diff --git a/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/.ipynb_checkpoints/Untitled-checkpoint.ipynb
new file mode 100644
index 0000000..d322c25
--- /dev/null
+++ b/.ipynb_checkpoints/Untitled-checkpoint.ipynb
@@ -0,0 +1,473 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "82aafdbc",
+ "metadata": {},
+ "source": [
+ "### EXPLORACION DATOS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "955fb2e5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a03463b6",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "003edfb9",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b7b14fd7",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c9bd69f0",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5ef04d91",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b8837cf2",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3d264ec8",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1aba860e",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5365586f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "075e6e92",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0667a2d1",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b1da01ec",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6cbde108",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5031166a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "aeb96b9c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "19de7e7f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0023ef20",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "23151e45",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "67eab956",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a9218911",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "58f9366b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "889dfd2e",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d3704f34",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f6f40be9",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e6d2fff0",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6916ace7",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1f0ca193",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4433ebfd",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d61171dd",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2ccba034",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5e7536ba",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "13c36710",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "741e26be",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2949febf",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "901e128a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "06368f41",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f05cf087",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "72a42f0a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ff8da945",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "729f977f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2b06dc58",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "aa3a1f14",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6130956d",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "df1dfc7f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3d7ea337",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "11fc245d",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d6ed95a3",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "74769452",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2ee5771b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3fecceca",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3db4872d",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "aec42449",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f5750449",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "45f76e03",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [conda env:ironhack] *",
+ "language": "python",
+ "name": "conda-env-ironhack-py"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/.ipynb_checkpoints/exploracion-checkpoint.ipynb b/.ipynb_checkpoints/exploracion-checkpoint.ipynb
new file mode 100644
index 0000000..a41031a
--- /dev/null
+++ b/.ipynb_checkpoints/exploracion-checkpoint.ipynb
@@ -0,0 +1,1868 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e920d6e1",
+ "metadata": {},
+ "source": [
+ "### EXPLORACION DATOS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "84d445a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import re\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import warnings\n",
+ "warnings.simplefilter(\"ignore\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "7beb8291",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " AC | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill liters | \n",
+ " refill gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28 | \n",
+ " 5 | \n",
+ " 26 | \n",
+ " 21,5 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12 | \n",
+ " 4,2 | \n",
+ " 30 | \n",
+ " 21,5 | \n",
+ " 13 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11,2 | \n",
+ " 5,5 | \n",
+ " 38 | \n",
+ " 21,5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12,9 | \n",
+ " 3,9 | \n",
+ " 36 | \n",
+ " 21,5 | \n",
+ " 14 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18,5 | \n",
+ " 4,5 | \n",
+ " 46 | \n",
+ " 21,5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type AC \\\n",
+ "0 28 5 26 21,5 12 NaN E10 0 \n",
+ "1 12 4,2 30 21,5 13 NaN E10 0 \n",
+ "2 11,2 5,5 38 21,5 15 NaN E10 0 \n",
+ "3 12,9 3,9 36 21,5 14 NaN E10 0 \n",
+ "4 18,5 4,5 46 21,5 15 NaN E10 0 \n",
+ "\n",
+ " rain sun refill liters refill gas \n",
+ "0 0 0 45 E10 \n",
+ "1 0 0 NaN NaN \n",
+ "2 0 0 NaN NaN \n",
+ "3 0 0 NaN NaN \n",
+ "4 0 0 NaN NaN "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "medidas = pd.read_csv('measurements.csv')\n",
+ "medidas.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "c5f8ddd9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "medidas2= pd.read_excel('measurements2.xlsx')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "a6d2381a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "distance float64\n",
+ "consume float64\n",
+ "speed int64\n",
+ "temp_inside float64\n",
+ "temp_outside int64\n",
+ "specials object\n",
+ "gas_type object\n",
+ "AC int64\n",
+ "rain int64\n",
+ "sun int64\n",
+ "refill liters float64\n",
+ "refill gas object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "medidas2.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "3987c15d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " ac | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill_liters | \n",
+ " refill_gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28.0 | \n",
+ " 5.0 | \n",
+ " 26 | \n",
+ " 21.5 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45.0 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12.0 | \n",
+ " 4.2 | \n",
+ " 30 | \n",
+ " 21.5 | \n",
+ " 13 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11.2 | \n",
+ " 5.5 | \n",
+ " 38 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12.9 | \n",
+ " 3.9 | \n",
+ " 36 | \n",
+ " 21.5 | \n",
+ " 14 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18.5 | \n",
+ " 4.5 | \n",
+ " 46 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " 16.0 | \n",
+ " 3.7 | \n",
+ " 39 | \n",
+ " 24.5 | \n",
+ " 18 | \n",
+ " NaN | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 384 | \n",
+ " 16.1 | \n",
+ " 4.3 | \n",
+ " 38 | \n",
+ " 25.0 | \n",
+ " 31 | \n",
+ " AC | \n",
+ " SP98 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 385 | \n",
+ " 16.0 | \n",
+ " 3.8 | \n",
+ " 45 | \n",
+ " 25.0 | \n",
+ " 19 | \n",
+ " NaN | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 386 | \n",
+ " 15.4 | \n",
+ " 4.6 | \n",
+ " 42 | \n",
+ " 25.0 | \n",
+ " 31 | \n",
+ " AC | \n",
+ " SP98 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 387 | \n",
+ " 14.7 | \n",
+ " 5.0 | \n",
+ " 25 | \n",
+ " 25.0 | \n",
+ " 30 | \n",
+ " AC | \n",
+ " SP98 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
388 rows × 12 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type \\\n",
+ "0 28.0 5.0 26 21.5 12 NaN E10 \n",
+ "1 12.0 4.2 30 21.5 13 NaN E10 \n",
+ "2 11.2 5.5 38 21.5 15 NaN E10 \n",
+ "3 12.9 3.9 36 21.5 14 NaN E10 \n",
+ "4 18.5 4.5 46 21.5 15 NaN E10 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "383 16.0 3.7 39 24.5 18 NaN SP98 \n",
+ "384 16.1 4.3 38 25.0 31 AC SP98 \n",
+ "385 16.0 3.8 45 25.0 19 NaN SP98 \n",
+ "386 15.4 4.6 42 25.0 31 AC SP98 \n",
+ "387 14.7 5.0 25 25.0 30 AC SP98 \n",
+ "\n",
+ " ac rain sun refill_liters refill_gas \n",
+ "0 0 0 0 45.0 E10 \n",
+ "1 0 0 0 NaN NaN \n",
+ "2 0 0 0 NaN NaN \n",
+ "3 0 0 0 NaN NaN \n",
+ "4 0 0 0 NaN NaN \n",
+ ".. .. ... ... ... ... \n",
+ "383 0 0 0 NaN NaN \n",
+ "384 1 0 0 NaN NaN \n",
+ "385 0 0 0 NaN NaN \n",
+ "386 1 0 0 NaN NaN \n",
+ "387 1 0 0 NaN NaN \n",
+ "\n",
+ "[388 rows x 12 columns]"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "medidas2.columns = medidas2.columns.str.replace(' ','_')\n",
+ "medidas2.columns = medidas2.columns.str.lower()\n",
+ "medidas2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "91da18b4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = medidas2.copy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "b1dce3d6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 388 entries, 0 to 387\n",
+ "Data columns (total 12 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 distance 388 non-null float64\n",
+ " 1 consume 388 non-null float64\n",
+ " 2 speed 388 non-null int64 \n",
+ " 3 temp_inside 376 non-null float64\n",
+ " 4 temp_outside 388 non-null int64 \n",
+ " 5 specials 93 non-null object \n",
+ " 6 gas_type 388 non-null object \n",
+ " 7 ac 388 non-null int64 \n",
+ " 8 rain 388 non-null int64 \n",
+ " 9 sun 388 non-null int64 \n",
+ " 10 refill_liters 13 non-null float64\n",
+ " 11 refill_gas 13 non-null object \n",
+ "dtypes: float64(4), int64(5), object(3)\n",
+ "memory usage: 36.5+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "7e7e6b72",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " count | \n",
+ " mean | \n",
+ " std | \n",
+ " min | \n",
+ " 25% | \n",
+ " 50% | \n",
+ " 75% | \n",
+ " max | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | distance | \n",
+ " 388.0 | \n",
+ " 19.652835 | \n",
+ " 22.667837 | \n",
+ " 1.3 | \n",
+ " 11.80 | \n",
+ " 14.6 | \n",
+ " 19.0 | \n",
+ " 216.1 | \n",
+ "
\n",
+ " \n",
+ " | consume | \n",
+ " 388.0 | \n",
+ " 4.912371 | \n",
+ " 1.033172 | \n",
+ " 3.3 | \n",
+ " 4.30 | \n",
+ " 4.7 | \n",
+ " 5.3 | \n",
+ " 12.2 | \n",
+ "
\n",
+ " \n",
+ " | speed | \n",
+ " 388.0 | \n",
+ " 41.927835 | \n",
+ " 13.598524 | \n",
+ " 14.0 | \n",
+ " 32.75 | \n",
+ " 40.5 | \n",
+ " 50.0 | \n",
+ " 90.0 | \n",
+ "
\n",
+ " \n",
+ " | temp_inside | \n",
+ " 376.0 | \n",
+ " 21.929521 | \n",
+ " 1.010455 | \n",
+ " 19.0 | \n",
+ " 21.50 | \n",
+ " 22.0 | \n",
+ " 22.5 | \n",
+ " 25.5 | \n",
+ "
\n",
+ " \n",
+ " | temp_outside | \n",
+ " 388.0 | \n",
+ " 11.358247 | \n",
+ " 6.991542 | \n",
+ " -5.0 | \n",
+ " 7.00 | \n",
+ " 10.0 | \n",
+ " 16.0 | \n",
+ " 31.0 | \n",
+ "
\n",
+ " \n",
+ " | ac | \n",
+ " 388.0 | \n",
+ " 0.077320 | \n",
+ " 0.267443 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | rain | \n",
+ " 388.0 | \n",
+ " 0.123711 | \n",
+ " 0.329677 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | sun | \n",
+ " 388.0 | \n",
+ " 0.082474 | \n",
+ " 0.275441 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | refill_liters | \n",
+ " 13.0 | \n",
+ " 37.115385 | \n",
+ " 8.587282 | \n",
+ " 10.0 | \n",
+ " 37.60 | \n",
+ " 38.0 | \n",
+ " 39.0 | \n",
+ " 45.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " count mean std min 25% 50% 75% max\n",
+ "distance 388.0 19.652835 22.667837 1.3 11.80 14.6 19.0 216.1\n",
+ "consume 388.0 4.912371 1.033172 3.3 4.30 4.7 5.3 12.2\n",
+ "speed 388.0 41.927835 13.598524 14.0 32.75 40.5 50.0 90.0\n",
+ "temp_inside 376.0 21.929521 1.010455 19.0 21.50 22.0 22.5 25.5\n",
+ "temp_outside 388.0 11.358247 6.991542 -5.0 7.00 10.0 16.0 31.0\n",
+ "ac 388.0 0.077320 0.267443 0.0 0.00 0.0 0.0 1.0\n",
+ "rain 388.0 0.123711 0.329677 0.0 0.00 0.0 0.0 1.0\n",
+ "sun 388.0 0.082474 0.275441 0.0 0.00 0.0 0.0 1.0\n",
+ "refill_liters 13.0 37.115385 8.587282 10.0 37.60 38.0 39.0 45.0"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe().T"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "30a7f01a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([nan, 'AC rain', 'AC', 'rain', 'snow', 'AC snow',\n",
+ " 'half rain half sun', 'sun', 'AC sun', 'sun ac', 'ac', 'AC Sun',\n",
+ " 'ac rain'], dtype=object)"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.specials.unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "8c522072",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "rain 32\n",
+ "sun 27\n",
+ "AC rain 9\n",
+ "ac 8\n",
+ "AC 6\n",
+ "snow 3\n",
+ "sun ac 3\n",
+ "AC snow 1\n",
+ "half rain half sun 1\n",
+ "AC sun 1\n",
+ "AC Sun 1\n",
+ "ac rain 1\n",
+ "Name: specials, dtype: int64"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.specials.value_counts() #30 valores que contiene AC"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "aa3054c2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 358\n",
+ "1 30\n",
+ "Name: ac, dtype: int64"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.ac.value_counts() #30 valores que contiene AC"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "40011cf0",
+ "metadata": {},
+ "source": [
+ "##### Columna specials,los dummies estan bien hechos salvo la columna snow que no está contemplada, así que haremos una nueva columna"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "1887571c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.specials.fillna('unknown', inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "93d9cb20",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df['snow'] = df['specials'].str.contains('snow', regex=True).astype(int) #Hechos los dummies tambien para snow"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "09109453",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " ac | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill_liters | \n",
+ " refill_gas | \n",
+ " snow | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 118 | \n",
+ " 12.4 | \n",
+ " 4.6 | \n",
+ " 38 | \n",
+ " 23.0 | \n",
+ " 1 | \n",
+ " snow | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 124 | \n",
+ " 11.8 | \n",
+ " 4.6 | \n",
+ " 38 | \n",
+ " 23.0 | \n",
+ " 0 | \n",
+ " snow | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 125 | \n",
+ " 12.2 | \n",
+ " 6.3 | \n",
+ " 57 | \n",
+ " 23.0 | \n",
+ " 0 | \n",
+ " snow | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 181 | \n",
+ " 12.3 | \n",
+ " 7.1 | \n",
+ " 52 | \n",
+ " 22.5 | \n",
+ " 0 | \n",
+ " AC snow | \n",
+ " E10 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type \\\n",
+ "118 12.4 4.6 38 23.0 1 snow SP98 \n",
+ "124 11.8 4.6 38 23.0 0 snow SP98 \n",
+ "125 12.2 6.3 57 23.0 0 snow SP98 \n",
+ "181 12.3 7.1 52 22.5 0 AC snow E10 \n",
+ "\n",
+ " ac rain sun refill_liters refill_gas snow \n",
+ "118 0 1 0 NaN NaN 1 \n",
+ "124 0 1 0 NaN NaN 1 \n",
+ "125 0 1 0 NaN NaN 1 \n",
+ "181 1 1 0 NaN NaN 1 "
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[df['snow']== 1]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 131,
+ "id": "e731d976",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " ac | \n",
+ " rain | \n",
+ " sun | \n",
+ " snow | \n",
+ " refill_liters | \n",
+ " refill_gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28.0 | \n",
+ " 5.0 | \n",
+ " 26 | \n",
+ " 21.5 | \n",
+ " 12 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45.0 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12.0 | \n",
+ " 4.2 | \n",
+ " 30 | \n",
+ " 21.5 | \n",
+ " 13 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11.2 | \n",
+ " 5.5 | \n",
+ " 38 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12.9 | \n",
+ " 3.9 | \n",
+ " 36 | \n",
+ " 21.5 | \n",
+ " 14 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18.5 | \n",
+ " 4.5 | \n",
+ " 46 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type ac \\\n",
+ "0 28.0 5.0 26 21.5 12 unknown E10 0 \n",
+ "1 12.0 4.2 30 21.5 13 unknown E10 0 \n",
+ "2 11.2 5.5 38 21.5 15 unknown E10 0 \n",
+ "3 12.9 3.9 36 21.5 14 unknown E10 0 \n",
+ "4 18.5 4.5 46 21.5 15 unknown E10 0 \n",
+ "\n",
+ " rain sun snow refill_liters refill_gas \n",
+ "0 0 0 0 45.0 E10 \n",
+ "1 0 0 0 NaN NaN \n",
+ "2 0 0 0 NaN NaN \n",
+ "3 0 0 0 NaN NaN \n",
+ "4 0 0 0 NaN NaN "
+ ]
+ },
+ "execution_count": 131,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "columnas = ['distance', 'consume', 'speed', 'temp_inside', 'temp_outside',\n",
+ " 'specials', 'gas_type', 'ac', 'rain', 'sun','snow', 'refill_liters',\n",
+ " 'refill_gas']\n",
+ "df = df.reindex(columns=columnas)\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cff0fb4d",
+ "metadata": {},
+ "source": [
+ "##### Conpletado el dummies de SNOW dropeo specials"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 227,
+ "id": "1183b59a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 0.966495\n",
+ "45.0 0.005155\n",
+ "37.7 0.005155\n",
+ "39.0 0.005155\n",
+ "37.6 0.002577\n",
+ "38.0 0.002577\n",
+ "38.3 0.002577\n",
+ "10.0 0.002577\n",
+ "41.0 0.002577\n",
+ "37.0 0.002577\n",
+ "37.2 0.002577\n",
+ "Name: refill_liters, dtype: float64"
+ ]
+ },
+ "execution_count": 227,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.refill_liters.fillna('0', inplace=True)\n",
+ "df.refill_liters.value_counts('0')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 228,
+ "id": "44594ce3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.to_excel('consumos.xlsx', index = False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "11995b17",
+ "metadata": {},
+ "source": [
+ "##### Vamos a ver la matriz de correlaciones"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 168,
+ "id": "5c82a2b0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 168,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAAJCCAYAAABZBtbmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB5fUlEQVR4nO3dd3gc1dXH8e/ZVZdtyZLcO+692xTTSyBAqKElQGgm1FBCIBAIJYSe0EIxvEDoEHpvBmOKDW64d+NeVW11afe+f+xalmTZlrBWI2l/n+fZR7szd2bP1Ww5e++dO+acQ0RERESil8/rAERERETEW0oIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESiXIzXATQjmr9HRESkcTKvA2js1EIoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5WK8DqAmZnYrkA+0AiY7577YRbkTgSXOuQUNF52IiIhI89KoWwidc7fsKhkMOxEY0EDhiIiIiDRLjSYhNLObzGyxmX0B9A0ve87MTg3fv9vMFpjZHDO738z2B34D3GdmP5lZTzO7yMymmdlsM3vTzJIq7edhM/vezFZs32d43V/MbG54m7vDy3qa2SdmNsPMvjGzfg3+DxERERFpII2iy9jMRgJnAMMJxTQTmFFpfRpwEtDPOefMLNU5l2tm7wEfOOfeCJfLdc49Fb7/D+AC4JHwbjoA44B+wHvAG2Z2DKFWxrHOucLw8wBMAP7onFtqZmOBx4DDIvcfEBEREfFOo0gIgQOBt51zhQDhRK+yrUAx8LSZfQh8sIv9DAongqlAC+DTSuvecc4FgQVm1i687Ajg2e3P65zLNrMWwP7A/8xs+7bxe1M5ERERkcas0XQZA26XK5wrB8YAbxJq0ftkF0WfAy53zg0GbgMSKq0rqXTfKv2t/rw+INc5N6zSrX9NT2Zm481suplNnzBhwq7CFxEREWnUGktCOBk4ycwSzawlcHzlleFWuxTn3EfAVcCw8KptQMtKRVsCG8wsFvhdLZ73M+D8SmMN05xzW4Gfzey34WVmZkNr2tg5N8E5N8o5N2r8+PG1rKqIiIhI49IoEkLn3EzgNeAnQq2A31Qr0hL4wMzmAF8DV4eXvwpcZ2azzKwncDPwA/A5sKgWz/sJofGE083sJ+DP4VW/Ay4ws9nAfOCEX1w5ERERkUbOnNtlT63Ujf6RIiIijZPtuUh0axQthCIiIiLiHSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuVivA6gObnwzkyvQ6h3T9+U4XUIIiIiEmFqIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlyMV4HIFUN3CeWM49KxmfGNz8V8/GUoirr26f7Oe+4FnRtH8Pbkwr57IfQ+hg/XH9OCjF+w+eDGYtKeW9yoRdVEBERkSZGCWEjYga/O7oF/3o5j5ytQf52fio/LS1lQ2agokxBUZBXPitgeN+4KtuWB+D+F/MoKQO/L5QczlsWw4r15Q1dDREREWliPO0yNrNzzGyOmc02sxfMrJuZTQwvm2hmXcPlnjOzh83sezNbYWanhpd3MLPJZvaTmc0zswPDy/MrPcepZvZcpf08bmZfhfdzsJk9Y2YLt5cJlzvKzKaY2Uwz+5+ZtWiI/0ePjjFszg6QmRskEIQfF5QwrE/VxG9boWPlhnICgZ23LykL/fX7wO83XAPELCIiIk2fZwmhmQ0EbgIOc84NBf4EPAo875wbArwEPFxpkw7AOOA44O7wsrOAT51zw4ChwE+1eOrWwGHA1cD7wL+BgcBgMxtmZhnA34AjnHMjgOnANb+8prXXuqWPnG3Bisc5W4O0bln7Q2QGt1yYyr+uTmfBilJ+VuugiIiI1IKXXcaHAW845zIBnHPZZrYfcHJ4/QvAvZXKv+OcCwILzKxdeNk04Bkziw2v/6kWz/u+c86Z2Vxgk3NuLoCZzQe6A52BAcB3ZgYQB0ypaUdmNh4YD/Dkk09WCr3+uDo08zkHtz+dS2K8cdmpLenYxs/6LTU0JYqIiIhU4mVCaLDHXs3K60uqbYtzbrKZHQQcC7xgZvc5556vtl1CtX1u30+w2j6DhP4fAeBz59yZe6qAc24CMGH7wx/vzNzTJruVs61qi2DrVj5y84O72aJmRSWOxavLGLRPHOu3FO15AxEREYlqXo4hnAicZmbpAGaWBnwPnBFe/zvg293twMy6AZudc08B/weMCK/aZGb9zcwHnFTHuKYCB5hZr/BzJJlZnzru4xdZub6cdml+MlJ8+H0wZkA8s5eU1mrbFklGYrwBEBsD/bvHsTFLXcYiIiKyZ561EDrn5pvZncDXZhYAZgFXEuoCvg7YApy3h90cAlxnZmVAPnBOePkNwAfAGmAeUOuTQpxzW8zsD8ArZhYfXvw3YElt9/FLBR28/Gk+V52Zgs8H380uZn1mgINHhBo5v55ZTKtk42/np5IYbzgHR4xJ4JYnc0lt4eP841vis9BYwmkLS5izrCzSIYuIiEgzYK4ug9Rkd9yFe9ll3Bg9fVOG1yGIiIjsLfM6gMZOVyoRERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKGfOOa9jaC70jxQREWmczOsAGrsYrwNoTjLnTfE6hHqXMWg//vlawOswIuLG0/1ehyAiItIoqMtYREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBERESkiTCzZ8xss5nN28V6M7OHzWyZmc0xsxG12a8SQhEREZGm4zng6N2sPwboHb6NBx6vzU6VEIqIiIg0Ec65yUD2boqcADzvQqYCqWbWYU/71bWMRURERCLkw9i+ri7ljytfcjGhlr3tJjjnJtRhF52ANZUerw0v27C7jZQQioiIiESIxVqdyrsyNwGoSwK401PWtNs9baSEUERERCRCfDF1SwjrwVqgS6XHnYH1e9pIYwhFREREIsRifXW61YP3gHPCZxvvC+Q553bbXQxqIRQRERGJmPpuITSzV4BDgAwzWwv8HYgFcM49AXwE/BpYBhQC59Vmv0oIRURERCKkrmMI98Q5d+Ye1jvgsrruVwmhiIiISIR4MIbwF1FCKCIiIhIh9d1CGClKCEVEREQiRC2EzYSZTQL+7Jyb3hDPN3XWHB585mWCwSDHH34QZ598XJX1M+ct5IZ7HqZD2wwADh47ivNPOwGAbQUF3P3Ys6xYvRYz48bLLmBQ314NEfYe7dMejhzuwwxmr3BMWVR1SqSB3Yz9+oXeNKXl8MmMIJtzwe+Dsw/z4feDz2DRGsc38+s0x6eIiIhnzK+EUOooEAjywFMv8OAt19E2PY0Lr7+NcaOH06NLpyrlhvbvw303Xr3T9g8+8zJjhw/mzusup6ysnOLSkoYKfbfM4FcjfbwyKcjWIjjvSB9L1zsyt+4ok5vvePFLR3FZKHk8ZpSP/34RJBCElyYFKSsPJYRnH+5j+UbH+izv6iMiIlJbviaSEDbJeQjNLNnMPjSz2WY2z8xON7OVZnaPmf0YvvUKl21jZm+a2bTw7YBK+3gmvGyWmZ0QXp5oZq+a2Rwzew1IbKh6LVy2gs7t29GpfVtiY2M4fNxYvpk2q1bbFhQWMXvBYo4//CAAYmNjaJmcHMlwa61jGuRsg9wCCAZhwWpH705V3yDrsqC4LHR/fRa0qvRfLysP/fX5Qi2Ge55vXUREpHEwn9Xp5pWm2kJ4NLDeOXcsgJmlAPcAW51zY8zsHOBB4DjgIeDfzrlvzawr8CnQH7gJ+NI5d76ZpQI/mtkXwMVAoXNuiJkNAWY2VKW2ZOfQNiOt4nHbtNbMX7pip3LzFi/j3GtuJiMtlcvOOYN9unZi3abNpLZqyZ2PPs2yVWvou093rjr/dyQmxDdU+LvUMhG2Fu3I4rYVQsf0XZcfuo+xfOOO8mZw/pE+WreAGcsc63d3SW8REZFGxPxNo+2taUS5s7nAEeEWwQOdc3nh5a9U+rtf+P4RwKNm9hOh2btbmVlL4CjghvDySUAC0BU4CHgRwDk3B5gT8dqEhaYOqsqq/Vjou0933nziAf77rzs45Zgj+Os9DwOh7uYlK1Zx0q8O47n7bycxPp4X3v6gIcKuV93ahhLCr2bv+F84B//3WZBH3g/SMc1ok+JhgCIiInXgj/XV6eaVJpkQOueWACMJJYZ3mdkt21dVLhb+6wP2c84NC986Oee2Ebr48ymVlnd1zi2sYT+7ZGbjzWy6mU2fMGFvrkMd0jY9jc2ZO5q/NmfnkJHWukqZ5KREkhITANh/5FDKA+Xkbt1G2/TWtElvzcA+PQE4ZL9RLFmxaq9jqg/biqBV4o7MtmVSaFl1bVLg16N9vPFNkKLSndeXlMGqLY592jeN8RgiIiI+v9Xp5lmcnj3zXjCzjoS6dV8E7gdGhFedXunvlPD9z4DLK207LHz3U+AKs1AbnJkNDy+fDPwuvGwQMGRXcTjnJjjnRjnnRo0fP35vq0W/Xj1Yu2ET6zdtoaysnInf/sC4UcOrlMnKya1oSVywdAXOOVJatiC9dSptM9JZtS50ucIZcxfQvXPHvY6pPqzPhtYtISU5NA5wQFdj6bqqOXerJDjlAB/vTQ2Snb9jeVI8xMeG7sf4oUc7I2urBhGKiEjTYH6r080rTXUM4WDgPjMLAmXAJcAbQLyZ/UAo0d1+aZcrgf+Y2RxC9Z0M/BG4g9A4wznhpHAloTGHjwPPhsv/BPzYMFWCGL+fqy/8PdfccT+BYJDjDjuQfbp24u1PvwTgpF8dxldTpvP2p18S4/cTFxfLbVdfQjin5eoLfsdtDz1JeVk5Hdu14cbLL2yo0HfLOfhsZpAzDvbhC087k7kVhvcMxT1ruWPcQCMxHo4eGfqNEnTw7OdBkhPg+LGh7cxg4WrHsj1eoltERKRxMF/TaHuzmsatNUVmthIY5ZzL9CgElzlvyp5LNTEZg/bjn68FvA4jIm483e91CCIi0jA8a3qbefi4OiVaIyZ+60msTbWFUERERKTRayrzEDabhNA5193rGEREREQq83JuwbpoNgmhiIiISGPTVMYQKiEUERERiRC1EIqIiIhEOY0hFBEREYlyaiEUERERiXIaQygiIiIS5dRCKCIiIhLllBCKiIiIRDklhCIiIiJRTmMIRURERKKcpp0RERERiXLqMhYRERGJcuoyFhEREYlyaiEUERERiXJKCEVERESinLqMRURERKKcL8bvdQi1ooRQREREJFJMXcYiIiIiUU1jCEVERESinMYQioiIiEQ5tRCKiIiIRDm1EEahjEH7eR1CRNx4etM4Q0pERKSxUQthFDr5ymVeh1Dv3nq4F396aJvXYUTEQ39qyfEXL/Q6jHr3/pP9vQ5BRETClBCKiIiIRDt1GYuIiIhEN2si8xA2jbRVREREpAkyn69Ot1rt0+xoM1tsZsvM7IYa1qeY2ftmNtvM5pvZeXvap1oIRURERCKkvscQmpkf+A9wJLAWmGZm7znnFlQqdhmwwDl3vJm1ARab2UvOudJd7VcJoYiIiEik1P8YwjHAMufcCgAzexU4AaicEDqgpYX6q1sA2UD57naqhFBEREQkQiJwlnEnYE2lx2uBsdXKPAq8B6wHWgKnO+eCu9upxhCKiIiIRIiZr443G29m0yvdxlffZQ1P46o9/hXwE9ARGAY8amatdhenWghFREREIqWOLYTOuQnAhN0UWQt0qfS4M6GWwMrOA+52zjlgmZn9DPQDftxlmHWKUkRERERqLQJnGU8DeptZDzOLA84g1D1c2WrgcAAzawf0BVbsbqdqIRQRERGJkPoeQ+icKzezy4FPAT/wjHNuvpn9Mbz+CeAO4Dkzm0uoi/l651zm7varhFBEREQkUqz+O2Odcx8BH1Vb9kSl++uBo+qyTyWEIiIiIhGiaxmLiIiIRDtdy1hEREQkupnf73UItaKEUERERCRC1GUsIiIiEu0icFJJJCghFBEREYkUtRCKiIiIRDdTC6GIiIhIlFMLoYiIiEh0q+Xl6DynhNBjw/sncf7JGfh88MWUrbz9Re5OZS44JYMRA5IoKXU8+tJmVqwtoWPbWK79Q/uKMu0yYnn1oyw+mJTH6cekccR+rdiaHwDgpQ+ymLmgsKGqVKN+3fycfHACPoOp88v4YnpplfVtW/s468gEurTx8cGUEr6aWVaxLjEOzjgigQ7pPhzwyufFrNwYbOAa1GzEwGQuOq0dPp/x+be5vPFp1k5lxp/ejpGDWlBSGuSh5zawfE0xAMmJPq44uwPdOsXjHDz0/AYWryhq6CqIiEgkWTNvITSzVOAs59xj9RdOrZ63I/Cwc+7UX7Dt7cBk59wX1ZYfAvzZOXdcvQRZSz6Di37bhtv+s46s3HLu/XMXps0rYO3GHcnQiAFJdGgTy2V3rKZP93jGn9aGG/61lvWby7j23jUV+3nqju78MLugYrsPJuXy7pe5DVmdXTKD3x6SwGNvF5Kb77j2jCTmrihnU/aOpK6w2PHW18UM3mfnl+TJByewcFWAZz8qxu+DuEbyM8Zn8Mcz23Pzg6vJyinjX3/twQ9ztrFmw45kd+SgZDq2jePim5fTt0cCl/yuPX++eyUAF53ejpnzC7h7wjpi/BAf1zR+RYqISB00kRbCvYkyFbi0nuKoNefc+l+SDIa3vaV6MuilXt0S2LCljE1Z5ZQH4NuZ+YwZ3KJKmTGDk5n04zYAlqwsITnRR+tWVSe5HNw3kU2ZZWzJKW+w2OuiWzsfW/KCZG11BIIwc0n5TolffpFj9aYggWoNf/Fx0LOTn6nzQ0lyIAhFVRsXPdO7RyIbNpeyKbOM8gBMnr6VsUNbVimz79CWfDk1D4DFPxeHj18MiQk+BvVO4rPvcgEoD0BBUeNo9RQRkXpkVrebR/YmIbwb6GlmP5nZfWZ2nZlNM7M5ZnYbgJl1N7NFZva0mc0zs5fM7Agz+87MlprZmHC5W83sBTP7Mrz8ol09aXif88L3/2Bmb5nZJ+Ht7g0v95vZc+HnnGtmV4eXP2dmp4bvHx2O7Vvg5Er7TzazZ8J1mWVmJ+zF/2i30lP9ZOXuaA3Myi0nLaVqspeWEkNmbnm1MlWTqXEjWvLNjPwqy445MIV/Xd+Fy85qS3Kit79OUlr4yN22I9nJzQ+S0qJ2L/qMVj7yixxnHZnAdWcmccbh8Y2mhTA9NYbMSkl4Vk4Z6akxO5fJrnqM01vH0D4jlrxtAa46twMP3tSDK87uQHxc0+hWEBGR2jOfr043r+zNM98ALHfODQM+B3oDY4BhwEgzOyhcrhfwEDAE6AecBYwD/gzcWGl/Q4Bjgf2AW8Jdw7UxDDgdGAycbmZdwss6OecGOecGA89W3sDMEoCngOOBA4H2lVbfBHzpnBsNHArcZ2bJtYxl77mqD2v6sVC5SIwfRg9K5vufdiSEn3ybx6W3r+Lae9eQk1fOH07KiEystVRjmuNqWrgznw86t/Xx3ZxS7nulkNIyOGJUXH2G94vVVK+dqlXDAXQO/H6jZ9cEPvo6h6vu/JnikiCnHu3tcRIRkQgwX91uHqmvZz4qfJsFzCSU+PUOr/vZOTfXORcE5gMTnXMOmAt0r7SPd51zRc65TOArQsllbUx0zuU554qBBUA3YAWwj5k9YmZHA1urbdMvHNfScCwvVqvLDWb2EzAJSAC61vTEZjbezKab2fQJEybUMtwdsnIDpKfGVjxOT40he2ugWplyMiq1OqWnxpCTt6NVaviAZFasLSFv247t8rYFCLpQ4vH5lK307hpf59jqU25+kNSWO15qqS185BXULiPMzXfk5jtWbQq1MP60rJzObRvHdSEzc8vJaF3p2LSOJTu3ard9Vk4ZGWnVjnFuOZk5ZWTmlLFkZegEk+9mbqVn14SGCVxERBqOz+p28yrMetqPAXc554aFb72cc/8XXldSqVyw0uMgVU9qqZ4h1LINqcr+A0CMcy4HGEooobsMeLqG7Xa1fwNOqVSXrs65hTUVdM5NcM6Ncs6NGj9+fC3D3WHZ6mI6tImlbVoMMX4YN6IF0+YWVCkzbW4Bh4wJjUvr0z2ewuIgOZWSxgNHtODbGduqbFN5jOHYIcms3uDtoLvVm4K0SfWR1srw+2BEnxjmrajdeMdthY7cbUHapobeJH26+NmY3TjG2i1dWUTHtnG0S48lxg8HjWrFj7OrHosfZudz2L4pAPTtkUBhUZCcreXkbg2QmVNOp3ah1s6h/ZJZs6Fkp+cQEZGmzcxXp5tX9mY01jZg+wj6T4E7zOwl51y+mXUCyna9aY1OMLO7gGTgEEJd0r+ImWUApc65N81sOfBctSKLgB5m1tM5txw4s9K6T4ErzOwK55wzs+HOuVm/NJbdCQbh6Te2cMulHfH5jIlTt7JmYylHHdAKgM++28qMBYWMGJjEY7d0o6Q0yKMvba7YPi7WGNoviSde21Jlv2efkE6P8FQmW7LLeeK1zXgp6ODNScVccmJSaNqZBWVszA5ywOBQy9l3c8tomWT8+YwkEuKMIHDIsDj++WIBJaXw5qQSzj46kRg/ZOYFefnzYk/rs10wCE+8upHb/tQFn8/44rtcVm8o5eiDUgH4ZHIu0+flM2pwMhP+0TM07cx/N1Rs/+SrG7n2go7E+I1NmWU8+N/1HtVEREQiprlPTO2cywqfHDIP+Bh4GZhioTFT+cDvCbXY1daPwIeEumfvcM7tzbdjJ+BZ25Fq/7Va7MVmNh740MwygW+BQeHVdwAPAnMsVJmVQMSmo5m5oJCZC1ZXWfbZd1V7uJ/6XyaQudO2pWWOc//6807LH37B2wSwJgtWBliwsmrr53dzd/xm2Fbo+PszBdU3A2BdZpAHXvV2HsVdmTGvgBnzVlRZ9snk3CqPn3hlE7Bpp21/XlvCNf9cGbngRETEe9Fw6Trn3FnVFj1UQ7HtiRbOuT9Uur+y8jpgiXNuj/2ulbdzzj1Hpda/avMIjqhh28rP/wmhsYTVyxQBF+8pDhEREZE9au4TU4uIiIjIHjSRiakbRULonLu1+jIzGwy8UG1xiXNubIMEJSIiIrK3oqHLOJKcc3MJzScoIiIi0jQ195NKRERERGQP1EIoIiIiEuV0UomIiIhIlPM3jqtr7YkSQhEREZFIUZexiIiISJTTtDMiIiIiUU5jCEVERESinLqMRURERKKcWghFREREopzGEIqIiIhEN6cWQhEREZEopzGEIiIiIlFOCaGIiIhIdFOXsYiIiEi0UwuhiIiISJRTC6GIiIhIlNO0MyIiIiLRTWMIRURERKJdExlD2DSiFBEREWmCnPnqdKsNMzvazBab2TIzu2EXZQ4xs5/MbL6Zfb3HfTrn6lg12QX9I0VERBonz/pt8394v075QYuxx+82VjPzA0uAI4G1wDTgTOfcgkplUoHvgaOdc6vNrK1zbvPu9qsu43p02rUrvQ6h3r3+QHde+a555rpnHmAcfPL3XodR775+a38+mFnudRj17rgR+rgSkaantq1+dTAGWOacWwFgZq8CJwALKpU5C3jLObcaYE/JIKjLWERERCRyzOp227NOwJpKj9eGl1XWB2htZpPMbIaZnbOnneont4iIiEik1LGF0MzGA+MrLZrgnJtQuUgNm1XvyosBRgKHA4nAFDOb6pxbsqvnVUIoIiIiEiHO569b+VDyN2E3RdYCXSo97gysr6FMpnOuACgws8nAUEJjD2ukLmMRERGRCHFYnW61MA3obWY9zCwOOAN4r1qZd4EDzSzGzJKAscDC3e1ULYQiIiIiEVLfJ5U458rN7HLgU8APPOOcm29mfwyvf8I5t9DMPgHmAEHgaefcvN3tVwmhiIiISKREYGJq59xHwEfVlj1R7fF9wH213acSQhEREZEI0aXrRERERKJcBOYhjAglhCIiIiKRohZCERERkeimFkIRERGRKFfLqWQ8p4RQREREJELUQigiIiIS7TSGUERERCS6uSZyUTglhCIiIiIRonkIRURERKKcxhCKiIiIRDmdZSwiIiIS5dRCKCIiIhLlNIZQREREJMqpy1hEREQkyjWLLmMzSwXOcs491jDh/HJmdhUwwTlXuJsytwOTnXNfVFt+CPBn59xxkYyxJkP7JnLeiWn4fDDxh3ze/TJvpzLnnZjG8P6JlJQ6Hns1k5/XlQJw7EGtOGxsC5yDNRtLeezVLMrKHd06xnHRqenExRiBoOPpN7NYvqa0oatWxdK53/DJy3cSdEFGHHgqBx47vsr6RbMm8uXbD2Hmw+fzc/SZN9Ktz0jysjfw9tPXk5+XiZmPkQefxr5HnuNRLULGDE/livN74PPBh19s5uW31+1U5soLejB2RColJUHuenQZS1cUAHD9ZT3Zb1QaOXllnHfVTxXl/3B6F447oi25W8sBeOqlVfwwM7chqrNLi376hneev5tgMMDYQ0/h8BMuqrJ+3vQv+eT1RzCf4fPFcMI517NPv5EAFBVs5fUJt7Bh7TIM4/SL76B7n2Ee1EJExFvNpYUwFbgUaPQJIXAV8CKwy4TQOXdLg0VTC2Zwwclp/OPJTWTllXPXVR2ZPr+QdZvKKsoM75dI+4wYrrxrHb27xnPhKenc9PAGWrfyc8y4llx973rKyh1Xn92G/Ycn8/W0fH5/XGve+CyXnxYVMbxfIr8/Lo3bHt/oWT2DwQAfvXg7Z1/7DK3S2vHU7b+l77DDaNupV0WZHv335ZJhh2FmbFyzmP89fhVX/PNjfD4/R51+PR27DaSkKJ8nbz+FfQbsX2XbhuTzwVUX7cO1t81nS1YpT947hO+mZbNqbVFFmbEjUuncIYHfXTaLAX1acM34fbjkhrkAfPzVFt76eCM3Xtl7p33/74MNvPbu+gary+4EgwHeevZOLr7xKVLS2/HgTaczcOShtO+84//ee9BYBo48FDNj/arFPP/wtdzwwAcAvPPfu+g7dBznXv0g5eWllJUUe1UVERFPNZUWwj1FeTfQ08x+MrP7zOw6M5tmZnPM7DYAM+tuZovM7Gkzm2dmL5nZEWb2nZktNbMx4XK3mtkLZvZlePlFu3pSC7kvvL+5ZnZ6ePkhZvZBpXKPmtkfzOxKoCPwlZl9ZWZ+M3uu0vZXh8s/Z2anhu8fHY77W+DkSvtMNrNnwvWcZWYn/KL/bC306hrPxqxyNmeXEwjA97MKGD0wqUqZUYOSmDwj1Lq0dHUJyYk+Ulv6AfD5jbhYw+eDuDgjJy/UuuSAxITQL5KkRB854VYnr6xbMYe0tl1Ja9uFmJg4Bo39NYt/mlilTHxCMhYeeFtWUlhxv2VqWzp2Gxgqk9iCNh16si13U8NWoJL+vVqwbkMRGzaVUF7u+PLbTMaNSatSZtyYND6dtAWABUvyaZEcQ1rrWADmLNjKtm3eHo/aWL1sLuntu5DeLnTMhu/3a+ZP/6pKmcrHrLSkCAv/Ci4uzGfFohmMPfQUAGJi4khMbtWwFRARaSQcVqebV/bUQngDMMg5N8zMjgJOBcYABrxnZgcBq4FewG+B8cA04CxgHPAb4EbgxPD+hgD7AsnALDP70DlXU5PIycAwYCiQAUwzs8m7CtI597CZXQMc6pzLNLORQCfn3CCo6PquYGYJwFPAYcAy4LVKq28CvnTOnR/e7kcz+8I5V7CH/1WdpaX4ycrdkRxk5ZXTu2v8TmUyq5VJS/GzYm0p70/K4/GbO1Na5pi9pIg5S0KtMP99J5ubxrfj7OPT8Bn87ZEN9R16nWzN3USrtA4Vj1u1bs/aFbN3Krdwxud88ea/KNiWze/+9MRO63My17Jh9UI67TM0ovHuTkZ6PJuzdnS/b8kqpX/vFlXLpMWxObOkUpkS2qTFkZ1Txu6cdEx7fnVwGxYvz+c/z60kvyBQv8HXQV7OJlLTdxyzlPR2rF42Z6dyc6d9wYevPkh+XhYX/uVxALI2ryG5VWtefeIm1q9aTOd9BnLiOTcQn5C00/YiIs1d0Pxeh1ArdWnHPCp8mwXMBPoB2/u9fnbOzXXOBYH5wETnnAPmAt0r7eNd51yRcy4T+IpQclmTccArzrmAc24T8DUwug6xrgD2MbNHzOxoYGu19f3CMS8Nx/litXreYGY/AZOABKBrTU9iZuPNbLqZTZ8wYUIdwgtvX8MyV8syyYk+Rg9M4rI713LxbWtIiPNx4IjkUAX2b8l/383m0jvW8t93s/njaRl1jq1eVa8UVLQsVdZ/5JFc8c+POePyR/ny7YerrCspLuD1/1zJ0Wf+lYTEFjtt21Bq89utprq5Gv4Hlb37yUbOunQmF1w7m6ycMi77Q/dfFF+9qTHenes1ePQR3PDAB5x37SN88r9HAAgGAqz7eSH7H3kG1979JvHxiXz53tORjVdEpJFyZnW6eaUuCaEBdznnhoVvvZxz/xdeV1KpXLDS4yBVWyGrf83s6mtyV/+R8moxJ9RUyDmXQ6h1cRJwGVDTt9HunvuUSvXs6pxbuIvnmeCcG+WcGzV+/PiaiuxWVl6A9NQd/570lBhy8gI7lcmooczg3glszi5nW0GQQBB+mFNAn+6h1sWDR7Xgh7mhoZRTZhfSq1qrY0Nr1bodW7N3tFJuzdlIy9S2uyzfve9ocraspmBbDgCB8jJe/8+VDN73eAaMPCri8e7OlqwS2qbHVTxukx5HZnbpzmUy4iuViSczZ/cn9eTklREMhhLHDz7fRL/eLes38DpKSWtHbtaOY5aXtYmU1rs+Zj37jyJr0xryt+aQkt6OlLR2dOs1BIAhY49i3c81voVERJo956xON6/sKSHcBmz/ZvoUON/MWgCYWScz2/U3RM1OMLMEM0sHDiHUvVyTycDp4bGAbYCDgB+BVcAAM4s3sxTg8JpiNbMMwOecexO4GRhRbf+LgB5m1jP8+MxK6z4FrrBwM4+ZDa9jHWtt+ZoSOmTE0CYtBr8f9h+ezPT5Vc+JmT6/kINGhlr+eneNp7A4SO62AJm55fTuFk9cbOjFM7h3Ius2h7oks7eWM6BnKFce1DuBjVt231UZaR17DCZr0ypytqylvLyUeT98RN9hh1Upk7VpFS7cjLZ+1XwC5WUktUjFOce7z/6NjA492f9X53kRfhWLluXTuUMi7dvGExNjHDYug++mZVcp8920HH51SBsABvRpQUFh+R67i7ePMQQ4cGwaP6/e5blRDaJLz0FkblxN1ubQMZs15SMGjjy0SpnMjTuO2dqfF1BeXkZyy1RapbYhNb09m9f/DMDSeVNp17nnTs8hIhINHL463byy2zGEzrms8Mkh84CPgZeBKeFcKR/4PVCXgU4/Ah8S6oK9YxfjBwHeBvYDZhNqyfuLc24jgJm9DswBlhLqvt5uAvCxmW0gdMbxs2YVp/b8tVq9is1sPPChmWUC3wKDwqvvAB4E5oSTwpVARKajCQbhmbdC4/18Bl/9mM/aTWUcuV8oB/98yjZmLSxiRP9EHv5rJ0rLQtPOACxbXcrUOYXcc01HAgHHynWlfDFlGwBP/i+L805Iw+c3ysocT76RFYnwa83vj+HXv7+ZF/51AS4YZPi4U2jbqTfTvnoVgNGHnsHCGZ8x+/t38fljiI2L59Q//hszY9WSGcyZ8i5tO/fh8b+fCMDhp1xNnyEHe1KXQBAefHoF998yAJ/P+GjiJlauKeI3R7UD4L3PNjF1Rg77jkjl5cdGUFIS4O5Hl1Vsf8vVvRk2KIWUljH876mRPPvqGj6auJlLzu5Grx7JOAcbt5Rw/xPLPanfdn5/DCf/4SYm3DUeFwwy5pCTaN+lF99/Hhpuu/+RpzPnx8+ZPvk9/DExxMYlcPaV91d0l5/0hxt56dHrCZSXkdauM2dc/A8vqyMi4pmmMu2MuT0NbqqvJzK7Fch3zt3fIE/Y8Nxp1670OoZ69/oD3Xnlu4Z5jTS0Mw8wDj75e6/DqHdfv7U/H8xs/Gcy19VxIzSPvoj8Yp5lZYuXr6nTl2jfnl08iVWfsCIiIiIR0lRaCBssIXTO3Vp9mZkNBl6otrjEOTe2QYISERERiSAlhLXgnJtLaL5BERERkWbHyzOH60JdxiIiIiIRohZCERERkSinhFBEREQkyikhFBEREYlyGkMoIiIiEuWCaiEUERERiW7qMhYRERGJcuoyFhEREYlyaiEUERERiXJqIRQRERGJcmohFBEREYlyaiEUERERiXJBrwOoJSWEIiIiIhESdD6vQ6iVphGliIiISBPknNXpVhtmdrSZLTazZWZ2w27KjTazgJmduqd9KiEUERERiRCH1em2J2bmB/4DHAMMAM40swG7KHcP8Glt4lRCKCIiIhIhQVe3Wy2MAZY551Y450qBV4ETaih3BfAmsLk2O1VCKCIiIhIh9d1CCHQC1lR6vDa8rIKZdQJOAp6obZxKCEVEREQipK5jCM1svJlNr3QbX22XNWWN1dsWHwSud84FahunzjIWERERiRBXu27gSuXdBGDCboqsBbpUetwZWF+tzCjgVTMDyAB+bWblzrl3drVTJYQiIiIiERKs/yuVTAN6m1kPYB1wBnBW5QLOuR7b75vZc8AHu0sGAczVNXWVXdE/UkREpHHy7HIhX8wpqVN+cMSQ+D3Gama/JtQt7Aeecc7daWZ/BHDOPVGt7HOEEsI3drtPJYT1xh1+xo9ex1DvJr46hjP/strrMCLilXu7ctTZs7wOo9599sJwnv3K6yjq33mHwlWP5HsdRkQ8eEULr0MQae48Swg/n123hPDIoXtOCCNBXcYiIiIiEVLLM4c9p4RQREREJEJqObeg55QQioiIiERIbS9H5zUlhCIiIiIR0lRO1VBCKCIiIhIhEZh2JiKUEIqIiIhEiFoIRURERKKcxhCKiIiIRDmdZSwiIiIS5dRlLCIiIhLlNDG1iIiISJRTl7GIiIhIlFOXsYiIiEiUCwTVZSwiIiIS1dRCKCIiIhLllBCKiIiIRDmdVCIiIiIS5XSlEhEREZEopy5jERERkSinLmMRERGRKKcWQqmV0UNTuOzcrvh8xkdfbuHV9zbsVOayc7sydngqJSVB7n18BUtXFtImPY4bLt2H1qmxuKDjwy+38NbHmyq2OfFX7TjxV20JBBw/zMpjwstrGrJaAAztk8A5J7TGZ/DVjwW8N2nrTmXO/U1rhvVLoLTM8fjrWaxcVwbA0Qe05LCxyRjw5Y8FfPztNgCu/F06HdrEApCc4KOgOMhfH9zYYHUCGDW4JZec3Rmfz/hkUhavfbBppzKXnt2J0UNTKCkJcv+EVSxbVURsrPHATb2JjfXh98E303J54a1Q7Gef1J5jDkknb1s5AM/8bwPTZu/8//LKivmT+eL1OwkGgww94Lfsd/T4KuuX/PQF37z/EGY+fD4/h592I116jfIo2t3r19XPyQfFYwZTF5QxcUZZlfVtWxtnHZ5A57Y+PpxSylezQuvbphrnHp1QUS49xcfHU0v5enbV7UVEKlNCKHvkM7jy/G785c7FbMkq5bF/DmTKjBxWrSuuKDNmWAqdOyRwzlVz6N8rmT9d2J3L/7aAQMDxxAurWbqykMQEH0/cNYgZc/JYta6YYQNasv+oVC76yzzKyh2prRr+MJvBeSe15p9PbSYrL8CdV7RnxoJC1m0urygzrF8C7TNiuPreDfTqGscFJ6Vx86Ob6NwulsPGJvO3RzZRHnDccEFbZi0qYmNmOQ+/lFWx/e+PS6WwONig9fIZXH5uF264ZxmZ2WU8cntfpszMY/X6Hcds9NBWdGqXwHl/XkC/nklceV4Xrrx1CWVljr/ctYzikiB+P/z75j5Mm72VRcsLAXjr0y288dHmBq1PbQSDAT575XbO+NOztGzdjufuOpXeQw4jo2OvijLd++1H76GHY2ZsXruId566ivG3feJh1DUzg1MPiefxd4rIzXdcc3oi81aUsylnxyd2YTG8ObmEwftUfd9sznXc92pRxX5uOy+JOSvKERHZnabSZezzOoDGwMzeMbMZZjbfzMaHlx1tZjPNbLaZTYzE8/br1YJ1G0vYsLmE8oDjq++z2H9U6yplDhjVms8mZwKwcFkBLZL8pKXGkp1bxtKVoUSiqDjIqnVFZKTFAXD8kW159d0NlJWHXoW5Wxv+S6tXlzg2ZpazOTtAIABTZhcyamBSlTIjByTyzcwCAJatLiUp0UdqSx+d2sawdHUppWWOYBAWrihm9MDEnZ5j3yFJfP9TYYPUZ7u+PZNYv6mEjVtKKQ84vp6aw/4jU6qU2X9ECp9/mw3AouWFJCf5SUsJJRfFJaEENsZv+P1N48yzDSvn0LptN1LbdMEfE8eA0ceydE7Vt0RcQjJmofqUlRZV3G9surXzkZkbJGurIxCEWUvKd0r88oscazYHCe7mt0afzn4y8xw525rIJ72IeMa5ut28ohbCkPOdc9lmlghMM7N3gaeAg5xzP5tZWiSeNCMtli1ZJRWPt2SX0r9Xi2pl4tiSVVqlTEZaHNm5O7qp2rWJo1f3JBYuywegc4cEBvdryflndKa0NMiTL65h8YqCSFRhl1qn+MnKC1Q8zsorp1eX+Cpl0lJiyMrdkdBl5wZIS4lhzaYyTj86lRZJPkrLHMP6JfLz2tIq2/brEU9efoCNmQ2b7Ga0jmNLdtXj0a9ncpUy6a1jq5TJzC4jPS2W7LxyfAb/uaMvHdvF894XmRWtgwC/OSKDIw5IY8nPhUx4eR35hQEag205m2jZun3F45ap7Vj/85ydyi2e9Tlfv/MAhduy+e3lTzZkiLWWkmzk5O/4xM3Nd3RrX/ffxSP6xDBzqVoHRWTPdvfjsjFRQhhypZmdFL7fBRgPTHbO/QzgnMtuqEBq8+vAVSqUEO/j1qt789h/V1NYFHrV+f1Gi2Q/l/9tAX17JnPzVb34/ZWzIxVyjWrTPlRTGecc6zeX896krdx4UVuKS4Ks3lBKoFqb+/7DGr51EKgx6OrHrMbGsXCZoINL/raY5CQ/f/9TD7p3TmDl2mLen5jJS+9sxAHnntKB8Wd14l9Pr67v6H+hGl6UNVSy7/Aj6Tv8SFYvncbk9x7izKuei3xodVWL47cnfh8M7BHD+9978PoTkSanqYwhjPouYzM7BDgC2M85NxSYBcymxm/BnbYdb2bTzWz6hAkT6vzcmdlltEnf0WrWJi2OrJzSamVKaZMeV61MqHXQ7zduvaY3E7/N4ttpORVltmSVVjxevLwA5xwpLRs298/OC5Ce4q94nJ4SQ87Wqi1eWXnlpKfuKJOW6q8oM2laATc+tJHbn9hMfmGwSkugzwdjBiUxZXbDfyFnZpfSJq3q8ajcWhsqU1alTEZabMUx266gMMCcRfmMGtIKCHXrB8PdBR9PyqJfz6rd615q2bo923J2nLizLXcTLVPb7rJ8196jyd2ymsL8BvsdVWt5+Y7WLXZkhaktjK0Fdfu07t/Nz9otAfKLmsinvIh4qql0GUd9QgikADnOuUIz6wfsC8QDB5tZD4BddRk75yY450Y550aNHz++piK7tWh5Pp3ax9O+TRwxfuPQ/dP5fkZulTLfz8jhqIMyAOjfK5mCwkBFAvLni3uwel0Rb3xU9Szb76bnMHxgKNHo3CGBmBirOHu1oSxfW0r7jFjatPbj98N+Q5OYsaCoSpmZC4o4cESou7VX1zgKi4Lkbgu1crZKDr0001P9jB6UxPc/7ejyHtwrgfVbysjOa/gu1cUrCqscs4P3bc2UmXlVykyZmceR40IvmX49k0LHLK+clJYxJCeFEuC4WGP4wJasCZ+Msn2MIcABo1JYubaYxqJDt8Fkb15JbuYaAuWlLJj2Ib2GHFalTM7mVRUt1xtXzydQXkZicuuaduep1ZuCZKT6SGtl+H0wvE8M836u2+toRJ8YZi5Rd7GI1E7Q1e3mFXUZwyfAH81sDrAYmApsIdRt/JaZ+YDNwJH1/cTBIDzy7CruubEfPh98/NUWVq0t4rgj2gDwwRdb+GFWHmOHpfLCQ0MoLgly3xM/AzCobwuOOiiDFasKefLugQD836tr+fGnPD75KpPr/tiDp+8bRHm5457HVtR36LWq23PvZvPXC9vi84Va/NZuKuOIfUNjJL+Yms+sRcUM65fIg9d3oKTU8eT/drQoXX1OBi2S/AQCjmffyaagUmvMfl51FxOq16PPr+Wf1/XE5zM+nZzFqnXFHHtYOgAffpnFj7O3MmZYK567fwAlpUHuf2oVAGmpMVw3vhs+n+Hzwdc/5PLDT6GpZS48oxM9uyXiHGzKLOWhZxpLdzH4/DEcdfotvPbwhbhggCH7n0Kbjr2ZNfkVAIYfdCaLZ33KvKnv4vPHEBObwAkX/btRnlgSdPDm1yX88TeJ+Hzww4IyNmYH2X9Q6KPw+3nltEwyrj09kYQ4wzk4eFgsd71YSEkZxMZA3y4xvP5VyR6eSUQkxNW52c+bz06re6CyC+7wM370OoZ6N/HVMZz5l8aTnNSnV+7tylFnz/I6jHr32QvDefYrr6Oof+cdClc9ku91GBHx4BUt9lxIRPaGZ79QH/mwbonWFcd682taLYQiIiIiEaKzjEVERESiXFPpiFVCKCIiIhIhTeVKJUoIRURERCJELYQiIiIiUS4QaBpnGSshFBEREYkQtRCKiIiIRLlgExlEqIRQREREJELUQigiIiIS5ZQQioiIiES5YBPJCJUQioiIiESIayJXKvF5HYCIiIhIc+Wcq9OtNszsaDNbbGbLzOyGGtb/zszmhG/fm9nQPe1TLYQiIiIiEVLf1zI2Mz/wH+BIYC0wzczec84tqFTsZ+Bg51yOmR0DTADG7m6/SghFREREIqS2rX51MAZY5pxbAWBmrwInABUJoXPu+0rlpwKd97RTJYQiIiIiERKBaQg7AWsqPV7L7lv/LgA+3tNOlRCKiIiIRIirY0ZoZuOB8ZUWTXDOTahcpKan2cW+DiWUEI7b0/MqIRQRERGJkLr2GIeTvwm7KbIW6FLpcWdgffVCZjYEeBo4xjmXtafnVUIoIiIiEiERuHTdNKC3mfUA1gFnAGdVLmBmXYG3gLOdc0tqs1MlhCIiIiIRUt8nlTjnys3scuBTwA8845ybb2Z/DK9/ArgFSAceMzOAcufcqN3tVwmhiIiISIREYmJq59xHwEfVlj1R6f6FwIV12acSQhEREZEI0aXrRERERKJcBOYhjAglhCIiIiIREoGTSiLCmkrm2gToHykiItI41TR3X4O46pH8OuUHD17RwpNY1UJYjw497QevQ6h3X70+lgfeaZ657rUnGged9K3XYdS7yW+P46izZ3kdRr377IXhXD+hyOswIuKe8Ync/1YERp577M8n+7wOQcRzdZ2Y2itKCEVEREQiRCeViIiIiES5YHnTaP1XQigiIiISIU2kx1gJoYiIiEikaAyhiIiISJRrKrO5KCEUERERiZCmMg+hEkIRERGRCFELoYiIiEiU0xhCERERkSinhFBEREQkymliahEREZEopxZCERERkSink0pEREREopymnRERERGJcuoyFhEREYly6jIWERERiXIuGPQ6hFpRQigiIiISIRpDKCIiIhLl1GUsIiIiEuV0UomIiIhIlFNCKCIiIhLlgk4nlTQpZvY08C/n3AIv4xg9NIXLz+uG32d8OHEzr7y7YacyV5zXjbHDUykuCXLPY8tZ+nMhbdLj+OtlPUlLjcU5xwdfbObNjzd5UIOarVn8Dd+/dyfOBek3+lSGHTq+yvqls95n9qSnAIiNS2LcSbeS3rEfAC/ffRix8cn4zI/5/Jx85ZsNHv+Y4alcecE++HzGh19s4qW31u5U5soL9mHfka0pKQly1yNLWLKiYLfb9uyezLV/7ElSgp8Nm0u449+LKSwK0L5NPC88MoLV64sAWLBkGw88sTzidRw1uCWXnN0Zn8/4ZFIWr32w8+vn0rM7MXpoCiUlQe6fsIplq4qIjTUeuKk3sbE+/D74ZlouL7y1EYAbL+tOlw7xACQn+SkoDHDJ3xZHvC6706ezj9/sH4sZTFsUYNLs8irr26QYvz0kjk4ZxqfTypk8Z8f6Awb5GdMvBgN+XFTOt/MCDRz9rq1Z/A1TPvgnLhik7+hTGXbIRVXWL5v1PrMnPw1ATFwS4078O+kd+lWsDwYDvPPob0lq1Zaj//BEg8Yu0pyphbARMjMDzLmd03Xn3IUehFSFz+BPF3Tnun8sYktWKU/cNZDvp+eyal1RRZmxw1Po1D6B3185m/69W3D1hT249Kb5BAKOx19YxdKfC0lM8PHk3YOYPmdrlW29EgwG+Pad2zn2wmdITmnH24/+lm4DDqN1u14VZVq27sTxF79AfFIKqxdNZvJbt3DS5a9XrD9+/PMkJLf2Inx8Prh6fE+uuXUeW7JKmXDvML79MYtVa3f8b/cd0ZrOHRM469IZDOjTkmsu7sUfr5+9223/cmkvHvvvz8yev5VfH96OM0/sxP+9shqAdZuKueCanxqujgaXn9uFG+5ZRmZ2GY/c3pcpM/NYvb64oszooa3o1C6B8/68gH49k7jyvC5ceesSysocf7lrGcUlQfx++PfNfZg2eyuLlhfyz/+srNh+/JmdKCjyNoEygxPHxfL0h6XkFTguPymeBasCbM7d8YFdWOJ47/tSBnb3V9m2XWtjTL8YHn27hEAQzj8mjoWrg2Rt9f7DPhgM8N17d/DrC/6P5FbteOc/p9Gt/6FV32NpnTlu/PPEJ6awZvFkvnnr75x42WsV6+d99wKpbfehtDjfiyqINFvBQNNoIfR5HUCkmVl3M1toZo8BM4H/M7PpZjbfzG6rVG6SmY0K3883szvNbLaZTTWzdg0Ra79eLVi/sZgNm0soDzi+/D6bA0ZXTYIOGNWazyZnArBwaT7JyX7SUmPJzi1j6c+FABQVB1m9rpiMtNiGCHuPtqyZQ0p6V1qld8EfE0fPob9m5YKJVcq07z6C+KQUANp1HUpB3kYvQq1R/94tWbehmA2bSigvd0z8dgvjxqRXKTNuTBqffrUZCLXotUj2k946drfbdu2UyOz5WwGY/lMOB++X0bAVq6RvzyTWbyph45ZSygOOr6fmsP/IlCpl9h+RwuffZgOwaHkhyUl+0lJCvymLS0IfeDF+w++3Gp/j4LGpfDUlJ4K12LMubXxk5TmytzkCQZi9PMCAaolfQTGs3RJaX1nbVGP15iBlAQg6+HlDkEE9qm7rlS1r5tAqvSut0na8x1Yt/LJKmXbdhhOfGDqmbbsOpWDrjvdYft5G1iz+mr6jT23QuEWiQTAYrNPNK80+IQzrCzzvnBsOXOucGwUMAQ42syE1lE8GpjrnhgKTgYtqKFPvMtLi2JxVWvF4S1bpTkldRlocmzNLKh5nZpWSkRZXpUy7NnH06pHEwmUFkQ24lgryNpGc2qHicXJKewrydt2dvWjaG3Tpe1DFY8P48OkLeOvhk1n4w2u73C5Sqv/Pt2SV0Ca96v88Iz2+hmMXv9ttf15dyLgxaQAcckAGbTN27LND2wSefmAYD/9jMEP6t4pIvarE3zqOLdmV4s8uJb111ddeeuvYKmUys8tID78+fQaP/6Mvr/9nMDPnbWPR8sIq2w7um0xOXjnrN5XgpZRkyC3Y0aKXV+BISa45ga1uU46jR3sfSfEQ64e+Xf213jbSCrZupkVK+4rHya3a7fY9tnjam3Tpc2DF46kf3MWYY/6MWbR8JYg0HBd0dbp5JVq6jFc556aG759mZuMJ1b0DMACYU618KfBB+P4M4Miadhrez3iAJ598Ehi6V0FaDd8t1acvqqlM5UIJ8T5uv7YP/3luFYUed8/tjtVYEVi/fCqLp73Jby55qWLZby59meRW7SjKz+LDp88ntc0+dNhndEOFWrvjUsN2zrndbnv3o0v504X7cO5pXfnuxyzKykMrsnJK+e34aWzdVk6ffZL5518HcM6VMyN7PH/xay/0J+jgkr8tJjnJz9//1IPunRNYuXZHd/Mh+7Xmq6netg7uSm2nCNuc6/h6djkXHhtPSZljQ1aQxjM0qIZAdvke+4HF09/k+ItfBGDVwq9ISE6jTaeBrF/xYySDFIlKNYxSa5SiJSEsADCzHsCfgdHOuRwzew5IqKF8mdsxk2SAXfyfnHMTgAnbH77yxQ97FeSWrFLaVmp5apMeR1ZO2c5lMuJhcWicT0Z6HJnhMn6/cfu1vfnim0y++bHxfPkmp7SjIHfHyTEFeRtJatV2p3JZGxbz9Rs3c8z5E6qMF0xuFeqxT2yRTveBR7B5zZwGTQgr/udhbdLjyazUUhYqU1LDsSslNta3y21Xryvi2tvmA9C5YwL7jQq1FpaVO8q2hU5kWLKigHUbi+nSMZHFyyM3tiszu5Q2lVqa26TFkZ1bVq1MWbhMqOU5Iy12p9dnQWGAOYvyGTWkVUVC6PPBuFGpXHaztyeTAOQVQGqlVr2UZGNrYe2zummLA0xbHErMfzU6hryCxpERJrdqR36lYRYFWzeRvIv32OS3buboPzxZ8R7btGoWqxd+xSuLJxMoL6W0JJ+vXvsLh55+b4PFL9KcNZWTSqKtf6AVoW+zvPC4wGM8jqeKRcvz6dQhgfZt4onxG4ftn8b306smdt9Pz+Wog0Jjzfr3bkFBYaDii/svf+zBqnVF/O/DxjP+DqBN58HkZa1ia/ZaAuWlLJ/9Ed36H1alTH7Oej5/4QoOPf0eUtv0qFheVlpIaUl+xf11S74jrX2fBo1/0dJtdO6QSIe28cTEGIePa8N307KrlPl2Wja/OjT0BTygT0sKCgNk5ZTtdtvUlFB3qxmcc2pX3v00dNxSWsXgC78zO7SLp3OHBNZvKiaSFq8opFP7eNq3iSPGbxy8b2umzMyrUmbKzDyOHBdKWvv1TAq99vLKSWkZQ3JSaCxdXKwxfGBL1lQ6GWXEwJas2VBc8cPFS2u3BElPMVq3NPw+GNrTz8JVtW95TQ7/fExNNgb18DN7WeNohW/TeTBbM6u+x7r2P7RKmfzc9Xzx4pUcelrV99iYo6/hrL9O4szrJ3LYmQ/QcZ+xSgZF6pG6jBsh59xsM5sFzAdWAN95HFIVwSA8/MxK7r2pLz6f8fFXW1i5tojjjwwlGu9/vpmps3IZOyKVFx8eSklpkHseWwHAoL4tOOrgNixfVchT9w4C4OlX1vDDrLxdPl9D8fljOOCEm/n4/y4gGAzSd/QppLXvzYKprwIwYN8zmDHxMYoLc/nundsBKqaXKdqWxWcvXA6ACwToOfw4uvQ9cJfPFQmBIDz41HLu//sgfD74aOImVq4p5De/Co3Zeu/TjUydkcN+I1vzyuMjw9POLN3ttgBHHNiGk44Jja2cPDWTjyaGxnwNG5DC+Wd2JRAIXQPzgSeWsy2/vIbI6k8wCI8+v5Z/XtcTn8/4dHIWq9YVc+xhoRNgPvwyix9nb2XMsFY8d/8ASkqD3P/UKgDSUmO4bnw3fD7D54Ovf8jlh5+2Vuz7kP1ae34yyXZBB+9+V8YFx8Th84Va/DblOMb2DyW0PywM0CIRrjwpgfi4UHfyuEExPPC/YkrK4Owj40hKMAJBeOfbMopK9/CEDcTnj2H/3/yNj5+5EOeC9B11MmnterPgh/B7bOwZzAy/x759N/Qe8/n8nHT5G16GLRIVmso8hNZUrrHXBLhDT9u7LuPG6KvXx/LAO83zNXLticZBJ33rdRj1bvLb4zjq7Fleh1HvPnthONdP8H4apUi4Z3wi97/VNL406uLPJ0dbJ5Q0Yp6dAXbU2bPq9CX62QvDPYk1qloIRURERBqS83AqmbpQQigiIiISIU3lpBIlhCIiIiIRomlnRERERKJcUC2EIiIiItGtqYwh1ClgIiIiIhESiXkIzexoM1tsZsvM7IYa1puZPRxeP8fMRuxpn2ohFBEREYmQ+h5DaGZ+4D+ELqu7FphmZu855xZUKnYM0Dt8Gws8Hv67S2ohFBEREYmQCLQQjgGWOedWOOdKgVeBE6qVOQF43oVMBVLNrMPudqoWQhEREZEIicAYwk7AmkqP17Jz619NZToBG3a1UyWEIiIiIhHy7fsH1+nKI2Y2HhhfadEE59yEykVq2Kx602JtylShhFBERESkkQgnfxN2U2Qt0KXS487A+l9QpgqNIRQRERFpOqYBvc2sh5nFAWcA71Ur8x5wTvhs432BPOfcLruLQS2EIiIiIk2Gc67czC4HPgX8wDPOuflm9sfw+ieAj4BfA8uAQuC8Pe1XCaGIiIhIE+Kc+4hQ0ld52ROV7jvgsrrsU13GIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5C81dKPVA/0gREZHGybwOoLHTlUrq0al/WuF1CPXujYf24epH870OIyL+fXmLZnvMHnin+f0+ufZE4+0fA16HEREnjfFz2rUrvQ6j3r3+QHfOuXm3l09tkp6/o4PXIYjUO3UZi4iIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRLkYrwOIdsP6JXLeyen4fMbEqVt554u8ncqcf3I6wwckUVoW5NGXtvDz2lIAjjskhcP3bYkDVq8v5T8vb6Gs3LHfsGROO7o1ndrF8td/rWP5mtIGrtXO+nX1c9KB8ZjBDwvKmDizrMr6tqnGmUck0LmNjw+nljJpVmh9m1Tj3F8lVJRLT/Hx8Q+lTJ5ddfuGFIljdvZv0hg1KInygGNjZjn/eXkLhUXBBq5ZVWsWf8P3792Jc0H6jT6VYYeOr7J+6az3mT3pKQBi45IYd9KtpHfsB8DLdx9GbHwyPvNjPj8nX/lmg8e/K4vnfMP7L9yFCwYYfcipHHL8RVXWz58xkc/ffAQzw+eP4fjf3UD3viMBuPvqI4hPSMbn8+Hzx3DF7f/zogoVhvZN5LwT0/D5YOIP+bz75c6vxfNOTGN4/0RKSh2PvZrJz+tCr8VjD2rFYWNb4Bys2VjKY69mUVbu6NYhlotOTSch3seW7HIefmkLRSWuoatWxeBe8fz+2Fb4DL6eUcgH3xRUWd8hw89FJ6XSrWMsb3yxjY+/27H+whNTGNY3nq0FQW58NLOhQxdpMpQQeshncOFvM7j9sQ1k55Zz97WdmD63kLWbdiQ7wwck0qFNLFf8Yw29u8Uz/rcZ/PXf60lL8XPMQa24+q61lJY5rvlDWw4YkcykH/NZvaGU+57ZxMWnZXhYux3M4JSD43ni3SJy8x1Xn5bIvJ/L2ZSz40umsATemlzC4H2qviS35Druf62oYj+3/iGJuSvKGzT+yiJ1zOYsLuKlD7IJBuH3x6dx8hGpvPh+tmf1DAYDfPvO7Rx74TMkp7Tj7Ud/S7cBh9G6Xa+KMi1bd+L4i18gPimF1YsmM/mtWzjp8tcr1h8//nkSklt7Ef4uBYMB3v3vP7jg+qdJSWvHo7ecTv8Rh9Ku04569Rq4LwNGHIaZsWH1Yl5+9BquvffDivXjb3yO5Jbe18sMLjg5jX88uYmsvHLuuqoj0+cXsq7ya7FfIu0zYrjyrnX07hrPhaekc9PDG2jdys8x41py9b3rKSt3XH12G/YfnszX0/K5+LQMXng/m4UrSjh0TAt+c2gKr32S62k9zzm+Ffc+l0321gC3/TGDmYtKWL9lx+dAfpHjhY+2MrJ/wk7bfzOriM9/KODiU1IbMGqRpidquozNLNnMPjSz2WY2z8xON7OVZpYRXj/KzCaF799qZs+Y2SQzW2FmV0Yipl7d4tm4pYzNWeWUB+C7mQWMHpxcpczoQclMmrYNgKWrSkhK9JHayg+A32fExRo+H8THGTl5AQDWbSpj/WbvWtCq69rOR2ZekKytjkAQZi0tZ1C1xC+/yLFmc5DAbhrF+nT2k7XVkbPNu9aKSB2z2YuLCIbrvmRVMemp/oarVA22rJlDSnpXWqV3wR8TR8+hv2blgolVyrTvPoL4pBQA2nUdSkHeRi9CrZM1y+eS3q4r6W27EBMTx9B9j2HBjC+rlIlPSMbMACgtKQplJI1Qr67xbMwqZ3N2OYEAfD+rgNEDk6qUGTUoickzQq1lS1eXkJzoI7Vl6LXl8+94LcbFGTl5oQSrY9tYFq4oAWDOkiLGDq66z4bWs3Msm7MCbMkJEAjA1LlFjOgfX6XMtoIgP68rIxDY+bNh8apSCoq8beEUaQqiqYXwaGC9c+5YADNLAe7ZTfl+wKFAS2CxmT3unKvXLCstJYbM3B2/crNyy+ndreoHXXqqn6xKZbLzAqSn+Fm+ppT3vsrl8Vu7UlrmmLOokNmLi+ozvHqTmmzkVkri8vIdXdvV/bfI8N4xzFziXesgNMwxO2xsS76bVbDT8oZUkLeJ5NQOFY+TU9qzefXsXZZfNO0NuvQ9qOKxYXz49AWYQf+xp9N/7OkRjbe2tuZsIiWtfcXjlLT2rFk+Z6dy86Z/waev/5v8rVn84donKpYbxv/dcyFmxphDT2PsYac1SNw1SUup+jrLyiund9f4ncpkViuTluJnxdpS3p+Ux+M3d6a0zDF7SRFzlhQDoe7jUQMTmT6/iH2HJJOe6u3XROtWfrLCP5wAsvOC9Owc62FEIs1TNCWEc4H7zewe4APn3De2+1/+HzrnSoASM9sMtAPW1mdANT39zr9jdy7kHCQn+hg9KJnLbltNQVGQa89rx4GjWvDN9Pz6DLHR8PtgYI8YPphS6GkckT5mJx+ZSiBIozyOu3q/rF8+lcXT3uQ3l7xUsew3l75Mcqt2FOVn8eHT55PaZh867DO6oULdJedqaCmqoVqDRh3BoFFHsGLRdD5/82EuvOEZAC655SVatW5Lfl4WT99zIW067sM+/UZFOOqa1XQ0qtduV2WSE32MHpjEZXeupbAoyDXntuXAEcl8M7OAx1/L4rwT0zj1yFSmLyikvIZWNxFpfqKmy9g5twQYSSgxvMvMbgHK2fE/qD74pKTS/QA1JM9mNt7MppvZ9AkTJtQ5pqzccjIq/fpOT42p6EKsXKbyL/S0FD/ZWwMM6ZvI5uwythaEull/mFNA3x5VWwcai9wCR2rLHV9NKS2MvIK6fcn07+Zn3ZYA+R53/UTymB08ugUjBybx0PObI1+RPUhOaUdB7oaKxwV5G0lq1XanclkbFvP1Gzdz1Ln/qTJeMLlVOwASW6TTfeARbF6zcyucF1LS2pOXvaNrOy97I61Sd67Xdvv0G0XWpjUUbMsBoFXrUNkWKekMHHU4a2toXWwoWXmBKq+z9JQaXot5gaqv13CZwb0T2JxdzrZKr8U+3UOvxfWby7hzwiZueHAD380sYFOWt63yOVtDLezbpaX4yNkW2M0WIvJLRE1CaGYdgULn3IvA/cAIYCWhJBHglLru0zk3wTk3yjk3avz48XveoJplq0vo0CaWtmkxxPjhgBHJTJtXtatw+rwCDhndEoDe3eIpLA6SuzVAZk45fbolEBcbSrQG90lk3cbGM26wsjWbgrRJ8ZHW0vD7Ql2/83+u2wf68N4xzFzq7RcTRO6YDeuXyIlHpHLPUxspLfO+RaZN58HkZa1ia/ZaAuWlLJ/9Ed36H1alTH7Oej5/4QoOPf0eUtv0qFheVlpIaUl+xf11S74jrX2fBo1/VzrvM4isjavI3ryW8vJSZk/9mAEjDq1SJnPTqoqWxHUrFxAIlJHUIpXS4kJKikLHurS4kKVzv6ddl94NXoftlq8poUNGDG3SYvD7Yf/hyUyfX7UFffr8Qg4aGRrj2rtr+LW4LUBmeKhDxWuxdyLrwuOOW7UIfS2YhVqsP5+yrQFrtbMV68pol+4nI9WP3w/7Dk5k1qKSPW8oInUSTV3Gg4H7zCwIlAGXAInA/5nZjcAPDR1QMAhPv5nJ3y5pj89nfDl1G2s3lnHUAaFk4rPvtjFzQREjBiTx6M1dQtNGvBxqPVq6qoQpswu477pOBILw89oSPv9+KwBjhiRxwSkZtGrh568Xt2fl2lL+8YR3A/6DDt6cXMLFJyTiC087szE7yP4DQy+/7+eX0zLJuOa0RBLiDOfg4KGx3P1SISVlEBsDfbvG8L9J3n8JROqYXXBqBrExxs2XdqgoO+F176bI8PljOOCEm/n4/y4gGAzSd/QppLXvzYKprwIwYN8zmDHxMYoLc/nundsBKqaXKdqWxWcvXA6ACwToOfw4uvQ90LO6VOb3x/Cbc27imfsuIhgMMuqgk2jXuTdTJ4bqte/hZzBv2ufM/PZd/P4YYuMSOOuyBzAztm3N4oUHQ+eXBYPlDNvvWPoO8a5ewSA881Y2N41vh8/gqx/zWbupjCP3C70WP5+yjVkLixjRP5GH/9qJ0rLQtDMAy1aXMnVOIfdc05FAwLFyXSlfhBO/A4Yn86sDWgHw49xCvvrR2+ELwSA8/8FW/nJuGuaDyTOLWLe5nENHh052+WpaISktfNz2xwwS442gg1/tl8wNj2yhuMRxyW9T6d8jjhZJPh78c1ve+nIbk2c2zvHWIl6yGsfUyC/hTv3TCq9jqHdvPLQPVz/a+Maz1Yd/X96C5nrMHnin+b2vrz3RePvH5tlVeNIYP6ddu9LrMOrd6w9055ybN+y5YBPz/B0d9lxIGpvGOV1AIxI1XcYiIiIiUjMlhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlDPnnNcxNBf6R4qIiDRO5nUAjV2M1wE0J0f+bobXIdS7z18ayUmXL/U6jIh4+9HezfaYnfmX1V6HUe9eubcrf3pom9dhRMRDf2rJCZcs9jqMevfu4335z8deR1H/LjsGjjhzutdhRMQXr4zyOgTxiLqMRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlyMV4HEO1GDWnFpWd3weeDjydl8tr7m3Yqc+k5XRgztBUlpUHue3Ily1YWERtr/OvmvsTGGH6/8c2POTz/5oYq253663Zc/LvOnHLxT2zNDzRUlSoM75/EBae2weeDL77fyluf5+xU5oJT2zByYBIlpY5HXtjEirUldGwby5/P71BRpl16DK98mM0Hk3I589g0xgxpgXOQt62ch1/cRE5ew9YtEsfsojM7se+IVMrLg6zfVML9E1ZRUNiw9RraJ4FzTmiNz+CrHwt4b9LWncqc+5vWDOuXQGmZ4/HXs1i5rgyAow9oyWFjkzHgyx8L+PjbbQBc+bt0OrSJBSA5wUdBcZC/PrixwepUk37d/Jx8cAI+g6nzy/hiemmV9W1b+zjryAS6tPHxwZQSvppZVrEuMQ7OOCKBDuk+HPDK58Ws3Bhs4BrsMHxAEhed1g6fweff5fHmZ9k7lbnotLaMHJhMSanjoec3sGJNCQDJiT4u/317unaMwzl45IWNLP65GIBjD0nl2ENaEwg4ps8r4L9vb2nQelW3cuFkJr91J84FGbjvbxl1xPgq6xdNf48ZE58CIDY+mUN/eyttOvUjZ9MKPv7v1RXl8rLWsO8xVzL8kD80ZPhVjB7aikvP6Rr6/Pgqk1ff2/n9cNm5XRgzLIWS0iD3Pr6SZSsLiY01/n1LP2JjQ58fk3/I4fk31gNw0NjWnHNqR7p2TODymxeyZEVhQ1dLmgElhB7yGVzxh65cf9cSMrPLePSOfkyZmcfqdcUVZcYMbUWn9vH84dr59O+VzJXndePKvy+irMxx3Z1LKC4J4vfDv2/px7TZW1m4rACANmmxjBzckk2ZJZ7Vbfxpbbj10XVk5ZZz73Vd+XFuAWs37vjyHTEgiY5tYrn0tlX06Z7AxWe05fr717B+cxnX3L26Yj9P39mDH2bnA/DOxFxe+TD0pXfswSmcfkw6T7y6uUHrFYljNnPeVv7vtXUEg3DhGZ048zftefrVdQ1WLzM476TW/POpzWTlBbjzivbMWFDIus3lFWWG9UugfUYMV9+7gV5d47jgpDRufnQTndvFctjYZP72yCbKA44bLmjLrEVFbMws5+GXsiq2//1xqRQWe5c8Qaievz0kgcfeLiQ333HtGUnMXVHOpuwdcRUWO976upjB++z88XjywQksXBXg2Y+K8fsgzsNPUJ/BxWe04+8PryUrp4z7b+jGj3PyWVPpPTZyYDId2sbyx7//TJ8eCVxyZjuuuzf03rrwtLbMXFDAPU+tJ8YP8XGhDqPBfRIZO7QFV/5jJeXljpSWfk/qt10wGGDSG7dz0iXP0iK1Ha/961R6DDqM9Pa9KsqkpHfmlCteJCEphZULvubL127m9Gv+R+t2+3DWX96t2M8zfz+InkOO9Koqoc+P87py/T+XsCWrjP/c2Z/vZ+RW/fwYlkKn9gmce/U8+vdK5k8XdOWKm0OfH3/+x+Lw54fx4K19mfZTHguXFbByTRG3/msZV1/Y3bO6SdPXbLqMzSzZzD40s9lmNs/MTjezlWZ2m5nNNLO5ZtYvXDbNzN4xszlmNtXMhoSXzzWzVAvJMrNzwstfMLMj6jvmvj2TWb+pmI1bSikPOCZNzWH/kalVyuw3MpUvvgl9qS5cVkCLJD9pqaFvoeKS0JdYjN+I8RvOuYrt/nh2F556ZR2VFjWo3t0T2JBZxqascsoD8O3MbYwZklylzJghLfjqx1Ar1JKVxSQn+mjdquqXz+C+SWzcUsaWnFBiUlQpoYiP91Wpc0OI1DGbMXcbwXDVFi4rICMttmEqFNarSxwbM8vZnB0gEIApswsZNTCpSpmRAxL5ZmboB8ey1aUkJfpIbemjU9sYlq4upbTMEQzCwhXFjB6YuNNz7Dskie9/8rblols7H1vygmRtdQSCMHNJ+U6JX36RY/WmIIFquWt8HPTs5Gfq/FCLYSAIRVUbFxtU7+4JbNxSxqbMMsoD8M30bYwZ2qJKmTFDW/DV1PB77OdikpP8tG7lJzHBx8BeiXz+XR4A5QEoKApV+OiDUnnz02zKy0OvzbxtDd+7UNmmVXNIzehGSkYX/DFx9B5+LCvmTqxSpkOPESQkpQDQvvsw8vN2bnVbs2QKKRldaJXWqUHirknfXsms31jChs3hz48p2RwwKrVKmf1HpvJ5lc+PGNJSQ58HO39+hLZZvb6YtRu8+fEvzUezSQiBo4H1zrmhzrlBwCfh5ZnOuRHA48Cfw8tuA2Y554YANwLPh5d/BxwADARWAAeGl+8LTK3vgDPSYtmStaM7KjO7lIzWsTuV2ZxVWq1MHBD6tfnEP/vzv8eHMnPeVhYtD33Z7jcihazsUlasLqrvkGstLSWGzJwdrUtZOeWkp1T94k1PjSGrcpnc8orEabsDR7bgmxnbqiz73fHpPHVHdw4e1bKitbChROqYVfarg9OZNnvn7tpIap3iJ6tS13tWXvlOyXlaSgxZuTvKZOcGSEuJYc2mMvr3iKdFko+4WGNYv0TSqx3Hfj3iycsPsDGzHC+ltPCRu21HppebHySlhdVq24xWPvKLHGcdmcB1ZyZxxuHxnrYQpqfGkJmz47WYlVO+0/89VGbH/zwzp4z01BjaZ8SSlx/gynPa8+8bu3H579sRHxf6P3RsG8eAXonc95eu3Hl1F3p1S2iYCu1Cft4mWrRuX/G4RWo7CvJ2Hqax3YKpb9Ct/0E7LV8680P6jDguIjHWVkbruCqfDVuySkkPfzZUlEmLZUvlMtmlFT8QfQZP3DWAN54cyoy5W1m0vKBhApeo0JwSwrnAEWZ2j5kd6JzLCy9/K/x3BtA9fH8c8AKAc+5LIN3MUoBvgIPCt8eBwWbWCch2zuXXd8A1fQ1Vb/CyGkptLxN08McbF3LmFXPp2zOZ7p0TiI8zzjyhA8+Fx5Z4xWqoXG3a8irXP8YPowe34PtZVf/1L72fxUU3r+Tr6dv49UEpexdoHUXimFV21gntCQQcE79r2ES3NilRzXV3rN9cznuTtnLjRW254YI2rN5QSiBY9Z+y/zDvWwdhF/WsZSOzzwed2/r4bk4p971SSGkZHDEqbs8bRkpN77GdXos1lAH8PujZJYFPJudy9T9XUVziOOVXaQD4/UaLJD/X3bua597awl8u7FDDXhpSDQeopg8YYM3Sqcyf+gYHHP/nKssD5aWsmP8lvYcdHYkAa63msN0ey1T5/PjrAs64bA79avj8ENkbzSYhdM4tAUYSSgzvMrNbwqu2t6MH2DFmclefk5MJtQoeCEwCtgCnEkoUd2Jm481suplNnzBhQp1j3pJdRpv0Ha1LGWlxZOWWVStTStv0uGplqvZTFRQGmL1wG6OGpNChXTzt28Tx5F0DeOHBQbRJi+PxOwfQOqVhmzKycsvJaL3jOdNbx5CdV75TmfTKZVJjyKlUZsSAZFasKd5ll9U307ax37AWNa6LlEgcs+2OPDCNscNTuPuxnyMU/a5l5wVIT9nRIpieEkPO1qr/96y8ctJTd5RJS/VXlJk0rYAbH9rI7U9sJr8wWKUl0OeDMYOSmDLb+4QwNz9IassdH3upLXzkFdQuI8zNd+TmO1ZtCrUw/rSsnM5tvRtfl5VTXqV1uqb3WGa192FG61iyc8vJDN+WrAyNXft+1jZ6dkmo2O+UWaFW+aWrigk6aNXCu3q2SGlPfs6OLuD83E0kt2q7U7nM9YuY+OrfOO7Cx0hMbl1l3cqFk2nTeSBJLTMiHu/uVP9saJMeR1ZOtc+PrDLaVC6TtnOZ7Z8fo4c27A9iad6aTUJoZh2BQufci8D9wIjdFJ8M/C683SGEupW3OufWABlAb+fcCuBbQt3MNSaEzrkJzrlRzrlR48ePr6nIbi1eUUCn9gm0bxNHjN84ZN/WTJmRW6XMlJm5HHFgOgD9eyVTUBQgO7eclJYxJCeFPqTjYo0RA1uyZkMxK9cUc9qlczj7qnmcfdU8tmSXcslNC6okWg1h6apiOrSJo216DDF+GDeiJdPmVO3emDY3n0PHtAKgT/cECouCVZKQcaNa8s2Mqq2D289YBRg9JJm1mxp2EFckjhmEzlw+/fj23PLAckpKG37g5/K1pbTPiKVNaz9+P+w3NIkZC6oOOZi5oIgDR4TGgfbqGkdhUbCi+7VVcuijJD3Vz+hBSXz/045jPbhXAuu3lJHdwGeD12T1piBtUn2ktTL8PhjRJ4Z5K2r33thW6MjdFqRtauj3ZJ8ufjZme3eSzNJVxXRoG0vb9Fhi/HDgqJb8OKfq++XHOfkcum/4PdYjgYKiADlbA+RuDZCZU0andqH305C+SRUno/wwextD+obGj3ZsG0us3zyZpWC7dl0Hk5u5krysNQTKS1k660P2GXRYlTLbctbz4TNX8Kvf30vrtj122seSmR/Sd8SxDRXyLi1eXu3zY780vq/h8+PIyp8fhQGyc8t2/vwY1IrV64urP4XIL9aczjIeDNxnZkGgDLgEeGMXZW8FnjWzOUAhcG6ldT8A238OfwPcRSgxrHfBIDz63Gruur43Pp/x6deZrFpXzHGHh37FfjAxkx9/2srYYSn891+DKCkNcv+TKwFIS43lL3/sjs8HZqEpCH6YlbebZ2tYwSA89fpm/n5ZJ3wGE6duZc3GUn41LvSL9tNv85gxv5CRA5N5/O/dKClzPPLijnFBobFoSTzxStUziM8+IYNObWMJulBrXUOeYby9XpE4Zpef24XYWB/3/LU3EBpM/tAzqxu0Xs+9m81fL2yLzxdq8Vu7qYwj9g21wH4xNZ9Zi4oZ1i+RB6/vQEmp48n/7ejWvvqcDFok+QkEHM++k01B0Y6kdr9G0l0MoS63NycVc8mJSaFpZxaUsTE7yAGDQ4nRd3PLaJlk/PmMJBLijCBwyLA4/vliASWl8OakEs4+OpEYP2TmBXn5c+++kINBmPDqZm69ojM+H0z8Po81G0o5+sDQe+yTb/KYMa+AUYOSeeL2HqGpnZ7fMTXVU69t5przOhLjNzZmlvLwC6FWuC++z+OKszvw8M3dKS93PPi8t9ME+fwxHHLKLbz7xIUEgwEGjj2F9A69mfvdKwAMPuBMfvj0PxQX5PLV/24Lb+PnjGtDo4XKSotYs/h7Djvtds/qsF0wCI88t5q7/9oHnw8+mZTFqrXFHHdEGwA++GILP8zKY8ywFJ5/cBAlJaFpqwDSWsdy/SU9Kj4/vp6aXfH5ccCoVC7/Q1dSWsVw5196s3xlITfcvdSrakoTZQ19lmYz5o783QyvY6h3n780kpMub54fLG8/2pvmeszO/EvDJZMN5ZV7u/Knh7btuWAT9NCfWnLCJYu9DqPevft4X/7zsddR1L/LjoEjzpzudRgR8cUro7wOIVJqd/ZYFGs2XcYiIiIi8ssoIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopw557yOQerIzMY75yZ4HUd9a671guZbt+ZaL2i+dVO9mp7mWrfmWq+mSi2ETdN4rwOIkOZaL2i+dWuu9YLmWzfVq+lprnVrrvVqkpQQioiIiEQ5JYQiIiIiUU4JYdPUXMdcNNd6QfOtW3OtFzTfuqleTU9zrVtzrVeTpJNKRERERKKcWghFREREopwSQhEREZEop4RQREREJMopIRSROjOzRDPr63Uc9a251kuaHjPzm1lHM+u6/eZ1TPXBzA4zsySv45Cd6aSSJsLM+gCPA+2cc4PMbAjwG+fcPzwOba+EPxiuBbo65y4ys95AX+fcBx6H9ouY2YjdrXfOzWyoWCLFzI4H7gfinHM9zGwYcLtz7jfeRrZ3mmu9AMzsc+C3zrnc8OPWwKvOuV95GtheMrM2wEVAdyBm+3Ln3PlexVQfzOwK4O/AJiAYXuycc0O8i6p+mNnzwL5AFvBN+Patcy7H08BECWFTYWZfA9cBTzrnhoeXzXPODfI2sr1jZq8BM4BzwoluIjDFOTfM28h+GTP7Knw3ARgFzAYMGAL84Jwb51Vs9cXMZgCHAZMqvRbnNPUvq+ZaLwAzm7W9Trtb1tSY2feEEooZQGD7cufcm54FVQ/MbBkw1jmX5XUskWJmHYFTgT8DHZ1zMXvYRCJMB6DpSHLO/WhmlZeVexVMPerpnDvdzM4EcM4VWbVKNiXOuUMBzOxVYLxzbm748SBCH3zNQblzLq8JH6Zdaa71AgiaWVfn3GoAM+sONIfWgCTn3PVeBxEBa4A8r4OIBDP7PXAgMBjIBB4llNSLx5QQNh2ZZtaT8Ie4mZ0KbPA2pHpRGm4V3F6vnkCJtyHVi37bk0EA59y8cBdkczDPzM4C/OEu/iuB7z2OqT4013oB3AR8G+5pADiI5nEd2Q/M7NfOuY+8DqSerQAmmdmHVPo8dM79y7uQ6s2DwHLgCeAr59xKT6ORCuoybiLMbB9Cs7rvD+QAPwO/b+pvJjM7EvgbMAD4DDgA+INzbpKXce0tM3sFKABeJJTs/h5o4Zw709PA6kF43OdNwFGEusM/Be5wzhV7Gtheaq712s7M2hJKAn8iNKRhs3NusqdB7SUz2wYkE0qayggdN+eca+VpYHvJzP5e03Ln3G0NHUskmNlAQj9KxgG9gcXOubO9jUqUEDYxZpYM+Jxz27yOpb6YWTqhQcYGTHXOZXoc0l4zswTgEkIfegCTgcebS3IhTYuZXQj8CehMKCHcl9BY3cO8jEuij5m1IvTD/2BCXccZhD73z/U0MFFC2FSY2T+Be6udJXitc+5vngZWD8JnTHen6lmCb3kWUD0Jd4V3dc4t9jqW+mBm77ObcWdN9Wzc5lqvysxsLjCa0BfvMDPrB9zmnDvd49B+ETPr55xbtKuz+pv62fzhk9N2ek02hwTezOYA34Zvk51zaz0OScI0hrDpOMY5d+P2B865HDP7NaHu1ibLzJ4hdAbufCpNrwA06YTQzH4D3AfEAc1lCpP7w39PBtoT6g4HOBNY6UVA9aS51quyYudcsZlhZvHhZKopz7d4DaHu7wdqWOcInS3elFU+AS0BOIXmcRIh28/aN7OWNI8Tm5oNtRA2EeFfVaOdcyXhx4nAdOfcQG8j2ztmtsA5N8DrOOpbM5/CZLJz7qA9LWtqmmu9AMzsbeA84CpCr8scINY592sv45LaM7OvnXMHex3H3grPuPACkEZomNAW4Fzn3DxPAxO1EDYhLwITzexZQr+qzgf+621I9WKKmQ1wzi3wOpB61pynMGljZvs451YAmFkPoI3HMdWH5lovnHMnhe/eGu6OTAE+8TCkehNOMAYQakkDwDn3vHcR7T0zS6v00EdoTtP2HoVT3yYA1zjnvgIws0PYccKkeEgJYRPhnLs3PA7ocEK/qu5wzn3qcVj14b+EksKNhM4U3H6WYFNvSWvOU5hcTWhKjBXhx92Bi70Lp94013pV4Zz7es+lmobw2biHEEoIPwKOITQ2rUknhIQm2naEPg/LCA1duMDLgOpR8vZkEMA5Nyl8sqR4TF3G4qnwjPzXAHPZMYYQ59wqz4KqB9WmMIHQFCb/aC5nGZtZPNAv/HDR9qEMTV1zrVdzFf6RPBSY5ZwbambtgKedc8d7HNpeMbPTgE+cc1vN7GZgBKFGgCZ9sgxUDF+YSajbGEJTco1yzp3oWVACKCFsMszsZOAeoC2hX43NZb6tL5vDmXO7YmbJzrkCr+OoD2Z2mHPuy/BrcSdN9czw5lqvaGBm05xzo8Njdg8FtgHzmsHY6jnOuSFmNg74J6GTZ250zo31OLS9Fp4h4zZCcxAaoSm5btW1jL2nLuOm417geOfcQq8DqWeLzOxl4H2qzsjfpL+EzWx/4GmgBdDVzIYCFzvnLvU2sr1yMPAlUFPrS1M+M7y51qtZC1/ico6ZpQJPEepmzQd+9DKuerL9uszHAk845941s1s9jKfehBO/K72OQ3amFsImwsy+c84d4HUc9S18kkx1zjl3foMHU4/M7AdCF25/r9JZxvOcc4O8jUyk+TCzGc65keH73YFWzrk53ka198zsA2AdcAQwEigCfnTODfU0sHpgZn0ITavTnapzzzbbnqKmQi2ETcd0M3sNeIdm1JLmnDvP6xgixTm3ptpZxoFdlW1KzOxPwLOEuueeIjS+6Qbn3GeeBraXmmu9mrmpZjbaOTetqV/Gs5rTgKOB+51zuWbWAbjO45jqy/8IXcf4aZrJZ2JzoYSw6WgFFLLjJAVoBt1ZlabRqaKptxACa8Ldxs7M4gh1kTSX7v7znXMPmdmvCI1pPY9QItXUE6fmWq/m7FDgYjNbReja4c1ilgLnXCGVPtudcxuADd5FVK/KnXOPex2E7EwJYRPRjFvSPqh0PwE4CVjvUSz16Y/AQ0AnQl0/nwKXeRpR/dne7Plr4Fnn3GxrHhMuNtd6NWfHeB2A1Nn7ZnYp8DZVe7uyvQtJQGMImwwzSyA0D9VAqk7A2tRb0qowMx/whcaTNF7hVt1OQA9CU374CV2RZaSnge2l5lovkcbEzH6u9LAiAXHO7eNBOFKJz+sApNZeIDRT/a+Ar4HOhMY6NTe9ga5eB7G3zGwfM3vfzLaY2WYze9fMmssH3gXADYQupVhI6HrNzaEFu7nWS6QxuR4Y6pzrQWhIxmxCJ+CJx5QQNh29nHM3AwXOuf8Smo5gsMcx7TUz22ZmW7ffCE0/c73XcdWDl4HXgQ5AR0IDqV/xNKJ64pwLApuAAWZ2EKFW61RPg6ofnzvnZjrncgGcc1nAv70NSaTZ+Vt4wu1xwJHAc4DGFDYCGkPYdJSF/+aGr925kdBp+02ac66l1zFEiDnnXqj0+EUzu9yzaOqRmd0DnA4sYMdZgo7QBLNNTng4RhKQEZ40d/u4wVaEknkRqT/Ndo7Fpk4JYdMxIfxl9TfgPUITHt/sbUh7z8wOAH5yzhWY2e8JTfXxUFO/dB3wlZndALxKKFk6Hfhw+0Xrm/gA6hOBvs3osm4XA1cRSv4qXxpsK/AfLwISacbWmdmThOZYvCd8uUj1VjYCOqmkiTCzHs65n/e0rKkxszmEBvAPITRO8v+Ak51zB3sa2F7axcDp7S1PrikPoDazj4HfOufyvY6lPpnZFc65R7yOQ6Q5C1/n/WhgrnNuaXiOxcGa79N7SgibCDOb6ZwbUW3ZjKZ+BuT2epnZLcA659z/1VTXpqaZX5z+TUJJ/ESqThvRpC9HZWbn1LTcOfd8Q8ciItLQ1GXcyJlZP0KD9lPM7ORKq1pRafqZJmybmf0V+D1wkJn5gViPY6oPf3POvV5p4PQDhAZON/mL0xMasvCe10FEwOhK9xOAwwl1ISshFJFmTwlh49cXOI7QWZzHV1q+DbjIi4Dq2enAWcAFzrmNZtYVuM/jmOpDsx04HT7Lvdlxzl1R+bGZpRAaxiAi0uypy7iJMLP9nHNTvI5Daqc5XpzezF53zp1mZnOp+XKDTfpyYdWZWSwwxznX3+tYREQiTS2ETcdJZjafUGLxCaExXFc55170Nqy9E+4Gv4fQtWONHdcibeVpYHuvOV6c/k/hv8d5GkWEmNn77Eh0/UB/QnNJiog0e2ohbCLM7Cfn3DAzO4nQtB9XA1815RYnADNbBhzvnFvodSxSP8xsinNuP6/jqCszq3xmezmwyjm31qt4REQakub+aTq2n2jxa+CVJj6PXWWblAw2O03yZCfn3NfAIqAl0Boo9TYiEZGGoy7jpuN9M1tEqMv4UjNrAxR7HFN9mG5mrwHvUHUKk7c8i0j2VpPsdghPFXQfMInQ0IVHzOw659wbngYmItIA1GXchISvVLLVORcIT+7Zyjm30eu49oaZPVvDYuecO7/Bg5F60VTnkTSz2cCRzrnN4cdtgC+a+rAMEZHaUAthI2dmhznnvqw8B6GZVS7SpFvSnHPneR2D1Dvbc5FGybc9GQzLQsNqRCRKKCFs/A4CviQ0B6EjfBZupb9NOiE0s87AI8ABhOrzLfAnDeZv3MysPTCG0DGbVq2l+mxvotprn5jZp8Ar4cenAx95GI+ISINRl3EjZ2bXsnMiSPg+zrl/eRRavTCzz4GX2TEB8O+B3znnjvQuKtkdM7sQuIXQDxUDDgZud84942lg9SDcEj+OUL0mO+fe9jgkEZEGoYSwkTOzv4fv9iV0aa13CX1ZHU/oC+tCr2KrD9un09nTMmk8zGwxsL9zLiv8OB343jnX19vIIqupTqcjIlIb6jJu5JxztwGY2WfACOfctvDjW4H/eRhafck0s9+zo5vuTEJjt6TxWkvo0onbbQPWeBRLQ2qS0+mIiNSGEsKmoytV50UrBbp7E0q9Oh94FPg3oW7w7wGdaNK4rQN+MLN3CR2zE4AfzewaaPrDGHZD3Ski0mwpIWw6XiD0pfs2oS+mk4D/ehtSvbgDONc5lwNgZmnA/YQSRWmclodv270b/tvSg1hERKQeaAxhE2JmI4ADww8nO+dmeRlPfTCzWc654XtaJuI1vS5FpDlTC2ET4pybCcz0Oo565jOz1tVaCPW6bMTMbBRwE9CNSsfKOTfEs6DqSTOdTkdEZI/0xSteewD43szeIPQlfBpwp7chyR68BFwHzAWCHsdSb2qYTucRM6uYTsc5N8/L+EREIkldxuI5MxsAHEboS3iic26BxyHJbpjZt865cV7HUd+idTodERFQC6E0AuEEUElg0/F3M3samAiUbF/onGvSV80heqfTERFRQigidXYe0A+IZUeXcZO/jCLRO52OiIgSQhGps6HOucFeBxEBmk5HRKKWxhCKSJ2Y2VPAvzXWU0Sk+VBCKCJ1YmYLgZ7Az4TGEBrgmvq0M815Oh0RkT1RQigidWJm3Wpa7pxb1dCx1KfwWcY7TafT1OslIlIbGkMoInXinFtlZuOA3s65Z82sDdDC67jqwRbn3HteByEi4gW1EIpInZjZ34FRQF/nXB8z6wj8zzl3gMeh7RUzOxw4k+Y3nY6IyB6phVBE6uokYDjhyyg659abWXM4E7e5TqcjIrJHSghFpK5KnXPOzByAmSV7HVA9aa7T6YiI7JHP6wBEpMl53cyeBFLN7CLgC+Apj2OqD1PDl1EUEYk6aiEUkbpqA7wBbAX6ArcAR3gaUf0YB5xrZs1qOh0RkdrQSSUiUidmNtM5N6LasjlNPXFqrtPpiIjUhrqMRaRWzOwSM5sL9DWzOZVuPwNzvI5vb4UTvy7AYeH7hegzUkSihFoIRaRWzCwFaA3cBdxQadU251y2N1HVn+Y6nY6ISG0oIRQRAczsJ8LT6TjnhoeXNfmucBGR2lB3iIhISKkL/UJubtPpiIjskRJCEZGQ5jqdjojIHmnaGRGRkOY6nY6IyB5pDKGICM13Oh0RkdpQC6GIRDUzuwS4FNjHzCpPn9MS+M6bqEREGpZaCEUkqjX36XRERGpDCaGIiIhIlNNZxiIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUe7/AfUcZaoRF3dyAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "corr = df.corr().abs() #matriz correlaciones\n",
+ "\n",
+ "mask = np.triu(np.ones_like(corr, dtype=bool)) #Enmascaramos la diagonal superior\n",
+ "\n",
+ "f, ax = plt.subplots(figsize=(11, 9)) #Tamaño\n",
+ "\n",
+ "sns.heatmap(corr, mask=mask, cmap='coolwarm',annot=True, vmax=1, vmin=0,\n",
+ " square=True, linewidths=.5, cbar_kws={\"shrink\": .5})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2337cafd",
+ "metadata": {},
+ "source": [
+ "##### Queremos mirar el consumo, lo que tienes mas peso según nuestra matriz es:\n",
+ "- TEMP_OUTSIDE\n",
+ "- RAIN\n",
+ "- SPEED"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4939ef28",
+ "metadata": {},
+ "source": [
+ "#### TEMP_OUTSIDE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 182,
+ "id": "46473ac6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 182,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeiElEQVR4nO3deZgU1dXH8e9hWAYFIggqMuAgagwKSETUuCGC4hI33EjALcgbE2PcAzFRI3EJqNHEJeIaXIkoBhVRFBA0bqCIIhBREBFBwKiAsp/3j6qBnqF7pnumq7un5vd5nn5mar2nblefuXOr6ra5OyIiEj/18h2AiIhEQwleRCSmlOBFRGJKCV5EJKaU4EVEYqp+vgNI1LJlSy8tLc13GCIitcb06dOXu3urZMsKKsGXlpYybdq0fIchIlJrmNmnqZapi0ZEJKaU4EVEYkoJXkQkppTgRURiSgleRCSmlOBFRGJKCV5EJKaU4EVEYqqgHnSqja644gqWLFnCTjvtxLBhw/IdTl6pLkQKixJ8DS1ZsoTPP/8832EUBNXFFvpjJ4VACV7qlFwlXv2xk0IQ2wSvFpQko8QrdUlsE7w+yCJS1+kuGhGRmFKCFxGJKSV4EZGYUoIXEYkpJXgRkZhSghcRiSkleBGRmKoV98Hve/nIjLdpunwlRcDC5Ssz2n768DMzLktEpBDVigSfSwuv7ZTR+hu+agHUZ8NXn2a8bbur3s9ofRGRTKiLRkQkppTgRURiSgleRCSm1AcvKel6hEjtpha8iEhMqQUvkgb9NyO1kVrwIiIxFdsW/KaG25b7KSJS10Sa4M1sAbAS2AhscPduUZaXaPXuR+aqKMmTXD7hPKZpxkWJ5F0uWvCHu/vyHJQjIiIJYttFI1voC8hF6qaoE7wDL5qZA3e7+4iKK5jZIGAQQLt27SIOJ/taFm8CNoQ/C5O+gFykboo6wR/k7ovNbAdggpnNcfcpiSuESX8EQLdu3TzieLLuss5f5zsEkWrRf3bxF2mCd/fF4c8vzWwM0B2YUvlWIpIL+s8u/iK7D97MtjWzpmW/A0cCH0RVnoiIlBdlC35HYIyZlZXzqLuPj7A8ERFJEFmCd/dPgC5R7V9ERCqn2yRrmUJ+uKc23FEkUpcowUvW6I4iSUZ36+SPEryIREp36+SPErxIBNRdJYVACV4kAuqukkKgBC91ioaRlmTiep1ACV7qFA0jLcnE9TqBEnwdoFarSN2kBF8HqNUqUjcpwYvEQC4fgJs+/MyMy5L8UIIXkYwsvLZTRutv+KoFUJ8NX32a8bbtrno/o/WlvMhGkxQRkfxSC15EJEdyfTumEryIxEohX4/I9e2Y6qIREYkpJXgRkZhSghcRiSn1wYtIpDSyZv4owYtIpDSyZv4owYuIVFOhP/SlPngRkZhSC15E6ry4jriqBC9SR8U1qVVHXEdcVYIXqaPimtRkC/XBi4jElFrwIiI5kutnApTgRURyJNfPBETeRWNmRWb2rpk9G3VZIiKyRS764H8LzM5BOSIikiDSBG9mJcCxwL1RliMiIluLugV/K3AFoFGGRERyLLIEb2bHAV+6+/Qq1htkZtPMbNqyZcuiCkdEpM6JsgV/EHC8mS0AHgd6mtnDFVdy9xHu3s3du7Vq1SrCcERE6pbIEry7D3H3EncvBc4AJrp7/6jKExGR8vQkq4hITOXkQSd3nwxMzkVZIiISUAteRCSmlOBFRGJKCV5EJKaU4EVEYkoJXkQkppTgRURiSgleRCSmlOBFRGJKCV5EJKaU4EVEYkoJXkQkppTgRURiSgleRCSm0krwZraNmf3RzO4Jp3cPv7FJREQKVLot+AeAtcCB4fQi4M+RRCQiIlmRboLv4O7DgPUA7v49YJFFJSIiNZZugl9nZo0BBzCzDgQtehERKVDpfqPT1cB4oK2ZPULwhdpnRxWUiIjUXFoJ3t0nmNk7wAEEXTO/dfflkUYmIiI1ksltkm2AIqAhcKiZnRxNSCIikg1pteDN7H6gMzAL2BTOduCpiOISEZEaSrcP/gB37xhpJCIiklXpdtG8bmZK8CIitUi6Lfh/EiT5JQS3Rxrg7t45sshERKRG0k3w9wMDgPfZ0gcvIiIFLN0Ev9Ddx0YaiYiIZFW6CX6OmT0KPEPCE6zurrtoREQKVLoJvjFBYj8yYZ5ukxQRKWDpPsl6TqY7NrNiYArQKCxntLtfnel+RESketJ90OkBwoHGErn7uZVsthbo6e6rzKwB8KqZPe/ub1QvVBERyUS6XTTPJvxeDJwELK5sA3d3YFU42SB8bfVHQkREopFuF82TidNm9hjwUlXbmVkRMB3YDbjD3d9Mss4gYBBAu3bt0glHRETSUN3vZN0dqDIbu/tGd98HKAG6m9neSdYZ4e7d3L1bq1atqhmOiIhUlG4f/ErKd68sAX6XbiHu/rWZTQb6AB9kEqCIiFRPul00TTPdsZm1AtaHyb0x0Av4S6b7ERGR6kmri8bMDjKzbcPf+5vZLWa2SxWbtQYmmdlM4G1ggrs/W8U2IiKSJeneRXMX0MXMugBXAPcBI4HDUm3g7jOBrjWOUEREqiXdi6wbwtseTwBuc/fbgIy7bUREJHfSbcGvNLMhQH+Cr+srIrivXUREClS6LfjTCZ5M/YW7LyH4ftbhkUUlIiI1lu5dNEuAWxKmFxL0wYuISIFK9y6ak83sIzP7xsy+NbOVZvZt1MGJiEj1pdsHPwz4qbvPjjIYERHJnnT74JcquYuI1C7ptuCnmdko4Gn0jU4iIrVCugm+GfAd+kYnEZFaI7JvdBIRkfxK9y6aEjMbY2ZfmtlSM3vSzEqiDk5ERKov3YusDwBjgZ0JHnJ6JpwnIiIFKt0E38rdH3D3DeHrQUDfziEiUsDSTfDLw2GCi8JXf2BFlIGJiEjNpJvgzwVOI/gmpy+AUwBdeBURKWDp3iY5FDjL3f8HYGYtgJsIEr+IiBSgdFvwncuSO4C7f4W+zENEpKClm+DrmVnzsomwBZ9u619ERPIg3SR9M/AfMxtN8ATracB1kUUlIiI1lu6TrCPNbBrQEzDgZHf/MNLIRESkRtLuZgkTupK6iEgtkW4fvIiI1DJK8CIiMaUELyISU0rwIiIxpQQvIhJTSvAiIjEVWYI3s7ZmNsnMZpvZLDP7bVRliYjI1qIcbmADcKm7v2NmTYHpZjZBD0iJiORGZC14d//C3d8Jf18JzCb4NigREcmBnPTBm1kpweiTb+aiPBERyUGCN7MmwJPARe7+bZLlg8xsmplNW7ZsWdThiIjUGZEmeDNrQJDcH3H3p5Kt4+4j3L2bu3dr1Upf8yoiki1R3kVjwH3AbHe/JapyREQkuShb8AcBA4CeZjYjfB0TYXkiIpIgstsk3f1VgrHjRUQkD/Qkq4hITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jEVGTDBWfL+vXrubBHe0q2K8ZyMPjwN3Zr9IWEZs+evdW84uJiSkpKaNCgQc7iEJF4KvgEv2jRIjp3aEPDbZpiOcjwHYqWRl5GmUY7/6jctLuzYsUKFi1aRPv27XMWh4jEU8F30axZsyZnyT3fzIztt9+eNWvW5DsUEYmBgk/wQJ1I7mXq0rGKSLRqRYIXEZHMKcGn8N4Hcxj/8pR8hyEiUm1K8Cm8N2sO4ydOzXcYIiLVVvB30aTjrttu5rmnR7NT6zZs16IFe3XqQpOmzXji0ZGsX7+edqWl3HjrnTRuvA0vPPtv7rz1JuoVFdG0aVNGjn5mq/2tW7eea2+6nTVr1vKft97h8gsGcs2wvzN57MO02r4FmzZtYu9DjmXKM48y+NqbKG7UkA//+zFfLlvBsKsv55jePdi4cSN/uP6vTHn9bdauW8f/ndWP8waclofaEZG6qtYn+A/em8GE559h9PMT2bhhI6cc05O9OnWh99HHcurPBgBw2/DreerxR/j5Oedx1203M+Lhf7HjTq359ptvku6zYcMGXHXZBbwzcxa3XnclAHM/ns/jTz3Hb84bwMtTX6dzxx/SskVzAD5dtJiXnnyQTxZ8xlGnnkvPQw7k4dFjada0Ka+NG8Xates4/MT+9DrsJ7RvV5KbihGROq/Wd9G88/Yb9Ox9NMXFjdm2SRN69DoKgI/mzmZA3+M4sfehPPf0k8z771wAunbrzpWX/IYnHn2ITZs2pl3OWaefxCOjxwIw8vExnHnaiZuX9f3pUdSrV4/ddt2F0l1KmDtvPi+/8h8eGT2W7r37cshx/Vjxv2+YN//T7B24iEgVan0L3lPMv/LSC/nbPf9kz457M+aJx3j79dcAuPqGm5j57nRemTiBvn0O58nxk9iueYsqy2nbpjU7tNqeSa++yVvvvs+Dt/9l87KKtzaageP89c+/p3ePg6p9bCIiNVHrW/A/3m9/Jr/8AmvXrGH16lVMmTgBgNWrVtFqhx1Zv349z415cvP6CxfMp3PXffnNpYPZrkULvlj8edL9Nm2yLStXrS4375x+fTn3wsGc8tOjKCoq2jz/qWdfZNOmTXy8YCELPl3EHh3a0+uwgxgxchTr168H4KOPF7D6u++yffgiIinV+hZ8py5dObxXH07u04Od27Rlr8770KRpM35z2WD6ndCHnduUsPueP2L1qlUA3Hz9n/h0/ie4OwccdAh7dtw76X4P+0l3brrjXrr37svlFwzk1BOO5rgjezDokj9w5uknllt3j11L6dX3bL5ctoK/3/hHiosbce7P+vLpZ59zQJ/TcHdatmjOE/f/LerqEBHZrNYneICz/+9X/PqSK/j+++8465TjOfu88+nYqQtnDDhnq3VvG/FgWvts0fwHvDZuVLl5Mz+cS6eOP+SHu+1abv6B+3Vl+J9+V25evXr1GDrkIoYOuSijYxERyZbIEryZ3Q8cB3zp7smbyVlyzeBL+fijuaxbu5YT+p5Ox05dsl7G8NvvZcTIUeX63kVEClmULfgHgduBkRGWAcDwv99d7W1ffWUit9xw7ebpRmygtF0b/nVf+e6Uyy8YyOUXDNxq+3tvva7aZYuIRCmyBO/uU8ysNKr9Z8vBh/Xk4MN6bp7O5XDBIiJRyvtdNGY2yMymmdm0ZcuW5TscEZHYyHuCd/cR7t7N3bu1atUq3+GIiMRG3hO8iIhEQwleRCSmorxN8jGgB9DSzBYBV7v7fTXd74C/javpLsp56MJjqlxnm7ad2XvP3TdPn3rC0Vx+wUDueuBR/n7vQ3yy4DMWvT918+Bj7s6lV93A+IlT2aZxMff89Tq6duqY1bhFRKoS5V00/aLad641Lm7EWxOe3Gr+gft15eheh3HkKeUfqHph4lTmzV/IrFfH8dY7M7lwyFCmPvtYrsIVEQFi8iRrvuyz94+Szn/mhUn8/JTjMTP237cLX3+zki+WLqP1jrqILCK5owSfhu/XrKV7776bp8vGpkll8ZKllOy80+bpNq13ZPGSpUrwIpJTSvBpSNVFk4r71oMYVxxSWEQkarqLJgJtWu/EosVLNk9//sVSWu+4Qx4jEpG6SAk+Ascd2YNHRo/F3Xlz+nv8oFkTdc+ISM7Vui6adG5rzLaKffBHHn4wf/79xdxx38PccucDLFm2nP16ncxRPQ/hHzddS58jDmX8xKl0POhotmncmBG3DM15zCIitS7B58N3n81MOv/Xv+jPr3/Rf6v5ZsZt1/8h6rBERCqlLhoRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYUoIXEYmpWnebZJMHDs/q/ladM6nKdW687W5GPT2OoqJ61LN63P6Xq7ny+ltYsnQ5xY0asu222zDi5qHssVt7Jr36JkOG3sS69evp2qkjd998LfXr1+ebb1dyzm8G89nnX7Bh40Yu+uXZDLp4r6wei4hIIrXgq/DGtBk8/9IU3hj/BNNeGsO4UfduHkjswdtv5O2XnqL/qScw5M83s2nTJgZe9HseunM470x8mnYlO/PQE/8G4B8PPsaP9ujA2y89xYujH2DwtcNZt25dPg9NRGJOCb4KS75cxvYttqNRo4YAtGzRnJ13Kj+uzCEH7MvHCxay4n9f06hRQ3bvUArAEYceyNPjXgKCh59WrlqNu7Nq9Xc03+4H1K9f6/6BEpFaRAm+Cr0OO4hFi5ew98HHcuGQoUx5/e2t1nluwmT23nN3WrZozvr1G5j+3gcAjHnuxc2Djp1/zs+Y89EntP/x4XQ74iRu/tNg6tVT9YtIdNSErEKTbbfh9fH/4tU3p/PKf95iwPmXMXTIxQCcfcFgGhc3Ype2bbhl6BDMjIfuHM7l1wxj3bp1HHHoT6hfVATAhMmv0WWvPXnhifv5ZMFnHNPvPHqe2J9mzZrl8/BEJMaU4NNQVFTEYT/pzmE/6c7ee+7Bw2G/+oO338i+XfYut+4B3fZh4piRAEx45TXmffIpACNHjeGyCwZiZnRo347Stm2YM2cO3bt3z+3BiEidoT6CKvx33vzNSRrgvVlzaFeyc8r1v1y+AoC1a9dx8x33M3DAaQC0bdOaSa++AcDSZcv56JMF7LrrrhFGLiJ1Xa1rwadzW2NWy/vuOy75w/V8/e1K6tcvokNpO+4Ydg39Bl2cdP2/3vUA4156hU2bnEFnns7hB+8PwJCLfsl5F1/JvkechLvz599fTMuWLXN5KCJSx9S6BJ9rP+68F5PHPrLV/AmjH0y6/g1/vIwb/njZVvN33mkHnnvsnmyHJyKSkrpoRERiSgleRCSmakWCd/d8h5AzdelYRSRaBZ/gi4uLWffdyjqR+NydFStWUFxcnO9QRCQGCv4ia0lJCVNefIOS7Yoxi768jfZt9IWE6n+z9d/X4uJiSkpKchaDiMRXwSf4Bg0a8LfJ83NW3pimw3NWVrur3s9ZWSJS90TaRWNmfcxsrpnNM7PBUZYlIiLlRZbgzawIuAM4GugI9DOzjlGVJyIi5UXZgu8OzHP3T9x9HfA4cEKE5YmISAKL6u4UMzsF6OPuA8PpAcD+7n5BhfUGAYPCyR8CcyMJKH0tgeV5jqFQqC62UF1sobrYohDqYhd3b5VsQZQXWZPd87LVXxN3HwGMiDCOjJjZNHfvlu84CoHqYgvVxRaqiy0KvS6i7KJZBLRNmC4BFkdYnoiIJIgywb8N7G5m7c2sIXAGMDbC8kREJEFkXTTuvsHMLgBeAIqA+919VlTlZVHBdBcVANXFFqqLLVQXWxR0XUR2kVVERPKr4MeiERGR6lGCFxGJKSV4EZGYKtgEb2aNzeyVcMiDisvONrNlZjYjfA1MsY99zez9cCycv5kF41GaWSMzGxXOf9PMShO2GW9mX5vZsxnEepqZfWhms8zs0QxjudjMFprZ7emWl2Tf5erKzNqZ2YtmNjuMqzTJNinroJJyTjezmeFxDqtkvSHhfuea2VEJ8yeZ2Sozy+p9w0mO/y9m9kH4Oj3FNtU5/uvM7DMzW1Vh/iVhPc80s5fNbJcU20dyDiQ5/qTnsJk9Er4nH5jZ/WbWIMX+zjKzj8LXWWmUf6iZvWNmG8IHHMvmH57wGZ1hZmvM7MQk2yd9L8ysQ7jdqorbZKEupibEtdjMns5SXfwyfI9nmNmrljA8S6pYKmyftboAgjHIC/EF/Br4bYplZwO3p7GPt4ADCR66eh44Opz/K+Af4e9nAKMStjkC+CnwbJpx7g68CzQPp3fIJJZMjifdugImA73D35sA2yTZJmUdpChje2Ah0Cqc/idwRJL1OgLvAY2A9sDHQFGF2LpFda4AxwITCO4Q2xaYBjSr6fGH6x0AtAZWVZh/eFkdA+en2ldU50CS9z/pOQwcE5ZtwGPA+Un21QL4JPzZPPy9eRXllwKdgZHAKSnWaQF8VZ1zsWJ9Z6MuKmzzJHBmluqiWcLvxwPjM4wla3Xh7oXbggd+Dvy7uhubWWuCyn7dg5oZCZwYLj6BIEEBjAaOKGtNufvLwMoMijoPuMPd/xdu/2WGsWTD5roKWwz13X1CGM8qd/8uyTYp6yCFXYH/uvuycPoloG+K/T7u7mvdfT4wj2BcoiglnisdgVfcfYO7ryb4Y9MnRZyZHD/u/oa7f5Fk/qSEOn6D4KG+ciI+B8p9VlKdw+4+zkMEf2ySffHAUcAEd/8qPKcnkLz+Eve7wN1nApsqWe0U4PksnYuVSasuyphZU6An8HSSxdWpi8QvlNiWhKf308wt2ayLwkzwFjwYtau7L6hktb7hv8SjzaxtkuVtCJ6mLbMonFe27DMI7tcHviFooVbHHsAeZvaamb1hZslOgMpiqZEkdbUH8LWZPWVm75rZcEvSzUXmdTAP2NPMSs2sPkFySlXvnyVMZ+1Yk0ly/O8BR5vZNmbWkqB1XWmcWTgHEv2CoHWerLysnwNpflYqbtMAGACMT7I4qvfvDIL/GpLJyntRnboATgJerpCYt4orlFZdmNmvzexjYBhwYQaxlCszG+dlQSZ4ggF8vq5k+TNAqbt3JmhJ/jPJOpWNhZPWODlpqk/QTdMD6Afca2bbZRBLTVWsq/rAIcBlwH4ELe+zk2yXUUxhC+Z8YBQwFVgAbKjpfrOg3PG7+4vAOOA/BAnldXIUp5n1B7oByb41Jqp6qeqzksydwBR3n5pkWRT10hroRPDQY9JVslRmdeqiH6n/8FQrLne/w907AL8D/pBhPFmt/0JN8N8Dm7+YNLy4NcPMZgC4+wp3XxsuvgfYN8k+FlH+X9DEsXA2j5MTtkZ/QNA/WB2LgH+7+/qwS2IuQcJPN5aaKldXYVnvejBM8waCfz1/nCLujOrA3Z9x9/3d/UCC4/yosv2Goh6DqOLx4+7Xufs+7t6b4ANTaZxZOAcws17AlcDxCedmxfKiOAe2Ov7KmNnVQCvgkhSrRPH+nQaMcff1VZVZw/ci07rYnqD78Lmq4gplWhePk3k3XFbPy4JM8GFrscjMisPpK8MP7D6wuUVQ5nhgdpJ9fAGsNLMDwj6sM9nSNzcWKLsifgowMeyXTMnMbjCzk5IsepqgG4CwS2APgosx6cZSIxXrimAMoOZmVjZ8aE/gwySbpqwDM5uTrCwz2yH82ZzgYtC9KfZ7Rng3QHuCP3ZvZXxgaap4/GZWFH5wMbPOBBf/XkwRZ0bHn4qZdQXuJkjuW12DCeOM5BxI8v5XFudAgn7lfu6eqr/8BeBIM2sevs9HhvMq+wxUpbJWMlTj85hMJnUROpXggueaFMszrgszS2zcHUvyxkVlslIXm2VyRTaXL+A+oFeKZTcAswj6WycBeyYsm5HwezfgA4I7OW5ny9AMxcATBP3KbxH025VtMxVYRtAaWAQcFc5/FjgwSSwG3EKQRN8HzsgklnDZ2dTsLppydQX0BmaG8TwINAznX0uQhFLWAcG/uXNTlPNYeJwfVjjO44FrE6avDI9zLgl3ioTLJpP9u2g2H394XGUxvgHsk7BeTY9/WHhObAp/XhPOfwlYCswIX2NzeQ4kef9TncMbwrLL4rwqIa57E7Y/N6yXecA5CfNTfQb2C8tZDawAZiUsKwU+B+pV2KbK9yJh3UzuokmrLhLOxT4Vtq9pXdxGkJtmEOSmvdJ4XyKpC3cv6ATfFXgo33EkxPNChPuu9oc723UFHAdcGOGxTib7Cb7WHH8U50CuPitRfgaqKDeTBK+6SHhF+YUfNeLu71rwYEyRu28sgHiOqnqtzJnZxcAvCe7FrZZs1pW7p/2AV6bMbBLBRd9UfbHVUluOP5WangO5+qxE9RlIxcw6ENTJ0nS3UV1U2C78qyAiIjFTkBdZRUSk5pTgRURiSgleRCSmlOClVjOz7czsV3kot0eqUQHNbFySp5lFck4JXmq77QgeuioY7n6Mu3+d7zhElOCltrsRKBsre7iZXW5mb4cD0f0JIBwgbY6Z3WvBWOiPmFmvcIC4j8yse7jeNWb2kJlNDOefV0XZzcxsjAVjwf/DzOqF+1lgZi3Dcmeb2T0WjKH/opk1Dte50LaMIf94lBUkdZcSvNR2g4GPPRjGYgLB0AjdgX2Afc3s0HC93QieMuwM7An8DDiYYFC23yfsrzPBI+YHAleZ2c6VlN0duJRgIK0OwMlJ1tmdYDjpvQgGwiobYnkw0NWDAfN+mfbRimRACV7i5Mjw9S7wDkEiLxsbZL67v+/BGCyzCIaIdYLhHEoT9vFvd//e3ZcTPGpe2Vj2b3kwqNtGgmEcDk6yznx3nxH+Pj2hrJnAI+EIlMlGuxSpMSV4iRMDbvBwYDp3383d7wuXJY7wuClhehOUe6K74pN/lT0JmM66ieVuTCjrWOAOgpFQp4cjB4pklRK81HYrgabh7y8A55pZEwAza1M2AmYGTjCz4nBEyh4Eo3Om0t3M2od976cDr6ZTQLh+W3efBFxBcKG4SYZxilRJrQap1dx9RXix9AOCb1J6FHg9GJGXVUB/gpZzut4iGB+8HTDU3Ssb//t1gou8nYApwJg0yygCHjazHxD81/FX3XUjUdBYNCIhM7uGYLS+m/Idi0g2qItGRCSm1IIXqYSZdQIeqjB7rbvvn494RDKhBC8iElPqohERiSkleBGRmFKCFxGJKSV4EZGY+n/Fd36UyQPwYwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df['temp_bins'] = pd.qcut(df['temp_outside'], 5)\n",
+ "sns.barplot(x='temp_bins', y='consume', hue='gas_type',data=df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "53f04301",
+ "metadata": {},
+ "source": [
+ "### RAIN"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 185,
+ "id": "9f53ff2c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 185,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAV9klEQVR4nO3dfXRX1b3n8feXgAaFekfDqBgVvCDqEBI1iF1Uap3xibG4xrpEV7mC1qHa5cN1Kcr9w951cTpLwemqbR01yENZg9XxqVW0hVovPrTKEDR4UVTU+hAgCnjVoEVA9vyRQAME+EFy8ktO3q+1ssg5v3PO/v6y4MPO/u2zT6SUkCTlT49iFyBJyoYBL0k5ZcBLUk4Z8JKUUwa8JOVUz2IX0FJZWVkaMGBAscuQpC5jyZIla1NK/Vp7rVMF/IABA6itrS12GZLUZUTE+7t6zSEaScopA16ScsqAl6Sc6lRj8K3ZtGkT9fX1bNiwodildIjS0lLKy8vp1atXsUuR1MV1+oCvr6+nb9++DBgwgIgodjmZSimxbt066uvrGThwYLHLkdTFdfohmg0bNnDIIYfkPtwBIoJDDjmk2/y2IilbnT7ggW4R7lt1p/cqKVtdIuAlSXuv04/BF0tdXR2rVq1i9OjRxS5Fahc33XQTDQ0NHHbYYUydOrXY5agD2IPfhbq6Op566qlilyG1m4aGBlauXElDQ0OxS1EHyUXA33rrrRx33HGceeaZXHLJJdxxxx1Mnz6d4cOHU1lZyfe+9z2+/PJLAB566CGGDh1KZWUlo0aNavV6Gzdu5Mc//jEPPvggVVVVPPjggwwePJg1a9YAsGXLFgYNGsTatWuZMGECV155JaeddhrHHnss8+bNA+Drr79m0qRJDB8+nGHDhnHvvfd2zA9Dkpp1+YCvra3lkUce4ZVXXuHRRx/dtpbNBRdcwOLFi1m6dCnHH388M2bMAGDKlCnMnz+fpUuX8vjjj7d6zf32248pU6YwduxY6urqGDt2LOPGjWPu3LkAPP3001RWVlJWVgbAe++9x7PPPsuTTz7JlVdeyYYNG5gxYwYHHXQQixcvZvHixUyfPp2//OUvHfATkaQmXT7gX3jhBc4//3x69+5N3759+e53vwvAsmXLOO2006ioqGDu3Lm89tprAIwcOZIJEyYwffp0vv7664Lbufzyy5kzZw4AM2fO5LLLLtv22kUXXUSPHj0YPHgwxxxzDG+88QYLFixgzpw5VFVVMWLECNatW8eKFSva8Z1L0u51+Q9Zd/XQ8AkTJvCb3/yGyspKZs+ezcKFCwG45557WLRoEU8++SRVVVXU1dVxyCGH7LGdI488kkMPPZRnnnmGRYsWbevNw85TGyOClBK/+MUvOPvss/f9zUlSG3T5Hvy3vvUtnnjiCTZs2MD69et58sknAWhsbOTwww9n06ZN24XxO++8w4gRI5gyZQplZWV8+OGHrV63b9++NDY2brfviiuuYNy4cVx00UWUlJRs2//QQw+xZcsW3nnnHd59912GDBnC2Wefzd13382mTZsAeOutt/jiiy/a++1L0i51+YAfPnw4Y8aMobKykgsuuIDq6moOOuggbr31VkaMGMGZZ57Jcccdt+34SZMmUVFRwdChQxk1ahSVlZWtXvc73/kOr7/++rYPWQHGjBnD+vXrtxueARgyZAjf/va3Offcc7nnnnsoLS3liiuu4IQTTuCkk05i6NCh/PCHP2Tz5s3Z/SAkaQexqyGOYqiurk47PvBj+fLlHH/88bs9b/369fTp04cvv/ySUaNGUVNTw0knndTu9dXW1nL99dfz/PPPb9s3YcIEzjvvPC688MJ2a6eQ9yztrUsvvZSVK1dyxBFHbPs8SV1fRCxJKVW39lqXH4MHmDhxIq+//jobNmxg/PjxmYT7bbfdxt13373dcI8kdWa5CPj7779/n8+dP38+N99883b7Bg4cyGOPPbbdvsmTJzN58uSdzp89e/Y+ty1JWcpFwLfF2Wef7UwXqZvpLss2ZBrwEfF3wH3AUCABl6eUXsyyTUnak63LNuRd1j34O4Hfp5QujIj9gAMybk+S1CyzgI+IbwCjgAkAKaWNwMas2pMkbS/LefDHAGuAWRHxSkTcFxEH7nhQREyMiNqIqN26mJckqe2yHKLpCZwEXJNSWhQRdwKTgVtaHpRSqgFqoGke/J4uevKk9p2/u2TapXs8pqSkhIqKim3bF198MZMnT+aXv/wlP/vZz3jnnXdYs2bNtsXHUkpcd911PPXUUxxwwAHMnj07k6mbkrQ7WQZ8PVCfUlrUvP0wTQHf5fTu3Zu6urqd9o8cOZLzzjuP008/fbv9v/vd71ixYgUrVqxg0aJFXHXVVSxatGin8yUpS5kN0aSUGoAPI2JI867/DLyeVXvFcOKJJzJgwICd9v/2t7/l0ksvJSI49dRT+fTTT1m9enXHFyipW8t6LZprgLkR8SpQBfzPjNvLxF//+leqqqq2fW1dm2ZXVq5cyZFHHrltu7y8vFtMyZLUuWQ6TTKlVAe0ukZCV7KrIZpdaW19nx2XFJakrHX51SQ7o/Ly8u2WIa6vr6d///5FrEhSd2TAZ2DMmDHMmTOHlBIvvfQSBx10EIcffnixy5LUzXS5tWgKmdbY3raOwW91zjnncNttt/Hzn/+cqVOn0tDQwLBhwxg9ejT33Xcfo0eP5qmnnmLQoEEccMABzJo1q8NrlqQuF/DFsKtnt1577bVce+21O+2PCO66666sy5Kk3XKIRpJyyoCXpJwy4CUppxyDlzpIe6+jtLf6rm2kBPhgbWPRa3ms77Sitr/5k4OBnmz+5H0+mFKxx+OzdNSP/y2za9uDl6ScMuAlKae63BBNe/86VcivRz/5yU+4//77KSkpoUePHtx7773cfPPNrF69mtLSUvr06cPMmTMZMmQIzzzzDDfeeCMbN27k5JNPZsaMGfTs2ZPPPvuMcePG8cEHH7B582ZuvPFGLrvssnZ9L5LUkj34PXjxxReZN28eL7/8Mq+++ipPP/30toXE5s6dy9KlSxk/fjyTJk1iy5YtjB8/ngceeIBly5Zx9NFH86tf/QqAu+66ixNOOIGlS5eycOFCbrjhBjZu9AFXkrJjwO/B6tWrKSsrY//99wegrKxsp3VlRo0axdtvv826devYf//9OfbYYwE488wzeeSRR4Cmm58aGxtJKbF+/XoOPvhgevbscr9ASepCDPg9OOuss/jwww859thj+dGPfsSzzz670zFPPPEEFRUVlJWVsWnTJmprawF4+OGHty06dvXVV7N8+XL69+9PRUUFd955Jz16+OOXlB0TZg/69OnDkiVLqKmpoV+/fowdO5bZs2cD8P3vf5+qqir+9Kc/cccddxARPPDAA1x//fWccsop9O3bd1svff78+VRVVbFq1Srq6uq4+uqr+fzzz4v4ziTlnWMEBSgpKeH000/n9NNPp6KiYtu4+ty5c6mu3n65+29+85s8//zzACxYsIC33noLgFmzZjF58mQigkGDBjFw4EDeeOMNTjnllI59M5K6DXvwe/Dmm2+yYsWKbdt1dXUcffTRuzz+448/BuCrr77i9ttv58orrwTgqKOO4o9//CMAH330EW+++SbHHHNMhpVL6u66XA8+y7u+WrN+/XquueYaPv30U3r27MmgQYOoqanhwgsvbPX4adOmMW/ePLZs2cJVV13FGWecAcAtt9zChAkTqKioIKXE7bffTllZWUe+FUndTJcL+I528skn8+c//3mn/QsXLmz1+GnTpjFt2s63Yffv358FCxa0d3mStEsO0UhSThnwkpRTXSLgU0rFLqHDdKf3KilbnT7gS0tLWbduXbcIvpQS69ato7S0tNilSLlWVrqFQ3tvpqx0S7FLyVSmH7JGxHtAI/A1sDmlVL37M3ZWXl5OfX09a9asae/yOqXS0lLKy8uLXYaUazcO+7TYJXSIjphF852U0tp9PblXr14MHDiwPeuRpG6h0w/RSJL2TdY9+AQsiIgE3JtSqtnxgIiYCEyEprs9u7qbbrqJhoYGDjvsMKZOnVrsciR1Y1kH/MiU0qqI+I/AHyLijZTScy0PaA79GoDq6uou/0lqQ0MDK1euLHYZnYL/2UnFlWnAp5RWNf/5cUQ8BpwCPLf7s5QX/mfXuWzZ78Dt/lT+ZRbwEXEg0COl1Nj8/VnAlKzak7R7Xww+q9glqINl2YM/FHgsIra2c39K6fcZtidJaiGzgE8pvQtUZnX91pw8aU5HNteqvmsbKQE+WNtY1HqWTLu0aG1L6hycJilJOeVywTn1wZSKYpfA5k8OBnqy+ZP3i1pPRz9DQOos7MFLUk4Z8JKUUw7RtDPnGkvqLAz4duZcY0mdhQGvzDSttZ3/NbelzsqAV2a6y5rbUmflh6ySlFMGvCTllAEvSTllwEtSThnwkpRTBrwk5ZQBL0k5ZcBLUk4Z8JKUUwa8JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvSTmVecBHRElEvBIR87JuS5L0Nx3Rg78OWN4B7UiSWsg04COiHPivwH1ZtiNJ2lnWPfifATcBPpRTkjpYQQEfEQdExC0RMb15e3BEnLeHc84DPk4pLdnDcRMjojYiatesWVNw4ZKk3Su0Bz8L+Ar4ZvN2PfA/9nDOSGBMRLwHPACcERH/Z8eDUko1KaXqlFJ1v379CixHkrQnhQb836eUpgKbAFJKfwVidyeklP4ppVSeUhoAXAw8k1Ia15ZiJUmFKzTgN0ZEbyABRMTf09SjlyR1Uj0LPO6fgd8DR0bEXJqGXyYU2khKaSGwcC9rkyS1QUEBn1L6Q0S8DJxK09DMdSmltZlWJklqk72ZJnkEUALsB4yKiAuyKUmS1B4K6sFHxExgGPAaf5vTnoBHM6pLktRGhY7Bn5pSOiHTSiRJ7arQIZoXI8KAl6QupNAe/K9oCvkGmqZHBpBSSsMyq0yS1CaFBvxM4B+Af8N1ZSSpSyg04D9IKT2eaSWSpHZVaMC/ERH3A0/Q4g7WlJKzaCSpkyo04HvTFOxntdjnNElJ6sQKvZP1sqwLkSS1r0JvdJpF80JjLaWULm/3iiRJ7aLQIZqWD8wuBf4bsKr9y5EktZdCh2geabkdEb8Gns6kIklSu9jXZ7IOBo5qz0IkSe2r0DH4RrYfg28Abs6kIklSuyh0iKZv1oVIktpXQUM0ETEyIg5s/n5cRPw0Io7OtjRJUlsUOgZ/N/BlRFQCNwHvA3Myq0qS1GaFBvzmlFICzgfuTCndCThsI0mdWKHz4Bsj4p+AcTQ9rq8E6JVdWZKktiq0Bz+WprVofpBSaqDp+azTMqtKktRmhc6iaQB+2mL7AxyDl6ROrdBZNBdExIqI+CwiPo+Ixoj4fA/nlEbE/4uIpRHxWkT8S/uULEkqRKFj8FOB76aUlu/Ftb8CzkgprY+IXsALEfG7lNJLe12lJGmvFRrwH+1luNM862Z982av5q+dVqSUJGWj0ICvjYgHgd+wF090ap5tswQYBNyVUlq0j3VKkvZSoQH/DeBL9vKJTimlr4GqiPg74LGIGJpSWtbymIiYCEwEOOoo1y+TpPbSIU90Sil9GhELgXOAZTu8VgPUAFRXVzuEI0ntpNBZNOUR8VhEfBwRH0XEIxFRvodz+jX33ImI3sB/Ad5oc8WSpIIUeqPTLOBxoD9NNzk90bxvdw4H/jUiXgUWA39IKc3bwzmSpHZS6Bh8v5RSy0CfHRH/uLsTUkqvAifua2GSpLYptAe/tnmZ4JLmr3HAuiwLkyS1TaEBfzlwEU1PcloNXAi06YNXSVK2Ch2iuRUYn1L6d4CIOBi4g6bglyR1QoX24IdtDXeAlNInOL4uSZ1aoQHfIyL+w9aN5h58ob1/SVIRFBrS/wv4c0Q8TNMdrBcBP8msKklSmxV6J+uciKgFzgACuCCl9HqmlUmS2qTgYZbmQDfUJamLKHQMXpLUxRjwkpRTBrwk5ZQBL0k5ZcBLUk4Z8JKUUwa8JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvSTllwEtSThnwkpRTBrwk5VRmAR8RR0bEv0bE8oh4LSKuy6otSdLOsnyu6mbghpTSyxHRF1gSEX/wSVCS1DEy68GnlFanlF5u/r4RWA4ckVV7kqTtdcgYfEQMAE4EFnVEe5KkDgj4iOgDPAL8Y0rp81ZenxgRtRFRu2bNmqzLkaRuI9OAj4heNIX73JTSo60dk1KqSSlVp5Sq+/Xrl2U5ktStZDmLJoAZwPKU0k+zakeS1Lose/AjgX8AzoiIuuav0Rm2J0lqIbNpkimlF4DI6vqSpN3zTlZJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnMgv4iJgZER9HxLKs2pAk7VqWPfjZwDkZXl+StBuZBXxK6Tngk6yuL0navaKPwUfExIiojYjaNWvWFLscScqNogd8SqkmpVSdUqru169fscuRpNwoesBLkrJhwEtSTmU5TfLXwIvAkIioj4gfZNWWJGlnPbO6cErpkqyuLUnaM4doJCmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknIq04CPiHMi4s2IeDsiJmfZliRpe5kFfESUAHcB5wInAJdExAlZtSdJ2l6WPfhTgLdTSu+mlDYCDwDnZ9ieJKmFnhle+wjgwxbb9cCIHQ+KiInAxObN9RHxZoY1dRtHQxmwtth1dAr/HMWuQDvw72cLbf/7efSuXsgy4FurOu20I6UaoCbDOrqliKhNKVUXuw6pNf797BhZDtHUA0e22C4HVmXYniSphSwDfjEwOCIGRsR+wMXA4xm2J0lqIbMhmpTS5oi4GpgPlAAzU0qvZdWeduKwlzoz/352gEhpp2FxSVIOeCerJOWUAS9JOWXA55BLRKizioiZEfFxRCwrdi3dgQGfMy4RoU5uNnBOsYvoLgz4/HGJCHVaKaXngE+KXUd3YcDnT2tLRBxRpFokFZEBnz8FLREhKf8M+PxxiQhJgAGfRy4RIQkw4HMnpbQZ2LpExHLg/7pEhDqLiPg18CIwJCLqI+IHxa4pz1yqQJJyyh68JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvFSgi7nPhNnUlTpOUWoiIoOnfxZZi1yK1lT14dXsRMSAilkfE/wZeBmZERG1EvBYR/9LiuIURUd38/fqI+ElELI2IlyLi0GLVL+2KAS81GQLMSSmdCNyQUqoGhgHfjohhrRx/IPBSSqkSeA747x1XqlQYA15q8n5K6aXm7y+KiJeBV4D/RNODU3a0EZjX/P0SYEDmFUp7qWexC5A6iS8AImIgcCMwPKX07xExGyht5fhN6W8fYH2N/5bUCdmDl7b3DZrC/rPmcfVzi1yPtM/sdUgtpJSWRsQrwGvAu8CfilyStM+cJilJOeUQjSTllAEvSTllwEtSThnwkpRTBrwk5ZQBL0k5ZcBLUk79fxwiBIKcZAT5AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.barplot(data=df, y=\"consume\", x =\"rain\" , hue=\"gas_type\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f19e9b22",
