDjvsMKZOnVrsciR1Y1kH/MiU0qqI+I/AHyLijZTScy0PaA79GoDq6uou/0lqQ0MDK1euLHYZnYL/2UnFlWnAp5RWNf/5cUQ8BpwCPLf7s5QX/mfXuWzZ78Dt/lT+ZRbwEXEg0COl1Nj8/VnAlKzak7R7Xww+q9glqINl2YM/FHgsIra2c39K6fcZtidJaiGzgE8pvQtUZnX91pw8aU5HNteqvmsbKQE+WNtY1HqWTLu0aG1L6hycJilJOeVywTn1wZSKYpfA5k8OBnqy+ZP3i1pPRz9DQOos7MFLUk4Z8JKUUw7RtDPnGkvqLAz4duZcY0mdhQGvzDSttZ3/NbelzsqAV2a6y5rbUmflh6ySlFMGvCTllAEvSTllwEtSThnwkpRTBrwk5ZQBL0k5ZcBLUk4Z8JKUUwa8JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvSTmVecBHRElEvBIR87JuS5L0Nx3Rg78OWN4B7UiSWsg04COiHPivwH1ZtiNJ2lnWPfifATcBPpRTkjpYQQEfEQdExC0RMb15e3BEnLeHc84DPk4pLdnDcRMjojYiatesWVNw4ZKk3Su0Bz8L+Ar4ZvN2PfA/9nDOSGBMRLwHPACcERH/Z8eDUko1KaXqlFJ1v379CixHkrQnhQb836eUpgKbAFJKfwVidyeklP4ppVSeUhoAXAw8k1Ia15ZiJUmFKzTgN0ZEbyABRMTf09SjlyR1Uj0LPO6fgd8DR0bEXJqGXyYU2khKaSGwcC9rkyS1QUEBn1L6Q0S8DJxK09DMdSmltZlWJklqk72ZJnkEUALsB4yKiAuyKUmS1B4K6sFHxExgGPAaf5vTnoBHM6pLktRGhY7Bn5pSOiHTSiRJ7arQIZoXI8KAl6QupNAe/K9oCvkGmqZHBpBSSsMyq0yS1CaFBvxM4B+Af8N1ZSSpSyg04D9IKT2eaSWSpHZVaMC/ERH3A0/Q4g7WlJKzaCSpkyo04HvTFOxntdjnNElJ6sQKvZP1sqwLkSS1r0JvdJpF80JjLaWULm/3iiRJ7aLQIZqWD8wuBf4bsKr9y5EktZdCh2geabkdEb8Gns6kIklSu9jXZ7IOBo5qz0IkSe2r0DH4RrYfg28Abs6kIklSuyh0iKZv1oVIktpXQUM0ETEyIg5s/n5cRPw0Io7OtjRJUlsUOgZ/N/BlRFQCNwHvA3Myq0qS1GaFBvzmlFICzgfuTCndCThsI0mdWKHz4Bsj4p+AcTQ9rq8E6JVdWZKktiq0Bz+WprVofpBSaqDp+azTMqtKktRmhc6iaQB+2mL7AxyDl6ROrdBZNBdExIqI+CwiPo+Ixoj4fA/nlEbE/4uIpRHxWkT8S/uULEkqRKFj8FOB76aUlu/Ftb8CzkgprY+IXsALEfG7lNJLe12lJGmvFRrwH+1luNM862Z982av5q+dVqSUJGWj0ICvjYgHgd+wF090ap5tswQYBNyVUlq0j3VKkvZSoQH/DeBL9vKJTimlr4GqiPg74LGIGJpSWtbymIiYCEwEOOoo1y+TpPbSIU90Sil9GhELgXOAZTu8VgPUAFRXVzuEI0ntpNBZNOUR8VhEfBwRH0XEIxFRvodz+jX33ImI3sB/Ad5oc8WSpIIUeqPTLOBxoD9NNzk90bxvdw4H/jUiXgUWA39IKc3bwzmSpHZS6Bh8v5RSy0CfHRH/uLsTUkqvAifua2GSpLYptAe/tnmZ4JLmr3HAuiwLkyS1TaEBfzlwEU1PcloNXAi06YNXSVK2Ch2iuRUYn1L6d4CIOBi4g6bglyR1QoX24IdtDXeAlNInOL4uSZ1aoQHfIyL+w9aN5h58ob1/SVIRFBrS/wv4c0Q8TNMdrBcBP8msKklSmxV6J+uciKgFzgACuCCl9HqmlUmS2qTgYZbmQDfUJamLKHQMXpLUxRjwkpRTBrwk5ZQBL0k5ZcBLUk4Z8JKUUwa8JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvSTllwEtSThnwkpRTBrwk5VRmAR8RR0bEv0bE8oh4LSKuy6otSdLOsnyu6mbghpTSyxHRF1gSEX/wSVCS1DEy68GnlFanlF5u/r4RWA4ckVV7kqTtdcgYfEQMAE4EFnVEe5KkDgj4iOgDPAL8Y0rp81ZenxgRtRFRu2bNmqzLkaRuI9OAj4heNIX73JTSo60dk1KqSSlVp5Sq+/Xrl2U5ktStZDmLJoAZwPKU0k+zakeS1Lose/AjgX8AzoiIuuav0Rm2J0lqIbNpkimlF4DI6vqSpN3zTlZJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnMgv4iJgZER9HxLKs2pAk7VqWPfjZwDkZXl+StBuZBXxK6Tngk6yuL0navaKPwUfExIiojYjaNWvWFLscScqNogd8SqkmpVSdUqru169fscuRpNwoesBLkrJhwEtSTmU5TfLXwIvAkIioj4gfZNWWJGlnPbO6cErpkqyuLUnaM4doJCmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknIq04CPiHMi4s2IeDsiJmfZliRpe5kFfESUAHcB5wInAJdExAlZtSdJ2l6WPfhTgLdTSu+mlDYCDwDnZ9ieJKmFnhle+wjgwxbb9cCIHQ+KiInAxObN9RHxZoY1dRtHQxmwtth1dAr/HMWuQDvw72cLbf/7efSuXsgy4FurOu20I6UaoCbDOrqliKhNKVUXuw6pNf797BhZDtHUA0e22C4HVmXYniSphSwDfjEwOCIGRsR+wMXA4xm2J0lqIbMhmpTS5oi4GpgPlAAzU0qvZdWeduKwlzoz/352gEhpp2FxSVIOeCerJOWUAS9JOWXA55BLRKizioiZEfFxRCwrdi3dgQGfMy4RoU5uNnBOsYvoLgz4/HGJCHVaKaXngE+KXUd3YcDnT2tLRBxRpFokFZEBnz8FLREhKf8M+PxxiQhJgAGfRy4RIQkw4HMnpbQZ2LpExHLg/7pEhDqLiPg18CIwJCLqI+IHxa4pz1yqQJJyyh68JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvFSgi7nPhNnUlTpOUWoiIoOnfxZZi1yK1lT14dXsRMSAilkfE/wZeBmZERG1EvBYR/9LiuIURUd38/fqI+ElELI2IlyLi0GLVL+2KAS81GQLMSSmdCNyQUqoGhgHfjohhrRx/IPBSSqkSeA747x1XqlQYA15q8n5K6aXm7y+KiJeBV4D/RNODU3a0EZjX/P0SYEDmFUp7qWexC5A6iS8AImIgcCMwPKX07xExGyht5fhN6W8fYH2N/5bUCdmDl7b3DZrC/rPmcfVzi1yPtM/sdUgtpJSWRsQrwGvAu8CfilyStM+cJilJOeUQjSTllAEvSTllwEtSThnwkpRTBrwk5ZQBL0k5ZcBLUk79fxwiBIKcZAT5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.barplot(data=df, y=\"consume\", x =\"rain\" , hue=\"gas_type\")" + ] + }, + { + "cell_type": "markdown", + "id": "f19e9b22", + "metadata": {}, + "source": [ + "### SPEED:" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "id": "3ec5c678", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 188, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgFklEQVR4nO3deXwU9f3H8deHcAQRFCSKEBFFrSKCaKQqKoioeNQL6tGKV5VfW9FqPQq11Yr1AkWpV0tVKJ5UFItKURTxqqigAip4ISpgFLAiYLk/vz9mkixhk+yGnd3N5P18PPaRmdnvzPez32Q/+e53Z75j7o6IiMRPg1wHICIi0VCCFxGJKSV4EZGYUoIXEYkpJXgRkZhqmOsAErVu3do7dOiQ6zBEROqMmTNnLnX3omTP5VWC79ChAzNmzMh1GCIidYaZfV7VcxqiERGJKSV4EZGYUoIXEYkpJXgRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYyqsLneqiK6+8ktLSUtq0acOwYcNyHY6ISDkl+C1UWlrKokWLch2GiMhmNEQjIhJTSvAiIjGlBC8iElNK8CIiMaUELyISU0rwIiIxFWmCN7NtzWy8mc0zs7lmdlCU9YmISIWoz4MfCUx29/5m1hjYKuL6yukCJBGp7yJL8GbWAjgMOAfA3dcCa6OqrzJdgCQi9V2UQzS7AkuA0Wb2jpnda2bNKhcys4FmNsPMZixZsiTCcERE6pcoE3xDYD/gHnfvBqwCBlcu5O6j3L3E3UuKipLeGFxERGohygS/EFjo7m+E6+MJEr6IiGRBZAne3UuBL83sR+GmI4APoqpPREQ2FfVZNBcBD4Vn0MwHzo24PhERCUWa4N39XaAkyjpERCQ5XckqIhJTuuFHJV8M3Set8uu/bQU0ZP23n6e9b/ur56RVXkQkHerBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMRUnbiSdf8rxqa9T/OlKygAvli6Iq39JzRPuyoRkbykHryISEwpwYuIxJQSvIhITCnBi4jEVJ34kjWftS7cCKwPf4qI5A8l+C10eZfvch2CiEhSGqIREYkpJXgRkZjSEI2ISJZceeWVlJaW0qZNG4YNGxZ5fUrw9UC2/6hEJLnS0lIWLVqUtfqU4OuBbP9RidQ1ce0ERZrgzWwBsALYAKx395Io6xMRqY24doKy0YM/3N2XZqEeERFJoLNoRERiKuoevAPPmZkDf3P3URHXV25j42ab/BSB+I61iiQTdYLv4e6LzWx7YIqZzXP3lxMLmNlAYCBA+/btM1bxqt2PytixJD7iOtYqkkykQzTuvjj8+Q0wAeiepMwody9x95KioqIowxERqVci68GbWTOggbuvCJePAoZGVV99kc27W80cflbadUndEdfhquzeAW54WvWs/7YV0JD1337OF0P3SWvf9lfPSas8RDtEswMwwczK6nnY3SdHWJ+IpEHDVfEXWYJ39/lA16iOLyIi1dOVrJIxcf3IL1JXKcFLxugjv0h+UYIXkUjpk13uKMGLSKT0yS53lOBFIqBea92SrSvfs30PZyX4ekDTNmSfeq11S7aufM/2PZyV4OuBuE7boIu+KqgtJBkleKlSulfaZfsqPRGpnqYLFhGJKfXgRSQt+mRXd6gHLyISU0rwIiIxpSEakRRoWELqIiV4yZhsX8QhItVTgpeMyfZFHCJSPSV4kXpKVzjHnxK81CtKahWydYWzhu5yRwle6pW4TtuQzzR0lzs6TVJEJKbUgxeJgIYlJB8owYtEQMMSkg80RCMiElNK8CIiMaUELyISU5EneDMrMLN3zOzpqOsSEZEK2ejB/waYm4V6REQkQaQJ3syKgeOAe6OsR0RENhd1D/524EpAJwOLiGRZZAnezI4HvnH3mTWUG2hmM8xsxpIlS6IKR0Sk3omyB98DOMHMFgCPAr3N7MHKhdx9lLuXuHtJUVFRhOGIiNQvkSV4dx/i7sXu3gE4HZjq7mdGVZ+IiGwqpQRvZluZ2R/N7O/h+u7hEIyIiOSpVHvwo4E1wEHh+kLgz6lW4u7T3F3/EEREsijVBN/R3YcB6wDc/X+ARRaViIhssVQT/Fozawo4gJl1JOjRi4hInkp1uuBrgMnATmb2EMEZMudEFZSIiGy5lBK8u08xs7eBAwmGZn7j7ksjjUxERLZIOqdJtgMKgMbAYWZ2SjQhiYhIJqTUgzez+4EuwPtUTDvgwBMRxSUiIlso1TH4A929U6SRiIhIRqU6RPO6mSnBi4jUIan24P9BkORLCU6PNMDdvUtkkYmIyBZJNcHfDwwA5qCpf0VE6oRUE/wX7j4x0khERCSjUk3w88zsYeApEq5gdXedRSMikqdSTfBNCRL7UQnbdJqkiEgeS/VK1nOjDkRERDIr1QudRhNONJbI3c/LeEQiIpIRqQ7RPJ2wXAicDCzOfDgiIpIpqQ7RPJ64bmaPAM9HEpGIiGREbe/JujvQPpOBiIhIZqU6Br+CTcfgS4HfRRKRiIhkRKpDNM2jDkRERDIrpSEaM+thZs3C5TPNbISZ7RxtaCIisiVSHYO/B/jBzLoCVwKfA2Mji0pERLZYqgl+vbs7cCIw0t1HAhq2ERHJY6meB7/CzIYAZxLcrq8AaBRdWCIisqVS7cGfRjAXzS/cvZTg/qzDq9vBzArN7E0zm2Vm75vZtVsYq4iIpCHVs2hKgREJ619Q8xj8GqC3u680s0bAq2b2b3efXutoRUQkZameRXOKmX1sZsvN7HszW2Fm31e3jwdWhquNwsdm89mIiEg0Uh2iGQac4O7buHsLd2/u7i1q2snMCszsXeAbYIq7v5GkzEAzm2FmM5YsWZJW8CIiUrVUE/zX7j433YO7+wZ33xcoBrqbWeckZUa5e4m7lxQVFaVbhYiIVCHVs2hmmNk44ElqcUcnd//OzKYBfYH30oxRRERqIdUE3wL4gTTu6GRmRcC6MLk3BfoAN9c2UBERSU+Ud3TaEfhHeM58A+Cf7v50DfuIiEiGpDqbZDFwB9CDoOf+KvAbd19Y1T7uPhvolokgRUQkfal+yToamAi0JbjI6alwm4iI5KlUE3yRu4929/XhYwygU15ERPJYqgl+aThNcEH4OBNYFmVgIiKyZVJN8OcBpxLcyekroD9Qmy9eRUQkS1I9TfI64Gx3/y+AmbUCbiFI/CIikodS7cF3KUvuAO7+LTpDRkQkr6Wa4BuYWcuylbAHn2rvX0REciDVJH0r8B8zG09wHvypwPWRRSUiIlss1StZx5rZDKA3YMAp7v5BpJGJiMgWSXmYJUzoSuoiInVEqmPwIiJSxyjBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jEVGQJ3sx2MrMXzWyumb1vZr+Jqi4REdlclLfdWw9c5u5vm1lzYKaZTdGNQkREsiOyHry7f+Xub4fLK4C5QLuo6hMRkU1lZQzezDoA3YA3kjw30MxmmNmMJUuWZCMcEZF6IfIEb2ZbA48Dl7j795Wfd/dR7l7i7iVFRUVRhyMiUm9EmuDNrBFBcn/I3Z+Isi4REdlUlGfRGHAfMNfdR0RVj4iIJBdlD74HMADobWbvho9jI6xPREQSRHaapLu/ClhUxxcRkerpSlYRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYUoIXEYmpKGeTzIh169Zxca9dKN62EMvCSZfL7fboKwnNnTt3s22FhYUUFxfTqFGjrMUhIvGU9wl+4cKFdOnYjsZbNceykOE7FnwdeR1lmrTda5N1d2fZsmUsXLiQXXbZJWtxiEg85f0QzerVq7OW3HPNzNhuu+1YvXp1rkMRkRjI+wQP1IvkXqY+vVYRiVadSPAiIpI+JfgqzHpvHpNfeDnXYYiI1JoSfBVmvT+PyVNfyXUYIiK1lvdn0aTinpG38syT42mzYzu2bdWKvffpytbNW/DYw2NZt24d7Tt04Kbb76Zp06149ul/cfftt9CgoIDmzZszdvxTmx1v7dp1DL3lTlavXsN/3nybKwadz5+G3cG0iQ9StF0rNm7cSOdDj+Plpx5m8NBbKGzSmA8++pRvlixj2DVXcOyRvdiwYQN/uOE2Xn79LdasXcv/nX0GFww4NQetIyL1VZ1P8O/Nepcp/36K8f+eyob1G+h/bG/23qcrRx5zHD/92QAARg6/gScefYifn3sB94y8lVEP/pMd2uzI98uXJz1m48aNuPryQbw9+31uv/4qAD789DMefeIZLrpgAC+88jpdOv2I1q1aAvD5wsU8//gY5i/4kqN/eh69Dz2IB8dPpEXz5rw2aRxr1qzl8JPOpE/Pg9mlfXF2GkZE6r06P0Tz9lvT6X3kMRQWNqXZ1lvTq8/RAHz84VwG9Duek448jGeefJxPPvoQgG4l3bnqtxfx2MMPsHHjhpTrOfu0k3lo/EQAxj46gbNOPan8uX4/OZoGDRqw264702HnYj785DNeeOk/PDR+It2P7Mehx5/Bsv8u55PPPs/cCxcRqUGd78F7Fduvuuxi/vL3f7Bnp85MeOwR3nr9NQCuufEWZr8zk5emTqFf38N5fPKLbNuyVY317NRuR7Yv2o4XX32DN9+Zw5g7by5/rvKpjWbgOLf9+fcc2atHrV+biMiWqPM9+P0O+DHTXniWNatXs2rVSl6eOgWAVStXUrT9Dqxbt45nJjxeXv6LBZ/Rpdv+XHTZYLZt1YqvFi9KetzmWzdjxcpVm2w794x+nHfxYPr/5GgKCgrKtz/x9HNs3LiRTxd8wYLPF7JHx13o07MHo8aOY926dQB8/OkCVv3wQ6ZfvohIlep8D36frt04vE9fTunbi7btdmLvLvuydfMWXHT5YM44sS9t2xWz+557sWrlSgBuveFaPv9sPu7OgT0OZc9OnZMet+fB3bnlrnvpfmQ/rhh0Pj898RiOP6oXA3/7B8467aRNyu6xawf69DuHb5Ys446b/khhYRPO+1k/Pv9yEQf2PRV3p3Wrljx2/1+ibg4RkXJ1PsEDnPN/v+bC317J//73A2f3P4FzLvgVnfbpyukDzt2s7MhRY1I6ZquW2/DapHGbbJv9wYfs0+lH/Gi3XTfZftAB3Rh+7e822dagQQOuG3IJ1w25JK3XIiKSKbFI8H8afBmffvwha9es4cR+p9Fpn64Zr2P4nfcyauy4TcbeRUTyWSwS/PA7/lbrfV99aSojbhxavt6E9XRo345/3rfpcMoVg87nikHnb7b/vbdfX+u6RUSiFIsEvyUO6dmbQ3r2Ll/P5nTBIiJRqvNn0YiISHKRJXgzu9/MvjGz96KqQ0REqhZlD34M0DfC44uISDUiS/Du/jLwbVTHFxGR6uX8S1YzGwgMBGjfvn2N5Qf8ZVJG63/g4mNrLLPVTl3ovOfu5es/PfEYrhh0PveMfpg77n2A+Qu+ZOGcV8onH3N3Lrv6RiZPfYWtmhby99uup9s+nTIat4hITXKe4N19FDAKoKSkpKqpZXKqaWET3pzy+GbbDzqgG8f06clR/Te9oOrZqa/wyWdf8P6rk3jz7dlcPOQ6Xnn6kWyFKyIC5EGCr8v27bxX0u1PPfsiP+9/AmbGj/fvynfLV/DV10vYcYeiLEcoIvWZEnwK/rd6Dd2P7Fe+XjY3TVUWl35Ncds25evtdtyBxaVfK8GLSFZFluDN7BGgF9DazBYC17j7fVHVF6Wqhmiq4r75SFPlKYVFRKIWWYJ39zOiOna+a7djGxYuLi1fX/TV1+y4w/Y5jEhE6iNdyRqB44/qxUPjJ+LuvDFzFtu02FrDMyKSdXVuDD6V0xozrfIY/FGHH8Kff38pd933ICPuHk3pkqUc0OcUju59KH+9ZSh9jziMyVNfoVOPY9iqaVNGjbgu6zGLiNS5BJ8LP3w5O+n2C39xJhf+4szNtpsZI2/4Q9RhiYhUS0M0IiIxpQQvIhJTSvAiIjGlBC8iElNK8CIiMaUELyISU3XuNMmtRx+e0eOtPPfFGsvcNPJvjHtyEgUFDWhgDbjz5mu46oYRlH69lMImjWnWbCtG3Xode+y2Cy+++gZDrruFtevW0W2fTvzt1qE0bNiQ5d+v4NyLBvPloq9Yv2EDl/zyHAZeundGX4uISCL14Gswfca7/Pv5l5k++TFmPD+BSePuLZ9IbMydN/HW809w5k9PZMifb2Xjxo2cf8nveeDu4bw99UnaF7flgcf+BcBfxzzCXnt05K3nn+C58aMZPHQ4a9euzeVLE5GYU4KvQek3S9iu1bY0adIYgNatWtK2zabzyhx64P58uuALlv33O5o0aczuHTsAcMRhB/HkpOeB4OKnFStX4e6sXPUDLbfdhoYN69wHKBGpQ5Tga9CnZw8WLi6l8yHHcfGQ63j59bc2K/PMlGl03nN3Wrdqybp165k5K7jP+IRnniufdOxX5/6MeR/PZ5f9DqfkiJO59drBNGig5heR6KgLWYOtm23F65P/yatvzOSl/7zJgF9dznVDLgXgnEGDaVrYhJ13aseI64ZgZjxw93Cu+NMw1q5dyxGHHUzDggIApkx7ja5778mzj93P/AVfcuwZF9D7pDNp0aJFLl+eiMSYEnwKCgoK6Hlwd3oe3J3Oe+7Bg+G4+pg7b2L/rp03KXtgyb5MnTAWgCkvvcYn8z8HYOy4CVw+6HzMjI67tKfDTu2YN28e3bt3z+6LEZF6Q2MENfjok8/KkzTArPfn0b64bZXlv1m6DIA1a9Zy6133c/6AUwHYqd2OvPjqdAC+XrKUj+cvYNddd40wchGp7+pcDz6V0xozWt8PP/DbP9zAd9+voGHDAjp2aM9dw/7EGQMvTVr+tntGM+n5l9i40Rl41mkcfsiPARhyyS+54NKr2P+Ik3F3/vz7S2ndunU2X4qI1DN1LsFn235d9mbaxIc22z5l/Jik5W/84+Xc+MfLN9vets32PPPI3zMdnohIlTREIyISU0rwIiIxVScSvLvnOoSsqU+vVUSilfcJvrCwkLU/rKgXic/dWbZsGYWFhbkORURiIO+/ZC0uLubl56ZTvG0hZtHXt8G+j76SUMPlm/9/LSwspLi4OGsxiEh85X2Cb9SoEX+Z9lnW6pvQfHjW6mp/9Zys1SUi9U+kQzRm1tfMPjSzT8xscJR1iYjIpiJL8GZWANwFHAN0As4ws05R1SciIpuKsgffHfjE3ee7+1rgUeDECOsTEZEEFtXZKWbWH+jr7ueH6wOAH7v7oErlBgIDw9UfAR9GElDqWgNLcxxDvlBbVFBbVFBbVMiHttjZ3YuSPRHll6zJznnZ7L+Ju48CRkUYR1rMbIa7l+Q6jnygtqigtqigtqiQ720R5RDNQmCnhPViYHGE9YmISIIoE/xbwO5mtouZNQZOByZGWJ+IiCSIbIjG3deb2SDgWaAAuN/d34+qvgzKm+GiPKC2qKC2qKC2qJDXbRHZl6wiIpJbeT8XjYiI1I4SvIhITCnBi4jEVF4keDNramYvhdMbYGaTzew7M3u6Urn7zGyWmc02s/FmtnUVx7vZzN4LH6clbO9tZm+H2/9hZg3D7S3NbEJ43DfNrHMKMSeNxQJ/CeffmW1m+1Wx/y5m9oaZfWxm48IzjTCz08J9n06yT3k7mdnOZjbTzN41s/fN7Jc1HTvJ8c4Oy3xsZmen8Jp/aWZzwjpfTZx6wsyGhXHMDV//ZtdBmFmTMJ5Pwvg6hNs7hsdcWVMMtWiLI8LfeVnMu2WiLRL2629mbmYl4XqVsWSjLRK2tTCzRWZ2Z8K2VN8/6f5dnGNmS8K43zWzsosbc94WZrYhIa6JCeWiaoudzeyF8LjTzKw44bkaj5XJtgCCOchz/QAuBH6TsH4E8BPg6UrlWiQsjwAGJznWccAUgjOEmgEzgBYE/8y+BPYIyw0FfhEuDweuCZf3BF5IIeaksQDHAv8muNDrQOCNKvb/J3B6uPxX4FcJz/Wq/NortxPQGGgSLm8NLADa1nTshGO1AuaHP1uGyy3TeM0nAJPD5YOB1wjOlioAXgd6Jdn/18Bfw+XTgXGVnl9Zm7+ZGtriI2CvhPrHZKItwv2aAy8D04GSmmLJRlskbBsJPAzcmeb7pzZ/F+ck1pOwPedtUdW+EbbFY8DZ4XJv4IF0jpXJtnD3/OjBAz8H/lW24u4vACsqF3L37yHoJQNNSXJlLMHEZi+5+3p3XwXMAvoC2wFr3P2jsNwUoF/CPi+EdcwDOpjZDtUFXE0sJwJjPTAd2NbMdkzcN9ynNzA+3PQP4KTq6guVt5O7r3X3NeH2JoSfxtI49tHAFHf/1t3/S9AefaurvOw1h5pR8ZodKCR8QwONgK+THOLEMB7C+I5I1tNPUY1tkRBbi3B5G5JfbJd2W4SuA4YBq8srqz6WRJG0BYCZ7Q/sADyXWCjF909t22Iz+dAW1cQWVVuU5xLgRSrm30r1WJlsi9wneAuGD3Z19wUplh8NlBL0tO9IUmQWcIyZbWVmrYHDCa6oXQo0KvsoDfSn4krbWcAp4fG7AzsTXHlbm1jaEXxSKLMw3JZoO+A7d19fTZnKdW3WTma2k5nNDuu72d0Xp3HsVOJMFseFZvYpQWK7GMDdXyf4Y/4qfDzr7nOrqzOMb3kYb1rSaAuA84FJZrYQGADcVF1coVR+H92Andw92VBaVbEkrTOTbWFmDYBbgSuqKF/T+6dWfxdAv4ThjvIr2HPZFqFCM5thZtPN7KRK5aNoi1lUdBxPBpqb2XZpHCsjbVEm5wmeYLKe71It7O7nAm2BucBpSZ5/DpgE/Ad4hGC4YL0Hn29OB24zszcJPiGUJcGbgJZm9i5wEfBOwnPpxpLKHDwpzdNTyWbt5O5funsXYDfg7PBTR6rHrk0MuPtd7t4R+B3wBwALxrX3Ivin2A7obWaHZarOJFJtC4BLgWPdvRgYTfBxfIviCpPobcBlyZ6vJpZa11mNym3xa2CSu3+ZrHBN759axvUU0CF8zc9T0QPNdVsAtPdgrpifAbebWceE2KJoi8uBnmb2DtATWESQSyJ9X1YlHxL8/wg+3qfM3TcA46j4T1n5+evdfV93P5KgwT4Ot7/u7oe6e3eCsdOy7d+7+7nuvi9wFlAEpHQbqSSxpDIHz1KCoZuG1ZSprMp2CntF7wOHpnHsLZ0r6FEqhn5OBqa7+0p3X0nwHcSB1dUZxrcN8G0adZZJqS3MrAjo6u5vhE+PI/i+oMq4QjW1RXOgMzDNzBYQvNaJCZ8ON4ulujoz3BYHAYPCuG4BzjKzTT611PD+Sfvvwt2XJQzF/B3YP0mZXLRFWb24+3xgGtCt0vOZbovF7n6Ku3cDrgq3LU/jWJlqCyAPEnw4HlVgZtUmeQvsVrZM8CXsvCTlCsKPRJhZF6AL4VikmW0f/mxC0AP9a7i+rVWcaXI+8HLCGN0LZtauUh3VxTKR4E1lZnYgsNzdv6r0mp1gSKN/uOlsahg3rNxOZlZsZk3D5ZZAD+DDNI79LHCUBWcQtQSOCrdhZjea2cmVdzCz3RNWjyP8Bwl8QdBraWhmjQh6LsmGaCaG8RDGNzWMNy2ptgXwX2AbM9sj3PXIKuJKqy3cfbm7t3b3Du7egeBL1hPcfUY1sWSlLdz95+7ePozrcoLvgwan+v5Jty3C7YnfMZ1A2Ma5bovwNTQJl1uH9X8QcVu0Dj/hAQwB7q/pWJVkpC3KeRrfyEb1AO4D+iSsvwIsIfiPvJDgC4oGBGdqzAHeAx4i/CYcKAHuDZcLgQ/Cx3Rg34TjDif44/sQuCRh+0EEyWoe8ATht9thnZ8DTSvFW10sRnAnq0/D50sS9ptExdkduwJvAp8QfPPeJKFcL5KfRVPeTgTJajbBmN9sYGBCuaTHTmyncP28sMwnwLkJ258GDkpS/0iCXti7BP9E9g63FwB/C9v2A2BEwj5DCZJf2e/msbC+NwnGS2t1hkAabXFy+HuYRdCD2zUTbVEplmlUnEVTXSyRt0Wl7ecQnt1Ciu+fWv5d3Bj+XcwK/y72zIe2IPi0Vva7n0PFWXNRtkV/glzyEXAvm76vqzpWJG3h7nmT4LsRnk6UTw+Cj+EjclBvL5In+Ky0E8GXpLlo73TeyGoLtYXaooZHzodoANz9HeBFS7hQIx+4+3vu/tts1mnBhVl3EwwvVI4nK+3k7kdHefzKLLyIg+SnVialtqigtqigtqi0X/hfQUREYiYvevAiIpJ5SvAiIjGlBC8iElNK8CIpsGBmwJJqnk86y5+ZDTWzPtFFJlK1yO7JKiLg7lfnOgapv9SDlzrLzJqZ2TMWzOv9ngVz6S+w4H4Ab4aPsisWi8zscTN7K3z0SDjG/eG2d8zsxHB7UzN71IIJtMYRzDhYUzy3WjD3/AsWTJOAmY0xs/7h8gIzuzYsM8fM9gy397SKOcvfMbPmETWZ1DNK8FKX9QUWu3tXd+8MTA63f+/BfEN3AreH20YCt7n7AQTzjtwbbr+K4HLwAwhmHh1uZs2AXwE/eDBR1vUkmV+lkmbA2+6+H/AScE0V5ZaGZe4hmEqA8OeFHsyFdCjBFdwiW0wJXuqyOUCfsMd+qAeTOkEwi2jZz4PC5T7AneHFIhOBFmFP+ShgcLh9GsGl4u2Bw4AHAdx9NsGl9tXZSDBpFeF+h1RR7onw50ygQ7j8GjDCzC4GtvWKqZ5FtojG4KXOcvePLLi5xbHAjWZWdoOLxKv3ypYbEMwdsknvOJxsqp+7f1hpe+XjpB1eFdvLZl3cQPj+c/ebzOwZgtcx3cz6eHDjGZEtoh681Flm1pZgGOVBgqlxy+5/e1rCz9fD5eeAQQn77hsuPgtcFCb6sht5QDCd9M/DbZ0JZiWtTgMqZvD8GfBqGq+jo7vPcfebCW4xuWeq+4pURz14qcv2IRgz3wisIxg3Hw80MbM3CJLuGWHZi4G7LLi7UEOCBP5Lgtvu3Q7MDpP8AuB4gjHy0WH5dwlm9qvOKmBvM5tJcBeeZDeQqMolZnY4Qa/+A4L59EW2mOaikVix4EYXJe6+NNexiOSahmhERGJKPXiRNIRDP00qbR7g7nNyEY9IdZTgRURiSkM0IiIxpQQvIhJTSvAiIjGlBC8iElP/D3YhEHM5flsmAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df['speed_bins'] = pd.qcut(df['speed'], 