+ "metadata": {},
+ "source": [
+ "### SPEED:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 188,
+ "id": "3ec5c678",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 188,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgFklEQVR4nO3deXwU9f3H8deHcAQRFCSKEBFFrSKCaKQqKoioeNQL6tGKV5VfW9FqPQq11Yr1AkWpV0tVKJ5UFItKURTxqqigAip4ISpgFLAiYLk/vz9mkixhk+yGnd3N5P18PPaRmdnvzPez32Q/+e53Z75j7o6IiMRPg1wHICIi0VCCFxGJKSV4EZGYUoIXEYkpJXgRkZhqmOsAErVu3do7dOiQ6zBEROqMmTNnLnX3omTP5VWC79ChAzNmzMh1GCIidYaZfV7VcxqiERGJKSV4EZGYUoIXEYkpJXgRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYyqsLneqiK6+8ktLSUtq0acOwYcNyHY6ISDkl+C1UWlrKokWLch2GiMhmNEQjIhJTSvAiIjGlBC8iElNK8CIiMaUELyISU0rwIiIxFWmCN7NtzWy8mc0zs7lmdlCU9YmISIWoz4MfCUx29/5m1hjYKuL6yukCJBGp7yJL8GbWAjgMOAfA3dcCa6OqrzJdgCQi9V2UQzS7AkuA0Wb2jpnda2bNKhcys4FmNsPMZixZsiTCcERE6pcoE3xDYD/gHnfvBqwCBlcu5O6j3L3E3UuKipLeGFxERGohygS/EFjo7m+E6+MJEr6IiGRBZAne3UuBL83sR+GmI4APoqpPREQ2FfVZNBcBD4Vn0MwHzo24PhERCUWa4N39XaAkyjpERCQ5XckqIhJTuuFHJV8M3Set8uu/bQU0ZP23n6e9b/ur56RVXkQkHerBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMRUnbiSdf8rxqa9T/OlKygAvli6Iq39JzRPuyoRkbykHryISEwpwYuIxJQSvIhITCnBi4jEVJ34kjWftS7cCKwPf4qI5A8l+C10eZfvch2CiEhSGqIREYkpJXgRkZjSEI2ISJZceeWVlJaW0qZNG4YNGxZ5fUrw9UC2/6hEJLnS0lIWLVqUtfqU4OuBbP9RidQ1ce0ERZrgzWwBsALYAKx395Io6xMRqY24doKy0YM/3N2XZqEeERFJoLNoRERiKuoevAPPmZkDf3P3URHXV25j42ab/BSB+I61iiQTdYLv4e6LzWx7YIqZzXP3lxMLmNlAYCBA+/btM1bxqt2PytixJD7iOtYqkkykQzTuvjj8+Q0wAeiepMwody9x95KioqIowxERqVci68GbWTOggbuvCJePAoZGVV99kc27W80cflbadUndEdfhquzeAW54WvWs/7YV0JD1337OF0P3SWvf9lfPSas8RDtEswMwwczK6nnY3SdHWJ+IpEHDVfEXWYJ39/lA16iOLyIi1dOVrJIxcf3IL1JXKcFLxugjv0h+UYIXkUjpk13uKMGLSKT0yS53lOBFIqBea92SrSvfs30PZyX4ekDTNmSfeq11S7aufM/2PZyV4OuBuE7boIu+KqgtJBkleKlSulfaZfsqPRGpnqYLFhGJKfXgRSQt+mRXd6gHLyISU0rwIiIxpSEakRRoWELqIiV4yZhsX8QhItVTgpeMyfZFHCJSPSV4kXpKVzjHnxK81CtKahWydYWzhu5yRwle6pW4TtuQzzR0lzs6TVJEJKbUgxeJgIYlJB8owYtEQMMSkg80RCMiElNK8CIiMaUELyISU5EneDMrMLN3zOzpqOsSEZEK2ejB/waYm4V6REQkQaQJ3syKgeOAe6OsR0RENhd1D/524EpAJwOLiGRZZAnezI4HvnH3mTWUG2hmM8xsxpIlS6IKR0Sk3omyB98DOMHMFgCPAr3N7MHKhdx9lLuXuHtJUVFRhOGIiNQvkSV4dx/i7sXu3gE4HZjq7mdGVZ+IiGwqpQRvZluZ2R/N7O/h+u7hEIyIiOSpVHvwo4E1wEHh+kLgz6lW4u7T3F3/EEREsijVBN/R3YcB6wDc/X+ARRaViIhssVQT/Fozawo4gJl1JOjRi4hInkp1uuBrgMnATmb2EMEZMudEFZSIiGy5lBK8u08xs7eBAwmGZn7j7ksjjUxERLZIOqdJtgMKgMbAYWZ2SjQhiYhIJqTUgzez+4EuwPtUTDvgwBMRxSUiIlso1TH4A929U6SRiIhIRqU6RPO6mSnBi4jUIan24P9BkORLCU6PNMDdvUtkkYmIyBZJNcHfDwwA5qCpf0VE6oRUE/wX7j4x0khERCSjUk3w88zsYeApEq5gdXedRSMikqdSTfBNCRL7UQnbdJqkiEgeS/VK1nOjDkRERDIr1QudRhNONJbI3c/LeEQiIpIRqQ7RPJ2wXAicDCzOfDgiIpIpqQ7RPJ64bmaPAM9HEpGIiGREbe/JujvQPpOBiIhIZqU6Br+CTcfgS4HfRRKRiIhkRKpDNM2jDkRERDIrpSEaM+thZs3C5TPNbISZ7RxtaCIisiVSHYO/B/jBzLoCVwKfA2Mji0pERLZYqgl+vbs7cCIw0t1HAhq2ERHJY6meB7/CzIYAZxLcrq8AaBRdWCIisqVS7cGfRjAXzS/cvZTg/qzDq9vBzArN7E0zm2Vm75vZtVsYq4iIpCHVs2hKgREJ619Q8xj8GqC3u680s0bAq2b2b3efXutoRUQkZameRXOKmX1sZsvN7HszW2Fm31e3jwdWhquNwsdm89mIiEg0Uh2iGQac4O7buHsLd2/u7i1q2snMCszsXeAbYIq7v5GkzEAzm2FmM5YsWZJW8CIiUrVUE/zX7j433YO7+wZ33xcoBrqbWeckZUa5e4m7lxQVFaVbhYiIVCHVs2hmmNk44ElqcUcnd//OzKYBfYH30oxRRERqIdUE3wL4gTTu6GRmRcC6MLk3BfoAN9c2UBERSU+Ud3TaEfhHeM58A+Cf7v50DfuIiEiGpDqbZDFwB9CDoOf+KvAbd19Y1T7uPhvolokgRUQkfal+yToamAi0JbjI6alwm4iI5KlUE3yRu4929/XhYwygU15ERPJYqgl+aThNcEH4OBNYFmVgIiKyZVJN8OcBpxLcyekroD9Qmy9eRUQkS1I9TfI64Gx3/y+AmbUCbiFI/CIikodS7cF3KUvuAO7+LTpDRkQkr6Wa4BuYWcuylbAHn2rvX0REciDVJH0r8B8zG09wHvypwPWRRSUiIlss1StZx5rZDKA3YMAp7v5BpJGJiMgWSXmYJUzoSuoiInVEqmPwIiJSxyjBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jEVGQJ3sx2MrMXzWyumb1vZr+Jqi4REdlclLfdWw9c5u5vm1lzYKaZTdGNQkREsiOyHry7f+Xub4fLK4C5QLuo6hMRkU1lZQzezDoA3YA3kjw30MxmmNmMJUuWZCMcEZF6IfIEb2ZbA48Dl7j795Wfd/dR7l7i7iVFRUVRhyMiUm9EmuDNrBFBcn/I3Z+Isi4REdlUlGfRGHAfMNfdR0RVj4iIJBdlD74HMADobWbvho9jI6xPREQSRHaapLu/ClhUxxcRkerpSlYRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYUoIXEYmpKGeTzIh169Zxca9dKN62EMvCSZfL7fboKwnNnTt3s22FhYUUFxfTqFGjrMUhIvGU9wl+4cKFdOnYjsZbNceykOE7FnwdeR1lmrTda5N1d2fZsmUsXLiQXXbZJWtxiEg85f0QzerVq7OW3HPNzNhuu+1YvXp1rkMRkRjI+wQP1IvkXqY+vVYRiVadSPAiIpI+JfgqzHpvHpNfeDnXYYiI1JoSfBVmvT+PyVNfyXUYIiK1lvdn0aTinpG38syT42mzYzu2bdWKvffpytbNW/DYw2NZt24d7Tt04Kbb76Zp06149ul/cfftt9CgoIDmzZszdvxTmx1v7dp1DL3lTlavXsN/3nybKwadz5+G3cG0iQ9StF0rNm7cSOdDj+Plpx5m8NBbKGzSmA8++pRvlixj2DVXcOyRvdiwYQN/uOE2Xn79LdasXcv/nX0GFww4NQetIyL1VZ1P8O/Nepcp/36K8f+eyob1G+h/bG/23qcrRx5zHD/92QAARg6/gScefYifn3sB94y8lVEP/pMd2uzI98uXJz1m48aNuPryQbw9+31uv/4qAD789DMefeIZLrpgAC+88jpdOv2I1q1aAvD5wsU8//gY5i/4kqN/eh69Dz2IB8dPpEXz5rw2aRxr1qzl8JPOpE/Pg9mlfXF2GkZE6r06P0Tz9lvT6X3kMRQWNqXZ1lvTq8/RAHz84VwG9Duek448jGeefJxPPvoQgG4l3bnqtxfx2MMPsHHjhpTrOfu0k3lo/EQAxj46gbNOPan8uX4/OZoGDRqw264702HnYj785DNeeOk/PDR+It2P7Mehx5/Bsv8u55PPPs/cCxcRqUGd78F7Fduvuuxi/vL3f7Bnp85MeOwR3nr9NQCuufEWZr8zk5emTqFf38N5fPKLbNuyVY317NRuR7Yv2o4XX32DN9+Zw5g7by5/rvKpjWbgOLf9+fcc2atHrV+biMiWqPM9+P0O+DHTXniWNatXs2rVSl6eOgWAVStXUrT9Dqxbt45nJjxeXv6LBZ/Rpdv+XHTZYLZt1YqvFi9KetzmWzdjxcpVm2w794x+nHfxYPr/5GgKCgrKtz/x9HNs3LiRTxd8wYLPF7JHx13o07MHo8aOY926dQB8/OkCVv3wQ6ZfvohIlep8D36frt04vE9fTunbi7btdmLvLvuydfMWXHT5YM44sS9t2xWz+557sWrlSgBuveFaPv9sPu7OgT0OZc9OnZMet+fB3bnlrnvpfmQ/rhh0Pj898RiOP6oXA3/7B8467aRNyu6xawf69DuHb5Ys446b/khhYRPO+1k/Pv9yEQf2PRV3p3Wrljx2/1+ibg4RkXJ1PsEDnPN/v+bC317J//73A2f3P4FzLvgVnfbpyukDzt2s7MhRY1I6ZquW2/DapHGbbJv9wYfs0+lH/Gi3XTfZftAB3Rh+7e822dagQQOuG3IJ1w25JK3XIiKSKbFI8H8afBmffvwha9es4cR+p9Fpn64Zr2P4nfcyauy4TcbeRUTyWSwS/PA7/lbrfV99aSojbhxavt6E9XRo345/3rfpcMoVg87nikHnb7b/vbdfX+u6RUSiFIsEvyUO6dmbQ3r2Ll/P5nTBIiJRqvNn0YiISHKRJXgzu9/MvjGz96KqQ0REqhZlD34M0DfC44uISDUiS/Du/jLwbVTHFxGR6uX8S1YzGwgMBGjfvn2N5Qf8ZVJG63/g4mNrLLPVTl3ovOfu5es/PfEYrhh0PveMfpg77n2A+Qu+ZOGcV8onH3N3Lrv6RiZPfYWtmhby99uup9s+nTIat4hITXKe4N19FDAKoKSkpKqpZXKqaWET3pzy+GbbDzqgG8f06clR/Te9oOrZqa/wyWdf8P6rk3jz7dlcPOQ6Xnn6kWyFKyIC5EGCr8v27bxX0u1PPfsiP+9/AmbGj/fvynfLV/DV10vYcYeiLEcoIvWZEnwK/rd6Dd2P7Fe+XjY3TVUWl35Ncds25evtdtyBxaVfK8GLSFZFluDN7BGgF9DazBYC17j7fVHVF6Wqhmiq4r75SFPlKYVFRKIWWYJ39zOiOna+a7djGxYuLi1fX/TV1+y4w/Y5jEhE6iNdyRqB44/qxUPjJ+LuvDFzFtu02FrDMyKSdXVuDD6V0xozrfIY/FGHH8Kff38pd933ICPuHk3pkqUc0OcUju59KH+9ZSh9jziMyVNfoVOPY9iqaVNGjbgu6zGLiNS5BJ8LP3w5O+n2C39xJhf+4szNtpsZI2/4Q9RhiYhUS0M0IiIxpQQvIhJTSvAiIjGlBC8iElNK8CIiMaUELyISU3XuNMmtRx+e0eOtPPfFGsvcNPJvjHtyEgUFDWhgDbjz5mu46oYRlH69lMImjWnWbCtG3Xode+y2Cy+++gZDrruFtevW0W2fTvzt1qE0bNiQ5d+v4NyLBvPloq9Yv2EDl/zyHAZeundGX4uISCL14Gswfca7/Pv5l5k++TFmPD+BSePuLZ9IbMydN/HW809w5k9PZMifb2Xjxo2cf8nveeDu4bw99UnaF7flgcf+BcBfxzzCXnt05K3nn+C58aMZPHQ4a9euzeVLE5GYU4KvQek3S9iu1bY0adIYgNatWtK2zabzyhx64P58uuALlv33O5o0aczuHTsAcMRhB/HkpOeB4OKnFStX4e6sXPUDLbfdhoYN69wHKBGpQ5Tga9CnZw8WLi6l8yHHcfGQ63j59bc2K/PMlGl03nN3Wrdqybp165k5K7jP+IRnniufdOxX5/6MeR/PZ5f9DqfkiJO59drBNGig5heR6KgLWYOtm23F65P/yatvzOSl/7zJgF9dznVDLgXgnEGDaVrYhJ13aseI64ZgZjxw93Cu+NMw1q5dyxGHHUzDggIApkx7ja5778mzj93P/AVfcuwZF9D7pDNp0aJFLl+eiMSYEnwKCgoK6Hlwd3oe3J3Oe+7Bg+G4+pg7b2L/rp03KXtgyb5MnTAWgCkvvcYn8z8HYOy4CVw+6HzMjI67tKfDTu2YN28e3bt3z+6LEZF6Q2MENfjok8/KkzTArPfn0b64bZXlv1m6DIA1a9Zy6133c/6AUwHYqd2OvPjqdAC+XrKUj+cvYNddd40wchGp7+pcDz6V0xozWt8PP/DbP9zAd9+voGHDAjp2aM9dw/7EGQMvTVr+tntGM+n5l9i40Rl41mkcfsiPARhyyS+54NKr2P+Ik3F3/vz7S2ndunU2X4qI1DN1LsFn235d9mbaxIc22z5l/Jik5W/84+Xc+MfLN9vets32PPPI3zMdnohIlTREIyISU0rwIiIxVScSvLvnOoSsqU+vVUSilfcJvrCwkLU/rKgXic/dWbZsGYWFhbkORURiIO+/ZC0uLubl56ZTvG0hZtHXt8G+j76SUMPlm/9/LSwspLi4OGsxiEh85X2Cb9SoEX+Z9lnW6pvQfHjW6mp/9Zys1SUi9U+kQzRm1tfMPjSzT8xscJR1iYjIpiJL8GZWANwFHAN0As4ws05R1SciIpuKsgffHfjE3ee7+1rgUeDECOsTEZEEFtXZKWbWH+jr7ueH6wOAH7v7oErlBgIDw9UfAR9GElDqWgNLcxxDvlBbVFBbVFBbVMiHttjZ3YuSPRHll6zJznnZ7L+Ju48CRkUYR1rMbIa7l+Q6jnygtqigtqigtqiQ720R5RDNQmCnhPViYHGE9YmISIIoE/xbwO5mtouZNQZOByZGWJ+IiCSIbIjG3deb2SDgWaAAuN/d34+qvgzKm+GiPKC2qKC2qKC2qJDXbRHZl6wiIpJbeT8XjYiI1I4SvIhITCnBi4jEVF4keDNramYvhdMbYGaTzew7M3u6Urn7zGyWmc02s/FmtnUVx7vZzN4LH6clbO9tZm+H2/9hZg3D7S3NbEJ43DfNrHMKMSeNxQJ/CeffmW1m+1Wx/y5m9oaZfWxm48IzjTCz08J9n06yT3k7mdnOZjbTzN41s/fN7Jc1HTvJ8c4Oy3xsZmen8Jp/aWZzwjpfTZx6wsyGhXHMDV//ZtdBmFmTMJ5Pwvg6hNs7hsdcWVMMtWiLI8LfeVnMu2WiLRL2629mbmYl4XqVsWSjLRK2tTCzRWZ2Z8K2VN8/6f5dnGNmS8K43zWzsosbc94WZrYhIa6JCeWiaoudzeyF8LjTzKw44bkaj5XJtgCCOchz/QAuBH6TsH4E8BPg6UrlWiQsjwAGJznWccAUgjOEmgEzgBYE/8y+BPYIyw0FfhEuDweuCZf3BF5IIeaksQDHAv8muNDrQOCNKvb/J3B6uPxX4FcJz/Wq/NortxPQGGgSLm8NLADa1nTshGO1AuaHP1uGyy3TeM0nAJPD5YOB1wjOlioAXgd6Jdn/18Bfw+XTgXGVnl9Zm7+ZGtriI2CvhPrHZKItwv2aAy8D04GSmmLJRlskbBsJPAzcmeb7pzZ/F+ck1pOwPedtUdW+EbbFY8DZ4XJv4IF0jpXJtnD3/OjBAz8H/lW24u4vACsqF3L37yHoJQNNSXJlLMHEZi+5+3p3XwXMAvoC2wFr3P2jsNwUoF/CPi+EdcwDOpjZDtUFXE0sJwJjPTAd2NbMdkzcN9ynNzA+3PQP4KTq6guVt5O7r3X3NeH2JoSfxtI49tHAFHf/1t3/S9AefaurvOw1h5pR8ZodKCR8QwONgK+THOLEMB7C+I5I1tNPUY1tkRBbi3B5G5JfbJd2W4SuA4YBq8srqz6WRJG0BYCZ7Q/sADyXWCjF909t22Iz+dAW1cQWVVuU5xLgRSrm30r1WJlsi9wneAuGD3Z19wUplh8NlBL0tO9IUmQWcIyZbWVmrYHDCa6oXQo0KvsoDfSn4krbWcAp4fG7AzsTXHlbm1jaEXxSKLMw3JZoO+A7d19fTZnKdW3WTma2k5nNDuu72d0Xp3HsVOJMFseFZvYpQWK7GMDdXyf4Y/4qfDzr7nOrqzOMb3kYb1rSaAuA84FJZrYQGADcVF1coVR+H92Andw92VBaVbEkrTOTbWFmDYBbgSuqKF/T+6dWfxdAv4ThjvIr2HPZFqFCM5thZtPN7KRK5aNoi1lUdBxPBpqb2XZpHCsjbVEm5wmeYLKe71It7O7nAm2BucBpSZ5/DpgE/Ad4hGC4YL0Hn29OB24zszcJPiGUJcGbgJZm9i5wEfBOwnPpxpLKHDwpzdNTyWbt5O5funsXYDfg7PBTR6rHrk0MuPtd7t4R+B3wBwALxrX3Ivin2A7obWaHZarOJFJtC4BLgWPdvRgYTfBxfIviCpPobcBlyZ6vJpZa11mNym3xa2CSu3+ZrHBN759axvUU0CF8zc9T0QPNdVsAtPdgrpifAbebWceE2KJoi8uBnmb2DtATWESQSyJ9X1YlHxL8/wg+3qfM3TcA46j4T1n5+evdfV93P5KgwT4Ot7/u7oe6e3eCsdOy7d+7+7nuvi9wFlAEpHQbqSSxpDIHz1KCoZuG1ZSprMp2CntF7wOHpnHsLZ0r6FEqhn5OBqa7+0p3X0nwHcSB1dUZxrcN8G0adZZJqS3MrAjo6u5vhE+PI/i+oMq4QjW1RXOgMzDNzBYQvNaJCZ8ON4ulujoz3BYHAYPCuG4BzjKzTT611PD+Sfvvwt2XJQzF/B3YP0mZXLRFWb24+3xgGtCt0vOZbovF7n6Ku3cDrgq3LU/jWJlqCyAPEnw4HlVgZtUmeQvsVrZM8CXsvCTlCsKPRJhZF6AL4VikmW0f/mxC0AP9a7i+rVWcaXI+8HLCGN0LZtauUh3VxTKR4E1lZnYgsNzdv6r0mp1gSKN/uOlsahg3rNxOZlZsZk3D5ZZAD+DDNI79LHCUBWcQtQSOCrdhZjea2cmVdzCz3RNWjyP8Bwl8QdBraWhmjQh6LsmGaCaG8RDGNzWMNy2ptgXwX2AbM9sj3PXIKuJKqy3cfbm7t3b3Du7egeBL1hPcfUY1sWSlLdz95+7ePozrcoLvgwan+v5Jty3C7YnfMZ1A2Ma5bovwNTQJl1uH9X8QcVu0Dj/hAQwB7q/pWJVkpC3KeRrfyEb1AO4D+iSsvwIsIfiPvJDgC4oGBGdqzAHeAx4i/CYcKAHuDZcLgQ/Cx3Rg34TjDif44/sQuCRh+0EEyWoe8ATht9thnZ8DTSvFW10sRnAnq0/D50sS9ptExdkduwJvAp8QfPPeJKFcL5KfRVPeTgTJajbBmN9sYGBCuaTHTmyncP28sMwnwLkJ258GDkpS/0iCXti7BP9E9g63FwB/C9v2A2BEwj5DCZJf2e/msbC+NwnGS2t1hkAabXFy+HuYRdCD2zUTbVEplmlUnEVTXSyRt0Wl7ecQnt1Ciu+fWv5d3Bj+XcwK/y72zIe2IPi0Vva7n0PFWXNRtkV/glzyEXAvm76vqzpWJG3h7nmT4LsRnk6UTw+Cj+EjclBvL5In+Ky0E8GXpLlo73TeyGoLtYXaooZHzodoANz9HeBFS7hQIx+4+3vu/tts1mnBhVl3EwwvVI4nK+3k7kdHefzKLLyIg+SnVialtqigtqigtqi0X/hfQUREYiYvevAiIpJ5SvAiIjGlBC8iElNK8CIpsGBmwJJqnk86y5+ZDTWzPtFFJlK1yO7JKiLg7lfnOgapv9SDlzrLzJqZ2TMWzOv9ngVz6S+w4H4Ab4aPsisWi8zscTN7K3z0SDjG/eG2d8zsxHB7UzN71IIJtMYRzDhYUzy3WjD3/AsWTJOAmY0xs/7h8gIzuzYsM8fM9gy397SKOcvfMbPmETWZ1DNK8FKX9QUWu3tXd+8MTA63f+/BfEN3AreH20YCt7n7AQTzjtwbbr+K4HLwAwhmHh1uZs2AXwE/eDBR1vUkmV+lkmbA2+6+H/AScE0V5ZaGZe4hmEqA8OeFHsyFdCjBFdwiW0wJXuqyOUCfsMd+qAeTOkEwi2jZz4PC5T7AneHFIhOBFmFP+ShgcLh9GsGl4u2Bw4AHAdx9NsGl9tXZSDBpFeF+h1RR7onw50ygQ7j8GjDCzC4GtvWKqZ5FtojG4KXOcvePLLi5xbHAjWZWdoOLxKv3ypYbEMwdsknvOJxsqp+7f1hpe+XjpB1eFdvLZl3cQPj+c/ebzOwZgtcx3cz6eHDjGZEtoh681Flm1pZgGOVBgqlxy+5/e1rCz9fD5eeAQQn77hsuPgtcFCb6sht5QDCd9M/DbZ0JZiWtTgMqZvD8GfBqGq+jo7vPcfebCW4xuWeq+4pURz14qcv2IRgz3wisIxg3Hw80MbM3CJLuGWHZi4G7LLi7UEOCBP5Lgtvu3Q7MDpP8AuB4gjHy0WH5dwlm9qvOKmBvM5tJcBeeZDeQqMolZnY4Qa/+A4L59EW2mOaikVix4EYXJe6+NNexiOSahmhERGJKPXiRNIRDP00qbR7g7nNyEY9IdZTgRURiSkM0IiIxpQQvIhJTSvAiIjGlBC8iElP/D3YhEHM5flsmAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df['speed_bins'] = pd.qcut(df['speed'], 5)\n",
+ "sns.barplot(x='speed_bins', y='consume', hue='gas_type',data=df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "49e00630",
+ "metadata": {},
+ "source": [
+ "### Vamos a separar unos y otros en 2 DF para verlo por separado:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 195,
+ "id": "ce4450f1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "e10 = df[df.gas_type == 'E10']\n",
+ "sp98 = df[df.gas_type == 'SP98']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ad375692",
+ "metadata": {},
+ "source": [
+ "### PARA E10:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 233,
+ "id": "cebdca87",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU8UlEQVR4nO3df5RcZX3H8c+HhCQoIEjWiglxEWktrUjqGrFYRUTAX6DIUWgRENocaz1Qa0tFTyvVUnuCpdqjpxoQNIpgC6JIixg1lGqDsIE0ISZRJBETCFlANKkaDPn2j/ssO9nMzN7ZmTs78/B+nTNnZ+7ce5/nPnPns3eeufcZR4QAAPnZa6orAACoBgEPAJki4AEgUwQ8AGSKgAeATE2f6grUmj17dgwODk51NQCgb6xYseLhiBio91xPBfzg4KCGh4enuhoA0Dds/7jRc3TRAECmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADLVUxc6Ab3owgsv1JYtW/TsZz9bixYtmurqAKUR8MAEtmzZos2bN091NYCW0UUDAJki4AEgU3TR1KCvFUBOCPga9LUCyAldNACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BM9cWFToceurEr5cydu1MzZkgbNuzsSpkbNgxWXgaApy6O4AEgUwQ8AGSqL7po0H0MvAb0PwIedTHwGtD/6KIBgEwR8ACQKbpo0Lc4fRZojiN4AMhUpUfwtjdK2ibpCUk7I2KoyvIAAGO60UXzqoh4uAvltG3nzoN2+wsA/Yw++Bpbtrx3qqsAAB1TdcCHpG/YDkmfjojF42ewvVDSQkmaN29exdUB0A4ugOsvVQf8MRHxgO1nSVpqe11E3FY7Qwr9xZI0NDQUFden73HmCKYSF8D1l0oDPiIeSH+32r5B0gJJtzVcYP166dhj95h8zYO/qqiGU+zYWS0v0q22mPnoBnmvxxW7ZmjHjtOrL5C2GDOJtuiWi9at044dOzRzzZq671X0lspOk7T9dNv7jd6XdIKke6oqDwCwO0dU0yti+3mSbkgPp0v6YkRc0myZoaGhGB4e3mN6t7olum0y3RLd66J5v2bMeEiPP/4b2rTpHyovj7YY08vdVWeddZY2b96sOXPmaMmSJVNdHUiyvaLRKeiVddFExH2SXlTV+gEAzXElKwBkioAHgEwR8ACQKQIeADLFUAWoi3F5xtAW6FcEPOpiXJ4xtAX6FQEPZIAhLLqvH8blIeABYBL6YVwevmQFgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmeI0SQBZ4ZqAMRzBA0CmOIIHUBrj8vQXAh5AaYzL01/oogGATBHwAJApAh4AMkXAA0Cm+JIVACahH84oIuABYBL64YwiumgAIFMEPABkioAHgExVHvC2p9m+2/ZNVZcFABjTjSP4CySt7UI5AIAalQa87bmSXi/piirLAQDsqeoj+I9JulDSrorLAQCMU1nA236DpK0RsWKC+RbaHrY9PDIyUlV1AOApp8oj+GMknWx7o6RrJR1n+wvjZ4qIxRExFBFDAwMDFVYHAJ5aKgv4iLgoIuZGxKCk0yV9OyLOrKo8AMDuOA8eADLVlbFoIuJWSbd2oywAQIEjeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkqlTA236a7b+xfXl6fHj6QQ8AQI8qewR/laQdkl6WHm+S9PeV1AgA0BFlA/6wiFgk6deSFBG/lOTKagUAaFvZgH/c9j6SQpJsH6biiB4A0KPK/uDHByV9XdIhtq9W8Xur51RVKQBA+0oFfEQstX2XpKNVdM1cEBEPV1ozAEBbWjlNco6kaZJmSHqF7VOrqRIAoBNKHcHbvlLSkZLWSNqVJoekL1dULwBAm8r2wR8dEUdUWhMAQEeV7aJZbpuAB4A+UvYI/nMqQn6LitMjLSki4sjKagYAaEvZgL9S0tslrdZYHzwAoIeVDfj7I+LGSmsCAOiosgG/zvYXJX1NNVewRgRn0QBAjyob8PuoCPYTaqZxmiQA9LCyV7K+o+qKAAA6q+yFTlcpDTRWKyLObbLMLEm3SZqZyrkuIj44yXoCAFpUtovmppr7syS9WdIDEyyzQ9JxEbHd9t6SvmP75oi4fRL1BAC0qGwXzfW1j21fI+mbEywTkranh3un2x6fAgAA1Zjsb7IeLmneRDPZnmZ7paStkpZGxPfqzLPQ9rDt4ZGRkUlWBwAwXtnfZN1m++ejNxWnS/71RMtFxBMRcZSkuZIW2P7dOvMsjoihiBgaGBhosfoAgEbKdtHs104hEfGY7VslnSTpnnbWBQAop+wR/DG2n57un2n7MtvPnWCZAdsHpPv7SDpe0ro26wsAKKlsH/y/SvqF7RdJulDSjyUtmWCZgyUts71K0p0q+uBvmmAZAECHlD1NcmdEhO1TJH08Ij5j++xmC0TEKknz264hAGBSygb8NtsXSTpTxc/1TVNx2iMAoEeV7aJ5m4oLl86LiC0qfp/10spqBQBoW9mzaLZIuqzm8f2auA8eADCFyp5Fc6rtH9r+WToXfls6Hx4A0KPK9sEvkvTGiFhbZWUAAJ1Ttg/+IcIdAPpL2SP4YdtfkvQV8YtOANAXygb8/pJ+IX7RCQD6Br/oBACZKnsWzVzbN9jeavsh29fbnlt15QAAk1f2S9arJN0o6TkqLnL6WpoGAOhRZQN+ICKuioid6fZZSQzeDgA9rGzAP5yGCZ6WbmdKeqTKigEA2lM24M+V9FZJWyQ9KOk0SXzxCgA9rOxpkh+WdHZE/FSSbD9T0kdVBD8AoAeVPYI/cjTcJSkiHhVjvQNATysb8HvZPnD0QTqCL3v0DwCYAmVD+p8k/Y/t61RcwfpWSZdUVisAQNvKXsm6xPawpOMkWdKpEfH9SmsGAGhL6W6WFOiEOgD0ibJ98ACAPkPAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgExVFvC2D7G9zPZa22tsX1BVWQCAPVU5nsxOSe+NiLts7ydphe2lXAELAN1R2RF8RDwYEXel+9skrVXxc38AgC7oSh+87UEVwwt/r85zC20P2x4eGRnpRnUA4Cmh8oC3va+k6yX9eUT8fPzzEbE4IoYiYmhggJ95BYBOqTTgbe+tItyvjogvV1kWAGB3VZ5FY0mfkbQ2Ii6rqhwAQH1VHsEfI+ntko6zvTLdXldheQCAGpWdJhkR31Hx4yAAgCnAlawAkCkCHgAyRcADQKYIeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BMEfAAkCkCHgAyRcADQKYqC3jbV9reavueqsoAADRW5RH8ZyWdVOH6AQBNVBbwEXGbpEerWj8AoDn64AEgU1Me8LYX2h62PTwyMjLV1QGAbEx5wEfE4ogYioihgYGBqa4OAGRjygMeAFCNKk+TvEbSckm/ZXuT7fOqKgsAsKfpVa04Is6oat0AgInRRQMAmSLgASBTBDwAZIqAB4BMEfAAkCkCHgAyRcADQKYIeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BMVRrwtk+yvd72vbbfV2VZAIDdVRbwtqdJ+qSk10o6QtIZto+oqjwAwO6qPIJfIOneiLgvIh6XdK2kUyosDwBQY3qF654j6Sc1jzdJeun4mWwvlLQwPdxue32FdSpjtqSHu1GQ3Y1S2kJbjKEtxtAWY3qhLZ7b6IkqA75edWKPCRGLJS2usB4tsT0cEUNTXY9eQFuMoS3G0BZjer0tquyi2STpkJrHcyU9UGF5AIAaVQb8nZIOt32o7RmSTpd0Y4XlAQBqVNZFExE7bb9b0i2Spkm6MiLWVFVeB/VMd1EPoC3G0BZjaIsxPd0WjtijWxwAkAGuZAWATBHwAJApAh4AMtWzAW97H9v/lYY8GP/cObZHbK9Mtz9usI4X216dxsL5F7u4VMD2TNtfStO/Z3uwZpmv237M9k0l69luXd5j+37bnyhTXoN179ZWtp+oqU/dM5eatUGTcs5I27AqtdPsBvNdlNa73vaJNdOX2d5uu6PnDdfZ/kW219heW9vW45aZzPZfYvsntrePm/4K23fZ3mn7tCbLV7IP1Nn+uvuw7XensqPRa5fmO9v2D9Pt7BLlN9x+2/NsfyO9Ft+v186NXgvbh6V9ePv4ZZrUpWxbOL2eP0h1O79DbfEXaTtX2f6W7eem6a+qeU+utP0r22+qsi0kSRHRkzdJfybpggbPnSPpEyXWcYekl6m46OpmSa9N098l6VPp/umSvlSzzKslvVHSTSXr2VZdWllH2baStL3EMg3boMH80yVtlTQ7PV4k6eI68x0h6X8lzZR0qKQfSZpW8/ytkoaq2lck/b6k76o4c2uapOWSjm13+9N8R0s6eHz7ShqUdKSkJZJO6/Y+UOf1r7sPS5qf6rpx9HWss65nSrov/T0w3T9wgvIbbn96vV+T7u8r6WmtvhZl9udJtMU7Un33So+f1aG2eNXoNkr603r7VVrfo1W3RUT07hG8pD+S9NXJLmz7YEn7R8TyKFpmiaQ3padPkfS5dP86Sa8ePZqKiG9J2jbZcidRl06YTFs1bIMGnG5PT/Ptr/oXrp0i6dqI2BERGyTdq2JcoirVbn9ImiVphop/MntLeqhBPVvZfkXE7RHxYJ3pGyNilaRdjZateB/Y7fVvtA9HxN0RsXGCdZ0oaWlEPBoRP5W0VNJJzRZotP0uBhecHhFL03zbI+IXdVbR8mvRRKm2UBG+H4qIXWm+rXXmmUxbLKvZxttVXOA53mmSbu5CW/RmwLu4MOp5E+yMb0kfg66zfUid5+eouJp21KY0bfS5n0jF+fqSfibpoDaq3E5d2tKgrWbZHrZ9e72PgTV1Kt0GEfFrFW+K1SqC/QhJn2m23qRj21rP+O2PiOWSlkl6MN1uiYi1zerZoX1gIpXsAyXfK63o5Ov3m5Ies/1l23fbvtR1ulzVodeixbY4TNLb0vvkZtuHN6tX0mpbnKfik9p4p0u6psEyHd0vezLgVQzg81iT578maTAijpT0TY39x6vVbCycUuPklNRuXdpVr63mRTE+xh9K+pjtw9qtk+29VQT8fEnPkbRK0kXtrrcDdtt+28+X9NsqjpzmSDrO9ivqLNftelZV3kTvlVZ1sp7TJf2BpL+U9BJJz1PRFVVVma20xUxJv0rvk8slXdnJetk+U9KQpEvHTT9Y0gtVXABad9HJlllPrwb8L1V8zJb05JdbK22vlKSIeCQidqSnL5f04jrr2KTdPx7VjoXz5Dg5tqdLeoaKPrGWdaAu7dqtrVKdHkh/71PRBzq/QZ1aaYOj0jp/lLoY/k1Ff3fD9SZVj0E0fvvfLOn21B2wXcUR1NF1luvYPlBSVfvAHq9/mzr5+m2SdHcUQ4bvlPQVSb/XrMw2X4tW2mKTpOvT/RtUfIfQsF5JqbawfbykD0g6uSYbRr1V0g3pE3GjenVsv+zJgE/9XdNsz0qPPxARR0XEUdKT/wVHnSxpj4/gqa90m+2jUx/WWRrrm7tR0ug34qdJ+nYKrYZsf8T2m+tMb7cubRnfVrYPtD0z3Z8t6RhJ36+zaMM2sL2uzvybJR1heyA9fo3qbGta7+npbIBDJR2u4svFSozffkn3S3ql7enpU8crm9Szle1vt56V7AN1tr9dt0g6Ie1HB0o6IU1r+B5o4k5JB9bsM8epxX2xFS22xVdSfaRiH/lBnXlabgvb8yV9WkW41+vXP0ONu2ekDrXFk1r5RrabNxX9u8c3eO4jktaoOFtjmaQX1Dy3sub+kKR7VJzJ8QmNDc0wS9K/q/gC8A4V/Xajy/y3pBEVRwObJJ2Ypt8k6WWdrkt67hy1dxbNk22l4qh6darPaknn1cz3IRU7XsM2UPExd32Dct6pIixXqeiaOihNP1nFF1aj830gbed61Zwpkp67VZ0/i6Z2+6epeIOtVREml3Vw+xelfWJX+ntxmv6S9Pj/JD0iaU039wGNe6802YfPT493qjgSvaKmXlfULH9uapd7Jb2jZnqj90Cz7X9N2l9WS/qspBllX4uadbRyFk3ZtjhA0n+kei2X9KIOtcU3VXypvzLdbqx5blDFgdJe45appC0ioqcDfr6kz091PWrqc0uF6570m7vTbSXpDZLOr3Bbb1XnA75vtr+KfaBb75Uq3wMTlNtKwNMWNbcqf/CjLRFxt4sLY6ZFxBM9UJ8TJ56rdbbfo+LI+PqJ5m2kk20VEaUu8JoM28tUfNHWqP9xUvpl+xtpdx/o1nulqvdAI+nkgOtV/zTXumiLccul/woAgMz05JesAID2EfAAkCkCHgAyRcCjr9k+wPa7pqDcY91gxFHb/2n7gC5XCdgDAY9+d4CKEfh6RkS8LiIem+p6AAQ8+t0/ShodK/tS239l+840+NvfSZLtQdvrbF9h+x7bV9s+3vZ3XYzzvSDNd7Htz9v+dpr+JxOUvb/tG1yM//0p23ul9Wy0PTuVu9b25S7Gp/+G7X3SPOd7bNzwa6tsIDx1EfDod++T9KMohrFYqmJohAUqxs55cc1AY8+X9HEVY468QMVAbC9XMRDW+2vWd6Sk16sYt/1vbT+nSdkLJL1XxeBRh0k6tc48h0v6ZET8joqBsN5SU+/5UQxS987SWwu0gIBHTk5It7sl3aUiyEeHgd0QEaujGP97jaRvRXERyGoVl5CP+mpE/DIiHlYx9ESzsezviGIgrSdUjC/y8jrzbIiIlen+ipqyVkm6Oo06uLOlrQRKIuCRE0v6SKSB6SLi+RExOmZ97ah+u2oe75J2u6J7/JV/za4ELDNvbblP1JT1ekmfVDH66Io0ciDQUQQ8+t02Sful+7dIOtf2vpJke47tZ7W4vlNsz7J9kKRjVYyI2MgC24emvve3SfpOmQLS/IdExDJJF6r4onjfFusJTIijBvS1iHgkfVl6j4qx378oaXkxIq+2SzpTxZFzWXeoGGVwnqQPRxpbv4HlKr7kfaGk21SMK17GNElfsP0MFZ86/pmzblAFxqIBEtsXqxit76NTXRegE+iiAYBMcQQPNGH7hZI+P27yjoh46VTUB2gFAQ8AmaKLBgAyRcADQKYIeADIFAEPAJn6f76SMkWE29GIAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "e10['temp_bins'] = pd.qcut(e10['temp_outside'], 5)\n",
+ "temp = sns.barplot(x='temp_bins', y='consume',data=e10, color='blue')\n",
+ "temp.axhline(y = e10.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 213,
+ "id": "6be1273d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAANYklEQVR4nO3dbYxcZRnG8euiW16sJWoYqbaURSRV1CKyooYEIxqCChqJQU0QeYn7SQKJWvWDGFFjUpXIBySpULARUANikEQUo5WogMwWUOrWaAiFLo7dWpUWtKVw+2GGdJbubs929tkzvff/Szad2Z2Z507T/nPy7JkzjggBAPI5pO4BAABlEHgASIrAA0BSBB4AkiLwAJDUQN0DdDvqqKNicHCw7jEA4KAxMjKyLSIak/2srwI/ODioZrNZ9xgAcNCwvXmqn7FFAwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgqb56oxOA/FatWqVWq6UlS5Zo9erVdY+TGoEHMKdarZbGxsbqHmNeYIsGAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkioaeNsvs32r7U22R22/o+R6AIC9Sl+q4GpJd0XEh20fKuklhdcDAHQUC7ztIyWdLulCSYqI3ZJ2l1oPADBRyS2a10gal3SD7QdtX2d7UcH1AABdSgZ+QNJbJF0bESdLelrS51/8INvDtpu2m+Pj4wXHAYD5pWTgt0jaEhH3d+7fqnbwJ4iINRExFBFDjUaj4DgAML8UC3xEtCQ9YXtF51vvlvTnUusBACYqfRbNpZJu6pxB86ikiwqvBwDoKBr4iHhI0lDJNQAAk+OdrACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSpd/oBKDj8SvfVPcIfWHP9ldIGtCe7Zv5O5G0/Io/FXttjuABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJFX0Az9sPyZph6TnJO2JiKGS6wEA9pqLT3R6V0Rsm4N1AABd+Mi+hFatWqVWq6UlS5Zo9erVdY8DoCal9+BD0i9sj9genuwBtodtN203x8fHC48zP7RaLY2NjanVatU9CoAaOSLKvbj96oh40vYrJd0t6dKIuGeqxw8tXhzNU04pNs98Mbppk3bt2qXDDjtMr3/d6+oeBx3/2/xA3SP0hSd2DujZ562Fh4SOeemeusep3eHHvrWn5/s3vxmZ6vebRbdoIuLJzp9bbd8u6VRJUwYeQH5Efe4UC7ztRZIOiYgdndtnSrpy2ietWCGtX19qpHnj6xdcoLGxMS1dulTr1q2rexx0bL3yTXWPgD60/Ir1vb2APeWPSh7BHy3pdrcXH5B0c0TcVXA9nfJZYiZJi7ft0AJJj2/bwd+JpJFvXFD3CEAtigU+Ih6VdFKp1wcATI93sgJAUgQeAJIi8ACQFO9kTej5QxdN+BPA/ETgE3r6hDPrHgFAH2CLBgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJBU8cDbXmD7Qdt3ll4LALDXXBzBXyZpdA7WAQB0KRp428skvV/SdSXXAQDsq/QR/LclrZL0/FQPsD1su2m7OT4+XngcAJg/KgXe9ktsf9H2dzv3T7B99n6ec7akrRExMt3jImJNRAxFxFCj0ag8OABgelWP4G+QtEvSOzr3t0j66n6ec5qkD9h+TNIPJJ1h+/sHMiQAYOaqBv74iFgt6VlJioj/SvJ0T4iIL0TEsogYlPRRSb+KiPN7GRYAUF3VwO+2fYSkkCTbx6t9RA8A6FMDFR/3JUl3STrG9k1qb79cWHWRiFgvaf0MZwMA9KBS4CPibtsbJL1d7a2ZyyJiW9HJAAA9mclpkkslLZB0qKTTbZ9bZiQAwGyodARve62klZI2au857SHpx4XmAgD0qOoe/Nsj4sSikwAAZlXVLZp7bRN4ADiIVD2C/57akW+pfXqkJUVErCw2GQCgJ1UDv1bSxyX9SdNcVwYA0D+qBv7xiLij6CQAgFlVNfCbbN8s6afqegdrRHAWDQD0qaqBP0LtsJ/Z9T1OkwSAPlb1nawXlR4EADC7qr7R6QZ1LjTWLSIunvWJAACzouoWTfcHZh8u6UOSnpz9cQAAs6XqFs1t3fdt3yLpl0UmAgDMigP9TNYTJC2fzUEAALOr6h78Dk3cg29J+lyRiQAAs6LqFs3i0oMAAGZXpS0a26fZXtS5fb7tq2wfW3Y0AEAvqu7BXyvpGdsnSVolabOkdcWmAgD0rGrg90RESPqgpKsj4mpJbNsAQB+reh78DttfkHS+2h/Xt0DSwnJjAQB6VfUI/iNqX4vmkohoqf35rN8oNhUAoGdVz6JpSbqq6/7jYg8eAPpa1bNozrX9V9v/sf2U7R22n9rPcw63/QfbD9veaPvLszMyAKCKqnvwqyWdExGjM3jtXZLOiIidthdK+q3tn0XEfTOeEgAwY1UD/48Zxl2ds252du4u7Hztc0VKAEAZVQPftP1DST/RDD7RqXO2zYik10q6JiLun+Qxw5KGJWn5ci5vAwCzpepZNEdKekbtT3Q6p/N19v6eFBHPRcSbJS2TdKrtN07ymDURMRQRQ41Go/LgAIDpzcknOkXEv22vl3SWpEd6eS0AQDVVz6JZZvt221tt/8P2bbaX7ec5Ddsv69w+QtJ7JG3qeWIAQCVVt2hukHSHpFer/Sann3a+N51XSfq17T9KekDS3RFx536eAwCYJVV/ydqIiO6g32j78umeEBF/lHTygQ4GAOhN1SP4bZ3LBC/ofJ0v6Z8lBwMA9KZq4C+WdJ7an+T0d0kfltTTL14BAGVV3aL5iqRPRMS/JMn2KyR9U+3wAwD6UNUj+JUvxF2SImK72F8HgL5WNfCH2H75C3c6R/BVj/4BADWoGulvSfq97VvVvp7MeZK+VmwqAEDPqr6TdZ3tpqQzJFnSuRHx56KTAQB6UnmbpRN0og4AB4mqe/AAgIMMgQeApAg8ACRF4AEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUsUCb/sY27+2PWp7o+3LSq0FANhXyc9V3SPp0xGxwfZiSSO27+aToABgbhQ7go+Iv0fEhs7tHZJGJS0ttR4AYKI52YO3PSjpZEn3T/KzYdtN283x8fG5GAcA5oXigbf9Ukm3Sbo8Ip568c8jYk1EDEXEUKPRKD0OAMwbRQNve6Hacb8pIn5cci0AwEQlz6KxpOsljUbEVaXWAQBMruQR/GmSPi7pDNsPdb7eV3A9AECXYqdJRsRvJbnU6wMApsc7WQEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApIoF3vZa21ttP1JqDQDA1Eoewd8o6ayCrw8AmEaxwEfEPZK2l3p9AMD02IMHgKRqD7ztYdtN283x8fG6xwGANGoPfESsiYihiBhqNBp1jwMAadQeeABAGSVPk7xF0r2SVtjeYvuSUmsBAPY1UOqFI+JjpV4bALB/bNEAQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEkReABIqmjgbZ9l+y+2/2b78yXXAgBMVCzwthdIukbSeyWdKOljtk8stR4AYKKSR/CnSvpbRDwaEbsl/UDSBwuuBwDoMlDwtZdKeqLr/hZJb3vxg2wPSxru3N1p+y8FZ5pPjpK0re4h+oG/+Ym6R8C++Pf5gi+511c4dqoflAz8ZFPHPt+IWCNpTcE55iXbzYgYqnsOYDL8+5wbJbdotkg6puv+MklPFlwPANClZOAfkHSC7eNsHyrpo5LuKLgeAKBLsS2aiNhj+1OSfi5pgaS1EbGx1HrYB9te6Gf8+5wDjthnWxwAkADvZAWApAg8ACRF4BPiEhHoV7bX2t5q+5G6Z5kPCHwyXCICfe5GSWfVPcR8QeDz4RIR6FsRcY+k7XXPMV8Q+Hwmu0TE0ppmAVAjAp9PpUtEAMiPwOfDJSIASCLwGXGJCACSCHw6EbFH0guXiBiV9CMuEYF+YfsWSfdKWmF7i+1L6p4pMy5VAABJcQQPAEkReABIisADQFIEHgCSIvAAkBSBByqyfR0XbsPBhNMkgS62rfb/i+frngXoFUfwmPdsD9oetf0dSRskXW+7aXuj7S93PW697aHO7Z22v2b7Ydv32T66rvmBqRB4oG2FpHURcbKkT0fEkKSVkt5pe+Ukj18k6b6IOEnSPZI+OXejAtUQeKBtc0Tc17l9nu0Nkh6U9Aa1PzjlxXZLurNze0TSYPEJgRkaqHsAoE88LUm2j5P0GUlvjYh/2b5R0uGTPP7Z2PsLrOfE/yX0IY7ggYmOVDv2/+nsq7+35nmAA8ZRB9AlIh62/aCkjZIelfS7mkcCDhinSQJAUmzRAEBSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEn9H8Vp/toUTVPWAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "rain = sns.barplot(data=e10, y=\"consume\", x =\"rain\")\n",
+ "rain.axhline(y=e10.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 235,
+ "id": "7bc5ef69",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXeElEQVR4nO3de5wlZX3n8c9vBmdAhIjSSmQYR9AECeGiLQtxdRGJISRqVDboBhEkOy/vuKuLujd3zbLqoCgbXTdEAfFKArpBNChBwJgA2gPDdVAJjGEGWmbiBfAyk8Ff/qin6TNnzqX6Un0pPu/X67y6Tp2qep5++pxv13mq6qnITCRJ7bNkvisgSWqGAS9JLWXAS1JLGfCS1FIGvCS11C7zXYFOe++9d65atWq+qyFJi8batWu3ZOZIr9cWVMCvWrWKsbGx+a6GJC0aEfH9fq/ZRSNJLWXAS1JLGfCS1FIGvCS1lAEvSS3VaMBHxOMj4uKIuCMi1kfEUU2WJ0ma1PRpkucAl2fmCRGxDHhsw+VJkorGAj4i9gSeD5wCkJnbgG1NlSdJ2lGTe/D7A5uB8yPiUGAtcHpm/rRzoYhYDawGWLlyZYPVGe6MM85gfHycffbZhzVr1sxrXSRppprsg98FeBbwscw8HPgp8M7uhTLz3MwczczRkZGeV9vOmfHxcTZt2sT4+Pi81kOSZkOTAb8R2JiZ15fnF1MFviRpDjQW8Jk5DtwTEb9eZr0QuL2p8iRJO2r6LJo3A58pZ9DcBZzacHmSpKLRgM/MdcBok2VIknrzSlZJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaqmmhwueFU972oY5KWfFiu0sWwZ33719Tsq8++5VjZch6dHLPXhJaikDXpJayoCXpJZaFH3wmntnnHEG4+Pj7LPPPqxZs2a+qyNpGgx49TQ+Ps6mTZvmuxqSZsAuGklqKQNeklrKgJekljLgJamlPMgqSdOwGM40M+AlaRoWw5lmdtFIUks1ugcfERuAB4GHge2ZOdpkeZKkSXPRRfOCzNwyB+VIkjrYB99h+/Yn7vBzIXLoZEl1NR3wCXwtIhL4s8w8t3uBiFgNrAZYuXJlw9UZbHz8bfNaviTNpsjM5jYe8ZTMvDcingRcAbw5M7/Rb/nRPfbIsWc/e6f51133i8bqOJ+OPHLXKa8zV22xfPndxJJt5C+XsXXr0xovbzptIc2n9XfcwdatW1m+fDnPPPDAeatHXHPN2n7HNxvdg8/Me8vP+yPii8ARQN+Al7Sw/cNdd7Ft2zaWLVvGAfvvP9/V6WnudoKSWAK/+HnOSZnT2QlqbA8+InYHlmTmg2X6CuA9mXl5v3VGR0dzbGxsp/lz1e8816bT7zx3ffD/mWXLfsC2bU9m48b/3Xh59sEvDieffDKbNm1i33335cILL5zv6vT0aPuMRMS87ME/GfhiREyU89lB4S5Jml2NBXxm3gUc2tT2JUmDeSWrJLWUAS9JLeWFTtIQi2HUQKkXA149LYareufKYhg1UOrFgFdPXtUrDbYYdoIMeKkFHKNo7i2GnSAPskpSSxnwktRSBrwktZQBL0kt5UFWLVoeWJQGcw9eklrKgJeklrKLRlJti+HiHk0y4CXVthgu7tEku2gkqaUMeElqKbtopCHsd9ZiZcBLQ9jvrMXKLhpJaikDXpJayoCXpJYy4CWppQx4SWopA16SWqrxgI+IpRFxY0Rc1nRZkqRJc7EHfzqwfg7KkSR1aDTgI2IF8HvAx5ssR5K0s6b34D8MnAH8suFyJEldGgv4iPh94P7MXDtkudURMRYRY5s3b26qOpL0qNPkHvxzgZdExAbg88AxEfHp7oUy89zMHM3M0ZGRkQarI0mPLo0FfGa+KzNXZOYq4JXA1zPzpKbKkyTtyPPgJaml5mS44My8Grh6LsqSJFXcg5ekljLgJamlDHhJaikDXpJayoCXpJaqFfAR8diI+G8R8efl+TPKlaqSpAWq7h78+cBW4KjyfCPwvxqpkSRpVtQN+AMycw3wzwCZ+XMgGquVJGnG6gb8tojYDUiAiDiAao9ekrRA1b2S9d3A5cB+EfEZqoHETmmqUpKkmasV8Jl5RUTcABxJ1TVzemZuabRmkqQZmcppkvsCS4FlwPMj4uXNVEmSNBtq7cFHxHnAIcBtTN6dKYEvNFQvSdIM1e2DPzIzD2q0JpKkWVW3i+baiDDgJWkRqbsH/0mqkB+nOj0ygMzMQxqrmSRpRuoG/HnAq4FbmOyDlyQtYHUD/h8z89JGayJJmlV1A/6OiPgs8CU6rmDNTM+ikaQFqm7A70YV7C/qmOdpkpK0gNW9kvXUpisiSZpddS90Op8y0FinzHztrNdIkjQr6nbRXNYxvSvwMuDe2a+OJGm21O2iuaTzeUR8DvibRmokSZoV070n6zOAlbNZEUnS7KrbB/8gO/bBjwPvaKRGkqRZUbeLZo+pbjgidgW+ASwv5Vycme+e6nYkSdNTq4smIp4bEbuX6ZMi4uyIeOqQ1bYCx2TmocBhwHERceSMaitJqq1uH/zHgJ9FxKHAGcD3gQsHrZCVh8rTx5THTqdaSpKaUTfgt2dmAi8FzsnMc4Ch3TYRsTQi1gH3A1dk5vU9llkdEWMRMbZ58+YpVF2SNEjdgH8wIt4FnAR8OSKWUu2RD5SZD2fmYcAK4IiIOLjHMudm5mhmjo6MjEyh6pKkQeoG/IlUfeqnZeY41f1Zz6pbSGb+GLgaOG6K9ZMkTVOtgM/M8cw8OzP/tjz/x8wc2AcfESMR8fgyvRtwLHDHDOsrSaqp7lk0L4+I70XETyLigYh4MCIeGLLarwJXRcTNwLep+uAvG7KOJGmW1B2LZg3w4sxcX3fDmXkzcPi0aiVJmrG6ffA/mEq4S5LmX909+LGIuAj4/3hHJ0laFOoG/J7Az/COTpK0aHhHJ0lqqbpn0ayIiC9GxP0R8YOIuCQiVjRdOUnS9NU9yHo+cCnwFKqLnL5U5kmSFqi6AT+Smedn5vbyuABwXAFJWsDqBvyWMkzw0vI4CfinJismSZqZugH/WuAPqe7kdB9wAuCBV0lawOqeJvknwGsy80cAEfEE4ANUwS9JWoDq7sEfMhHuAJn5QxyGQJIWtLoBvyQi9pp4Uvbg6+79S5LmQd2Q/iDw9xFxMdUVrH8InNlYrSRJM1b3StYLI2IMOAYI4OWZeXujNZMkzUjtbpYS6Ia6JC0SdfvgJUmLjAEvSS1lwEtSSxnwktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLdVYwEfEfhFxVUSsj4jbIuL0psqSJO2sySF/twNvy8wbImIPYG1EXOEgZZI0Nxrbg8/M+zLzhjL9ILAe2Lep8iRJO5qTPviIWEV1B6jr56I8SdIcBHxEPA64BHhrZj7Q4/XVETEWEWObN29uujqS9KjRaMBHxGOowv0zmfmFXstk5rmZOZqZoyMjI01WR5IeVZo8iyaATwDrM/PspsqRJPXW5B78c4FXA8dExLryOL7B8iRJHRo7TTIzv0l1/1ZJ0jzwSlZJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaikDXpJaqrGAj4jzIuL+iLi1qTIkSf01uQd/AXBcg9uXJA3QWMBn5jeAHza1fUnSYPPeBx8RqyNiLCLGNm/ePN/VkaTWmPeAz8xzM3M0M0dHRkbmuzqS1BrzHvCSpGYY8JLUUk2eJvk54Frg1yNiY0Sc1lRZkqSd7dLUhjPzVU1tW5I0nF00ktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLWXAS1JLGfCS1FIGvCS1lAEvSS1lwEtSSxnwktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLWXAS1JLGfCS1FIGvCS1lAEvSS1lwEtSSxnwktRSBrwktVSjAR8Rx0XEdyLizoh4Z5NlSZJ21FjAR8RS4KPA7wIHAa+KiIOaKk+StKMm9+CPAO7MzLsycxvweeClDZYnSeqwS4Pb3he4p+P5RuBfdS8UEauB1eXpQxHxnQbrVMfewJa5KChiLkqZEdtikm0xybaYtBDa4qn9Xmgy4HtVJ3eakXkucG6D9ZiSiBjLzNH5rsdCYFtMsi0m2RaTFnpbNNlFsxHYr+P5CuDeBsuTJHVoMuC/DTwjIp4WEcuAVwKXNlieJKlDY100mbk9It4EfBVYCpyXmbc1Vd4sWjDdRQuAbTHJtphkW0xa0G0RmTt1i0uSWsArWSWppQx4SWopA16SWmpBBHxE7BYR15ThDYiIyyPixxFxWddyn4iImyLi5oi4OCIe12d774+IW8vjxI75x0TEDWX+JyNilzJ/r4j4YtnutyLi4Bp17lmXiDgwIq6NiK0R8fYB67+w1GVdRHwzIp5e5p9Yxu65rMc6j7RTRDw1ItaW9W+LiNd1LPemso2MiL0H1GFNWXd9RPyfiMGXlUTE6yLilo46H9TxWs8271p/eURcVOp2fUSsKvMPKNt8aFD502yLnn/zHtt7TUR8rzxeM4V6nFDaebRr/p4RsSkiPjKV9WfaFnXKj4g/Hbb9uvUvy54SEZtLvddFxB93vPZwx/yeZ9E19b4YVH5EXBARd3e8dlif7U3pfRERKyPiqoi4MapsOL7jtaGft9lsCwAyc94fwBuB0zuevxB4MXBZ13J7dkyfDbyzx7Z+D7iC6gyh3YExYE+qf2b3AL9WlnsPcFqZPgt4d5k+ELiyRp171gV4EvAc4Ezg7QPW/y7wzDL9BuCCjteO7v7du9sJWAYsL9OPAzYATynPDwdWlXl79yn/t4C/ozrDaSlwLXD0FH7nlwCXD2rzHuu/Afh/ZfqVwEVdrz80nfdMv7YY9Dfv2tYTgLvKz73K9F416rAH8A3gOmC067VzgM8CH5nm+tNqi2HlA6PAp4Ztv079O5Y9pd9ydX6Ppt4Xg9YFLgBOGLKtKb8vqM6qeX2ZPgjYUKZrfd5msy0yc2HswQN/BPzVxJPMvBJ4sHuhzHwAoPzn240eV8ZSNeo1mbk9M38K3AQcBzwR2JqZ3y3LXQG8omOdK0sZdwCrIuLJgyrcry6ZeX9mfhv45yG/c1L94wH4FepdBPZIO2XmtszcWuYvp+PbWGbemJkbapS/KyUcgccAPxi4Qvmdi92ZbP9+bd7tpcAny/TFwAuHfWsYoE5bDPqbd/od4IrM/GFm/qgs16v+3f4EWAP8onNmRDwbeDLwtemsPw07fH76lV/2as8Czhi0sSnUf7Y08r6YBdN5X/T7XNf9vM1mW8x/wEd1EdT+NQJpYvnzgXGqPe0/7bHITcDvRsRjo+qeeAHVFbVbgMd0fJU+gckrbW8CXl62fwTV2A4rZqEug/wx8JWI2Ai8GnjfkLJ2aqeI2C8ibqbaS31/Zta+UjgzrwWuAu4rj69m5vph60XEGyPiH6iC6S1ldr827/bI+ESZuR34CVUIT8kU2mLQ37xnvYqNZd6gOhwO7JeZ3d2IS4APAv9pOutPVXdbDCn/TcClmXnfgO3Vqn8Pr4jJ7srONt41IsYi4rqI+IM+6zb2vhhS/pmlzh+KiOWD6lUMfV8A/wM4qXyuvwK8Gab0eZuVtpgw7wFPNVjPj+sunJmnUn39Xg/s1NebmV+jati/Bz5H9VVoe1bfb14JfCgivkX1DWF7We19wF4RsY7qD3Jjx2vTrssQ/wE4PjNXAOdTdfMMslM7ZeY9mXkI8HTgNcO+dXSKqs//mVT/yPYFjomI5w9bLzM/mpkHAO8A/muZ17PNexXba5N169yhVlsM+ZtPu14lBD8EvK3Hy28AvpKZ9/R4rc76U9XdFj3Lj4inAP+W4TsiQ+vfw5eAVaX9/4bJPVCAlVmN1fLvgA9HxAE91m/sfTGg/HdR7Zg9h6oL5h2zVK9XUXW3rgCOBz4VEUum8HmbrbYAFkbA/5zqq0ttmfkwcBG9v26TmWdm5mGZ+dtUDfa9Mv/azHxeZh5B1fc5Mf+BzDw1Mw8DTgZGgLtnoy69RMQIcGhmXl9mXUTVRzdI33Yqe6u3Ac+rWwfgZcB1mflQZj4E/DVw5BTW/zzwBx116NnmXR4Znyiqg52/AvxwCmVOqN0W/f7m/epVDBs3aQ/gYODqiNhA1W6Xlm8KRwFvKvM/AJwcEd3fzgatP1XdbdGv/MOp/vndWV57bETc2WN7deq/g8z8p44usj8Hnt3x2r3l513A1aUe3Rp7X/QrPzPvy8pWqh2sIwbVq6gzntZpwF+UMq4t9dmb+p+32WqLylQ67Jt6UH0l2bVr3tF0HGikCo2nd0x/APhAj20tBZ5Ypg8BbgV2Kc+fVH4up+pzP6Y8fzywrEz/e+DCju1dCezbVcbQulB9Vet5kJXqYOQWJg/+nQZc0u9379VOVG+23cr0XlQHbX+za/kN9D/IeiLV3tYuVP2BVwIvLq+9F3hZj3We0TH9YmBsWJt3rf9GdjyA9Bddr0/lYFqttuj3N+/a1hOo/qHvVR53A08Y1BZd619N10HSMv8U6h2k3Gn96bZF3fLrbL97/QHvi1/tmJ4Isom/xcTB772p/rkeNIfvi77lT9SZ6vP7YeB9s/G+oAruU8r0M6n+IQQDPm9NtUVmLpiA/wRwbMfzvwU2U/1H3kh1sGMJ1VHoW6gC5DOUMzWozgz4eJneFbi9PK4DDuvY7llU3SnfAd7aMf+o8se/A/gC5Uh5KfP7lPDoWH5QXfYpdX6A6uvixo7XvsLkmS4vK+vfRPUB379j+0fTO+AfaSfgt4Gby/o3A6s7lntLKXd7eYN9vEc7LQX+rLTH7cDZHetfBhzVo/xzqPaO11H1J/5GjTZ/D/CSjuX+ErgT+Fbn7zyND3Ldtuj3N3+kLcrz15Z63QmcOqwtuupyNTUCvrMthq0/3bYYVH6/7Xe3xYD693tfvLe8L24q74sDy/zfYvI9fgsdZzDN0ftiUPlfZ/Lz+2ngcbPxvqA64eDvSpnrgBfV+Lw10haZCyfgDwc+Nd/16FGvgzv/EHNY7tH0Dvg5aSeqA0Dz0d5T+SDbFraFbTHksRD64MnMG4GrouNCjYUgM2/NzP84l2VGdZHQ/wV+1KM+c9JOmfk7TW6/28RFHAw5TbOTbTHJtphkW3StV/4rSJJaZkHswUuSZp8BL0ktZcBLUksZ8FINEXH1oAuR+o3yFxHviYhjm6uZ1F9j92SVBJn53+e7Dnr0cg9ei1ZE7B4RX45qXP5boxpLf0NUY9N/qzwmxtkfiYhLIuLb5fHcjm2cV+bdGBEvLfN3i4jPl8GoLqIaMXRYfT4Y1djzV5bhKCbGHT+hTG+IiP9ZlrklIg4s8/9NTI5LfmNE7NFQk+lRxoDXYnYccG9mHpqZBwOXl/kPZDX2zEeoLkOH6ircD2Xmc6jGDfp4mf9fgK+X+S8AzoqI3YHXAz/LagCtM+kYX6WP3YEbMvNZwDXAu/sst6Us8zFg4oYwbwfemNVYSM+juoJbmjEDXovZLcCxZY/9eZn5kzL/cx0/jyrTxwIfKReLXArsWfaUXwS8s8y/mupS8ZXA86kuYSczb6YaAmGQX1INGkdZ71/3We4L5edaqpuyQHVp+9kR8Rbg8VkNEyvNmH3wWrQy87tR3ZzieOC9ETFxg4rOq/cmppdQjR2yw95xRATwisz8Ttf87u1MuXp95k+Muvgw5fOXme+LiC9T/R7XRcSxWd14RpoR9+C1aJUxzn+WmZ+mGtHzWeWlEzt+Xlumv0Z1w4uJdQ8rk18F3lyCfuJGHFANLfxHZd7BVKNkDrKE6oYiUI09/s0p/B4HZOYtmfl+qtsdHlh3XWkQ9+C1mP0mVZ/5L6lukfh6qtucLY+I66lC91Vl2bcAH43qrk+7UAX466hum/dh4OYS8huA36fqIz+/LL+OamS/QX4K/EZErKW6C89UbgDz1oh4AdVe/e1UQ85KM+ZYNGqVcqOK0czcMt91keabXTSS1FLuwUtTULp+um/Q/OrMvGU+6iMNYsBLUkvZRSNJLWXAS1JLGfCS1FIGvCS11L8Ac6xOYdlAIRIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "e10['speed_bins'] = pd.qcut(e10['speed'], 5)\n",
+ "speed = sns.barplot(x='speed_bins', y='consume',data=e10,color='blue')\n",
+ "speed.axhline(y=e10.consume.mean(), c=\"red\", label=\"mean\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ad82d327",
+ "metadata": {},
+ "source": [
+ "### PARA SP98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 226,
+ "id": "1abebf39",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVgUlEQVR4nO3dfbRldX3f8feHAQQRlcg1qAMZRDAhEbFMEGqqBp/wuVqXYoL1gYSVJllaly3Rpm2siU0yprS2spoQEKNBYVXFB2KESQSNBsThQZ5GIgolIFcGlTAkFh349o+9hzlzOefOOfeefR/2vF9r3XXPw97799u/s8/n7vs7v/07qSokSf2zx3JXQJLUDQNeknrKgJeknjLgJamnDHhJ6qk9l7sCgw488MBat27dcldDklaNK6+88u6qmhn23IoK+HXr1rFp06blroYkrRpJ/u+o5+yikaSeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6akVd6KSV47TTTmN2dpaDDjqIDRs2LHd1JC2AAT/AUNthdnaWO+64Y7mrIWkRDPgBhpqkPrEPXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SecpiktAteH6HVyoCXdsHrI7Ra2UUjST1lwEtSTxnwktRTq6IP/tazD12ScrbduxbYm2333rIkZa475ZbOy5C0+/IMXpJ6yoCXpJ5aFV002sHuKknj8gxeknrKgJeknjLgJamnDHhJ6qlOP2RNciuwFXgA2FZV67ssT5K0w1KMovnFqrp7CcrRbsYRRdL8HCY54HH7bdvptyStZl0HfAEXJyngT6rqzI7LW5R3nDC73FWQpKnpOuCfVVXfSfJ4YGOSb1TVlwYXSHIqcCrAIYcc0nF1JGn30ekomqr6Tvv7LuAC4Nghy5xZVeurav3MzEyX1ZGk3UqqqpsNJ/sBe1TV1vb2RuA9VfX5Ueus33//2nTMMQ97/P/deXkndVxu+zzhuInXWaq2+Pb3HsGPHtiDvdc8yJMfd3/n5dkWOyykLbT7yhe/eOWoEYpddtH8JHBBku3lfHS+cJckTVdnAV9V3waePtFKT30qXHrpwx6eXaLhcEtt3SmXTrzOUrXF7312Ld/dujc/uf+P+K8vv73z8myLHRbSFtqNNSfRQzlMUkM5ZFRa/Qx4DeWQUWn1cy4aSeopA16SesouGmkX/DxCq5UBL+2Cn0fscNpppzE7O8tBBx3Ehg0blrs62gUDXtLYZmdnueOOO5a7GhqTffCS1FMGvCT1lAEvST1lwEtSTxnwktRTjqKRpAVYDUNGDXhJWoDVMGTUgJd64NYlmjp5271rgb3Zdu8tS1LmulNu6byMPrMPXpJ6yoCXpJ4y4CWppwx4SeopA16SespRNJLGthrmxndE0Q4GvKSxOTf+6mIXjST1lAEvST1lwEtSTxnwktRTBrwk9ZSjaCRpAVbDkNHOAz7JGmATcEdVvazr8iRpKayGIaNL0UXzNmDzEpQjSRrQacAnWQu8FDiry3IkSQ/X9Rn8/wBOAx4ctUCSU5NsSrJpy5YtHVdHknYfnQV8kpcBd1XVlfMtV1VnVtX6qlo/MzPTVXUkabfT5Rn8s4BXJLkVOA84Icmfd1ieJGlAZwFfVe+qqrVVtQ44CfhCVZ3cVXmSpJ15oZMk9dSSXOhUVZcCly5FWZKkhmfwktRTBrwk9ZQBL0k9ZcBLUk8Z8JLUUwa8JPWUAS9JPWXAS1JPGfCS1FMGvCT1lAEvST1lwEtST40V8EkemeQ/JfnT9v7h7Rd6SJJWqHHP4M8B7geOb+/fDvxeJzWSJE3FuAF/WFVtAH4MUFU/BNJZrSRJizZuwP8oyb5AASQ5jOaMXpK0Qo37hR+/A3weODjJuTTft/qmriolSVq8sQK+qjYmuQo4jqZr5m1VdXenNZMkLcokwySfBKwB9gaeneTV3VRJkjQNY53BJ/kgcBRwA/Bg+3ABn+yoXpKkRRq3D/64qjqy05pIkqZq3C6ay5IY8JK0iox7Bv9nNCE/SzM8MkBV1VGd1UyStCjjBvwHgTcA17GjD16StIKNG/C3VdVnOq2JJGmqxg34byT5KPBZBq5grSpH0UjSCjVuwO9LE+wvHHjMYZKStIKNeyXrmyfdcJJ9gC8Bj2jL+XhV/c6k25EkLcy4FzqdQzvR2KCqess8q90PnFBV9yXZC/hykr+sqssXVlVJ0iTG7aK5cOD2PsCrgO/Mt0JVFXBfe3ev9udhfyQkSd0Yt4vmE4P3k3wM+KtdrZdkDXAl8BTgjKr66pBlTgVOBTjkkEPGqY4kaQwL/U7Ww4FdpnFVPVBVRwNrgWOT/NyQZc6sqvVVtX5mZmaB1ZEkzTVuH/xWdu5emQV+a9xCquqeJJcCJwLXT1JBSdLCjNtFs/+kG04yA/y4Dfd9gecDfzjpdiRJCzNWF02SZyXZr719cpLTk/zULlZ7AnBJkmuBrwEbq+rCXawjSZqScUfR/G/g6UmeDpwGnA18GHjOqBWq6lrgGYuuoSRpQcb9kHVbO+zxlcD7q+r9wMTdNpKkpTPuGfzWJO8CTqb5ur41NOPaJUkr1Lhn8K+juTL1lKqapfl+1vd1VitJ0qKNO4pmFjh94P5tNH3wkqQVatxRNK9O8s0k/5Dk3iRbk9zbdeUkSQs3bh/8BuDlVbW5y8pIkqZn3D747xrukrS6jHsGvynJ+cCn8BudJGlVGDfgHw38E36jkyStGp19o5MkaXmNO4pmbZILktyV5LtJPpFkbdeVkyQt3Lgfsp4DfAZ4Is1FTp9tH5MkrVDjBvxMVZ1TVdvanw8BfjuHJK1g4wb83e00wWvan5OB73VZMUnS4owb8G8BXkvzTU53Aq8B/OBVklawcYdJ/i7wxqr6AUCSnwD+iCb4JUkr0Lhn8EdtD3eAqvo+fpmHJK1o4wb8HkkO2H6nPYMf9+xfkrQMxg3p/wb8bZKP01zB+lrgvZ3VSpK0aONeyfrhJJuAE4AAr66qGzutmSRpUcbuZmkD3VCXpFVi3D54SdIqY8BLUk8Z8JLUUwa8JPWUAS9JPWXAS1JPGfCS1FOdBXySg5NckmRzkhuSvK2rsiRJD9flfDLbgHdU1VVJ9geuTLLRK2AlaWl0dgZfVXdW1VXt7a3AZpqv+5MkLYEl6YNPso5meuGvDnnu1CSbkmzasmXLUlRHknYLnQd8kkcBnwD+bVXdO/f5qjqzqtZX1fqZGb/mVZKmpdOAT7IXTbifW1Wf7LIsSdLOuhxFE+BsYHNVnd5VOZKk4bo8g38W8AbghCTXtD8v6bA8SdKAzoZJVtWXab4cRJK0DLySVZJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppzoL+CQfTHJXkuu7KkOSNFqXZ/AfAk7scPuSpHl0FvBV9SXg+11tX5I0v2Xvg09yapJNSTZt2bJluasjSb2x7AFfVWdW1fqqWj8zM7Pc1ZGk3lj2gJckdcOAl6Se6nKY5MeAy4CnJrk9ySldlSVJerg9u9pwVb2+q21LknbNLhpJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppzoN+CQnJrkpyc1J3tllWZKknXUW8EnWAGcALwaOBF6f5MiuypMk7azLM/hjgZur6ttV9SPgPOCVHZYnSRqQqupmw8lrgBOr6lfa+28AnllVvzlnuVOBU9u7TwVu6qRC4zsQuHuZ67BS2BY72BY72BY7rIS2+Kmqmhn2xJ4dFpohjz3sr0lVnQmc2WE9JpJkU1WtX+56rAS2xQ62xQ62xQ4rvS267KK5HTh44P5a4DsdlidJGtBlwH8NODzJoUn2Bk4CPtNheZKkAZ110VTVtiS/CVwErAE+WFU3dFXeFK2Y7qIVwLbYwbbYwbbYYUW3RWcfskqSlpdXskpSTxnwktRTBrwk9dSKDfgk+yb5Yjvlwdznfi3JdUmuSfLlUVMgJDmmXe7mJP8zSdrHH5Hk/PbxryZZN7DO55Pck+TCCer62iQ3JrkhyUcnrMvbk9yW5APjljdk2zu1VZJDklycZHNbr3VD1hnZBvOU87ok17b7uWGe5d7VbvemJC8aePySJPclmeq44SH7/4dJrm9/XjdinYXs/3uT/H2S++Y8vtjjcVHHwJD9H3oMJzk7ydfb1/DjSR41YntvTPLN9ueNY5T/7CRXJdnWXuA4+NyG9njZPLjPc5YZ+lokOaxt0/vmrjOFtnheW+ftr9lTptQWI4+FUXWZs/7U2gKAqlqRP8BvAG8b8dyjB26/Avj8iOWuAI6nuejqL4EXt4//OvDH7e2TgPMH1nke8HLgwjHreThwNXBAe//xk9Slfe5NwAem1VbApcAL2tuPAh45ZJ2RbTCijMcBtwEz7f0/A543ZLkjga8DjwAOBb4FrJlTt/VdHSvAS4GNNCPE9gM2DR4vC93/drnjgCcA903zeFzsMTDk9R96DM+p5+nAO4ds6yeAb7e/D2hvH7CL8tcBRwEfBl4z8Pg/B75CM4puDXAZ8NxJX4u57T2ltvg74GcGyv/QlNpi5LEwqi5dtUVVrdwzeOCXgU8Pe6Kq7h24ux9DrpBN8gSaxr6smpb5MPAv26dfSRNQAB8Hnrf9zKKq/hrYOkE9fxU4o6p+0K5/14R1mYaH2qo9Y9izqja29bmvqv5pyDoj22CEJwN/V1Vb2vt/BfyrEds9r6rur6pbgJtp5iXq0uCxciTwxaraVlX/SPPH5sQR9Zxk/6mqy6vqziGPL/Z4XKyd3iujjuHt9Wz3c99h9QReBGysqu+3x/RGhrff4HZvraprgQfnPgXsA+xN8wd/L+C7QzYx8Wsxj7Haoq3bo9vbj2H4RZgLaYuRx8KY2TLNtliZAZ/mwqgnV9Wt8yzzG0m+BWwA3jpkkSfRXE273e3tY9uf+3toxusD/0BzhroQRwBHJPlKksuTDDsA5qvLogxpqyOAe5J8MsnVSd6XId1cTN4GNwM/nWRdkj1pwungIcs9tN3W1PZ1mCH7/3XgxUkemeRA4Bd3Vc8pHAOLPR4XbJz3ypzlzwFmgZ8G/teQRab2+lXVZcAlwJ3tz0VVtXm+MhfzWkzYFr8CfC7J7cAbgD+Yr16tsdpijGNhPlM9LldkwNNM4HPPfAtU1RlVdRjwW8B/HLLIfHPhjDVPzpj2pOmmeS7weuCsJI+doC6LNbet9gT+BfDvgJ+nOfN+05D1JqpTewbzb4Dzgb8BbgW2LXa7U7DT/lfVxcDngL8FPkbTLdB5PRd5PC7GLt8rOxVY9WbgicBmYNjnE1OrZ9uv/TM005Q8CTghybM7LHOStng78JKqWgucQ9NlNZV6jXEszGeqx8lKDfgf0vxrBzz04dY1Sa4Zsux5DP9X93aaA2u7wblwHponpz0bfQzw/QXW9Xbg01X147ZL4iaawB+3Lou1U1u1ZV1dzTTN24BPAf9sRL0naoOq+mxVPbOqjqfZz2/Ot91W13MQzd1/quq9VXV0Vb2A5g0zbz2ncAwMWsjxuBgP2/9dqaoHaP5QD+tim+br9yrg8rab8D6azx2Om6/MRb4WY7VFkhng6VX11fah82k+LxhZr9akbTHqWJjPVI/LFRnw7dnimiT7tPd/u33DHg2QZDBAX8qQN3DbV7o1yXFtH9a/Zkff3GeA7Z+Ivwb4QtsvOlKS30/yqiFPfYqmG4C2S+AImg9jxq3LosxtK5o5gA5oD2KAE4Abh6w6sg2SfGNYWUke3/4+gObDoLNGbPekdjTAoTR/7K6YeMfGNHf/k6xJ8rj29lE0H/5dPKKeE+3/KFM4HhdsyOs/qo7ZPlKkLf/lwLD9vAh4YZID2tf5he1j870HRrkNeE6SPZPsBTyH5j+HuSZ+Pw4zblsAPwAek+SI9v4LRtRr4rYY51jYham0xUMm+UR2KX+As4Hnj3ju/cANwDU0fXw/O/DcNQO31wPX04zk+AA7pmbYB/g/NP3KV9D0221f52+ALTRnA7cDL2ofvxA4fkhdQvPv3Y3AdcBJk9Slfe5NLG4UzU5tRXPAXtvW50PA3u3j7wFeMV8b0Pybe9OIcj7W7ueNc/bzFcB7Bu7/drufNzEwUqR97lKmP4rmof1v92t7HS8Hjh5YbrH7v6E9Jh5sf797GsfjYo+BIa//w45hmpO5r7THxPXAubQjPtp6nTWw/lvadrkZePPA46PeAz/flvOPwPeAG9rH1wB/QhOeNwKnT/JaDCw7ySiaXbZF+/ir2rb4entMPnlKbTHfsTCqLp20RVWt6IB/BvCR5a7HQH0u6nDbC35zT7utgJcBb+1wXy9l+gG/ava/i2Ngqd4rXb4HdlHuJAFvWwz8dPmFH4tSVVenuTBmTTV9hstdnxfteqnJJXk78GvAJxa6jWm2VVWNfYHXpJJcQvOh74+nud3Vsv+jLPYYWKr3SlfvgVGSHEbTJsOGVg5lW8xZr/2rIEnqmRX5IaskafEMeEnqKQNeknrKgNeqluSxSX59Gcp9bkbMCpjkc0OuZpaWnAGv1e6xNBddrRhV9ZKqume56yEZ8Frt/gDYPlf2+5L8+yRfSzPn+X8BaCdI+0aSs9LMEX9ukue3E8R9M8mx7XLvTvKRJF9oH//VXZT96CQXpJlz/4+T7NFu59YkB7blbk7yp2nmRL84yb7tMm9t17s2yXldNpB2Xwa8Vrt3At+qZhqLjTRTIxwLHA0cMzC51VNorjI8imYmxV8CfoFmUrb/MLC9o2guMT8e+M9JnjhP2ccC7wCeBhwGvHrIMofTTCf9szQTYW2f/+WdwDOq6iiaMfDS1Bnw6pMXtj9XA1fRBPn2uUFuqarrqupBmkvJ/7qai0Cuo/nCiu0+XVU/rKq7aS41n28u+yuqmdTtAZppHH5hyDK3VNU17e0rB8q6Fjg3yckMn+1SWjQDXn0S4PernZiuqp5SVWe3z90/sNyDA/cfhJ2u6J575d98VwKOs+xguQ8MlPVS4AzgGODKduZAaaoMeK12W4H929sXAW9J+12jSZ60fQbMCbwyyT7tjJTPpZmdc5Rjkxza9r2/DvjyOAW0yx9cVZcAp9F8UDz0+1GlxfCsQataVX2v/bD0epr5xj8KXNbMiMt9wMk0Z87jugL4C+AQ4Herar75vy+j+ZD3acCXgAvGLGMN8OdJHkPzX8d/d9SNuuBcNFIrybtpZuv7o+WuizQNdtFIUk95Bi/NI8nTgI/Mefj+qnrmctRHmoQBL0k9ZReNJPWUAS9JPWXAS1JPGfCS1FP/HwjjPzMa+kVsAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sp98['temp_bins'] = pd.qcut(sp98['temp_outside'], 5)\n",