5)\n", + "sns.barplot(x='speed_bins', y='consume', hue='gas_type',data=df)" + ] + }, + { + "cell_type": "markdown", + "id": "49e00630", + "metadata": {}, + "source": [ + "### Vamos a separar unos y otros en 2 DF para verlo por separado:" + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "id": "ce4450f1", + "metadata": {}, + "outputs": [], + "source": [ + "e10 = df[df.gas_type == 'E10']\n", + "sp98 = df[df.gas_type == 'SP98']" + ] + }, + { + "cell_type": "markdown", + "id": "ad375692", + "metadata": {}, + "source": [ + "### PARA E10:" + ] + }, + { + "cell_type": "code", + "execution_count": 233, + "id": "cebdca87", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU8UlEQVR4nO3df5RcZX3H8c+HhCQoIEjWiglxEWktrUjqGrFYRUTAX6DIUWgRENocaz1Qa0tFTyvVUnuCpdqjpxoQNIpgC6JIixg1lGqDsIE0ISZRJBETCFlANKkaDPn2j/ssO9nMzN7ZmTs78/B+nTNnZ+7ce5/nPnPns3eeufcZR4QAAPnZa6orAACoBgEPAJki4AEgUwQ8AGSKgAeATE2f6grUmj17dgwODk51NQCgb6xYseLhiBio91xPBfzg4KCGh4enuhoA0Dds/7jRc3TRAECmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADLVUxc6Ab3owgsv1JYtW/TsZz9bixYtmurqAKUR8MAEtmzZos2bN091NYCW0UUDAJki4AEgU3TR1KCvFUBOCPga9LUCyAldNACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BM9cWFToceurEr5cydu1MzZkgbNuzsSpkbNgxWXgaApy6O4AEgUwQ8AGSqL7po0H0MvAb0PwIedTHwGtD/6KIBgEwR8ACQKbpo0Lc4fRZojiN4AMhUpUfwtjdK2ibpCUk7I2KoyvIAAGO60UXzqoh4uAvltG3nzoN2+wsA/Yw++Bpbtrx3qqsAAB1TdcCHpG/YDkmfjojF42ewvVDSQkmaN29exdUB0A4ugOsvVQf8MRHxgO1nSVpqe11E3FY7Qwr9xZI0NDQUFden73HmCKYSF8D1l0oDPiIeSH+32r5B0gJJtzVcYP166dhj95h8zYO/qqiGU+zYWS0v0q22mPnoBnmvxxW7ZmjHjtOrL5C2GDOJtuiWi9at044dOzRzzZq671X0lspOk7T9dNv7jd6XdIKke6oqDwCwO0dU0yti+3mSbkgPp0v6YkRc0myZoaGhGB4e3mN6t7olum0y3RLd66J5v2bMeEiPP/4b2rTpHyovj7YY08vdVWeddZY2b96sOXPmaMmSJVNdHUiyvaLRKeiVddFExH2SXlTV+gEAzXElKwBkioAHgEwR8ACQKQIeADLFUAWoi3F5xtAW6FcEPOpiXJ4xtAX6FQEPZIAhLLqvH8blIeABYBL6YVwevmQFgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmeI0SQBZ4ZqAMRzBA0CmOIIHUBrj8vQXAh5AaYzL01/oogGATBHwAJApAh4AMkXAA0Cm+JIVACahH84oIuABYBL64YwiumgAIFMEPABkioAHgExVHvC2p9m+2/ZNVZcFABjTjSP4CySt7UI5AIAalQa87bmSXi/piirLAQDsqeoj+I9JulDSrorLAQCMU1nA236DpK0RsWKC+RbaHrY9PDIyUlV1AOApp8oj+GMknWx7o6RrJR1n+wvjZ4qIxRExFBFDAwMDFVYHAJ5aKgv4iLgoIuZGxKCk0yV9OyLOrKo8AMDuOA8eADLVlbFoIuJWSbd2oywAQIEjeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkqlTA236a7b+xfXl6fHj6QQ8AQI8qewR/laQdkl6WHm+S9PeV1AgA0BFlA/6wiFgk6deSFBG/lOTKagUAaFvZgH/c9j6SQpJsH6biiB4A0KPK/uDHByV9XdIhtq9W8Xur51RVKQBA+0oFfEQstX2XpKNVdM1cEBEPV1ozAEBbWjlNco6kaZJmSHqF7VOrqRIAoBNKHcHbvlLSkZLWSNqVJoekL1dULwBAm8r2wR8dEUdUWhMAQEeV7aJZbpuAB4A+UvYI/nMqQn6LitMjLSki4sjKagYAaEvZgL9S0tslrdZYHzwAoIeVDfj7I+LGSmsCAOiosgG/zvYXJX1NNVewRgRn0QBAjyob8PuoCPYTaqZxmiQA9LCyV7K+o+qKAAA6q+yFTlcpDTRWKyLObbLMLEm3SZqZyrkuIj44yXoCAFpUtovmppr7syS9WdIDEyyzQ9JxEbHd9t6SvmP75oi4fRL1BAC0qGwXzfW1j21fI+mbEywTkranh3un2x6fAgAA1Zjsb7IeLmneRDPZnmZ7paStkpZGxPfqzLPQ9rDt4ZGRkUlWBwAwXtnfZN1m++ejNxWnS/71RMtFxBMRcZSkuZIW2P7dOvMsjoihiBgaGBhosfoAgEbKdtHs104hEfGY7VslnSTpnnbWBQAop+wR/DG2n57un2n7MtvPnWCZAdsHpPv7SDpe0ro26wsAKKlsH/y/SvqF7RdJulDSjyUtmWCZgyUts71K0p0q+uBvmmAZAECHlD1NcmdEhO1TJH08Ij5j++xmC0TEKknz264hAGBSygb8NtsXSTpTxc/1TVNx2iMAoEeV7aJ5m4oLl86LiC0qfp/10spqBQBoW9mzaLZIuqzm8f2auA8eADCFyp5Fc6rtH9r+WToXfls6Hx4A0KPK9sEvkvTGiFhbZWUAAJ1Ttg/+IcIdAPpL2SP4YdtfkvQV8YtOANAXygb8/pJ+IX7RCQD6Br/oBACZKnsWzVzbN9jeavsh29fbnlt15QAAk1f2S9arJN0o6TkqLnL6WpoGAOhRZQN+ICKuioid6fZZSQzeDgA9rGzAP5yGCZ6WbmdKeqTKigEA2lM24M+V9FZJWyQ9KOk0SXzxCgA9rOxpkh+WdHZE/FSSbD9T0kdVBD8AoAeVPYI/cjTcJSkiHhVjvQNATysb8HvZPnD0QTqCL3v0DwCYAmVD+p8k/Y/t61RcwfpWSZdUVisAQNvKXsm6xPawpOMkWdKpEfH9SmsGAGhL6W6WFOiEOgD0ibJ98ACAPkPAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgExVFvC2D7G9zPZa22tsX1BVWQCAPVU5nsxOSe+NiLts7ydphe2lXAELAN1R2RF8RDwYEXel+9skrVXxc38AgC7oSh+87UEVwwt/r85zC20P2x4eGRnpRnUA4Cmh8oC3va+k6yX9eUT8fPzzEbE4IoYiYmhggJ95BYBOqTTgbe+tItyvjogvV1kWAGB3VZ5FY0mfkbQ2Ii6rqhwAQH1VHsEfI+ntko6zvTLdXldheQCAGpWdJhkR31Hx4yAAgCnAlawAkCkCHgAyRcADQKYIeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BMEfAAkCkCHgAyRcADQKYqC3jbV9reavueqsoAADRW5RH8ZyWdVOH6AQBNVBbwEXGbpEerWj8AoDn64AEgU1Me8LYX2h62PTwyMjLV1QGAbEx5wEfE4ogYioihgYGBqa4OAGRjygMeAFCNKk+TvEbSckm/ZXuT7fOqKgsAsKfpVa04Is6oat0AgInRRQMAmSLgASBTBDwAZIqAB4BMEfAAkCkCHgAyRcADQKYIeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BMVRrwtk+yvd72vbbfV2VZAIDdVRbwtqdJ+qSk10o6QtIZto+oqjwAwO6qPIJfIOneiLgvIh6XdK2kUyosDwBQY3qF654j6Sc1jzdJeun4mWwvlLQwPdxue32FdSpjtqSHu1GQ3Y1S2kJbjKEtxtAWY3qhLZ7b6IkqA75edWKPCRGLJS2usB4tsT0cEUNTXY9eQFuMoS3G0BZjer0tquyi2STpkJrHcyU9UGF5AIAaVQb8nZIOt32o7RmSTpd0Y4XlAQBqVNZFExE7bb9b0i2Spkm6MiLWVFVeB/VMd1EPoC3G0BZjaIsxPd0WjtijWxwAkAGuZAWATBHwAJApAh4AMtWzAW97H9v/lYY8GP/cObZHbK9Mtz9usI4X216dxsL5F7u4VMD2TNtfStO/Z3uwZpmv237M9k0l69luXd5j+37bnyhTXoN179ZWtp+oqU/dM5eatUGTcs5I27AqtdPsBvNdlNa73vaJNdOX2d5uu6PnDdfZ/kW219heW9vW45aZzPZfYvsntrePm/4K23fZ3mn7tCbLV7IP1Nn+uvuw7XensqPRa5fmO9v2D9Pt7BLlN9x+2/NsfyO9Ft+v186NXgvbh6V9ePv4ZZrUpWxbOL2eP0h1O79DbfEXaTtX2f6W7eem6a+qeU+utP0r22+qsi0kSRHRkzdJfybpggbPnSPpEyXWcYekl6m46OpmSa9N098l6VPp/umSvlSzzKslvVHSTSXr2VZdWllH2baStL3EMg3boMH80yVtlTQ7PV4k6eI68x0h6X8lzZR0qKQfSZpW8/ytkoaq2lck/b6k76o4c2uapOWSjm13+9N8R0s6eHz7ShqUdKSkJZJO6/Y+UOf1r7sPS5qf6rpx9HWss65nSrov/T0w3T9wgvIbbn96vV+T7u8r6WmtvhZl9udJtMU7Un33So+f1aG2eNXoNkr603r7VVrfo1W3RUT07hG8pD+S9NXJLmz7YEn7R8TyKFpmiaQ3padPkfS5dP86Sa8ePZqKiG9J2jbZcidRl06YTFs1bIMGnG5PT/Ptr/oXrp0i6dqI2BERGyTdq2JcoirVbn9ImiVphop/MntLeqhBPVvZfkXE7RHxYJ3pGyNilaRdjZateB/Y7fVvtA9HxN0RsXGCdZ0oaWlEPBoRP5W0VNJJzRZotP0uBhecHhFL03zbI+IXdVbR8mvRRKm2UBG+H4qIXWm+rXXmmUxbLKvZxttVXOA53mmSbu5CW/RmwLu4MOp5E+yMb0kfg66zfUid5+eouJp21KY0bfS5n0jF+fqSfibpoDaq3E5d2tKgrWbZHrZ9e72PgTV1Kt0GEfFrFW+K1SqC/QhJn2m23qRj21rP+O2PiOWSlkl6MN1uiYi1zerZoX1gIpXsAyXfK63o5Ov3m5Ies/1l23fbvtR1ulzVodeixbY4TNLb0vvkZtuHN6tX0mpbnKfik9p4p0u6psEyHd0vezLgVQzg81iT578maTAijpT0TY39x6vVbCycUuPklNRuXdpVr63mRTE+xh9K+pjtw9qtk+29VQT8fEnPkbRK0kXtrrcDdtt+28+X9NsqjpzmSDrO9ivqLNftelZV3kTvlVZ1sp7TJf2BpL+U9BJJz1PRFVVVma20xUxJv0rvk8slXdnJetk+U9KQpEvHTT9Y0gtVXABad9HJlllPrwb8L1V8zJb05JdbK22vlKSIeCQidqSnL5f04jrr2KTdPx7VjoXz5Dg5tqdLeoaKPrGWdaAu7dqtrVKdHkh/71PRBzq/QZ1aaYOj0jp/lLoY/k1Ff3fD9SZVj0E0fvvfLOn21B2wXcUR1NF1luvYPlBSVfvAHq9/mzr5+m2SdHcUQ4bvlPQVSb/XrMw2X4tW2mKTpOvT/RtUfIfQsF5JqbawfbykD0g6uSYbRr1V0g3pE3GjenVsv+zJgE/9XdNsz0qPPxARR0XEUdKT/wVHnSxpj4/gqa90m+2jUx/WWRrrm7tR0ug34qdJ+nYKrYZsf8T2m+tMb7cubRnfVrYPtD0z3Z8t6RhJ36+zaMM2sL2uzvybJR1heyA9fo3qbGta7+npbIBDJR2u4svFSozffkn3S3ql7enpU8crm9Szle1vt56V7AN1tr9dt0g6Ie1HB0o6IU1r+B5o4k5JB9bsM8epxX2xFS22xVdSfaRiH/lBnXlabgvb8yV9WkW41+vXP0ONu2ekDrXFk1r5RrabNxX9u8c3eO4jktaoOFtjmaQX1Dy3sub+kKR7VJzJ8QmNDc0wS9K/q/gC8A4V/Xajy/y3pBEVRwObJJ2Ypt8k6WWdrkt67hy1dxbNk22l4qh6darPaknn1cz3IRU7XsM2UPExd32Dct6pIixXqeiaOihNP1nFF1aj830gbed61Zwpkp67VZ0/i6Z2+6epeIOtVREml3Vw+xelfWJX+ntxmv6S9Pj/JD0iaU039wGNe6802YfPT493qjgSvaKmXlfULH9uapd7Jb2jZnqj90Cz7X9N2l9WS/qspBllX4uadbRyFk3ZtjhA0n+kei2X9KIOtcU3VXypvzLdbqx5blDFgdJe45appC0ioqcDfr6kz091PWrqc0uF6570m7vTbSXpDZLOr3Bbb1XnA75vtr+KfaBb75Uq3wMTlNtKwNMWNbcqf/CjLRFxt4sLY6ZFxBM9UJ8TJ56rdbbfo+LI+PqJ5m2kk20VEaUu8JoM28tUfNHWqP9xUvpl+xtpdx/o1nulqvdAI+nkgOtV/zTXumiLccul/woAgMz05JesAID2EfAAkCkCHgAyRcCjr9k+wPa7pqDcY91gxFHb/2n7gC5XCdgDAY9+d4CKEfh6RkS8LiIem+p6AAQ8+t0/ShodK/tS239l+840+NvfSZLtQdvrbF9h+x7bV9s+3vZ3XYzzvSDNd7Htz9v+dpr+JxOUvb/tG1yM//0p23ul9Wy0PTuVu9b25S7Gp/+G7X3SPOd7bNzwa6tsIDx1EfDod++T9KMohrFYqmJohAUqxs55cc1AY8+X9HEVY468QMVAbC9XMRDW+2vWd6Sk16sYt/1vbT+nSdkLJL1XxeBRh0k6tc48h0v6ZET8joqBsN5SU+/5UQxS987SWwu0gIBHTk5It7sl3aUiyEeHgd0QEaujGP97jaRvRXERyGoVl5CP+mpE/DIiHlYx9ESzsezviGIgrSdUjC/y8jrzbIiIlen+ipqyVkm6Oo06uLOlrQRKIuCRE0v6SKSB6SLi+RExOmZ97ah+u2oe75J2u6J7/JV/za4ELDNvbblP1JT1ekmfVDH66Io0ciDQUQQ8+t02Sful+7dIOtf2vpJke47tZ7W4vlNsz7J9kKRjVYyI2MgC24emvve3SfpOmQLS/IdExDJJF6r4onjfFusJTIijBvS1iHgkfVl6j4qx378oaXkxIq+2SzpTxZFzWXeoGGVwnqQPRxpbv4HlKr7kfaGk21SMK17GNElfsP0MFZ86/pmzblAFxqIBEtsXqxit76NTXRegE+iiAYBMcQQPNGH7hZI+P27yjoh46VTUB2gFAQ8AmaKLBgAyRcADQKYIeADIFAEPAJn6f76SMkWE29GIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "e10['temp_bins'] = pd.qcut(e10['temp_outside'], 5)\n", + "temp = sns.barplot(x='temp_bins', y='consume',data=e10, color='blue')\n", + "temp.axhline(y = e10.