+ "temp = sns.barplot(x='temp_bins', y='consume',data=sp98,color=\"orange\")\n",
+ "temp.axhline(y = sp98.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 220,
+ "id": "1cf0c4ab",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAANcklEQVR4nO3df6zddX3H8deLFgZ2dM70arcWvM6QJmwW2e4YhsQxtpC6LZoRwzRB/EHWv7awRNfJH9PIZpZUR8Yfm0mHLTZD1IAsyB9sLK7pfgDbbYFpbclMY7HFa29XlYJLa+G1P85pem97e/tt7/3cc/q+z0dy03PuPed83mnKk28+93u+x0kEAKjnokEPAABog8ADQFEEHgCKIvAAUBSBB4Cilg56gKlWrFiR0dHRQY8BABeMHTt2HEoyMtPPhirwo6OjGh8fH/QYAHDBsL3vTD9jiwYAiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFFD9UYnAPVt2LBBExMTWrlypTZu3DjocUoj8AAW1MTEhA4cODDoMRaFpls0tl9v+yHbe2zvtv2OlusBAE5qfQR/r6THk7zX9iWSXtd4PQBAX7PA214u6Z2SPiRJSY5JOtZqPQDAdC23aH5B0qSkLbafsX2f7WWnPsj2etvjtscnJycbjgMAi0vLwC+V9MuSPpfkWkmvSPr4qQ9KsinJWJKxkZEZL2kMADgPLQO/X9L+JE/37z+kXvABAAugWeCTTEj6ru01/W/9pqRvtVoPADBd67No/kjSA/0zaPZK+nDj9QAAfU0Dn+RZSWMt1wAAzIxr0QBAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIpPdAIWyAt3v23QIwyF44ffIGmpjh/ex9+JpCs/8Y1mr80RPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCK4nLBABbUiktfk3S8/ydaIvAAFtTH1v5w0CMsGk0Db/s7ko5IelXS8SRjLdcDAJy0EEfwv5Hk0AKsAwCYgl+yAkBRrQMfSf9ke4ft9TM9wPZ62+O2xycnJxuPAwCLR+stmhuSvGj7jZKesL0nyfapD0iySdImSRobG0vjeRaFDRs2aGJiQitXrtTGjRsHPQ6AAWka+CQv9v88aPsRSddJ2j77szBXExMTOnDgwKDHADBgzQJve5mki5Ic6d++WdLdsz7p+eelG29sNdKicdeePTp69Kh+atcu/j6HyBv37R30CBhGX7+x2Uu3PIJ/k6RHbJ9Y54tJHm+4HgBgimaBT7JX0jXn9KQ1a6Rt25rMs5j85e2368CBA1q1apW2bt066HHQd/Dutw16BAyhKz+xbW4v0DuInhGnSQJAUaUuVfArf8LRqiRdfuiIlkh64dAR/k4k7fjM7YMeARgIjuABoCgCDwBFEXgAKIrAA0BRBB4Aiip1Fg16Xrtk2bQ/ASxOBL6gV666edAjABgCbNEAQFEEHgCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKKp54G0vsf2M7cdarwUAOGkhjuDvlLR7AdYBAEzRNPC2V0v6HUn3tVwHAHC61kfwfy1pg6TXzvQA2+ttj9sen5ycbDwOACwezQJv+3clHUyyY7bHJdmUZCzJ2MjISKtxAGDRaXkEf4Okd9v+jqQvSbrJ9t83XA8AMEWzwCe5K8nqJKOS3ifp60lua7UeAGA6zoMHgKKWLsQiSbZJ2rYQawEAejiCB4CiOgXe9uts/5ntv+vfv6p/lgwAYEh1PYLfIumopHf07++X9BdNJgIAzIuugX9rko2SfiJJSf5PkptNBQCYs66BP2b7MkmRJNtvVe+IHgAwpLqeRfNJSY9LusL2A+q9ielDrYYCAMxdp8AnecL2TknXq7c1c2eSQ00nAwDMybmcJrlK0hJJl0h6p+1b2owEAJgPnY7gbW+WtFbSLp28MmQkfbXRXACAOeq6B399kqubTgIAmFddt2ietE3gAeAC0vUI/gvqRX5CvdMjLSlJ1jabDAAwJ10Dv1nSByR9Q7N8OhMAYHh0DfwLSR5tOgkAYF51Dfwe21+U9DVNeQdrEs6iAYAh1TXwl6kX9punfI/TJAFgiHV9J+uHWw8CAJhfXd/otEX9C41NleQj8z4RAGBedN2ieWzK7Usl/Z6kF+d/HADAfOm6RfPw1Pu2H5T0z00mAgDMi/P9TNarJF05n4MAAOZX1z34I5q+Bz8h6U+bTAQAmBddt2gubz0IAGB+ddqisX2D7WX927fZvsf2m9uOBgCYi6578J+T9GPb10jaIGmfpK2zPcH2pbb/0/ZztnfZ/tQcZwUAnIOugT+eJJLeI+neJPdKOtu2zVFJNyW5RtLbJa2zff15TwoAOCddz4M/YvsuSbep93F9SyRdPNsT+v9DeLl/9+L+12lvlgIAtNH1CP731TsivyPJhHqfz/qZsz3J9hLbz0o6KOmJJE+f76AAgHPTKfBJJpLck+Rf+/dfSDLrHnz/ca8mebuk1ZKus/1Lpz7G9nrb47bHJycnz3F8AMCZdD2L5hbb/2P7R7Zfsn3E9ktdF0nyQ0nbJK2b4WebkowlGRsZGen6kgCAs+i6RbNR0ruT/EyS5UkuT7J8tifYHrH9+v7tyyT9lqQ9c5oWANBZ11+yfj/J7nN87Z+T9IX+L2QvkvSVJI+d5TkAgHnSNfDjtr8s6R/U8ROdkvy3pGvnNB0A4Lx1DfxyST8Wn+gEABcMPtEJAIrqehbNatuP2D5o+/u2H7a9uvVwAIDz1/Usmi2SHpX08+q9yelr/e8BAIZU18CPJNmS5Hj/635JnLQOAEOsa+AP9S8TvKT/dZuk/205GABgbroG/iOSblXvk5y+J+m9kvjFKwAMsa6nSf65pA8m+YEk2X6DpM+qF34AwBDqegS/9kTcJSnJYfEmJgAYal0Df5Htnz1xp38E3/XoHwAwAF0j/VeS/sP2Q+q9g/VWSZ9uNhUAYM66vpN1q+1xSTdJsqRbknyr6WQAgDnpvM3SDzpRB4ALRNc9eADABYbAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCKIvAAUFSzwNu+wva/2N5te5ftO1utBQA4XcsP7Tgu6aNJdtq+XNIO209wmWEAWBjNjuCTfC/Jzv7tI5J2S1rVaj0AwHQLsgdve1S9z3B9eoafrbc9bnt8cnJyIcYBgEWheeBt/7SkhyX9cZKXTv15kk1JxpKMjYyMtB4HABaNpoG3fbF6cX8gyVdbrgUAmK7lWTSW9HlJu5Pc02odAMDMWh7B3yDpA5Jusv1s/+u3G64HAJii2WmSSf5Nklu9PgBgdryTFQCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCKahZ425ttH7T9zVZrAADOrOUR/P2S1jV8fQDALJoFPsl2SYdbvT4AYHYD34O3vd72uO3xycnJQY8DAGUMPPBJNiUZSzI2MjIy6HEAoIyBBx4A0AaBB4CiWp4m+aCkJyWtsb3f9h2t1gIAnG5pqxdO8v5Wrw0AODu2aACgKAIPAEUReAAoisADQFEEHgCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgqKaBt73O9vO2v2374y3XAgBM1yzwtpdI+htJ75J0taT327661XoAgOlaHsFfJ+nbSfYmOSbpS5Le03A9AMAUSxu+9ipJ351yf7+kXzv1QbbXS1rfv/uy7ecbzrSYrJB0aNBDDAN/9oODHgGn49/nCZ/0XF/hzWf6QcvAzzR1TvtGsknSpoZzLEq2x5OMDXoOYCb8+1wYLbdo9ku6Ysr91ZJebLgeAGCKloH/L0lX2X6L7UskvU/Sow3XAwBM0WyLJslx238o6R8lLZG0OcmuVuvhNGx7YZjx73MBODltWxwAUADvZAWAogg8ABRF4AviEhEYVrY32z5o+5uDnmUxIPDFcIkIDLn7Ja0b9BCLBYGvh0tEYGgl2S7p8KDnWCwIfD0zXSJi1YBmATBABL6eTpeIAFAfga+HS0QAkETgK+ISEQAkEfhykhyXdOISEbslfYVLRGBY2H5Q0pOS1tjeb/uOQc9UGZcqAICiOIIHgKIIPAAUReABoCgCDwBFEXgAKIrAAx3Zvo8Lt+FCwmmSwBS2rd5/F68NehZgrjiCx6Jne9T2btt/K2mnpM/bHre9y/anpjxum+2x/u2XbX/a9nO2n7L9pkHND5wJgQd61kjamuRaSR9NMiZpraRft712hscvk/RUkmskbZf0Bws3KtANgQd69iV5qn/7Vts7JT0j6RfV++CUUx2T9Fj/9g5Jo80nBM7R0kEPAAyJVyTJ9lskfUzSryb5ge37JV06w+N/kpO/wHpV/LeEIcQRPDDdcvVi/6P+vvq7BjwPcN446gCmSPKc7Wck7ZK0V9K/D3gk4LxxmiQAFMUWDQAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFDU/wO4cRJ59dm8/wAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "rain = sns.barplot(data=sp98, y=\"consume\", x =\"rain\")\n",
+ "rain.axhline(y=sp98.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 224,
+ "id": "5275b59e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAYrUlEQVR4nO3de5glZX3g8e+PO3IRhA63YRgFRAlBMB1WllVxJEhQdFUSZAMPIO48KhrdNSG4u9EsCSuCImwkbibcvCCS5ZIFRIQgI9EAOsBwHUCFUbm0DFEZEJEM/PaPepuuOZzurp7u6kvx/TzPeU5Vnap6f+c9dX7nrffUJTITSVL3rDPTAUiS2mGCl6SOMsFLUkeZ4CWpo0zwktRR6810AHVbb711LliwYKbDkKQ54+abb34sMwf6vTarEvyCBQtYunTpTIchSXNGRPx4tNfsopGkjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR01q050mmnHH388Q0NDbLvttpxyyikzHY4kTYoJvmZoaIiHHnpopsOQpClhF40kdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6qtUEHxFbRMRFEXFPRCyPiH3bLE+SNKLta9GcAVyVmYdGxAbAS1ouT5JUtJbgI2Jz4A3A0QCZ+QzwTFvlSZLW1GYXzSuAlcC5EXFrRJwVEZu0WJ4kqabNBL8e8FrgC5m5N/Ar4ITemSJiUUQsjYilK1eubDEcSXpxaTPBPwg8mJk3lfGLqBL+GjJzcWYOZubgwMBAi+FI0otLawk+M4eAn0bEbmXSm4G72ypPkrSmto+i+TBwfjmC5n7gmLVZyYqzXz6lQY1m9ap5wAasXvXAtJS54NgHWi9D0otXqwk+M5cBg22WIUnqzzNZJamjTPCS1FEmeEnqKBO8JHWUCV6SOsoEL0kdZYKXpI4ywUtSR5ngJamjTPCS1FEmeEnqKBO8JHWUCV6SOsoEL0kd1fb14OeUrTZZvcazJM1lJviajy0cmukQJGnK2EUjSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooD5OUpLVw/PHHMzQ0xLbbbsspp5wy0+H01WqCj4gVwBPAs8DqzBxsszxJmi5DQ0M89NBDMx3GmKajBf+mzHxsGsqRJNXYBy9JHdV2gk/g6oi4OSIWtVyWJKmm7S6a/TLz4Yj4LeCaiLgnM6+vz1AS/yKA+fPntxyOJL14tNqCz8yHy/OjwKXAPn3mWZyZg5k5ODAw0GY4kvSi0loLPiI2AdbJzCfK8IHAiWMudO+9sP/+L5i87SOPtBHizPvy/jMdgdQ5Tz9y47SUc8K/bsgzz67DBrct5endNmq9vI22e92El2mzi2Yb4NKIGC7nq5l5VYvlSZJqWkvwmXk/8JoJLbTbbrBkyQsmD5398qkJapZZcOySmQ5B6pzpyhd/ffk8fvbEBmyz2TP8r0MebL28UfNF1Yjuy8MkJamjvFSB+poLp2FLGpsJXn3NhdOwJY3NBC+Nw72ZEdbFiK02Wb3G82xkgpfG4d7MCOtixMcWDs10COPyT1ZJ6igTvCR1lF00c8yKaTrGd/WqecAGrF71wLSUueDYB1ovQ3qxsQUvSR1lC15zlnsz0thM8FIH+GOnfuyikaSOMsFLUkeZ4CWpo+yDV19z4TRsSWMzwauvuXAa9nTxx05zlQleGoc/dpqrTPCSGnNvZm4xwUtqzL2ZucWjaCSpo0zwktRRJnhJ6igTvCR1VOsJPiLWjYhbI+KKtsuSJI2Yjhb8R4Dl01COJKmm1QQfEfOAtwJntVmOJOmF2m7Bnw4cDzzXcjmSpB6NEnxEvCQi/iIi/r6M7xoRbxtnmbcBj2bmzePMtygilkbE0pUrVzYOXJI0tqYt+HOB3wD7lvEHgb8eZ5n9gLdHxArga8DCiPhK70yZuTgzBzNzcGBgoGE4kqTxNE3wO2fmKcC/AWTmr4EYa4HM/HhmzsvMBcB7gG9l5hGTCVaS1FzTBP9MRGwMJEBE7EzVopckzVJNLzb2SeAqYMeIOJ+q++XopoVk5hJgyQRjkyRNQqMEn5nXRMQtwOuoumY+kpmPtRqZJGlSJnKY5A7AusAGwBsi4l3thCRJmgqNWvARcQ6wJ3AXI8e0J3BJS3FJkiapaR/86zJz91YjkSRNqaZdNDdEhAlekuaQpi34L1Il+SGqwyMDyMzcs7XIJEmT0jTBnwMcCdyB15WRpDmhaYL/SWZe1mokkqQp1TTB3xMRXwUup3YGa2Z6FI0kzVJNE/zGVIn9wNo0D5OUpFms6Zmsx7QdiCRpajU90elcyoXG6jLzvVMekSRpSjTtoqnfMHsj4J3Aw1MfjiRpqjTtorm4Ph4RFwD/1EpEkqQpsbb3ZN0VmD+VgUiSplbTPvgnWLMPfgj481YikiRNiaZdNJu1HYgkaWo16qKJiP0iYpMyfEREnBYRO7UbmiRpMpr2wX8BeCoiXgMcD/wY+FJrUUmSJq1pgl+dmQm8AzgjM88A7LaRpFms6XHwT0TEx4EjqG7Xty6wfnthSZImq2kL/jCqa9Ecm5lDVPdnPbW1qCRJk9b0KJoh4LTa+E+wD16SZrWmR9G8KyJ+EBGPR8SqiHgiIla1HZwkae017YM/BTgkM5c3XXFEbARcD2xYyrkoMz858RAlSWujaYL/2USSe/EbYGFmPhkR6wPfiYhvZOaNE1yPJGktNE3wSyPiQuAfaXhHp3JY5ZNldP3yeMElhyVJ7Wia4DcHnmKCd3Qqh1PeDOwCnJmZN/WZZxGwCGD+fK9fJklTpdU7OmXms8BeEbEFcGlE7JGZd/bMsxhYDDA4OGgLX5KmSNOjaOZFxKUR8WhE/CwiLo6IeU0LycxfAkuAg9YuTEnSRDU90elc4DJge6qTnC4v00YVEQOl5U5EbAwcANyz1pFKkiakaYIfyMxzM3N1eZwHDIyzzHbAdRFxO/B94JrMvGKcZSRJU6Tpn6yPRcQRwAVl/HDgX8daIDNvB/aeRGySpElo2oJ/L/BHVHdyegQ4FFirP14lSdOjaQv+r4CjMvMXABHxMuAzVIlfkjQLNW3B7zmc3AEy8+fY/SJJs1rTBL9ORGw5PFJa8E1b/5KkGdA0SX8W+JeIuIjqDNY/Ak5qLSpJ0qQ1PZP1SxGxFFgIBPCuzLy71cgkSZPSuJulJHSTuiTNEU374CVJc4wJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4Seqo1hJ8ROwYEddFxPKIuCsiPtJWWZKkF2rzxtmrgY9l5i0RsRlwc0Rc463+JGl6tNaCz8xHMvOWMvwEsBzYoa3yJElrmpY++IhYAOwN3NTntUURsTQilq5cuXI6wpGkF4XWE3xEbApcDHw0M1f1vp6ZizNzMDMHBwYG2g5Hkl40Wk3wEbE+VXI/PzMvabMsSdKa2jyKJoCzgeWZeVpb5UiS+muzBb8fcCSwMCKWlcfBLZYnSapp7TDJzPwOEG2tX5I0Ns9klaSOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjrKBC9JHWWCl6SOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjrKBC9JHWWCl6SOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjqqtQQfEedExKMRcWdbZUiSRtdmC/484KAW1y9JGkNrCT4zrwd+3tb6JUljm/E++IhYFBFLI2LpypUrZzocSeqMGU/wmbk4Mwczc3BgYGCmw5GkzpjxBC9JaocJXpI6qs3DJC8AbgB2i4gHI+LYtsqSJL3Qem2tODMPb2vdkqTx2UUjSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdVSrCT4iDoqIeyPihxFxQptlSZLW1FqCj4h1gTOBPwB2Bw6PiN3bKk+StKY2W/D7AD/MzPsz8xnga8A7WixPklQTmdnOiiMOBQ7KzPeV8SOBf5eZH+qZbxGwqIzuBtzbSkDNbQ08NsMxzBbWxQjrYoR1MWI21MVOmTnQ74X1Wiw0+kx7wa9JZi4GFrcYx4RExNLMHJzpOGYD62KEdTHCuhgx2+uizS6aB4Eda+PzgIdbLE+SVNNmgv8+sGtEvDwiNgDeA1zWYnmSpJrWumgyc3VEfAj4JrAucE5m3tVWeVNo1nQXzQLWxQjrYoR1MWJW10Vrf7JKkmaWZ7JKUkeZ4CWpo0zwktRRsyLBR8TGEfHtcnkDIuKqiPhlRFzRM995EfFARCwrj71GWd+nI+LO8jisNn1hRNxSpn8xItYr07eMiEsj4vaI+F5E7NEg5vPLdXbujIhzImL9Mv2lEXF5RNwWEXdFxDHjrOdvIuLJ2vhh5do9V/SZ9/l6ioi9IuKGUsbtPe/zzeV9LouI70TELmOUv3lEPBQRn2/wnt8fEXfU1rt77bX5EXF1RCyPiLsjYkGf5edHxHURcWuJ+eAyfeeyzid7lxkjlnpd7BQRN5d13BUR76/NFxFxUkTcV2L7k1HWd0pZdnlE/O+I6HceR7/lDo2IjIjBMj5qLD3LbRgRF5bP+qbh+ppsXdSmveBzjYizy3Z5e0RcFBGbjrK+oyLiB+VxVIPyj46IlbXv5fDJjaNuo9NVFxHxbC2uy2rz9f3+TkFd7BQR15b3uyQi5k1kXVNZFwBk5ow/gOOAj9TG3wwcAlzRM995wKHjrOutwDVURwhtAiwFNqf6Mfsp8Moy34nAsWX4VOCTZfhVwLUNYj6Y6mSuAC4APlCm/zfg02V4APg5sMEo6xgEvgw82TN9/9733ltPwCuBXcvw9sAjwBZl/D7g1WX4g8B5Y7yPM4CvAp9v8J43rw2/HbiqNr4E+P0yvCnwkj7LL67V0+7Aip7XnxwvhlHqYgNgw1rZK4Dty/gxwJeAdcr4b/VZ178Hvkt1tNe6wA3A/g1i2Ay4HrgRGBwvlp5lPwj8nzL8HuDCqaiLsT7Xns/vNOCEPut6GXB/ed6yDG85TvlH99t+xtpGp6suRluWUb6/U1AX/xc4qgwvBL48kXVNZV1k5uxowQN/DPy/4ZHMvBZ4Yi3XtTvw7cxcnZm/Am4DDgK2An6TmfeV+a4B3l1b5tpS9j3AgojYZqxCMvPKLIDvUZ3IBdXZupuVFuCmVAl+de/ypYVxKnD8BN7b8/WUmfdl5g/K8MPAo1Q/KMMxbF6GX8ooJ5hFxO8C2wBXNyk8M1fVRjcp5VBa8utl5jVlvicz86l+q2gSV0P1ungmM39Tpm/ImnumHwBOzMznyryPjhLXRpTkDKwP/KxBDH8FnAI8/fyKxo6l7h3AF8vwRcCbm+419LHG92e0z3X48yvlbEyfM8uBtwDXZObPM/MXVN+Tg9YmqHG20brW6mKM2Eb7/tatTV08n0uA6xi5/lbTdU1lXcx8go/qJKhXZOaKhoucVHZ/PhcRG/Z5/TbgDyLiJRGxNfAmqjNqHwPWH96VBg5l5Ezb24B3lXj2AXai/wfeL/71gSOBq8qkzwOvpkped1C1Jp7rs+iHgMsy85GG5YxaTyXmDYAflUnvA66MiAdLbCf3WWYd4LPAnzUpv7bccRHxI6rENtzd8UrglxFxSVTdL6fWuwtq/hI4osR1JfDhiZRdi+EFdRERO0bE7VR7aZ8uCQVgZ+CwiFgaEd+IiF1715eZN1B9GR8pj29m5vJxYtgb2DEz+3WljRZL3Q7ldTJzNfA4VSNkQnrrYrzPNSLOBYao9lT/Zqy4igfLtPG8u9b1s2Pvi3220b5lTmVdFBuVz/7GiPiPfZbp/f72jatoUhe3MdJwfCdVY2+rCaxrSupi2IwneKqL9fyy4bwfp9owf49qV+fPe2fIzKupkse/UO163QCsLr/U7wE+FxHfo9pDGG5ZnwxsGRHLqJLOrfRpdY/ib4HrM/Ofy/hbgGVUu6R7AZ+PiM3rC0TE9sAf0v8LNpq+9RQR21F18xxT+yH5L8DBmTkPOJdqd7zXB4ErM/OnfV4bVWaemZk7U9X9/yiT1wNeD/wp1WfzCqrd9l6HU3UXzaPaRf5ySUgT9YK6yMyfZuaewC7AUbU9sA2Bp7O6XsjfA+f0riyq/yheTfWjvgOwMCLeMFrhJebPAR/r9/oYsayxmn6LjlbmGHrrYszPNTOPodo2lwP9+sTXJq7LgQXlPf8TIy3QaoX9t9HJltlPv+/I/PLZ/yfg9IjYuef13u/vZOP6U+CNEXEr8EbgIapc0nRdU1UXZckJ9Oe08aDqj1rRZ/r+9OmHbvp6bb6vUiW73ukHAv/QZ3pQ9Ztu3mDdnwT+kdK/W6Z9HXh9bfxbwD49y72VqhW1ojyeo7q08qjvrV89UXV33AL8YW3aAPCj2vh84O4+sZ8P/KSU/xiwCjh5Ap/bOsDjZfh1wJLaa0cCZ/ZZ5i6qVu/w+P3U+sRp2L842jZTe/1cyn81wD1UyWf4s328z/x/BvxFbfwTwPFjrP+lpc6GP7+nqfbYBseKpWf6N4F9y/B6ZX0x2bpo+rlSJZ9+//McDvxdbfzvgMMnsF2sW6/jftvodNVFn9fPq38W9Pn+TnFdbAo8OJF1TVVdPD//RGZu60G1S7JRz7T9ezdAYLvyHMDpo2y46wJbleE9gTup+oehJBOqVt21wMIyvgXlj1DgPwNfqq3vWmCHPuW8j2ovYeOe6V8A/rIMb0P1C771OO+/6Z+sz9cT1e7utcBHe+YZ3iiG/0w+Frh4nPKPZs0/4z4FvLPPfLvWhg8Bltbq/DZgoIyfCxzXZ/lvAEeX4eFurLXaeHvqYt7w50D1Jb8P+J0yfjLw3lq9fr/Pug6janmuR9X/fi1wyFh10bP8Ekb+ZB01lp5ljmPNP9P+oef1taqL0T5Xqu/MLrXhzwCf6bPMy4AHSuxbluGXjbNdbFcbfidw41jb6HTVRYl/+A/vrYEfALuX8b7f3ymoi60Z+UP/JKr/f8ZcV1t1kTl7EvzZwAG18X8GVgK/puqrekuZ/i2qfu07ga8Am5bpg8BZZXgj4O7yuBHYq7beU6l2Te+tb3TAvuXDvwe4hPLvNlUr9cf9NgKq3a4fUXXHLAM+UaZvT/Xn1nCcR9SWuZL+R1Q0TfDP1xNwBPBvtfKXDb9Xqi/ZHVRJdwlVv+Qa9dSz3qNZM8FfQWlF9Mx3BlUrfBlVn/Vv1177feD2Uu55jPxgngi8vQzvTnW0ym1lHQdO4otcr4vhsm8rz4tq821BtVd1B1V33Wv6bDPrUrWolpft5rTx6qInliWMJPixYqnXxUZUR1z8kOpPvldMRV2M9rlSbcvfrW2X51P2Unu3C+C9Ja4fUnWrjLddfKpsF7eV7eJVDbbR1uuC6uio4e/BHZSj5sb5/k62Lg6lyiX3AWdRfmDGWVcrdZE5exL83pTDiWbTA9iD2pd9Gsvdn/4JflrqiepPxpmo74l8ka0L68K6GOcxG/5kJTNvBa4b5ciLGZOZd2bmf53OMsvJIH8L/KJPPNNST5n5ljbX32v4JA6aHZoIWBd11sUI66JnufKrIEnqmFnRgpckTT0TvCR1lAlekjrKBC81UK4MODjG632v8hcRJ0bEAe1FJo2utXuySoLM/MRMx6AXL1vwmrMiYpOI+HpU1zi/M6pr6a+I6n4A3yuPXcq8AxFxcUR8vzz2q63jnDLt1oh4R5m+cUR8rVxA60Kqqy+OF89no7oO/7URMVCmnRcRh5bhFRHxP8s8d0TEq8r0N8bINctvjYjNWqoyvciY4DWXHQQ8nJmvycw9GLki4KrM3Ifqyp6nl2lnAJ/LzN+jutrfWWX6fwe+Vaa/CTg1IjahuszwU1ldQOsk4HfHiWUT4JbMfC3wbarrnPTzWJnnC1QXpqI8H5eZe1FdtO3XTd68NB4TvOayO4ADSov99Zn5eJl+Qe153zJ8ANWVPZcBlwGbl5bygcAJZfoSqlPF5wNvoLocBpl5O9VlB8byHHBhGf4K8B9Gme+S8nwzsKAMfxc4Laq7TW2R1WVipUmzD15zVmbeF9XNLQ4GPhURwze4qJ+9Nzy8DtW1Q9ZoHUdEAO/OzHt7pveuZ8LhjTJ9+GYgz1K+f5l5ckR8nep93BgRB2R14xlpUmzBa84q19V/KjO/QnV1xNeWlw6rPd9Qhq+musnK8LJ7lcFvAh8uiX74Rh5Q3Yrvj8u0PaiuTDqWdaguNAXVtce/M4H3sXNm3pGZn6a6xeSrmi4rjcUWvOay36HqM3+O6qqFH6C6zdmGEXETVdI9vMz7J8CZ5U5L61El8PdT3XbvdOD2kuRXAG+j6iM/t8y/jOrKfmP5FfDbEXEz1V14+t5gehQfjYg3UbXq76a6rLI0aV6LRp0SESuoLt372EzHIs00u2gkqaNswUsTULp+em/2fmRm3jET8UhjMcFLUkfZRSNJHWWCl6SOMsFLUkeZ4CWpo/4/CKKPxxBgCvUAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sp98['speed_bins'] = pd.qcut(sp98['speed'], 5)\n",
+ "speed = sns.barplot(x='speed_bins', y='consume',data=sp98, color=\"orange\")\n",
+ "speed.axhline(y=sp98.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "85b3b89a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c26695b8",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "412ed922",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d7bbb125",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "21d14b52",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f6bec4a2",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "04861611",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "989e1e39",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "82ef7544",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d42faf4a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f41bf684",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b0a75376",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "500d8f35",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0f45cf0c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2a32f8a9",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "68415019",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "066dc6ef",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "986aad20",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "02b15eca",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2bd3c963",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6ef550c0",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7e0b1d35",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2b28f4ba",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "909e680b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "84905456",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "fa638212",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3246e422",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "faf5df41",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6f2c3605",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a6dac03b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a2b924b2",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "84ea053b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8e5d2897",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0d038256",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "22a5944f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "bf41f88a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "dcab6538",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a1de78fd",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "631b85dc",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c8cbe705",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7c5ec95a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5a5fe2fe",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "92d4fe5a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "49462e23",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [conda env:ironhack] *",
+ "language": "python",
+ "name": "conda-env-ironhack-py"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Cobify.twb b/Cobify.twb
new file mode 100644
index 0000000..48f0a77
--- /dev/null
+++ b/Cobify.twb
@@ -0,0 +1,3228 @@
+
+
+
+
+
+ <_.fcp.AccessibleZoneTabOrder.true...AccessibleZoneTabOrder />
+ <_.fcp.AnimationOnByDefault.true...AnimationOnByDefault />
+
+ <_.fcp.MarkAnimation.true...MarkAnimation />
+ <_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
+ <_.fcp.ObjectModelTableType.true...ObjectModelTableType />
+ <_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
+
+
+
+
+
+
+
+
+
+
+ <_.fcp.AnimationOnByDefault.false...style>
+ <_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'>
+ <_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' />
+
+
+
+
+
+
+
+
+
+
+ <_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='excel-direct.0fd46bp16b6a2b13qqvuh0qqyk4v' name='Con' table='[Sheet1$]' type='table'>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='excel-direct.0fd46bp16b6a2b13qqvuh0qqyk4v' name='Con' table='[Sheet1$]' type='table'>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 0
+ [Con]
+
+ Count
+ true
+
+ 1
+ "A1:N389:no:A1:N389:1"
+ 0
+ 1
+ 4033
+
+
+
+ distance
+ 5
+ [distance]
+ [Con]
+ distance
+ 0
+ real
+ Sum
+ 15
+ true
+
+ "R8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ consume
+ 5
+ [consume]
+ [Con]
+ consume
+ 1
+ real
+ Sum
+ 15
+ true
+
+ "R8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ speed
+ 20
+ [speed]
+ [Con]
+ speed
+ 2
+ integer
+ Sum
+ true
+
+ "I8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ temp_inside
+ 5
+ [temp_inside]
+ [Con]
+ temp_inside
+ 3
+ real
+ Sum
+ 15
+ true
+
+ "R8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ temp_outside
+ 20
+ [temp_outside]
+ [Con]
+ temp_outside
+ 4
+ integer
+ Sum
+ true
+
+ "I8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ gas_type
+ 130
+ [gas_type]
+ [Con]
+ gas_type
+ 5
+ string
+ Count
+ true
+
+
+ "WSTR"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ ac
+ 20
+ [ac]
+ [Con]
+ ac
+ 6
+ integer
+ Sum
+ true
+
+ "I8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ rain
+ 20
+ [rain]
+ [Con]
+ rain
+ 7
+ integer
+ Sum
+ true
+
+ "I8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ sun
+ 20
+ [sun]
+ [Con]
+ sun
+ 8
+ integer
+ Sum
+ true
+
+ "I8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ snow
+ 20
+ [snow]
+ [Con]
+ snow
+ 9
+ integer
+ Sum
+ true
+
+ "I8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ refill_liters
+ 5
+ [refill_liters]
+ [Con]
+ refill_liters
+ 10
+ real
+ Sum
+ 15
+ true
+
+ "R8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ refill_gas
+ 20
+ [refill_gas]
+ [Con]
+ refill_gas
+ 11
+ integer
+ Sum
+ true
+
+ "I8"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ temp_bins
+ 130
+ [temp_bins]
+ [Con]
+ temp_bins
+ 12
+ string
+ Count
+ true
+
+
+ "WSTR"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+ speed_bins
+ 130
+ [speed_bins]
+ [Con]
+ speed_bins
+ 13
+ string
+ Count
+ true
+
+
+ "WSTR"
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]
+
+
+
+
+
+
+
+ <_.fcp.ObjectModelTableType.true...column caption='consumos' datatype='table' name='[__tableau_internal_object_id__].[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]' role='measure' type='quantitative' />
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ <_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 0
+ 1
+
+
+ 14
+ 76
+
+
+ -5
+ 31
+
+
+
+
+
+
+
+
+
+
+
+ <_.fcp.ObjectModelTableType.true...column caption='consumos' datatype='table' name='[__tableau_internal_object_id__].[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]' role='measure' type='quantitative' />
+
+
+
+
+
+
+
+
+
+
+
+ <_.fcp.ObjectModelTableType.false...column caption='consumos' datatype='integer' name='[__tableau_internal_object_id__].[Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D]' role='measure' type='quantitative' />
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk]
+ ([federated.1hf7whd0lppe0j1cun4pz1rrpaca].[__tableau_internal_object_id__].[cnt:Sheet1_FA6B5CFBA06F40E3A620BCDA8AA7D97D:ok] * [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk])
+
+
+
+
+
+
+
+ Distance
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:distance:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:distance:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ <
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)]
+ >
<
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[avg:consume:qk]
+ >
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[avg:consume:qk]
+
+
+
+ "E10"
+ 4.933548387096776
+
+
+
+
+
+
+
+
+
+
+
+ Rain
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+
+
+
+
+
+
+
+ Speed
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk]
+
+
+
+
+
+
+
+ Temp
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ COBIFY
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ COBIFY
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ CONSUMOS COBIFY
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ CONSUMOS COBIFY
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:gas_type:nk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk]
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:consume:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+
+
+
+ "E10"
+ 8.0999999999999996
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:gas_type:nk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:speed:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:rain:qk]
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[none:temp_outside:qk]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ [federated.1hf7whd0lppe0j1cun4pz1rrpaca].[Gas Type (grupo)]
+
+
+
+
+
+
+
+
+ iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
+ AAAgAElEQVR4nO29V3BcWZqg912TPhOJTHhLgCRAz6It32W6q7prqnt6erZne2Z2NSZWO6EN
+ KUJ6UChC0tPoRWYUoZC0Wu1I2hhppmd7u6erumemTJdlOZqiJ0EChPcugUR6f83RQ7JYBAmS
+ yEw4Fu4XgUACec/5/2P+e9x/zpGEEAILi22KvNkKWFhsJpYBWGxrLAOw2NZYBmCxrbEMwGJb
+ s4IBCGanxpkNhQHIphMMDY9Q0E0AJkaHGBgYZCmWBGB+fh6A8ZEBBgYGCC2GmZ1bKIZNxogl
+ sxuQDAuL8rjPAE69/QZD00uEQiGy8RA/+7t/oJBL8Tc//Rm6gFOnTgGCv//5z0jp8P777wNf
+ /0ZS+eKjt4lmNN57520k1baR6bGwKAl1+Z8GU0t5/uQHxwHoOfsex57/Lge6GohNDzEZzpJL
+ x+m/1Ycz2IRLvT9CWZZ47dWX+MVP/x0t3Sfwr/SQhcUW4Z4WQEKYBl+tjDnsDnL5HADZXAG7
+ XaG6oZ0f/vCH+ImxmNBWjNTfuBMH8NILJ9ZPcwuLNeCe17PMU4d383dvvInDU80PX3mGX/zi
+ DRaGvehqPS1+O7HQJG+/8y6LaYHX+XVwp8fPnj177vxtd7qxKdJGpcPCoiwkyxXCYjtjTYNa
+ bGssA7DY1lgGYLGtsQzAYltjGYDFtmaZAfRev8zw+PSDnxYmt3p70czVTByZnPn0Y6J3uUJk
+ k1G+PP05U/MLDI1PlquzhcWasWwdQEpp1B6o5cK5czirg2RiSygOLy7yqFV1EJvFs6Obzz78
+ DQeeOMrFz8+z8+RhEvNRXB47Rw8fAsAspBmfX0RVXSRTKQavfMaC5uG3X3kGSTPwBWrR5ywD
+ sNh87usCackQH39xnr7hSUBgZNNMjI8zOzdLVZWPwb4+PA44e/o0ijeAoeW5eO40C0splpaW
+ WFpaQrZ72NnciM1lx+P20NC8g66OVpLRKIrXS3Jxhpm5RcxNSLCFxd2saiFsenKK1va2jdDH
+ wmJDsVaCLbY11iyQxbbGMgCLbc06GYCg5/KXRJL5O//RcykGRsbXR5yFRZksmwZ99x9+iXDV
+ crirBXdVNZGlFAVDZ8/ebtRSPJvzC7jqDhCen2BxJMJ4XOZ7Lz6JXQmvsfoWFpWxfD+AqaEZ
+ gtHRURLpGHrcoHZHK1NN3XRWlxCrPcDS5Hlauw6SzKUI+u0U0nFGRkYI1jXj99jXNhUWFmWy
+ bBYoEY+j6TqpRAy3rwp0E4fLic3jX3H7o4XF4441DWqxrbFmgSy2NZYBWGxr1skATHp7+wDo
+ 6+tb9s3i7CRfnL3A/MwEw+Mz6yPewmKVLDOAd//+TUYnJ7nVc4N0Nsut/mESkQWm5sNMjQ3x
+ 0ednVh2t2+simwgzOR8F4MtPfsOFniHqmttpqK1mYnyUXM46Nc5ic1k2t3Pg4H5uDV7DI9Vx
+ 7pN/S1XnAa73pmhtbcXI5bGrq50K0pkcHiHf0gpaimgyi91Tjd0moWej+IJNOGSTxVRuHZJk
+ YbF6ls0CTYwM4Knxc/Gzm7z02vMMD4zQ2lLLUkpH1TN4gnXUBUpZELCw2NpY06AW2xprFshi
+ W2MZgMW2Zl0cHKLxFFdvjN35++ihTgJ+73qIWobIL2IsfX7nb6XmBSRH3brLtXh8WWYAPZfP
+ YzqrOXJgz13/NfngrbfoeOIk3e3N90WQXpxkIuVgf2fDnf/F4mk+OX3jzt+d7fWkIyHGFpdo
+ DNaQSCbIZ1MYqHzr2WfWLDGisIgx9+adv2XfPiZnlhidDGH3uIkvhamq8iIrdtLxJarrmzl5
+ 5Miaybd4/FhmALFkHj0+xanxG0RMN5HRQX78Z/85NbUNNAUU/vFXvyYl23ABejpEVdshAg5B
+ g8/B37/xPkde+WM6HjBJlE1n0ISgpa2d+PVLCJsN1SisewKDtfVcv9GPmS/glCQ8Hg99A/24
+ 7SpSLL7u8i22NssMoL2ljlCigK+2hkabg0ytHwmTptZWXK4qCrKN9oADu68Bv6MVe1UD7sIS
+ 82md4ZEQ+55eYtFYWVCwvo6liSnmZqdJZfLU1QUw5cC6JzCTzlAVCNLauZPdba2MDg/wxOHj
+ pKOLVNU0PDoCi280azINmkyl8HnXv49vYbHWWOsAFtsaaxrUYluzbgbQ23OZZHblQW5kaYlM
+ Jk06k6GQzZHJFp3iclnLOc5iY1k2CD79yQeYjmoO7esiEAiQi86StNVT5y19ucDrq2a49xoG
+ dlpbasjlTcLhKEdOHKH36kXsda34HCpBh5M4gj2dnYTm59nR2blmibOweBTLarbq9JDXMvQN
+ 9DM3dIPqYACz/gCz59/CXbUL0w7ehlp21zh568Mv+cmf/Bk7aj0rRjwy1M++rm7e/PVbHPve
+ DzkUVHn781O0HjxC6649XL12jb27d9A7u0BDnZeBUYWZoV6CjW34rA3IFhvEskFwz5XzyO4a
+ qrwO0tEQbk+AWE4jH1vE4aimpq6adCGHqiiEZuc5ePQEVW7rhAeLxxdrFshiW2PNAllsaywD
+ sNjWWAZgsa2xDMBiW2MZgMW2xjIAi23NfQawODfJxYuXGJmcW3UkEzf6SK2pWhbrzUj/DS5d
+ usTQ2DSgs7gYXfZ9PLE99krct+R6/eYAL33nFWQE/b09pLNZGtq6UQsxJmYWOHjsBPOjt1hK
+ G5w8fpjea5cY6hnl5UP7N0N/izKZnFvg5Ze/w+UvPiba3EA+l2V8OEQ4mqG9o5l33/uAV179
+ PqnwJPGsxMmjuzl77iay3cbTTx6h5/Il3MEmXFKemYUYx06cwK6UconE1uC+FuBbzz3JhXOn
+ uXJjgKVEmuMnnmJs8AZnzpxFkXXOnvuCs2evkZ7p48uL58l7d7Jn147N0N1iDWjwO1hK5Zie
+ nmNxMYSBRLC2ka6uLlobg+i6QXTsGlORFLKznmq9wOCty3g7jtC9s50zZ88i6xHOXR7e7KSU
+ xX0GMDM1jd3hIpdLk0lEuHjhPE5fDa2tLaA4OXTwEC2ttVS1dLOno5XpgSsMjU1thu4WFWDk
+ 01y+dIlbYcHOGhsAwUAN+egk4wsZEuEQM/MzjAzP4HCqmCZIsgRIVDc1M3L9IkNjU7S2tKA4
+ aznYff9+8ceBh7pCnDn3Jc898/RG6mNhsaFYvkAW2xprGtRiW7MmBlBJI1JpA7RZsh9XvSth
+ Jbm6rlccx1o8W+7za2IApmmWHdYwlp+jIoSJMLWyw1cie6PCbrbsclmpnAuF0s52KkX3UtNZ
+ zvNbrgtkRs+jT/1/m62GxSqR46fRZ/4OI/zJZqtSFlvOAGT/UdSmH2+2GharRDVjqC0/QeQX
+ N1uVstgSBmDELmGEPwVAUpxI9uDmKmSxKoQWQ0+NUhj470BdeW/4VmdL7D6X7LWgPJ4ZuJ0x
+ Yxeh5U+x2e2Y8cubrU5ZrJsBJJIZFsJxdnc2PfJZ2d2xXmpYrCNy9Umun36XeNbGk089y+N4
+ eda6dYEisRQTU49nv9BidURTCsJ3jFde+z0u9YY3W52yKNEABNFoFGHqTM/MP/TJjrZ6vvPC
+ 4QpUs9jqeD0uIrE0V26MEKz2bbY6ZVFaF8jUiUQTZFMJbMIgVhD4FBPTNMtenDFNEz01AkYO
+ PHseHWCl8CUuxmx22M2Ura7mqltTY2B4kua6KkYnQ+w/fBDbCp7OdrvKc7tDFArjBINBYGdZ
+ Om0mD82N0PQwMwsah4/tKz4oTBZCs9TV1ZKMJ9nbIqEoCsCd36Wi6zqSHgM9haIeKCv8qgp1
+ C4XdbNn3cl85yzb8PjfxdJ6uJj/xvCBgW/lF51ITeFp/D2P+DcQqjLIU4y3V0Mt5/qG5mExG
+ uXpxlIPH9hX/oTh45pm1u9LoK5Tq42sep8Xqua+cjTyL4TCNDfWMRVPsr5eQWPlFl1OCyHM/
+ Q3E0oKzCKEsx3lINvaznH/aAaah07Wtns/f5GJEzSK4OZFfLJmvyzeS+clYcHDp0CIC6+off
+ omMYApurDZGdwszNIjsfr30BDx0Ep9IZvF7PuhuAmezHiF158AN6BsT63ye2XamknGU9jBx4
+ CjN5CzN2CSP82Zrrt5481ACCwQCFgsa6+x4KHcSDHeCU+leR3dax6etFJeWcdj7NuQ/+ktHY
+ Dq6HDqBnH6+p74cagMfjZX5igrV994o73p66bnDq9A0M9z6UwFNrKuVh3BqaZnhs9adefNOp
+ pJzP9yzS1trMh9fstDku8eVk95rrt5481AASiQRZCVxrKFDkF9GG/keEWcxuVVE2fIyhyDKy
+ vNkjm61DJeUsclPI3j0Yko88QZDKmw3cLB5qADabSnN9I+XPdq+AvQbbjj9DkmyoqsILz+xH
+ Ve/JNCEwFj6442F49cYoocXYmqnQvauZnTsa1yy+x51KyvmpQ3XcuH6J57tCLCylaajzA5BM
+ ZblwZYhkamtfe/VQA1gILeBwOtb0DS1JCpKzEaSHxyqEDpgIU8cwTExz625d7ukbZ2rm8XQF
+ gMrK2eVQaW+pxWXTcBpTYOYBOHPhFnu7Wjhz4dbaKrvGPNQAaqq99NwaqtwAhChplxeShNrw
+ OqIQQR//PznxxC6aGtb/Uu3ykdj0ueIKqKScbTUn6W7KMDBro2/Wixa9Sv/QNJlsns/PXCKd
+ WESf+TlmcmsawkMNIBxL01rjp4SquyJmZgR99H9DiNK2TkqeXShNP2Z6+Azp2CTCLGBmZxCF
+ SEX6iNx8xRs45kJRcrniOObw/h20Ndc+WJ5ZYGZuifNXBiuSuV5UUs5avI/LgxrZbB6jkOaT
+ ywkKuSQzE7cYGBgil5xCafoxZuLGnTBrUYZrxQMNID4zwc5jT7N7ZweVDmt0tYVp8Sr3viaF
+ WcCc+feI282mpunLltolyYbkqOPtL+bpuX4NbfgvMCOnMZO998kwk32r3pZnxC9jxK8zOhG6
+ I0+YBbjXn0kIzMTN292x5VzpGWVm/tGFKEwNbfgvUJIXsGevL/tOD72Dmepflc7rRaXlfO7S
+ IMmCn7lkNQ3+AjZZIx6PsZBwkMg5GJhxceajnzEQqqZ/aBoj/DFm+BP0qb9Bn/9HzMzYmqep
+ FB5oAE6vk2vnzjGxEK5400A4muVyf3oFhzkZyV6DHushM/cZ/+/PT7EUTQKiWKHjl9FH/zW/
+ 9+QiR/fVorb/S8LqqyTVo/fJGJstcHmgQOEuIyoUcgghKGg6mpYnmcrwm48vQ81rGP4XOPPF
+ x2Rz+WIlHfofMHOzy+IUooARehu0+w+Kff3V4+zcUVwlFaZ2p3VbXIqzFEneeU6SVdT2f0l9
+ UzsHd2h8euYmodA8pPsR2RkSkTne/+QqhlFa6yiMPGbi5v1GWyKVlrMpJDoC8wgBVyeDSIqT
+ eCzCVy87AZy6JvHWZ/P8+u3PGbhxFtl/lOsTPk5diBCdOo3Q4iRTWd47dYX3Tl3Z0IHzA9Ps
+ 8DfwnZcfvgy+Wpobg/z4B88gSdLt8UC+uPVRVpHqXuPCpR6SScHvHpsk4DkBwiQz9lNcbT9C
+ bfkDahQXqF4k2c7AlV6cDhvTc0v88HsnkSQwYldYTDiZWPRw85ef8r2Xj9LSVMMbb75NoKae
+ oYkErcEsddU2lqbnkTiAXRX8s2fnsNt0TGHn47HnedoXwpe4htrw/Tu6Cy0BK3TdJCimBzCm
+ f4rk3olS+xIjY/MoqkLQbwM9gdDTyJ5OxqdmmBiVCLR6cIgwZuQM9o4/w5HXqYlM3olrtYjC
+ IsbSZ0jevUjS18UohMCMX0H2H0FaxZRkpeXc3vUUv/nsMk+09NE7V082JxMJDQH1mKL4ftVM
+ Fa+ap7HOyzs3djM0/xY53cnTT9Rx+lqM19p0bg0u8OzJvQDcGpxGUWSWoklqAj6OP7FrmUzT
+ FMyFIszMRdjX3YrPW/5EvfLnf/7nf15qIFPLMTg8QaA2iMzt81Xkh28t+KqART6ENvw/Ide8
+ gCQpmKZJXV0tLc1N+J05JJsPMzvLzz7WcSga0dnLBBxhJNmGZK+lzdmD15HnvTNzuF12FhfD
+ 1BuniBRayGsmr+4dpsYnMGMX6DzwMq214M5fpqm5A5vTzdX+NCeO7cNmd4P/aRTVCUAqC421
+ HlRJ4+OLS7i0PjzSHGrT7zAyW2BgZHZZP9/UsyxF03z02TV2N2nIqgtj8WPa975Mc72HVM9/
+ g6I6ELkZBqcFiwmV4Vl47dvHiGftfDnoYVdHU3EKsjFYkgGYpols96N7jqKqtmXfCTNP77mf
+ UdtyGPl22solGwlxayJE7UPK2eOyM7+YYmDKIJZx0OiLMxapRSzr7gpymko4ptMeiDIbr2Yu
+ UcW1UTDlKpbm+mnxh/ng3AKz8zG8HifTk8N876ST/ok8TpvB4FiYYMCHqiqcOn2Dnr4JhBBM
+ zy3R0VbP1RtjCCHwV61+a61pmuUZQHRmkqTipN7vwzS/dpP96vPDfoTsQqo6jpBdd/538dow
+ w6PT7KwawNB1cvFRbk5X4XK7mFvIMBtKg+LB7w9yvmeWhUieiZkIdjlNMpVmILIb9Djp+BwH
+ qs4AAjMziZ0EDm8jNS1PMDANLk8tTY112GwO4skMH37eQy6nMT4ZYmo2TINjEDl5kYHwDlLp
+ DEtxjYbW/RQ0HdPQCWTfQqhBcoaD0ct/TSYdY2I2xa6aeSQzA9HTUPMq6YzG//5Gkv2tOVSR
+ 5PT1NDabg1xBsK+rBSFMNE1ncGQWPbuIL/UWyC6EnsOUPbfzxUDELmGqNZhCKv4vPYqx+AHC
+ vZe5UJRf/uNZDu9vJ5PJ8+5Hl+lsr0M3JU5dNdm1sx1Fke/L/0e9qO4mn8uTiEXwButReHA5
+ p9M54gv9aIZKRnMgkO68/YsUjUGRTJYybgqGghASqixIZARuOczorE6TY5DLwwKhJ5mcz9LT
+ N4lqLvDl1Qma3RO898U4B/buZGxyAafDjm4YyJLMbCjC7o5Gbg1OUxPwoq6Q7pV+EslMed17
+ ZyBIvq+fZEsLVbYy9gOoNXc+6rrO0yf2Yho6zJynb66G4SknP3luAneVB5HReePLWmqTMYzh
+ /57axn+Fy+3mJfcCx7rdmHqGW1ffY9/hV0BUIy1cQq37DpKrDZEaZHAyzlunLvOj15/HFPDB
+ p/0gTEwBN29NoKBj6hm0eD83pQCLiQ6y+hQpm51ATR1//5sL1AariMTitLePM7U0wpXhEdCa
+ OH50D//8D7r59Vuf0BwssMfuoio/jqpLyJLA5gpic2r86MkICccRZiMKH33Ww+EDHRzct4NP
+ z/SSyMi8dRV+69h72FyNqK1/CBTHFXriKqq3C8lWbOKFswbT6ELIMq3NtfzRT17CbrcjyQqd
+ Oxqw2+1ouk44mkKS5Ir3DMiqgmJz4FAlFGnlci4UCjgcDuqqCmhGFkU2WUytvDvMEDISAocq
+ KOjF8YME5DQFjz1NcyCDfU4lkpRQFBvpvEI8BUJy0NEic34wS2ryH9nljjCYPE5NoIonDnRw
+ pWcURVGQpOL+FFVVGZsMMTQ6hyLLvPz8oftW/mfnI/QPTZfXAtgcTppaW3HczovVdIEehGma
+ 2FQVRS4OfBs7nqKraxeeuiPInk6U6uPYY7+huaUdz85/xpdXxokn0lzuGePIkcPIjgCtdTZU
+ IwzJ67x7yUmgthXF2YTNVc1iDPqH58klJjDSYzjNaV7cPUy9a5arIwr7WvPYSaDl00g2H4sJ
+ O5msjpBUXC4nIyPDvPKt/Rza382//zBJ244u6moDjIzPoypw89Yor+wZxqZI/N+nWjix20AW
+ GeajKvv3dWNz1XFzOE46nWRq9AYNrXtpaghgUxVmZmep9qpUu1I0H/gD5KrDSJKMMPKAgRJ8
+ hqW4xux8hGDAx/R8mnM3EuzqaEBRFGy2YgVXZJnG+gCSJKEqCkcPduJ2OUoeV6xUzrW1NXxV
+ d1YqZ03T8DhNLl0dJKvZ+e1D/SwmXcRzbopD4OVdIZDQzeK6Sa0nzXOdQzT7k+Q0lb5QGzVe
+ jVrHNPMxGw01dgLOOB63nalYPQfa0nSf+EP87jxdO9vY0bETh91Ga1MNA8MztLfWUldTXIm+
+ fH2EV188QjKVRVFkPO7l3cHBkVm6OpvKM4B7qdQAZFkuvpVjF1CqDqA6im8QMz2MMf8PBNx5
+ nN46RH6BzhYX7Y0+UHz0D88yMjbPvsNPIwpLSGYOkV8gnrXzxcUhWnkPSY8TS2TRpWqCfgff
+ 3nkJteZpTKWaKwNJArXtZGhEU+rpaHIg6xH8HpOg30nAK9Nsv0Fng4Ytd5O93s8xDYPp6RkK
+ cj0dDVAvXaIhaMPtb6ah/SjNO/aiuNvQTBctdTb0fIJffDCL6gyQ0quZDcUJ+gz80hCt0vvU
+ Br007f0dJNmOJBXz0Fj4DSJ5A7nqIHOhKKHFGO0tdaiqjM2uEvB7HprfqqpUXPlXYqVyNk2T
+ C5f7+eH+C9jkAgNzfjQ8RDMOvq78xYovS4LaKp1ad4JDzfMI2cPJjjBThaf5TudZZFngtIPN
+ 7qLeEyev29DVJl7//usce2IPTTU2jPDHYKSRA0/eSaMsyzQ3BvG4HHf0kySJi1eHyeUKHNjT
+ fl9+1Nf6udQzsjbHoxuGUdGWSFVVi/4/8avIVQeRZDsAQk8hMmMg2UCSMRY+QPZ2E00r/D+/
+ nuUPf/xtHE4XTQ1BRH4RocUwFj9Ervsumm7w5jtXaGxsYmI+R1VVFR2tAY52ZpAUF1o+xTu/
+ OUXz7hdJ5hSu9/TSUFtFLCPznzxzmt5QG3GzjQv9cGKvA1NL8uLBHEnlMNOzS9yccnK020tX
+ dT9K0z8B2YYkKeizb6AbMu/3tvLqMbBLSUYTe9nRVn9nFkw1QhhLp1H8R5Ac9fcdBCZMHRBI
+ sm2FHFv7LZGrZaVyzmQy9A/Po03/jMVMHS91XMZmVznV38650bbbg+FiFWvxxzjZPs6poX1U
+ u9I01vl5ueMCOamJKxM1BNwZDjdPghYDWz1L5gEa9/wA2VGzgjb3U86OsK1jAI/AzE6hT/4V
+ tq7/FiQVrZDF7nDfCS+MLBgZjMWPUGpfRnLUU8hnUbQZclNvEvP/C7w+D36fGyNyBiQbppBJ
+ yt3kcznig39NbVMXyWSCtnqVkVgHeerZ291BNpcnlc7R0lTD7HyEobE5njy6G6fDft+bpVh5
+ i/P/a5HutQ5bCQ8yALfbTejq/4wv0IKqTSA5mhCZUSKxFAvpIO9eb8Hr0Pid553M5A6wrzVH
+ bvZ9fNVN2D31KDXPg+oHPY7kaEDkQ6D6MYS67lsiHxsDQAiEKCDJjhXDG+HPENlx1LY/WVW4
+ e2ULM19saYR+pwVaE73XIfxWMoB8Po/D4UCf/SWSsxmRm0Vp+jEiN4fkbCqOafIhQALZgSF5
+ br+wcncq/IPYiD3Bj48BPCK8ECYI85Fv3rWSbRlAka9aACHMZZX+QWy1TfFrYgCaplU+CC6T
+ SsJvVtjNlF3uiwpuV5h7unylVrpSdC81neU8vyavEUVRyi4QSZIqqkiVhN+ssJstu1xWquil
+ 6lLK8+sZ91fPW5fkWWxr1qQFyGdTzC7GcKuCSKrAvu5djw5kagwNjWCz2YknU+w9ePjOwtpq
+ iCzMMR9N41IMJEcVHW2PPoX6bqYGr0FVG5HQTMmyRwb68NbUE56doa51J/XB1Z+LmYkvMR6K
+ E/TaiK42r+5iYnSIrCEwstmSZa81S6FZZiIpDu979Eb4yOI885HUqssrsRQinMmTjUYfnU6h
+ 03fzFnX1dczOLzyyPGNLIWZmF/EG/GtzOrTD5cVpU9BMCa/r0TMoAMgqHo8LTcjs31HDUqY0
+ d2C3242m69icHpQSd7Nq6QjDY5MMTy2UJVtRFDLxefwNXeTTpe1VDkdjKFqKpaxYfV7dRW2w
+ mrqgtyzZa01WM6nxulhN7jkcTgKBwCrLy+RW/yCRudHVpTMbIV5QmZhZXXnqmkahkCenS2tj
+ ALlUnHA4jM1mQxerjFLPshTLEPR7GJzL0OgrTZVkKonH7UHBwObylhTW5gnywrde4Oje9rJk
+ K6qK09dEPjaOv6Y0V+LmxkaE4qTB71x9Xt2FLtmpqSlP9loT8LnJ6Ku7aTEej5HJZFZZXjJP
+ Pfctdnc/sbp0uutorJLpbG9aVXm63R5cHi81Xrs1BrDY3myJO8IsLDYLywAstjWWAdym5+oF
+ egdHH/Btgb7egQ3Vx2JtuXH1PJ9+/BEzocidIfjk9NTWuCVyK1Dl8zEeCvMPNy/hViUuj6fY
+ 2yhjq65Hz2gE6qyj2R9nUnmd4111/IePL7CvVSJdcDIfmrcM4CuEEASqq4nMGuw69gze+iWC
+ fhuKy08sNEtNY2nrDBZbi+a6IL1zGX7rWwcRIk8yC41BnzULZLG9scYAFtsaywAstjWWAVhs
+ aywDsNjWWAZgsa2xDMBiW2MZgMW2ZtlC2K0bV8kUTJzeAAf27NwsnSw2gKX5acZnQnR27SNY
+ 5d5sdTaNZS3AvkNH0Qo5DuzZSS4Vo3dgGAGEZie4NTTG1Nggi9EUiViM/ps3SOUqvTvGYrPo
+ uTXAsWNHuXj2c0w9z43r14gkMsyPj5DSITw/TU/vwPrfEb3JPLALdPb8FdqCCldujnP5Wg/x
+ sX6M6ib6b1zm6sULtO/u4tyZ0xupq8UaYuTTfPj+B1TVNaMXChimwXvvf0BkZhFdhbMXL1Ev
+ RxhczG+2quvKAw1gcW6SW6NzeD02AsEgNsVJdcCHzaaiOtzYZYEkP153wlp8jeLw8MJzx1lc
+ CHPj2mWaOrvx3nWAbF1dHU6nHcP4ZrcB9/kCJeJxqvx+sskoA6PT7D94gGw6iWyYuAIBMvE4
+ 1y9fxFdTz/4DB7Gr1jj6cSQajRIIBEjHlzBVJ2Oj47S0teKUJBz+KtKJOB6bTF7x4LF/c8u4
+ LGe4r4zEwuJxx/IGtdjWfHPbNguLVVCxARiGcd//dL20c3q+Ip8vfcahXFnlhNuoMBsta7Ws
+ VNabSTn15V62VAuw1TLYYmuzFvVlSxnAemJmpzCWvthsNSy2GCWcJa0xMDhCLjQVtmcAABVy
+ SURBVB2nr+cG2XV4WVdydPcjKYQR99wEb/F4sxb1ZfWb4mUbfp8bm82BpzqIXRYYxtd3x96N
+ aZpl9UcLhULJiVq1LM8h8By682w5Om5UmPWUtaqz/E2NG33DdHU2c6t3kO7jJ/FswTXPtegC
+ rd4AjDyL4TC5fJ58Po9uSjiUle+OLfcGk6/ueC2FcmWVE26jwmy0rPuQbdTVVGOa0Ni5E/dD
+ XnabiWEYFQ/8V59bioNDhw5VJOyRItazC3QXZmoIZA+ozRsi77HDyBNPJDARJBNJgsGaB77s
+ NgeBEbuCXddRfU+y/C7i0thS5wJt1CyQGT0P9jpwWwawIoqDPXv2FD9vweOQjNgVQELXdNTY
+ FZTq42XHtaUMYKNQWv8QwyjtTgCLrUplF4JvqWnQjWpeJUmh0oyz2DyU6mOAQLWpKNVHK4pr
+ S7UAG9UFSiQzKLK0KVeNWqwFEkr1cfKZDN+oFmCjOPXFDS5df9BJ0BbbiS31CtyoLtB3Xz6C
+ bPWAHnvWor5sqRZgo7pAbpcDVd0K03kWlWD5AllYVEjJvkDJ6CLXr99EW4cFwa2xyGKBqTE2
+ PoWWTdLbP7wlT4YQWhzZTFUcT0k7wubn5tANg6BdkKlqJWArLo9L0vIOtWmaJV1Z/xXZbBaX
+ y/Xwh4SBOfPXSNXPInn3li2rnHAbFWY9Za125mu1Zb0pZCcw41coaBrO2qfAtaPsqEr2BWps
+ qGcsmmJ/vYTExvsCCSEjefciu5uQVHXL+9psdf1WxMgzMztLfV0dQ/NJ9tdJKNLWcYUw8lPY
+ ar+Fls0g5SdRfLvKjqviPcGGYayZAeTzeRwOR0lhtnoF2+r6lcJKZb0ZCFPDCL2DEKA2fh9J
+ tpUd15aaBrV2hFmsBkm2oTb9iEwmg62Cyg/WLJDFNmdLGcCGuUPHr0FuYkNkWaw9QouhT/8t
+ yuIbCC1WUVxbygA2zB06PQLZqQ2RZbH2mLGLSM4WDLUeM3axorgeaADXL37EX/9fb5KpKPr1
+ ReQXMOd+jjBKOx5Dbf4xBJ5fJ60ePx6Hsl6G4sGMXUFO9YDiqSiqBxpAc3Mn7no3pc3JVEbJ
+ XSBJAdkBW2Fu+jFmM8q6ImQHcu3LiMC3QHY++vmHRfWgL8ZGxnHZVDZyXqbULpBkr0Fu+F0k
+ 2b5OGm0PNqOsK+Gr/QCyLFe8H+CBBqCbJn6/b0tuG0mmspjm+u/oEkKQSD42HYOy2cplvRLJ
+ VI4Pr0i8d1GQTOUqiuuBBtDVvQeBuC9TYkshem/cJLcO9W81XSDdMHjjrbP0D82UFrkQIEpT
+ eiEc52/f+IxkKluarMeMzSjrSrg1OM2zJ/fy7JN7uTU4XVFcD10Iy6czGPc8pGsahUIe3RAY
+ YnPOBXr9lWNUV3nQdX3VskTsHCJ1C7n1X6xax2C1h999/SlcTltJsu7mcTkXqNyy3gy6dzVx
+ 5sItCoUCLz57qKKjUR5oAIuLi4QWF+97K7jdHlweL3ZFQpHX1hfIbrevKlxDXaBkWaJqP8Lm
+ R7797GrDNTUES5Z1N4+DK0QlZb0ZVPu9/NZ3jpflOnMvD8wtt8tF+46O+zOlKsDeqsCKYSql
+ knWAbK5AQdPx+1a+8VCy1yDZa0qKUwgTkZtDdjZ/o2eaNqOsKyGZTHL67CV0XeelF57G5/OV
+ HdcDxwDpTBq7vTI/i43k4tUhPjl9Y03jFLkZ9LF/U/Fq41bncSvrvv5RnnvqMCeP7qWvv7K9
+ 3Q9sAWyqjVg0vGGbIcYmQtjtCm53eXfWPnNiD7q+thN5srMV2+7/Csm+9d6Ca8lGl3Wl7N+7
+ k9NnL2GaJi88/2RFca1oAEIvoDicSKrKRvX4hsbm8HkctDTVlhXeZlOx2cp3bhVmAZFfQHa2
+ fN3dkaRvfOXfjLKuFJ/Px29972UymUzZL8yvWLELFB69hVHVQtCpslFXYX/3pSM8caD8nT2V
+ YiZ60Kd/ihCPy3LQ2rAZZV05AiN2GSVzAypst1Y0gLruw5iLwwR37KSyhebS2MwZBtl/DFvH
+ f4Ykb6ktEncQwsAIf4ow1/bi6s0q60qIh3p5890r/Pq9a8RDvRXF9YBBsMTeg0fZ1b6xh8ca
+ hoEwMmhj/wbzAd6aQghmZyYpFB68Avjux5fpG5xCCIGZHr5v7nopmiSTXV6RJElGslVVnoj1