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": 213, + "id": "6be1273d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAANYklEQVR4nO3dbYxcZRnG8euiW16sJWoYqbaURSRV1CKyooYEIxqCChqJQU0QeYn7SQKJWvWDGFFjUpXIBySpULARUANikEQUo5WogMwWUOrWaAiFLo7dWpUWtKVw+2GGdJbubs929tkzvff/Szad2Z2Z507T/nPy7JkzjggBAPI5pO4BAABlEHgASIrAA0BSBB4AkiLwAJDUQN0DdDvqqKNicHCw7jEA4KAxMjKyLSIak/2srwI/ODioZrNZ9xgAcNCwvXmqn7FFAwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgqb56oxOA/FatWqVWq6UlS5Zo9erVdY+TGoEHMKdarZbGxsbqHmNeYIsGAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkioaeNsvs32r7U22R22/o+R6AIC9Sl+q4GpJd0XEh20fKuklhdcDAHQUC7ztIyWdLulCSYqI3ZJ2l1oPADBRyS2a10gal3SD7QdtX2d7UcH1AABdSgZ+QNJbJF0bESdLelrS51/8INvDtpu2m+Pj4wXHAYD5pWTgt0jaEhH3d+7fqnbwJ4iINRExFBFDjUaj4DgAML8UC3xEtCQ9YXtF51vvlvTnUusBACYqfRbNpZJu6pxB86ikiwqvBwDoKBr4iHhI0lDJNQAAk+OdrACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSpd/oBKDj8SvfVPcIfWHP9ldIGtCe7Zv5O5G0/Io/FXttjuABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJFX0Az9sPyZph6TnJO2JiKGS6wEA9pqLT3R6V0Rsm4N1AABd+Mi+hFatWqVWq6UlS5Zo9erVdY8DoCal9+BD0i9sj9genuwBtodtN203x8fHC48zP7RaLY2NjanVatU9CoAaOSLKvbj96oh40vYrJd0t6dKIuGeqxw8tXhzNU04pNs98Mbppk3bt2qXDDjtMr3/d6+oeBx3/2/xA3SP0hSd2DujZ562Fh4SOeemeusep3eHHvrWn5/s3vxmZ6vebRbdoIuLJzp9bbd8u6VRJUwYeQH5Efe4UC7ztRZIOiYgdndtnSrpy2ietWCGtX19qpHnj6xdcoLGxMS1dulTr1q2rexx0bL3yTXWPgD60/Ir1vb2APeWPSh7BHy3pdrcXH5B0c0TcVXA9nfJZYiZJi7ft0AJJj2/bwd+JpJFvXFD3CEAtigU+Ih6VdFKp1wcATI93sgJAUgQeAJIi8ACQFO9kTej5QxdN+BPA/ETgE3r6hDPrHgFAH2CLBgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJBU8cDbXmD7Qdt3ll4LALDXXBzBXyZpdA7WAQB0KRp428skvV/SdSXXAQDsq/QR/LclrZL0/FQPsD1su2m7OT4+XngcAJg/KgXe9ktsf9H2dzv3T7B99n6ec7akrRExMt3jImJNRAxFxFCj0ag8OABgelWP4G+QtEvSOzr3t0j66n6ec5qkD9h+TNIPJJ1h+/sHMiQAYOaqBv74iFgt6VlJioj/SvJ0T4iIL0TEsogYlPRRSb+KiPN7GRYAUF3VwO+2fYSkkCTbx6t9RA8A6FMDFR/3JUl3STrG9k1qb79cWHWRiFgvaf0MZwMA9KBS4CPibtsbJL1d7a2ZyyJiW9HJAAA9mclpkkslLZB0qKTTbZ9bZiQAwGyodARve62klZI2au857SHpx4XmAgD0qOoe/Nsj4sSikwAAZlXVLZp7bRN4ADiIVD2C/57akW+pfXqkJUVErCw2GQCgJ1UDv1bSxyX9SdNcVwYA0D+qBv7xiLij6CQAgFlVNfCbbN8s6afqegdrRHAWDQD0qaqBP0LtsJ/Z9T1OkwSAPlb1nawXlR4EADC7qr7R6QZ1LjTWLSIunvWJAACzouoWTfcHZh8u6UOSnpz9cQAAs6XqFs1t3fdt3yLpl0UmAgDMigP9TNYTJC2fzUEAALOr6h78Dk3cg29J+lyRiQAAs6LqFs3i0oMAAGZXpS0a26fZXtS5fb7tq2wfW3Y0AEAvqu7BXyvpGdsnSVolabOkdcWmAgD0rGrg90RESPqgpKsj4mpJbNsAQB+reh78DttfkHS+2h/Xt0DSwnJjAQB6VfUI/iNqX4vmkohoqf35rN8oNhUAoGdVz6JpSbqq6/7jYg8eAPpa1bNozrX9V9v/sf2U7R22n9rPcw63/QfbD9veaPvLszMyAKCKqnvwqyWdExGjM3jtXZLOiIidthdK+q3tn0XEfTOeEgAwY1UD/48Zxl2ds252du4u7Hztc0VKAEAZVQPftP1DST/RDD7RqXO2zYik10q6JiLun+Qxw5KGJWn5ci5vAwCzpepZNEdKekbtT3Q6p/N19v6eFBHPRcSbJS2TdKrtN07ymDURMRQRQ41Go/LgAIDpzcknOkXEv22vl3SWpEd6eS0AQDVVz6JZZvt221tt/8P2bbaX7ec5Ddsv69w+QtJ7JG3qeWIAQCVVt2hukHSHpFer/Sann3a+N51XSfq17T9KekDS3RFx536eAwCYJVV/ydqIiO6g32j78umeEBF/lHTygQ4GAOhN1SP4bZ3LBC/ofJ0v6Z8lBwMA9KZq4C+WdJ7an+T0d0kfltTTL14BAGVV3aL5iqRPRMS/JMn2KyR9U+3wAwD6UNUj+JUvxF2SImK72F8HgL5WNfCH2H75C3c6R/BVj/4BADWoGulvSfq97VvVvp7MeZK+VmwqAEDPqr6TdZ3tpqQzJFnSuRHx56KTAQB6UnmbpRN0og4AB4mqe/AAgIMMgQeApAg8ACRF4AEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUsUCb/sY27+2PWp7o+3LSq0FANhXyc9V3SPp0xGxwfZiSSO27+aToABgbhQ7go+Iv0fEhs7tHZJGJS0ttR4AYKI52YO3PSjpZEn3T/KzYdtN283x8fG5GAcA5oXigbf9Ukm3Sbo8Ip568c8jYk1EDEXEUKPRKD0OAMwbRQNve6Hacb8pIn5cci0AwEQlz6KxpOsljUbEVaXWAQBMruQR/GmSPi7pDNsPdb7eV3A9AECXYqdJRsRvJbnU6wMApsc7WQEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApIoF3vZa21ttP1JqDQDA1Eoewd8o6ayCrw8AmEaxwEfEPZK2l3p9AMD02IMHgKRqD7ztYdtN283x8fG6xwGANGoPfESsiYihiBhqNBp1jwMAadQeeABAGSVPk7xF0r2SVtjeYvuSUmsBAPY1UOqFI+JjpV4bALB/bNEAQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEkReABIqmjgbZ9l+y+2/2b78yXXAgBMVCzwthdIukbSeyWdKOljtk8stR4AYKKSR/CnSvpbRDwaEbsl/UDSBwuuBwDoMlDwtZdKeqLr/hZJb3vxg2wPSxru3N1p+y8FZ5pPjpK0re4h+oG/+Ym6R8C++Pf5gi+511c4dqoflAz8ZFPHPt+IWCNpTcE55iXbzYgYqnsOYDL8+5wbJbdotkg6puv+MklPFlwPANClZOAfkHSC7eNsHyrpo5LuKLgeAKBLsS2aiNhj+1OSfi5pgaS1EbGx1HrYB9te6Gf8+5wDjthnWxwAkADvZAWApAg8ACRF4BPiEhHoV7bX2t5q+5G6Z5kPCHwyXCICfe5GSWfVPcR8QeDz4RIR6FsRcY+k7XXPMV8Q+Hwmu0TE0ppmAVAjAp9PpUtEAMiPwOfDJSIASCLwGXGJCACSCHw6EbFH0guXiBiV9CMuEYF+YfsWSfdKWmF7i+1L6p4pMy5VAABJcQQPAEkReABIisADQFIEHgCSIvAAkBSBByqyfR0XbsPBhNMkgS62rfb/i+frngXoFUfwmPdsD9oetf0dSRskXW+7aXuj7S93PW697aHO7Z22v2b7Ydv32T66rvmBqRB4oG2FpHURcbKkT0fEkKSVkt5pe+Ukj18k6b6IOEnSPZI+OXejAtUQeKBtc0Tc17l9nu0Nkh6U9Aa1PzjlxXZLurNze0TSYPEJgRkaqHsAoE88LUm2j5P0GUlvjYh/2b5R0uGTPP7Z2PsLrOfE/yX0IY7ggYmOVDv2/+nsq7+35nmAA8ZRB9AlIh62/aCkjZIelfS7mkcCDhinSQJAUmzRAEBSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEn9H8Vp/toUTVPWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "rain = sns.barplot(data=e10, y=\"consume\", x =\"rain\")\n", + "rain.axhline(y=e10.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": 235, + "id": "7bc5ef69", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXeElEQVR4nO3de5wlZX3n8c9vBmdAhIjSSmQYR9AECeGiLQtxdRGJISRqVDboBhEkOy/vuKuLujd3zbLqoCgbXTdEAfFKArpBNChBwJgA2gPDdVAJjGEGWmbiBfAyk8Ff/qin6TNnzqX6Un0pPu/X67y6Tp2qep5++pxv13mq6qnITCRJ7bNkvisgSWqGAS9JLWXAS1JLGfCS1FIGvCS11C7zXYFOe++9d65atWq+qyFJi8batWu3ZOZIr9cWVMCvWrWKsbGx+a6GJC0aEfH9fq/ZRSNJLWXAS1JLGfCS1FIGvCS1lAEvSS3VaMBHxOMj4uKIuCMi1kfEUU2WJ0ma1PRpkucAl2fmCRGxDHhsw+VJkorGAj4i9gSeD5wCkJnbgG1NlSdJ2lGTe/D7A5uB8yPiUGAtcHpm/rRzoYhYDawGWLlyZYPVGe6MM85gfHycffbZhzVr1sxrXSRppprsg98FeBbwscw8HPgp8M7uhTLz3MwczczRkZGeV9vOmfHxcTZt2sT4+Pi81kOSZkOTAb8R2JiZ15fnF1MFviRpDjQW8Jk5DtwTEb9eZr0QuL2p8iRJO2r6LJo3A58pZ9DcBZzacHmSpKLRgM/MdcBok2VIknrzSlZJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaqmmhwueFU972oY5KWfFiu0sWwZ33719Tsq8++5VjZch6dHLPXhJaikDXpJayoCXpJZaFH3wmntnnHEG4+Pj7LPPPqxZs2a+qyNpGgx49TQ+Ps6mTZvmuxqSZsAuGklqKQNeklrKgJekljLgJamlPMgqSdOwGM40M+AlaRoWw5lmdtFIUks1ugcfERuAB4GHge2ZOdpkeZKkSXPRRfOCzNwyB+VIkjrYB99h+/Yn7vBzIXLoZEl1NR3wCXwtIhL4s8w8t3uBiFgNrAZYuXJlw9UZbHz8bfNaviTNpsjM5jYe8ZTMvDcingRcAbw5M7/Rb/nRPfbIsWc/e6f51133i8bqOJ+OPHLXKa8zV22xfPndxJJt5C+XsXXr0xovbzptIc2n9XfcwdatW1m+fDnPPPDAeatHXHPN2n7HNxvdg8/Me8vP+yPii8ARQN+Al7Sw/cNdd7Ft2zaWLVvGAfvvP9/V6WnudoKSWAK/+HnOSZnT2QlqbA8+InYHlmTmg2X6CuA9mXl5v3VGR0dzbGxsp/lz1e8816bT7zx3ffD/mWXLfsC2bU9m48b/3Xh59sEvDieffDKbNm1i33335cILL5zv6vT0aPuMRMS87ME/GfhiREyU89lB4S5Jml2NBXxm3gUc2tT2JUmDeSWrJLWUAS9JLeWFTtIQi2HUQKkXA149LYareufKYhg1UOrFgFdPXtUrDbYYdoIMeKkFHKNo7i2GnSAPskpSSxnwktRSBrwktZQBL0kt5UFWLVoeWJQGcw9eklrKgJeklrKLRlJti+HiHk0y4CXVthgu7tEku2gkqaUMeElqKbtopCHsd9ZiZcBLQ9jvrMXKLhpJaikDXpJayoCXpJYy4CWppQx4SWopA16SWqrxgI+IpRFxY0Rc1nRZkqRJc7EHfzqwfg7KkSR1aDTgI2IF8HvAx5ssR5K0s6b34D8MnAH8suFyJEldGgv4iPh94P7MXDtkudURMRYRY5s3b26qOpL0qNPkHvxzgZdExAbg88AxEfHp7oUy89zMHM3M0ZGRkQarI0mPLo0FfGa+KzNXZOYq4JXA1zPzpKbKkyTtyPPgJaml5mS44My8Grh6LsqSJFXcg5ekljLgJamlDHhJaikDXpJayoCXpJaqFfAR8diI+G8R8efl+TPKlaqSpAWq7h78+cBW4KjyfCPwvxqpkSRpVtQN+AMycw3wzwCZ+XMgGquVJGnG6gb8tojYDUiAiDiAao9ekrRA1b2S9d3A5cB+EfEZqoHETmmqUpKkmasV8Jl5RUTcABxJ1TVzemZuabRmkqQZmcppkvsCS4FlwPMj4uXNVEmSNBtq7cFHxHnAIcBtTN6dKYEvNFQvSdIM1e2DPzIzD2q0JpKkWVW3i+baiDDgJWkRqbsH/0mqkB+nOj0ygMzMQxqrmSRpRuoG/HnAq4FbmOyDlyQtYHUD/h8z89JGayJJmlV1A/6OiPgs8CU6rmDNTM+ikaQFqm7A70YV7C/qmOdpkpK0gNW9kvXUpisiSZpddS90Op8y0FinzHztrNdIkjQr6nbRXNYxvSvwMuDe2a+OJGm21O2iuaTzeUR8DvibRmokSZoV070n6zOAlbNZEUnS7KrbB/8gO/bBjwPvaKRGkqRZUbeLZo+pbjgidgW+ASwv5Vycme+e6nYkSdNTq4smIp4bEbuX6ZMi4uyIeOqQ1bYCx2TmocBhwHERceSMaitJqq1uH/zHgJ9FxKHAGcD3gQsHrZCVh8rTx5THTqdaSpKaUTfgt2dmAi8FzsnMc4Ch3TYRsTQi1gH3A1dk5vU9llkdEWMRMbZ58+YpVF2SNEjdgH8wIt4FnAR8OSKWUu2RD5SZD2fmYcAK4IiIOLjHMudm5mhmjo6MjEyh6pKkQeoG/IlUfeqnZeY41f1Zz6pbSGb+GLgaOG6K9ZMkTVOtgM/M8cw8OzP/tjz/x8wc2AcfESMR8fgyvRtwLHDHDOsrSaqp7lk0L4+I70XETyLigYh4MCIeGLLarwJXRcTNwLep+uAvG7KOJGmW1B2LZg3w4sxcX3fDmXkzcPi0aiVJmrG6ffA/mEq4S5LmX909+LGIuAj4/3hHJ0laFOoG/J7Az/COTpK0aHhHJ0lqqbpn0ayIiC9GxP0R8YOIuCQiVjRdOUnS9NU9yHo+cCnwFKqLnL5U5kmSFqi6AT+Smedn5vbyuABwXAFJWsDqBvyWMkzw0vI4CfinJismSZqZugH/WuAPqe7kdB9wAuCBV0lawOqeJvknwGsy80cAEfEE4ANUwS9JWoDq7sEfMhHuAJn5QxyGQJIWtLoBvyQi9pp4Uvbg6+79S5LmQd2Q/iDw9xFxMdUVrH8InNlYrSRJM1b3StYLI2IMOAYI4OWZeXujNZMkzUjtbpYS6Ia6JC0SdfvgJUmLjAEvSS1lwEtSSxnwktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLdVYwEfEfhFxVUSsj4jbIuL0psqSJO2sySF/twNvy8wbImIPYG1EXOEgZZI0Nxrbg8/M+zLzhjL9ILAe2Lep8iRJO5qTPviIWEV1B6jr56I8SdIcBHxEPA64BHhrZj7Q4/XVETEWEWObN29uujqS9KjRaMBHxGOowv0zmfmFXstk5rmZOZqZoyMjI01WR5IeVZo8iyaATwDrM/PspsqRJPXW5B78c4FXA8dExLryOL7B8iRJHRo7TTIzv0l1/1ZJ0jzwSlZJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaikDXpJaqrGAj4jzIuL+iLi1qTIkSf01uQd/AXBcg9uXJA3QWMBn5jeAHza1fUnSYPPeBx8RqyNiLCLGNm/ePN/VkaTWmPeAz8xzM3M0M0dHRkbmuzqS1BrzHvCSpGYY8JLUUk2eJvk54Frg1yNiY0Sc1lRZkqSd7dLUhjPzVU1tW5I0nF00ktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLWXAS1JLGfCS1FIGvCS1lAEvSS1lwEtSSxnwktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLWXAS1JLGfCS1FIGvCS1lAEvSS1lwEtSSxnwktRSBrwktVSjAR8Rx0XEdyLizoh4Z5NlSZJ21FjAR8RS4KPA7wIHAa+KiIOaKk+StKMm9+CPAO7MzLsycxvweeClDZYnSeqwS4Pb3he4p+P5RuBfdS8UEauB1eXpQxHxnQbrVMfewJa5KChiLkqZEdtikm0xybaYtBDa4qn9Xmgy4HtVJ3eakXkucG6D9ZiSiBjLzNH5rsdCYFtMsi0m2RaTFnpbNNlFsxHYr+P5CuDeBsuTJHVoMuC/DTwjIp4WEcuAVwKXNlieJKlDY100mbk9It4EfBVYCpyXmbc1Vd4sWjDdRQuAbTHJtphkW0xa0G0RmTt1i0uSWsArWSWppQx4SWopA16SWmpBBHxE7BYR15ThDYiIyyPixxFxWddyn4iImyLi5oi4OCIe12d774+IW8vjxI75x0TEDWX+JyNilzJ/r4j4YtnutyLi4Bp17lmXiDgwIq6NiK0R8fYB67+w1GVdRHwzIp5e5p9Yxu65rMc6j7RTRDw1ItaW9W+LiNd1LPemso2MiL0H1GFNWXd9RPyfiMGXlUTE6yLilo46H9TxWs8271p/eURcVOp2fUSsKvMPKNt8aFD502yLnn/zHtt7TUR8rzxeM4V6nFDaebRr/p4RsSkiPjKV9WfaFnXKj4g/Hbb9uvUvy54SEZtLvddFxB93vPZwx/yeZ9E19b4YVH5EXBARd3e8dlif7U3pfRERKyPiqoi4MapsOL7jtaGft9lsCwAyc94fwBuB0zuevxB4MXBZ13J7dkyfDbyzx7Z+D7iC6gyh3YExYE+qf2b3AL9WlnsPcFqZPgt4d5k+ELiyRp171gV4EvAc4Ezg7QPW/y7wzDL9BuCCjteO7v7du9sJWAYsL9OPAzYATynPDwdWlXl79yn/t4C/ozrDaSlwLXD0FH7nlwCXD2rzHuu/Afh/ZfqVwEVdrz80nfdMv7YY9Dfv2tYTgLvKz73K9F416rAH8A3gOmC067VzgM8CH5nm+tNqi2HlA6PAp4Ztv079O5Y9pd9ydX6Ppt4Xg9YFLgBOGLKtKb8vqM6qeX2ZPgjYUKZrfd5msy0yc2HswQN/BPzVxJPMvBJ4sHuhzHwAoPzn240eV8ZSNeo1mbk9M38K3AQcBzwR2JqZ3y3LXQG8omOdK0sZdwCrIuLJgyrcry6ZeX9mfhv45yG/c1L94wH4FepdBPZIO2XmtszcWuYvp+PbWGbemJkbapS/KyUcgccAPxi4Qvmdi92ZbP9+bd7tpcAny/TFwAuHfWsYoE5bDPqbd/od4IrM/GFm/qgs16v+3f4EWAP8onNmRDwbeDLwtemsPw07fH76lV/2as8Czhi0sSnUf7Y08r6YBdN5X/T7XNf9vM1mW8x/wEd1EdT+NQJpYvnzgXGqPe0/7bHITcDvRsRjo+qeeAHVFbVbgMd0fJU+gckrbW8CXl62fwTV2A4rZqEug/wx8JWI2Ai8GnjfkLJ2aqeI2C8ibqbaS31/Zta+UjgzrwWuAu4rj69m5vph60XEGyPiH6iC6S1ldr827/bI+ESZuR34CVUIT8kU2mLQ37xnvYqNZd6gOhwO7JeZ3d2IS4APAv9pOutPVXdbDCn/TcClmXnfgO3Vqn8Pr4jJ7srONt41IsYi4rqI+IM+6zb2vhhS/pmlzh+KiOWD6lUMfV8A/wM4qXyuvwK8Gab0eZuVtpgw7wFPNVjPj+sunJmnUn39Xg/s1NebmV+jati/Bz5H9VVoe1bfb14JfCgivkX1DWF7We19wF4RsY7qD3Jjx2vTrssQ/wE4PjNXAOdTdfMMslM7ZeY9mXkI8HTgNcO+dXSKqs//mVT/yPYFjomI5w9bLzM/mpkHAO8A/muZ17PNexXba5N169yhVlsM+ZtPu14lBD8EvK3Hy28AvpKZ9/R4rc76U9XdFj3Lj4inAP+W4TsiQ+vfw5eAVaX9/4bJPVCAlVmN1fLvgA9HxAE91m/sfTGg/HdR7Zg9h6oL5h2zVK9XUXW3rgCOBz4VEUum8HmbrbYAFkbA/5zqq0ttmfkwcBG9v26TmWdm5mGZ+dtUDfa9Mv/azHxeZh5B1fc5Mf+BzDw1Mw8DTgZGgLtnoy69RMQIcGhmXl9mXUTVRzdI33Yqe6u3Ac+rWwfgZcB1mflQZj4E/DVw5BTW/zzwBx116NnmXR4Znyiqg52/AvxwCmVOqN0W/f7m/epVDBs3aQ/gYODqiNhA1W6Xlm8KRwFvKvM/AJwcEd3fzgatP1XdbdGv/MOp/vndWV57bETc2WN7deq/g8z8p44usj8Hnt3x2r3l513A1aUe3Rp7X/QrPzPvy8pWqh2sIwbVq6gzntZpwF+UMq4t9dmb+p+32WqLylQ67Jt6UH0l2bVr3tF0HGikCo2nd0x/APhAj20tBZ5Ypg8BbgV2Kc+fVH4up+pzP6Y8fzywrEz/e+DCju1dCezbVcbQulB9Vet5kJXqYOQWJg/+nQZc0u9379VOVG+23cr0XlQHbX+za/kN9D/IeiLV3tYuVP2BVwIvLq+9F3hZj3We0TH9YmBsWJt3rf9GdjyA9Bddr0/lYFqttuj3N+/a1hOo/qHvVR53A08Y1BZd619N10HSMv8U6h2k3Gn96bZF3fLrbL97/QHvi1/tmJ4Isom/xcTB772p/rkeNIfvi77lT9SZ6vP7YeB9s/G+oAruU8r0M6n+IQQDPm9NtUVmLpiA/wRwbMfzvwU2U/1H3kh1sGMJ1VHoW6gC5DOUMzWozgz4eJneFbi9PK4DDuvY7llU3SnfAd7aMf+o8se/A/gC5Uh5KfP7lPDoWH5QXfYpdX6A6uvixo7XvsLkmS4vK+vfRPUB379j+0fTO+AfaSfgt4Gby/o3A6s7lntLKXd7eYN9vEc7LQX+rLTH7cDZHetfBhzVo/xzqPaO11H1J/5GjTZ/D/CSjuX+ErgT+Fbn7zyND3Ldtuj3N3+kLcrz15Z63QmcOqwtuupyNTUCvrMthq0/3bYYVH6/7Xe3xYD693tfvLe8L24q74sDy/zfYvI9fgsdZzDN0ftiUPlfZ/Lz+2ngcbPxvqA64eDvSpnrgBfV+Lw10haZCyfgDwc+Nd/16FGvgzv/EHNY7tH0Dvg5aSeqA0Dz0d5T+SDbFraFbTHksRD64MnMG4GrouNCjYUgM2/NzP84l2VGdZHQ/wV+1KM+c9JOmfk7TW6/28RFHAw5TbOTbTHJtphkW3StV/4rSJJaZkHswUuSZp8BL0ktZcBLUksZ8FINEXH1oAuR+o3yFxHviYhjm6uZ1F9j92SVBJn53+e7Dnr0cg9ei1ZE7B4RX45qXP5boxpLf0NUY9N/qzwmxtkfiYhLIuLb5fHcjm2cV+bdGBEvLfN3i4jPl8GoLqIaMXRYfT4Y1djzV5bhKCbGHT+hTG+IiP9ZlrklIg4s8/9NTI5LfmNE7NFQk+lRxoDXYnYccG9mHpqZBwOXl/kPZDX2zEeoLkOH6ircD2Xmc6jGDfp4mf9fgK+X+S8AzoqI3YHXAz/LagCtM+kYX6WP3YEbMvNZwDXAu/sst6Us8zFg4oYwbwfemNVYSM+juoJbmjEDXovZLcCxZY/9eZn5kzL/cx0/jyrTxwIfKReLXArsWfaUXwS8s8y/mupS8ZXA86kuYSczb6YaAmGQX1INGkdZ71/3We4L5edaqpuyQHVp+9kR8Rbg8VkNEyvNmH3wWrQy87tR3ZzieOC9ETFxg4rOq/cmppdQjR2yw95xRATwisz8Ttf87u1MuXp95k+Muvgw5fOXme+LiC9T/R7XRcSxWd14RpoR9+C1aJUxzn+WmZ+mGtHzWeWlEzt+Xlumv0Z1w4uJdQ8rk18F3lyCfuJGHFANLfxHZd7BVKNkDrKE6oYiUI09/s0p/B4HZOYtmfl+qtsdHlh3XWkQ9+C1mP0mVZ/5L6lukfh6qtucLY+I66lC91Vl2bcAH43qrk+7UAX466hum/dh4OYS8huA36fqIz+/LL+OamS/QX4K/EZErKW6C89UbgDz1oh4AdVe/e1UQ85KM+ZYNGqVcqOK0czcMt91keabXTSS1FLuwUtTULp+um/Q/OrMvGU+6iMNYsBLUkvZRSNJLWXAS1JLGfCS1FIGvCS11L8Ac6xOYdlAIRIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "e10['speed_bins'] = pd.qcut(e10['speed'], 5)\n", + "speed = sns.barplot(x='speed_bins', y='consume',data=e10,color='blue')\n", + "speed.axhline(y=e10.consume.mean(), c=\"red\", label=\"mean\");\n" + ] + }, + { + "cell_type": "markdown", + "id": "ad82d327", + "metadata": {}, + "source": [ + "### PARA SP98" + ] + }, + { + "cell_type": "code", + "execution_count": 226, + "id": "1abebf39", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVgUlEQVR4nO3dfbRldX3f8feHAQQRlcg1qAMZRDAhEbFMEGqqBp/wuVqXYoL1gYSVJllaly3Rpm2siU0yprS2spoQEKNBYVXFB2KESQSNBsThQZ5GIgolIFcGlTAkFh349o+9hzlzOefOOfeefR/2vF9r3XXPw97799u/s8/n7vs7v/07qSokSf2zx3JXQJLUDQNeknrKgJeknjLgJamnDHhJ6qk9l7sCgw488MBat27dcldDklaNK6+88u6qmhn23IoK+HXr1rFp06blroYkrRpJ/u+o5+yikaSeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6akVd6KSV47TTTmN2dpaDDjqIDRs2LHd1JC2AAT/AUNthdnaWO+64Y7mrIWkRDPgBhpqkPrEPXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SecpiktAteH6HVyoCXdsHrI7Ra2UUjST1lwEtSTxnwktRTq6IP/tazD12ScrbduxbYm2333rIkZa475ZbOy5C0+/IMXpJ6yoCXpJ5aFV002sHuKknj8gxeknrKgJeknjLgJamnDHhJ6qlOP2RNciuwFXgA2FZV67ssT5K0w1KMovnFqrp7CcrRbsYRRdL8HCY54HH7bdvptyStZl0HfAEXJyngT6rqzI7LW5R3nDC73FWQpKnpOuCfVVXfSfJ4YGOSb1TVlwYXSHIqcCrAIYcc0nF1JGn30ekomqr6Tvv7LuAC4Nghy5xZVeurav3MzEyX1ZGk3UqqqpsNJ/sBe1TV1vb2RuA9VfX5Ueus33//2nTMMQ97/P/deXkndVxu+zzhuInXWaq2+Pb3HsGPHtiDvdc8yJMfd3/n5dkWOyykLbT7yhe/eOWoEYpddtH8JHBBku3lfHS+cJckTVdnAV9V3waePtFKT30qXHrpwx6eXaLhcEtt3SmXTrzOUrXF7312Ld/dujc/uf+P+K8vv73z8myLHRbSFtqNNSfRQzlMUkM5ZFRa/Qx4DeWQUWn1cy4aSeopA16SesouGmkX/DxCq5UBL+2Cn0fscNpppzE7O8tBBx3Ehg0blrs62gUDXtLYZmdnueOOO5a7GhqTffCS1FMGvCT1lAEvST1lwEtSTxnwktRTjqKRpAVYDUNGDXhJWoDVMGTUgJd64NYlmjp5271rgb3Zdu8tS1LmulNu6byMPrMPXpJ6yoCXpJ4y4CWppwx4SeopA16SespRNJLGthrmxndE0Q4GvKSxOTf+6mIXjST1lAEvST1lwEtSTxnwktRTBrwk9ZSjaCRpAVbDkNHOAz7JGmATcEdVvazr8iRpKayGIaNL0UXzNmDzEpQjSRrQacAnWQu8FDiry3IkSQ/X9Rn8/wBOAx4ctUCSU5NsSrJpy5YtHVdHknYfnQV8kpcBd1XVlfMtV1VnVtX6qlo/MzPTVXUkabfT5Rn8s4BXJLkVOA84Icmfd1ieJGlAZwFfVe+qqrVVtQ44CfhCVZ3cVXmSpJ15oZMk9dSSXOhUVZcCly5FWZKkhmfwktRTBrwk9ZQBL0k9ZcBLUk8Z8JLUUwa8JPWUAS9JPWXAS1JPGfCS1FMGvCT1lAEvST1lwEtST40V8EkemeQ/JfnT9v7h7Rd6SJJWqHHP4M8B7geOb+/fDvxeJzWSJE3FuAF/WFVtAH4MUFU/BNJZrSRJizZuwP8oyb5AASQ5jOaMXpK0Qo37hR+/A3weODjJuTTft/qmriolSVq8sQK+qjYmuQo4jqZr5m1VdXenNZMkLcokwySfBKwB9gaeneTV3VRJkjQNY53BJ/kgcBRwA/Bg+3ABn+yoXpKkRRq3D/64qjqy05pIkqZq3C6ay5IY8JK0iox7Bv9nNCE/SzM8MkBV1VGd1UyStCjjBvwHgTcA17GjD16StIKNG/C3VdVnOq2JJGmqxg34byT5KPBZBq5grSpH0UjSCjVuwO9LE+wvHHjMYZKStIKNeyXrmyfdcJJ9gC8Bj2jL+XhV/c6k25EkLcy4FzqdQzvR2KCqess8q90PnFBV9yXZC/hykr+sqssXVlVJ0iTG7aK5cOD2PsCrgO/Mt0JVFXBfe3ev9udhfyQkSd0Yt4vmE4P3k3wM+KtdrZdkDXAl8BTgjKr66pBlTgVOBTjkkEPGqY4kaQwL/U7Ww4FdpnFVPVBVRwNrgWOT/NyQZc6sqvVVtX5mZmaB1ZEkzTVuH/xWdu5emQV+a9xCquqeJJcCJwLXT1JBSdLCjNtFs/+kG04yA/y4Dfd9gecDfzjpdiRJCzNWF02SZyXZr719cpLTk/zULlZ7AnBJkmuBrwEbq+rCXawjSZqScUfR/G/g6UmeDpwGnA18GHjOqBWq6lrgGYuuoSRpQcb9kHVbO+zxlcD7q+r9wMTdNpKkpTPuGfzWJO8CTqb5ur41NOPaJUkr1Lhn8K+juTL1lKqapfl+1vd1VitJ0qKNO4pmFjh94P5tNH3wkqQVatxRNK9O8s0k/5Dk3iRbk9zbdeUkSQs3bh/8BuDlVbW5y8pIkqZn3D747xrukrS6jHsGvynJ+cCn8BudJGlVGDfgHw38E36jkyStGp19o5MkaXmNO4pmbZILktyV5LtJPpFkbdeVkyQt3Lgfsp4DfAZ4Is1FTp9tH5MkrVDjBvxMVZ1TVdvanw8BfjuHJK1g4wb83e00wWvan5OB73VZMUnS4owb8G8BXkvzTU53Aq8B/OBVklawcYdJ/i7wxqr6AUCSnwD+iCb4JUkr0Lhn8EdtD3eAqvo+fpmHJK1o4wb8HkkO2H6nPYMf9+xfkrQMxg3p/wb8bZKP01zB+lrgvZ3VSpK0aONeyfrhJJuAE4AAr66qGzutmSRpUcbuZmkD3VCXpFVi3D54SdIqY8BLUk8Z8JLUUwa8JPWUAS9JPWXAS1JPGfCS1FOdBXySg5NckmRzkhuSvK2rsiRJD9flfDLbgHdU1VVJ9geuTLLRK2AlaWl0dgZfVXdW1VXt7a3AZpqv+5MkLYEl6YNPso5meuGvDnnu1CSbkmzasmXLUlRHknYLnQd8kkcBnwD+bVXdO/f5qjqzqtZX1fqZGb/mVZKmpdOAT7IXTbifW1Wf7LIsSdLOuhxFE+BsYHNVnd5VOZKk4bo8g38W8AbghCTXtD8v6bA8SdKAzoZJVtWXab4cRJK0DLySVZJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppzoL+CQfTHJXkuu7KkOSNFqXZ/AfAk7scPuSpHl0FvBV9SXg+11tX5I0v2Xvg09yapJNSTZt2bJluasjSb2x7AFfVWdW1fqqWj8zM7Pc1ZGk3lj2gJckdcOAl6Se6nKY5MeAy4CnJrk9ySldlSVJerg9u9pwVb2+q21LknbNLhpJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppzoN+CQnJrkpyc1J3tllWZKknXUW8EnWAGcALwaOBF6f5MiuypMk7azLM/hjgZur6ttV9SPgPOCVHZYnSRqQqupmw8lrgBOr6lfa+28AnllVvzlnuVOBU9u7TwVu6qRC4zsQuHuZ67BS2BY72BY72BY7rIS2+Kmqmhn2xJ4dFpohjz3sr0lVnQmc2WE9JpJkU1WtX+56rAS2xQ62xQ62xQ4rvS267KK5HTh44P5a4DsdlidJGtBlwH8NODzJoUn2Bk4CPtNheZKkAZ110VTVtiS/CVwErAE+WFU3dFXeFK2Y7qIVwLbYwbbYwbbYYUW3RWcfskqSlpdXskpSTxnwktRTBrwk9dSKDfgk+yb5Yjvlwdznfi3JdUmuSfLlUVMgJDmmXe7mJP8zSdrHH5Hk/PbxryZZN7DO55Pck+TCCer62iQ3JrkhyUcnrMvbk9yW5APjljdk2zu1VZJDklycZHNbr3VD1hnZBvOU87ok17b7uWGe5d7VbvemJC8aePySJPclmeq44SH7/4dJrm9/XjdinYXs/3uT/H2S++Y8vtjjcVHHwJD9H3oMJzk7ydfb1/DjSR41YntvTPLN9ueNY5T/7CRXJdnWXuA4+NyG9njZPLjPc5YZ+lokOaxt0/vmrjOFtnheW+ftr9lTptQWI4+FUXWZs/7U2gKAqlqRP8BvAG8b8dyjB26/Avj8iOWuAI6nuejqL4EXt4//OvDH7e2TgPMH1nke8HLgwjHreThwNXBAe//xk9Slfe5NwAem1VbApcAL2tuPAh45ZJ2RbTCijMcBtwEz7f0/A543ZLkjga8DjwAOBb4FrJlTt/VdHSvAS4GNNCPE9gM2DR4vC93/drnjgCcA903zeFzsMTDk9R96DM+p5+nAO4ds6yeAb7e/D2hvH7CL8tcBRwEfBl4z8Pg/B75CM4puDXAZ8NxJX4u57T2ltvg74GcGyv/QlNpi5LEwqi5dtUVVrdwzeOCXgU8Pe6Kq7h24ux9DrpBN8gSaxr6smpb5MPAv26dfSRNQAB8Hnrf9zKKq/hrYOkE9fxU4o6p+0K5/14R1mYaH2qo9Y9izqja29bmvqv5pyDoj22CEJwN/V1Vb2vt/BfyrEds9r6rur6pbgJtp5iXq0uCxciTwxaraVlX/SPPH5sQR9Zxk/6mqy6vqziGPL/Z4XKyd3iujjuHt9Wz3c99h9QReBGysqu+3x/RGhrff4HZvraprgQfnPgXsA+xN8wd/L+C7QzYx8Wsxj7Haoq3bo9vbj2H4RZgLaYuRx8KY2TLNtliZAZ/mwqgnV9Wt8yzzG0m+BWwA3jpkkSfRXE273e3tY9uf+3toxusD/0BzhroQRwBHJPlKksuTDDsA5qvLogxpqyOAe5J8MsnVSd6XId1cTN4GNwM/nWRdkj1pwungIcs9tN3W1PZ1mCH7/3XgxUkemeRA4Bd3Vc8pHAOLPR4XbJz3ypzlzwFmgZ8G/teQRab2+lXVZcAlwJ3tz0VVtXm+MhfzWkzYFr8CfC7J7cAbgD+Yr16tsdpijGNhPlM9LldkwNNM4HPPfAtU1RlVdRjwW8B/HLLIfHPhjDVPzpj2pOmmeS7weuCsJI+doC6LNbet9gT+BfDvgJ+nOfN+05D1JqpTewbzb4Dzgb8BbgW2LXa7U7DT/lfVxcDngL8FPkbTLdB5PRd5PC7GLt8rOxVY9WbgicBmYNjnE1OrZ9uv/TM005Q8CTghybM7LHOStng78JKqWgucQ9NlNZV6jXEszGeqx8lKDfgf0vxrBzz04dY1Sa4Zsux5DP9X93aaA2u7wblwHponpz0bfQzw/QXW9Xbg01X147ZL4iaawB+3Lou1U1u1ZV1dzTTN24BPAf9sRL0naoOq+mxVPbOqjqfZz2/Ot91W13MQzd1/quq9VXV0Vb2A5g0zbz2ncAwMWsjxuBgP2/9dqaoHaP5QD+tim+br9yrg8rab8D6azx2Om6/MRb4WY7VFkhng6VX11fah82k+LxhZr9akbTHqWJjPVI/LFRnw7dnimiT7tPd/u33DHg2QZDBAX8qQN3DbV7o1yXFtH9a/Zkff3GeA7Z+Ivwb4QtsvOlKS30/yqiFPfYqmG4C2S+AImg9jxq3LosxtK5o5gA5oD2KAE4Abh6w6sg2SfGNYWUke3/4+gObDoLNGbPekdjTAoTR/7K6YeMfGNHf/k6xJ8rj29lE0H/5dPKKeE+3/KFM4HhdsyOs/qo7ZPlKkLf/lwLD9vAh4YZID2tf5he1j870HRrkNeE6SPZPsBTyH5j+HuSZ+Pw4zblsAPwAek+SI9v4LRtRr4rYY51jYham0xUMm+UR2KX+As4Hnj3ju/cANwDU0fXw/O/DcNQO31wPX04zk+AA7pmbYB/g/NP3KV9D0221f52+ALTRnA7cDL2ofvxA4fkhdQvPv3Y3AdcBJk9Slfe5NLG4UzU5tRXPAXtvW50PA3u3j7wFeMV8b0Pybe9OIcj7W7ueNc/bzFcB7Bu7/drufNzEwUqR97lKmP4rmof1v92t7HS8Hjh5YbrH7v6E9Jh5sf797GsfjYo+BIa//w45hmpO5r7THxPXAubQjPtp6nTWw/lvadrkZePPA46PeAz/flvOPwPeAG9rH1wB/QhOeNwKnT/JaDCw7ySiaXbZF+/ir2rb4entMPnlKbTHfsTCqLp20RVWt6IB/BvCR5a7HQH0u6nDbC35zT7utgJcBb+1wXy9l+gG/ava/i2Ngqd4rXb4HdlHuJAFvWwz8dPmFH4tSVVenuTBmTTV9hstdnxfteqnJJXk78GvAJxa6jWm2VVWNfYHXpJJcQvOh74+nud3Vsv+jLPYYWKr3SlfvgVGSHEbTJsOGVg5lW8xZr/2rIEnqmRX5IaskafEMeEnqKQNeknrKgNeqluSxSX59Gcp9bkbMCpjkc0OuZpaWnAGv1e6xNBddrRhV9ZKqume56yEZ8Frt/gDYPlf2+5L8+yRfSzPn+X8BaCdI+0aSs9LMEX9ukue3E8R9M8mx7XLvTvKRJF9oH//VXZT96CQXpJlz/4+T7NFu59YkB7blbk7yp2nmRL84yb7tMm9t17s2yXldNpB2Xwa8Vrt3At+qZhqLjTRTIxwLHA0cMzC51VNorjI8imYmxV8CfoFmUrb/MLC9o2guMT8e+M9JnjhP2ccC7wCeBhwGvHrIMofTTCf9szQTYW2f/+WdwDOq6iiaMfDS1Bnw6pMXtj9XA1fRBPn2uUFuqarrqupBmkvJ/7qai0Cuo/nCiu0+XVU/rKq7aS41n28u+yuqmdTtAZppHH5hyDK3VNU17e0rB8q6Fjg3yckMn+1SWjQDXn0S4PernZiuqp5SVWe3z90/sNyDA/cfhJ2u6J575d98VwKOs+xguQ8MlPVS4AzgGODKduZAaaoMeK12W4H929sXAW9J+12jSZ60fQbMCbwyyT7tjJTPpZmdc5Rjkxza9r2/DvjyOAW0yx9cVZcAp9F8UDz0+1GlxfCsQataVX2v/bD0epr5xj8KXNbMiMt9wMk0Z87jugL4C+AQ4Herar75vy+j+ZD3acCXgAvGLGMN8OdJHkPzX8d/d9SNuuBcNFIrybtpZuv7o+WuizQNdtFIUk95Bi/NI8nTgI/Mefj+qnrmctRHmoQBL0k9ZReNJPWUAS9JPWXAS1JPGfCS1FP/HwjjPzMa+kVsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sp98['temp_bins'] = pd.qcut(sp98['temp_outside'], 5)\n", + "temp = sns.barplot(x='temp_bins', y='consume',data=sp98,color=\"orange\")\n", + "temp.axhline(y = sp98.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": 220, + "id": "1cf0c4ab", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAANcklEQVR4nO3df6zddX3H8deLFgZ2dM70arcWvM6QJmwW2e4YhsQxtpC6LZoRwzRB/EHWv7awRNfJH9PIZpZUR8Yfm0mHLTZD1IAsyB9sLK7pfgDbbYFpbclMY7HFa29XlYJLa+G1P85pem97e/tt7/3cc/q+z0dy03PuPed83mnKk28+93u+x0kEAKjnokEPAABog8ADQFEEHgCKIvAAUBSBB4Cilg56gKlWrFiR0dHRQY8BABeMHTt2HEoyMtPPhirwo6OjGh8fH/QYAHDBsL3vTD9jiwYAiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFFD9UYnAPVt2LBBExMTWrlypTZu3DjocUoj8AAW1MTEhA4cODDoMRaFpls0tl9v+yHbe2zvtv2OlusBAE5qfQR/r6THk7zX9iWSXtd4PQBAX7PA214u6Z2SPiRJSY5JOtZqPQDAdC23aH5B0qSkLbafsX2f7WWnPsj2etvjtscnJycbjgMAi0vLwC+V9MuSPpfkWkmvSPr4qQ9KsinJWJKxkZEZL2kMADgPLQO/X9L+JE/37z+kXvABAAugWeCTTEj6ru01/W/9pqRvtVoPADBd67No/kjSA/0zaPZK+nDj9QAAfU0Dn+RZSWMt1wAAzIxr0QBAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIpPdAIWyAt3v23QIwyF44ffIGmpjh/ex9+JpCs/8Y1mr80RPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCK4nLBABbUiktfk3S8/ydaIvAAFtTH1v5w0CMsGk0Db/s7ko5IelXS8SRjLdcDAJy0EEfwv5Hk0AKsAwCYgl+yAkBRrQMfSf9ke4ft9TM9wPZ62+O2xycnJxuPAwCLR+stmhuSvGj7jZKesL0nyfapD0iySdImSRobG0vjeRaFDRs2aGJiQitXrtTGjRsHPQ6AAWka+CQv9v88aPsRSddJ2j77szBXExMTOnDgwKDHADBgzQJve5mki5Ic6d++WdLdsz7p+eelG29sNdKicdeePTp69Kh+atcu/j6HyBv37R30CBhGX7+x2Uu3PIJ/k6RHbJ9Y54tJHm+4HgBgimaBT7JX0jXn9KQ1a6Rt25rMs5j85e2368CBA1q1apW2bt066HHQd/Dutw16BAyhKz+xbW4v0DuInhGnSQJAUaUuVfArf8LRqiRdfuiIlkh64dAR/k4k7fjM7YMeARgIjuABoCgCDwBFEXgAKIrAA0BRBB4Aiip1Fg16Xrtk2bQ/ASxOBL6gV666edAjABgCbNEAQFEEHgCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKKp54G0vsf2M7cdarwUAOGkhjuDvlLR7AdYBAEzRNPC2V0v6HUn3tVwHAHC61kfwfy1pg6TXzvQA2+ttj9sen5ycbDwOACwezQJv+3clHUyyY7bHJdmUZCzJ2MjISKtxAGDRaXkEf4Okd9v+jqQvSbrJ9t83XA8AMEWzwCe5K8nqJKOS3ifp60lua7UeAGA6zoMHgKKWLsQiSbZJ2rYQawEAejiCB4CiOgXe9uts/5ntv+vfv6p/lgwAYEh1PYLfIumopHf07++X9BdNJgIAzIuugX9rko2SfiJJSf5PkptNBQCYs66BP2b7MkmRJNtvVe+IHgAwpLqeRfNJSY9LusL2A+q9ielDrYYCAMxdp8AnecL2TknXq7c1c2eSQ00nAwDMybmcJrlK0hJJl0h6p+1b2owEAJgPnY7gbW+WtFbSLp28MmQkfbXRXACAOeq6B399kqubTgIAmFddt2ietE3gAeAC0vUI/gvqRX5CvdMjLSlJ1jabDAAwJ10Dv1nSByR9Q7N8OhMAYHh0DfwLSR5tOgkAYF51Dfwe21+U9DVNeQdrEs6iAYAh1TXwl6kX9punfI/TJAFgiHV9J+uHWw8CAJhfXd/otEX9C41NleQj8z4RAGBedN2ieWzK7Usl/Z6kF+d/HADAfOm6RfPw1Pu2H5T0z00mAgDMi/P9TNarJF05n4MAAOZX1z34I5q+Bz8h6U+bTAQAmBddt2gubz0IAGB+ddqisX2D7WX927fZvsf2m9uOBgCYi6578J+T9GPb10jaIGmfpK2zPcH2pbb/0/ZztnfZ/tQcZwUAnIOugT+eJJLeI+neJPdKOtu2zVFJNyW5RtLbJa2zff15TwoAOCddz4M/YvsuSbep93F9SyRdPNsT+v9DeLl/9+L+12lvlgIAtNH1CP731TsivyPJhHqfz/qZsz3J9hLbz0o6KOmJJE+f76AAgHPTKfBJJpLck+Rf+/dfSDLrHnz/ca8mebuk1ZKus/1Lpz7G9nrb47bHJycnz3F8AMCZdD2L5hbb/2P7R7Zfsn3E9ktdF0nyQ0nbJK2b4WebkowlGRsZGen6kgCAs+i6RbNR0ruT/EyS5UkuT7J8tifYHrH9+v7tyyT9lqQ9c5oWANBZ11+yfj/J7nN87Z+T9IX+L2QvkvSVJI+d5TkAgHnSNfDjtr8s6R/U8ROdkvy3pGvnNB0A4Lx1DfxyST8Wn+gEABcMPtEJAIrqehbNatuP2D5o+/u2H7a9uvVwAIDz1/Usmi2SHpX08+q9yelr/e8BAIZU18CPJNmS5Hj/635JnLQOAEOsa+AP9S8TvKT/dZuk/205GABgbroG/iOSblXvk5y+J+m9kvjFKwAMsa6nSf65pA8m+YEk2X6DpM+qF34AwBDqegS/9kTcJSnJYfEmJgAYal0Df5Htnz1xp38E3/XoHwAwAF0j/VeS/sP2Q+q9g/VWSZ9uNhUAYM66vpN1q+1xSTdJsqRbknyr6WQAgDnpvM3SDzpRB4ALRNc9eADABYbAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCKIvAAUFSzwNu+wva/2N5te5ftO1utBQA4XcsP7Tgu6aNJdtq+XNIO209wmWEAWBjNjuCTfC/Jzv7tI5J2S1rVaj0AwHQLsgdve1S9z3B9eoafrbc9bnt8cnJyIcYBgEWheeBt/7SkhyX9cZKXTv15kk1JxpKMjYyMtB4HABaNpoG3fbF6cX8gyVdbrgUAmK7lWTSW9HlJu5Pc02odAMDMWh7B3yDpA5Jusv1s/+u3G64HAJii2WmSSf5Nklu9PgBgdryTFQCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCKahZ425ttH7T9zVZrAADOrOUR/P2S1jV8fQDALJoFPsl2SYdbvT4AYHYD34O3vd72uO3xycnJQY8DAGUMPPBJNiUZSzI2MjIy6HEAoIyBBx4A0AaBB4CiWp4m+aCkJyWtsb3f9h2t1gIAnG5pqxdO8v5Wrw0AODu2aACgKAIPAEUReAAoisADQFEEHgCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgqKaBt73O9vO2v2374y3XAgBM1yzwtpdI+htJ75J0taT327661XoAgOlaHsFfJ+nbSfYmOSbpS5Le03A9AMAUSxu+9ipJ351yf7+kXzv1QbbXS1rfv/uy7ecbzrSYrJB0aNBDDAN/9oODHgGn49/nCZ/0XF/hzWf6QcvAzzR1TvtGsknSpoZzLEq2x5OMDXoOYCb8+1wYLbdo9ku6Ysr91ZJebLgeAGCKloH/L0lX2X6L7UskvU/Sow3XAwBM0WyLJslx238o6R8lLZG0OcmuVuvhNGx7YZjx73MBODltWxwAUADvZAWAogg8ABRF4AviEhEYVrY32z5o+5uDnmUxIPDFcIkIDLn7Ja0b9BCLBYGvh0tEYGgl2S7p8KDnWCwIfD0zXSJi1YBmATBABL6eTpeIAFAfga+HS0QAkETgK+ISEQAkEfhykhyXdOISEbslfYVLRGBY2H5Q0pOS1tjeb/uOQc9UGZcqAICiOIIHgKIIPAAUReABoCgCDwBFEXgAKIrAAx3Zvo8Lt+FCwmmSwBS2rd5/F68NehZgrjiCx6Jne9T2btt/K2mnpM/bHre9y/anpjxum+2x/u2XbX/a9nO2n7L9pkHND5wJgQd61kjamuRaSR9NMiZpraRft712hscvk/RUkmskbZf0Bws3KtANgQd69iV5qn/7Vts7JT0j6RfV++CUUx2T9Fj/9g5Jo80nBM7R0kEPAAyJVyTJ9lskfUzSryb5ge37JV06w+N/kpO/wHpV/LeEIcQRPDDdcvVi/6P+vvq7BjwPcN446gCmSPKc7Wck7ZK0V9K/D3gk4LxxmiQAFMUWDQAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFDU/wO4cRJ59dm8/wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "rain = sns.barplot(data=sp98, y=\"consume\", x =\"rain\")\n", + "rain.axhline(y=sp98.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": 224, + "id": "5275b59e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAYrUlEQVR4nO3de5glZX3g8e+PO3IRhA63YRgFRAlBMB1WllVxJEhQdFUSZAMPIO48KhrdNSG4u9EsCSuCImwkbibcvCCS5ZIFRIQgI9EAOsBwHUCFUbm0DFEZEJEM/PaPepuuOZzurp7u6kvx/TzPeU5Vnap6f+c9dX7nrffUJTITSVL3rDPTAUiS2mGCl6SOMsFLUkeZ4CWpo0zwktRR6810AHVbb711LliwYKbDkKQ54+abb34sMwf6vTarEvyCBQtYunTpTIchSXNGRPx4tNfsopGkjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR01q050mmnHH388Q0NDbLvttpxyyikzHY4kTYoJvmZoaIiHHnpopsOQpClhF40kdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6qtUEHxFbRMRFEXFPRCyPiH3bLE+SNKLta9GcAVyVmYdGxAbAS1ouT5JUtJbgI2Jz4A3A0QCZ+QzwTFvlSZLW1GYXzSuAlcC5EXFrRJwVEZu0WJ4kqabNBL8e8FrgC5m5N/Ar4ITemSJiUUQsjYilK1eubDEcSXpxaTPBPwg8mJk3lfGLqBL+GjJzcWYOZubgwMBAi+FI0otLawk+M4eAn0bEbmXSm4G72ypPkrSmto+i+TBwfjmC5n7gmLVZyYqzXz6lQY1m9ap5wAasXvXAtJS54NgHWi9D0otXqwk+M5cBg22WIUnqzzNZJamjTPCS1FEmeEnqKBO8JHWUCV6SOsoEL0kdZYKXpI4ywUtSR5ngJamjTPCS1FEmeEnqKBO8JHWUCV6SOsoEL0kd1fb14OeUrTZZvcazJM1lJviajy0cmukQJGnK2EUjSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooD5OUpLVw/PHHMzQ0xLbbbsspp5wy0+H01WqCj4gVwBPAs8DqzBxsszxJmi5DQ0M89NBDMx3GmKajBf+mzHxsGsqRJNXYBy9JHdV2gk/g6oi4OSIWtVyWJKmm7S6a/TLz4Yj4LeCaiLgnM6+vz1AS/yKA+fPntxyOJL14tNqCz8yHy/OjwKXAPn3mWZyZg5k5ODAw0GY4kvSi0loLPiI2AdbJzCfK8IHAiWMudO+9sP/+L5i87SOPtBHizPvy/jMdgdQ5Tz9y47SUc8K/bsgzz67DBrct5endNmq9vI22e92El2mzi2Yb4NKIGC7nq5l5VYvlSZJqWkvwmXk/8JoJLbTbbrBkyQsmD5398qkJapZZcOySmQ5B6pzpyhd/ffk8fvbEBmyz2TP8r0MebL28UfNF1Yjuy8MkJamjvFSB+poLp2FLGpsJXn3NhdOwJY3NBC+Nw72ZEdbFiK02Wb3G82xkgpfG4d7MCOtixMcWDs10COPyT1ZJ6igTvCR1lF00c8yKaTrGd/WqecAGrF71wLSUueDYB1ovQ3qxsQUvSR1lC15zlnsz0thM8FIH+GOnfuyikaSOMsFLUkeZ4CWpo+yDV19z4TRsSWMzwauvuXAa9nTxx05zlQleGoc/dpqrTPCSGnNvZm4xwUtqzL2ZucWjaCSpo0zwktRRJnhJ6igTvCR1VOsJPiLWjYhbI+KKtsuSJI2Yjhb8R4Dl01COJKmm1QQfEfOAtwJntVmOJOmF2m7Bnw4cDzzXcjmSpB6NEnxEvCQi/iIi/r6M7xoRbxtnmbcBj2bmzePMtygilkbE0pUrVzYOXJI0tqYt+HOB3wD7lvEHgb8eZ5n9gLdHxArga8DCiPhK70yZuTgzBzNzcGBgoGE4kqTxNE3wO2fmKcC/AWTmr4EYa4HM/HhmzsvMBcB7gG9l5hGTCVaS1FzTBP9MRGwMJEBE7EzVopckzVJNLzb2SeAqYMeIOJ+q++XopoVk5hJgyQRjkyRNQqMEn5nXRMQtwOuoumY+kpmPtRqZJGlSJnKY5A7AusAGwBsi4l3thCRJmgqNWvARcQ6wJ3AXI8e0J3BJS3FJkiapaR/86zJz91YjkSRNqaZdNDdEhAlekuaQpi34L1Il+SGqwyMDyMzcs7XIJEmT0jTBnwMcCdyB15WRpDmhaYL/SWZe1mokkqQp1TTB3xMRXwUup3YGa2Z6FI0kzVJNE/zGVIn9wNo0D5OUpFms6Zmsx7QdiCRpajU90elcyoXG6jLzvVMekSRpSjTtoqnfMHsj4J3Aw1MfjiRpqjTtorm4Ph4RFwD/1EpEkqQpsbb3ZN0VmD+VgUiSplbTPvgnWLMPfgj481YikiRNiaZdNJu1HYgkaWo16qKJiP0iYpMyfEREnBYRO7UbmiRpMpr2wX8BeCoiXgMcD/wY+FJrUUmSJq1pgl+dmQm8AzgjM88A7LaRpFms6XHwT0TEx4EjqG7Xty6wfnthSZImq2kL/jCqa9Ecm5lDVPdnPbW1qCRJk9b0KJoh4LTa+E+wD16SZrWmR9G8KyJ+EBGPR8SqiHgiIla1HZwkae017YM/BTgkM5c3XXFEbARcD2xYyrkoMz858RAlSWujaYL/2USSe/EbYGFmPhkR6wPfiYhvZOaNE1yPJGktNE3wSyPiQuAfaXhHp3JY5ZNldP3yeMElhyVJ7Wia4DcHnmKCd3Qqh1PeDOwCnJmZN/WZZxGwCGD+fK9fJklTpdU7OmXms8BeEbEFcGlE7JGZd/bMsxhYDDA4OGgLX5KmSNOjaOZFxKUR8WhE/CwiLo6IeU0LycxfAkuAg9YuTEnSRDU90elc4DJge6qTnC4v00YVEQOl5U5EbAwcANyz1pFKkiakaYIfyMxzM3N1eZwHDIyzzHbAdRFxO/B94JrMvGKcZSRJU6Tpn6yPRcQRwAVl/HDgX8daIDNvB/aeRGySpElo2oJ/L/BHVHdyegQ4FFirP14lSdOjaQv+r4CjMvMXABHxMuAzVIlfkjQLNW3B7zmc3AEy8+fY/SJJs1rTBL9ORGw5PFJa8E1b/5KkGdA0SX8W+JeIuIjqDNY/Ak5qLSpJ0qQ1PZP1SxGxFFgIBPCuzLy71cgkSZPSuJulJHSTuiTNEU374CVJc4wJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4Seqo1hJ8ROwYEddFxPKIuCsiPtJWWZKkF2rzxtmrgY9l5i0RsRlwc0Rc463+JGl6tNaCz8xHMvOWMvwEsBzYoa3yJElrmpY++IhYAOwN3NTntUURsTQilq5cuXI6wpGkF4XWE3xEbApcDHw0M1f1vp6ZizNzMDMHBwYG2g5Hkl40Wk3wEbE+VXI/PzMvabMsSdKa2jyKJoCzgeWZeVpb5UiS+muzBb8fcCSwMCKWlcfBLZYnSapp7TDJzPwOEG2tX5I0Ns9klaSOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjrKBC9JHWWCl6SOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjrKBC9JHWWCl6SOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjqqtQQfEedExKMRcWdbZUiSRtdmC/484KAW1y9JGkNrCT4zrwd+3tb6JUljm/E++IhYFBFLI2LpypUrZzocSeqMGU/wmbk4Mwczc3BgYGCmw5GkzpjxBC9JaocJXpI6qs3DJC8AbgB2i4gHI+LYtsqSJL3Qem2tODMPb2vdkqTx2UUjSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdVSrCT4iDoqIeyPihxFxQptlSZLW1FqCj4h1gTOBPwB2Bw6PiN3bKk+StKY2W/D7AD/MzPsz8xnga8A7WixPklQTmdnOiiMOBQ7KzPeV8SOBf5eZH+qZbxGwqIzuBtzbSkDNbQ08NsMxzBbWxQjrYoR1MWI21MVOmTnQ74X1Wiw0+kx7wa9JZi4GFrcYx4RExNLMHJzpOGYD62KEdTHCuhgx2+uizS6aB4Eda+PzgIdbLE+SVNNmgv8+sGtEvDwiNgDeA1zWYnmSpJrWumgyc3VEfAj4JrAucE5m3tVWeVNo1nQXzQLWxQjrYoR1MWJW10Vrf7JKkmaWZ7JKUkeZ4CWpo0zwktRRsyLBR8TGEfHtcnkDIuKqiPhlRFzRM995EfFARCwrj71GWd+nI+LO8jisNn1hRNxSpn8xItYr07eMiEsj4vaI+F5E7NEg5vPLdXbujIhzImL9Mv2lEXF5RNwWEXdFxDHjrOdvIuLJ2vhh5do9V/SZ9/l6ioi9IuKGUsbtPe/zzeV9LouI70TELmOUv3lEPBQRn2/wnt8fEXfU1rt77bX5EXF1RCyPiLsjYkGf5edHxHURcWuJ+eAyfeeyzid7lxkjlnpd7BQRN5d13BUR76/NFxFxUkTcV2L7k1HWd0pZdnlE/O+I6HceR7/lDo2IjIjBMj5qLD3LbRgRF5bP+qbh+ppsXdSmveBzjYizy3Z5e0RcFBGbjrK+oyLiB+VxVIPyj46IlbXv5fDJjaNuo9NVFxHxbC2uy2rz9f3+TkFd7BQR15b3uyQi5k1kXVNZFwBk5ow/gOOAj9TG3wwcAlzRM995wKHjrOutwDVURwhtAiwFNqf6Mfsp8Moy34nAsWX4VOCTZfhVwLUNYj6Y6mSuAC4APlCm/zfg02V4APg5sMEo6xgEvgw82TN9/9733ltPwCuBXcvw9sAjwBZl/D7g1WX4g8B5Y7yPM4CvAp9v8J43rw2/HbiqNr4E+P0yvCnwkj7LL67V0+7Aip7XnxwvhlHqYgNgw1rZK4Dty/gxwJeAdcr4b/VZ178Hvkt1tNe6wA3A/g1i2Ay4HrgRGBwvlp5lPwj8nzL8HuDCqaiLsT7Xns/vNOCEPut6GXB/ed6yDG85TvlH99t+xtpGp6suRluWUb6/U1AX/xc4qgwvBL48kXVNZV1k5uxowQN/DPy/4ZHMvBZ4Yi3XtTvw7cxcnZm/Am4DDgK2An6TmfeV+a4B3l1b5tpS9j3AgojYZqxCMvPKLIDvUZ3IBdXZupuVFuCmVAl+de/ypYVxKnD8BN7b8/WUmfdl5g/K8MPAo1Q/KMMxbF6GX8ooJ5hFxO8C2wBXNyk8M1fVRjcp5VBa8utl5jVlvicz86l+q2gSV0P1ungmM39Tpm/ImnumHwBOzMznyryPjhLXRpTkDKwP/KxBDH8FnAI8/fyKxo6l7h3AF8vwRcCbm+419LHG92e0z3X48yvlbEyfM8uBtwDXZObPM/MXVN+Tg9YmqHG20brW6mKM2Eb7/tatTV08n0uA6xi5/lbTdU1lXcx8go/qJKhXZOaKhoucVHZ/PhcRG/Z5/TbgDyLiJRGxNfAmqjNqHwPWH96VBg5l5Ezb24B3lXj2AXai/wfeL/71gSOBq8qkzwOvpkped1C1Jp7rs+iHgMsy85GG5YxaTyXmDYAflUnvA66MiAdLbCf3WWYd4LPAnzUpv7bccRHxI6rENtzd8UrglxFxSVTdL6fWuwtq/hI4osR1JfDhiZRdi+EFdRERO0bE7VR7aZ8uCQVgZ+CwiFgaEd+IiF1715eZN1B9GR8pj29m5vJxYtgb2DEz+3WljRZL3Q7ldTJzNfA4VSNkQnrrYrzPNSLOBYao9lT/Zqy4igfLtPG8u9b1s2Pvi3220b5lTmVdFBuVz/7GiPiPfZbp/f72jatoUhe3MdJwfCdVY2+rCaxrSupi2IwneKqL9fyy4bwfp9owf49qV+fPe2fIzKupkse/UO163QCsLr/U7wE+FxHfo9pDGG5ZnwxsGRHLqJLOrfRpdY/ib4HrM/Ofy/hbgGVUu6R7AZ+PiM3rC0TE9sAf0v8LNpq+9RQR21F18xxT+yH5L8DBmTkPOJdqd7zXB4ErM/OnfV4bVWaemZk7U9X9/yiT1wNeD/wp1WfzCqrd9l6HU3UXzaPaRf5ySUgT9YK6yMyfZuaewC7AUbU9sA2Bp7O6XsjfA+f0riyq/yheTfWjvgOwMCLeMFrhJebPAR/r9/oYsayxmn6LjlbmGHrrYszPNTOPodo2lwP9+sTXJq7LgQXlPf8TIy3QaoX9t9HJltlPv+/I/PLZ/yfg9IjYuef13u/vZOP6U+CNEXEr8EbgIapc0nRdU1UXZckJ9Oe08aDqj1rRZ/r+9OmHbvp6bb6vUiW73ukHAv/QZ3pQ9Ztu3mDdnwT+kdK/W6Z9HXh9bfxbwD49y72VqhW1ojyeo7q08qjvrV89UXV33AL8YW3aAPCj2vh84O4+sZ8P/KSU/xiwCjh5Ap/bOsDjZfh1wJLaa0cCZ/ZZ5i6qVu/w+P3U+sRp2L842jZTe/1cyn81wD1UyWf4s328z/x/BvxFbfwTwPFjrP+lpc6GP7+nqfbYBseKpWf6N4F9y/B6ZX0x2bpo+rlSJZ9+//McDvxdbfzvgMMnsF2sW6/jftvodNVFn9fPq38W9Pn+TnFdbAo8OJF1TVVdPD//RGZu60G1S7JRz7T9ezdAYLvyHMDpo2y46wJbleE9gTup+oehJBOqVt21wMIyvgXlj1DgPwNfqq3vWmCHPuW8j2ovYeOe6V8A/rIMb0P1C771OO+/6Z+sz9cT1e7utcBHe+YZ3iiG/0w+Frh4nPKPZs0/4z4FvLPPfLvWhg8Bltbq/DZgoIyfCxzXZ/lvAEeX4eFurLXaeHvqYt7w50D1Jb8P+J0yfjLw3lq9fr/Pug6janmuR9X/fi1wyFh10bP8Ekb+ZB01lp5ljmPNP9P+oef1taqL0T5Xqu/MLrXhzwCf6bPMy4AHSuxbluGXjbNdbFcbfidw41jb6HTVRYl/+A/vrYEfALuX8b7f3ymoi60Z+UP/JKr/f8ZcV1t1kTl7EvzZwAG18X8GVgK/puqrekuZ/i2qfu07ga8Am5bpg8BZZXgj4O7yuBHYq7beU6l2Te+tb3TAvuXDvwe4hPLvNlUr9cf9NgKq3a4fUXXHLAM+UaZvT/Xn1nCcR9SWuZL+R1Q0TfDP1xNwBPBvtfKXDb9Xqi/ZHVRJdwlVv+Qa9dSz3qNZM8FfQWlF9Mx3BlUrfBlVn/Vv1177feD2Uu55jPxgngi8vQzvTnW0ym1lHQdO4otcr4vhsm8rz4tq821BtVd1B1V33Wv6bDPrUrWolpft5rTx6qInliWMJPixYqnXxUZUR1z8kOpPvldMRV2M9rlSbcvfrW2X51P2Unu3C+C9Ja4fUnWrjLddfKpsF7eV7eJVDbbR1uuC6uio4e/BHZSj5sb5/k62Lg6lyiX3AWdRfmDGWVcrdZE5exL83pTDiWbTA9iD2pd9Gsvdn/4JflrqiepPxpmo74l8ka0L68K6GOcxG/5kJTNvBa4b5ciLGZOZd2bmf53OMsvJIH8L/KJPPNNST5n5ljbX32v4JA6aHZoIWBd11sUI66JnufKrIEnqmFnRgpckTT0TvCR1lAlekjrKBC81UK4MODjG632v8hcRJ0bEAe1FJo2utXuySoLM/MRMx6AXL1vwmrMiYpOI+HpU1zi/M6pr6a+I6n4A3yuPXcq8AxFxcUR8vzz2q63jnDLt1oh4R5m+cUR8rVxA60Kqqy+OF89no7oO/7URMVCmnRcRh5bhFRHxP8s8d0TEq8r0N8bINctvjYjNWqoyvciY4DWXHQQ8nJmvycw9GLki4KrM3Ifqyp6nl2lnAJ/LzN+jutrfWWX6fwe+Vaa/CTg1IjahuszwU1ldQOsk4HfHiWUT4JbMfC3wbarrnPTzWJnnC1QXpqI8H5eZe1FdtO3XTd68NB4TvOayO4ADSov99Zn5eJl+Qe153zJ8ANWVPZcBlwGbl5bygcAJZfoSqlPF5wNvoLocBpl5O9VlB8byHHBhGf4K8B9Gme+S8nwzsKAMfxc4Laq7TW2R1WVipUmzD15zVmbeF9XNLQ4GPhURwze4qJ+9Nzy8DtW1Q9ZoHUdEAO/OzHt7pveuZ8LhjTJ9+GYgz1K+f5l5ckR8nep93BgRB2R14xlpUmzBa84q19V/KjO/QnV1xNeWlw6rPd9Qhq+musnK8LJ7lcFvAh8uiX74Rh5Q3Yrvj8u0PaiuTDqWdaguNAXVtce/M4H3sXNm3pGZn6a6xeSrmi4rjcUWvOay36HqM3+O6qqFH6C6zdmGEXETVdI9vMz7J8CZ5U5L61El8PdT3XbvdOD2kuRXAG+j6iM/t8y/jOrKfmP5FfDbEXEz1V14+t5gehQfjYg3UbXq76a6rLI0aV6LRp0SESuoLt372EzHIs00u2gkqaNswUsTULp+em/2fmRm3jET8UhjMcFLUkfZRSNJHWWCl6SOMsFLUkeZ4CWpo/4/CKKPxxBgCvUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sp98['speed_bins'] = pd.qcut(sp98['speed'], 5)\n", + "speed = sns.barplot(x='speed_bins', y='consume',data=sp98, color=\"orange\")\n", + "speed.axhline(y=sp98.consume.mean(), c=\"red\", label=\"mean\");" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "85b3b89a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c26695b8", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "412ed922", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7bbb125", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21d14b52", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6bec4a2", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "04861611", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "989e1e39", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "82ef7544", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d42faf4a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f41bf684", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b0a75376", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "500d8f35", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f45cf0c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2a32f8a9", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "68415019", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "066dc6ef", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "986aad20", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "02b15eca", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2bd3c963", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6ef550c0", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e0b1d35", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2b28f4ba", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "909e680b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "84905456", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa638212", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3246e422", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "faf5df41", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6f2c3605", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a6dac03b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2b924b2", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "84ea053b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8e5d2897", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0d038256", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "22a5944f", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bf41f88a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dcab6538", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1de78fd", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "631b85dc", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8cbe705", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7c5ec95a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a5fe2fe", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "92d4fe5a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49462e23", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:ironhack] *", + "language": "python", + "name": "conda-env-ironhack-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}