+ Qk9jxi5DIbrGEW9OWVdC37jG5KLKVNhO33hl7daWcYc2wp+gZPuKjk7efUi25X1vI/Jl8cfQ
+ +PCjzxgZHiUWT/PJ6Zto2vKFkPbmOupr/VBYQp/4d1BYWvb96c8/5fq16wAIPVVcJd7iSLYq
+ bLv/SyRn42arsunopkTAlSLgTqGbG300ojCZnJhc+xkDIVBkGUlSUOq+jaR673nABIrP/OhE
+ iK6mLAIwhUAAs7PTDA32A3BwXzu1wa/e5vdn0Ld3XeFk6wBCT6GN/C+YGeuYxJUwChn6B0fZ
+ Yp4QuO0wGQ0yFQ3irtAPsuQO79zkCPGcQqsQmOYaukIEXigei6LrzMxHaKyrRlHuss+q4nSX
+ YRg4bQYCCZ+yyEttnyGL3YyMTBCJRuncufvrMIofqeWPMBQ/UiEB2hLC0UZS7MBJAypOpMbf
+ x7S3YK6gbzSW5sPPrvOD7x7H7XJ8o10hVmJmehZh6hR0gU3aOq4QySxUOXN3Pq+LK8SDcDg9
+ iPAU0WwHNe61PxaloBl88Mk1fus7x2jyZ0gvXMTX8SNu9I0DcGj/DtK5Ah7ZhuKsRbg7UWxu
+ JAkkBKqqFrs1iguMPInQeap27sBMXMZM9GDb+V/wQW87DXV+XtthkAxfxdsaRHbU3aePv8pD
+ 965mPG4XiiJ/Y10hHkRNbZD01AyaIXA6to4rhKrIJHLOO58rSXPJXaBgQzOHjz9FjXvthw+K
+ ooAwMQtRhKkzOJnlV5/nMAyT0MwgoZlBDF3wN2c66J9WEfl5ROIqGFmePODj1SeLS+L65F9h
+ Ln1OJBrnL98WRKLx296gRTkH9rSxc0cD2azGzz/RmFlY7u1pJm9h5uaw21VOHNm9vCUCjOhF
+ zOwUumFw/sog+bxGNJbi2s2xNc+TzcRTFWTfgUP4HFtmqAgUu70rfS6HLTXnZxgGGBlkI4qk
+ R9i9u5tATT2KohLNepEASVaobezA4wsiuWqQW/4ISfFg87SiOosD53njJEHbTuySnRqfgd3h
+ Ak0t7iADTh7tQtd1FEXm9Zd20dTUsEyPpdAYTn8nPufX9wNdvTnG3HyE1185jsiMgtDJi3rG
+ pxbp2tnMUiTB1GyYIwc7Nyy/tivFUZ2463P5rLlpR2IpPvzsOoV7ZmY+P9fL2GTogeGyuQKG
+ YeJ0B9i7/yg1DTuw2VQa6wNIksQzJ/fx9Ml9KIrMb3/3JDta64tz9q4dIEkYoXcwpv4WgHMX
+ btA/OITXafDHz0/idRpMhD2cGSgOjIWeBqFRyMa4fuVLYosjmJlx9Km/RQiD6+N25paWD/0a
+ 3Qs0OUcAUFt+HyX4DB63g9e/c4yA38Oujka+/XzplwgKLbHtFt+2EmtuAIosY7er91mm3W57
+ 6JHk73/4KVeu95Mr6NwajROOZInF01y+PoIQAk3T0TQdXdf55a/epn9onHQqwcUL5zF0rejp
+ edvb8/vHUzzRKaHj48Lii+j4UBWB3VZ8a+jj/xax8I/IigOHXUWxeYktzXG5ZxRh6jzXOUxH
+ MLxMv/EFheH5osPYzf5J5kJRkqksf/vGZyyE4/T0TfCrd74sOb+08b/EjJwjly9w7tLAmvsz
+ fRMRD/hcDmtuAP4qNy8+c+A+v5ynj3fT1vxgP5+uhhQ769O4bBrfP9BLkz9JPJFmdj6CaQoW
+ wgkWwwkUBV47kmJ3o0Y6lWJmZhpNK3DulsRbF4oDow96/PROqYSXInz05TzhpQjReIZQuNjX
+ /7iviSvjNahSlm/tuI5PXWR0sYrTozvRDXDUv4Dq271Mv8NtMV7sLt40H1qIsRRN4nEU+O2D
+ N6n1ZtjXuMgrO8+XnF9K4ASybz+Z+BxTA59SyK7seSq0OIWhv0Dk5lb+3shhjv9rzNQAZmoA
+ beR/RRiVbRfcqkiSWPFzOWyZMcDF0Wrqaz00dNi5MBrkhQ4vbcEkLQdGkOVjd/rWkqTi3fE7
+ qN4qVDODq3oXsuKgIDzkRbHAMwUVISQkScG8/VvYG8nKxeO0s7odn1k8USJl1lGtVrFndz16
+ IYnNZscI9yF7ujAVF7HRXxPY/Yc4VQ2bu2hA33nhMABCT1LnmEKWFOaWDG4Oq/ygxBs7zfgN
+ kN0Eao/x49f2I3urV3wubzj4oKeRl+rdVK3ksyDbkaqfRHK2Fv8MPA3f0MMCimX69edK2DLD
+ +2qPwO+RyeULDEwrRONZYimTS4M6QsCnn3/Jp59/ia4V+OWv3uXWrQFUVcHtsiHJEppwoYmi
+ Z6CEgDs/AIIaR4gO/8Tt74uLaqmczF+dPcZE2M3k1CR9vTcx9AJK4+8g+Q6wsBjhZx9rJJMJ
+ 5LrvIrX/pwAYkbOY6TEwsmBkEEaShVQVQ+Hbq7TCvG91OZHMcP7yIMY9m/nVjn+FHHgSJDtS
+ 4DkkSWF2PkLvwNSyuGRZxdfwBIptZY8dSZKRqk8iKW4w86AnqLyDsDWRJYFpSpimhFxhC7Bl
+ DCDgNXHbdXxuhT99JU9nk8pS2s3AYgtCSOwOjLE7MIaiyHz/SJiupjxeeZ5ng79AJYtLXsIt
+ F/vtNTUBXJ5q3G4nVW6B2+0kUmhiQTsAQDQlE0tLqGRwSDEcUgxZkshqNpBk5ofeI7HQh6zY
+ URWQFBtXbozz3idFxytj4T3M2AWw16I0/gjJ1U533QLPdI4DoM++ib7w7rL0pdI5QuE45j33
+ E0uKA0mSWYok+OkvPyOVzhGNp1mKJItxTf0NxtJn2KQ0zzX8Bre83K3jK4pdoP8DMz2A0BOY
+ 2Wn4hg6uTVPCpprYVBOzQleIDesC6bNvInu7katWnil58eVXyWQySIqLxkP/MQBmoQ9Vn0EI
+ g8n0XgB2Swq1LfuRfTsRhcXbhSxQVQcuRzE5ih5G1pcwjSB+ZwHTKNDW0oApivYe8JpUewRC
+ SPgcOYQASZJQbt+c1ztbR7vkprNF5amuDG6nQltzNapSnNk6O95FQ3MbHVWLvH9qkJde2UP/
+ QhNfju/iaUCuPlo8sOsuGusDd8ZGRvhzhJFCbXgdfebnyFVP4K/qYldHA26Xne6dTbQ2Ffci
+ y4Enkey1oHpRal4s3nC/EvLtFsTZjtDCFR0ZvtWRZYGmy3c+VxRXOYFisdK3CEq2ANzn37Oc
+ e1cZuzqC/N63a1EUhRefP8GLz59ACB0j8iVmagDZvQul+8+RVB9PHm7k1efaAXDbC7jsBlUu
+ jZ8c+ZIql8atwQnOXegp6mKvAZsfl1PhJycGaAqadHcG+dMf1KAoCppWwDR1VEcVh/btQFbd
+ DPbfpP9GcZC7EMmTTKVRbC6qPAKb08uO4BIn2ooLYbJnN7KrDSEMRPh9RGGJkbEJfvHLfyCf
+ z2OmhxCpgaIuqh9UL6HFCJ+f7SGeSHHh8g3ee/9jAEQhgtCTRR+p4DMPqdgCtCUws0iyC+xB
+ kCps4E2Nzz4/XVkc64ApJGRZIMui4jFAyS2AnkvROzDMs08eL80XKPBC0XntIX4b9x2Lotai
+ 1L2CcVe3wTBNkOyYQkEYBqZQirLcXcjuojvAXGE/rmwj7qyXX914gX+y20vQF6WtvnijzFIk
+ jqKoGKaM6qpHSE5Edg45M4Shv8Kz7X2oVSb5rJ/BwRn2BjNgauQKxXSFktX40h7Qk9Q4F1CM
+ KG6nnZqAe3m6jRTGwnugViNpblQRw9DSKI3/FIRRPGolNYykBnDaO+loVFEVkyOdOntqtOL3
+ 8R4kPYvpeMRmIaFhZOcgH0dytUPN9yieMbA8v0txG5ibmsTEJJ3XcarSlvEFkoR5Z4glifJ8
+ rb6iZAOIRGMYhQzZgon7Af4h63lFEkLBbPgekmf3A69IOnp4T9EbVIuSyWRRRZJ9+w+wb39x
+ DPDtwwXcVQaKasPEQFZszERr6env5LVOG77215FUD+GkjSvzB9lpOFEVsClmUZbiQFadJAs+
+ 3uk9SPX+IMkE9M40sk9V0effRlI9yDUvIVr/BNW/H1smhqnWozp8qLav3+KayCHLCqrixe1v
+ Q7W5cTWcxFFzFFVV0VQXsqKi3JVGYeqgxZAcd08rq9D2J2vqC9S0YxeBhhacjq/j3Aq+QEgy
+ QW8BYQqQKvMFKjlkfVMr9U2tZQt8GKvKXElC9h956CM7dxRnYwp5mcOHunF6lh+H0tbWhlCr
+ QbIhB55CsgXw+GRqm/YhSRKyu9iVqg0K/qN/+iKqonDySCdHu4v9+ud2h6htdCMrMpLiRFFU
+ 9jYsslsdB8BMXEeyVaPUvoxUdQRJUamyj7K3bhwFDfjaAGT/USRnMw5UaoI+1Hv8jtS2PwYk
+ hJnHCP0Gpe4VzPhljMg57F3/9aPzq0Kczq23T2xXfYqzBfXO50rYUneElbPJuSyvydC7YAui
+ Bp8uS5bQ4qC4kGQ7sUT69llEJmhxJHsQPfQukuJFqX3h6zDCBC266rOJ7k2X0NPoMz9HbfoR
+ 2KrvyHpYmLVmq9wRZsavEx99E8M0CO7+fWT/4bLj+kYagD7zc2TvHmT/g08Oti7JK52tYgBG
+ +FNk714y2QxOYxKl9qWy49oyK8Gwdv1LydkC9vKOV7HY+sjB5zBC72AXIDd+v6K4tpQBrNUV
+ SUrNt9YkHoutiXVLpIXFGrEmY4B7MU0TWS7dtsoJt9VlbTX9KulmappWVlrWi3Lz9m4q7gKt
+ lKGSJJWlWDnhtrqsra5fKSiKsqUMYC3SW3ELYGHxOLMug+DBWzfxBBpoaXyA49YKDA/0UZAc
+ 7O/eteowIhfm/M0QR57Yh9O2ujdBPBomliqQS4aRHFV07+p4ZJh8NsX4zAJOWcdQPOzc0bIq
+ WdMTo6RyWbKpAnUtbbQ2PnpmKpeOc6t3EGfAj8NegqzxYeKZHIWstmpZ5ZBOxpgPJ9jV2b4u
+ 8a+WcurLSqx5ezY7M4PT5WJxcbGkcDaHB9cqK/FXaIYNty1DJLH68zL9gVrsqoTDU4VtlZ6E
+ DpeXKo8Ll9NFOLz6dCmqyo7WJqrrmtEfcpTj3ZgmNHbupMZTmizVZsdhoyRZpRILhxA2D27n
+ 5m+0Kae+rMSatwDNLS3ElhbwVNeXFK4m4EMv8c5Xm8uDr6qexqBr1WEii/OksgXqqz3IztWd
+ BZpLxUkkEtTX19PWtvqFOl3TiKZMXKpObePq3uQgSETCNDQ0lCRLCEFt0y5yiUgJskqjuraB
+ ZCxMIpGmvolNPU69nPqyEtYYwGJbs3WG9BYWm4BlABbbmv8fd6Le6AVZB4oAAAAASUVORK5C
+ YII=
+
+
+ iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
+ AAAgAElEQVR4nOy9d3ydR5Xw/33arbqS7lWvlixL7r23ONix06sDCSS05WXpZVnKwvJbQtll
+ F9j3t0AgLGwgCyQkQLrTHDvuvduSZUtW711Xtz/1/UOR45DEkaVr+8a+388nf8i5M8955pkz
+ M+fMmTOCZVkWSZJcpYiXW4AkSS4nSQVIclVzSRRgaGjoUjwmSZIL5pIoQDQavRSPSZLkgkku
+ gZJcZEz6ujrp6u5FN82L9oxgMDymkkkFSHKRCfH7//ktR3a8xEv768Zcy5Ztr6EZ76RAfp56
+ 4tUx1SuPWaIkSUaJN38iC2cUsKF+iIOvbaC6uYOSuWsYPLWDsJRHaYFO4YybqNr7IqWZbvZV
+ NZFWOA06jhIWbODM5+SBl/FHnZR4/Byv7yYtbxq3rVnA6d0vsbexm66gnb27N1F5upe77l2P
+ M9rJX5/dREbpNJyDjbQOhpi4YCVte7Zj2iFr8lKCNfuTM0CSi09nzSH+69FtXDt/Irv27kNy
+ pUOwi7Ajl7vvWAPhADE1xsDgIEf37iGCHYdDRLVsrLl+DaaqMWnKTNatnktLcz8333E3gy2n
+ 0YBjNZ3c+YFbyHbbCXXVkuZyY2DR3VhPwcxVrJ0/kVbVzfq71tJw4giGlM7atYsZ6hwg1ZuC
+ 9MADDzxwsRsgFArhdrsv9mOSJCQmhuxl/Y2LOFbTzexJWXQNRCmZPANnuI39la0UF/s4eLSG
+ 9Iws5s4sp7Orn8z8YrxOmdyCAqJRk/JsG/tP9TFzchY7duyhdNYSSnK8pAghtu2vwp2Wgzcz
+ i2DMYlLFRDJ86dQc3kVTUGKSR2XnwRrmrVyFzbDIL8oiFgNTDSJcip3g7u5usrOzL/ZjkiS5
+ YJJLoARFVdXLLcJVQVIBEpTBwcHLLcJVQVIBklzVXLUKEPH3sGvfAQJh7XKL8p5BDfSye8c2
+ tu09gqpfrE2tS8tVqwCKK5W8HC/WFfIhLwWS3cP8JcvJ9khoV0i7XbUKICt2bPJV+/pjQpIF
+ mmtPk55bgttxZeyhXrU9YKi7mRMnTnLkaBWxyy3Me4SBhkpOtQ/Q3NBIWDMutzhx4ardBzB0
+ lWhMQxBEHC5nwo0Eidhmpq4RjalYgojT6UAUhMst0ri5MuaxMSDJNtyy7XKL8Z5ClBVcsnK5
+ xYgrb1IAv99PLBb/BUEgEIh7nReKYRhIkjTuekzTRBAEhHGOfu9Wz5XUZpZlYVkWoji+eTZe
+ 9ZzLmxQgLS0tbhX/LWOZzqPRKIZhxCWOSFVVbLbxj/i6riOK4rg/gq7rCIJw3g42ljYzTRO/
+ 34/X6x2PeED82swwDCzLQpbHt+AwTRPTNMddz7kk2tL3TcRjpL0aiecIeaWT0C0lCELyY46B
+ eCxbrhaSvSvJVU1SAa5AkrnORk9Cu0FN08QwxrbhYulR9KY9WOF+5InXgHLxDPxEQ9f1yy3C
+ e4aEngHGagNYpkFs239gNO3CivQTffmbmP7WiyBhYpK0AUZPQs8AY/UCmT2nsSKDOG7+TwRB
+ REvJRj+9AbK+eBGkTDySjoPRc2W2lCCAZQ3/B2CZQNKdmuStjHsGCPu7OX6olsmrliIPtnOs
+ 8gyC08eiBbNQxqleIzt/F4qYWYHgziS2+fsIKdkY7UeQVn1rfMK8hzAvWgKqK49xK4Dd7aU0
+ 14eGhSc1m8XLsqk7WY1qgfx65x1rRx4xgi+4rCBiW/lVjNYDWOE+7LPuwVBS4uIdGXmX8dZl
+ WRaCILxjPWN9hmVZ6LoeN09QPOuJR5vFo55zGbcCSLKCLIkYgGDq1NXXk1k6GbcEuj7swTFN
+ c0yeCdM0z37QMUgGhUsQABMwdB1BGL93ZESm8Y6y71bPeNoM4uMJMgwjLjvxI512vDLFq55z
+ GbcCDHU3c+DECcSBIfJtOi19UQZCOu7Zc3Aqw9VLkoSiXHgU4UgHGUvZt6srHvVcqligsbaZ
+ aZrYbLaEarNEjgUad00pmQWsuf12YNj7MNkcNjjjKGOSJBeNcXdTUZQQxTdGsXj6oOO93rta
+ SBrBoyeh3aDxWGvD8MYYZvwMw0RnrLvnVyMJvVCJx4aO0XOK2O6fY0YDWEWLsC36JIJsj4N0
+ iUs81u1XCwk9A4wXKzZEbNuPsS/5HMoNPwJDQ6t66nKLlSSBuKIVwAx0Itg9iNlTEZw+5Irr
+ MVoPXm6xkiQQCb0EGq8NIHrysNQgZlcVliMD7fRLSIWL4ihhYpK0AUZPwivAeAxXwe7Bvurr
+ xHb9DDPiRylZijL9zjhKmJgkvUCjJ6EVIB5GsJRZgfO2n6GpKorNflWcMU4awaPnirYBRhAE
+ EQTxquj8SS6Mq0IBkiR5JxJaAcZzJPJqJnkkcvQktAIAyWVLkotKQitAXKIuDZMjtZ1sPtxI
+ 90CIqyEaIp7Rklc6Ca0A48U0Lf60uZIdx5sYCsX42ZP7aO5K3r2V5A2uaAXoGghS19bPZ+9Y
+ yJ0rJ7P+mqls2FN7ucVKkkAktALE2wi2uDqOxmta8t6z0ZLQi8XxJsfN8aYwqcDHg0/vJyfd
+ RVVjL5+8dX4cJUxMkmlRRk/CK8B4PqYoCnxwzQwqG7rp6BviS3cvJjNt/KnWE51kYqzRk9AK
+ EA8kSWT2pFymFvvikus+yZVFcq68ArlaTr7Fg4RWgORO8NhI7gSPnoRWgOQFGWMjaQOMnoTu
+ XckrksZGctAYPcmWSnJVk9AKkMwLNDaSbTZ6xq0Awb52tm7YRI9hEOhuYtOrr7J93wnMOHyD
+ 850JtgwVKxYYzvmT5E0kjeDRM/7UiBn5zCwPYADdA34WrljNQP1x/BqkSuNLjjsykr2lbH8d
+ 6t5fYEaHkHwlKMu+DLaU89Y1Vhnerp54Jcc9X3bo8bSZKIpxe9d41HNFJ8d9Oyxr+I6Kcw3Y
+ sRizI0bwm8rqEaK7f4Z9wd8hZEzCOLUB7dDvsC07/+0v8TSo413XWP7f+RDF+Bz/jOd7jqSD
+ T5R6Rhi3Avg7G9hfVYXY08+csiIO7noNh6+QEvn1s7gMf5CxuOZG9gDOLWtGQgimjpQzHUFx
+ IEy8Fn3Td961fsMw4uIeHBlhx+tpGfmQ7yTTWNtsZGaJx7vGq80Mwxjz+5zLyKwbTzfvuBUg
+ LbeUG+8qPft3Tl7heKs8y9sZwYIjHcGegt64EylvJlrV00hFS+L2zCuBZFqU0ZPwXqC//ZiC
+ bMd+zVfRG7YRffHrIIBt3v2XScLEJLl7PnoSOhjunZYZoicP57rvX2Jp3jskj0SOnoSeAZKM
+ jeTu+ehJKkCSq5qEVoB4XZBxtZG0AUZPwitAclv/wkkOGqMnoa2lZFTj2Egmxx09yR6W5Kom
+ qQBJrmoSegk0cjHyeLC0CNrpl9EHW5DK1yDlTONKzw6UjAYdPQk/A4zHCLZMg9j2H2P5mxHS
+ iont+il6x/E4SpfkvU5CzwDjNYLNwSbMQBfO1d9G03REXxHasSeQ82bHScLEJLkTPHoSfgYY
+ D4JsBz0K5vCSwAoPINg9l1mqJInEe3iosLAMA6PjKJg6UsE8BEnh3PW94MlDnriKyLNfwPLk
+ Iww24Fj3r5dP5CQJR0IrwPnyAlm6SnTz98AyESQb2vE/41j73TeN8IIgYpv3EaQJy9EGWrEX
+ fxXBduWnRkwmxx09Ca0A5zuRZLQfBlHCseb7IIC662fo9dtQpt7ylt9KGWUYniKEqyQ1YnID
+ cfQkvAK808e0tAiC4h4+ewlgT8HSIpdQusQlmRhr9Lxnhwq5aAmmvwX1wMNoR/6A0XoQuex9
+ l1usJO8x3rMKINicONZ+D8GeAgg41n4X0Z1xucVK8h5jFEsgi/oTu2gJefGlKkyfVnHJtOb8
+ yXEFRJcP2+x7L5E07x2SRvDoGYUCRKmsPk1En4BfilI+rQLHxZcLSCbHHStJG2D0jKJ3OSif
+ WExr01HsE8qwX3yZzpJMjjs2koPG6BlFS6nUVNbjyUon1N9PooRZBSMqnX1BVG18p59CUZWO
+ vgAxLVHeLMmlZBRLIAm7O4WyzELSfNmXPI7y7YLhqpt6eHxzJbIkIcsin7l9AekpF74wO93S
+ x2ObTiCLIrIk8KnbFuBLdcZD7MtK8hTd6BmFAmhEdQczpk7BaXeed8qwTINQKIxsc+Cwj/9U
+ 0tuFQ4ejGk+8VsUnb51PjtfNvpNtPPFaJZ+6bcEF1R1VdZ54rZK/u3EO+ZkeDp5u50+bK/nc
+ nQvHLfflJhkOPXpGsQSSkM1BNm/cyJ6D1ZxvwdHReIrjVdUcPHCYcBzOZb+dERxRhz9uZpoL
+ RZaYVOijvTfwlrKWZWEOdWD0ncEy39ohYqqOYZhke90ossTEfB+d/cHxC50AJI3g0TOKGcDG
+ Lfd9YlSVOZwu9Eg3iicbRRweiSzLwjAMVFW9YOEMw8A0zTeVdSoCKU6FrUcamF6SxQt7a5lX
+ nvuW+q3qZ9BOvYCluJBd6bDsa6i8kUHaJgukp9jZfKie2WU5vLy/jjll2e8q50juzfEa5yP1
+ vJObd6xtNpJIYCxl4yXDO8k07sNNcarnXATrXReMKvs3b6ahq4eeiJtPfWI977S4qT95GHf+
+ FHpqj1I4axlptuGqe3p6yMrKumDhNE3DNE3s9jf7nsJRjb9uq6ahY4Al0wpZu7AM8Zz+aPlb
+ iG76Ls47fgmSDfXAw5iCgmPBR95UTySm89T2as609bNoagHXLyxDFM/fsUcSvY5XAQzDOK+b
+ d6xtZlkW4XAYt3v8QX+apsXlgP1ISvnxzkwjnf8SJ8cVSfVmkCNKhBpDnE/3MrOyOHZsP7bU
+ bNzK+NOjj2j835Z1O2189IZ3PtRihHoRPLnD5wEAMaMMs3nfW+pxORTuXzfrguWC+GVfi3d6
+ 9JFOcinku9R1jYzVlzg9uogvNx97iovcidmcL54yNauIlauK4ibcWKc7KXsqaqgbreZlRE8+
+ 2vE/I879WNzkSnSSibFGz6i8QDs3v0Z/OIjoKmDih28/rxLEE1mWx7SpIyhOHNf/G0bTHsyB
+ BuxLPo2RMfUiSJh4CIKAw3Gp9urf+4zKCF52zWL8hgsR8x3X/xcDXdcxTRPbGOL4RXcW4rTb
+ zv5txMGYey9gWRaxWAyn872/n3EpGIUCqGx/ZTN6agYZuZMomTjhkinBaEZ/y4LugSBHz3SS
+ 7XUzc2IOsjS6WcMyDYzO45i9NUgF8xF9ZVdE6EXyUPzoGUVPEZBsNrKzc8jwehIuo05j5yAP
+ PrWfYERjx/FmHt9ciTmKKyoty0Q7/jjakT+CGia27UcYLfsvgcRJEolRDBUyq9atpb61m+zs
+ jIQ7QLBhTw3rr53GnEm56IbJD36/na6BEHkZ5781klgAvW4rjpt+hOj0Ik1YSmz3L5CLF18a
+ wZMkBKPozwZ7XttEe3szm7cdOK8bNN6c/zzAMALDyyA41012AQ95o/AFFkxckucBRs8oZgAT
+ 05LJzM4i0BTkUoZZjWbH9dZlFfxmw2FqW/to6wlQUZRBdvooNoHsqciTVhPb/D3EnOkYLfuw
+ LfpUnCS/vCTDoUfPeXeCLdOgpbWD7Aw3jQ2t6PY0ppcXX7Ad0N3dTXZ29qh/b5oWuyqbefVA
+ HR6XjXvXzKQoO+3tZbSg1x/i2Jkusr1uppdkIb2NEayq6lu8SZZpYHZVYfTVIuXPQ/SWvKvC
+ 6boel2tSdV0/73WmF9pmI5imSTgcJiXlXZaAo+Dt2mwsGIaBZVnjNs5HgiPjaeSf9ysaWg9H
+ DjfgcHuZPLWMuqMnuBTOxMO1HeypauWTt8xlzbwSfvXcIYKRt3+yIEBWupvrFkxkVlnO23b+
+ d0IQJaS8WdhmrEfylV4RHqAkF8Z5VUmSfRA8yWN/7kGI9uMsXnBJNsGO1HSwel4pOV43WWlO
+ dp5oo6lzkOmlFz4iJklyPs6rAIKkcOsHP0E4HAbJhstpvyRu0NI8L5X13ZTlegiEY3QNhsj1
+ jX9KtywLo2k36pE/gqmjzL4HuWz12RvtrxSSRvDoeZfFlIAoyaR4Ui+NNK+zcnYxj2+u5P//
+ 60EsLG5bVkFGmmvc9Vr+VtRDv8O+6hsIkkJ0+08QPblIOTPiIHXikDwPMHoScsvQrsh8eN1s
+ +vxBZFEgPTU++TyNzmNIeXORMssBkCcsw2g7csUpQNILNHoStqVEUSDNbcdpl+NmnIpZUzG6
+ KjEDHZjBHoy2Q4g50+NSd5L3Jgk5A4wQ72tSRV8pypSbiG78F7As5Iq1SBf5sgxzsAUz1I2U
+ NRXBNv5l3GhIHoofPQmvAKYew4rpIDtez///zpiWRSSmIYsiNkV6y8whCCLylFuQJ10HWCA7
+ L5rr07IstJPPoFdvQPDkoga7cFz/r4gpORfleeeSPBQ/ehJaAeRoL/rOnxKJ9iG4s7Av/xJi
+ av7b/lbVDZ7cVs3Jhm4kSeT2FZOZW573lt8JggDKxQ8VtkLd6Cefx3nHgwiKC612E+qBh3G8
+ 71sX/dnJaNDRk7A2gGVZqHt+gTJpDc5bf4pctobYnl+cnd472ts5eLSKgH8QgF0nmglFVL7+
+ oeX8/Zpi/vLSLvp7ewBo6fZzrK6LSOwSugfVyLCiSa8fy0zNwwr3XZJHJzf0Rk/iDhWWid7f
+ hLx8HoLdg1S4APXIH8Ay2Lz7GFuONFKYkcJftp7kM3cupaalnwVT8nF2H0Q68BuyhKU0PPt9
+ tmVez/F+N5npLp7ZWcMX715Cjvfi3xIjpBciuHyoBx9GyqxAPf5nbPM+8u4Fk1xSEnQGsDC7
+ qhCi/egHfoPRX49e8wpiWhH9+/7Ilh37+Ic1Gdxx/XK8vgwefPYwvlQH24820L7vLzRVfJ5e
+ ZzlpKz7LgeoWvjqlho+nvMiNxQGe23nqkryBIMo4rv0mguJCb96Lbf7HLlmodTzThlzpJOQM
+ YHRWEtvzINLyr6Ce2Yz5108gl70PK9KP7lIRRInggT/wm4EuphW6ae+McPRMF9MmZPLQwSmk
+ 9NTwkRkCiuHBpg8hDPZjCTLOhucJuu7C0mMIso2LfWG2YHNhm3v/RX3G25E8FD96ElIBtNMv
+ ocy+F6toBWLJNVhbv4uYMx0z2E3W8o9T3vRnflk3BZvYSI1f5/73LaFTLEASBb6zdADtxP8g
+ tpagH2/Ca76Pxysl8mlhZ2gyd2f8geimnTiu++7rSnDlkTSCR09CtpTozsLyt0IRYOpY4T7E
+ 1EJQgxDu5XbnDtKmLueFOjufXeWlrPm3HAmsZoo3hinUYr/2G1hDHcjlNu7f9wj7bGvoHPBx
+ 74R2Jnp9ICoY7YeRi5dc7le9KLybEWxZUN3cwyv7zuBx2blj5RQy4xBq8l4kIRVAmXEX0U0P
+ YLQewQgP4KxYjVS0ECXYRWTDV5D8bVwr1tGTspbnjpgIgzPJmFLB/PIezP3NyMXLENMKMDqO
+ Y9v3a1aar4HPDqEwQs6q1y/QVjFMk9rWfpo6B5lWkkVhVuoV70Gx9Binqo7z+GvV3HvDIgZ0
+ Fz/96z7++cMrcdgSsjtcVKQHHnjggXhVpkeHOLh/Hx2DGrk5vrMr7FAodEGp+gTZgVy2Bisl
+ F2nSGuyT3ocgiEhZk5GLFmN0HoehVmakByka2sPMpatZe8ON2HOnYNRvQW/Zj6UG0SqfxAp2
+ IeVMh3AfguLECveC4kSZ/1FePtDIjuPNeFx2XtpbS0aai5x3iTqNd27Qd4rbudA2G8GyLKLR
+ 6NvmBrJMg9i2f+fFA83Mn+BievcTlM65lurOGB6XjRzvm9/dMIy4BNaNuK7HG6M0EhkQz1in
+ uKp8W1MjBZPnked1vX5W940t+QvenhdldN9Untt5ipr2bcwqy+GWpRXINjcIEo6138Mcaqck
+ o5pdp4/zeEMeOV4ndxg2fNNux2g9gDnQiCDKCOlFSEVLsTqPINhTsa/6BiFNZH91G1+5Zymp
+ LjtzJuXyp82VzJw4ujMH8Qo3OF89Y33GSC7Ot/x7bw1WqI/8RZ+hK6wh5/oIn3iKnsFZ+DzO
+ s2Uiqs7T209R09LL4mmFo8qZOhouRZtdKHFVAC0WovbYIaqBRctX4pLMs9mhxxKj/sSWKhx2
+ G5+4cRbbd+3jd4+fpCI/ne7OCcwrsZOnquyTruVQ1z7uyXuElnqRh5y38w+WA7FxN3L5Ogx3
+ Hrs3PUuv18vsSAtFC29D01Q0S8E0LTRVQ1NENF0bDl94FznjPQO840XgY2yzkc7xdmUtXccw
+ TVbMKOS3L5/ghyejRENulq/MJyvNgaZpGKbFr58/TFm+j4/fMJONh5p4ZsdJbl1WccGynCtT
+ omaHjqsCZGbn0RfpwdB1LN7wRkiSdMFnS03T4lRzH9/44DLSBw/zPv1FHmhchBULkxNs4pHn
+ ZT5YcIZ9nV3clt9J6YLrKe6rZ/eeU3TtPkOBy4c52MxjZ7Kxsm4jZ3Avjwof5IMdzZR0/4D0
+ G/+DJdOLePilY0wqyOBYXSfvv3bau8p5qc4Ej6XNYFixFEV527JW7jQsTzbs/QmfzM+mJVJN
+ +vpvkJ2bf1YR/aEo/YEof79gIrJgcceKKfz8qX2sv3bsIeOJfCY4rgqQnlPMzJQMLMmOyz6+
+ DiIIkJbi4JGXj9HTfAZX2nUMqBEEM8w0uZ6TaYv5r9ZMZMGkLhJiUloJITmbkHaIFL0fa6CT
+ rpiT1uYmvja1liqpkEggg181p/F/soaY2rKfGxavZFKBl8bOQf7+1vkUZHri1BKJiSBK2K/5
+ GkbLPqxwH+XrP4Do8qHpJhv21HK4poMcr5tITKdnIERWmoP6joG32AZXEqO4H2D8jCXDgWVZ
+ PPTMAapOnEA3TDQTbIJGfm42VW0h8jwCgahJhtOkI+KgzNZFTPJwo/Aykq+UU10xvMIQB9Sp
+ 3JN5lGes25k9exZVDd2Euhv54jIRnzCEmFaAXHHDsIEcHUI7/SLR0BD7xGvoGlIRRQG3w8Y1
+ s4tJT3FiGImfFWJoaIj09PRRl3lmxyl6a/dxfU471SEfz7cXkOp2YVdEZEniU7fNH9eJvESe
+ ARI0FGLYV91UV8vX53bhSfXwmcxNRE2FqrYwMUuhaUhmrq0Gu9pLthLgw77dfCH1SfrNNHZ3
+ OCiWuqg1ivFbaTwUvIvoUC/79+7lQ44NlEuNVJ9pRfSWYA40EdvxEyw9RnTzdzEifh45JlG1
+ dyO7jtez92Qrde39/Pyp/VfsTZKHTjayNrWa3LLZLM4YxKu28enb5/OxG2bxj/csjctx1EQl
+ YR2/AhbpDPBo3yJ6YkGeVO5BEHrJTpFpHhKZnRkmRCELpk1l+8leclNMSJvGvsA0vrhSI+XE
+ i0xWojzY5WW19yibYov50ioPblsZLb3drF4+E2XSFCzToPvpr/Lsn16grm0KmROmEXbqzKtw
+ MiHUS8XM+bx6sJ78DA/H67qYV37x4/nHhRFDOvY7wl1HEdKLsS/9LKLnrWHh51IktFFbcB85
+ E6fS416AeOivZDoMJEcKtit8byCh385pE2geCJCe4qQ/EqHf8JCORrYSoyGYCoaN9kP15MoD
+ iOkT0EzQomHaD26kXNYImxoOWWCp8zQDch6/2TMBLFhkr6VAyASmYBkaf+2aQkmZl5ttWzlc
+ sJxXDzVhy4sxoMkMBqO4HAqBiIrbcSmTw48N7cijSJKE46YfYXScILb9Jziu/7ezt+W8HXfk
+ NfD7o3Z2nupD1ILcnVWFwybxt34kwzBp7vbjtCvkeN1XxKbhZVEAy7IwX7/6SBQEzJENjnPc
+ ghYC7XomX87cgJyWT3t3Pz8OrcDu8WI5wD8QwWlPQXbYuTNlK+FoOv/TOAmHZPDLodsol5sZ
+ wMc9NyzClTGbmzd9l1XeWYimSqrXi3rgYYzGHWgDbTTH1nD/ssXYjx1lQftDPO+fz6ZDMboM
+ H69WH6Igy0NxThqTizPBMsGysEwDhPHfFRZv9OY9iNf8M2JKDkJJGtqJv2JFBxHOcxItY+lH
+ +OTG7xFyl+AIteCZezfYU+EcV2o4pvHfzx4iquqEYyqLphZwy9KKhHv/C+WSK0AoovLY5krq
+ 2vrJ9rpZM38irx6oo9cfprzQxwevm4nLriAIkFdYTEPhp5njDRDI9GDrauW2VXMwTJNjZ7pw
+ O2zcKr2Es0/jhU4fpVIrN7peZiCrgp91rOC+3CrKDz9JNG0Cu2Kz2NG6EMmMsaZ9C/M97Zh9
+ ZxAyJpHj0jn6/ENMM45wMpTH9NIc7rxuEb0BFUEQcDsUygq8SKKI1t9MdO8vsAKdSDnTsS/9
+ PII9cbwkUu5MzOadWKmZGH21ICkI9vOntZEyK0i960HcnZWI3hLEtMK3/GbL4QYKszzcfe20
+ 4Szcf9jB3PI8CrMubcqceHPJjeCndpwiO93FN+9fwbLpRfzkT7u5dk4J37xvBV6Pk2d3DMfr
+ 64bJ3Ek5/HVfF9/ZpLKnIcrn7lzIqwfreWV/HZGYxuxJOeBvRsqbhT97BTm5edSaJRjlt5Kt
+ BAEBy9CoHXJxVFnOF26ezMfyjrDJWk1v2nzE9CKU0hXcqf6BHX25/KD7Tvaa87k78wSKzYbd
+ JuGwSdhkCQEBS4+h7f4ZypRbcN76U8SUXNSDv8Xor8doP4plXP6EVMr8jxNuO0Fkw5dRD/8e
+ +/IvIoziCKjgSEcuWXG285vBbsz2I1jRIQB6/RHyMz0IgoAiS2SmOhkMRC/qu1wKLvkMcLq5
+ ly/dvZg0t4OyAi+KLFJW4CUtxcGKmcX8/Kn9DIVi/OLpffQOBOkfCmOz23HYZNxOhS/fvZh9
+ 1W1sOdLIjuNNtNXN5e9pZIZ1jF+cLsBrXkd0m4FiZVKU2oBS+AEaA/OY1rgZb0c9KeFqSlQb
+ 1c1+Muz1WOF++lQPQZubkqJc2rv7eKEqxJnGvXQNhDAMk4LsVKYUZfDhawoxI36kggWIdjdy
+ xTrCj9+H0X0S7GlEVR3X2n/B7rp8QXWC3YNj9bdx2kSQ7G8K+bYMDfTY62ngLVBcgABaZPjf
+ 5OH4Ib1hG9qh/8VKySNy4FfYV3+bpTMKeezVE6S6HfQNhekdilBe6Lss7xhP4jF8P7AAACAA
+ SURBVBoM906cG9jV1jtE9+sXWNS09rO3qo2KogzcDoVtx5rweZw0d/vxtb3CQCDKp4qO0xxN
+ QXJn8PSOU2w72sjek23MKsthanEWNe1+NjY6aO8LMkWuwxAUOvV0VFOk2S9SFjmIfbCa3T0+
+ Snpf5mCwiE2R+XTLE9BFBxMrpvPbM/l8YnUJOUUlHK9t5UCfl6LsNOaW57JmfikAA4EoGeke
+ vIOHEBypCPZUtOoNEB1Eue2XPN9RxNOnJXYdqyMt3Uf+u2yqXcxgOE03sLs8COIbewzmUAex
+ bT8ktudBtGN/Qq95BSvUi9lbg7rvIfTTLyMIImJqPrEdP8Fx/Q8Qym9C9pWgHX6EnHm3k5eR
+ wuZD9URiOh+5fjYe1zsb1n8rEyRmMNwlV4BJ+T72Vrfx3K7T9A9FuH/dLF473MDGA3W4HAp3
+ v28aB06codijcjJayJplszhY1UhxcRGd/hjrFk6ipXuIzDQXR850ct/kIRp6ooiYzPX6GYrB
+ 8rQmgrpEptOgcsjL2uwOdMHBn4PXcFyfwgdTt3GjYzevheeQavRQGZvA9NguHt/Xy40ZtZxW
+ iyj02fApMUpTwpxsDeBNSyE1xU3htEVoRx4djjQN9yK4s9gfm0JTRy//p6yJ6Uo9j1a7mFue
+ h9OuYPQ3YHZXI7i8CNLwaGypYYyWAwh6BLO/DksNIrh8b5o1xqUAmvamUAjLsoht+3eknBmY
+ Q23Y596PFh6kqttiqKeV/umfIZi9BHf17+nS0jnT0IKRt4i6rhAep4zUsBnbtNvITHOxeFoh
+ c8pzcdlH7xFLZAW4LDvBwwFNFoJ4jhfItBDFYS/QqY0P82itF4c7lVjzQWpjuUx2dFBjlVOa
+ 6aC5L0JUg4IsDzlCLwv0HXTbJrK7K4Wg4UBFxqWIpCgGkZjKT9dG0Y/+kd3262nv6me9exsC
+ AhujCxFyZqMNNHE4WITdruCz+qiN5ZCnDFIf8ZIuhSlyR+gz0/nWlz6OTVEQhddXEaZB5IV/
+ 5I+ds5ii7meerRYxs4JfN01lze0fYnLgNfT6rYhpRRh9Z3Be/68giEQ3fhvsaRitBxCc6Yje
+ CUiZk7Et+/zZRL1j2Qk2LQt/MEJgKEBRfvYbHjXTIPyXj2Gb9xH0hu3EFnyZn/72SZxOBye6
+ BWxOD+XZNgZ6u1DsDsK6RPtAjGk+lWA4zCdWFVCx4o4xJxFO5J3gSz4DAK9P/W+4PP/27zRr
+ gLyuV+jq7iU1Iw9ZCxBwlzMUinJNyilU3cRuBGgPKSx0nKJey2HnYCE6MkOGDRORDMmPJrmx
+ 9Chr1WdBC+GwSWwOz6XU3kfIUNgcnstyazvz07qxSRZ7IxVMFBq5M3U/W4TrKLNqyU+T8cTa
+ uStlJ94JsyAlF0EUEUUJQZSxtBCRqg3sHSqmfOIE+ud+jZ3Hm7ix3EI8/QzO236OMmkNosOL
+ dvJZjK4q5PK1w2ceihZhhXpxrP5ntJPPImVNRnRlvG2bvRu6YfLsztM8s/M0B053oBkWEwu8
+ r7epgNldDUYUo/0om9q95NgjlKaE8YQakIwI1zqOsL2/gHuvm0vrENw6RSTQfJRbMmt4rj6F
+ xcpxpNxZb1pWjZZEngESciNMnriKQn8vU7qfQdK7KZ13Mwc7ZFp7h9gbmojsTqUoM4YUsNgb
+ mYooCPxdwWFKfBJfPTSNAq+dQb8b0TRQDQc1WgH+WBZT5V5u8Rzi8fCNmKKdNXlVlOWUYDbu
+ YPXaT1OWupwnXvLwx/Zcbs4/xorsSuyTrsVo9WPFUrCG2hFy55yV0wx0op9+iQVzZxIZKOSh
+ Bhuurr3cV3CaFCsHVXZQ1xmk29/LFKcHZ2wIJBuCMwO6qhCypoDswDI0BLsH1NCY26yqoZum
+ Lj9fvWcpoVCYh1+uZEpxJiV56QiCgG3pZ1H3/RpDjdDSfASPpKKl+UhPdRMIiQRIQTcFQtHh
+ SN7cvAKOeKeRdctnUF+pwRzcgdG8B7n0mneUwbJANwyqm3pRNYOZE7OxKQnZxc5yWWaAd6PX
+ H+W/tg5SzRS2d6ZS2R7FGmxClkTmK1UsnlVBZY/IWm8DfsHHhzL2U7ToDuyCzqY6C39MwJJs
+ BDQRDZkj2hR00cEr4fksVk6wRDnBXKWa0thxwuEw/aqC2HGQ7AwvS9jLivDTTNBOYYV66W6u
+ JRqLYQ82oUy+AeGcu4R7G6sIBoZIX3APhc1/4toyhcXhDWT4vCiLPsWzBzvZuvsw0a4antvb
+ wLQla0kvnYO67yEET97wFa16DLCwwr0ocz50doS90DbbX91GVpqL6SVZiJh0DUYAmJA7HBQn
+ KE7E4uU81jGZQSWfY34fNX0CdWoug3IuxbNW0trWhosg/qjF5hM9lGWI7GsxuW7hJApSDMyh
+ NuSCee8og2Ga/PKZgzR1DtI9GGbz4QbmlOdik4dH7OQMMEo2H65n+YwiNh6oI91tIxCzCEte
+ VFNilzqH3Ttb8Ws2RJ+PtkCIX3ZOwt1eix7TiVgusAQkK4KChCwY3JV2lK3hGQixXn4Yvh2P
+ GCZL9JOhhOlXC5AiPYhhgY/v+j0ZOfkgO9BNi6eDi2jQ8jFDMnOUGm6X7GdPum3YU8vB6hD4
+ s6mQhlg/6370Ld9DmXU3tjn30RM0qDQq+MZNfuRgCyfERWyolfjcjFkIy7+EWrsZZe6HITqA
+ 4EjHseY775r79HzMmJjNH145xtQJmQz6A5xs7GXdwrI3/aa5209HX5B/um85nX1B/rylir6T
+ W5jq8KPvepqveZo43TcZ2fCywBWir9vOmtQtzE39BNqhzdiXfOa8Mpxq7sWyLL6wfjGCMHyg
+ aV9VK6vnlYz5vS42CakAmmagayodvX5umZVNXV0dWQWlvFzp53MZO9naV8jKsmzE/LkUhSPs
+ OFpHICSQ7krDigmk2CASU8hPl+kJQUD0okeCzEwLE9UKUQQHU+ydbOsr4O7UKhb7ajgmzOPJ
+ rvl80n0MTIPq0i8SbAjwZfkvmILMQ6H3M6c7SEH4WY4F83lpbz9fuWcJhfYyHn5mJwfbqljy
+ vn8iWnAN+053MRCIYFlgn34bsiTiauxBbT4DCEg501EyJkN0EKtpJ4LLB+eJ1RkNpbnp3L58
+ Co9tqkQQ4MPrZr0l04OmGyjycPhGQVYq80pSqPf7uF14DXHCBCw9m+JZ64hu+zGuu36NrkYx
+ 9j9E7JVv4VjzL++aSl7VDOw2+extsw5FRtUTO0dRQi6BLCPGz548SEy3qGyP0BdVaOkeQsQk
+ HDMJSl6u85zguF5BVDPp8wdZXJFJU79ORDVQDQETAX/UQjehOpDOkOngTMSHqlsEVQH0GC1a
+ BuXUUGFrRw53siM6i1WlIlagk0OtOr5YM+VCHbIRoSmcghTu5GR7lBdqZZxClJNtAfLzC5E8
+ WQylz6SgfA4/f3I/CAJDoRgHT7czEIjQMxji5f1neP+108hIHe6Upr+V2Kv/H4IjFbOrEqNp
+ F1LJirOelgtOJCAI5GaksGJmEXMn+ijI8b5lMy7d7eBITSenW3pp6wmwfd8x1i/MJkXtxHHd
+ AxAdAlHC7DyBbc59WOkl2CYsxmg7jH35F951cy8j1cWWw4209g5xpm2A43Vd3LVqGg7b8LIu
+ EZdACakAm3cfZW6pF8fgKRRvEVHNwOtxokUjrJubx/HBVBqNAiZH99A4YOKxQbrHTZrXS0v3
+ ELMmZiFoYXRLxjBNijwWmiUzO7UHv+lGEgVcDgVVN8hIc5OTX8RzwcXUhb3I5euYQANuxeLl
+ wEwKXVG67JPYEaxgdVGYl6JL+dz7l3PwRA3LZhTzwv5G2vsC5GV4eHxzJeGoykevn8ki9tHZ
+ 0oDUU4XYtJWbZmdSNmMBggBazUbUrT9EkG3YV/4jcvla9OrnENMnIKZkjanNRrAsC13Xz+4D
+ WGoIdf9vUA/+FkELMXfZtYSiOkN1e7jJepaswQPDbtrWfRjdlYjubEIdp3imycczu+sJNR2k
+ rHwySv4s9Oa9BLf+Jy8c6+PPB/rpGwozMUNC3/Mz1KOPIYkCcyYX0LXzEYzW/dy1ejaZ+SUJ
+ 7QVKSAU4fqqRrDQHt4ovombMpKo9Sr7HYoZwkk19xQwEImQqYfo1O2ExlVTFYG+zjqZpWLEQ
+ uVIfjUEHM7NNhkIqGS6LdKObhqgX1RTBNPGrMqol0xN1sKndS7l7kI9k7KIxdQWnmMJS8QD2
+ aBcPDt7CUW0qH/NtJ9sNe3u9rFk0hYquv/BSawb9IYPF0wqobuxh6oQsoqrO9l37Weio5UQw
+ i8WlLlb4OkjVu8EyMAca0c9sQkyfAKKEfvpFlEnXoddtQSqYi5iSPaY2G+HcjTDL1Ilu+SGi
+ Jw/b3PvQG3YgDpyhSOqktPERfGv+ESl/Duqxx2nwS+zqSidkyLzCDWQ7dda6DnNMnUSXPIFJ
+ 9m7UQ4/wjH4TMZuPW7QnaLVPYd/LjzNv7hyUqTcT2/tLhBOPUrH4eqYuuxnp0K+QsirAOeza
+ TUQFSMgTYWsWT2Pr8VZe9s+kt/UMqUKImm6V7eGp9AciFNn6EaN9fGiRlzuunc2xHoUMW4zO
+ /hBRS6Gxz8AlGRiSnXJnN2pwgFPRHIK6jGpAzICoIaCZAi4rQIoU42bzWfLEXtZoz1F5ppWB
+ qMDW0HRutO9gpf0oLw1MQVb7mWcd4KFHX+DIQDooTj575wJCEZW1C8u4aenw3WP9EfhV+0Ii
+ loPZ6+4H00SZsR69ZiN67SZscz+CPO+jmOEBzIEmoq98E8GRhpg1JS7tN5I1wYoFsIbaUabf
+ iegtwTbvfrSjjw2P1sVL0Y78ETFzMqfz7+NJ6X5SV32Z/bbrqO83WXvz7RTf+X3uXLecg9Wt
+ 6A3bUabfRWWfjVvWLKEgL4frsjtoMIuhbB16067hzH2KC71lL1bUPzyzNe2OyztdLC77DGCG
+ +4nt+inqwUewIv2IOdNJ8XiYW55Pr2qnOC+TroEwN+R10R0w+FT+IZq1DG5aUs72ZoGugMUN
+ xrNMpI5rMzvpkCYy391Ee8TOh7KOsCS9k+3GItSYSqoUJUOJki5HmedswCWZLJo5iY6IjYr5
+ q4gFevlD+3Tq+wVqrHJaIy4CphPV5iOcNpms4sks0reTO/9WIoKL1bFnmeDfQY/qoENNZV5F
+ HlMnZLL9SB1riiPcbNuCK6cCo3U/gj0VQXEguDKw1ABC3nwwYhhnNoFlYl/xpbOj/7u12fmw
+ LItIJILTORwBqp95FSl3JoI9DaNpz7BCzPoAgmUgFy1Br9/C/9bm8OEb57NwRilTJ2Sw8UAd
+ s8uycTtsnGrsYDAYZWGJG6u/nuPhfLJTbaQ2vUB7xirO1J5hceh59JPPIKYWgCTjWPEPqAf+
+ B0wdKWcGgrcEeGMGMIPdxLb9CPXoY1h6BDFr6qh2ma84N6hlqMS2/QfyhGXY5n4Y9ehjaEcf
+ wzb/o3i96Vy3YgGGYbC9egBvmof0vCJK5+YjbGwkXLUBcSgVCwGXJ8ryggi608ErJ+pYU9qA
+ T/Tz6/pJqJaMJQ+x3H6CqKlwXC1Ds+z4rQoCqkiBkInTPcgvdw8RCS9GsLlwOXQMu5cU5yA+
+ USA1XEPtgEhUrkda808M+jPoqdtIXuFEsPeztOspHmzR+daZLobCMdx2CX/dHqKpA4Sf+wKi
+ OxOj4xiO674DQPS1H6Cdegkr0Injhn9FcPqIbfsRztt++q6x+6NhJFRAUJzYF3+G2LYfDXuZ
+ Xh+hlck3Etv1X6iH/hcr5kfmI6jisMIIgkRKioffPL0Th2gg2Rx8ev1KlDQ3sR3/l/XmE/zh
+ 6WmItqWYfj/3pB/ArK8FU8forET0lRLd+kMsfxti9hTk0pWcm8XH0iJEN38XZcZ6bBnlqAcf
+ Rqt+Htv0O8b93mPh8ipAZBArMohcvg5BcWKb80Gimx7ANv+jZ38jCAI3OXfxl5419Id0vrdD
+ wabJbDGu4dO35qEe/l9+27uKM/Z8WqsPM83WROrAEU6H1jO9OJ261l4kIcoZLZ8scZCopSAJ
+ Jn5VQkFn16FTICnkyQPkFpTisVsEAkGmTy5gw9ZOcjwS+2LThmWZ+3E21Gv01e2g3GzixZ4b
+ CAspZKstqIKDRVML2HigjhAOWPD3/E9VNV//wHzssoCQknc2NNmx7vtEN30Pec6HUCpuAECr
+ fh6j5zRy4cJxt+u53hopbxbOW/4TK9yP4M4itucXRDd/D8GVCYoT503/wfpwOo+8fJSpE7Jo
+ 7Bhk9fwylk/LoX9wiJwsHw7HsHLYr/0nSofa+bplY8BwkqZ1Yj3bjDLrHgTZhnrkUaxYAMGR
+ iuPGf0cqWjy8sXdOunYz0AGIyKWrEEQJZc59xHb//OpUAMGWMux2G2hE9JYMX1uaUf6W300t
+ TOPz7iBn5JnIgWYiVWeYf993SUtLR43V8MWa7ZzS57Fo2UQKTvyV5gkfpueEA48/SL+Rgs8h
+ 4w/rhEllbW43LaqPOfJR0tU2fHKIn/ffxB3ZtTzdZ8O0SdQO2olRz0QviJrOnPQBei0f7tOP
+ U9mUyZfytuPKMZm6ciG/fbWGCU4vblVly95jOEQBJRak7MyLdAeyOLKtiyXXrz/b+S1TRzv2
+ OGbncdTBJsSsCgS7Z3jETCu6OO1sTz07s9hXfgWj4xhWuA/7kk8j2FMo98FXPrCU6qYeVs4s
+ pjg3DVEQsNvtb4oqFUQJIb0IF+ACjN5uIoBt5vrhVJYtBzC7q5AnLEXKn/NG3JAaQN33a9Tu
+ KoS0AqxgJ9ZQO7gzMVr2IWVPvSjvPRoue14go6uS2J5fgGkiONKwv++biE4vALFYDMMwcFgh
+ Ytt+NHw6yTKxtDBKxfWY/jYEZzrayefAMmkIOtkVKmfA8HAwUsbqlEqq1WJaVS8KGpJgck/K
+ Flq1TGbZ65nnbsVa+Bk+97zJ+3zNvNZfim4JxCwZgeE8RHZJIC/DwzL1ZRZnDfKzrjXMTe2m
+ q3eQzDQX9bFMssQB6lyLWFSawolTddQMOvjq4givVodYN81DhXlyOL5esqFWPY3ZVYU0+z60
+ 43/GrHsVMb0YZfa9KOXrRtVm58M0TQKBAGlpaWP6Vueiquo5CmBh9NSgVT+H4PCizLgLDI3w
+ k59AcPqGkw4DUu4sRO8EQMC+5NMARLf+O0JqAUrF9ej1W9GOPY4V9SM4fSDbcN3138OD4Sje
+ LaEzw4FFT91xjvQIrFsya1QlpJwZOG/6CZYaQnCmn42Zh3OMHncWjnU/GD7crbiIbPw2sb0P
+ IXryMQcbsS39PM2uuTz+1BZsskBvVMBAYHNoJgAeO0ywWtEsiZNqCfe6N/Mb7X5OhDroOZaL
+ XWxhQ28FBiICMMNWz6B7CiXRk7w/ZSe2zHLc/ccQHVPwuJ082VZCpthHZ1cG789voC+o0x+I
+ cabRT+2AjbAu8FhdNoWcoqJwAlbNIFZ0CMGdidG4C9uCj2OlFWFf+RVi/mZsCz+BlD83bl9h
+ LLkzLcsajmZ7h3ylRm8tse0/Rpl9L2agi8jGf8F1y39im/MhtMqnsKLDScbsSz8HokT0lW9j
+ Lf4UgiCgd5zAMf8TiClZyJOuQz34O5RZ70fKnIJ64s8YnZXIxUte3y8YGY/Hn391NMRVAYzo
+ EC0BmQzH8NnYkQ9hmub5r+2RHOB0DL/63/xOEIThsoIMzkzMcC+WGsGx/neYwS5ERyravl+x
+ zTabm265lee3H+fz1/n495c6mVeWwdaTfcxOH6DM6KSHDLo9C8gr1vmG0Et1c5DM3Gp+0Sbh
+ S1Oo8dtJtcNptRgfMoeM2dQEKshQVW50GEz2lBBss/j++yfRuekF0ufczhPHS1m9fDJ6Uz8z
+ cz3Md+7nmdY87i0NUR46iWSVoEl2LNmFYRgIOTPR67ciuPMQogNYagjSS97Sad+1zd6Bkbj7
+ CyqrhdH2PYTefhwxLQ/b0s8jpBaeTWwMoFW/gDz9LoI5y3m8spL6U1GKIzv54I23k5Y/n9iW
+ f8O28O8w+mpRdz+IqYaGQ7wn3zycgKztAMaEFZgt+8HmRp73cRBlFHcm6oGHEfLmoB96BK1x
+ F6IjFduyLyD8zXJ4JDFuPK+AiqMb1OLkgV30R3XaOrqZUDKR14MACYfDuFwXnl1sJM33m9IH
+ mjpG7UakKTchZk3BHGzCGmym2TWPqG7RFzIJGxJnOoZo7A6hmWCKCl1RO21hB27F5EwonWNn
+ upgqVJMXqeJF/0yKrXra9CyihoiBRDCqIZkqXgYoF85wKFRMWWgPJ8J5hJsOURMrYMg1ES0S
+ 5Nb0E+w82cHOVoVDPU7uSD/MvNgWBDWIpYawL/sCuDIBEDMnYzbvQjv6KGbznuFDMGnFb3n3
+ sbbZyEaYoow+sE498DCi3YNtxZcQnT7Ug79FKl2FyRtHNs3+M5jRIf5wDMryUrlDeBYhdzab
+ TvSwcO50lLxZqPv/G+3EX5Dy52K/9ltoVU+BMwN50hq0Y0+gVf4Va7AJy9SQK24AUcHsOA6R
+ AcxgN4R6sK36OlLONKLbfow08Vp4mxVBPGeGuM4A5XOWUBSLUV1bj9MmIb2eU14UxTGt20ZG
+ xXPLWpIX2+wPoL3yrWGDyt+K/brvsM6Wx4NP7aerz8/x+ihORUJRLNJsUZwuDynBGKrppKc/
+ wPLU/dgyM3l04CY+c+dNCA+/TK1ZhoGEKFgYFiiSQLljAMvQ6PcuYHJWOu2tdbitAK8NTcZn
+ UzlSOcit6adotaYRy8jgk67dDGQtY1fLTay+9/vYZXH4hvtz7yKTZaSV/4gcDSDINiTb23fy
+ 8bTZhZZVO46irP0uYkoWlj0F7eijiHoI0Zb+Robv6bcTefUBGk7DneoRfBNmsnDmQl59dBeW
+ IKJklaNNuxMtrRzXqi8hyQrmhGVY3ZWIhQuwr/0ekqmC4kA79SLqC/+A4MkddgVf/6/Edvwn
+ tnkfRfJkgycbyZmOGGxHVEqGD/dL8tlz1AlqAwjYnW7sTjdLFsYnW8CI0fOmpwgCSvm64fw3
+ /jakrMkIdg9pwFfvWcrX/u/jfOve5dicLlKECL/60yt8uqyLAbx0Bwy6HZNZ5hlASC+kL7KY
+ o80hprj6sLJnEqgbYI6zkd3BMianhlFjMvlKP239/QSHBpiTn0o4lMI/F77KkJSJQ9R5IryG
+ qD6JG5ZnMNtux+g4xknvCup6VKaXvr0RK4gS2FLgIq1xL3SJIBXMRa/diDztDszukwiKc9hr
+ dI57RHCk47zpx0yM7uKEr5wlMxZx9EwXeRkpyKJIS/cQj+2XGWxPpXBgPx9eVYLSvBdl1j3D
+ FYgygm0464Rt+h3IBfMxg91I2VMRbC6kwgVota8gpOZhBbsxBxqI7ftviAUQUnKwL/8ipOTG
+ q4nOkpChEOfyTk4q0ZOHXLhg+CTV6yiySKbHhtctMXNiDiYCbk8qWf27KW/9I7mOKN1RG3pk
+ EDF/Hp0DUTLT3Hzg/7V3ZsFRXekB/u7afbulVrfWlhCy0GAWIWGwsAEX8YwxmWIcO7ZnslTi
+ SdnJw0wllcpkMlUpv8SVqtTMU1LOxE5SU66aqUkKL2Rsj20YUDBCbEJikUCAEFoQ2tDSWrul
+ 7tvdd8mDhAODZeimBQ3q77X7nnvuf+9/zn/O+ZeyQcypfqKWRIdZgQj0RX0Mmfmc1Fcz41zO
+ N/P7eKRyE7ah43nmR9R898fEKn6PHDNAXpbCtfEZrKleLFcBE6EI3qy5l21N9GD0NszZ+veI
+ RDf21JpXsWZGiOz5AfGLH+PY9kME5dYSS4Kk8Cc7t9AZ1PjJrmOc7RrmT3dUY5gWuw60svOp
+ Kl7/diWl43V8sOu/QJQQtC/fjRK9y5FLaxDmZ0Cl8iUE2Ym+5++INrwFqhtl1U60F36KvHI7
+ 0Ya357LypZj7vg36VcRiMSzL+tJ6V1+Gbdt0XenlF3tO4dVEpiMmryzvotzuwbLBCg7yYXAr
+ V61SlLwVFOZm89rODUjjlwgfeIPawVxOmRuZEbzMGgJlrjBifJbvLz9HtjEKcZ3zQR+faa/h
+ 8/kITk3w59bP8Pjy+flAFXFbIpKzis3rV/L81pXEWz/A6D6E6CnFnLyC9s0fI+YsAxY3PXo4
+ HCYrK7FsdbZtgWWCICHM2/03b4PecI/5pAbifCz31IzOm7tP8Por23CqMoGhAf71v/fxRs0Q
+ VvAaYtlW5A2vIMtfvS6xbRssAwSR8O5X0X7/p4iuPKzIJJHPfoD28jtYgpSuJtD9RxAEHv1a
+ Oa+/5mN4bIoiRxilsRbtpf8kbprQuY8/7j/FRM3LmDaUFniQRBH8VbhffJudn/4NW6rWoGvF
+ yOd+wWw4wnK/D1UpxxgYQ6l6mapz77PyiRiTWbkUDjejOZ5DWfM8fxudod8oxOV04M91Y8+M
+ YHR+jvbi2wiKhtF9iNjpn+N89h/ut5i+FEEQQbozg0AUBETp/803t1PB43ZwpmOIykcKqGts
+ pfqxjTh3fA/bjBP+6PvIX9sOvlsX+zf3QYD5qDipqBKjoxZ55e9iXKlHylsJonSTWZYKHioF
+ uI4nJwdPTg7mxBWishMkGSwQfeUIA6coLby1eIToKUHb8Y+IJ+fsTnnt8wiqm/i5DzD1KQRB
+ wAoN4Xjh35AufIir62Pk0hrUmr9AUFyowI0BiLYRnfO/mX+hgjsfOxq8J89/r1FkiVd3buC9
+ gxfY29DBqvgl/vCFeXtdlBEUFxiJpVFUt/wVsaafEdn7I6TCNahb/xoEMeVmUFqbQLquY5rm
+ HXtF2paJHRoGxTl3ymhb6HX/hOjKx/KUYXfsRd3yl8glG27f2ALcaY0w2zKJ1v8EweFBzHuU
+ eNsnqJu/h7ys5ot20qVCzEIsZALdDnPoHNET/45S+RLWZA/G9DUcz76BrNxd2OdinASnvQJY
+ lnVH++F2PEL06L9gTQ+CGUOp/g7K6uew4xHi7XsxJvtxrNqB5K8Ckt99SaRInh2PEL+8D3u6
+ H7niG0jF67+492IqwOK4QiSCjTnShtF1ECHbj7T6OWzJmZaJsdLaBErEt9TheQAACDZJREFU
+ 7zve9gmClov29N+DESGy54dIxRsQPSWo1X8AsRhSUi8zeQRFQ6369j29J5CS4tZ3x1zgvzQf
+ RG+a5pybRRqS9tugd4o10YPkr0KQVQRnDkKWHys0fL+7lSHNSesZIBHkiqeJnXt/zoclODhX
+ wKJg9f3uVoY0J60VIBHHJ6nsKVTTIHr0nxFceXPux2riIYUPA8lUmF+qpLUCCAu45i70X7ni
+ 68gVX1/kXqU/qYyZfdhJa0l9VQGJDAtz/xfBDw6ZryvDkiajAA8h9+Bo56EhrRUg1dE/SwXD
+ MO53Fx4Y0loBMmuA5MisAe6cm3aBpqeniUajKb9JKBRK6rrro3+y1/92W6n4MK5HJd1tWN7t
+ 2kn2ma8nx9X1u6/hmyqZpSqj26JnhkuF/8hCJOvXcktMcJIkGie7EKZppmRmupN2kpHZ9UD2
+ VPjLpEpmqXqPqfwerpPW5wBAygKgUzVqpGL0v97OYpFuMoPU9GkxZJbWCpDSPPApGjVS1afF
+ Wtt8lYdpoqSbzFI1+NxIZoWZYUmTtjOAGRmn/lgzTl8JW2rWISWh+OFggAunWyndsp18I0DD
+ 6VZUTwmbN1WS0NhmRTnf3EJgOsyKdRvRr7UxOBln/RNbKPTcWbwyAGaU1pZmxoIRVlQ+TnTo
+ EgMTOlU1W/B7tUQf7xbsWIjjDacwFA9bt2zCkcQAHo8GaW1qwbf2ccqybU42nUKXvDy9rSax
+ j8U26bx4loHRKQrL1+GODtI1OMHK9VspL0wgXtk26bjQzGBgmsIV68mODdLRH6CiaisV/uzb
+ X38b7nt9gIW41t7Bsk1bITSK25P3RanNRJAVDa8YZcaVz/RQL+VrHsehD2G6/biURDRKIt9f
+ Ql6Wymx4nFmrgCfXFtE7NkNRbgLpzAUJr8+HgkHcCDNr+nhyXSm9o9MU5d28AZGMzMb7+3CX
+ raZQixI2XGS7E1/AipKCT5MJCSqER9HyV1PmnCQgFuF1JiIzAW9+EcWFXibGA4QNJ5s3VdPX
+ 14u/sCChdjxeHy6HSCgcJhJT2PzkRvqudlNcVJTo4/0WdvqaQKYtIIsikiBgJXmyOVfR/YZU
+ 4aKAJArYVoLtCTA+2ENAl6lYVoAoSYiSiJVwOwLRcJBgxEAWQJRkRFFM2cmtZYMkiYiShJ1E
+ ftC5Lt4gMxtEUUKSREwzcZmFxq7RMxxi7epH5jJLC0k8qyBgRMOMT+uokoggifPrgNTILG0V
+ oLgsj8YD/0v/RBSnIzlLLRjop+FMKy1NTTg1F03HD9EVsPC6EnzsWJCm5osMXGmnO2Bhjl/m
+ YEMrubm+hJoxo7N0dHYxNhZg1nZjT3VSd7wFry+xdhYit9DHpZMNnO8YwetLzhU8OhOgoek0
+ Z5tOoAseOluP0tQ1wzJvgvaUGePMmTMMDfTQdnUCNTbCwbrDaN7EklvZpkHX5UsEAgGCMQFn
+ fJyDB+tw5JQk1p8FSOuY4KVMRmb3hrSdATJkuBdkFCDDkiajABmWNBkFyLCkyShAhiXNA6wA
+ Nt1nj/PWm2/y3kefMpmQ96/B4T3/w7vvvsuZzqGbfpkKDDMduTGrgsVQXw+6AWDSePgAodjd
+ 9/5+MdzVwjv/8Rbv/HIXQ6FEzgpMztT/hvfef48jzR037cLrwTFGpiM3/Xts4Aqhec/6Cyf2
+ MzRz111fFNL2JPj2COT6yxjt7WHbCy/i1kep3X8Ay11EoKeZUydbGBodpaWtl2WFKsfqjtLe
+ P86K8lKM4XN83qvxZy89xW8+rWVZnoql5XO1s5X6T3ZxrG2KlRU51O2rJa7lER6+RnZuNvX7
+ 93LqfBfV1Ws5sn8vITEHf65nUepcLI7MICu3GCE0QknNDlZkxair3ceUnY0x3sHxxtMMjoxx
+ rrUd/3IfJ2oPcb57gOXlZQjBfvY2j/LdP/oWjZ/vI8fjIKoWMNzXzrm6X/HhkausWVPMsf37
+ mLRc2FNDKLl5tByu5XjTGcqrnuD80X0MzIiUFuUtVm2QhHmAZ4AbsTm0ZzeDkzN8Xn+ECxfb
+ qN64gv5BG8dAN1cm+gkJfoqjl2gZjBKPzKDl+JAVN6Yxy2B3K5M6tLW3s6byMbY/t53ZnotM
+ mBqyYNLb0cnxz/ZQ+OSzrFrm4/Se3bRPzHL08BFiqa/ZcM84f+RjWgeCHDh4iKsdF6moqaLj
+ fIBSKUznSB9Xh0WqvFM0XB7DjOmoWdlIkoooGox2n+XaDLS3tbK6cgObn3mG7OkergQlVFng
+ WmcHrU3HiOavY+OjfrpO1HKya5SWYwcTnK0Xl4dEAQSK/CU4XVlsWLcWUZZRZAmn6kCRZWxs
+ ei6e5mxvjOIcGffy9Zgd9Xz0q90UrtyEaJscPXSAQMgg261yqr4By1OAGOrmaONlAPL8ObQc
+ OUxfIETB8mU4FRfV1ZVJOemlC7mFpbidDh5/rApBFFEUGadjTmYCMNxzkeMXRijJc+PIL8M9
+ 2cGvP/kII2sF+b4sGg/to290BtXtprOpgYCdTS4BDh9pxrQhy+fhytlGLvdP4C30k6U5WVv9
+ GFoauWA+8CfB8VgMSVHAMolEdCTFgSTYSLI0579iW0yPXuLkJYtv/M46NKeKABixKHrcRNM0
+ sOLoURNZkVAkkUgkhsMpo+sxVKeGYJlIskQkrCPKEg5VRQ+HEWQVp0NdlOl8MWVmGnEQJUQg
+ EgmDpKBKAoIkYxomkgCmPcLHu9t5/jvbcDkdc+VqjRgRPY5T05CwCOsxJFnGoUhEIjqKQyWq
+ R5FVJzIWgiwTjURAFHE4HMT0CLYgoTmdaWMCPfAK8LCSkdm94SExgTJkSI7/AzvzlKf+4ScW
+ AAAAAElFTkSuQmCC
+
+
+ iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
+ AAAgAElEQVR4nOy9d4xdR7rg96sTbo6dc2Qzk5IokSI1kkYaaTSS5k0Ob9Yv7MK7z7B3vQ9Y
+ GwvYgP+YvwysF3AAdteAvTDW6903b+bNm6DRKEdKpEgxZzbZOXffDjenc06V/7hkixSbZIfb
+ ZFO8P4CQ+t5b36lTp75TVV9931dCKaWoUOEhRbvfFahQ4X5SUYAKDzUVBajwUFNRgAoPNRUF
+ qPBQU1GACg81FQWo8FBTUYAKDzUVBajwUFNRgAoPNRUFqPBQU1GACg81FQWo8FBTUYAKDzX6
+ z3/+85+vpmAxn+PDk8OMz6UZnogTrQ7hEpKDx/sZmcswMDbLQgEao16K+Sz/6386TEN7I1Ve
+ A4p5Xj81zuamCOPj03x+NcbkbIqr43Hqa0KM9Q9xIanTFnUDcOLERQrBGkJ6ln/97z8l3NJI
+ fcAAID4b43/+xXE6u5qIeHQmJmY4fHmaqbkkl4bnqasN49YFA0MTnByYYyKW4Mp4kpaGELoQ
+ ACglOXl+iN7JJOPTCSzdpMpv0j8wwYlrZXonkrTUhTA0we/fP8VkymYiluDslSlC1WECLp2/
+ f+csnV116FLyH14/TrYoGZ1JUlA6E4PDDOdNmiNulJK8fvAi9Y01eAxRnidZYVUYqyumeP9o
+ H4/s2UpT0OR6SMGZ01cINLeyp9EPSN748BxT9WGiQtLeVsOxM8N0PrcZDUW2YAOSg+em+MFL
+ u/FoAseRCE1gWRZ55OLVCoUilgSFpKO9nt6+CXbVdwFwoS/GlrYIlgS7kOOjS3P85PmtmJog
+ PjvLOyfH+NH+Zg5divEPXt6NIQSO7XBjtxu8OkzSHeH5zVFQCgVkkwmOjef56dNdaEIwOjjK
+ x5djvLSjjqIU7Nveit+E1PQUb12O8ZMnmkhnC1wPrjDcHr62q3XxGna0lf/v/V4ead3N/PgU
+ BKOE3ZUB+H6zuidg5ZkumjQGTACEEAghOD+d55EGH0KAEBp7OiKcHU0A4PL62RKB85PZGwQJ
+ wi5F72QKpUDXNTRx5zei6fVjFrPkJUjHZiKv0RYq1WN+dp5wTTWmVpIRqa7Gii9gKQ2v5jAQ
+ y5auY+g3XEdxYiDB3k2Ra1Uq3cvY6CxtbXWLv2tprWVyYu6muhQLRU70z7GpMXTXJjPcbp7q
+ DHK4N8anvXM8v6uByrv//rM6BbAdMHS+3FcloN3wmdvUKRSdxb93bW/n0qVh7MUYNMG3nt0J
+ yThvHrnC4d4ZnLsGqAl2N/s5O54mMTdHuKZq8SasgoXpNm/4qUATCqkE3//GLlIzMd747ApH
+ ++a4MRAup8Cr3XwzuaKDz61/IUrXUHZpVLKKBY5eHOXwhTFSyqQx5LqllvF4kkPnRjl0bpTh
+ uRwg2Ly5jcGLV2hobyZgVt7+G4HVPQWPB6OQw5I3d9aQAQnri78n5tM0VfsX/zZcLh5tcnN8
+ KLn4mW4YPLKtjVf296Dmpzk3ncfvdcENHdSywXVDv27taGB8ZJoLgwvs7q5e/DwcDZFc+EK2
+ sgtYwoUpwDBNHt/Zwav7NxEfHqY/+YVitvg0xtJf/A1QX+Nncjaz+Hchk8cd8AJgutw8ub2V
+ 5/Z08cojdbxxbOSWJopEQnxtVytf29VKe3WpnNAN2upDdDaEl27XCvec1SmAMNjfHeG9sxNY
+ jiQWi5OyJM8/1sqbh/vI2ZL5uQXOxBS7G703FqSnp5Xh/lFytgIcTl4cZyFr4Tg2KQsiXp3G
+ 5jqmRydJFRwyqTRDeZPWG8QYpgd3McNwQafe+8Vb2h+JEHLSXJxI4dg2nxzvZ8f2VnRh8/m5
+ MZJ5G8exySj9hvm34MCeDg59foVE3iaXzTGxkKOusYHCzBTD8zmsYpH3Tgzz5I6mm5pBKcXA
+ 2DwNtXefAt3YBhU2DmK1QfFKKRYWUlyZSBAKB9jSEkEXgmwmy/nhOVweLzvaqzF1gWNbjC8U
+ aKsNADAbW2CqoLGzJUQum6d3dJ6cAz1ttVT7XQgBhVye80OzSN1kZ2ctXlNDSovRWIH2+gDx
+ +QQL0qSzxsdMLI4nFCTk1pFSMjQ2y3SqSGdLLfWhkrxMOkfv2DxFpbGlo46Ix/hiCqcUhUKR
+ C0MxpGayraMGv0vHcWyuDseIFxSb22uJ+kwEcHVwkpm0DQJqqkL0NIbQhKB/ZJb21mp0YGAy
+ TndT9JZ2m5xeIFQVwW9WFGEjsGoFqFDhq0BlJVbhoaaiABUeau6ZAiglkbIy26qwsVjWTvDk
+ wEXOXh0DJXjswNPUhb13L/QlEqMXOT8X5OnH2ldctkKF9WJZCnDs9GVe+t738WgCqWB4oI/Y
+ zBSuaAu7NreTmpvk5LkrbN+zj9qQl6HLZxlLODy591EMZXPu1HGmxkfxtu9f7/upUGFFLGsK
+ tPfRLbz52msc/PwMjlIc+/wo3bv3kh85zdXpOd5+/yhPPb2fT99/l/mB4/QmvDzSGebDQ6c4
+ 8uFb+Fu38/juLRULeIWy0H/qY/7+D2/z9ltvcu7q2C3fJ2KjzCTyy5K1rBGgoWMbP+jaweCZ
+ jzl6YQRfMErQ56a5sZqJ+RmmJ2c5+PGnWLqL2Ngks4k4n6fB9NcwG3fYXx8hOWpUFKBCWcgk
+ F9ix72W21Ap+89u32N5Rw5kTx0k7Jo8/8TgoE9MUTIwOkEymmJzPceDAPjzGre/7ZSnA+ROH
+ mEoUKOZy7D5QzZEzk3z4/ntkMjYvvXKA/PggeaC+rp6uXc1cfvdzBD7q62vpCBT53etv4FdZ
+ Ql2VKVCFtaMci6MH3+OyUaS5ZzdKQWP7JgrzQ3zw+UW2u1NYbTuYvnCC+u3PsUVd4PTQAvs3
+ Vd8ia1kKsGvvM+y64e9zVY08/8KLi4Wf+ea3b/r993/wnRv+aqFrFxUqlA2hmzxx4CmuHHqb
+ 1uYGZseucLJ/geaAQz6vQSmMBM3lo7G2Cln0IB1nSVmrMoMeeOoA+t1/VqHCuuDy+HC7/fzJ
+ d1/ls/ffJmcL8pkUqWwej9uN4XZj6hoejxdNgGa6cZtL99iKK0SFh5rKTnCFh5p7ogBKKco9
+ 0DwI8sopc6PLuy7zQeOejQBSyrv/aAXYtr2h5QE4t1l4bRR5D0IbrjdfrSmQUjdFklWosBQ3
+ jn5fKQWQmX7s8b9B2Zm7/7jCQ8310XSVaVGWZmK4n7RjUh8yuDo4TnVTJ53NNeW8xB1RdgKV
+ nwJl3f3HFSqwDmbQocFB2jvaGRsexBdtIBLwoJRCSom4S8qTleA4Drr+ZduuAuWAWLleLy1v
+ bUgp0bTyDbLlllfuey6nPMMwytpfbkQpheM4GIZR3hFgcnSQkZERrFyapK3RHlHouo5SCiFE
+ 2TuYaZp3/9F9kndjI29UebCx2/BeUFYFiFTX8VikBpfLRbFYxOX2lFP8LajiAio3ggjtQoiv
+ 1HKmwj2irL3G6/MTDAZxu92l/7rKql+34Mwfwh7/G7DT63qdCl9d1reHrjN67YvokT1gBO93
+ VSo8oJR1BJgY7ufS1SHSCzGOnjhTTtFLInQPwtO0boulCl99yjoCNLV3UxwcJBCtpb66NC1x
+ HGfRCnS73WDbdlAKzNt47C3FRt9lhZLVppxGtnLL28htuJ5WoJuuU05hg1cu0Ns/gsvt5vLl
+ y+jeMK31VXe0AkkpeevD0+TzRX747QPo+vIHpY1swahYgR4MyqoAHT3b6ejZDkBjY+Oyyggh
+ 2LqpmWLRRtMqU5kK5SOfSZDMQ23Ey6VLfXRt3XpLWGRZFWA1Q5YQgp6uprv/sEKFFZIvStKJ
+ OIWERWNrI4MDI2zt+SItj1Lqq+ULVOHhZKLvFO98cIhzlwZv+jwSjaIJkELg9QXQlLU4lZRS
+ 4jhO+a1Ag6NTpOcmOXLkCLHk8lJTVKiwFhJzc1w6e4rp+Zv3g0YHLjM2Po4vEOH86VNUN7ai
+ aRq6rqNpWmmhvR6+QJZt093VTv/gGF2d7evmC2Q4Mcj2oSJPsVaLbsUXaGPJW4kVKD0/xclz
+ vbT17KSj6dbMD19m3XyBctkM2WwWj6kxHZsBw7uuvkAkLyDnD2FGn0CUYTOsYgVaO/fDCtR3
+ 9jRasBFDX/kLtqwKEJ+bwTBNGts7mJ6YoqujpZzib0GveQE9uh+hB9b1OhU2NkJoWMUCtrPy
+ qMOyKkBjayfXjZ8dnW3lFL0kQjNBi6z7dSpsbMI1UUaG58jUNq+4bMUKVOGBx+MP4dEsYjcc
+ kLhcVqUAViFLIpEkV1g68iqbmOX02fNki+V3L1gVSqFkoRIv/BVG6Br2bfrjnVjVFOjMkXcZ
+ XTCIVLfz/DM7b/l+bHyS6kiAoaFRtm5qWwxCLmdmiJXIk+lLyIlfo3f8NwjX0iGa61W/cslc
+ D3n385ncjeuHry/ruhhEQyG08K2HEt6NVSlAS/smeodOsfvJry35fWdXF+PjI0i+OCN4XfLQ
+ yGIpFsC8840LM4rwdYLmvWMd1iOvzUbPvbNR5a3EZK7sHCnboEbco0VwbHIGd9BPPpsDbl2E
+ FvNZFlI223a2oGnaYqOU0wwqpYSFT3DmD2N2//cI4w6WIG8TeutfcMvR9l+SV876XVf4cslc
+ D3nlvudyy1su8zMzJFMWdQ0rN7ysSgEK+TyhSBU+j2vJ7/2RWh57tHY1oleECGxDRwd9GUc2
+ VWIGvrJomsIq2qs6g25Vi+CiZeEL+HGtwH9/PdC8Lei130CISq7qh5m65hYMaWO4l34h34lV
+ KUBLewfZ+DzZfHHJ76VdYHh4FMtZnzl1PJmhf2hqw+WiVErRPzTJfLwSo3wvGRsYprmzheGB
+ 8RWXXZUC1DS1s2tzI+MTC0t+P9R3FcNUDAxPrkb8LSgnhyrOAaUOf+b8IB98cp78Ksxe60nR
+ snnv4FlOnu2/31V5aFiYGqN9zwHCLpOOzuXFoNzIqtYAsxPDnL86RPcjS1uBfH4f4+PTVDV3
+ LCsk8m6o6ddQmStoHf8CNDdPPNJNT1cDhi6wrPIoQTnC+TQBP3hlH16vG9u2KyGRa2C5znDj
+ fb34tj5Jc32YT89NsaW9YWXXWU3lZiYnWUjEGB2LsaX1Vu87XRMgBLqml8UZTlY/hQp0o7n8
+ CCEwTROXy9iQjlx1tSWTbMUZ7t6wde+THDn8GX3Kzf4DB1ZcflWt2dzWwkzGoqEuvOT3tc2d
+ 1DZ3rkb0kmjeVvC2Lvv3ykogM31ooUcQmkE+X6RvaIptPS0rijmusPEx3AGefv6bqy6/qt4w
+ PjbDI08+RXfz3X2v7wcycQZn/BeoYgyA/uFp3vrgFPMLqftcswr3g2IixpFjx5mau/X5r2oE
+ qK2LcvSTg+x64mv0tN5q75+bGmVsep76lk4aqkOrucSa0Kr2owU2g7sOgK2bmqmrCVNT9dVI
+ oKWU4uzFIUJBP51tdfe7Ohue+Nw8GC5CQd/iWlRKiW3bqxsBZqemCfh1JqbiS34frW2isyFC
+ Ud6fzSehuRCeBpAFZOoymqaorQ59ZRJoOY7k3KURrvav3Oz3MOKvbWR3TytXevsX16LXQyNX
+ NQKEq8KMD07S0L30213TNCbjBTZvDpbFCrQUy7E4qPhx1NRv0Dr/BbjvbCJ70BJj/eCVfei6
+ tiYr2FfBCrQc3KbGxd4herZuRwix2IZCiJXHBJ87+hkde57Ea81w/FKa/Y9vuuU3yskxNZun
+ sf4Li8hK/ERkZhBlJ0qL2Ns0gmVZd7U4KCdfyh7t7wYEcHsPw+XIWwkbzQr0xWMWCFH627bt
+ st5zudtwvbixLVc8BQr44J033uSNNz/CE1l6BBC6d7HzrwY59xHO9Jug1nbomtA9aIHN2Okh
+ Jk//G5QVv+ZU5iBzYyhV5re+UqjCNMrJllmsYiGeXtXG33Unuk+PXuKtD09tuN3z+82KXyed
+ uw7Qtt1GoWGsk0lRb/4ZurIRtznpRSkHZB6UsSwnt0tDBX73XoS/qhqj1ngP4WvFGfsFRtc/
+ R/iXGMGUApkDzbOicweUzGMN/Bu00E70pp8uu9zdKBZt/u4Ph+lsq+el5x5dfkGlkPFjIIu4
+ jCrcSzSXkjYoG6G5H0qHwVX1YF037tj5pVPk4rkzJDJL+wrdjdm4xeh0niXfVUohZz9CDf9b
+ lMxf+0gh5a3xBqW3n8TrMQn5BKaaQybPIlx16C1/hvDexn22OIPV97+gUhdWVG+heTCaf4pW
+ /TzDozEW4l8c1qfU7dcDSjnIxFmUtbRRweUyePHZR3hs10r3VhQyfRmZusjjDad4pu1z+FKr
+ OtN/wB7430uxFQ8h63I+wMjVXqLNnfjc+uIQvJKAmKMnepmdT/FnP3oWw1hi3eBpAX+ydCRY
+ cY6BCYtLV0Z54dndeG7wCFTZAZzZ9+mqO8A/eWEWX9N3QduL0L2lABluDuC4/v9S85FU3YT1
+ asQy65xM5/B6XJjBnRSLNu9/8hEtTTWlN7aSOFO/BVcNevXXbymrinHs8V+g1XwDvfbFJeV3
+ ttUtGhSWj0Bv+hmgkMkzCDtNoWBhOxKf1w0oVHEeWZyjWCxQsB2CgWW4lt+Bck6xHrjs0Ncp
+ SklmcoT5uQDbuttWbAF6ev82rKKDELexLHi7Ua4OrNj72POfkRf/gFy+iG07OIaDKsaQibPo
+ njqUlUY5WVy6jZQWaH6y6RxnLgzx2K4uPO7Sou16qjyA2XmLX30S5RvPWPR0Weg3JKNyHBtd
+ 03GUQtc0HMfGsiV/+9tP2NLdxNNPbkPXFK8+YeMJ6SWZSpaObtW8S9+PHkJv+8coV/0dLSk3
+ 1rF0GKBGaXEPl6+O4XKZdLXXf6lUqe4SDwjJux+fYSGR4acv1iHsOfSGH6DbGT4+Psjg8Az/
+ xQ+fwbXKk32klDiFOM78YfTqZ0D3rUoOlDd46k6siwJ0tLdz4cogzU01aJq2GN+53JuKhO6e
+ 50cpxcWZZs6f384Pv1fP5lY3hr80Z3fiV1Fzb6Nv+pfoXX+NEDoqsqe0phCCuYU5Tp8for21
+ HgE01kdLqfJ0HYUiGgnS2V6P3+fhV78/zIEntrKps4F0aoHf/eEDtm/t5OyVOLu2NnLp0kV2
+ bGljb/Mlmup1dH0nSIca7QzINIaxG6UUMe93cLtdBO0ZhHAhXNWLc25lJbGnfo9W/Sx6dO9t
+ 7xdK5kElbezR/xfhbsJo+BNsx+HilTF8Xg+bOhtvisK7/hadnTqFVUjw6M6fkc1Z6NmDqNwI
+ es1+cEXZuTVIfU0Er9e96jevUgotP4mMH0QLb0Nzdy31q5JvGGJDrDnWRQFc/giPPfZY2eQp
+ WQRZuBb2+EWjBSMNVDc6iORRVPwgbPqX4KpGSkWmYBJWDsLJoIxQKYfQNTpa6/hHP/sGk9ML
+ /PL3n/KT736N7vY6lJPGnvwds/IJzpwfoioSoCoaxOcrTasMw0VVNIRhuJmemae51iRqjOET
+ LkYzXsKF0qGAQnNhdPwzHFVSeEdK3nj/NFVhDy/3HEKYEYy2f1zqBACaiXDXI8xl7poLgXDV
+ lZSI0tvyu9/ah6YJhMqjHJALxwCFVv0sQmh83N9DKp3jL3bXoGsaSv4Qu5hHaKV7q6+NUF+7
+ 9hxLIrAVs+d/RBhL+4kpK4Uz/Tp6zXMIz/3NCi6lfDDOCHNm3kKlezG6/rpkrbhGV3s9Xe31
+ KCuJCnaBGUEpm95JH4dPbOKH0XME8kdwtf8lMj+JFt1XeuBOFl/hNAFvJ9XR0mF+5y+PsKXN
+ hZEdwuPfRm1NiIYaP/t7Emg+B2fhKG5/D6++8k2klcKbfI2Gjmo8wW/iiDDvHl3ACFl0QenN
+ ZgTg2nRF1zReeu5RPG4Tw90Mmovh0Vl0Q6PJO4Tm78Jo/XOkVJy/PEJzYxXR8K2joFKKK/0T
+ hINean1dYIaQyfNg+PF4O1DKwR79z6UIOWECAiUdlFBomlYaja/Jmp7NEk9k2LKpvDvkQmhg
+ 3l6RlJPFTg8iwo+i30cFWIyx/vnPf/7zcguXdpHZuXk0w4V5bRGrlFpDYleB0IMIf9fiwyr5
+ ckgWEhl8/iCauxaVuoAz9XuUr4dkRuIPN/PR6TxttRI99mu0yOMII4jK9OGM/wLL1c3YdIFI
+ yM97H5+mqaWV2q4X8YSaaah20VStUKP/DwiBnHkLYUbQfB0gdMKeHFpgE69/Oo+Dm6mZOLX1
+ DbS3NizW8fo9CyEIBrx4PS7ARiqT9w71Eost0GW+hzB8aL52cvkir719DNPUaWn6In2Lura/
+ kMvn+eVvP2VhYY4t/k+vrXVOoArT6OE9gCI+8TmWo+FtfgXh7+bQkdP09/XT0NhMwO+lraUW
+ IQSHPr9Mb984O7a0l81DtrTOE8TmEvi8riUVK5EVvHFMJ1rXSSi4+jVCOVi1K8TdWBgZZEbz
+ 4g0sPQyuFC2wGQKbb/n8xNl+zlwY4i++043HvorwNILQmVlwGI1BW6uDJhwSOZNjV5t5uhM8
+ HsjQxrGpl2gWivHxMbrq8mAnyKdjfHxknuZaF2+88ykvPlnHJlcGnGvmVlnAnv4jWmg3Rv3L
+ KMtG02bweD386Hsv4vd7sB2JEHDq7ADRiJ9EMkc45COZyhL0GbQ7/xHhivLiM3+JpmmcOD3L
+ pnArdYDX4+In33mKUMCNM/0GIrAVzdcJskB+4N+j+7rZ3B6hoT6M8Hcj3HU4+YnF9nAcxR9O
+ NeIyBD80fo2ugSZ2oekaI2Mx0tkCT+3dghCCZ/ZvJ5vNMz45R2wuwZ5NEnLDaDXfAOTi1Og6
+ SklQFkK4bpq7q0IMZ/4T9LpXAZ3hsRn+8M5xfvTtA7Q0VZPNFvj81FX2PNJNKOBFINAN9309
+ 1/nG9ei6KIDu85Edm2LO7cfriqybL9Dm7kbCQR+m3Y8TP0G+9r9k2voWLZFRnu04S3d4li2b
+ DzGcrqJ3uordqTSieILZVD29Iw6hah+hUIS6+jpe3HmRkLfIJydmqY808ty2eVrqWyAVQblb
+ EA3dKDOKmvwFUvgZGklTV1fPK994DCEEI2Mz2I7Nux+fpbmhit7+cZoaqpieiVNTFWRkPEZ1
+ 2IWr1UF35Tlx+QKGrjE7XcAfmiVS3QQI5heSGMKNN34CoXRGpj0E/DrvHW+grTXMiy8+j8Bh
+ 9MwRfIE8EV2ipMSyLRzHxmtYmKaOqH4eNJ29zR0ATM+mKFo2tu0ADqahEfC7OX95hLHJObZX
+ x9HzvWh2FlLnENei766j4p/DwkFE6z8B44YpTnYUuXAcFT6Ao0Wpqw7x/FM7qIr4sSyLhUSK
+ S1fHaGupwes2cLt0tvU0Ew547ujHdE8OyVuvKVAumyKeSOMPVxEN+RetQIZhoOt6Wf4ppQgG
+ fNTVhNG9DWj+Hi4M5Dl45DK7tjbRUm1jVu1FMzw43m1MTY6yo8OFHvsV0dYn2blrF60tdezc
+ 1kVdQys1zTuIRGvYEviExo49NHQ/gzvQhMoOoUcfwwjvQndVoUX2kioG+U+/PoTAoq6uDikV
+ v3n9MFIqqiIhamtCXL4yhsftxrEtQn6TruBFmqsKHBtuJJato8qbIOAuIM1aGhtbOH5mAKUU
+ 7x08i27otEQWsF1d/Pb9YRxH4XK5aGxqobGxCYnOa59mSdj1dEeH0M0QRrAHXYPY9DBBv4u2
+ 6gyak0ArjiFyfXgi2/D7PPT2TdA3NEXHNTfqxvoq2lpqmUxGODcWpT0ag+wVzLoX0E3vYnsL
+ 4YAsYoR3oBvuxc81Tz161ZNorioAvF4P9XVRTLP0rIMBLzu2tlFbHUbXdWbnU7z29nFqqkM0
+ 1EVv+3zvxR6AQq3PCBCta+HxuvVNjX4jcuEIzuzH7Nj0T2lq2E+0LoqmbQUEWmATxeEhLOVB
+ +ndiRlvJUcuFSyNs7m7kSv8kO7e1YRoBhEzg1VMIO47M9IIRpDh/ErevA82/qWR9MfwoUURi
+ kCvAL3/zLlu6G1HFWTTby9d2eMgLA0dKNCy+2XMCf7AOrzWCcFWRzgTxuk0GZ0MYJkwnk4Qj
+ CfoGJ6mtDvHDbx8gEjQ489mHtHRm+N4r+/C4DP72t2MY7hxbtjroGry6T+D2ebgy0IjPH6TV
+ +Y/YysPVsSimodi3KV2a2wsdZJH3Pz5GOpOjqamJZDq7uB989MQVRsdn2dSYIzEzgdj/HYya
+ pxG6/6Y21nydpfUPX+6YAhvfbTuSEOLapluJ2powP/7OAepqyjM9Xi3p+WmmM+ukAPcaLbAV
+ hIbpi9IU+LI3oqDFP8qPd3yM1/UMmn8TsdEZPj91FaEJjp26SkN9hMa6CMJVjdn930Exhj32
+ N6Rde3jz7G6e9PjYdEOstdvjxePxUBUyUPE+WgMF/F2TNNV7sMc+wgjs4LH2APV1OieGaqiu
+ CrAQ30HA7+PSuIbfoyOUhQsNt9tEV3nczKI5tTQ19JAvFDk1tRUr0kh7QKGkBXYCO+/ij28f
+ oaE2yJ7oSexCAx9drqMqEqD9hS5cmofnnyplj3O1lBQ2nsjgOJKt0b8l70mxbd9zgI4mBBLY
+ vKmZmuoQ29oUcnsE01d7h/m5oFCwiM0naaqvQtMEI2OzHDxyge+9vA+v5+6eoLqm0dx4/yMJ
+ A1X1+CMPiBn0rrjr0czILc5z153ahK8DV3QXwl2yrLQ11/BnP3qWUNDHpo4GDEPn3Y/PcGDv
+ VqLhAMrdgNHxX+PKWQS9Q4Dgg0/OsG1THbXqEAXZSjGfZmE+xvBCFZF4kCdbE2hBC2fBwHYU
+ Q1OSgrKZs9pxESXc6C5NB/RTuFw65wYk6Bovf2MnVQGbLfppgo1VKCeH29T54d4ZzEg9v3jr
+ c3q6mujo6KS5IczMwKd4nDqEtx3T3cDOrVFCQS9auGQh23zDVoKUkg8+/pxCwWJ7ayN5FeJy
+ 3wSpdJ59j5WMCo3eUeoZQfe9iuHvuKVpZaYPmTyLXvcqQvdw8coonx69xJ//+OtEIwHcboNg
+ wLu0y8oGR2ja+iiAUoozn75J7aOv0nwPohDl3Cc4cx9jdv014gYbtEycxJn8HXr1syU35eIc
+ MnkRLbidkLyIY+1ifHKuNBKc7qe5sbpkfy9MYw//X3iqnuKlneNkPZ18enWAel2czbgAABu3
+ SURBVG8TUfdnBKtd/GDfPNHGVvonJMqsARToPsyuf46h+emqf436esiqAH6fj9bmarxuCKb6
+ cHsCtH9tG0Jz8e77h9jVE8FIV2MUNbSr/wottJNA9kM0V5oXNiUJ1RZ473yUUFjw9X2NaN5m
+ 5MJRhGby7FNPX5uUlOzaYxPzaJqgMRRHSQfHyuHYRabzHWRzFpmZBPFEBrl1DIrzOAsHkZkr
+ 6DXPl/YuvvwsC9OoTD/IAugetmxqJhT0LZow62sjfPdbexFCYNtrc1+/H6yLAsSnRwlV1+FI
+ 7klEmHK1ooKPYisX3GBZUEYDKvgYjrcHFYxjZ8ZRU79G1LyImn2XvmKS33w4y8vP7eapJzbT
+ 2lR9zTLhRwUfQ3q3IqoKBIK7+fGLF7H1Kv74UStbNhtcXXiULTXttLdO0dzchHI/g/T3oNxd
+ FIt5+qe9FHQ3zzy5FdMQ/O6PHxD0u5mZ7SLo1/np3pNowk1XFAyl8frZTewVIXb48oS8AkP3
+ oowIrZ0tSHcXPk8Kt6GQidMoK4Fo+ocooePYNiBh5g84ePn0aADD0PjOtlMITbF9+59gOYpt
+ Pa2L6WmUUsiZX5aChepeBW/PLW23SPAJ8D+CjRssC9PQaGuuRkoHKW/2W9qoEWF3vM56CM1k
+ s0xNjONytdMWrl23Q/IWo4+MTgh23upbYjaB/welzwPtKOWgfE0Ibysq8hh1SUVX0xE6WqJE
+ q+u+kGea0PxDlMzj5C6juwO4Wv+EbCaJ8kyCtwUp41iWw+T0AjXVYbr2fhtQyNkP8bhq+N7u
+ y5iBPK995KMm6gUnh6YEwgyimSZCFRAKdN1DMByhu8tNTW0Nvz28k8doY/+j/xPKCHP87Cj1
+ tRF0PYNuenB1/lPQvQjjxtTzDg4SwxD8yTf3IjQNt2sXADuuuSR8uTOp5h9hFzOY3mtB9Xfs
+ bO47fHebZ/KAUPZjUq+jpIMUOrpYn1Tcqwm/k+le7PFfYbT/FZqn4Vq9HDRNXzI8UOWnsYb+
+ HXrDd9AjT5R2ZKVEqBzFgX+LXv00vbFWmhqqiIT9IIvYA/8bIrgd4WlFGlUMzbgI+EySA7/E
+ F4iSz+dxe7w0+qeRwssvP2/l0V2b2bmt5Dh2sXeUlqZqIuEAhaLFL37zCT1dTRx4YjOO49z2
+ npUqja7L3WB6mEMib2TdFOBGNooCqPw0Tuwd9Ibv3eJ4dpM8pVBOGnR/6QAOw39TBmoliziT
+ v0UL70EL9NxwAYVyMqUNJGEsxp0qJXFm3i6tT+wUGAG08KOARq4gSpagJdwRlFLk8kVcpoGu
+ a2WPMa4owEOmACiF4pol+0tD/o3yVG4ca+D/QG/+KXrkiduIutndeKnvb+ywX27mlc5v1yPI
+ vqIA67QG2LAIccs2zpK4atBqX0Dzdd9B1Mo68FclJ9FXjXUfAW60ApWzEziOU9YRpdzyoGSH
+ X70H7PrL28ht+EBbgW7k+gMTQpT14QFlmw6sl7xydzDbtjf8PZdb3nqz7rVdtDuXOUva9Tnx
+ RpUHlHXfAzb+PZdT3gMdE7wU13Mxlotyvw3LLa/cex/rIQ/K+8ZejxFqvbknVqAKFTYq9yws
+ RymFVSwiFdhWkUJxNUldFbZVJJcvoJQkl8sh16i/0rHJZrNIpSgW8tjO2qctSjoULRvHtsgX
+ 1p5wKp/Lki8UyybPKhYoFK2y1i+TyeBIVZZnci+5Z+OVtHNcPnWWlseeYPT8WQoO7NrzOB59
+ BSt9BROjQ8Sm5wnWVpFOpahq6KBjDe61qfgco2PjGL4gqfk4hi/IY7u2rloeSjHWd4nJvIZf
+ 5cjlbbY+vo+AsVqLhsPp48do6t5GOjZGNldky+NPEjRXKU/mOHXyLI3tXaRjo2Sya5QHzE6P
+ 098/TGtnB4lUmkCkgZ4VntV1v7hnI4Bu+mhtqQeniC/aSFdThExhhW8KAdVVVYQbWxBoPLZz
+ G1Yht6Z6BUNB8vkCLt2hvmMnfs/amsTOLTCb1zFkAXegmu2dNcQzaxlVLHTNRTyewBWIsKO7
+ loW1yEvPEi/qzMRmMf1hdnXXMp9e26jX0t5FQ2sHUsKju3aVkoA9INwzBbDzKS729jEwMk0x
+ MUnfRJrgSjubUpw7f47kwixeU+fIibP4A2s7gWYuNoPQDRzhYWrgJHlnbYOixCDg1ckUHGRu
+ gbMD89QE17BwLTroXheW7aDySU73zVO3FnmBemq9EkdKVCHFyatz1IXWtrCOT49T09xObdDN
+ kc+P4favPjP4vaayCK7wUFM5MrHCQ01FASo81FQUoMJDTUUB7hF2McvQ4DAF686uAtl0GqvM
+ LhQVbk9FAe4RJz54j5lMjngizsjgALPxNIm5aRKZPLNTY8zMJ0nHZ3nnj39kLrv6kx8rrIwH
+ y3HjAWb73if4+OBhnHQ9sQWHYvEUyZExwq1djA32E6rrJOovYpiVR3IvqbT2PSI2PY3mMtE1
+ jZnxATq3bafKNKjp7MGtLGraN5GfHWB6voi5TocPVriVyj7APaaYXSCWUjTXV93vqlSgogAV
+ HnIqY22Fh5qKAlR4qKkoQIWHmooCVHioqShAhYeaigJUeKgp+0aYdJzF43fWIxdQhQrlpOwK
+ cP7kZ1w6eZhi415293TwyLbOcl+iQoWysS4bYQNHXqOw6btsq1GMXT3H+cFpvKE6Duxu5413
+ 3iPo9ZGxNfymwlvbzZYayaenh3BrNh0797G1va7cVapQYUnWd34ibT47fZWnnzqAmL3KVLKA
+ v6aFF57dT9YyeOGlF4hPDFBIJWnfuoeXX32ZS6eOUtmarnCvWPcJejYe48zZc2jRRnya/CI7
+ 85dPLFFgF7Io/cFKr13hwWZdvEFD9R3YHkAzefmlb3D26gheXxC3N0BLQz3objZ1NAMabe2t
+ QIrzJ48wO+Ln6We/vrwU5hUqlIEN4Qw3deUUc2YbOzrv//mxFR4uNoQCVKhwv6gY6Ss81FQU
+ oMJDzYZUgNsdLLHWwxeuH9e0WtZ6yMf1g0JWy1rvf631L8chJ+U+hGStPFAKsNYTVwqFwpo7
+ 8ErKK2njxI+jrPiqyn+Ztd7/Wsuvtf7lqEO52ZAK8FVB5UZwZt7Gmf3oflelwm2oZIVYR4S3
+ Fb3mObTAltLbszAFmgf0SkD8RqEyAqwjQjPRq76GcNWAzOOM/WecyV+Xtr0rbAgqI8C9QnNR
+ dG9D99Tc75pUuIHKCHCPsCzJH09G+PCsWXH220CsuwI4xSzDIxPEE6n1vtSGRtM1omE/1VXB
+ +12VCjew7lOgvuOHOTbt0BgK8MILX1v8fHZqlIn5PN1NIc5d7KeqqYvNHRvrYDUlbVR2EOFr
+ R2iuNckydJ0Xnt29eN5vhY3BuitAS083bxz6Na0vfO+mz2saWknnBslm0mx9bD+xsX6krENK
+ edsNq7Vuoti2jWVZyw/TTJ1BzryFqH4GEXkKKSVCiFV34Ot29NXa0jfCRtha7h+Wfw+GYdyT
+ F8W6K8DYlX4efe6btNVFbvp8ZmKY/v5+enq6GDx3gmB1I5qmLXbO2504bpqrjxewLAvTNJet
+ ACq4Gacwjh7egTBNHMdZU5zz9Q64ltPe13L/tm2j6/qqO9Za7/86a7mHcrPuCqDpGvGFOdLh
+ m08OrKpr4unqBgzTpLGpBd3YOI1yHWGGMBq/d/cfLgOlJDJ+DMwIBDdDJephQ7Dui2BfOICd
+ K1D80skohmHidrvRNQ3TdKFt8HmxkjYy9g4qO7A6ATKPnP0AGXuXihlo47DuI4AnVEtVIIVp
+ rO0s2vuNsuaQiZNQnEEPbFq5AM2L3vRj0AOVl/8GYt1HgKrGdr7+zH7iM9PrfamyE09keP2d
+ 48zMJhCuOvTmP0Nv/OGyyyulUFYSpezS4tHXDa46lqsBM7EEf3jnGPHkg3Py+oPGuivA3PgA
+ 7733AYG6xvW+VNmZnU8yO59kOhYvdWBvK+j+ZZdX+QmsoX+HjH24qutPxRaYm08xN/9w76Gs
+ J+s+BYqPDzMwk8Ayh9mzpXW9L3dblFIUCkXcbveyy3R3NFBTFSIU9N70ueNIPjveCwKeemLL
+ ba0iwoygVz+H8Lasqs7bWwo0qT6q6npWVb7C3Vn3EaC2o4uWqjA1NffXB2Y+nub1905xsXds
+ 2WWEEETC/ls6uEKxkEgTT2Tu6NcmDD961X60uyiAsjPI9BWUutlQoKk8IXcCVHHZda6wMtZ9
+ BIgNj9C150naIoH1vtQdEQJ0TUPTBCiFcjIgTIR++xGhtGklEUK7yXZu6DqvfGMPALquYdkO
+ VtHG672+W6wQiCVyHy29CebE3kGmLmI0/ynC/8UCWwvtxgxsAW35o9b9QNkpZLoXLfwYQjxY
+ xo51HwFq2ju4+vknDE3Orfel7kg05OL7B2y2dnhRMo89/H/jTPzqlt/JwgzO/GGULDI3O8Pv
+ fvd7JifGcBzJhd5RYnNJADQB1weGT49c5DdvHCGTzaOyA9hD/yeqcPOi33Yc3v/oKCfPXC4p
+ gp1GFedRSqFF96NH9iI8X5oiCoHQPRvedcKJfYAz8zYqO3S/q7Ji1l0BZocHCTe1Mjo0ut6X
+ uiMqN4pIHEItfAbCYD5fRUaWcpAq5aBk6XBqZ+4QhZmDqPwEyfkxUvNjLMSGSCZTnDj+OSdP
+ XcBxLN559z3effc9pONQUx2iKhrANA1k8gwyceralEYisyMoJ4dTzDIxeILxgROgJM7E32GP
+ /geQOTRPI3rdS7eMRslUlsPHLpPNFe51c60IvfqZUtyDt+1+V2XFrKsCSMcm2txMemaamob7
+ m/BWeNtR0RfQqp8hl3f45eEq/njCi1KKiyff5fNPfo9jF7gw3c4vP6snkQ8S9RfwmnlqA3lC
+ nixPNp/jiZarWMUivQNzXOqPYTsOO1oyvLRzGpcB8/ka3u/tJm2HUNkhrL5/hTPzFlJpLOSD
+ pAp+FHBlXOf4VR0pb54SKWkhM4MoJekfmqK3b5zxyTmUUhQtGylL0yiZHUEVZlBKEU9kmJxe
+ QClFLl9kZDyG49y72FvhqkKveQ6hbbzd/LuxrgowdOoo+WgX3/n2NykkFtYky7Jsrg5MUihY
+ N32ulGJiap6pmYU7O3oJg5xrB1ILUcwnSSQSzMfGUUrRO1Kkb8zGshyuDMcZnnExPZtgcK6a
+ /rl6emfq0DSD7kZJJKjjchk8tXmWpzcvYBiC3osn+fBwL1ZujnMDDqfGGrk6ksOxUvRPmmTS
+ CXTTTU1tI7UNraAU50f9XBwPU7AUykrgJM6ipE18+hIfvvt7itlZtm9p5esHdtDZVk88keFX
+ v3mbU+f6QBawx3+BPfFrlFJ8dPg87x08Qy5X5MSZft4/eJaJ6flVtbNSsjQ9u8Fx76ucO21d
+ FaC2tZFDb/6BN/74Ju7I0lagYnKOw0c+Y/QuD6xvcJIjJ65w8crNUynLcvjo0Hk+OnwB+w5v
+ vZmZWf7+t29y6uxlDNODx5T4vG6EEFTVdeCNtGKYbqLRKjxeN8FgGJ/Pg88t8fs9FJWPd6/s
+ 5MrCNoQsEjamCRuTCOVwZQz6Jt1ksznqohpSatRGDabibt65sp1jg3UYwuLR+gtsr7kCSqKc
+ LEJmQdr0nv2AX//uHZKzV5hdyDA2C9lsBrdp0Nlei65rpJOzzMTmmZ4cRWJwsG8TpyY3l9qg
+ kCGXmgEU0imSio+DWt0IoBKnsfr+NSp1gWw2xxtvf0L/wJ2nr6oYx5o9tDiNXPI3SiHTVyFz
+ bQ2Un8JZOIaS9qrqWS7W1QoUrO/iJz/sQKqStWQp8sU8SgpcpomU8rbu0C1N1WzraaarvQ7L
+ +qKhhYA9uztLpkolsaylH/zc/DyTc5LGqVm2dNejCYmhWViWxez0INlMjnx+F6AIBrw4joNb
+ pJBKw6slmV9I0jumyKl52toLvHZ2G0rZ/LN9Dqm8i7msn1xRMTCpKDo6AxMWzQ2SeNZHtiBI
+ Zwu8cSpKVcTNP9xmUR9MMGMV0chzfsTDlZlads1Cd41NeNcwfo/GwswVLp07yq49zxJypWiL
+ xumIxigUbWbSITLKjW0XaPFdwV9IIpwEVnqEbM7BzkxgWVFQFggDEDe5Q6fSOZRShIK+m9pJ
+ 5WOo4hx2fo5k0Uts8iohT5b2tkYW4mlM0yDg91xTMAnCoP/Scc6evciLL9USrLrNgSjKQk69
+ AcrC9nagZt5FZfvRzDpwN93y86+MO7TQNO5kGHN5/LS2NjA5MUl91ebbukObpskTj266xZVW
+ KcXmVh2BhjCMW0yPi/UQOgiFQgA6UgkKlsAwDHK5AsmMhSYETn6OfGoanBSFoiTkTpMvSvxe
+ gxpfirpwBE13YUkdJUHXDWxlYEsNobkW669rBi6XByHAdHnRNJO8ZVKwTYQwuDRVz0IiR1F6
+ 0TWwpY6haxRUhKuzTezVfZzvHeTgaYk3Mk7Xps1I4cVxteB1KfbVH8YXiGIa++mpnSXnncPt
+ 0kjlNIqOTs7S0e1JnMnXSpkpQjtvcod+56OjSCX50+8/jeakUIUYwt+NCvZgJxowgl14CyGE
+ q4pApAXHUbx38Bxer4vvfmsfKvYOqjCF0fJnZC0fOcvAUZ7bujorKbANN8qRGKYbRygcO4mu
+ G2j30T36vgfFu7x+PJkCW1e7S6yKOBN/B8LAaP+vEGLpxmxvrePJXbXs2tFOMBjkJy+14Q+W
+ XLTV4kJU4fZ48bgFpumms3YW1d5He+MWPO4i33/0Eu6IQDM0on4LgUTTwGNKXLrE1BVVAYmp
+ SapCIEVJAaQoWXeEuP5PEnDnKLoK6MLB49Jx6Q6GodM/UeRgbx3deyxqI4Kgp0B1xCSZKjA4
+ GyI647DZkrx+polIyMtfPqL4pK+VZDLCjx/VEJqB4JrCSweUjVI2ShZQk3+PDG5GCz9OMhHH
+ dhxQCnv8l8jkOcye/wFVmAQnhcpPs5A0GI9ZhCeSbNsqyaRmEcoHKFRuCJUbA2Wzu0un25cn
+ FL3TfoUCOw1OvjQFlFbpM3V/M8XddwXQdJO6+vrVCxAmWmRfaZi/wyaMzx/i2WefwePxIDSN
+ jm3PA6UR5Dsv7qCQT+P1+dm/7wk2b95CfX0VamGYrroUhm4hPI34e/5bNHcNwvTxo5d3IITA
+ MFyY7hBeTw5h+JAIhJAoJTA0B7cpcBvy2kacQhMKXdN5Zccg+cw8XvePaKu1mIqkqQ6Bhwwd
+ VQsEPEXmcRPwgMRNMZ/DshWZTArb0VjI+pC6F6UgkXMzkyplWwl7i4Q8OXxuG3QvKAeh+1CF
+ GHL+E1R+BC38OAvxBZQSSMdC83WginMII4iyEqh8SQmkXcC2LBwrhy4cmsJp/H4HgUIVZ1HW
+ PMgCeuRxgr5WcNWhZBEZP44W3IkwQzc/BCMA115Qes1zaN5WhPv+WgfvuwKsFSE09KoDaygv
+ iDbuXPzb69Vp9pbeZCr8CIb8GVrkidJusK+ztDklNGpbH18sc2DfTrqnIoTDEQJ+P363wuf3
+ 09LSzD/62XNEolWYmsMruycIBkOg6YSjdYR8EqG5SdOB5s6QV9U0tjXwo1dtzHAzoVyAcG2O
+ QLQDl0jTXZdlW0cLhiGoDtpEIxKFTl6GsVQKS7lprBbMR1OEAiYqebrkwu2qxmj9c7TGH6P7
+ OwCoj0gcCZquo9W+iFbzfMmM6aoCswrMKMFwhMb6KPUNjZguH9986WU0w4Wm6ejR/cjcOBgB
+ 5NxHOAvHMFr/HOwUzuyHKDuJUffyDe1sYDT/KbZVRGhuhL8b/N2rfm7lYkOeD2Db9pIhkddD
+ GldLNpvF4/GsOqTvdiGB9tgvkLkRzPa/QuohUsk4oXAUTftiRFLSxp78DcJVi1HzHErmQFoI
+ I4TtSLK5AsGA96aFXymZriq5bwDF7AwubxSESXq2F8PlwxNqZWpmgVQ6x6auJrAWcNL9GJFH
+ oDiPPfFr9LpvoQV6bloDZBcGUFLiq+r+0jUdsOKlyDU0UukcXq8b09Bvun+lJCWXDw2ZuYIz
+ 9wlG05+C7r79CMDan2G5qSjACridAjiJM6hMH3rDd+6YPUJKB6VYdUzwiu//xkcrxPrFBH/p
+ OneiogDL4HaZGxzHWVNAeS6Xw+12rymovRxZIdaigGu5/7WWL1dWiOXUQdO0NV1nuWzINcDt
+ MkKspfMAi2//tTbsauuwVgVY6/1fz0m0lvtfa/m13kO52ZAKcLsGLtfDW62MtZa/Uc5arr+W
+ 697v+y9H+5WTDTkFqlDhXrFxxqJlkF6Y4ey5c2QKq9k8UQz3XyGZu72/yp1x6L98kYHRqZVf
+ WSliU5NYEpJzk4xMzq6svLSZnJoBJRm8epH+kckVlZdOgd5LF0nlLWbGh5hZSK/s+o5Ff+8l
+ 4uk8E8N9XLo6iFzJa1NJJob7GRybxi5kuNo3gL0iAevHA6UAE7E427ZuxedaebXT06M4/ipG
+ BgdWlZZHFZJY7irammpXXFY6edJzc6StIqNTSezEFClr+bXIplLEk0mkY2MJN+3NK9s8ymdz
+ NLU0MTpwiZkEzIwPrcjDs1jIU9PYxMTYKKm8TU9n24ozu4Sq68nOjNM7MEzYpzM2E1+hhPXh
+ AVGAIufPXCLkd3Hq1DEm53IrllAoKsLhEOYqjSBK82IlJzh59vKKFUg3vEQjflAOpsdH0O+i
+ uAIF8IejeF06aAIrvcDxMxdXdH2XaTIxNUdPZwMufxjTtTIzpGGYzMzM0NnVgeYU+fzEKayV
+ vMGFRj45h6WbKGFSFQ5g2ffXC/Q6D4gCuNj5yFakbaNpLgKBlcfIVjXUMnT+NJ5gzaryUjmO
+ jZKKYOjWzZ27YedTXBkcZWRkBtNJMB5XRL3Lb/rE7CSjo6OMTkxjS41QcGV1mJ+dJhlfYDKu
+ 4cT7kZqXlWTnSsVjzM3FmZyawnYUPn+Q2zj3LolyLGJz80gFDVEfJy4M0VAduXvBe0BlEVzh
+ oeYBGQEqVFgfKgpQ4aGmogAVHmoqCrDOWOk53n7rDT46fIrl7F5MDfVy4uSZm8yUheIXaVEc
+ q4jlSJA2w8Pj61Djh4sN6QrxVcIMVNMSsAnseJSxK+eYzhrUeiQjsTlModHe/f+3c3etDMZh
+ HMe/29zs3thNmsY8Zc3zHCgteR/yNpUTFAfkgOQpk+G2oXncNE9D95ZXgJI4+P8+x//Tb1dX
+ /7oS5E6OiLT1MpqMsrp+SO/ACAen5yTizeTdArNzs0xPz+Ce5unrcPAiPdxlN8heeky93HLv
+ hRlPJXV1/Qc0Af5KtcLC4gqFnEsm42JZ79jhIPt725T9DmeZHTxq+AMWvirkjo55fLrh4qGe
+ oeEhAi9FivdFrq8K5A93eHcSONYb80trnLsuuh76M5oAf6A1nqDBDpKeGKNctYk2hbAdi/q6
+ EEF/leXNXdLpSep8YVL9UW4rJSYGu9jPXBDvTlGqNPAcCBMJhWiJdRGLRMnubtHWk6SzvYVK
+ oPnLwwPyOf0D/LOa98bjaw2n0f7+sfw6BSBG0w4gRlMAYjQFIEZTAGI0BSBGUwBiNAUgRlMA
+ YjQFIEZTAGI0BSBGUwBiNAUgRvsAPUvYpWCTZrEAAAAASUVORK5CYII=
+
+
+ iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
+ AAAgAElEQVR4nO2dd3hd1ZW339NuL+pdsiVLluUm945xwwaDIQESEhhSJpPek5mUb2aSTKZk
+ MjPpdSaNBAghIaE3G9u4995kW7136Uq69ZT9/SHbQMANCclG530eHmzfe9fe+5zzO7utvZYk
+ hBDY2IxR5NGugI3NaGILwGZMMyICME1zyDYsyxoWO0KIYbNjGMaQ7QBvSzumaWJZ1pDtWJY1
+ LHYu1qYREcBwNEAIwXBMV4QQw1Kf87aGg+Gqz7VkZzjv13DYuVib7CGQzZjGFoDNmMYWgM2Y
+ xhaAzZjGFoDNmGbEBCCEwOyuQT/xBGbHaYQYnhULG5uhMGICMGu3E3/5W1gDbcR3/BDj1NPD
+ toxoY/NmUUeqoMThh3He+CWU1GKs/lZi6/8ZtWQ1aO6RqoKNzesYuTmAsEBSBv8syYA495+N
+ zegx5B5AWAZtTa0Ec3JwolNXVY3sz6AgOxXpVd/Tyu8hvvW/UQsWYjYfRJ24BlT77W8zugxZ
+ ANH+btrrWyAzA+9AN7Inmb6Gs4TSUknSXlVQ0XJkfw5m80Ecs96PnDUNSZIubtjGZgSQhuM8
+ QHdlJXpBAZmaRm97A429grLScQjDuOB8JstDG22d9wm5VuzAoMOXoii2nTfAsiwkSRryS264
+ 7tfF2jSsk+BQZzOdcQdTSrMGhz/qK+Y1Tbvo764E0zQRQqCqQ6vyea/SodZHCIEkSUO2A5BI
+ JHA4HG8rO4ZhIEnSkIV03nN3qHYu1qYhC6CvvY7DdXXILW2Mz82gvraRlsZ6Zs2Zh3fo98LG
+ 5i1lWIZAl0PX9bdlD2AYht0DXITrpQewXSFsxjQj5woR78caaEOY+kgVaWNzWUZkJ9jqqCC6
+ 64cgyUjeNFzLv4rk8I1E0TY2l2RkjkSGO3Ct+jrudd9HyZxC4sBvR6JYG5vLMiICUJILkfzZ
+ SJobJW8uZkfFSBRrY3NZRmQIZLYdR+qtRkmbiH7oIdQJK0aiWBubyzIyPUDePMzabcQ2fhM5
+ cwra5DtGolgbm8syIj2A5EnBteobI1GUjc1VYe8D2IxpbAHYjGlsAdiMaWwB2IxpbAHYjGlG
+ TADRuM7hylYaO/pGqkgbm8syIsugHaEIP3l8P7npAdq6w8ybnMva+cX2kUibUWdEBHC0so3b
+ l0xiflkucd3gX3+7lXmTckhP8o5E8TY2F2VEhkACQbLPBYCqyDg1lYQ+9CQVNjZDZUR6gILM
+ II+8dIwVswupawuRFnSTlWq7Q9uMPiPSA0zMS+U9K6dS2xoiI8nL366diTIMURlsbIbKiIVG
+ LC1Io7QgbaSKs7G5IuzXsM2YxhaAzZjGFoDNmMYWgM2YxhaAzZjGFoDNmMYWgM2YZsgCEMIi
+ Go5gCoEQFgP9IaIJYzjqZmPzljNkAURD7Rzevpf2hE5PSw2Hj51i756D6G8QclfE+zHbTyGi
+ vUMt1sZmWBjyTrAnKYvSCQPoEgxEIkyZMY9I/RF6YpCivZIgQ/TUom/9FpbqRU70oS76LFLG
+ 1Csu53yiBMsaWnrV83aGIyj2+YjVw2EnkUi8reycT5BxPrrzm+X8vRqqnYu1aVhdISQgnkgQ
+ iZlkaLwmlLmx96c4F30aNWcmZnc18S3/hXvdD5BU5xXZvhbDo9sJMi7OmAmP3tdex4EzZzi2
+ ey+e1Fxqju1mwJlG4K+eUxHpQfZnDxbqSQUzAZY9V7AZXUYsQYZ19PeIUCPa5DswqjcjTB3n
+ ks8hSVemwWuxB7ATZFycMdMDXCmOGfciZ5SROPAAkjsZ54JPXPHDb2PzVjFi7tCSouGYeidM
+ vXOkirSxuSz2K9hmTGMLwGZMYwvAZkxjC8BmTGMLwGZMYwvAZkxjC8BmTGMLwGZMM2IbYSCw
+ Ij0Y1S8jyQpq0Y1IriCDLnQ2NqPDiPUAVrSX2IavIQbasHobiK7/OiIRHqnibWzekBETgFmz
+ FSWjDMf8j+FY+EnkYB5G3a6RKt7G5g0ZuSGQrIKpA+ecTy0dSR66J6WNzVAYMQGo428gWvkS
+ 8Ze/DZaJiIdQCuaPVPE2Nm/IyHmDuvy4V/87RsMeJElGyZ+HpLkQ8QGMuh0gBOr4xUhOH/bE
+ 2GakGMFVIAnJ4UGbsPzCv4jEALEN/4wUyAVJRj/zPO6b/hXJFRi5atmMaUZ1H8Co24Xkz8F5
+ wxdwLvk8SnIhRu220aySzRjjGtsIs4c+NiPLCA6B3qDwcQsxTj9HfPv3kJAxe2txzPngaFbJ
+ ZowxqgKQHF5cN30To3YHIHDM+xCS0z+aVbIZY4yqAEBCcvrRSm8e3WrYjFmusTmAjc3IcgU9
+ gMHLT/6Gs33jyEuSWLnuJoYeecbG5trgCnoAk5gu0d9SS0co+pZXyMZmJLkCATgomzwFr88k
+ u6joTY+ZhBB09UXYfaKR1u6Bc0FPwTAtjlW3c7SqDd0weevj1NnYvMIVDIFi7N1VwYx58/EH
+ /G96pf54TTuPbDxOSW4qz+4+w5p5xcwpzeGnT+xDkWVkCdbvq+KT75yL22k7ydmMDFcgABWH
+ lqC2tpbUDCiZOI43E6XxiW2n+fBtsyjMTqa9J8xPHt+HEOB1OfjwbbNAggeeP8zBM60snpb/
+ Jkqwsbl6rkAAAoc3nfL5C/C6PJd8+Htaqjh0ohbJ4Wfhknm4XjVe0g0Tl0NFCIFDEVimQTSW
+ wONUkc51Kx6nRtzOLmMzglyBAGQK8jM5feIYvuQ85qclXXQeoBsWqZnZWAkdS7wS2VcIwYpZ
+ 4/jtC4eZUxTkyOEjlEv1zAod5KeN5Ty+zYEsSZyu72TN3CIM4/UiOJ8o4Y0+uxrOJ9kYqh3A
+ tnMZG5IkDTmByHAlNLlYm66oB0jEYkQiEVRPgktVwzRNnC438fgAugku9ZUZw+JpBaS6TI5u
+ /CPLVt7PtHw/1uEH+GhpM/uVIoQQfOrOuQS8b5ww4/wFkKSh+wtJkjQsds7bGg4bb0c7520N
+ hfOJSIZq52I2rmgOMG3hUiYbUTZv3nfJbzo0hebqGmTVTYkMsixfKFxTVSanxCku7MFdVgCA
+ WbScwNFHufXmK/P/EUIMOU68ZVnDYkcIgSzLQ7YDgy+Ot5ud8w/ucNQHhp4f4GJtuqKNsEPb
+ NlLT0Qvu7EuuAqXmlrAit+Sin8tJBYhoD2bzYSR/Fvqpp1ALFl5B9W1s3hquaA4QzBpHmUuh
+ Rg8MyXdCcgZwLv8qiZ0/RkR7UUtWopauHYJFG5uhcQUCsKg/eYhGAuR4ujFgSK4QSmox7nXf
+ H4IFG5vh4wpe6Cr5Rfn4pTiGw2cfWbF5W3EFPUCcquoebli5EpfmGLL/tBACjNhgiBSHD1NA
+ LGHg1BQ0dXgmTDY2V8oVzQEkvZPnnn6a1KwSbl69gKE4KphNB0js/QVYBgMp5fyhZz4dPWG8
+ bgf33jSNgozgEKzb2FwdV+QMVz67HEyDnPEFQ3r4rUg3iV0/xrXiH3Hf9j2eaMhmoqeLr/zN
+ EtYuKOHhDcdI6EPLCG5jczVcgQCi7Nlfy7ve+25q9+8hNoTCRH8zkicNOakAyRWgdsDBNHEE
+ r8tBSV4K0bhONKEPoQQbm6vjCgTgJD9L48m/PImWnT+kFSA5aRwi2oPRdBCrr5nJnk62JWbR
+ FYqw91QTyT4XHtsT1GYEueQcwDIj7NhxjMXLb2NqpI+9B09f0hXickhOP84V/3huH6CH26ev
+ 4enubL7z6C7yMwK8/+YZVzQRFkJgmBYC0BR52LbtbcYel54EiyhNda0kFoEkEjQ3tmPAm3KH
+ Po+SUoT7tu9e+Pt9V/l7Swi2H63npQPVCAE3lo9j+azxKLJ9vNnm6rmkACQlhZllAf70+4dB
+ Vpi1dA1v7Ko2cjS09/HyoVo++c55KLLEL585SF56gEnj0ka5ZjbXI5cWgCRROmcZE2e/8vfR
+ pqqpm4n5qWQmewGYUpjB2aYuWwA2b4orGDdIw+oe+2qEZWJUbyG2+VvoJ59EGPHL/mZifioV
+ 9Z00dvTR0tXP0apWJhWkD3vdbMYGoxoYyzjzPEb1FrRJt2E07MbqqcOx6FNI0sV1mZvmZ+2C
+ En7x9AEsAWvmTmBCTvII1trm7cSoCkA/8QSuVd9ADuah5M4i+sznIdYH7qSL/kaSJOaV5TKv
+ LHfkKmrztmVUl04kVxAr3AEM5goACZRRjtZoM6YY1afNMf+jxDf/B3qwABFqQJv1PtC8o1kl
+ mzHGqApASZuIe90PMDtOIyePQ/ZlvmlbwtQx63ZgNh9GyZmJMn4xkmz3JjaXZtSfEMkVRM2f
+ NyQbQgj0Y3/CbDuBWrgU/cwLWANtaNPedU0s3dpcu4yqAEQiTHzvLzCbDqKkFOJY+InL9gJC
+ CA6ebeWZnWewLMHN84uZX5qJcXYDrlu+jezLQMmeQez5L6NNuxs764zNpRjVSXBi/2+IWhpN
+ U75An5ZJbOO/YvU1A2BaFrUtvTR39mO9KiZMc9cAT22v4IO3zOAj62ax8UA11S29oDjOTaRB
+ xPtBc41Km2yuL0a1B2iqPsmvO5fgYw89/TrvdDcxZeALMPMDPHAqmf5ognjCYGpRJnfeUArA
+ 6fpOysalk58+OFkuL87iVEM342e/j/jGbyKnlmB1nsWx4GPYb3+byzGqAvhzdAW3iz9S7Grn
+ YWM13+95B1O8PrKffpmUWffyqTvnYVqC/3hoG3UTsyjICFCUk8S2XftobP8ZsjA40beCO25e
+ jjqu9NzDfwZ5/keQvfbusM3lGdEhkIj2YjTuu7D2H4papHtMNgyU43B7KXB0sarQ4OXIVLJT
+ /UiShKrIZCR56e4bzE2Qp3WzQD3C/7Uv4adN8yiLbGOCNjhskn0ZqOOX2A+/zRUzYj2A2XaC
+ +Nb/QQrmIUINOOZ9mAXu0zwxsJRGKYMCEaJIrWKa02KcJvPCnkpS/G76InEaO/p435rpAIi2
+ 4yxW9jLHsQu8brRIC/qmZtR3/AzZ/+aXUW3GJiMmgPie/8V5wxdQsqZh9dYT2/TvrCguxFUf
+ padPpbknwccy66jsTEHLnsN7lk9n65F6PC6Nz9w9H6emIIQgLPl4KTSZBiOdjPGTWag/SKbD
+ S2LfL3Ct+KeRao7N24SRmwPE+5E8gy7LkjMAlo5rzgdYIj3AnOYnecK7nP+N3E8wnszf3jaN
+ gswg04peeaObpolpWfx0j6AiNJOVrgPsrMhgl7mcL4vnSfOkjFhTbN4+DK8AhGCgr4cEDpKD
+ rw2iFZ9wKw898jSVYT/5PpO7sseRvO1/sPrbcBXM4f3z70MoTpBAvsjmVVVTD5X17dzoPcWd
+ 7h0Up+XysxMZHIyMZ/Wbqa5lYpx5gcSBBxDRXiSHB236PWjT323vIo8RhnUS3N9Rz5FTlXR2
+ 9b7u7PDjrRPILCjmi+XtTCnM4JEKN3LZnbhv/S6SrJA48giyLF304QfwuDRQVEKOXBrJo6ql
+ FxMFI6WUylgG4VjiquprthxGP/YYCAvXyn8Ghw+j+mWMyo1vovU21yPD+prr6mwjGokSjunn
+ Dq6bCCEwTZPT9Z184V3zSfYvYWZ3GxsONRJLnY7kcEDJrRhbvoU0/eInhIUQZCa5WTHO4PFT
+ qezhbgxUTAF/rsukOC8N66HtfOS2mWSlXNyh7tUJF8z6/QhfFviysHIXIGXvRcT60Ot2I8Yv
+ v2x7zXPtGyqmaZJIXJ14r3U75xNknE+S8ma5cK+GaOdibRpWAWhOD6XTJqO3HKO1v4DcwCvm
+ i3JSOFrTyYLJeZzptEiiB1d/FZo2jkTtZtS82Tgcrw+6IswERu12rLaTyIE8SvteIif1HXSG
+ opQpdTQlkigbn0dyWgrzJ+fxpy0VfPGewZDrQkBnKMz2Yw1oisziafkEvU5M00TTNIzcchLN
+ +xCxPpTOk+htx5AcXrTSW1Ax0M++iBhoQ52wEiWtmFdvrJ2Pf69pQw/jkkgk3rDt17MdwzCG
+ JT/A+Qd/qHYu1qZhHQJl5o6jo/oIHWYSGb7XVvieFVM4Xd/Jtx7exvYTzdx/502YB35N9JnP
+ IQbaccx+3+vsCWGROPg7zOotyEkF6Kefoyuu0d0XIUXqYnqukwHLhdZ5jK5QmIxkL6HwK6G7
+ uvsj/OTxfThUGd00+fFf9hF9VQ4yJW8OavEqMOKD9Qi3o2SXoxavJPbytxC9Dci+LOJb/guz
+ /dRwXiqbawRJDEcffhl0XUfTNEzLQjcsNEVGUWSEqYNlgOJEeoOwJpGBPv746x9zRptJQU4a
+ d013c+Av3+NXPSuREGRqfTTH/TgVwZoinW53CZO6n+bG9A6UcYt4JrKQJ7afxePSSA26QcC6
+ RSXMKc2+8OYWQoAZB8sCSQLVhdV5hsSun+Ja930kScKo3Y5RtQnXyq9dqNv5fGV2D/DGjMke
+ 4HIosozLoaIog8X2RgxqO2PEDQuhxzDbTmK2HEHEQgD8ZWcNDhJ8/o7JlOSl8tCm01QlskiT
+ e3CQoF/NAFklXe5hX6OgvOMRVq65FdfN3yLUH+bZLYdJ9jn49J1zcWoqJ2s7sKzX6l2SJCTV
+ heTwIGnuc393IowoWOeS/MVC4PBdtn2GaVHX2kt7T3hY5gY2bz2jstYnhODgmRYe23KKgMdJ
+ TDf4uOdP+HqOgawiuQK4Vv8bJ2s7+czCaXh3/gszg5PY2O4jJCYRtaIMWE6UqIGCyV3erWyO
+ ljPPcQI1bQKSM0BVr0pc15EG+ti49xS6YSHLErppXbZ+UlLB4Bnlpz+LHMjG6qrGtebfLvmb
+ aFznZ0/uJxo3iMQSLC0fx+q5E+zzCNc4oyKA/kiCx7dV8JX7FhP0utjx7MM8eiydT73/x8jJ
+ 4wn/4V7i2/6HgvSPcVIpYt7S2VQfPYBI8uAwZCKJNtKIMydLZ3ODk+fiS5lZkoJkpRHf9h2U
+ nJlkd25C1e5iXG4G4aaTNMcz8bodFGZfPIKEMBLoNds40xbljL6IouwplKUJ3Dd8EUlzX7JN
+ 6/dVMT4riTuXlqEbJt/87VamFWWSk+Yf7stnM4yMynmAaELHoSoXAuFmx8/SLWci+bPA4UH2
+ Z2OFu3j3skkcrWrj20/X8OfqIP1xQdDnJIqLftPB7sZBe66kTFY7diInj8eo303i4INkZGRy
+ 7+qZHKnu4lBPEqqqkB70kJbkecM6CcskvvOHbNu8gSdPCbSzT7D+QA0bO7JBvfzZgo7eCHnp
+ AQA0VSE14KZ3YCixtG1GglHpAVIDHjwujf96ZCehcAw5Uc4y/kJiTwdyMA+z+TDazPvwJgX4
+ 1J3ziMZ1Nh6oAWD+5Fy+9osNxOMGblNHtSzuST6C1n2SRCTENhazO1RKSiJAhtrFXcVhljv3
+ Elj3P/x+UwXHq9qYNTHrdXUSfU1YXZVske7i43cuID2Wy+ydv+NnJ/JZMasQl+PSl2rR1Hwe
+ e/kkfo+Tjt4wvQMxO17RdcCoCMCyBqM7pwc9ODUFy/KQkJYhwkfQG/ejlb8H5/yPgmUghZrx
+ Ov14XRpd/VGI9uAw+ojgJq74SXWGifR105RwcjY6mbPJ8/jYyvG01FXyg91nWT0+QcadX0dy
+ e4gbJpo2uJpgWhZt3WGcmkyS6EaEO8A0UGQGk3ToUQw0ZGlwcehylI1L584by3h+z1mSfC4+
+ c9d8nJcQjW6YtPeE8bg0vE47NdRoMSoC6O6PohsmH1w7GA69paufnz8eYXV+P5KZwOqoILH/
+ 11jd1YPhEuMDzJr0Hn520s3hoydpjWioUhwdGcnU+GXnUrLdUSojbj7hfoGU6hSSYyEmOidz
+ KDaL6OZGEkY9hmkxZXw68YTJA+sP0dM7QLSnhRu8p7gxtQWrv4XVicf4v0e7mUAltczipuUT
+ cFxByHZJgqmFGUwtzLjsd8OxBD97Yj+xhEEkrrNuYQkLpxYMx6W1uUpGRQB+jwPDEjQ3NZLS
+ e5BDrQHGGacxI71UT/0n6tt6KD7xXcZPX4xjzgcgEcF64pPck7mAr5/xEvT5WDElnb0Hj1Kn
+ p/HeqRp3LV3Aow8/yEbnO2DCfNqPvMiA08VX7ltCQ3sITZHJSfOz5Ug9p2rbSTWa+GBBBYn0
+ CN9tWc7MG2YQ2PUNZhevZBxpVBlzWJObTk6af9hXcp7cfpophRmsnltELGHwzQe2UFqQTkrg
+ 0hNtm+FnVATgdTl4z2w/v/r9UwhZJTk5wX3yczzXsIb6ngaKc5N5KHQjd1vjKJdVhNOP7E5m
+ oLUaU5pBf9Rg48EaokYAkIi1nUXf+gxztC6ebppCxR+3EPAE8EhRLMtiTmkOnaHBXeFJBSm0
+ NDfRHWlEuNvROk6QYpbRFREkpRQiuQLkFC8l5y1sf0vXALNLc1BkGa/Lgc+tEQrHbAGMAqPm
+ 81vY8Rz/cNdS9Kx5+N0qXY9t4kiNxD+scOJVeik+vZMnDvmYWnwGq6sKy9Qpmnc7WXWnadJT
+ EEhICEDQFRbUdoR5JrwQU9JwuyCDVlrDGj988Hk+scTLnoo2pkfquDV9OuO19Xw3fAO729vR
+ ouPoiEUZZ1TQU3uUJxqn0PriYywpkFi5cgWyZ/gnsoum5vPk9grevXwKjR19WEIa9uXSuG7w
+ zM4zHK1qY0phBrcvLr3sRH4sonzjG9/4xltdiGVZr9vKNmq3owRzibpzQQj0s+vZN1DArM5H
+ iDafpKvkfqrqmpnT/gCWZdI/49PEPbnsONFMKCYwhUBICqaQiVka60NlxE0ZB3EmuVqojAQJ
+ Cy/pWj87T7WTZLTgKlpMYftTpA4cp9o9mxrXTAYiCe7zb8JphPhJ42zmZoSZM3smz56Mkajc
+ TFFxCSLSRV9c0BczcTnUCy7bb9SuKyEvPYAiSzy94wyRmM4Hbp6O3zP0MC6maSLJMt39Mf64
+ +QSyLPOuZVNoaO9jX0UTM0qyrmg4Z5rmkF0PznuDykPM3HN+R32odi7WplF7JRhl7+IXf3iO
+ 3vhJDC3AzfQwg8P8qGEO7VYK4YoGih299As/TzaX0VJXyUA4QkufhYWCKQSKBCChYAAOwpaL
+ fLWN04k8+iwNIcn0hvtImCqZVhO7TlbT4yqivy8Vr9bEJ+ZFMU9vRZt6J+0FdyEd+SVRz0x+
+ 8FwlhmHxu4Ykwg/9Ar/Rwdb+iWj+dHILCnjf6nIc2pt/QCQJFk7JZ+GUfIBhcWEGMC3B01sr
+ OFrVxumGTt6xZBLpyR5Wz53Afz68HdO0kO1k5K9h1AJjvXDaoHDGjXx5XRGfLtjPM/EbmViQ
+ TjRYwh3BQ3wj9UEmpct8v/NmtOY9fGl1Gu8pbMMU4FMN0rTwBVurnHso0+oAwUS1niKplqDc
+ T65X532BDUSEg+ypS/ncTVnkJiqYk6fy8fesRnG4Bnd44/341QRhdx4P7eqgJMvL6mkpxEyF
+ RxvGsV6s4u/vKufzudtwO1RePlx3oWxhmRhNB9FPPonV1wJDSiM4NCrqO6lt7eHL9y6mvDiL
+ zYdqOVHTQUN7iIDXiSzbbhl/zagJoL49xKQJ+XimrCXgMEkKBqh3TCEnLcjy7B6ypA6KHS1U
+ t8coVuqxNn0NqX4rAAOGQqfuxRCD1RdI3OPdiEc1eSa6mEPR8SQsBSPSw5/7F+GR4sROPoe6
+ +zssdJ1iWs+TiN0/QD/+OHJqMVgWjq3fYOWsQqIJixOVjTy2q4Fs5wCGadI7kCCsZaLGOpiY
+ n0pD+6CzHsIisf9X6EceweprJvbiVzE7zozWJaWpo4/xWUl4XBrvX1OOQ5P55bMH+cvWCu5d
+ Nc1OJPgGjNocwBKCzQdrGJcZ5Ey7wYnKBm6zHmdbaxBfuBrLSPCceifTsySOtkJhXjqNWes4
+ UBtGAjTJwkJCIOOV4hxLFNFmpeGRoiSrUXQ0yny9zC5Oobmzn3XFCbxT1mG2HqUuuJjfNk1l
+ fW8plL2TkgVrIdJOhtzFzo4AvVFBRoqfgEumKyIIxw1iLSfISQ/wVLWPZTPHk5Xiwwg1Yx77
+ A9qab7OxNZ3HKn20N9VRPGkKqvLKw9baPcBvXzjC5kO1BK0uAkd/inH6BWRfJrI/A9N8/fUR
+ Aqqbu3nghcPsOdlEVqqPoNd1yU05pybz7O4q8tIDJAyTivouPrR2JmsXlJAWfGMXENO02LC/
+ ij9sPE5L1wATcpKRpaG7H18vc4BRE0B+egDDFDy66QS1Da18cHwlaV6YLJ9hQ28J+5VF3OA9
+ w83p9bg1eKIujfqIl47+wUzyDskEScYUMhFXDu2Gn1nOSpr0FPwpWbhFmEg0zpHYeD63SCJQ
+ 8yQiFqJ70gf5j8P5zMmVmO1r4C9n3cR0k1y5Ha9TYWphBjtPtdEVFWSkpbEmuYLKPg91UT/N
+ Wgm3LJjIrJJBVwoz0ouo3cbTbeOobu3n7pk+ms4cYl9ngBklWciSRF84zrce3s7K2YXMHufh
+ 9489Q97UJWROnEd814+QM8oQziQURUEkIohYLygaLd1hfvH4dm5fUEhKUoAH1x9l1sQsvK6L
+ ++l7nCoFWck8sa2CivpO3rNiKqX5qZfMvfzMrjM0dvRz942T6QiF2Xa0nvIJmWjq0KaHtgBe
+ xRsJQJIkAl4nFfWdRLqbOKHMIs+rk+3RmanvZJHjELlKJ5InmZyAxOLUdtLjVWzryRt880sS
+ ppARSKyeX4I+0M2HfE+xO1LMrYEj1EZ8fDH9OY5bk7lp7e1ofbUo6WXsbnVR1wufum8NWd3b
+ OBtysel4B2caeyBnDrOmlULzAU50u8hPUjndbiJUN+mOKJ9d6mXilBmDKynCIlHxHKdOnuB3
+ J33IA800NdSz7pYVbDjZx8IpebR2DfD9P+2mMxQlEtOZ463FPVBDlXsu5TPKEXoU0V0DmdOg
+ 4xSxzf+OUfkSZsNudpxoxj9QRV1dPYfq+uiKgKLITBl/8ah3pmmSmeJnybQClkwrIDXoueyq
+ z0Prj/L+m2eQk+anIDPIC3srmVWcicc9tIS414sARnVQ+OimE8wpTuOLpWe5TX+Uxzqmwqy/
+ A0VBzpiMY/6HQY+hlt4CqhNHWiGSBDICl6TjUgd9+2PRKL7UbFqCC0gIjVornxcc1wQAABlN
+ SURBVKgznbPSJFRfCg63D9dN/4KcXkpWsoc+w8muygGed9zD3jY36X6N1TctZ9vpbpo6+rh1
+ djaLs6PoPfUsLXby+XuX4fP5kPf+CKvlMEIIrK5KBs5s5XHrDgqDOrd4djM+K8DDh3ScmoKE
+ xO9fOsaKWYVkp/qYXZrDowfD1PUOtn370TpaG6oHI+UlwsR3/QTnok/jXvd9JNVFWugQ22PT
+ UPJm84mUFylMVdl2pI7OUGRY70Fakpf69hCmZdHdF0WR5SGtcF1vjOrOSENrN7caf8IVCJIn
+ DhFtryK0+fckFS5D9Leild0BQmD11GH1tRAuehemqEIgMWA5EZYECI4cPoLHH+C70elYks6W
+ NheWZPBLYxVr5uUPPpCSH23SWkry4wSPbuRXzx0iGtcRQmZSSSGH68I0tPdR+cKPyZiczb25
+ bfz8iI8TPRnsf3IT7wzsx+d0EXvpX9DmfBBJVunTZRyJLt43x80DB29Ab5ZpMTr46t8sAWAg
+ mmDBlDwShsmLe6to7HAS0KYT3LuVmLONF7Sp3FFUyvR4PyCQUwqRVBci2suUYD8FvhRONAxQ
+ HZnH1BlZuHrjtHUPXHQ8/2a4d9VUfv7kfl7cW0UsoXPfquljasNsVFs6vcDLxsZCVvljHDbK
+ SaaHQNE8zLMvoGSXY/XUYlRvwbno04hwB0cO7sciBRWTNDlEHz4iloPV7r1MUpvZmX8/m+sU
+ 5rtOY0kqTcHFbDtah2lZVDX34HFqpARcROI6eWl+HJrK8Zp2SvPTyEsPcOhsC2fkyRysTCM7
+ YyF/l/89onIdfp9OyvS16BWduJZ9hdj6f0ZyBUjqOQXybFocxdwT/DV/aCrh3TfNpSQvFdOy
+ yE71s/VIHbNLc2ho76M4L4X6thAfXzWHrKBGU9zHL589wvT3zkFy+DAqN6JkzwBJRnU4WVXg
+ 5vE9PaxLr8JZcBNHa6sZn3XxDJpvhvQkL//w3sV09IZJ8rnxexzDti9xPTCqQ6DbCnpwhM7y
+ 88oJtObfyX1ZxxBnX0ApWEAkGqNn83fRZv4NckYZ2vyPk/AMpkZ1SAZh4SJuabgkHQc6+yIT
+ EC0HyJFaOWqV0SGSuT38C/p7u3hy+2km5ScTi0V5escZJhWk8YG1M4klDAJeJ8/uPssTW46R
+ RiedSi63LSgmGDrCQx3zyJm2FF+sCaPyJVzLvoJRux0RC+GY91GcHj8fkB5gz579PBy+mRkp
+ /Szp+iXCSKDIMu9bM53mzn6+9dA2fG4H7105FSEEjqQs5KR8HA4NwzSJ6BJi0T9gNh8mtuFr
+ yNnTUYtXMrnu56zOauNZYyUvHW7m43fMwese+qH3v8blUMnPCOL3DL/t4SKuGwxEE5jW5Y+0
+ Xg2j2gNo6NyedIS7ppWC1EqirRvhTmZrRzo7ojeCrDG3OY21+QI0D7PKp7Dx9D7iQsMnGVhI
+ pMghyp1V/KT/Tj4T+AslSj3/2387zZKPPyaWMWBoqKpg/6GjdIUtQONwZRvZqX7yMgLUtPRw
+ 64ISLD3GsUoXH3RuoCgylVy2cCAxldbmZvIXfRKjciNm+0n0I39Am3U/Sv485JnvJ3nHd/j4
+ LLB6d6GWrEI//SJWqB4ltZi+cJzu/uiFQzJx3WRp+Th+89whpk/I4sDpZsIxne88uhtFUbh1
+ 4QeYt+KV/MeO8veyHLh8iK63N5VN3fzp5VPEdZPsVB8fvGUGbufQo3HAKPcAsj8HOW0ikiuA
+ fvJJJM1De+YqdrS4+WjaZr7wrnmcaejmRG0H9e19tHb14ZRNJruaMFFwSAZT3C0EnYOT4h4r
+ wDRHNVlqCF3xss69jUylC90wkR0+YgyOnZeWeDlwpoXT9Z28a9lk/B4H6X6NucE22jNWoB//
+ M7onh6gnH39GAVbnWZzzPoKI9SEH81FzZoEko+TMAM2NUfMyckohSu4cRDyE5AxgmBa/f+kY
+ q2YX8dX7ljCjJItHNx1n5exCbp5fwkA0QWrQQ9m4NL54zwI+8c65PLn9NF1XMcm1wp0Y1Vuw
+ +lvfqlt0WSIxnQOnm1/ZHBxmonGDhzcc470rp/KV+xaTlx7g8W0Vw2Z/dNOk5s1GbtiNUbUZ
+ MdAOkkRte5hCrZdA23Z8LsHk8en88tmDpPpdOMKNxCyFY7F8HJKBhMWucDHz1KPc7dnEQ/2r
+ 8ElRDAGyFWVffBJR4UQAFa0xNAwUWaWisZeo5KMoO5l33FCG26kihGBORpgfPHmMbfHFDHRk
+ 8861K0jLk4mt/yeUG7+Ekj0ds3Ap8Ze/Bc4gVqQLtWAhZtsJEoceJnHwQZxLPofkTScRNwiF
+ 45Tmp+JxaUwvyuTFPZUossy0ogymFWXwq2cPMq0oC69LI9nhICfNT1NnP6lXMMk1GvYS3/UT
+ lIwyrAO/QZt5PxTc8NbftFfR0tXPD/+8l/FZSbR09TNrYjbrFk0c1vMT/dEEqqpQkBlEUxXm
+ Tsrhf586MGz2R1UAkqziXPgpRKiB+I4fgGUyZeZ72PjoVurjyfhOHWDncQvFjPP3JZWcObiN
+ A9yOjoJXiuMgQZ/w8Bf1Xr7s/j9mSy1sCRXhd5h0xVUmag2kKyGei87Hq+gkSb1EpCAebxpG
+ Aj68bjZu5+AlkCSJ5JJFfOXDE6hd/1OSx/tIz9fQjz+Gkj//Qp2VtBLc676PGWrCNAXmzu/i
+ ufcPiIF2rM6zGA17cUgSTk0hM8XHzhMNzCrJ5uXDdZSNe2UNv6c/SkdvhD9vOYVDkXC7HDR1
+ 9jE++8omuYkDv8G1/P+hpJdi9TYQ2/SvqLnzgZEbxz++rYI7l5Yxd1IOcd3g3363jYVT8khP
+ Gr5k50leJxJwuLKVwqxkXthbyezS4TutMerOIZKsIAXzULJnYPXU4t/1L9xV3M+fzTv49c4Q
+ 5UVpJMXrBndKz50AkBCokoFAQhcqEcvJ8+G57AyX4JR0kqwu0uVe/hy5ke2xaSQpUdL8Djqt
+ FCRh0B8z+MStU0nyvl7/rmAmE2/5JIGeQ0Sf/iwIC8es14ZtlJwBlPRJoLmwZCcJyQ2pJcgp
+ hXAuU6WiyNy/ejo1Lb1859FdRGIJ7l42GYCEbvCjx3YxuziNG6bn85Mn9vPg+qN8aO1MAp4r
+ 3IDS40jng3Vp7sEIe2J4J4iXIxrTCZybOKuyjKbKJIzhrYNDU/i7W2ey83gD3/vTLnxuJ7fM
+ Kx42+6O+4Gv1NhDf9SOs3kaEEUcrWMCk6pcp9baiTr0TuaiIpgNR/th7A6jhC/4/vVYAISwM
+ FFZZz/PSwFSiQsYtqcSFBggmqM2UO6toMDLJzJ9JVW0r7RGFjzoeJP/lHxE9PhHXsi8jJ732
+ PK5IhEGPXFiTx9QHH7K/otMM8khDOZ0/eJic/ALuVp8lY/H9Fz5P8rn4yLrZr7VtGlTsfhFv
+ VwWLm/6ANv0eAjdNpaolxITcK0/yoU25g/j276EWLcOo34U6YQWoQ9u9vVrWLizhkY3HWVo+
+ jvq2EFkpvktG5n6zZCR7+ezdC4bdLoxyDyBMnfjOH6KVrsXzzp/hmPU+EgcfRJt0G553/xaM
+ OKJ2C+/LPUV2ipseTwkSkK10UuCNokgCCch0xYg70nBJOgudJwjKA4QsL11WgG4rwP2+Fwn2
+ HqXBzOQe32aK592C510PILmDhDd/m1M1LVQ1dWNZAhELEd/0rygFC3Gv+wFyShHx/b9CWCZm
+ 6zGM6i0Y9Xsw42F+v+kUi5at5svrxjHJ38fjxi2oubMAsEKNGPW7B3MWA8IyMFuOoB99FE/r
+ DvqTpqHe+I/ohx6itbGOlMDVbW6pk25Dm3YXVk8t2sTVaNPvYaTTwk4qSOdvVk+nvSfMuKwg
+ 77+5/LrzOB32HiARauVYU5TZkwsv/2Ujhoh0oeTORnL6B1eE3Ek4Zg2+RdWi5einnsJb/k4W
+ Hf82qY5x7JSLaTeTkcMgYwGCWqkI2elF1wf4c/hGTGRAkJBUNkdn0GamIPplFjr2U+6sQT/z
+ IkrODPSitfz00Y04EtXEDUGqB94b+znSQAtGxTMgBOqE5USf+xKxjf+CUf0ysjOAFetF94+n
+ O/RephXPxe8Zz9z8KBsf3oEQYFQ8hX7iSeSkfOK7f4Zr2VdIHHoQTAOrt56cQA4zMrL5tyer
+ 8YRvRA5afHLVFVyvVyHJCmrBQtSCha/8ozmyG1iSBMW5KRRfRc91rTG8ArB0Tp5tJiZM4NI3
+ NJYw2HywidrGScw/foYZk8Zhth4FI47ZehzJl45x+jmUnJlISEgOL/lpqaS3Bgl1d7B6ajIn
+ WhKc6oC4cDAlx8XZszolWgN1Zs6gvw4KbinOhGCC+cFmCmauQt+6GSV1AomdP2I3S8h0xrl3
+ Yh3q5Hfwn7/dwC+tm8mMn2X1omW4j/0Kq7saJBADHUiuIEr+fETtDpzJeWQ0HGRfxWTKk/vY
+ cegsRWoE0deEfvIp3Ld+B8mdhFG/m+gzXwAEjpl/g1p6C7Hnv8Sta25hTmYqPdt3UbxuDe63
+ YIPL5vIMowAEHY21JOcXoTecuZDV49X/P49lCX7zwhH8HiczV9zNc3tPET30CLOK01Fv+nfi
+ e34O8X7kwmXondXIGEiT78Jz5lluShU80p3MM8cjpLl0ylJVtnSk8x7lReqUYmpi2USFgyyl
+ h7hQ6bH8HBHTWeeuh6RCpKQCjM5KrM7T9BpJpExcgRWuofLJb3G2vZybZk4gkDSHHz27mc/5
+ 6nBllCEX34xZtQkRDUHOXKSBTqzmg7x7wlQeP3mKF5raKS4p5q6ys0TWfw0kGV0okEhgRkKI
+ cAdyyRqsWD9m63rk8UtJ7PwRKYEc0lbcj3AlXTOZXYbLzpjMEBOLRamtOUJ9cyslZTNI8r7y
+ Vnt1HP32njDtvVE+dNtsHKpCblYqDzzvY/GyGwe/MH5wwiOivUSf+3tct30PS/VgpU1g0fPf
+ YGfWnUQjYW5dOIXt+47x4SWpPNNwO/60HqINCUCi2wogBHikBDWdUOn3M+mlfyJacBN/ai2h
+ JlSLM5BB6GgrrkKLQ22ZJHsV1sYfxpdxO9XJSVRn3c+sZR9CxPuIHPsD6BFo3IPorAAjSvq0
+ lXyoejOOVe9DyZqGEIuIPrkfsLAO/GIwJezen+Nc/GmMmu3IuTMxKzeAw4vnPQ8jOQcjQVxL
+ cf2Hy84YzA8gkT9xOkuXLuUdt619zcP/1zg0BcO0iJ/L1tLRG8FvdmF2VyNevZSnaCDJFyaS
+ 1kAHvmAyH7tpHAMxi5bmJj62qgArkE9lYzexcB8aJpxbLAWBgYIiQ1LBVByzP8Djp1XyxxXx
+ xck1rMpsxZs+jrbAHOL93cybVox//t+SaD5KT2+IpJwS0MPI7iQcU+9CTikCWUGdsBzJlYSU
+ UozkST13FpjBMbgewXXjl1FSCjFbjiL5s5CC+bhWfQ3R24CI9+Fa9XUk5+XzDdi89Yxohpjz
+ CCHYeqSeDfuryAi6aak9zccn1pNmNaPkzMQx7yNIkjSYhaVmC/qB3yIFcjE7z6KkTcAKd7JN
+ n8P2tmRSRAcdIpVYJIxXjnKqLwiAyfk3huDu2Snc+46VyIrGV//3JT7/7gX4Nn2ecDjM91qW
+ 8fmCPVgD7fyGD+EIZjLQ38e48H7eVdQN0W6cK7+G5E4m9tI3kDQ3ItqLnD0dZdaHUBI9xF78
+ JyRfBqK/FbV0LdrUOy/shlr9rcRe/Eckf9bg52Xr0Cbf8Zrd0mvpzT1cdq6XHmBUBHCe9p4w
+ zTt/z/h0N8G594FlEH3qMzhv+OK5pHSDWD21RJ//MsLUEX3NeO4aHF7UPPwpQoHJTLzpw/zq
+ qd2cOHaUFjOFSVoD/cJLk5FCshzm25O2E0jNxLno0/xmeztZKT7mJzZyslNmbyiLT86TEJUv
+ oN38X1Q2dCBt+BJ5yRqyw4sczEUkwrjX/jfC1DHbjg+uWCUXYZxLtif0CGb7KWRv+uv2FGBw
+ X8Fsr0D2ZSAn5b/u82vpwR0uO9eLAEZ10TYj2UtZMIw3mDaYmkjRkLxpiGjPa76nn34epXg1
+ 2uLPI6dOIL7rJ4jEABlmI5N8vXhcGu9dMQmPx40M1Jk59AkfbimBwxvAfet3UEtWE9/5Y+5e
+ Wkpday//c2I8+7qSuVt9Gmo24bzhi2guHyXuLvJc/Xhu+U9cq7+J1deC6G8DQFI01JyZKKnF
+ rwkZLWke1NzZb/jwA0gOL2re7Dd8+G1Gl1HfCVZLbyG+9b+RVCfWQDsi3ImSXf6a75jNh9CW
+ /T8kbyamOwWrqxK94nlQNES0B6NuJ76arbzXe5TvR9YwaUIB41JUntpTx5IZE/AFU5Bcc9AP
+ PojfKfN3t81ElpXB0OfinSDJSPLgG8bqqBiMVHf8Lyh5c8HSUYpuHI1LYzMCjNqh+PPI3lTk
+ tIkYVRtBAufCTyG7XhsnU0R7MBsPIKeVoLj8WM0HkRweHHP+FtmXhVm7DSVrKpkFxUwI76bT
+ DNLb3sBNzj3cMtmDlpSDUbMZYSRQJyxHCNBUdbDXkRUk6VUdoaxgtZ9E8qRgnHkRq7cO15LP
+ I7lf76T2ZkMj/jXDEYrwWrNzvRyKH9U5wHmEsAYzMv71w3j+czNBfO8vMet3IweycS76FHLw
+ 9cMJYeokDv8es2rz4I7ynA+in3kRs/U4SnopjgUfA1fyhUTZF6uLUbUJ/cijICs4Zt6HMm7J
+ 61x87TSpl+Z6mQOMugCsUBPxXT/GCjWhpJXgWPQpZPfrIzKf30xThyFezaUEcKXYArg014sA
+ rglnOLV4Je7bf4CcVkJi7/+NZpVsxhij67pnxBDhDtT8+cjuZNQJK7DaTo5qlWzGFqMrANWF
+ 5M3AqNuJFenGOLsBOXPqqFbJZmwxqgKQFA3n4s9i1Gwl+vRnsHrrcM7/8GhWyWaMMer7AHIg
+ G9fqf+O8/85wJ6SzsbkUoy4A4NxDbz/4NiPP9XV+zcZmmLEFYDOmsQVgM6axBWAzprEFYDOm
+ GTFfoKFyvprDsUxqWdaQvQttO5dmuO7XcNm5WJtGRADDgWVZCCGGxU3XsqwhO9Wdj1QwVDtw
+ eW/Z69GOaZrD4g49XPf9Ym26roZAw/H2l6Th22wbLjvD8da+1uwM54bmcNi6WJuumx7Axuat
+ 4LrqAWxshpsRORL55rGoP3uK49WtFORmUHPyIAeOnEDxZV4y7tDrEBbVpw5x+NhJ+g0nelcN
+ ew8dwXJnkuK/uojKNacOcPjYSUK6E0L17N5/CN2RSlrw9dGjL1enM/s30ZAIovbXs2PvQWKy
+ n4zkq4uu3Ft7jI37TxKOSbj0Trbv3s+A5SYr1X/5H7+KeKiZLTv20Z9Q8Fo9bN25l1BCIys9
+ eMVOKlYiwoG9uzhVcYqOiEyk5TSHTpzBnZyF330VcwphcOrwXo6dOoOhBQjVn+DA0VOogUyC
+ V5HHTB/oYPv2PdS2hsjJ8LNv5zYqajrJH597IWjONd4DSOQWlZLsU8CM0Gv4Wb50MT3tDVdt
+ Z1xpOQvnzURO9NEZ1Vi+YiX9bVVXXaP8CVMoKylEJAZo6xMsX3UT4c7aq7YT6W0lbDmRsWjq
+ irJ81SrivU1Xbae7O86UmeVMKs6joa2f5StXYQ5cfcqkM2fqKZs+nQkFmdQ09bBs5Sq0RCe6
+ eeUjZNnhYc7CpUwen0tBXoCwksmyBeV0dFxlfSyDqOVk8qRi4n2thKwkli1ZQHd741WZifZ0
+ 4M8vJU8doKK5mbTCOcwbr1Hb/UrwtWteAIqiDL6BhEA+d2ZYcJXTFgnC3a1UN4conTgeSVaQ
+ 3+Ds8ZVgGVE6eyOoqgKyfG5SfbVWTA7uPYhuxqlrbAFZRn5TdiAtP5u+xnoOHDqOKcnI8pub
+ 5JsYdLY0c+jQIaKmhPIm7WBGaYmoZHtlJEVFkmSsq7xdQoBDEbS1d4EMsqIgy9LgB1eBP3ci
+ ySJER08f4lwAA1VVMM3rRQCWQcXhvRw9epRDlR044q1s3LwVTzDzKu2YHDywj5bGWk5Ut+Gx
+ enhpwwa04NWn2qmsOEFHRwd9kQRBJcJL69cjea+yPkhMm7uA3PQUkpP8pLosXlq/HsuZetX1
+ CfV20d3djZBVsvwyG9ZvIKEEr9rO+NwsOru6MCWNglQH69dvoM/0oMpXJ4LWujqyx48HLQih
+ KjZt308w6erDp0cGQnR3dxMXbtRIExtf3oE36equs2mEaW1uo09LYWJWJvUnt7P1ZA8Fqa8s
+ XdurQDZjmmu7B7CxeYuxBWAzprEFYDOmsQVgM6axBWAzprkmDsXb2FySWAv/98un8aYEmHvj
+ zaRIvThS8gm4BvdzQ21NSElZBJxX7zFqC8Dm2seM4kgr4641ufzuqe2smJGC353Mno2bcWUW
+ 0bjlcTozpnP3TQs5uHs7k8qm0dnVTmtHD/OWrWag5gAVbSbzywvYtesQ0xetojBz0FXEHgLZ
+ XDc4/QFENEJLzSma66up7dZxu71MKi1l6epb0OJdDER1elv2c6S6iwXFfjZt2cqO6ig3r5jD
+ psf/SGdfiE1bd1+waQvA5rqg8cwh/vzHZyiaPQtJAsmdQrIywOZNu3Gnetm3ZTNnz1TRL7kJ
+ eJ04nC40VUH1JCH11rNp2wGSMrNxe5OZVjbhgl17J9jm2kdYhMMRkBXcbheWoYMsE4/GUDQn
+ Tk0iEo3jdDqJxxO4nBqmBaoiYQoJTJ2EKXA5VGKxOKrDhdMxOPq3BWAzprGHQDZjmv8P/nSv
+ wR5vwZQAAAAASUVORK5CYII=
+
+
+ iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
+ AAAXCElEQVR4nO3dW3Mc533n8e/T3XM+4nwGCFKgCPEkkgIlW5ZWsmxRtmylYsdRouQiu6lU
+ 5SZbtRf7BnKd5GqrUq692FMsJ2WvYtkrybYkyqZ1JkVSokiQBEmAOBHn45ynu5+9GJESiDMw
+ Mz1AP58qFIGZ6Z4/Z+Y33f08Tz8tpJQSRXEpzekCFMVJKgCKq6kAKK6mAqC4mgqA4moqAIqr
+ qQAorqYCoLiaCoDiaioAiqupACiupgKguJoKgOJqKgCKq6kAKK6mAqC4mgqA4moqAIqrqQAo
+ rqYCoLiaCoDiaioAiqupACiupgKguJoKgOJqKgCKq6kAKK6mAqC4mgqA4moqAIqrqQAorqYC
+ oLiaCoDiaioAiqupACiupgKguJoKgOJqKgCKq6kAKK6mAqC4mgqA4moqAIqrqQAorqYCoLia
+ CoDiaioAiqupACiupgKguJoKgOJqhtMFbJWUEtO0MC0b27aX3KdpGrqu4TF0hBAOVbh7SWmB
+ nQdpglz62qMZIAyE5nWmuE2q+ADYtiSTzTE5Nc/07CLTs4ssLKaZX0iRzeXJ501M00J+ZRlD
+ 1/B4DAJ+L5FwgEg4QGN9nKp4mGgkSDwacuz/s5NIaYG5gMyMFn6yk8jcJDI3C3YGaedAWkuW
+ EZoPNC/CiIAnjvDVf/HThPC3IHSfQ/+blVVcAGzbJpszGbkzzfWbowwOTzIzlyCXN7Ese/0V
+ rOHuVqGmOkJbSx0drXV0ttcT8PvQNLWlkLYJ5hz24hXsxDVk8gYyNwN2ZtkHfdV13PfvPcIL
+ egARaEWLPIQWPYzwt4Dmd3QrLaSUy2p1wsJiihv9d7h8bYiBoQlyObMszxvwe+nsaKC7q5W9
+ HY1Ews6+IeUmpYXMjmMvfIY9exaZ7Cvs2pSDEUGLHUerehQtuBfhiZbneb/C0QBIKRkenebs
+ xT5uDoyzsJhyqhQAopEAHW31PN5zgObG6l0dBGlnsRd7sSffwk5cAyvpYDUCvDXoNU+hVfWg
+ BdrK98zlDoCUklzO5ObAGO+d7WV4dBrbroiN0D2aJqitjvLEYw9xoKsVv8/jdElFIaUEK4k9
+ +xHm2K8gN8kKOyvOEl60+HH0hucRwT0IoZf26coZAMuyudo3zB8+6mV0bJrK2PlaW0N9nG+c
+ 7ObQgXYMo7RvRilJM4k9+wHW+BvI7B2ny1mf8KDFT6A3fA8ttLd0T1OOAEgpGZ+c4+0zn3H9
+ 1p1lzZaVTgjB3o4Gvv0fju64XSMpJfbcWazRnyEzo1TcN/56ND9avAej+UcIX23RV1/yACSS
+ Gc5e6OPMB5cxt9mK4zRNE3y95wBPPvYQgUBlNefdT0qJzI5hjfwb9tzHTpezfUYUo/UltKrH
+ itrHUNIADI9O8dqbnzB8Z7pUT+GIpoYqvvPMcTrbG5wuZUVSWtjTZzBHX4H8bnrtBVr8BEbr
+ XyJ89cVZYykCYJoW75+9ypkPr5DN5ou9+opgGBpPP36Yr/ccqJhjAyklmIuYIz/Fnnl3w233
+ O44Rw2j/K7R4D0JsbzRP0QOQzuT45W8+5vPewWKutmJ172/l+8/2EAkHnC4FOz2IOfBjZKrf
+ 6VJKTxjoTX9caC3axi5RUQMwO5/gZ6++z9DoVLFWuSM0NVTx0g+eJB5zboiFtXAJc+CfIT/n
+ WA3lJ9CqH8do+yuEEdzaGooVgJE70/zbq+8xO5coxup2nGgkwI9eeJyO1rqythJJaWNP/w5z
+ +KcOd2Y5R4T249n7nxHe6s0vW4wA9A9O8LNfvsdiIr3dVe1owYCPv/iTJ2lvqSvL80lpY0++
+ iTn8Msjdeay1USK4F88D/xXhiW1quW0dQUgpGRqZ4mevvuv6Dz9AKp3lp6/8gcHhSUrdvSKl
+ jT11Wn34vyBTt8jf/CdkfnZTy20rADOzCV5+5QyLycx2VrOrJJIZfvLKGYZHS9v8aM+8jzn0
+ f9SH/ytkso/8jX9E5hc2vMyWAzC/kORff/EHEurDv0wqleXnv3q/ZIP77MUr6sO/Cpm6hTn0
+ vwrnKmzAlgKQyeZ49ddnGZtwU4vD5szMJXjltQ/JZDf2RmyElBI7M0p+4MdgLRZtvbuNPfsB
+ 5vBPCif0rGPTAbBtm7d+/xl9t0a3VJyb3BwY47fvXCze2Cc7gznw4y9GcSprsadOY0+fWfdY
+ bNMB6O0b5tynN7ZcmNuc+/Qmn14e2PZ6pLQKA9qSfdsvyg2kVWggyI6t+bBNBWBqZoFf/ebs
+ tk9NdBMpJW+cPs/k9MYPzFZahz1/AWvyrSJW5gJWkvzAPyPN1ftHNhwAy7L47TsXSaayRanN
+ TdLpHL995wL5/BbH5pgLmMM/Kd+piruITN7EmvjNqrtCGw7A51cHuXpjuGiFuc21myNcvNy/
+ 6f4BKSXmnX+H7HiJKtvtJNbEa8jMyIr3bigAqXSWt37/2Y44g6tSSQlv/m7zW1CZ7MNWuz7b
+ Y6Uxh/4n8v45jNhAAGwp+eiT68wtuHOcSTGlMznOfHB5w4+Xdg5z9P8C6phru+RiL/b8+WW3
+ rxuA6ZlFPjqvWh6K5eLn/UxOz6/7uMKB73lkorcMVbmBxBr7JdJa2nG7ZgCklJy92EcypXp7
+ iyWdyfHx+b71jwXsLNbYa+rAt4hk8hb2/MUlt60ZgGQqy6efu+DkijK7+Hn/usPGZeIaMnWr
+ TBW5hY018TrS/nIIyZoBOHuhj1S6eF35SkEmm+fcxZur3i+ljTn+/9hxMzjsADJ5A3vh0r2/
+ Vw1AOpPjgvr2L5lPPrtJNrfyYDaZvIFMXC9zRe5hT7197/dVA3BrYIx51fJTMul0lqt9y9um
+ pZTYsx+qkZ4lZC9eRWYKQyRWDIBl25y/dKvipizcTSRw7tMbywfKWQms+QuO1OQadhpr/hNg
+ lQAkEmkGR9SIw1IbG59l5r6DYZkagOyEMwW5iD13DmnnVg5A/+AEmYzaBJdaJpvnRv+XoxWl
+ lFhzZ1EHv6UnUwPI7NjKAbh2Y+VxE0rx3Ry4g323T0Ba2HPnnC3ILews9sLl5QGwLEvt/pTR
+ 0MgUplkYJSqz4y6b18dZMnF1eQCmZhZJJNWQ53JJprJMzxROb7QXL63zaKWY7MUVtgADQxM7
+ bvryne7mQOE4QCbUmKuyslLLL5I3OjbjRCnrCga8aJpGOp1DCEAITNPC4zHQdY1MZuf2WN99
+ zWWm8s63kFKykMxjmpJ4xMPMQg4hBDUxL4tJE8su3J5ImeTyNlUxL9oOun7CkgBYls3E1Poj
+ FZ1w/Mg+ZucS3B6epKO1jlzepH9wgqMH92AYGpevDu3YybnGJr6YzMmuvIFvC4k8P3l9gOqo
+ l68dreMX7wwRDhrsaw3TP5JE0wSPHKzmw8+mMHSN491VHO6qcrrsDVsSgGwuX7GnPPq8HoLB
+ whUcr9+6Q3NDFT6vwfjkHJNT8zQ3Vu/YAKTSWdKZHJUxyfpShqGRzVnEo15iEQ8nD9XQVBfg
+ 3OUZ5hN5PB5B3+1FPIZGOmMRDe2s66ktCUA6k6vYXYnBkUlu9N9BSvB4CmXbtsTrNQgEfGW7
+ rGop5PIWc7NTVFfg8AefV+Nvf9TFR5emuTm0yJsf3OFAZ4wfPNOGBK4NLNA/kqCuyn9vq9DR
+ HHa67A1bchCcSmXJVOgFLWqqIpw81kVVLMTRhzrY015PNBLEaxjs29PInYnNzQlZSUzTIrEw
+ DRuczaycMlmLl98Y4NZIgtaGEC8+18GfnurAlvCL00Oc753hqUcaWEzm+f0nE+xr2zkffrhv
+ duhrN0b4l5//3sl6XOtHz7bxoPgfhauyK2WzZAtQzGn8lM1JJxfV2V8OWBoANf7HMel0QgXA
+ AUsCYKkOMMdY+Z3ZgrXTLQlALq++gZximmr30wlLAuD1LOsYVspE92ztIm/K9iwJgEcFwDF+
+ fxDYOUMIdoulAaiQCz67kdfrA6Fe/3JbEoBYVG2GnRKJ1YDYWcMIdoMl+zwBvxfD0O+doFFJ
+ DEPnyEMdfHblNqZpUVsdobO9gZGxGXK5PHs7GpmZW2RuPsXejgZm5hKMT85xuLuDufkkQ6NT
+ HDrQzvxiiivXhpz+7yyh6xqBUDUkfGBXXmvQYjLPz98c5C+e78Tr0egbXOD0R+Mc3BejOubj
+ 3QsTPHakFo+h8YfzE5w8XEtjjZ/fnRvnj55qZSGZ5+2Pxvjht9rxeStrK7dkC+D3e/H7KvNb
+ qLWpGkPX0bVCyY0NVXx2ZYB4LEQimeHi5/2Egn4WE2kuft5POOQnEvLTe32IK9eHCAV9XL0x
+ UnEffijsekar6kHzOV3KMlJKzl2eJpOz7s0ScqF3lhdPdTAxk+GTK9P85fOdXL+9wPneGV76
+ 7h6u3pon4Nepr/JjWpKAz6Cuyo9VgbOMLAlAwO/F7/M6VcuqAn4v8VgY07Lw+QobrdtDkxzu
+ 7qC2OoIEjjzUQTqTw5Y2h7rbSWdyZPMm+x9o4eSxLnJ5k/17mzl5rItKG67u8RhEwiHE9q5a
+ WxLj0xnGpjMYuiCRKnSU7mkJ8fIbAwgheOJEPS+/PkDf4CJff7iOf/31ba7fXiAW9uL3Fb7t
+ o2EPAV9lffPftWQXyOf1EIsGmZrZ+uV8SkGIwpDhlqYaAgEfQggEkEhlSWfz1FRFWEikiYQD
+ NNZVkUhmiEdDzC+kmJtLEo0E8Bg6cwsJouG7rS2V820Uj4XweAwqsSdACIhHPFztn2d6Pkc6
+ azEynqa9KcTkbIZszqamykddtQ8poTbuoybmo38kwceXplhI5OnaE+Hjz6dJZS2e7mnAY1RO
+ 0JcMhgP49enzvPfxVafqWZPH0DE8Og21cUbuTN/b5dF0jXDQRyqTw7YloaCPTCZHPm8RCQdI
+ Z7KYpk047CeTya86JaFTTh7r4vuneshd+3tkojJf+2TaZCGR5/adJMe7qxidTFMd86EJwfR8
+ lqbaAHnTZmo2S1NdgHTGZHo+h6ELoqHCmWQeQ9BcH0TXKmcTvKzhv7W51ok6NiRvWuRNi4Gh
+ wsRRdy/aYdk2s/Nf9mLPffX3r0zvOL9QmgtXb1drcw0AItBesQEIBQxCAYOmugAAe74y5j8c
+ LHyMvB6NUODu715ikS93p+PRytu1ZqWdztbmGnS9cjZRu50mBO0tdYXfQ10OV+My3trlAYhH
+ Q8RjISfKcaV4PET0i/4XLXoQ1RtcPlrk4MrNDg/uayl3La61t70B4+4W14ghwg86W5BrCLT4
+ iZUD8NCDbeWuxpWEgAP7WxFftMsKIdAiDzlclUsYEbRg58oBaKyLU18bK3dJrhOPhWltqlly
+ mxY9qoZElIEW6gJPdOUA+HweHuhsKndNrtPZXk8o6F9ymwh2IkIPOFSRW2hoNU8ghLF61+Ph
+ 7nY8nsrsvdsNNE3w8KHOZbcLzUCrOulARS7iiaNFDgJrXCKptbmWtgruE9jpGuvjdLY3rHif
+ Hn8EjEiZK3IPvfrrCKPQ0rlmg3/PMbUpLpWeh1dv8xfeGrT4I2WsxkWEB63myXt/rhmA7q42
+ dTBcAnW1UQ51t6/5GL3he6BVYu/pzqZVnUT4m7/8e60H67rGk187qLpmiuzksa51R90KXwNa
+ 9TfKVJFLaH70+u8ixJcf+3XHPBx4oIXGhp0z22+lq62JcvTg8oPf+wmhodc9C7o6S69YtNgx
+ RLBj6W3rLeTzefjmNw6jVdAIvp1KAE8/foiAf2O7NlqwHb32qZLW5Bp6CL3pB0u+/WEDAQDo
+ 2tuk+gWKoKOtnoMPrr3vfz+94XtgqOOw7dLrn0MLLB/is6EA6LrOqacexudV06Zslc/r4dTT
+ D296pK3wxDFaX0INkts6EWhDr392xfs2/G7U1cZ46vFDFXc64U7xxGPdWz7XQqt6DK3q0SJX
+ 5BKaD735zxCr9KtsOABCCHqOda3aeaOsrqOtjq/1HNjy8kLzoDe/CN6a9R+sLKHVPoUWO7L6
+ /ZtZmc/r4YVTPUTCgW0X5hbBgI8XTp3c9rSTmr8Bo+0/onaFNk6ED2A0v4hYY8KxTZ/6VVMd
+ 5YVTPWoWuQ0wDJ3vfusEdTXRoqxPix1Db/hOUda163lrMdr/E0L3r/mwLZ37uH9fC089fmhH
+ XQ7TCY8e38+h7vZ74/23SwiB3vRDtHhPUda3a2kBPO1/jRZoXf+hW1q/JvjGo92cOLpvK4u7
+ wtGDe3jum8fuTeRVLEIPYHT8DSK4p6jr3TWEjt7yZ2ixoxt6+JbfHU3T+M4zxzlycM9WV7Fr
+ HTrQzvPfLt1gNmGE8ez9L4jA5voUdj8NvemH6HXPbGKJbfB4DL7/bA8H1SmU9zzQ2cjz3z6x
+ 4d7erRK+Ooy9f4cIqNe+QKA3fAe98fvLenvXXOr+ibG2IpfL88vfnOXTywPbXdWO1t3VygvP
+ nSQcWvvAq5hkdpL8zX9ApitvztOyEQZ64wsYzX+y+UWLEQAoXGX+tTc/4cKlW8VY3Y7z8KFO
+ nv/WCfwl/uZficxOkO//b8jkjbI/t+OEgd7y5+j1z67Z3Lnq4sUKAIBl2bz3cS+n372EZbnj
+ gnu6rvH4yW6eefKIo61i0kxhDv537NmzgDtee/QwRsffoMUf2XJLW1EDcNel3tu88fZ5FhOV
+ N9d9MQX8Xk49fYxjhzvRitzasxXSzmONvYo19iuQlTX/abGJQAdGx18jgvu21cxckgBIKZme
+ XeTfX/+QweGpYq++IrQ21/DCcydprIsXrZ2/GKS0sBcuYQ78GMx5p8spAYFW/QRG60sIz/Y7
+ GEsSgLvyeZMzH1zhg3PXKm5G5q3y+708cnQfzzxxBKOCe8NlbgZz6H9jz51j1+wSeaoxWl5E
+ q/4aQhRnZHJJAwCFrcGd8Vl+ffoC/YPjpXyqkhIC2lrqeO6bx2hprNkRJwhJO489fxFz+F8g
+ N+l0Odsg0GqexGj6Y4SvvrhrLnUA7jJNi8vXBjn97iVmZhPleMqiiUaCPPPkEQ4faN9xl5KV
+ UoKVwBp/HWvqHTAr6+InaxI6IrS/8MGPdG+plWfdpyhXAO5KpbOcu3iDsxdvMDefXH8BB8Vj
+ IY4d3sujx7uWzeC2E8ncTCEIM++DOed0OWvQEeH96PXPosWOI7TSTRVZ9gDclUxl6L0+zCef
+ 3mT4zrQTJayqribKiaP7OHqws6ydWuUgpYTcFNbU21hTv6uwLYJAhB9Eb/wjtPABhF76iwY6
+ FgAovBlSSm4PT3Kpd5De60Mkkpmy1yEEhEMB9rTVc+xw573znyupdafYCm+7hT13DmvyLWTq
+ NlhObJE18NaiVz1amK/T31LW193RANxvYTHF6NgMvX0jDA5PlvRifZoQxKJB2lvr6N7fSltz
+ LdGIO6cgkVIis+PIxcvY8xewU7cgX8pdJB0RbEOE9qPHjiPCDyAcmv6logJwl5SSXM5kZi7B
+ 0MgkQ6PTjE3MMjObwLJtbNtmo1ULIdA0gWHoRMMBGuur6Giro6O1jng0hM/n2dXf9JslpQVW
+ Gpkewk5cRaZuI1MDSHMepFX42fAVNjUQOuh+hK8JEepEC3YignsR3tp1T1Yph4oMwGqyuTyz
+ c0nmF5Ikkhky2RypdI5s9it9DAICPg8ej0Eo6CcaCRIO+amtjuy4FpxKIs0EMjeFzE6COYc0
+ k2ClkPZXL+4qEEYQ9CDCU40wwuCtQ3irERU6zeOOCoCiFJvzA1gUxUEqAIqrqQAorqYCoLia
+ CoDiaioAiqupACiupgKguJoKgOJqKgCKq6kAKK6mAqC4mgqA4moqAIqrqQAorqYCoLiaCoDi
+ aioAiqupACiupgKguJoKgOJqKgCKq6kAKK6mAqC4mgqA4moqAIqrqQAorqYCoLiaCoDiaioA
+ iqupACiupgKguJoKgOJqKgCKq6kAKK6mAqC4mgqA4moqAIqrqQAorqYCoLiaCoDiaioAiqup
+ ACiupgKguJoKgOJq/x/HAIEFmKfQKQAAAABJRU5ErkJggg==
+
+
+ iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
+ AAAPjElEQVR4nO3dSYxdVX7H8e+5U71Xk2seXOUBD9gu4wGDAbdtxg7pjoK6k+6mFUVRFtl0
+ K7soQskykSIliyiLgJCSRaN0IAtI0gjokW5MMBiDp7LxDOVyeajJrrnqvXenk0VBA0rjVOPy
+ u6/8/382VoH16pTr/u45/3uGa6y1FqWEcrJugFJZ0gAo0coSgCRJyvFt1JcwNTWVdRMyVZYA
+ pGlajm+jvgRjTNZNyJQOgZRoGgDhpA9PNQDCaQCUaL7vZ92ETGkAhNMiWCnBNADCxXGcdRMy
+ pQEQTvpSMA2AcFoE3ySbxgxdukwhSUmTEhfOnebi4HVk31fUUnHTAShMjzEyMMhkEjM7OYZT
+ 3cjUpfNMRovRPKVuLe9mP6B6WRvd7VNEQF1jB0l0iellndT58wWWtZYkScSPNStVsVikqqoq
+ 62Zk5qYD8FmT165yrRSweUMHBsD79OOljzUrled5BEGQdTMyc9MBmBq5yLGLF3EGh1nd1cZA
+ /2UGLw+w4977qJH777pkeN6i3gOXHFOOLZFRFGkPUKGmp6epq6vLuhmZ0cegSjQNgGA2KlAa
+ u4SNilk3JTOyB4CCpeP9FPf/E35hhkK+ltyev8BpXJV1s8pOAyCQtSmld54m2Ppdkvo7CSbP
+ UjrwNLmv/wPGyBoUyPpp1Tybks6M4LRuBK8Kp20T6fQQCJyr0R5AIuPidmwmOvkjks5dRINv
+ 43ZsBWF3f9DHoGLZcJbw8HNElw7hr9hJcM+fYoKarJtVdhoA4SYmJmhoaMi6GZmR1+epz3Fd
+ N+smZEoDoETTAAgn/dQ+DYBwuidYiSZ9NagGQDjHkX0JyP7plXgaAOH0bFAlmgZAiSZ9hl4D
+ IJwejquUYBoA4XQiTImmSyGUaJIPxQINgBJOA6BE0wAIF0Wyj/HWACjRbv4FGTalMDtHYi3W
+ psxMT1IIZT9aW0p0JvgmFSZHOLb/PUbCiPHBCxw7cZr3Dh4hknfEzJJji1M44x9ii1NZNyUz
+ N/+CjIYONqydITIwMzfH5u33MTfQy3gRmnx9QUbFun6OaP8/kni1zMUz+Hv+EprXZ92qslvU
+ 7UAGKIUhc8WENv/zu42kd7WVxKYphYPPknvoKSbcNmriYUoHniH/jX/WoxF/W1MjFzl87hwn
+ 3n2P6uYuLpx4l5mqFupl77SrcCmEM5iaNhzHwdS2QTgt8mhEPRhLIGst4cFnsWGBeOVDeAP7
+ MEENwf3fE7c6VAMglI1LRKd+RLHvHXJrduP3fBPjyVsWoQEQbmpqivr6+qybkRlZFY/6P3Qm
+ WImmZ4Mq0TQASgmmARBOd4Qp0XRPsBJND8dVounhuEokmyYkV4+R9L5AMngMm8o8IlEDIJC1
+ lvjMa4SHn8PzqwgP/YD47I9FLlnXAEhkU6JTL1P10FOU1j1B1YNPEZ38b7DynghpAKQyDqTx
+ /BqtNAbjMr+jQxbZjwCkMg7+1icp/urvcFp6KF47ib/tuyBsKTRoAEQyxuCtfRTSiOLRF/Dv
+ /mO8NY+I2wsAOgQSyVpLfP7nRGdegxW7iU6/Snz+F1oEKyFsSvTBf5J7+K8JNz5J7uG/Ijrx
+ ksgtkRoAqT6+1qUfjqs1gETGwd/yhxT3/T2mdQvFkeP4W74lsgjWLZFCWZuSjp4lvHKMoGs7
+ TusGcUeigAZAvLGxMZqamrJuRmbkRV6pz1hADRCz7+UfcH5qFd0Nhsee+B1kl023F+k98wJ6
+ gIRiZJge7Gd0snDLG6RUOS0gAAGbejZTU5vQuWaNjpluE9ZaRidmeffUZUYnZkVOgsGChkBF
+ 3jtwhu333U9dfZ3A5VK3H2sth85e5eX9Z+luqWHfiYP8wZ6N3LOhU9xyiAUEwCPwQ/r7+2lu
+ g/V3rkL2QRpLX2otrx44z/e/cS/VXsJs7PKvrx5hx52d4qYCFhAAS1DTyrb7H6AmV33Di398
+ 8COOnuzHBHXs2nMfOR0vVaw4TqkKPDzHUGUc4ljeXgBYUAAcVq5o5+zJE9Q2dnN/S8MX1gFR
+ nNLc3kkaRqQWkmR+m521VvzpA5Vmz5ZunvvJMTatbOTUxTH2bl1BmiZIOyVlQT1AWCwyNzeH
+ Vx1yo1IpSRKqcnlKpRmiBHLep/2ptLFlpfvqPWtY3lLPqf4RHt+5lp5VLSJ/RwuqAbbsepCe
+ uMAbb7x/w78Z+C5X+y7geHnWO5+eOGCMEX8EX6VxXdi2roPuRp/m5uasm5OZBU2EHX3rl1wY
+ nYB85w2fAjV3refRLnnvmVrKpN+YFlQDLOtYxaacy4WoXucBbjPSA7CA6zll4NRRDl8tkZsd
+ Q0vZ20uhIHt2fwEB8FixZgV1pkQc1OpE2G0mn89n3YRMLWAIVOKjvnH2PvYYOT/QHTS3kSiK
+ mCsUyeVyYhfFLagGMNE1fvzKKzR3rOdrjz+AzH+q28vwyCg/fPUdxidmaGyo409+fxftba1Z
+ N6vsFrQYbts92yCJWb56pV78t4E0TXn+tXf4yra1fO/be9i1dQ0vvHZA5IK4BQSgwMFD/Xzn
+ j56k/9BBire+TeoWs9YyfH2KzWuW09DYxOa1nQxemyTVAPwmVazo8Hn5v17G71yhm2FuA47j
+ cEdXC28d+4iJsWu8dfQj1na34gicCb7hnuA0mePtt0+we+9Owrkp3jtylt177/+tV4PqnuDK
+ MzU1zYs/O8DZiyNsWNXGk1/bRV1dXdbNKrsbF8G2wJWLQ4RfAWNDrl4eIQZdDn0bqK+v48++
+ 87j4TfE3DIBxm7h7Uz0vvvA8OC47HvxdqsrVMqXKYAHHothfn5j3ZVcL6hCock1PT4sc+nxi
+ AfMARtwuISWHrm1TomkAhAvDMOsmZEoDIJy+JlWJpi/KViLZNCbu20d68BnivjexqcydHhoA
+ gay1RCdeJDr/c7z2HqJzPyU68ZIuhlNC2ISx4z/l3wa38Tc/m+KHQ9sZO/4TfU+wksFieGl0
+ Mw3L6vn6vSupX1bPS6Obs25WJmRXQEJZCyenG8mf7KcpHWXMaaWQNJJixK3z0gAIlToBqRsw
+ krbjuDlSK/E98ToEEskCpSjF81wcY/A8l1KUSnxLqgZAKmMMq+KzfKvxMCvjcyKPRQQdAonk
+ GNhaP8aZcBP/M7iRtlrDtmVDOEZeF6A9gEAGS3swjecH1HoRrh/Q7k9l3axMLG4ArGVmcoyx
+ yZkbniKtspVah0OljXT64zS5Myz3x3m/tAkrsAxe1ABMjw7Qe/pDrl2f0ABUuNnYpaO1iSe6
+ BulobWI2lvYAdN6i1gDXrw1TmCswW4zmX4qRJFhrST7+U1WGJEkJC7P84qM64mQ7nmsIkhnC
+ MBS3OnRRA+BXVbNhSw/R4AmGplfSVf/px+uWyMqRJClV+Wru6swzdH2KjuZazg8mBEGgAbgZ
+ 7V2rON7bSxQ0saNWZpe6VMTGp29wkplCibnQEpucyGHrogbAy9Wx4/7di/mR6pawUJoiX1dD
+ WCyQr/IpTetTICWIg6Whtop8TS0NtVU4Ip8B6USYWFFiOX1lhihOuD6bEGBFDoG0BxAq8Aw7
+ uw2rq2e4t8uhyjXaAyg54sRyesRSKOaZHE2JE+0BlCDGGBryhrwb05A3Ik+GBg2AWMZA3oPA
+ Scl7819LjIAOgYSKU0vfuCWMckyOW7xUh0BKkMA17FhuWJWf5e5Oh0CLYCVJlFg+GLYUS3mu
+ j6SkWgQrSVxjaKsx1HkRbTUGV4tgJYoB15m/AFxn/muJEdAhkFBJark8aSlFAXOTFqNFsJLE
+ dw3bOg0r8nNs7dAiWAkTJZbeQUsprGZkKMVoEawkcR1D9zJDo1+ie5nBdWT2ABoAqSwkKaQY
+ knT+a4k9gA6BhEqsZWTWUowDollLKnTPtvYAQvmu4a52Q1dujs1tWgQrYcLEcuSKJYxqGLya
+ 4lktgpUgnmNY02xorSqyptngaRGsJLEWCiGEqcNcOP/aJIk9gA6BhLLWMlmyFFIPU7KkEq9+
+ tAcQy3MNG1oMHVUFNrQ4+FoEK0nC2HLoiiWKa7lyJdVTIZQsvmvY1GrorJpjY6vB1yJYSZJa
+ GC/CXOIxUYRUaBGsARDKWihGlsg6FCOZFz9oAMTyHLijydBSVeSOJp0HWDTh5BCHT11Y7I9V
+ iyxMLEevWgbmajl61RLqcuhFkEacOn+V4uy1Rf1Ytfg+WQu0PDfLXe2GQGgPsIiPQS2jl/tp
+ XLGG6NK5z70ZRt8QU1mSNCWxluEZy3QcwIwlsVbfEHOzisUC/Rd6Gbg6xPpN22moCX79//QN
+ MZUjSRLAkH68ByC18/d+PwhwNQBflmHFnVvpXm+ZmZmh7jMXv6o8roGuesNwFNJen6evqEOg
+ RWGMoa6ubrE/Vi2yKLEcH0yJ4mqGw5TAyCyCdSmEUIFreLDmFKvcIS4mHbw7u057ACVHjjkG
+ g/Wcnl1NQ41PbnZWZA8gq+JRADjGsnvZAPVNbXzzke3UN7WyZ9kAjsAIaA8gkXH4vZ487146
+ yPtHV7PZv8ADPdVg5N0PjS3DA/ooivQxaIVJC2OEB54lGjyOv3wbwQPfx8k3Zt2sspMXeTUv
+ ibFJCRwfGxchibJuUSY0AAJZm1I68DRe906ih/4Wr+teSgeeETlbrwGQyKakYxdwV+3Br2vF
+ Xb2HdKwPbJp1y8pOAyCRcXCb15JceBOKEyR9b+I2r9Mi+FbRIrjypLOjhAeeIRo5h9+2gWDX
+ n+PUtGTdrLLTAAhmrWXs+jWamlsw+ookJY0xBtfzxV78oAEQz3XdrJuQKQ2AEk0DIJzEZ/+f
+ pQEQLopkzgB/QgMgnOfJXg9Zlp/eWiv+TlOpfN8X/bspSwCMMToPUMEk/27KMgSSdtTGUiL9
+ d1OWmWClKpXs+CvxyhqApDDFsSP7Ods/Uc5vq77AUN9JXn/9dc4MjGbdlMyUNQBOrpbNW9Zj
+ i0k5v636jWJGJxMeengvc2MjArfDzytTAIq8/9bbDE8WcRy5C68qjXFcjGNwQANwa+XYuXc3
+ TV6BA/sP0tt7iKGJufJ8a/UFXGq9Ar/65T6oXia2GNSnQEo0qcFXCtAAKOE0AEo0DYASTQOg
+ RJO9GFwtYVP8+zP/gWmsZeuux9lyR+v8f7aWYmmSXK5hQZ+iAVBLVEiSW863H1nHi++fpHY2
+ x+Fz19n72KPUcY0Pek/RPzTKxvseYV1n/Rd+ig6B1JI1/OEx/uX5V7irp4eR4SGmrhznjSMf
+ Es9epre3j50PrOPw2x/c8DO0B1BLVvvabezsCTjTf5Hx02dobmkm+viW7gdV+L73/97hdSZY
+ LVEpYZjg+y5hGGNsQpyCFwT4jiWKUzzPJU4sgf/F93kNgBJNawAl2v8ChvkT2MsK5j4AAAAA
+ SUVORK5CYII=
+
+
+ iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
+ AAAgAElEQVR4nO29d3hc53ng+/tOmz6YQQcBECABVrFTIiWqF0q2Yjm24tiRnWQ38RMndhLf
+ zcZJvLk3iRPvfVJ2N9e73uy1N39kbSe27youapbVKIlq7BQ7wQISAAkQvQww7ZTv/nHAYQPA
+ ITBDEMT5PfyDAM685ztnvvcr7/cWIaWUeHjMU5TZboCHx2ziKYDHvOamKIBt20WRa1lWUeQW
+ U7bX5uLLdRwn7z53UxTAcZw5JbeYsr02F1+ulJJ8t7beEshjXuMpgMe8xlMAj3mNpwAe8xpP
+ ATzmNZ4CFAIpcUZ7yB56Fme0d7Zb43EDeApQACQS68QrZHf/E+bxF2e7OR43gDbbDbgdEAjU
+ xvvQU4Poix+a7eZ43AAzngGszBhH9h5g2LTIJofY88G77D18Cns+udgJgRJvxNjy+yjxxtlu
+ jccNMGMFsG2bsKaRlg62I1i+bjMRc5DR4ng/3LIIIRBCgBCz3RSPG2DGSyBfMEok5MME/MEw
+ 7aeOYVQ3E9VcXw8pJbZt5300fSPYtk02my243GLK9tpcfLkXXSHycbWYsQJkksN0dndjqRoZ
+ a5TetEZVKI1lg65dEq/r+kxvdQ3ZbBbDMAout5iyvTYXX+7FAVfTrt+9Z74JdhwC1dUIBNHy
+ GsyBIXfkn7FgD4/iM/MlUDhOUzie+zkWL5upSA+Pm4Z3DuAxr/EUwGNe4ylAHkgpkU5xLFke
+ s4unAHkgh9rJ7vw2Tv8pTwluMzxXiDyw2t5zfXwUDaOsebab41FAPAXIA23J46AaaA334p3z
+ 3l54CpAHSqgcY/WnZrsZHkXA2wN4zGs8BfCY13gK4DGv8RTAY14zYwVIjfSy88336MuapBJ9
+ 7H37LbrThWiah0fxmbEVyAjGWFRTgY3ECJTQXFfO0Lgb9uWHRsU6QCrmwZTX5rkrN1/ZM1YA
+ VdPRNAXzsv9f5GKCUsdxipII1bZtNwqrCBRLttfm4su9GAhzUxQg0dfB7oMHkd29rFlUT8uH
+ RxgtTVJ613oifi3XkGIExBRLbjFle20uvtwbCYgRM60QIx0by3Y1TlUU7HHt0zQtp92mac7o
+ QR1H8rMdJ+nqT/DZrasJ+d0oIi+66ubInmtyb0QBZrwJFoqKruvouo6iXvp/Iac207LZ3dLJ
+ wdM9DAynCibXw2NOuEIYusrvfHwjI8kstRXR2W6Ox23EnFAAIQQ1ZRFqvGhLjwLjHYR5zGs8
+ BfCY13gK4DGv8RTAY17jKYDHvMZTAI95jacAHvMaTwE85jWeAnjMa2asAGODXbz90utcyGQZ
+ 7evgjddeY9t7++ZXhRiPOcuMXSFC8RpWLxvDFNA/OMT6LY8w1naAwSzEteLGAxRLbjFle22+
+ OXKBvGQX3BfIzaPpVgq66BGaKx9UYIol92rZcqwX6/Q2tMb7EdEFBZNbaObaey6WXEVRkFLm
+ JXvGCjDS08auw4fh/AU2rGjm4M630EsWcK8BYnyFJYRAVdWZ3uoabNsuityrZWdbt2Ht/x4i
+ m8DY9IUZfWk3q83zXS6Ql+wZK0C0soGPfKIh93Plo9UzFXnLoTXej8wm0Zoenu2meBSYOeEO
+ PduIkjqMu34TKN7yxWN28BQgD9xO73X82xHvHMBjXuMpgMe8xlMAj3mNpwAe8xpPATzmNZ4C
+ eMxrPAXwmNd4CuAxr/EUwGNe4ymAx7ymoAow0tvB9rffYv/xs3jxMNdHSonddwpn4Ax4Fehn
+ hYL6AvV299C8+i5GWg8xZDYS07wKMVPJlWN9pLf9FUL14f+F/4LwRQomu9DMNbn5yi6oAixs
+ WsKhQ4cY6B+k3AZbeBVippIrFQOlYgVofmxUmOE7mmuVXG6LCjGXk80ksaXEiC0g7gNVeBVi
+ ppSrR5H3/yEIgVBnfq+59p5vhQoxBVWAQLScVWtK0A0fquc9nAcCoRWnWoxHfhR0E6woGoFA
+ AE29vYxL0spg951Emklvs3qbcXv11CJhnXyN9MtfxTz6vGfdus3wFCAPRKgcEa5AhCtnuyke
+ BcYLicwDtX4TgapVYAS9mODbDE8B8kAIBXzh2W6GRxHwlkAe8xpPATzmNXksgSzeeu6fODnS
+ QF1M8OhTW/Es1x63C3nMADZpU5DoOkuvV6Xd4zYjDwUwWLHyDkJhm5rFi701k8dtRR79Oc2u
+ D46zbtNmassjt31+NCklqYxJMm16h74FxLRsRsYyRfX+nA55KICGoWc5e/YsnRf6cYrfplkl
+ lbX4xxf38d9/uodUxpzt5twW2I7DT945zn/64fu0XRie7eZcQR6bYIkRqmDt5rsJ+YNMlXB6
+ sOs0+4+cRRgR7rlvE/45uF6SUpJMmyTTFs4tNlrNWSQkMyapjIk5nrr8VkHI685JFkd27eTc
+ 4CjheB2bN90xqdb0dJyka8jEyZosW7cWH+7D2raNohReGyzLysvl9UZJZSyypklJOFBw2cVq
+ czFlF0KuZTuMpbKUhP0FlTsRUkqklHn1ubxmgGw6TTKZRAtmp3QGs20bnz9AJjOKaYNfu7Rj
+ uCUqjEiJ2fISpBPoq58G1TfhZUG/jqHNraooxZRdCLm6phKLXDmgFKu9F8f0AlWI0Vh9zwOs
+ tFK8+ebuKa80dJXO1jMoWoAlCjkNvFUqxMj0MM6RHyOtNMaiLSiliwsmO1+8CjHFlwuuEhSo
+ QozF/nfe4EzvEARqprQCldUu4ZHaJfm38iYjfFGMu7+ENMcQJfWz3RyPW4A8FEChpLqBFX6V
+ M2Z0bp8DCIG2cPNst8LjFiIPBXBoP7qfc0RZEBzAAs8VwuO2Ia9zgPrF9UREBssI3/YHYR7z
+ izxmgAynWwe5/9FH8euGF0DgcVuRxwygIMw+fvbCC7z9/kGKU+Pcw2N2yMsZbu3GtWBbLGhc
+ SHGy8Nx+SMfCPPYC5rEXkc7EDiS24/DG3lbeOdh+y/nIzBfyUIAUO/ec5Zef+TRn9+wkXfw2
+ 3RbIsV6yH34fc/8/I1MDE14zMJLixQ9O8sJ7LYwkMze5hR6Q1x7AR321znM/fo5wzVLPApQn
+ IlSBcedvulnfAvEJrymNBvilB1agawqR4MSn0h7FZUoFcOwk7713iHsf/hirkiPs2tfi5cXJ
+ E6GoaM2Puf+fxHSmKgr3rq4fv8azr80GUy+BZIrzbRfI2iBkls5zPd4mOG/EZb4uk3fuYvoG
+ eVyfKWcAoZayfkWUZ7//L6CobHjgCbyJ2uN2YmoFEIJldz7E0o2Xfp6KnvbjHDndBYrBXVvu
+ JeyZjDxucfLYBItJ17BXU7lwORX1Szh84Ah+78TMYw5Q8G6avHAao2oxmnADHqSUuXzthca2
+ bbLZbMHlFk22dLASPRCpBFF4t8JivY+5JvdiQIwzyfnL5RRWAaTFie4M69a5aQQvj/YpRiGE
+ bDaLYRTHMFsM2ebhH+Hs+x5i0xfQln204JvfYr2PuSb3RgpkFHYYkpKm5mbPYW4yjDD4Iggj
+ NNst8RinsDOAohP1dr6TojU/hqxahxopy3tf5VFcvK3qTUQoKgTiCMV77bcKczrA62qkmUZm
+ RsE7r/bIk9tGAaSVIfPWX5N66d8jk4Oz3RyPOcJtowAgkY4NjjNnXIuldLAvHMLuOe4V35sl
+ bpvFqFB9+B/4I6SdQQRLZ7s5eSHH+ki/9bcIzUfgY3+P8JdMcJHMLegETO5Zd4uTy9UDt9Qz
+ 3DYK4Lodl8wpE6ythXk9swnD0XlcDUyYdlI6FuaBHyL8JWjLnkSoc+8rk1Jit+/A7jqAsebT
+ t9QAdRstgeYeIxl4c2QJbw43kTTdEVI6DjIzmhsxZbIf8/CPMI/8BMzR2Wzu9LkYHdfyEnbf
+ idluzRXMveHkNsIQJj5rGD8KunBPL61Tr2MeehZj02+h1W9yA2u2fBnhC4MRne0mTw9Fw7jz
+ 3+L0nkCtXj3brbkCTwGuQkqJHO5AppNQtayo61XbMjEw0RDYtgVIZKofmRpEplxLllBU9OZH
+ Zn4zKbF7WxC+CEp0wU1dhwshUMuXopYvvWn3zJc8skPPHNM054wvkJMaJv3Kn+Kkhwh9/JsF
+ X69e3mYpJd0XulAVhfLKKgQgzRTOSCdKrB6h3Vj0xVTvwxntJvXT30WJ1eN/4q8Run/C625U
+ 7ky4/XyBZhFHSnYfP8/re1qx7OmX8RCaD7V8CUpZMxjBArZwgnsJQXXNAiqqql3HOCEQRhC1
+ vPmGO/9172WEUcqaUcqXwS2wkR5LZXl1dyvH2nqLaraWUmKf30/2wA+RmcQ1fy+wN6hDZ9tp
+ xgjT1FhzU7UrnbF4/r0TDIykWL24kqrS6RW2FpoP454vYWazCG3yUdK03NoHmqbmbXmSUoKV
+ Qup6zhNUWlm346vF9aESRgj/1q+BUG8JV4zWrkFe3nWapvODNC0oxdCvtYG57ysDqu66kUwH
+ O0P24P+H03MMpXQxWv2mK/5c0DcxcP40F8YEjQuKO3JOhN+n8dSWpQyNpikrmcH9hUCoBlOV
+ wslaNv/y6kEcCZ99bBUBX36d1+7Yibn/+yh3/lvUBevBTJF57xsIzY+x5ffc+xaRqRT6ZrOo
+ Js4TdzXRXFeGrk08VMrEBTLb/xNqwxb0VU8jphNDofrQ13wap7cFtWL5NX8uqAKMDA8w0J0h
+ m0mzIRpFkfZNDYhZ11QBgGNbZGdYiecK2XYGOXweEakBPcBoKktr1yBSQmIshSryeza75wTO
+ UDtmXytOxR3I5BB2bwuoPkQyAb5I4do8ARcGRvEbGrHwjSnCjQauSCnp6h8lEvQRCU6s1IYK
+ Wzc2oKoqpjlxLTZnuAu7/zTSH4clGchzFrgmIKZiFVSswgS46jkKugnuOnuMjH8BsucYxqK7
+ qI24DZ5Lm+CJZJvHf0Z27z+hr/40+upPAXC+L4GUktqKKEqeFhWZHSN74ShG9R0IPYBE4gy0
+ IoSGEm+YsWVmqvcxmEjxf3/vHRaURfi9pzdNuOSYjtyJONc7wv/zv3fQVBvndz5+J4oy8XNd
+ T660LZzeo4hIDUqwPO/3cyOb4ILOANX1izl28EOygWrWhItT+WM2EIEYwh/LJbgSQlBXMbVN
+ XjoWdvtOEAK1/m6EoiCMEKJ6LWL8SxcI1LLmKeU4jmRPSydBn87KxopJO9P1MDSVWNhPPBKY
+ tox88eka0ZCP0mhg0owwMpvEObUNu2IJSvnSCaPjhKqhVq8pals9M2gesqXjYKYS6IFw3psx
+ Z7SH1Av/DpAEfvEfUMbNqTfa5v7hJF/7X28TDRp89XP3TZlB7nqyUxkTTVXQNfcZHCmxbQdN
+ VSYNz3Qch1RyjGAojBACKcG2HRRF5BTJcWxsy0LTjfFrJKlUCsMwJh2FrY5dpN/4j6hVK/Fv
+ /cuCWr2ungGkdMCxEIp+zSyifu1rX/tawe48CY7jzLkaU5fLbu0c5AdvnSAa8lNeEswvllfR
+ AYlauRy1Zj1ivF7ajbZZ1xQsx2FFQwXNtaVTjt7Xk61rKup4O6SU7DvRxXPvtlBfWTKpYu3c
+ 8yHPvb6DpvpKQqEQiVSGf371EAOJFItq4kgpeX/Hbl7ctpvFtaWEwhFIj+C8//eIzAhKxbKJ
+ R3c9gGOm0BffjxJvLGh89MUxXVEUpHSwWl7GPPxjlMrl14Sj3jbnAMXk1PlBTrT309LR5/5C
+ SmRqECc5MPnmXtXRlmxFa96a9+ZtInRN5RP3LeeRDYvQVPfrMi2b7sFR7DyyHlxESsnASIrR
+ VNY1TDiSI2d6OXlugLYLQ5N+bv/xdk52DtPR2Q1A72CSg6cvsP9kF1nLHfkPtbRxvGOA8+fO
+ AeAkOrE792OdfRfkxG0UwVLUO38LrfH+Sa07jpT0DSVJZUz3PUuJzI7ijHa7o3o+2CZW+07s
+ rg9xhtqv+fPsG4TnAPetrqciFqS51l3GSDNJ+o2vg3TwP/YXMFHy2/QwmW1fB8C/9evgm965
+ xNVIKXlj7xm27TvDZx69g41LF+T1uZFkhv/8w/dZUB7htz++EU1VeGrLUtY0VbKioWLSz336
+ o/eyofUsq1e4bgyGruJId0+hKAJNUXiqrpv1Y/tZXuXWX1PKl+B76KvjLhfTH2M7eob57z/e
+ zbrmap55dBVIk8yOb+H0HMf38H9ALWu6rgyhGvg2fwFn+PyE+wlPAfIgFDDYsLQm97NkPN+n
+ UJh0EhXi0t8KvOfMmjaDo2lse+LZR0qJHOt1bd+1G8anfcHwWDpXqFoIQWk04G5Up6CsvJxI
+ NJrbW+iqQmnET0nIP/5Ygoqon3i5iW64yyhbKhzONFJphaiZVPL1UYRAwBXLPiEU933mu2QS
+ AqWkDqWkbsI/zzsFkNIBKcdf5PR6pjCC+B//OiAR+iSHbr4oxmN/AQjQQ+P3luDYbvTXDNa8
+ I8kMioDR1OS2+ey+72GdfAXf/X+IvvQJsqaFaTkk0yaOM327R1VpiD955h4MQ8ttpo07fwN9
+ zadRxgN62ruH+R8/3c2imjh//NktqNN81rqKKH/2bx7Ab2jjSmBg3PN7YKUQvsJ4xs4rBZCO
+ jXn4x5BJoK/9FcQMfH2u91kzm+XlN3aBkPzC1ofQdB2n7wTWoR+hrv0MauniaSvBhqU1DI+l
+ WVpfNuk1WuO9YCZzp58lIT/33FFHTVkk13GnRXYU/cB3EGVNyKVPIISCUHVEIJa7pCIE640W
+ lpU25X1GMhFCiGs250IzQCuc5W9eKQDZMawTP0eaKbTmRxBGY9FuNTI0yHsHW5ESHti8jnhZ
+ BdaZ7Tjt72OXLkIpXYyQEpkdc90v9OCECiGlhOwoCBX0AEIIVjSUs3xhee5yKeX4yG6j69J1
+ P67fjFq/iYvrL0NX+TcfXTe+ehCARNoWMjuK8JcghOLeK5MA1UDoPiZauzlD7Vint6EMtKIt
+ fhAmmAED6U4+Gd5BwOwE+RSI4nUzKSWJZJaAz52Rcu9L0UFVJ32niVSWgKHNLzOoUA2UeANq
+ 7XqUyhVT+pbM1MTqDwSoivlZu3QhDQ0NCCFQ4o3IQCVG8yPuSXAmQfqNv8Ru34HasGVih7hM
+ gvSrf4bduR9t4SZ3tBWX1x6AwUSabz+/l5aOftY2V6OO2/Wvrj1w+c/ScTCP/Ijsjv8XNd6I
+ EqlGJrrIvP6X2H0nUOs25c48Ln8XIhBDidSgLX4IJVI9YQfry/j45g5Jf+xOVi9vmtTEWQgz
+ 9pmuIf7hp7sZTWdZWleGwCb7/jdxeo+h1m6c8Dtu7x7mf/xkD4OJ9DybAYRAXbCu8HKlRFpp
+ 7N4W1MrlCM2PoqqsXXNl9FNWK+F0cBPNWtQtNeVYyNQAUvNPai5E2jipAbcTjWe8yJgWZ7qG
+ aa6No2sqlu0wnMy4rhU3cK4pU8PI9BDSTLq/sLM4qUEUX2Ry86VqoDU9fNmjS0bGMvQOJ2ms
+ jqGpCqYjSOhVjFD8CLaMaZFIZhgZywDS/ZdJgOMGGE38Gdv9TDLjnQTnI1uOZ2a4tHy4Eikl
+ 5oEfkN37HYz1n8PY8Ovuq7/4asetGT/ZfoyXdpzkUw+u5IlNTQjhdkIUFTGZI5yUyMyIe40e
+ QgLff/0w2w+c5ZlHV/PQ+kZ3Sh/LIKVNSWTyvKOO41w5C9gmMjWAEqp0R3IpXWXTA1ds7qd6
+ z5bt8I8v7GXfyQv8/tObWNNUhZSS4bEMAZ+OoU/uLj6t709KJDJXeUdKyWAiTTTkc89JpMRO
+ DiC1AJpv4n2alJKh0TThgOEdhOVD9+AYz755hHO9I5MefCmVK1CrV6FWuaO+bTts23eGbfvP
+ 5qwuS+rLWFpXSmONu2GUto156nWs1rcmP9gRwl2jG+HccmN5LEmjbKU+4npRZjNp3v1gFx8e
+ ODRpSnDbMnnulXf4YM9Bt2yrlDi9LZhHfoqT7HfbY6Wwjr+M3b4r7zxFihCsbKxgZUNFLgZD
+ CEEs7Mc3ReefDlJKrLb3Mfd9dzwD4CVz7sVDQoQAfwymcC0XQhCPBNA1tbBLIGtskJ37DiB8
+ Zdy5afVtU1Fyz/FO3tp/FoHglx9eibuBdDufUNw1uVqzDrVqVS7YZDCR5pVdp5HAhiU1xCN+
+ 7mgsZ3G5TiBcghACZ6yX1IEfgaoTabxvwmqSUkpM20FBoKruTLIy9R515TuIp+qAJVzo6uS1
+ XS0EDZUNq5cRLokjHUnWst1OKAQ9F7r4+a7TVJT4WH9HM36fgXnsBez2D1BK6lGWP4kzcBbz
+ 6E8QoUrUhZsQetBNNnZVEM/lKIrg/rUN3Lt6IeoNONlJKcmaNqrmoCoKUrozlGU77qwx7lOU
+ NW00TUFRFLBSmIf/FWfwLEr1arTajRO/r2wGRVGRmoq4jgoWVAESA0PUrVhHQ3ns+hfPIbas
+ qkdVFTaOH4ZJK0Pm7b8DKfHd/4cIn+soxmWb2NKon089uBIElITHD4jOvovc+z3sTZ9Hrd9M
+ Wo/zT2Mfw2fofF6LTDhgpLIW33puD7Gwn89tXY2hqez1PcgrvSE+61vPCqCmNMRT5ScJh0OE
+ Q0GQku0H23h7/1k+t3UNzXWlVJXH+GR8PxXVdfh9hhsZFix1rUAh15yqlDVhbPwNRLQGobkH
+ ZOaRn2CeeAX1oa9OevKqCIGi3thY39U/yv96eT+rFlfxC/csQSB4/v0THDrdze9+8i7KSoL0
+ DI7xref3smFpjXuNoiN8UaSVRfgn7mOOY/PD57cRDQf5xEceRFxnk11QBVB8Cq0f7qUtGGfz
+ 3RtQndujQkzYr/Lo+oWAu58hM4bddwqkxEwlQEw8162tESDAGg/4sPvP4AydxRxsx6lez1gq
+ yzmrDAOFZDoz4cZzLJmhvXuY4dE0qVQG/DrnRg16lVq6x6Apm0WaSTZFOhD+EsxMCnTBue4h
+ zvcl6BlMsLAyDOlR7ou0IgwHM5MGRcPOpkALYqUSONksIKDpcSSQHW+z1XsSZ6gDc6QbO1I/
+ 7feZzloMJtJUl4YRAgaGx3JBM+lMFkUI2i4M0tE7wmAiSSSg0T88Rnv3MGVRP9lMFkVmccwU
+ KBpWehQ76/o1dQ2MUhYN4tNVLNOkZ2CYoUSKTCaDep2YgIJugkf6uxjJCHrbTtG48T7i4/1i
+ rm+Cr0FKnNQgSAcRLLu0qZQy939nrI/Ui3+AAAIf/yYiECO79ztk9n0X391fRF/1S8hkP10/
+ /iNUzaDq6f/sboQv/zrEpU2epipEgq67sWU7dA+MUlMWQVFEzvXBkgpGuAwJmJbDQCJFRSw4
+ vsSQyNFuhB4AX9TNQGFnkKO9iJLaSU3C0sqQHTyPUd6YuyaX5nCKQ67Lr7Fsh28/v5ejZ3v4
+ 0ifu4o5FlUgp6ewdprQkhN9wO2k6azGSzFAZCyGEoKWjn7/9l3fZsLSGL37iThQnS/rVP8fu
+ OUbgI3+NWr2KA6e7+dZze1jfXM3nP7YeRQj6eroJBIOEwpFJ25jzGJ30CaZBKFJCOjFI1ZI1
+ uc5/WyIESrAUJVSeW6v2DSd54f0T9I+4JkWhB1ArlqFULIdxX3eldLGbmSG2MHdNWXUDsZpF
+ 7qZNSpzhc2QP/CC3Mb24yYuGfLkvU1MVNxJtfM0thEAJV4Iv6m6ahcDQVapLwzn3ZyEESqR6
+ /NBrPAOF5nfTr0xxHiI0H6KkLndNJp3m9Xd2c+T4yUln9axl8+ru07R09COlRBGCRTUx6ipL
+ iEfcpVU6a3GwtYdzvSO5z3X0jLD/xAVMy50JYz5Jg3KOxmDCXcsLjVM0sz21mqzmmlhLI37q
+ KqI01sRyFq7S8gr8gcnd1lMZk1d2n6a1c7CwSyDVCNK8bEUhRc4Zth9o4429Z0hnLT798B0I
+ PYjvwT8ByG2M1cb70KvWogbckUnqQYyH/xQQCE1HSgfz6HOYLS8DAmPdM9Nuj+s+7ICYPNjl
+ 4jU34hd1pvU0P33rINUxH00LFxAIXevleqZriJ++28KCsgh/+qv3oaoKH9nUzGMbF+cC4I+3
+ 9/OzHadoqO7j95/ehKoq/Hj7MVo7B2msibF8YTll6dN8uexlDKcDIR8gbcGLAyu4YNazMOFn
+ VbnrL/SVz2xG1zSU8cHoar28+DtX7wXH2vp46f0TNFTH5tlBWBG5d3U9mazNQ+sa3V9MkOpE
+ CAGaP9chM6bNd185hF/XeOaxVeiqgrb8STeWoGn62eCklFin38A69iLGPb+LWr5kgmscrFOv
+ Y7X8HN/dX0Ipnzo08yKxkihZfIRDQXTfxEE0jdUlbL1z8RUBPIoiMC6Li4hH/KQyFtGgz7Xy
+ CMHH7llKS0cfi2rGQ0/DlWjZQdRwGSgqfl3yePwUZ4bOsDjqujbL4Q6cd7+B3fQIYvmTSCl4
+ 9q2jxMJ+ntjcDBJe29vKkTM9/OrWNVTGQyxbWMbD6xexorHcOweYLjI9gkwPj3uWCqriYZ55
+ bBWV8fwL4CXTJsfa+jhytpeMabsn1aWL8W3+bZRI1YzaZ3cdxO4+gjNwZpIHcLC7DmD3HMMe
+ nOSaCRhLJlGxSKUzuc191rQZGEnllkSGpvLQyjKW1UYndQUfTWUxdJWxtIltu+/wjvoon7yz
+ AuNimpT0EEILjL9nB2yTlRzho5EP8WXd4CRnqIO+7vNkzu13D8Ech46eEY629eI4Est2ON7W
+ y+nzg/QOjQEQ8hs8/eAKVjRUeDPAdJCZBKmX/tANiHny71CCk3tlTkU84uePn9mCqiiE/IUz
+ EgjAt+kL6MueRJk0aGQ8/5F0bigfkR6pQoTK0eMxFM2HZTt8/41D7Dneye89vYnlC8s5d+4c
+ f/ud11lSF+f3f+2pCU2RmupuzHVNcQ+hHZvM9r/D6thN4KlvuCZX1QAchGK4TyUEqJqraOOz
+ a4vTxLcHP8OGqlp+HYGmCj63dRVBn46qCFRF8BsfXc9AIkV95bWuGd4MMB0UDRGuQIQr3UDr
+ 6SIlFaOHKB07OukljpTsbenk2NnenJ/PwEiSbfvOMDZZPIAQCF/Y9Usa7yhSOpin3sDuOnhp
+ 86rq4JhTnppejd+nU1Mepaa8BEURCAEljBDNdhFQ3WRMPl2jhCFK9bSrjVJiD9I3S9YAABJw
+ SURBVLRitrieuAAhv05VaZiq0vClPYp0IDNyKXOdqrvxE6rOxQCkjkwpe5KNmNJ9roAmiTBM
+ TB834wJ9wymGRtO5Ng+NpunsS0yYMtObAaaB0AP4H/1zd/kzg2xrcrSbzLvfQKgG/l/85oQn
+ wX3DSb7zygEiAYM/+ex9RIIGz793gr0tnVi2w+N3XT8sEEAOnyfzzt+jRGsIPPXfQNWRqWGE
+ EUamBvJuc0UsyB/9yhY0VXFHcTvL48o27is/SDy7FKiilD7+YMF2fKF6BJ9COibZnf8Tp8/N
+ Tq013ktdRZQ/+NQmQkH/uBwTmR4BPYBMDwENyNTQ+M/uEiidyfCjjho6B2OUd6dYVQX1Zgv/
+ rvxlgixDcA+mLXhl92kA/uCX78aRkmffOkpb9xAhv87a5uornsdTgGlSiDSDwh9xA+Y136TF
+ s8siAR5c20BJyE8o4I56D6xtwLRs1i2pnvAzE94rWoO+/EmUWAPoAZCSg/Zy3juf4dNqPbV5
+ yhlNZfnhtsM0Vsd4dMNihKKhheIEzH5E2N23qKVNRJY+iFKzxo1jEApKqBz7/B5E2I0/lmO9
+ 6Du/hay7E7nsI6BofKA9zKGBKn4j2EAUSAQX8Z3+h1lfv4YHFBXDFyBavoCzo4PEK9xT+cHg
+ Er7fv4lNDWu4R6joKqxtqiIe9o87xzncFz9PWfcJFpV4McG3FDI75rpEWxkwUxMuRVRV4ekH
+ XNPyxaXCopo4n//YhhtKJSIUDd/dXxr/QWBZFge7BceztbT2JKm91lA0IT2DY+w/0UXfUJL7
+ 1zTgUyVmcoSEEsd/8exCD2Bs/HXQQ+763rZxkgMIzY9MurONM9jGcPthwtk04eZHsYXOvqEy
+ jtsr6Bl1iJZAVwIOyxWI4VLucySWLUlKP4Y/SMJ0n71jRNDCcrTBGJsdiaoqPLZxUe5QUtoW
+ a+y93BE9gj+9Fa5SdU8BZhERqsD/6F+4a9wpYlyv7uhCcF0nr0kE5f6rqgpP1fexangnq2tW
+ 5i3CsEaQY30Y6QwKNo5Ueb5/OXu6YnwxGWYJ4Ax3kPr5f0CtXoPvwa+Mp30Pu51y3M26LRXh
+ f3Y+wAq9jF+VrqPfrz2xlu6BURZVu34+S+tL+fIvbaamLJwzo/7aE2vpH07mMnT4nVGsRA8B
+ U0VM5P8vFIQRABz3FPwqPAWYRYRQUKtXzViObTu0dPRjaIKm2rK8Z4Z42CBclsE37vJh2Q7H
+ 2vqIhX3UVURdj9XRbpyuI8hF97q1E4RDXB0jomhczAms+MKo/pLLzj3EZYdrbvil8JeghCty
+ 1huh6qj+iBt8M47jONiOk+vGmqqypukyc7CUVIp+ytUuVGKAga6pxIMK4SmsaMIfc0/KJ4i4
+ 8wJibrLsYsg91zvCf/3XnQR9On/8zBZCgfzkSyuLTA8jQmUIoXCma5Bv/mgXZSVBvvKZe/AZ
+ Guk3/gqzfReBh7+K1ngfVvcRen/2dfyl9cSe/CvQ/GQzacZGE8RLyxEX/Y6S/W4uVM3v+jRZ
+ aWQmMe47peA4Dn09FygpieELBLBsyX/7152cONfPV35lS26Ev6K9Zor0a3+BM3AG/yP/J+qC
+ dTiOw2B/n5u6xefuy65MjSiRZhqZHUMES69x+/DMoNNAOhbZD79Pdv8/uwUu8sTuPYH17n/B
+ 6T/tdhI7S3bvd9zqJc7087kHfTqOIzF0ddKsz9I2yXzwD5jHXkBKN7TS7j6Euf+7yFE361t5
+ EFYoJ1gf7kLXxv2OFj2IWrPWrZgDqCV1xBetJ9y0BVT3JPhoxxAv7OliODn+LrJjmB/+C1bb
+ +5dqHGt+lFBFrgOK9BCRk8+idu1GSomqCDYuW8Capiqq45MkEVN1t1iglcrVVFYUhbKKylzn
+ l47Dq2++x+59By89Z8cuzAM/gJSbAU8mB8i8+w2ss+8WXgFGu8+wfe/kdu3bgkzCLft5/KUb
+ MiFaZ97GPvM2VsdOwP0izOMvYh170c3GgHsgJNOXRZ5JicwmkVY65ynqZkLI5K4ZS5s4UpLK
+ mGTNiRVJjvW6bT76vFt1xbHdipSn3sTuOgBAMNPNr4Tf5EHeQthuZ1Yb70W758s5C4/wl+B7
+ 4Ctod/wiQlGwbIf3D3fw/uF2zna5HcwZasds+TnW0ecmjS22+0+ROPUu6eOvgJ1FCMEDaxfy
+ 2x/fmLN2SSkZS2cv2e9tEzM5QpIATnro0vtJj+QGEMvKcuDYGd7ZdwLLssDOkm55hZET27H7
+ T7li+k5gnXoD8/hLhc0KIe00R050IWSKugW1uS/IcRw3oqfAFEvudWVrPpRYA1r9ZpTyJeSb
+ +k2JL0SGqnNZIYQeRInVozZuQSldBIB18hXXXh+pQkTrIDtK+rU/wz7/oZvmRNF4+8M2vvvq
+ QSrjYSpjQYJ+nap4mHXNldROkrZdGCGUkjr0xQ8jorUgFNRYA0ppI1rjfW4qFH8JSnQBetND
+ bjEQwDzwQ7K7vo1WtRJx8cQ7t7Z3fXwWlEVorI6xpqkKVRHumju6AG3JVkSofML2nB8z+Mf9
+ OkOl61m+ZFFu33L5/qWrP8E3/vcORpIZltWXYzsOP9rTx6udFSxbuZpISRynr4X0638JmRGU
+ qtUoQhA8/xbrypOUL92MjcrzJ3Re7qplyaqNRMNBlFAZIlKN1ry1kJtgSdvxw6ihOH3nXd8W
+ VciiB8QUi+vKrnKzSziWDeTZDr0Emh7HUlW4WBWl5k5XjulmMXCSgzjpYazkMI5pQiaFkxxE
+ SOEGskiV7v4hLvQOMjicwDRdi8nqRWXYtj1ptRUA6u/DBuyL1wSrYFGVWznl4u/qt1xxzWBf
+ N+d6LJaPDqGXuFnlWrsGKQn5qYi5Fp3KWIDKmGtpMc3x0brhwSvvdRXJjMWo42MkI8hmzUsx
+ vZcxOpZkpL+boQGDrJnFNrN0ZwJ02zESaQvTNJGpBE56BHusH8wsSIcV4UHQA5imieUILmT8
+ XLBKGEk77vtxwPaVoSj+wlqBouXVZIfGyGQy2I7E57sk3tsE5yFXSuSqpzEa70VEFyBUHalX
+ oH30b9z1byAGSOzRPvTMAHZyAMNoyk/2NHmup5kP+0J8IRFinWFwtmuIf3zpAPWVUX73E3fh
+ M6bXhZr0C3wx9hKxYBMB/W4349tVLNK7+T9KnycWXI1Pv5usEoBwDdrYEEqwHMMwkHUb0J/8
+ W0SoAmH43fiDe74EWgDN8IPlAAJNU0FRMQwD69whzHf+BlG9ppB7AEFpVR1Lli7lI1u3EvR5
+ FtYbRgiE7keJN+RMihcDWZRc5JlgaUMVC8sDLKyZPKtzoVjWWENdRZjKCnf5E4v4WVQTY0lt
+ KZrmWnyOtfXxk+3HpsxVejWKL0wlfQT9BihuRrdDrd385J3jpLMWABk1wq6hKjrsakBBVRSC
+ AT8OCsGLlq5MAvPU6zj9py4tuTv3I3uPIwFNFSxfWE7TgjgV48UTU0Y5Lw2v5oSyvPDnAEKI
+ ooz2Hi5CCDauW8WaFc3ovpm5Y7gZH9KTpmUEuP+ejdy5dhnBkGuvLwn7+eIvunW/VEXBtGy2
+ 7Wvl4OkeGmvirJ/EPcO9V8Y9jBICmR4EobhGBMfCFgo/33mKlo5+Vi2qYEldGWcuDPNaYhWd
+ HUHucGwsR7jJrIBEMgOAfeEg1pGf4AyexV+1EqRD8uRbaAK0uo0oqs5jGxfz8PrG3DKrdcTH
+ 29k7Od9X6h2EzUWEEBj+qdOaXw8pHawTL2OdfB1j8++gVl5bQhRcM6NuXAriEXBFcl1NVXhi
+ UzNNC0pZWn+t7R7GkxIfehb73G58W77spqesXIm67nMYVStA9aECT21ZxuoLQyysdE2cTc1L
+ +KV7B2hqrENVNVQVntqylM6+BI3jp8UiEEM6FkqowlUoFF7IPEgkYPBxoebSqyuXBeM015Xy
+ 1L3LaFoQ9xTglkJKpJnCGTmHEmsoeLX4K+/l4Ay24Qyfc88BJlGAaz9mI4fawR9FCZQihKBp
+ QZymBXEmtYZJB2egFWeoAyc54C7xjDDqyk+iXJZvaNnCMpYtvBRbEQgEeGLjQnd9P/675ZUq
+ yyKg6OMB+mbadbOwMm5MtRT0yzISWbeQx0Rr/KBP54lxL1rvJPgmy55KrpQO5oc/wDz8I4xN
+ v4W+7KMFkz3BzZCZBM7IeZSy5ikr1V8u1+4/RfrVP0ctb8b38J/m6RUrcVJDyNFu917j/v7X
+ a6/dfYT0q3+GWr8Z3wNfAcci89bfYPedwP/I/4VauQJpmzj9p1CiCxD+KFJCZ98IAUMjHr1+
+ PTdvBrilEIiwG3ElQkXe4AqB8EdR/TeWwFYYYZRwFSKy4AbSnguUQHziUlJTfcofRYQrUaK1
+ 4x6AKkq0FpkeyuVSFaqOWnkpEYMQUF0aviJFzZT38GaAmyv7usWhpQNmOlcLoJCyp8sVcqV0
+ lxuqdilyqxByJ0BKCVbaPaQbX8NLxwLbzPkYTcSsFcr2mDlCKDCDyjVFZ9xUe3NuJdzgnct/
+ p2gwQ8W7HM8Zbr4gJU6iO5fJwsPFU4B5gkwNkH7p35N++++QdnHyqc5FPAWYLyiam5RLDzCT
+ 2r23G94eYJ4gfFECT/1X16eogGvouU5Bh4Jscpijhw/SdmGwkGI9CsF4riCh+fLOAzofKKgC
+ WLZNeWUNfaePkiiep7KHR8EoqAIEgwE6Th4j5YsR9JaZHnOAgh6EJUcTaP4gJ/e9R9WaB4hp
+ lyrEFCNyqxB1Zm+2bK/NxZfrpkOXefW5gu6G7MwI+/bto6RmMaU+UIQXEHOz5BZT9lyTO2sn
+ wZGyWu57IN8kex4es89N8QXKZrM37NeSD7MWFH8Lyi2m7LkmN58aZhe5KQbhYkWJFcvJrpiy
+ vTYXX67juPmA8tlf3BRbTbFGvGLJLaZsr83Flwv5jf5wk5ZAHh63Kp613mNeU9DMcFPR3X6S
+ g0dbqViwgIH2Y3ywex8ZLZ5LrpQvtjXKgfd2MmpEiRs2b7+9jbMdPZTX1WPMUJ37z59i194D
+ dPYnKdFSbH9/N0MZjZqK2HSSkefIjPay44PdnDh9jsrKMNu3v8O5zn4qFtSiz7DNna1H2PPh
+ IXoTkqA9wLs79jDqBKgui1z/w1MwNnCeHTv20trRR3Vc5Y3tO+juHaaypgZthm220iO8/vo2
+ KuubOLJzG4dPdVFVW4sxQXKsG2Wo/RjnurroO3+K/UdbcYwIpdHJ+9hNU4BgOIaTHiEYL6et
+ vYvNW+7h3JkT1NTU3JAcIXTiYYOErRBWHYbTDivvWEkkYMyokwL4QiXU11YzNjxMz9Aom7fc
+ w9CFM8TKq9GU6UtXtQC19XUoyWEs3Y9UfaxYvoywX59xm0ORGOGAQWI0zchoks33bOFCx6kb
+ fq9Xo/tCxGMRxoYGMQwDEY6zvHkxQZ82wzZLWo8dRfoMSqOCIbuWjQsFZ8cCVERmdibgZEc5
+ 1j5EYzRN7wgsXnEHNeUx1Cm+u5u2BFJU9dKLGy/ePB3LqBAit3nS/AHCuuDE/h2cG5m585GT
+ HuVEaxv1zUvQVcXNcykEE9VduBGkY9F2uoVgXTOVsQgBaXJs/066RydOHHtjwk16+4ZRdc0t
+ RXSxzTNE4DDQ24di6BglpeiZUQ7t381AcmZtTvW2crwrwVB3J70Dwyiahqqq2M5M34Xk5KH9
+ JDNpzvamqKwsp6vtFAeOn53yUzfNL7bt+IfsPXic0oRgcTDL66++SkXDHTcsx0oN8P4Hu+iz
+ FPQNa+ntHSCVsVmsz/xLP35oD52jguExk6Zyg1dffY1o+UJ0dWayR7pP8eHRdspKB1iydAm9
+ fQNkLAefNvM2nz1xjJ7+EUQgztJyjddefY1YTX5Fr6dioKuNs50XsG1JeWKYvr4BTEfJpU2f
+ Lnp0AZvXR2k7eYhwaQPde97hjdM+Nj3YMOM21y9dTTyVweo/SX9/PwODCcoWTj0TelYgj3mN
+ ZwXymNd4CuAxr/EUwGNe4ymAx7zGUwCPeY2nAB5zCyfFy//6Q5599jm6RtL5fWbgJD/fc3bC
+ P3n5MTzmFukLHO9U+PxvPoqhmbzz6hv0Z308tvUBWve9Q3sqwt1L42zfdZS7H3kcq+so+3a9
+ S2/loxOK884BPOYcbcf28Oq2Hdz5+FYO7jjK46sMXj+v0b73Q0oCFucDq1ke6UJEl+GMnuOZ
+ R5bxz4cDfP4jq66R5S2BPOYWI+fZeew8fp9C1nLobW/hzX3tLGlcSHlZmEWrN7KqQsMfq2X1
+ 8jrUzBBv7zjAZI4W3gzgMbeQDqlUCgcVXYzw3Eu7efLJRwkGfGQzKUwb/IZGOpPF8AUQjolp
+ OaiGD59+bYSYpwAe8xpvCeQxr/n/ATdFfy9jONz+AAAAAElFTkSuQmCC
+
+
+ iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
+ AAAgAElEQVR4nO2dd5Bd13nYf+e217d37AKL3isJghUgQZGiaHXJsVViR45TnMjOZJRJxkmc
+ KM7E0XiSsZI4siRrbMk2FVuSKVGkJDaQACiwoBO9LrAAFtv77iu3nfzxAALv3Qdgd99b7N3F
+ /c1wBpyz597vvXe+U752hJRSEhBwj6LMtAABATNJoAAB9zR3RQEcxymqr+u6JZSmdIyMjMy0
+ CAWRUmLb9kyLURDbtvHTrvuuKEAxA9hPX1Y+QoiZFuGW+HXS8NvvGWyBAu5pAgUogmK2dgH+
+ IFCAIggUYPYTKEAR6Lo+0yIEFEmgAEXg50NwwMTQZlqAgLmDdCzsi3sQAtTWxxCKOtMi3ZFA
+ AYrAr7b2mcIdvIh18HsgJaGKBahVC2dapDsSKEAR+M2mPdOIWC1KxXwAlFjNDEszMUSxwXB2
+ ZpzTx87RvG41EWuMI+8fQyQa2LB6Ceq1LbJlWVM+MNq2jaIoKIr/jiujo6MkEomZFsODlBLL
+ sjAM466/F7LDSYjCv5dlWWia5pvzU9GjynEc4ppGWro4rmDFhi0krEHGAgvhPYcQAiGUWw5+
+ P1L0FigULSMRC2EB4WicS+dOYjQsoUy7EffhOM6Utwuu6177Yv0xY9yM4ziYpjnTYhTEr7IV
+ Mxamg6IVIJMc5mp3N7aqkbHH6E1r1MfS2A7o2o3Hz8Ut0NjY2F3fZkyE6wPMj7L5bQtU/CHY
+ dYk0NCAQlNU0Yg0MZWf+Egjnd/zyIwZMneK3QPFKFscrP/j/isrqYh85a9C0wIg22/HfviIg
+ 4C4SKEDAPU2gAEXgRytLwOQIFKAI/GiZ8jPuWA/22/8Lu20XUvojYy34BYsgOARPDrttJ+5Y
+ D9b73wcrPdPiAIECBNxFtNZHEXoEfdWnQA/PtDhACWKBJsJcjQUaGRmhrKxspsXwMFOxQHdG
+ XnOE6b7xofhvVM0iLMuaaRFmGeLaf/4hUIAiUFX/J3wE3J5AAYogUIDZT6AAAfc0RStAaqSX
+ 997cQ59pkRrt48CunXT7w8I17fi1+lrAxCnakG1EK1jYWIuDxIiUs6S5hqFr4+JmA9NUjU1S
+ yg/+8xuWZflSruv4UTa//ZZFK4Cq6WiagnXTv69zvXCU67pTTiB3XRcppS9nWyGEbxPjHcfx
+ janxZlzX9VVBsaIVYLTvMvuOHEF297JuYQunDx9nrCpJ1eaNJMLZx0sp56QfwDAMXxbHuj7L
+ +lE2wFcJMUU7wqTrYDvZ2VlVFJxrM/XNH3KuOsKCpPjJcblnhL/dcZQ1C+t4+oHFqD74TYuW
+ QCgquq6j6zqKeuPfftHw6cRPS/ls4PSlPjKmzd5THVi2P7a0QTRXEQQKMDk2r2xiNJlmWUsN
+ Id0fPpQgFqgIgligyeO3pHj/japZhF9+xICpEyhAwD1NoABF4FcfQMDECRSgCPzonAuYHIEC
+ FIEfD5kBkyNQgIB7mkABAu5pAgUogiAlcvYTKEDAPU3RCjA+2Mmun71OV8ZkrO8yO157jTf2
+ HMTxT8j3tOHXaMuAiVN0LFCsspG1y8exBPQPDrHx4e2Mt7/PoAmV2tzOByjmc003fpVtzuUD
+ 5COlRLogxI1QgWJueLne149hBzMjl8TpOIhz9SD66k8jooXL0fv1OwN/hZAUrQAjPe3sPXYM
+ OrrYtHIJR97biV7exCMGiGs7LCHElCsoSCl9GwxnWdZdrwwhzXHMw38DQsFt24Gx/nPev5Gy
+ qO98OnFdF0VRfKMEQTRoEQwODlJZWXnnPywh0nWwT/0Mp+Mg+qYvolYv8f5NEA06YQIFKIKZ
+ ygiTrgvSBqVw4lGgABMnSIiZhQhFAfw3uGcj/ptWZxF+Ku8RMDUCBSiCwBM8+wkUoAj8aGUJ
+ mByBAhRBoACzn0ABAu5pAgUoAj+GZwRMjkABisCPsTYBkyNQgCIIbomc/QQKUAR+9E4HTI7g
+ Fwy4pympAoz0Xmb3rp0cOnWRe8FH6qe49tmAtFK4F3+JO3QJfOJFL+kmtre7hyVrNzPSdpQh
+ q5UKrfgbYq739WPYgeM4vpTrOn6TzT7/JvaJn+LqEcLP/BFoM39ZdkkVYP7ipRw9epSB/kFq
+ HHBE8Rlh12868et+26+WID/eEONGa5FCgYoFWI5EMPPfXUkVwMwkcaTEqGiiMgSqKP6GmOuD
+ 348KENwQMzlky32IivlokXIUfeZnfyixAkTKalizrhzdCKH6a/IJ8AFCKIhIFcJH5uOSTquK
+ ohGJRNBU/83W04Eftz9SStz+c8i+09nEmYDbcm+M1GnCj6EQcqybzO7/gbXn67hDF2daHN/j
+ n7VoFuLHlEOhGggjirBNhBaZaXF8T5ATXAR+vSXSTQ1imxmMsvpsfRofEeQEB0w7IlwBquW7
+ we9H/DetziKClMjZT6AAAfc0E9gC2ex84S85O7KA5grBkx97KijIcQ2/OZoCJs8EVgCHtCUY
+ 7bxI73Bq2gUKCLibTEABDFauWk0s7tC4aFGwZwqYU0xgPKfZ+84pNjywhXk1CQK7wg1M07zr
+ 75RSksxYdA2M4fjQEedXxtMW3QNjuG6u1X8CCqBh6CYXL17kalc/wVd+g5nwTVi2y3OvHeUb
+ P97HgdOdd/39sxHXlXznpYP877/fy/GLPTltEzgES4xYLeu3PEgsHOV2lXAGO89z6PhFhJHg
+ oUcfIDzH90szkRMskaQyWfNrxvRfLJIfufGdSTJWbhLTBDzBNsf3vseVwTHilc1seWD1LbWm
+ 5/JZOocsXNNi+Yb1hMi+zHGcKc+Wruv69rKH8fFxYrHY3X9v2qJ3aJz5deUoSuHvxbZtXybt
+ O44zIwXFRpMm/SMpFtSX5/gHJ7QCmOk0yWQSLWreNtXRcRxC4QiZzBiWA2HtxpuKHcB+VACY
+ GbniEYN45PbG6JmYNKSVxNz754AktOV3QAvdUra7TVksRFnMK88EFEBj7UNbWWWnePPNfbf9
+ S0NXudp2AUWLsFS5sUeeqzfE2Lbty/KIM3VDjNPfAX2nsv8z2oFas9TzN367IWZCjrBDb+3g
+ Qu8QRBpvawWqnreU7fO8H3qu4sfBP5MoVQvRFm/P/ruydWaFmSATUACF8oYFrAyrXLDKAj/A
+ TQQKkIvQQhjrf32mxZgUExjPLpdOHOLA1Qzh8QEfpDH7h1Qq8IzPdibkB2hZ1EJCZLCNeOAI
+ u4lIJEg4me1MYAuU4XzbII89+SRh3QgSCALmFBNYARSE1cfPX3yRXW8fCbZAN+HHpPiAyTGh
+ YLj1960Hx6apdT5BAPAN/JgUfyf6R5J884X97Dhw4d6JJZIS6+SLpF79T7hjuaEQE1CAFO/t
+ v8ivfu4fcHH/e6SnScbZiB+T4u/E0fM9DI9n2HPsEmOpux/MNxNI18E6+iMwx3Ha385pm8CW
+ PkRLg84Lz79AvHFZkAwzy1m/pJ6r/aO0NlTc0Zs8VxCKir7pN3C7jqAufCy37XaxQK6TZM+e
+ ozzy2GbM5Ah7D57mkce23DYgrhBBVYi7y+1uir/5554Jb+xMVYXIfm6JQOQUC7j9qJIpOtq7
+ MB0Q0uTqlZ7gEHwTszEp/nqMkF9CEe4W2c+seCpl3HYLJNQqNq4s44fffw4UlU1bP0zh8KZ7
+ Cynh2IUe9hy5yKe3raau8u5HhAaUhgmEQ8sP7jK406zRc+kUx893gmKw+eFHiF/b9cy1LZCU
+ kj/83m4iumBJSy2f3rpypkXK4XZboJnGb4WxJjCqJr5k1s1fweOPb6WmPEF4jnvMPrJlCbqm
+ smXlvJkWJaAISl4acbzzDFdoYnljHNu2kVLOyYQYKWFsfJxE3J/bn5lKPLkTxcglx3uRyX6U
+ muUlq3pX2nla2pzpzrBhQzz78JsykubSFug6Y2OjvtxmXJ/T/CjbVLdA0kqR2vVHyNQg2tav
+ oM27ryTylHZUScniJUvumYA5PyrlnEUoiEgFQtEQRulW3aA6dBHMRj/ATDPlFUBKyIwirSQi
+ Xpc1aZaAOX5UDZgrCCEgXIYIl5X0uf6bVmcRfruGNGDyBApQBLPRExyQS6AARXArc550HewL
+ u7FO/QxpzZ74WSklPYPj/HTPaboHxmZanLtCoABFcEsFGOvGPPQc1qmf4fScKPl7pZS47vTc
+ Uv/SO2c4f3WQ53efuuW7petO6d1ZuaWvto6BAkwDIlKJUrsMJVaLUt5c0mc7ts1rO3bxJ996
+ josXLpT02QDrFteTSltsWtbgaZOOjfX+35J+7Q+QQ5cm/ewrvaN844UDvLqvzTfJOIEVaIpI
+ O409eAkZW4FQclcCoUcIPfS7IF3ELaqj3fbZro0c7UTE6jz9zUyavScuI+0MJ85dYuGiRZ7+
+ I+MZMqZJbaU+KXOjEIJNSxtZ3VpLSC8wNOwUdvvb4Jg4XUdRKhdM6nOdvtTH2Ng4753I8PjG
+ VlRj5udf9atf/epXp/slrutO2f3ty1AIKcns+V/IEz9BDZehVnsHoVBUhKpNyWVvHf8J5r7v
+ IJMDqI3rc2zeqqZRE1dRBDy2ZSORaDSn79BYmj/7yT7eO3GVVa11xCaZ9CKEQNfUwt+3qqNE
+ axBGDH3pUwg9PKlnV4ydZOTsL3mouo95KzZ7Jo6ZIFgBpkpmFKHpYI2X/tnmGCjatWfn7peF
+ EKxojLBMk2hx7+C2HRfLdnFcF8sp9TZDIMLliHgtqJN3bCbkEM+WHUFVaxF5hfallMjRTpyO
+ A6jzH0KJ1ZRK6NsSKMBUEGA88ntYV0+hLShNTMrN6Gs+g1K/FrVqIULkzZJ2CvO9b4FjgZ1G
+ X/PpnObqsghfenYDGdOisSpeWsHMsezKZCVBgr78mcn1dyww4kjXhfyDsHQxDz+HHLqMO3iR
+ 0MO/Wzq5b8PMb8JmJQIlWg316ya9DZjQ040Y2ryNiEiFdwul6Ki1K5Gug6gqsPUSgubaMubX
+ lRUsnd7T1cm3v/t3vPr6G9j2JP0YWgilejEIdUq1P0WoDDnUnj3X5Cu2EKg1y5GOiVJ39/Ir
+ SroC2OkRDhw4hIg1ct+GZZPOHZ5tOI5z5z8qMULV0df9Kuqibbc+hGZGwcyAXuNRoJNnL9DZ
+ N8zVgXEevH8DZRVVk3i3gXH/b4GTAWPyMVAyNYhSveTaCpJ3UYVQ0FY8i7ZoGxglXrnIXiaS
+ zFhUxMM555uSKkDXlXZqF66luSaBQm6oQDG2Xyn9ZTu+juNMjy3+9i+1MA98F6f7BMam30Cd
+ /2BOs0wPkXnzv+NaabTt/x4Rr89pX7tyKR2dvcyfV0s0npi8/KqR/Y/J/6bqgodRhi6jNa4H
+ 1fD2FyqEyqb07NvhSslfv3qEK70jfO7JNSxrqf6grbQrgJmi/eopLp02WffgVsr07EHHdd0p
+ V1FzHAchhC+jQaFwdTgpJW1XB0mbNsvn16CppZNdWhmc4au4COzRbmTe+2VqFDc1lPVGJ4cR
+ 4eqcdiMaZ+maTdSUR685pUpX5kC6Dm7XURCgNKzzRGymlXKOlX+CplgZjbaDEHfHF+C4Lt0D
+ Y0gp6R9OYjeWf9BWUgWormuiY6AdV2go4kZCjJRyyuHQ1we/HxXAMIyCn6t/JMkPdp1CSvhc
+ JJwz4xSL1DS0h7+MO3gRtWkjIu/9srIZ9ZHfwzbT6LVLPKbGQ+d6eHlfGxFD53c+eT/xSOlq
+ /bkDV0gf+A4gMbb/AUpFS077eyc7eePgRSIhnd/77BaMQr6GaUCTki/9yka6B8ZY3VqHrt/4
+ TkoqQaJ6Hps31yAVDUP334C9W4R0jYpYmGTGIhEtUJsnPYx56G9QKhagLX8GoeT+DJe6h3nj
+ 4AW2rJrHivk1eTZ5iTvQhtNxAKVqIcLI9QMIoaDUr0ZYVkE7e4WegcGLVNaWoSuT22ZI18E+
+ /yZuzwn09Z9Didfm/oERQ4SyZ4NCSSu6pnCld5RFTZUeP4OUErfrKNbZV9FXfhy1dtmkZLsd
+ QgiaqhM0VXvPLaVVQSEwQqW3iviVW23r4hGDLz69Dst2qC1QMsXuPMLIpaPoHUcpW/AIIlqZ
+ 077z8EW6+oZ444DJ0uZqNPWmwWKlSR75ezKuRtmFtwit/zWvAFYSTBN03XMIbnVO88+aDxNS
+ HAz3CcgrdCNdBzIjECrzKpA1TvLYi5iWTXnluxirPpbTrMRqCT32FRAgot7D9UjSpKkmTtq0
+ Pff1Ih3SJ15ifLif+MkXidZ+xfu5poF7d5ouAbcqjptMW/zgzeP8zWtH6BvyOsp6jYV888om
+ fjS+DUuNetofrOgh1rufB8svo4rcgeIoOi/bT/Bnbcs5p63x9JWZUdI7v4a9649wk/2edq1x
+ A+W1jcSWb4dQnrVFSuyzr5F6+fexT//C09eSGi8OrOQbZ1tpt2o97W5qgMw7f0pmz/9Bpoc9
+ 7WsX1dFYlWD7poUYWq5ySRTe4SH+7/llHFIe9PSdLgJHWBHcKuUwmTbp7ukDJAMjSeoqcwda
+ b1rHrlpGl1Awnfw5GOrtNh5tStHstoF04SaDsu0KzqeqsCvLuDIeYnVeX5keRo514zoOMjUA
+ eR5VpayR8LZ/e8vP5PaeRBhxnO5j6Cs/mtNm2Q4XRsOkNJ2OYZv82+Bkagg53vvBv0W4PKe9
+ oSrObz27vmBKpAQumxWEGlfRnirjkVtKWBjpOrh9Z7PhGlWLJhw6EyjANFCpJfl4ZDcpR6HV
+ WADU5bSvXFDDR7YsoaosUrBA7ZvmA7w/dImF8Tq+gJrjTxFkk/FTGbugdUkkmjA2/zaOmUIp
+ 4Ci7E/rGL+Jcehe1ZYv32UIgFIW04xZ8t1K5AOP+LwECMckoWEUIPvrQMk6297FuUd2dO+Th
+ DrSR+eXXQQjCT/8hIuZdoQoRKMA0IBEMpCFpujjSOxMZmsqDq249QKQWpiup0aJ4z1NCEdRW
+ RElmLMrjhdoV1ObNuJblOVzfESGyIdwrP1awWVVVahIh0ukMZYkClRlcBznafe1D5K5cd361
+ oLYiRm3F1Co+CNXIBh8qGkKZuGUrUIAiuFVKZP9ohh39rShCsrDfYU3T5J47mjRpqk6QTFue
+ i8kNTeXzH1rLaDJDdZn3/HAnpJRgpUDVEQUC2lzXITU+TiQaQ8mL4A2FI/zGZ55ibHiAmqaF
+ 3r5D7VgnXgBAaVyHOskVSLoO2CnQo5Ou+iAq5sO2P0BR1WwIyQQJDsHTQEVlJWsW1TO/vpJ5
+ Td7EkjuxeXkT8YjBAyvnFYznCRsatRWxgm13wh1oI/36VzEPfA9p516QIaVk38Gj/Mlf/Jh3
+ 9x/29JWOhXbmBRJHvokc8ibjKPEGlIZ1KA1rUfI80HdCShf73OukXv4POBf3TO5DkQ0D/4s3
+ L/FXuy6RNifu3PP1CmDZDpe6h6kpj1Ien9yNjFJKBkZSpDI2jTVx1GlwpN3KuRcKR/n1z3zs
+ g1vuJ8uKBTUsm1+NMg15EG7fGWRqEKfjAKz9LGg3nUGk5Nj5TkLC4vDZTh7OPwbYaZyuI2Cb
+ uL1nUKuX5DRLI87gws8A0KBPcnWSLmOXDtOdjNLUvp+yvIsspJTIZB8yNZz1f+SZaPuGxunt
+ G8BxJaPjGcLGxIa2rxVg/+mrvPT2GebVlPEvPrV5Un1Tps23XzpI2rT54lPrWNo88aCvUlCM
+ 51oIgTpNCUBCjyCTA4hEPeTb+YXgmYar7B3sZHNjge2dEcO47x/h9J9HyxugAD1dXXz7h28g
+ peRffvEj1NZNfPWTUvBq/2KOXOhhc7iZT+b/gZMhs+uPkWM9hLb+G9SGtTnNLaFhtil7MHSX
+ Sv1+YGJnCX9vgSQ4rkR6dsIT7O5mk7BLPZSklFzqHublvW2MjGc87a4rOXimk7eOXCJjlTZi
+ 9Hqc0St7zzGa9L77jmhhRLTyWqh17s8vgJqYwodr26mNF7AwCQW1cT3Gmk9/4PHNkw7XlbhS
+ 5ufxZFvTIzjHf4zbc7xgsJvUQrhCg0JppFIiU8O4yT6k41VOXTg8ED7JBuMck9kZ+noFeGDV
+ PObVxKkun/xhLxrS+Zef3kw6Y0/LBRZ/9cr7WJkURijMJx5dntPWP5Lk+d0nEUJQXRZhVWuu
+ SU5KieW4KEIUNCdKKbFsB01VPfv8tOnwt28cy9r5JTyzZYmnv21b2JaJrntzgtXmzYSiNYho
+ lTdcQQiMDZ/HbXkApdr7XMgm5TuOjW6EPM+ub2ziy5//EAC19d7Z3z6/A/v8DtwLbxD56J+A
+ fmNbq6gqn3p2Ow93XKKxxXvARro4joVjVIJZIAvPSWdXN9cBZ+KX//l6BVAVhaaaBJHQ1AK2
+ ymNh6qvi05JPvKm8D33oLMvLk562RDTE0uYqGqri1BdQvsHRNN/+6QF+uuc0lu1dIU629/Gn
+ z+9j36mO7Gx6E7oqWRvtRO8/zqK4dyCkU0mee/4V/ubHrzE+OuJpd0c6MA/9NfbpX3hnUilx
+ rh7Khltf2e/pa1sWL7++i2/81QtcvVKgKkRmlMTZH5A4+wNkoUEaroCB86CFPQkxUkrUzgPU
+ nv0uoueoV26h86r5KN/p2MhwqMXTLhJNKFWLsznU4RmyAtnjg+x5aydv7z3KXL6AUwDb5Bv8
+ zrJ2FppHPO0hXeXzj7bwT55ooarMa6u/0DlE30iSo23dJDPe5Xz/6au4UrL/dKcnZkZ1LbZr
+ 7/A7y9pptb21ewYGhzh3uY/2rkG6er2hEHbnMfoGRxlpew9p5ha/kkD6/G667TJSZ3Z4+qbT
+ KQ6cvMTA0CinznkVwBntZLDjHAMdZ3FHu7ztySH6Ku4nZbqQH4YtHewLu8Acx27b6embcQUH
+ k/MZKFtN24h3QhTRakJP/D6hR/+1J0DwdpR0CzQ6METzyg0sqJm4Bs5Wwg/+M9yzO9FXPOtp
+ k+lh7F1/hLRSqI99BbV6cU77qtYarvaN0FAdJxHx7nc/vHkxu99vZ/OKeaj5G1o9TOi+f4hz
+ 9TDakic9fevrannygRWkTYsFzV4HxJl0HX93fhH15SF+29XIt63t5AneuXCe+1e28qm8NlVV
+ UTSDnjGrYLWJATvGn19Zh5SSLztR8oPAT6rr+PuONPPqKvhtYeRdui4QRgxn4AJa3gEXQMVF
+ yQzROWQSx7u6CCE+SNSZDCVVACWk0Hb4AO3RSrY8uAnVvXFDzFQzfHxZFgXoEc0cktt4zI0S
+ NfPs6ZkUbmYM6VjY6XGcvHZVwIc3Z/e5hfJyK+MGn3gkG2lT0NlWuwZRuyZ7Y6fpXWsfefC+
+ 7HcuFMy89pGURVKGGTA1MpkMqn5DASUwYiooRowRy9vXNE2QDmHFwbQsT3sqY5EhBEjSGW/7
+ WEYi9Rhjjo5pWtnk+A9e7uLYFlKP4lhmwXcbMk2FZmGZaU87ro1zZR9CC6E0bpxwOZqSKoBQ
+ DZauWk1v+zmSNlTeZIudS/cDSCn5q1ePMZ5KIbQwH304N3Zd6g2o2/8AaafRqhYh8mWXEikd
+ QExLbRzHdXFdWfAQ7EoIaQqum53Rbw7ok1Ly0dBuVlaNsSikYRgP5PS1zAyOKzGu9c8PBmyZ
+ v4B//mvZVampucXz7s3GScor3qEunCGqP4LQb3q36+BKG8IJVOm920DXdf7F559haGiIhYsW
+ e8aD030G+9D3kNLB+MjXUBKNOe1SuuC6oOTWPCrpqIolykmPDlK/dB2V/ruboaTEIgadAyni
+ BRJeLMflpaNj/N3BJKMp7wzupgbJ7P6fWEd/iHRKe/OyaTk8v+sUP9x1ilTG++x5DbWURVSW
+ NlcSCnudi5f15ey6mqBdX+VpUzUdLVxGf1ojVubd5qYthz3nRtlzdhSzgPl3QG/mrd4ajrur
+ subOmxEia9vXwiiN6zx9hRBU19SyeMnSgpOhiNYiEvXZSND8hH0psU++SGbn15B5Z5OSrgCq
+ EWXJcn9dGTpdDI+lWd5SyeBIytM2OJJi/+mraKrCpe5h1uRFN7rdx3AHL+AOtKEtfdqTPOK4
+ LuMpi2hYR1Vyt39SSiwzQyqVJFFWjpLvER1OcqStC+lKOvtHWTwv99mtCxfxjz9XTSwaRje8
+ 5489/fUoTXF29YXIH4a2VHAjlcxvKWPU9R40uwfGONGWHWAPr2lhfn1uOPSx4QSjVRv55Zjg
+ EVfkhcoJxNKPYDU+Qqgst9/1z51JpzDNDImyCs/qIuJ1hJ/8TyAEQss1PEjXYfzoC5haORVX
+ 9uck8vhnXzGrEHx620oq4mEeXTff0xoOaaRNm96hJNGwd+unNm1CbViLvuoTnph5gF8eucTX
+ vv9Lfv7uWfITp2zL5P/9+BX++NvP8/6R456+dZUxHlrdwqZljbTUeW9TOXtlgD/96WGe23Gi
+ 4Cz9ZM0ljK69PFN70dOm4aCk+rl8pZOEGPW0N0bSbHD3scHZS0PUu/JtLB+gbmgvTyeOYSj5
+ leHglf0X+NoPD7Pr/cuevrZl8ed/+wv+27d+wqX2dk+7EAKhRzyDH7Jnm+8PPcafnFrMeTe3
+ lIyvHWF+RQhoTMDS8gyJkPewZdsuMV0S0ZSCaZOOFuVM/WepiIdpLhD12DMwTEjY9PYPXzMe
+ 3HiH49j0DI6hqYKBIa+dX1MVPrJlSfaOsAJJ5wPD45iZDN19Q1iOQ+imISCASqeLNbUOVXan
+ V27HwTXHqDRs0kmvJUZ30zxTdS4rh+NdGWPOAKsq0zQpowiZpwBIOvuGkI7F1Z6hAu926R/K
+ VnYYHvF+7tshpaQ3paIYUYaSub9HoABTQEqX7/x4D6PDQ6RdnWe356bwVSqjfCH2ChlXo1Vr
+ AnI9wSfbe/n+68eIhDT+9a8+SCKauxV5OvQeCyJXWRiJo7KJmxfqUDjKlz7zITo6u1mx/FaJ
+ 4/Ja6cFc5QFwxrpxR7uwMwrSSkEk1wr00tgW2tN9nBqr4LcLPFdKgRSqx0EHoFQswHjsK9lt
+ SIGEmP3pZbw27hJxQnxFarmZcNLFGbqCHB3BGbaBjTl9Q6rLbzYcoj8lWFFeYJstb4TM5IdS
+ K4rgSw0H6M5EWFOe60QLtkBTQrCgLoEQUF+g0oDQI7TURFlSYaFFvYfFiniYSNokNuAAAA36
+ SURBVEijvjKGrnmtQJGQwarMuyQMN3/8ApKK8dOsGN2Bbg54+krHxDr8/3AO/3XB22lqooKY
+ M0hzeBxd885/zfWVOBi0NHhLuei6TktdGXED6mu8wYUZ2+Xn51R+dkYpWJhXV126h1Lg2oi8
+ XGchBM1xG90aoqWsQK0lodImW3l/pJq07pVNWuNYB76LdeTvCsQKCS6IRRwZriCp505GwQow
+ BYQQfObZrWzt7aOhwRvzIsJlhB//fXAdKBA01lxbxpc/9QAhQy0Ytusm+3DrN+Kmx7xFZK0U
+ 5pEfIowo9vk3MTZ+IbfvyNVsvI0rcVsfQq3PzRpeZHTzT1b0EHbHCYncgSKEYNv6+WxaVEUi
+ 4S1PaITC/PonP0wymaKy0qvYnf2jHDh9FSlh49IGzyF4qLeLhZEhUkNjOGY6W7Xi+ruRbI2f
+ Yf3qDJVhb5Bf2lF4Y3wtepnCyaEoW/J8fE7fOdLt+8Ax0Vofy1mBHCl4ZXg15ZU67w+Vs/2m
+ fsEKMEV03SCRSNzSPyGMGCJcVtCB19k/xtd/9C7PvXqEjOWd7Q7qW/lvx5ayUzyOzC8iq0fQ
+ V38CoceydTTz3xtKIFNDMN5T8IB9yVjFn7Ut5SeprZhqXpySlLhnX0Z/5cu4p1709LVshx/t
+ PsPXf3yYtk7vPr2xOsGq1lpWL6ylsdqrQBsbFWJmN0/U9xEK5ZqPJYI9yRX876O17De9JlhN
+ VVBVhXNXBwsGRw7qzfyfKw/wrd6tpPTc1UkV8GTZGSI977KuKvfsMndXAClxRzqQmRGUmuXT
+ 4nC6VVmUO9EzOIZrW3T2DZOxHM9tLBfHI5Q1LeFyOoorc2cpIRT0JR9CX/Khwg+3UohIBdJx
+ s0Vo89+dVNEq59PpqJi2JG8ckuw+R5u6loWdp6nIKzlh2g4dvYMouHT1jbAkz8QaNjR+bbu3
+ VMt1yuUA25oz1IUGvYdgV3J5WBKNxWgf9H6vjusipMv82ljBMPDhjEIm3kpSSlImxHJ0xOUh
+ 4zAPLRToZgdwQ8Y5qwDSHCO947+Ca2E8/LtoTRvv3GmSTLXe6YpQB89qb1AVVYgr95NfGOXj
+ Dy/nSFs3y+fXeGOB4NqB79rxIN8eXtaE8fDv4phplKrFnq7rwxeR6m7qopJY3rsl8PP0o5we
+ 7KE1XMU/yusbERafjeyky7LZGBZAa75Y8MFB1Cv3QXsVLw9BIhbmX6HnfGpFEXys6SqnnEHW
+ NHrDO8KKzedjr9EzJlkVqgZyPb2tjRV89vFVGLpKdXmug08IldDjv487eAFtwcM5bXNWAVBU
+ RLgCmRlG6KXPB4Cph3fokQQbyvsQ8YaClRviUYOH13hDfiFrgXI6DuJcPYS+6pOe8oTZpJUN
+ 16pCeFe9UDTBxkQ3SnkzosC1VeWGjZ0codLw+hCEImjS+2kUFwhp3kA8y3bY9X7WRv/ExlZP
+ rkM8FkUYUSory1EKKEhlyGEz+9DCH/d+cKEwv0qnRbmMFvGeq2zH5Wr/KGFdY+m8KtSbq+kJ
+ gVq1ELXKm2cwZxVA6FHCT/5HpJ1BREtXnDbnHVMM0FNqlhF+5r8jtHDBGpq3xUphHfge6GHs
+ c69ibPjCnfvchNq0gfDT/zV7RsnL2xVItsk3WLdMo0Ieh/zyVI4NUqJULsQtUPmto2+Et96/
+ iJSwvKXacwheu6ieuvIQFWWFrF8SaY6h1K3MnmHyEFqI8LZ/h7SSBWv+XOwc4t3jV7Bsh5UL
+ aqjPvx1HXjMNC5Gzas7pQ7AIJVBi+cVlZx5xrf5O4bTCO6CF0ZY+BQi0+Q9N4d0KSrzuFoon
+ CC17imrrMuGVv+JtNqJoC7eCEUNrvt/THFUd+vv66evrI254/QQXLl7km8/9nJde3Y2THwUr
+ VLTF28F10Jc+XVj2UDwre4HfsyluUT96mCX2USrzQpykdMm89y2SP/nnOANtOW0lXwHGui9w
+ 8EqKrfd5T/JzjRm5IUZR0RY/gVK/KlsLp6QPF7j1G+navJh5Nd4tEIpGesknGG74MPMS3vbk
+ +CgVahKJZHx0hKo8U+n5S52o2Bw738nHzAyqdpMZVAjUefch4nUoFQVuvpESNzWITA+hVC70
+ KEHM7OU3m46Ca6FZIxC5aQWQLs7lvaBHcHtP5eRnlFQBpJPmzJVRQjJzTebghpiSY2fI7P4f
+ uMNX0Nf9A7RbzJYwte/8p3tOc+R8NysW1PC5J3MtOmnT5i9/fojuwXE+s3Ulm5blHkRbmpv5
+ xPZNADTNm+d5f6SigUFlmKqEgdDDue3Sxdz/lzhX9qItehx90296P/eOP8Qd7yW87d+iNOSF
+ 6mkGMnMtPknRc58tVEJb/w1O3xm0RU/ktJVQASTtp46hxirp6+glYzmoQs7ZhJjr3Ko63LTh
+ 2LhCxXVdXClu+f6prk6KyPZVhfez2ZYNqQHc8XGkOV7w3RvWLP/g/fky6MImQpIyTWJbVq4p
+ VLq4QsFxXBQU77MdCylUpCuxXYnIa5dSQYbKEYqK7bqQ135mrJK2gWVsy0CEG21ClmwKkwx0
+ d9A3NM7p8+d58smniYay+mVZ1pxKiLnO6OgoicQU9vFFIs1xZLIPUdZc0NIjpcwGw92ievXt
+ sGyH7sHxgmEaMj1C/y/+C2NumMYVWwitLmCtuQ2Zo8/TcfYI5XKAqo9/zXMIl3YaOdqFKJtX
+ sGyjTA8j0yOI8uaCF2zIsW5QNM8dw7bj8p//4k1i4ax17fGNrR+0lXBUCarqm1m6bBnPPPXU
+ B4M/oPQII4ZSsWBanHu6ptJcW1YwRslRdN4aWchzZyrpFZOv4Kw1rqNe9JBYeD+oeRdzSInT
+ /i7pXX+Mc/WQ992uy9+/28HXXrrI0Jg3xkkIgZJoKHjBtqII7lvehO26nuuqSj5KhRBTnu1n
+ G1N1hM1W0hmLY4MxZCTG6W6L5knaOdSaJRi/8nW0AqmaSAf74lsIPYLdthOtJTcdM2M5HD7X
+ haoqnL0ywAMr5034vYoQfOqxlXzqsZWeVOFgmi4CPx7Mp5NoLM4nP/QgFzv7eeA+b+WGCXGr
+ s5xQMTZ8AevCroJm0Iih8dnHV3G5Z5j1SyZXePe2ry3dGeDWBGeAu0sxZ4CJPBvI3gM2yaKT
+ 0hwnc+5N9LrlKNVLCqwCN1tuvM++eaiWyijiv1EV4GuuW+QmO/gB7LOvY5/+RfYmF9u7j//A
+ S3uLwf3Bu0toEQwUIOCuodQsQbhmtvpDASvPTBBsgYpgYGCAqqq7W3Z9IkznFqgopMQy02i6
+ MS0WrKngv1E1i/Crc863CAGK5inLPpP4R5JZiFYgp3ZWIyUyPYx1bkfBiMy5SKAAATlk9v8F
+ 9okXyLz3zZkW5a4QKEBADmrVYtzUEEp1/jXYc5M5tobfXTwVimc7ArSVH0Vbsh0me8ndLKWk
+ K4CZHObEsSO0dw2W8rG+RS2QUji7EQihIIz4pO/pna2U9oYYx6GmrpG+8ycYvfu5IneduacA
+ 9x4l3QJFoxFOHtlHKlRNVMnG8l9PZplqfPrNz/AbruvOSFbYRPCrbNfl8osJuaQrQDJls3bL
+ I1S6/QxO4QbP2YYflTJgcpR0BXAyIxw8eJDyxkVUhUC5to90XXfK24Xrt6370RPsOI4vt0HX
+ vzM/ynZ9LPhlBQhCIYpgeHiY8nJv+cGZxrehEGTHgqZp954CTJXr4vnlC7uZYhR7unFd15eT
+ ht/kuit+gGIGyfUDk5++tJvxowJIKbFt25ey2bbtqy2QP0fVTfjliyqEX5US/Cub337Pu7IF
+ CgjwK/6cJgIC7hK+V4Cu9hO8/uoODp3y3gw4k1w4vp9XX9/BpV7vbYkzijPKzldeY9eedxlJ
+ +8URZnLy0AEOn7wAuBx5dyevvbGbweRdLirmwfW/AqSSKRatXsfKRd5L12YOk6FMmA9tvY++
+ rl78tId0x0cINbSyYd1aEiG/+AF0lq5eQ1i1IdODnVjO1nXz6eib3G2PpUf4VwGGui7w9r5j
+ lNfUM9bXwb6DR5nafSzTgURRNISqIPIv8p1pwpVU6hlOHD1E54D3hpiZ4SYrnnRRNA1VVXBn
+ /LvzsQJUNCzk4c2rGBsYYGBgAKkZU6hDMF0Y6HYvr+14l1hNpY/kAjM9zkBfH2MpE73APcEz
+ gp3kwDt7eP/wYc71a6SvHmTH3rPeGv53G+kEVqCAexvfrgABAXeDQAEC7mkCBQi4pwkUIOCe
+ JlCAgHsan9jJAgKgr/04L/7sFcxEK8888zQLaiduJj353mscPN9Ddet6nnn4xt1mfV2XiVbN
+ I2pk53rpOly4dJlFra3gZAIFCPAPNQtW8+jKg/Qu/BVaykze+MULRJvX0qwnOd5+AT1cwejA
+ II9sf4JTh96hf8Tl8Q8/Tbkxxu4DnfzWP/0cP/zz73KgsZH1zRpn2/rZ8YNvoK18ls9sbmD3
+ /tNs3vYhunu6mVcV4bXXdwZboAB/cuytlzl8sY99b77JkUNHaVi1kfOXOlhXO857pzo402Py
+ 6Mo4r/7yNMg0ippA13TiqsOBE73Y5iAn2oZZvWE9H9n+KOeOvI8SSyBtm7PnzvLqyy+z7rGn
+ AgUI8CdV9fXEQhFWbVhLSKgYhoYeChEK6SBhoOMMO945Scv8WlBqmFfWxw+f/xFdsWYakhd5
+ fdd7JG2XWEhj19t7KW9soOfkPg6d7wSgrjzG22/tCjzBAf7CsU2koqMKSTqZQioauipQNA3H
+ dtAUyIz185O33ufjT24lGokgBLiORTKVIRSOgGtjOS6aZqAJl6RpE9IEGdMhHIngOjaaqpBK
+ ZwIFCLi3CbZAAfc0/x8D5IwhUePrZQAAAABJRU5ErkJggg==
+
+
+
diff --git a/Cobify.twbx b/Cobify.twbx
new file mode 100644
index 0000000..7ee0f96
Binary files /dev/null and b/Cobify.twbx differ
diff --git a/consumos.xlsx b/consumos.xlsx
new file mode 100644
index 0000000..1841b18
Binary files /dev/null and b/consumos.xlsx differ
diff --git a/exploracion.ipynb b/exploracion.ipynb
new file mode 100644
index 0000000..a41031a
--- /dev/null
+++ b/exploracion.ipynb
@@ -0,0 +1,1868 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e920d6e1",
+ "metadata": {},
+ "source": [
+ "### EXPLORACION DATOS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "84d445a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import re\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import warnings\n",
+ "warnings.simplefilter(\"ignore\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "7beb8291",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " AC | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill liters | \n",
+ " refill gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28 | \n",
+ " 5 | \n",
+ " 26 | \n",
+ " 21,5 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12 | \n",
+ " 4,2 | \n",
+ " 30 | \n",
+ " 21,5 | \n",
+ " 13 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11,2 | \n",
+ " 5,5 | \n",
+ " 38 | \n",
+ " 21,5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12,9 | \n",
+ " 3,9 | \n",
+ " 36 | \n",
+ " 21,5 | \n",
+ " 14 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18,5 | \n",
+ " 4,5 | \n",
+ " 46 | \n",
+ " 21,5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type AC \\\n",
+ "0 28 5 26 21,5 12 NaN E10 0 \n",
+ "1 12 4,2 30 21,5 13 NaN E10 0 \n",
+ "2 11,2 5,5 38 21,5 15 NaN E10 0 \n",
+ "3 12,9 3,9 36 21,5 14 NaN E10 0 \n",
+ "4 18,5 4,5 46 21,5 15 NaN E10 0 \n",
+ "\n",
+ " rain sun refill liters refill gas \n",
+ "0 0 0 45 E10 \n",
+ "1 0 0 NaN NaN \n",
+ "2 0 0 NaN NaN \n",
+ "3 0 0 NaN NaN \n",
+ "4 0 0 NaN NaN "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "medidas = pd.read_csv('measurements.csv')\n",
+ "medidas.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "c5f8ddd9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "medidas2= pd.read_excel('measurements2.xlsx')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "a6d2381a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "distance float64\n",
+ "consume float64\n",
+ "speed int64\n",
+ "temp_inside float64\n",
+ "temp_outside int64\n",
+ "specials object\n",
+ "gas_type object\n",
+ "AC int64\n",
+ "rain int64\n",
+ "sun int64\n",
+ "refill liters float64\n",
+ "refill gas object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "medidas2.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "3987c15d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " ac | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill_liters | \n",
+ " refill_gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28.0 | \n",
+ " 5.0 | \n",
+ " 26 | \n",
+ " 21.5 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45.0 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12.0 | \n",
+ " 4.2 | \n",
+ " 30 | \n",
+ " 21.5 | \n",
+ " 13 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11.2 | \n",
+ " 5.5 | \n",
+ " 38 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12.9 | \n",
+ " 3.9 | \n",
+ " 36 | \n",
+ " 21.5 | \n",
+ " 14 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18.5 | \n",
+ " 4.5 | \n",
+ " 46 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " NaN | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " 16.0 | \n",
+ " 3.7 | \n",
+ " 39 | \n",
+ " 24.5 | \n",
+ " 18 | \n",
+ " NaN | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 384 | \n",
+ " 16.1 | \n",
+ " 4.3 | \n",
+ " 38 | \n",
+ " 25.0 | \n",
+ " 31 | \n",
+ " AC | \n",
+ " SP98 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 385 | \n",
+ " 16.0 | \n",
+ " 3.8 | \n",
+ " 45 | \n",
+ " 25.0 | \n",
+ " 19 | \n",
+ " NaN | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 386 | \n",
+ " 15.4 | \n",
+ " 4.6 | \n",
+ " 42 | \n",
+ " 25.0 | \n",
+ " 31 | \n",
+ " AC | \n",
+ " SP98 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 387 | \n",
+ " 14.7 | \n",
+ " 5.0 | \n",
+ " 25 | \n",
+ " 25.0 | \n",
+ " 30 | \n",
+ " AC | \n",
+ " SP98 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
388 rows × 12 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type \\\n",
+ "0 28.0 5.0 26 21.5 12 NaN E10 \n",
+ "1 12.0 4.2 30 21.5 13 NaN E10 \n",
+ "2 11.2 5.5 38 21.5 15 NaN E10 \n",
+ "3 12.9 3.9 36 21.5 14 NaN E10 \n",
+ "4 18.5 4.5 46 21.5 15 NaN E10 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "383 16.0 3.7 39 24.5 18 NaN SP98 \n",
+ "384 16.1 4.3 38 25.0 31 AC SP98 \n",
+ "385 16.0 3.8 45 25.0 19 NaN SP98 \n",
+ "386 15.4 4.6 42 25.0 31 AC SP98 \n",
+ "387 14.7 5.0 25 25.0 30 AC SP98 \n",
+ "\n",
+ " ac rain sun refill_liters refill_gas \n",
+ "0 0 0 0 45.0 E10 \n",
+ "1 0 0 0 NaN NaN \n",
+ "2 0 0 0 NaN NaN \n",
+ "3 0 0 0 NaN NaN \n",
+ "4 0 0 0 NaN NaN \n",
+ ".. .. ... ... ... ... \n",
+ "383 0 0 0 NaN NaN \n",
+ "384 1 0 0 NaN NaN \n",
+ "385 0 0 0 NaN NaN \n",
+ "386 1 0 0 NaN NaN \n",
+ "387 1 0 0 NaN NaN \n",
+ "\n",
+ "[388 rows x 12 columns]"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "medidas2.columns = medidas2.columns.str.replace(' ','_')\n",
+ "medidas2.columns = medidas2.columns.str.lower()\n",
+ "medidas2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "91da18b4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = medidas2.copy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "b1dce3d6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 388 entries, 0 to 387\n",
+ "Data columns (total 12 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 distance 388 non-null float64\n",
+ " 1 consume 388 non-null float64\n",
+ " 2 speed 388 non-null int64 \n",
+ " 3 temp_inside 376 non-null float64\n",
+ " 4 temp_outside 388 non-null int64 \n",
+ " 5 specials 93 non-null object \n",
+ " 6 gas_type 388 non-null object \n",
+ " 7 ac 388 non-null int64 \n",
+ " 8 rain 388 non-null int64 \n",
+ " 9 sun 388 non-null int64 \n",
+ " 10 refill_liters 13 non-null float64\n",
+ " 11 refill_gas 13 non-null object \n",
+ "dtypes: float64(4), int64(5), object(3)\n",
+ "memory usage: 36.5+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "7e7e6b72",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " count | \n",
+ " mean | \n",
+ " std | \n",
+ " min | \n",
+ " 25% | \n",
+ " 50% | \n",
+ " 75% | \n",
+ " max | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | distance | \n",
+ " 388.0 | \n",
+ " 19.652835 | \n",
+ " 22.667837 | \n",
+ " 1.3 | \n",
+ " 11.80 | \n",
+ " 14.6 | \n",
+ " 19.0 | \n",
+ " 216.1 | \n",
+ "
\n",
+ " \n",
+ " | consume | \n",
+ " 388.0 | \n",
+ " 4.912371 | \n",
+ " 1.033172 | \n",
+ " 3.3 | \n",
+ " 4.30 | \n",
+ " 4.7 | \n",
+ " 5.3 | \n",
+ " 12.2 | \n",
+ "
\n",
+ " \n",
+ " | speed | \n",
+ " 388.0 | \n",
+ " 41.927835 | \n",
+ " 13.598524 | \n",
+ " 14.0 | \n",
+ " 32.75 | \n",
+ " 40.5 | \n",
+ " 50.0 | \n",
+ " 90.0 | \n",
+ "
\n",
+ " \n",
+ " | temp_inside | \n",
+ " 376.0 | \n",
+ " 21.929521 | \n",
+ " 1.010455 | \n",
+ " 19.0 | \n",
+ " 21.50 | \n",
+ " 22.0 | \n",
+ " 22.5 | \n",
+ " 25.5 | \n",
+ "
\n",
+ " \n",
+ " | temp_outside | \n",
+ " 388.0 | \n",
+ " 11.358247 | \n",
+ " 6.991542 | \n",
+ " -5.0 | \n",
+ " 7.00 | \n",
+ " 10.0 | \n",
+ " 16.0 | \n",
+ " 31.0 | \n",
+ "
\n",
+ " \n",
+ " | ac | \n",
+ " 388.0 | \n",
+ " 0.077320 | \n",
+ " 0.267443 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | rain | \n",
+ " 388.0 | \n",
+ " 0.123711 | \n",
+ " 0.329677 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | sun | \n",
+ " 388.0 | \n",
+ " 0.082474 | \n",
+ " 0.275441 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | refill_liters | \n",
+ " 13.0 | \n",
+ " 37.115385 | \n",
+ " 8.587282 | \n",
+ " 10.0 | \n",
+ " 37.60 | \n",
+ " 38.0 | \n",
+ " 39.0 | \n",
+ " 45.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " count mean std min 25% 50% 75% max\n",
+ "distance 388.0 19.652835 22.667837 1.3 11.80 14.6 19.0 216.1\n",
+ "consume 388.0 4.912371 1.033172 3.3 4.30 4.7 5.3 12.2\n",
+ "speed 388.0 41.927835 13.598524 14.0 32.75 40.5 50.0 90.0\n",
+ "temp_inside 376.0 21.929521 1.010455 19.0 21.50 22.0 22.5 25.5\n",
+ "temp_outside 388.0 11.358247 6.991542 -5.0 7.00 10.0 16.0 31.0\n",
+ "ac 388.0 0.077320 0.267443 0.0 0.00 0.0 0.0 1.0\n",
+ "rain 388.0 0.123711 0.329677 0.0 0.00 0.0 0.0 1.0\n",
+ "sun 388.0 0.082474 0.275441 0.0 0.00 0.0 0.0 1.0\n",
+ "refill_liters 13.0 37.115385 8.587282 10.0 37.60 38.0 39.0 45.0"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe().T"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "30a7f01a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([nan, 'AC rain', 'AC', 'rain', 'snow', 'AC snow',\n",
+ " 'half rain half sun', 'sun', 'AC sun', 'sun ac', 'ac', 'AC Sun',\n",
+ " 'ac rain'], dtype=object)"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.specials.unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "8c522072",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "rain 32\n",
+ "sun 27\n",
+ "AC rain 9\n",
+ "ac 8\n",
+ "AC 6\n",
+ "snow 3\n",
+ "sun ac 3\n",
+ "AC snow 1\n",
+ "half rain half sun 1\n",
+ "AC sun 1\n",
+ "AC Sun 1\n",
+ "ac rain 1\n",
+ "Name: specials, dtype: int64"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.specials.value_counts() #30 valores que contiene AC"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "aa3054c2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 358\n",
+ "1 30\n",
+ "Name: ac, dtype: int64"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.ac.value_counts() #30 valores que contiene AC"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "40011cf0",
+ "metadata": {},
+ "source": [
+ "##### Columna specials,los dummies estan bien hechos salvo la columna snow que no está contemplada, así que haremos una nueva columna"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "1887571c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.specials.fillna('unknown', inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "93d9cb20",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df['snow'] = df['specials'].str.contains('snow', regex=True).astype(int) #Hechos los dummies tambien para snow"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "09109453",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " ac | \n",
+ " rain | \n",
+ " sun | \n",
+ " refill_liters | \n",
+ " refill_gas | \n",
+ " snow | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 118 | \n",
+ " 12.4 | \n",
+ " 4.6 | \n",
+ " 38 | \n",
+ " 23.0 | \n",
+ " 1 | \n",
+ " snow | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 124 | \n",
+ " 11.8 | \n",
+ " 4.6 | \n",
+ " 38 | \n",
+ " 23.0 | \n",
+ " 0 | \n",
+ " snow | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 125 | \n",
+ " 12.2 | \n",
+ " 6.3 | \n",
+ " 57 | \n",
+ " 23.0 | \n",
+ " 0 | \n",
+ " snow | \n",
+ " SP98 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 181 | \n",
+ " 12.3 | \n",
+ " 7.1 | \n",
+ " 52 | \n",
+ " 22.5 | \n",
+ " 0 | \n",
+ " AC snow | \n",
+ " E10 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type \\\n",
+ "118 12.4 4.6 38 23.0 1 snow SP98 \n",
+ "124 11.8 4.6 38 23.0 0 snow SP98 \n",
+ "125 12.2 6.3 57 23.0 0 snow SP98 \n",
+ "181 12.3 7.1 52 22.5 0 AC snow E10 \n",
+ "\n",
+ " ac rain sun refill_liters refill_gas snow \n",
+ "118 0 1 0 NaN NaN 1 \n",
+ "124 0 1 0 NaN NaN 1 \n",
+ "125 0 1 0 NaN NaN 1 \n",
+ "181 1 1 0 NaN NaN 1 "
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[df['snow']== 1]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 131,
+ "id": "e731d976",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " consume | \n",
+ " speed | \n",
+ " temp_inside | \n",
+ " temp_outside | \n",
+ " specials | \n",
+ " gas_type | \n",
+ " ac | \n",
+ " rain | \n",
+ " sun | \n",
+ " snow | \n",
+ " refill_liters | \n",
+ " refill_gas | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 28.0 | \n",
+ " 5.0 | \n",
+ " 26 | \n",
+ " 21.5 | \n",
+ " 12 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 45.0 | \n",
+ " E10 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 12.0 | \n",
+ " 4.2 | \n",
+ " 30 | \n",
+ " 21.5 | \n",
+ " 13 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 11.2 | \n",
+ " 5.5 | \n",
+ " 38 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 12.9 | \n",
+ " 3.9 | \n",
+ " 36 | \n",
+ " 21.5 | \n",
+ " 14 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 18.5 | \n",
+ " 4.5 | \n",
+ " 46 | \n",
+ " 21.5 | \n",
+ " 15 | \n",
+ " unknown | \n",
+ " E10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance consume speed temp_inside temp_outside specials gas_type ac \\\n",
+ "0 28.0 5.0 26 21.5 12 unknown E10 0 \n",
+ "1 12.0 4.2 30 21.5 13 unknown E10 0 \n",
+ "2 11.2 5.5 38 21.5 15 unknown E10 0 \n",
+ "3 12.9 3.9 36 21.5 14 unknown E10 0 \n",
+ "4 18.5 4.5 46 21.5 15 unknown E10 0 \n",
+ "\n",
+ " rain sun snow refill_liters refill_gas \n",
+ "0 0 0 0 45.0 E10 \n",
+ "1 0 0 0 NaN NaN \n",
+ "2 0 0 0 NaN NaN \n",
+ "3 0 0 0 NaN NaN \n",
+ "4 0 0 0 NaN NaN "
+ ]
+ },
+ "execution_count": 131,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "columnas = ['distance', 'consume', 'speed', 'temp_inside', 'temp_outside',\n",
+ " 'specials', 'gas_type', 'ac', 'rain', 'sun','snow', 'refill_liters',\n",
+ " 'refill_gas']\n",
+ "df = df.reindex(columns=columnas)\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cff0fb4d",
+ "metadata": {},
+ "source": [
+ "##### Conpletado el dummies de SNOW dropeo specials"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 227,
+ "id": "1183b59a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 0.966495\n",
+ "45.0 0.005155\n",
+ "37.7 0.005155\n",
+ "39.0 0.005155\n",
+ "37.6 0.002577\n",
+ "38.0 0.002577\n",
+ "38.3 0.002577\n",
+ "10.0 0.002577\n",
+ "41.0 0.002577\n",
+ "37.0 0.002577\n",
+ "37.2 0.002577\n",
+ "Name: refill_liters, dtype: float64"
+ ]
+ },
+ "execution_count": 227,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.refill_liters.fillna('0', inplace=True)\n",
+ "df.refill_liters.value_counts('0')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 228,
+ "id": "44594ce3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.to_excel('consumos.xlsx', index = False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "11995b17",
+ "metadata": {},
+ "source": [
+ "##### Vamos a ver la matriz de correlaciones"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 168,
+ "id": "5c82a2b0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 168,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAAJCCAYAAABZBtbmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB5fUlEQVR4nO3dd3gc1dXH8e/ZVZdtyZLcO+692xTTSyBAqKElQGgm1FBCIBAIJYSe0EIxvEDoEHpvBmOKDW64d+NeVW11afe+f+xalmTZlrBWI2l/n+fZR7szd2bP1Ww5e++dO+acQ0RERESil8/rAERERETEW0oIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESiXIzXATQjmr9HRESkcTKvA2js1EIoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5WK8DqAmZnYrkA+0AiY7577YRbkTgSXOuQUNF52IiIhI89KoWwidc7fsKhkMOxEY0EDhiIiIiDRLjSYhNLObzGyxmX0B9A0ve87MTg3fv9vMFpjZHDO738z2B34D3GdmP5lZTzO7yMymmdlsM3vTzJIq7edhM/vezFZs32d43V/MbG54m7vDy3qa2SdmNsPMvjGzfg3+DxERERFpII2iy9jMRgJnAMMJxTQTmFFpfRpwEtDPOefMLNU5l2tm7wEfOOfeCJfLdc49Fb7/D+AC4JHwbjoA44B+wHvAG2Z2DKFWxrHOucLw8wBMAP7onFtqZmOBx4DDIvcfEBEREfFOo0gIgQOBt51zhQDhRK+yrUAx8LSZfQh8sIv9DAongqlAC+DTSuvecc4FgQVm1i687Ajg2e3P65zLNrMWwP7A/8xs+7bxe1M5ERERkcas0XQZA26XK5wrB8YAbxJq0ftkF0WfAy53zg0GbgMSKq0rqXTfKv2t/rw+INc5N6zSrX9NT2Zm481suplNnzBhwq7CFxEREWnUGktCOBk4ycwSzawlcHzlleFWuxTn3EfAVcCw8KptQMtKRVsCG8wsFvhdLZ73M+D8SmMN05xzW4Gfzey34WVmZkNr2tg5N8E5N8o5N2r8+PG1rKqIiIhI49IoEkLn3EzgNeAnQq2A31Qr0hL4wMzmAF8DV4eXvwpcZ2azzKwncDPwA/A5sKgWz/sJofGE083sJ+DP4VW/Ay4ws9nAfOCEX1w5ERERkUbOnNtlT63Ujf6RIiIijZPtuUh0axQthCIiIiLiHSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuVivA6gObnwzkyvQ6h3T9+U4XUIIiIiEmFqIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlyMV4HIFUN3CeWM49KxmfGNz8V8/GUoirr26f7Oe+4FnRtH8Pbkwr57IfQ+hg/XH9OCjF+w+eDGYtKeW9yoRdVEBERkSZGCWEjYga/O7oF/3o5j5ytQf52fio/LS1lQ2agokxBUZBXPitgeN+4KtuWB+D+F/MoKQO/L5QczlsWw4r15Q1dDREREWliPO0yNrNzzGyOmc02sxfMrJuZTQwvm2hmXcPlnjOzh83sezNbYWanhpd3MLPJZvaTmc0zswPDy/MrPcepZvZcpf08bmZfhfdzsJk9Y2YLt5cJlzvKzKaY2Uwz+5+ZtWiI/0ePjjFszg6QmRskEIQfF5QwrE/VxG9boWPlhnICgZ23LykL/fX7wO83XAPELCIiIk2fZwmhmQ0EbgIOc84NBf4EPAo875wbArwEPFxpkw7AOOA44O7wsrOAT51zw4ChwE+1eOrWwGHA1cD7wL+BgcBgMxtmZhnA34AjnHMjgOnANb+8prXXuqWPnG3Bisc5W4O0bln7Q2QGt1yYyr+uTmfBilJ+VuugiIiI1IKXXcaHAW845zIBnHPZZrYfcHJ4/QvAvZXKv+OcCwILzKxdeNk04Bkziw2v/6kWz/u+c86Z2Vxgk3NuLoCZzQe6A52BAcB3ZgYQB0ypaUdmNh4YD/Dkk09WCr3+uDo08zkHtz+dS2K8cdmpLenYxs/6LTU0JYqIiIhU4mVCaLDHXs3K60uqbYtzbrKZHQQcC7xgZvc5556vtl1CtX1u30+w2j6DhP4fAeBz59yZe6qAc24CMGH7wx/vzNzTJruVs61qi2DrVj5y84O72aJmRSWOxavLGLRPHOu3FO15AxEREYlqXo4hnAicZmbpAGaWBnwPnBFe/zvg293twMy6AZudc08B/weMCK/aZGb9zcwHnFTHuKYCB5hZr/BzJJlZnzru4xdZub6cdml+MlJ8+H0wZkA8s5eU1mrbFklGYrwBEBsD/bvHsTFLXcYiIiKyZ561EDrn5pvZncDXZhYAZgFXEuoCvg7YApy3h90cAlxnZmVAPnBOePkNwAfAGmAeUOuTQpxzW8zsD8ArZhYfXvw3YElt9/FLBR28/Gk+V52Zgs8H380uZn1mgINHhBo5v55ZTKtk42/np5IYbzgHR4xJ4JYnc0lt4eP841vis9BYwmkLS5izrCzSIYuIiEgzYK4ug9Rkd9yFe9ll3Bg9fVOG1yGIiIjsLfM6gMZOVyoRERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKGfOOa9jaC70jxQREWmczOsAGrsYrwNoTjLnTfE6hHqXMWg//vlawOswIuLG0/1ehyAiItIoqMtYREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBERESkiTCzZ8xss5nN28V6M7OHzWyZmc0xsxG12a8SQhEREZGm4zng6N2sPwboHb6NBx6vzU6VEIqIiIg0Ec65yUD2boqcADzvQqYCqWbWYU/71bWMRURERCLkw9i+ri7ljytfcjGhlr3tJjjnJtRhF52ANZUerw0v27C7jZQQioiIiESIxVqdyrsyNwGoSwK401PWtNs9baSEUERERCRCfDF1SwjrwVqgS6XHnYH1e9pIYwhFREREIsRifXW61YP3gHPCZxvvC+Q553bbXQxqIRQRERGJmPpuITSzV4BDgAwzWwv8HYgFcM49AXwE/BpYBhQC59Vmv0oIRURERCKkrmMI98Q5d+Ye1jvgsrruVwmhiIiISIR4MIbwF1FCKCIiIhIh9d1CGClKCEVEREQiRC2EzYSZTQL+7Jyb3hDPN3XWHB585mWCwSDHH34QZ598XJX1M+ct5IZ7HqZD2wwADh47ivNPOwGAbQUF3P3Ys6xYvRYz48bLLmBQ314NEfYe7dMejhzuwwxmr3BMWVR1SqSB3Yz9+oXeNKXl8MmMIJtzwe+Dsw/z4feDz2DRGsc38+s0x6eIiIhnzK+EUOooEAjywFMv8OAt19E2PY0Lr7+NcaOH06NLpyrlhvbvw303Xr3T9g8+8zJjhw/mzusup6ysnOLSkoYKfbfM4FcjfbwyKcjWIjjvSB9L1zsyt+4ok5vvePFLR3FZKHk8ZpSP/34RJBCElyYFKSsPJYRnH+5j+UbH+izv6iMiIlJbviaSEDbJeQjNLNnMPjSz2WY2z8xON7OVZnaPmf0YvvUKl21jZm+a2bTw7YBK+3gmvGyWmZ0QXp5oZq+a2Rwzew1IbKh6LVy2gs7t29GpfVtiY2M4fNxYvpk2q1bbFhQWMXvBYo4//CAAYmNjaJmcHMlwa61jGuRsg9wCCAZhwWpH705V3yDrsqC4LHR/fRa0qvRfLysP/fX5Qi2Ge55vXUREpHEwn9Xp5pWm2kJ4NLDeOXcsgJmlAPcAW51zY8zsHOBB4DjgIeDfzrlvzawr8CnQH7gJ+NI5d76ZpQI/mtkXwMVAoXNuiJkNAWY2VKW2ZOfQNiOt4nHbtNbMX7pip3LzFi/j3GtuJiMtlcvOOYN9unZi3abNpLZqyZ2PPs2yVWvou093rjr/dyQmxDdU+LvUMhG2Fu3I4rYVQsf0XZcfuo+xfOOO8mZw/pE+WreAGcsc63d3SW8REZFGxPxNo+2taUS5s7nAEeEWwQOdc3nh5a9U+rtf+P4RwKNm9hOh2btbmVlL4CjghvDySUAC0BU4CHgRwDk3B5gT8dqEhaYOqsqq/Vjou0933nziAf77rzs45Zgj+Os9DwOh7uYlK1Zx0q8O47n7bycxPp4X3v6gIcKuV93ahhLCr2bv+F84B//3WZBH3g/SMc1ok+JhgCIiInXgj/XV6eaVJpkQOueWACMJJYZ3mdkt21dVLhb+6wP2c84NC986Oee2Ebr48ymVlnd1zi2sYT+7ZGbjzWy6mU2fMGFvrkMd0jY9jc2ZO5q/NmfnkJHWukqZ5KREkhITANh/5FDKA+Xkbt1G2/TWtElvzcA+PQE4ZL9RLFmxaq9jqg/biqBV4o7MtmVSaFl1bVLg16N9vPFNkKLSndeXlMGqLY592jeN8RgiIiI+v9Xp5lmcnj3zXjCzjoS6dV8E7gdGhFedXunvlPD9z4DLK207LHz3U+AKs1AbnJkNDy+fDPwuvGwQMGRXcTjnJjjnRjnnRo0fP35vq0W/Xj1Yu2ET6zdtoaysnInf/sC4UcOrlMnKya1oSVywdAXOOVJatiC9dSptM9JZtS50ucIZcxfQvXPHvY6pPqzPhtYtISU5NA5wQFdj6bqqOXerJDjlAB/vTQ2Snb9jeVI8xMeG7sf4oUc7I2urBhGKiEjTYH6r080rTXUM4WDgPjMLAmXAJcAbQLyZ/UAo0d1+aZcrgf+Y2RxC9Z0M/BG4g9A4wznhpHAloTGHjwPPhsv/BPzYMFWCGL+fqy/8PdfccT+BYJDjDjuQfbp24u1PvwTgpF8dxldTpvP2p18S4/cTFxfLbVdfQjin5eoLfsdtDz1JeVk5Hdu14cbLL2yo0HfLOfhsZpAzDvbhC087k7kVhvcMxT1ruWPcQCMxHo4eGfqNEnTw7OdBkhPg+LGh7cxg4WrHsj1eoltERKRxMF/TaHuzmsatNUVmthIY5ZzL9CgElzlvyp5LNTEZg/bjn68FvA4jIm483e91CCIi0jA8a3qbefi4OiVaIyZ+60msTbWFUERERKTRayrzEDabhNA5193rGEREREQq83JuwbpoNgmhiIiISGPTVMYQKiEUERERiRC1EIqIiIhEOY0hFBEREYlyaiEUERERiXIaQygiIiIS5dRCKCIiIhLllBCKiIiIRDklhCIiIiJRTmMIRURERKKcpp0RERERiXLqMhYRERGJcuoyFhEREYlyaiEUERERiXJKCEVERESinLqMRURERKKcL8bvdQi1ooRQREREJFJMXcYiIiIiUU1jCEVERESinMYQioiIiEQ5tRCKiIiIRDm1EEahjEH7eR1CRNx4etM4Q0pERKSxUQthFDr5ymVeh1Dv3nq4F396aJvXYUTEQ39qyfEXL/Q6jHr3/pP9vQ5BRETClBCKiIiIRDt1GYuIiIhEN2si8xA2jbRVREREpAkyn69Ot1rt0+xoM1tsZsvM7IYa1qeY2ftmNtvM5pvZeXvap1oIRURERCKkvscQmpkf+A9wJLAWmGZm7znnFlQqdhmwwDl3vJm1ARab2UvOudJd7VcJoYiIiEik1P8YwjHAMufcCgAzexU4AaicEDqgpYX6q1sA2UD57naqhFBEREQkQiJwlnEnYE2lx2uBsdXKPAq8B6wHWgKnO+eCu9upxhCKiIiIRIiZr443G29m0yvdxlffZQ1P46o9/hXwE9ARGAY8amatdhenWghFREREIqWOLYTOuQnAhN0UWQt0qfS4M6GWwMrOA+52zjlgmZn9DPQDftxlmHWKUkRERERqLQJnGU8DeptZDzOLA84g1D1c2WrgcAAzawf0BVbsbqdqIRQRERGJkPoeQ+icKzezy4FPAT/wjHNuvpn9Mbz+CeAO4Dkzm0uoi/l651zm7varhFBEREQkUqz+O2Odcx8BH1Vb9kSl++uBo+qyTyWEIiIiIhGiaxmLiIiIRDtdy1hEREQkupnf73UItaKEUERERCRC1GUsIiIiEu0icFJJJCghFBEREYkUtRCKiIiIRDdTC6GIiIhIlFMLoYiIiEh0q+Xl6DynhNBjw/sncf7JGfh88MWUrbz9Re5OZS44JYMRA5IoKXU8+tJmVqwtoWPbWK79Q/uKMu0yYnn1oyw+mJTH6cekccR+rdiaHwDgpQ+ymLmgsKGqVKN+3fycfHACPoOp88v4YnpplfVtW/s468gEurTx8cGUEr6aWVaxLjEOzjgigQ7pPhzwyufFrNwYbOAa1GzEwGQuOq0dPp/x+be5vPFp1k5lxp/ejpGDWlBSGuSh5zawfE0xAMmJPq44uwPdOsXjHDz0/AYWryhq6CqIiEgkWTNvITSzVOAs59xj9RdOrZ63I/Cwc+7UX7Dt7cBk59wX1ZYfAvzZOXdcvQRZSz6Di37bhtv+s46s3HLu/XMXps0rYO3GHcnQiAFJdGgTy2V3rKZP93jGn9aGG/61lvWby7j23jUV+3nqju78MLugYrsPJuXy7pe5DVmdXTKD3x6SwGNvF5Kb77j2jCTmrihnU/aOpK6w2PHW18UM3mfnl+TJByewcFWAZz8qxu+DuEbyM8Zn8Mcz23Pzg6vJyinjX3/twQ9ztrFmw45kd+SgZDq2jePim5fTt0cCl/yuPX++eyUAF53ejpnzC7h7wjpi/BAf1zR+RYqISB00kRbCvYkyFbi0nuKoNefc+l+SDIa3vaV6MuilXt0S2LCljE1Z5ZQH4NuZ+YwZ3KJKmTGDk5n04zYAlqwsITnRR+tWVSe5HNw3kU2ZZWzJKW+w2OuiWzsfW/KCZG11BIIwc0n5TolffpFj9aYggWoNf/Fx0LOTn6nzQ0lyIAhFVRsXPdO7RyIbNpeyKbOM8gBMnr6VsUNbVimz79CWfDk1D4DFPxeHj18MiQk+BvVO4rPvcgEoD0BBUeNo9RQRkXpkVrebR/YmIbwb6GlmP5nZfWZ2nZlNM7M5ZnYbgJl1N7NFZva0mc0zs5fM7Agz+87MlprZmHC5W83sBTP7Mrz8ol09aXif88L3/2Bmb5nZJ+Ht7g0v95vZc+HnnGtmV4eXP2dmp4bvHx2O7Vvg5Er7TzazZ8J1mWVmJ+zF/2i30lP9ZOXuaA3Myi0nLaVqspeWEkNmbnm1MlWTqXEjWvLNjPwqy445MIV/Xd+Fy85qS3Kit79OUlr4yN22I9nJzQ+S0qJ2L/qMVj7yixxnHZnAdWcmccbh8Y2mhTA9NYbMSkl4Vk4Z6akxO5fJrnqM01vH0D4jlrxtAa46twMP3tSDK87uQHxc0+hWEBGR2jOfr043r+zNM98ALHfODQM+B3oDY4BhwEgzOyhcrhfwEDAE6AecBYwD/gzcWGl/Q4Bjgf2AW8Jdw7UxDDgdGAycbmZdwss6OecGOecGA89W3sDMEoCngOOBA4H2lVbfBHzpnBsNHArcZ2bJtYxl77mqD2v6sVC5SIwfRg9K5vufdiSEn3ybx6W3r+Lae9eQk1fOH07KiEystVRjmuNqWrgznw86t/Xx3ZxS7nulkNIyOGJUXH2G94vVVK+dqlXDAXQO/H6jZ9cEPvo6h6vu/JnikiCnHu3tcRIRkQgwX91uHqmvZz4qfJsFzCSU+PUOr/vZOTfXORcE5gMTnXMOmAt0r7SPd51zRc65TOArQsllbUx0zuU554qBBUA3YAWwj5k9YmZHA1urbdMvHNfScCwvVqvLDWb2EzAJSAC61vTEZjbezKab2fQJEybUMtwdsnIDpKfGVjxOT40he2ugWplyMiq1OqWnxpCTt6NVaviAZFasLSFv247t8rYFCLpQ4vH5lK307hpf59jqU25+kNSWO15qqS185BXULiPMzXfk5jtWbQq1MP60rJzObRvHdSEzc8vJaF3p2LSOJTu3ard9Vk4ZGWnVjnFuOZk5ZWTmlLFkZegEk+9mbqVn14SGCVxERBqOz+p28yrMetqPAXc554aFb72cc/8XXldSqVyw0uMgVU9qqZ4h1LINqcr+A0CMcy4HGEooobsMeLqG7Xa1fwNOqVSXrs65hTUVdM5NcM6Ncs6NGj9+fC3D3WHZ6mI6tImlbVoMMX4YN6IF0+YWVCkzbW4Bh4wJjUvr0z2ewuIgOZWSxgNHtODbGduqbFN5jOHYIcms3uDtoLvVm4K0SfWR1srw+2BEnxjmrajdeMdthY7cbUHapobeJH26+NmY3TjG2i1dWUTHtnG0S48lxg8HjWrFj7OrHosfZudz2L4pAPTtkUBhUZCcreXkbg2QmVNOp3ah1s6h/ZJZs6Fkp+cQEZGmzcxXp5tX9mY01jZg+wj6T4E7zOwl51y+mXUCyna9aY1OMLO7gGTgEEJd0r+ImWUApc65N81sOfBctSKLgB5m1tM5txw4s9K6T4ErzOwK55wzs+HOuVm/NJbdCQbh6Te2cMulHfH5jIlTt7JmYylHHdAKgM++28qMBYWMGJjEY7d0o6Q0yKMvba7YPi7WGNoviSde21Jlv2efkE6P8FQmW7LLeeK1zXgp6ODNScVccmJSaNqZBWVszA5ywOBQy9l3c8tomWT8+YwkEuKMIHDIsDj++WIBJaXw5qQSzj46kRg/ZOYFefnzYk/rs10wCE+8upHb/tQFn8/44rtcVm8o5eiDUgH4ZHIu0+flM2pwMhP+0TM07cx/N1Rs/+SrG7n2go7E+I1NmWU8+N/1HtVEREQiprlPTO2cywqfHDIP+Bh4GZhioTFT+cDvCbXY1daPwIeEumfvcM7tzbdjJ+BZ25Fq/7Va7MVmNh740MwygW+BQeHVdwAPAnMsVJmVQMSmo5m5oJCZC1ZXWfbZd1V7uJ/6XyaQudO2pWWOc//6807LH37B2wSwJgtWBliwsmrr53dzd/xm2Fbo+PszBdU3A2BdZpAHXvV2HsVdmTGvgBnzVlRZ9snk3CqPn3hlE7Bpp21/XlvCNf9cGbngRETEe9Fw6Trn3FnVFj1UQ7HtiRbOuT9Uur+y8jpgiXNuj/2ulbdzzj1Hpda/avMIjqhh28rP/wmhsYTVyxQBF+8pDhEREZE9au4TU4uIiIjIHjSRiakbRULonLu1+jIzGwy8UG1xiXNubIMEJSIiIrK3oqHLOJKcc3MJzScoIiIi0jQ195NKRERERGQP1EIoIiIiEuV0UomIiIhIlPM3jqtr7YkSQhEREZFIUZexiIiISJTTtDMiIiIiUU5jCEVERESinLqMRURERKKcWghFREREopzGEIqIiIhEN6cWQhEREZEopzGEIiIiIlFOCaGIiIhIdFOXsYiIiEi0UwuhiIiISJRTC6GIiIhIlNO0MyIiIiLRTWMIRURERKJdExlD2DSiFBEREWmCnPnqdKsNMzvazBab2TIzu2EXZQ4xs5/MbL6Zfb3HfTrn6lg12QX9I0VERBonz/pt8394v075QYuxx+82VjPzA0uAI4G1wDTgTOfcgkplUoHvgaOdc6vNrK1zbvPu9qsu43p02rUrvQ6h3r3+QHde+a555rpnHmAcfPL3XodR775+a38+mFnudRj17rgR+rgSkaantq1+dTAGWOacWwFgZq8CJwALKpU5C3jLObcaYE/JIKjLWERERCRyzOp227NOwJpKj9eGl1XWB2htZpPMbIaZnbOnneont4iIiEik1LGF0MzGA+MrLZrgnJtQuUgNm1XvyosBRgKHA4nAFDOb6pxbsqvnVUIoIiIiEiHO569b+VDyN2E3RdYCXSo97gysr6FMpnOuACgws8nAUEJjD2ukLmMRERGRCHFYnW61MA3obWY9zCwOOAN4r1qZd4EDzSzGzJKAscDC3e1ULYQiIiIiEVLfJ5U458rN7HLgU8APPOOcm29mfwyvf8I5t9DMPgHmAEHgaefcvN3tVwmhiIiISKREYGJq59xHwEfVlj1R7fF9wH213acSQhEREZEI0aXrRERERKJcBOYhjAglhCIiIiKRohZCERERkeimFkIRERGRKFfLqWQ8p4RQREREJELUQigiIiIS7TSGUERERCS6uSZyUTglhCIiIiIRonkIRURERKKcxhCKiIiIRDmdZSwiIiIS5dRCKCIiIhLlNIZQREREJMqpy1hEREQkyjWLLmMzSwXOcs491jDh/HJmdhUwwTlXuJsytwOTnXNfVFt+CPBn59xxkYyxJkP7JnLeiWn4fDDxh3ze/TJvpzLnnZjG8P6JlJQ6Hns1k5/XlQJw7EGtOGxsC5yDNRtLeezVLMrKHd06xnHRqenExRiBoOPpN7NYvqa0oatWxdK53/DJy3cSdEFGHHgqBx47vsr6RbMm8uXbD2Hmw+fzc/SZN9Ktz0jysjfw9tPXk5+XiZmPkQefxr5HnuNRLULGDE/livN74PPBh19s5uW31+1U5soLejB2RColJUHuenQZS1cUAHD9ZT3Zb1QaOXllnHfVTxXl/3B6F447oi25W8sBeOqlVfwwM7chqrNLi376hneev5tgMMDYQ0/h8BMuqrJ+3vQv+eT1RzCf4fPFcMI517NPv5EAFBVs5fUJt7Bh7TIM4/SL76B7n2Ee1EJExFvNpYUwFbgUaPQJIXAV8CKwy4TQOXdLg0VTC2Zwwclp/OPJTWTllXPXVR2ZPr+QdZvKKsoM75dI+4wYrrxrHb27xnPhKenc9PAGWrfyc8y4llx973rKyh1Xn92G/Ycn8/W0fH5/XGve+CyXnxYVMbxfIr8/Lo3bHt/oWT2DwQAfvXg7Z1/7DK3S2vHU7b+l77DDaNupV0WZHv335ZJhh2FmbFyzmP89fhVX/PNjfD4/R51+PR27DaSkKJ8nbz+FfQbsX2XbhuTzwVUX7cO1t81nS1YpT947hO+mZbNqbVFFmbEjUuncIYHfXTaLAX1acM34fbjkhrkAfPzVFt76eCM3Xtl7p33/74MNvPbu+gary+4EgwHeevZOLr7xKVLS2/HgTaczcOShtO+84//ee9BYBo48FDNj/arFPP/wtdzwwAcAvPPfu+g7dBznXv0g5eWllJUUe1UVERFPNZUWwj1FeTfQ08x+MrP7zOw6M5tmZnPM7DYAM+tuZovM7Gkzm2dmL5nZEWb2nZktNbMx4XK3mtkLZvZlePlFu3pSC7kvvL+5ZnZ6ePkhZvZBpXKPmtkfzOxKoCPwlZl9ZWZ+M3uu0vZXh8s/Z2anhu8fHY77W+DkSvtMNrNnwvWcZWYn/KL/bC306hrPxqxyNmeXEwjA97MKGD0wqUqZUYOSmDwj1Lq0dHUJyYk+Ulv6AfD5jbhYw+eDuDgjJy/UuuSAxITQL5KkRB854VYnr6xbMYe0tl1Ja9uFmJg4Bo39NYt/mlilTHxCMhYeeFtWUlhxv2VqWzp2Gxgqk9iCNh16si13U8NWoJL+vVqwbkMRGzaVUF7u+PLbTMaNSatSZtyYND6dtAWABUvyaZEcQ1rrWADmLNjKtm3eHo/aWL1sLuntu5DeLnTMhu/3a+ZP/6pKmcrHrLSkCAv/Ci4uzGfFohmMPfQUAGJi4khMbtWwFRARaSQcVqebV/bUQngDMMg5N8zMjgJOBcYABrxnZgcBq4FewG+B8cA04CxgHPAb4EbgxPD+hgD7AsnALDP70DlXU5PIycAwYCiQAUwzs8m7CtI597CZXQMc6pzLNLORQCfn3CCo6PquYGYJwFPAYcAy4LVKq28CvnTOnR/e7kcz+8I5V7CH/1WdpaX4ycrdkRxk5ZXTu2v8TmUyq5VJS/GzYm0p70/K4/GbO1Na5pi9pIg5S0KtMP99J5ubxrfj7OPT8Bn87ZEN9R16nWzN3USrtA4Vj1u1bs/aFbN3Krdwxud88ea/KNiWze/+9MRO63My17Jh9UI67TM0ovHuTkZ6PJuzdnS/b8kqpX/vFlXLpMWxObOkUpkS2qTFkZ1Txu6cdEx7fnVwGxYvz+c/z60kvyBQv8HXQV7OJlLTdxyzlPR2rF42Z6dyc6d9wYevPkh+XhYX/uVxALI2ryG5VWtefeIm1q9aTOd9BnLiOTcQn5C00/YiIs1d0Pxeh1ArdWnHPCp8mwXMBPoB2/u9fnbOzXXOBYH5wETnnAPmAt0r7eNd51yRcy4T+IpQclmTccArzrmAc24T8DUwug6xrgD2MbNHzOxoYGu19f3CMS8Nx/litXreYGY/AZOABKBrTU9iZuPNbLqZTZ8wYUIdwgtvX8MyV8syyYk+Rg9M4rI713LxbWtIiPNx4IjkUAX2b8l/383m0jvW8t93s/njaRl1jq1eVa8UVLQsVdZ/5JFc8c+POePyR/ny7YerrCspLuD1/1zJ0Wf+lYTEFjtt21Bq89utprq5Gv4Hlb37yUbOunQmF1w7m6ycMi77Q/dfFF+9qTHenes1ePQR3PDAB5x37SN88r9HAAgGAqz7eSH7H3kG1979JvHxiXz53tORjVdEpJFyZnW6eaUuCaEBdznnhoVvvZxz/xdeV1KpXLDS4yBVWyGrf83s6mtyV/+R8moxJ9RUyDmXQ6h1cRJwGVDTt9HunvuUSvXs6pxbuIvnmeCcG+WcGzV+/PiaiuxWVl6A9NQd/570lBhy8gI7lcmooczg3glszi5nW0GQQBB+mFNAn+6h1sWDR7Xgh7mhoZRTZhfSq1qrY0Nr1bodW7N3tFJuzdlIy9S2uyzfve9ocraspmBbDgCB8jJe/8+VDN73eAaMPCri8e7OlqwS2qbHVTxukx5HZnbpzmUy4iuViSczZ/cn9eTklREMhhLHDz7fRL/eLes38DpKSWtHbtaOY5aXtYmU1rs+Zj37jyJr0xryt+aQkt6OlLR2dOs1BIAhY49i3c81voVERJo956xON6/sKSHcBmz/ZvoUON/MWgCYWScz2/U3RM1OMLMEM0sHDiHUvVyTycDp4bGAbYCDgB+BVcAAM4s3sxTg8JpiNbMMwOecexO4GRhRbf+LgB5m1jP8+MxK6z4FrrBwM4+ZDa9jHWtt+ZoSOmTE0CYtBr8f9h+ezPT5Vc+JmT6/kINGhlr+eneNp7A4SO62AJm55fTuFk9cbOjFM7h3Ius2h7oks7eWM6BnKFce1DuBjVt231UZaR17DCZr0ypytqylvLyUeT98RN9hh1Upk7VpFS7cjLZ+1XwC5WUktUjFOce7z/6NjA492f9X53kRfhWLluXTuUMi7dvGExNjHDYug++mZVcp8920HH51SBsABvRpQUFh+R67i7ePMQQ4cGwaP6/e5blRDaJLz0FkblxN1ubQMZs15SMGjjy0SpnMjTuO2dqfF1BeXkZyy1RapbYhNb09m9f/DMDSeVNp17nnTs8hIhINHL463byy2zGEzrms8Mkh84CPgZeBKeFcKR/4PVCXgU4/Ah8S6oK9YxfjBwHeBvYDZhNqyfuLc24jgJm9DswBlhLqvt5uAvCxmW0gdMbxs2YVp/b8tVq9is1sPPChmWUC3wKDwqvvAB4E5oSTwpVARKajCQbhmbdC4/18Bl/9mM/aTWUcuV8oB/98yjZmLSxiRP9EHv5rJ0rLQtPOACxbXcrUOYXcc01HAgHHynWlfDFlGwBP/i+L805Iw+c3ysocT76RFYnwa83vj+HXv7+ZF/51AS4YZPi4U2jbqTfTvnoVgNGHnsHCGZ8x+/t38fljiI2L59Q//hszY9WSGcyZ8i5tO/fh8b+fCMDhp1xNnyEHe1KXQBAefHoF998yAJ/P+GjiJlauKeI3R7UD4L3PNjF1Rg77jkjl5cdGUFIS4O5Hl1Vsf8vVvRk2KIWUljH876mRPPvqGj6auJlLzu5Grx7JOAcbt5Rw/xPLPanfdn5/DCf/4SYm3DUeFwwy5pCTaN+lF99/Hhpuu/+RpzPnx8+ZPvk9/DExxMYlcPaV91d0l5/0hxt56dHrCZSXkdauM2dc/A8vqyMi4pmmMu2MuT0NbqqvJzK7Fch3zt3fIE/Y8Nxp1670OoZ69/oD3Xnlu4Z5jTS0Mw8wDj75e6/DqHdfv7U/H8xs/Gcy19VxIzSPvoj8Yp5lZYuXr6nTl2jfnl08iVWfsCIiIiIR0lRaCBssIXTO3Vp9mZkNBl6otrjEOTe2QYISERERiSAlhLXgnJtLaL5BERERkWbHyzOH60JdxiIiIiIRohZCERERkSinhFBEREQkyikhFBEREYlyGkMoIiIiEuWCaiEUERERiW7qMhYRERGJcuoyFhEREYlyaiEUERERiXJqIRQRERGJcmohFBEREYlyaiEUERERiXJBrwOoJSWEIiIiIhESdD6vQ6iVphGliIiISBPknNXpVhtmdrSZLTazZWZ2w27KjTazgJmduqd9KiEUERERiRCH1em2J2bmB/4DHAMMAM40swG7KHcP8Glt4lRCKCIiIhIhQVe3Wy2MAZY551Y450qBV4ETaih3BfAmsLk2O1VCKCIiIhIh9d1CCHQC1lR6vDa8rIKZdQJOAp6obZxKCEVEREQipK5jCM1svJlNr3QbX22XNWWN1dsWHwSud84FahunzjIWERERiRBXu27gSuXdBGDCboqsBbpUetwZWF+tzCjgVTMDyAB+bWblzrl3drVTJYQiIiIiERKs/yuVTAN6m1kPYB1wBnBW5QLOuR7b75vZc8AHu0sGAczVNXWVXdE/UkREpHHy7HIhX8wpqVN+cMSQ+D3Gama/JtQt7Aeecc7daWZ/BHDOPVGt7HOEEsI3drtPJYT1xh1+xo9ex1DvJr46hjP/strrMCLilXu7ctTZs7wOo9599sJwnv3K6yjq33mHwlWP5HsdRkQ8eEULr0MQae48Swg/n123hPDIoXtOCCNBXcYiIiIiEVLLM4c9p4RQREREJEJqObeg55QQioiIiERIbS9H5zUlhCIiIiIR0lRO1VBCKCIiIhIhEZh2JiKUEIqIiIhEiFoIRURERKKcxhCKiIiIRDmdZSwiIiIS5dRlLCIiIhLlNDG1iIiISJRTl7GIiIhIlFOXsYiIiEiUCwTVZSwiIiIS1dRCKCIiIhLllBCKiIiIRDmdVCIiIiIS5XSlEhEREZEopy5jERERkSinLmMRERGRKKcWQqmV0UNTuOzcrvh8xkdfbuHV9zbsVOayc7sydngqJSVB7n18BUtXFtImPY4bLt2H1qmxuKDjwy+38NbHmyq2OfFX7TjxV20JBBw/zMpjwstrGrJaAAztk8A5J7TGZ/DVjwW8N2nrTmXO/U1rhvVLoLTM8fjrWaxcVwbA0Qe05LCxyRjw5Y8FfPztNgCu/F06HdrEApCc4KOgOMhfH9zYYHUCGDW4JZec3Rmfz/hkUhavfbBppzKXnt2J0UNTKCkJcv+EVSxbVURsrPHATb2JjfXh98E303J54a1Q7Gef1J5jDkknb1s5AM/8bwPTZu/8//LKivmT+eL1OwkGgww94Lfsd/T4KuuX/PQF37z/EGY+fD4/h592I116jfIo2t3r19XPyQfFYwZTF5QxcUZZlfVtWxtnHZ5A57Y+PpxSylezQuvbphrnHp1QUS49xcfHU0v5enbV7UVEKlNCKHvkM7jy/G785c7FbMkq5bF/DmTKjBxWrSuuKDNmWAqdOyRwzlVz6N8rmT9d2J3L/7aAQMDxxAurWbqykMQEH0/cNYgZc/JYta6YYQNasv+oVC76yzzKyh2prRr+MJvBeSe15p9PbSYrL8CdV7RnxoJC1m0urygzrF8C7TNiuPreDfTqGscFJ6Vx86Ob6NwulsPGJvO3RzZRHnDccEFbZi0qYmNmOQ+/lFWx/e+PS6WwONig9fIZXH5uF264ZxmZ2WU8cntfpszMY/X6Hcds9NBWdGqXwHl/XkC/nklceV4Xrrx1CWVljr/ctYzikiB+P/z75j5Mm72VRcsLAXjr0y288dHmBq1PbQSDAT575XbO+NOztGzdjufuOpXeQw4jo2OvijLd++1H76GHY2ZsXruId566ivG3feJh1DUzg1MPiefxd4rIzXdcc3oi81aUsylnxyd2YTG8ObmEwftUfd9sznXc92pRxX5uOy+JOSvKERHZnabSZezzOoDGwMzeMbMZZjbfzMaHlx1tZjPNbLaZTYzE8/br1YJ1G0vYsLmE8oDjq++z2H9U6yplDhjVms8mZwKwcFkBLZL8pKXGkp1bxtKVoUSiqDjIqnVFZKTFAXD8kW159d0NlJWHXoW5Wxv+S6tXlzg2ZpazOTtAIABTZhcyamBSlTIjByTyzcwCAJatLiUp0UdqSx+d2sawdHUppWWOYBAWrihm9MDEnZ5j3yFJfP9TYYPUZ7u+PZNYv6mEjVtKKQ84vp6aw/4jU6qU2X9ECp9/mw3AouWFJCf5SUsJJRfFJaEENsZv+P1N48yzDSvn0LptN1LbdMEfE8eA0ceydE7Vt0RcQjJmofqUlRZV3G9surXzkZkbJGurIxCEWUvKd0r88oscazYHCe7mt0afzn4y8xw525rIJ72IeMa5ut28ohbCkPOdc9lmlghMM7N3gaeAg5xzP5tZWiSeNCMtli1ZJRWPt2SX0r9Xi2pl4tiSVVqlTEZaHNm5O7qp2rWJo1f3JBYuywegc4cEBvdryflndKa0NMiTL65h8YqCSFRhl1qn+MnKC1Q8zsorp1eX+Cpl0lJiyMrdkdBl5wZIS4lhzaYyTj86lRZJPkrLHMP6JfLz2tIq2/brEU9efoCNmQ2b7Ga0jmNLdtXj0a9ncpUy6a1jq5TJzC4jPS2W7LxyfAb/uaMvHdvF894XmRWtgwC/OSKDIw5IY8nPhUx4eR35hQEag205m2jZun3F45ap7Vj/85ydyi2e9Tlfv/MAhduy+e3lTzZkiLWWkmzk5O/4xM3Nd3RrX/ffxSP6xDBzqVoHRWTPdvfjsjFRQhhypZmdFL7fBRgPTHbO/QzgnMtuqEBq8+vAVSqUEO/j1qt789h/V1NYFHrV+f1Gi2Q/l/9tAX17JnPzVb34/ZWzIxVyjWrTPlRTGecc6zeX896krdx4UVuKS4Ks3lBKoFqb+/7DGr51EKgx6OrHrMbGsXCZoINL/raY5CQ/f/9TD7p3TmDl2mLen5jJS+9sxAHnntKB8Wd14l9Pr67v6H+hGl6UNVSy7/Aj6Tv8SFYvncbk9x7izKuei3xodVWL47cnfh8M7BHD+9978PoTkSanqYwhjPouYzM7BDgC2M85NxSYBcymxm/BnbYdb2bTzWz6hAkT6vzcmdlltEnf0WrWJi2OrJzSamVKaZMeV61MqHXQ7zduvaY3E7/N4ttpORVltmSVVjxevLwA5xwpLRs298/OC5Ce4q94nJ4SQ87Wqi1eWXnlpKfuKJOW6q8oM2laATc+tJHbn9hMfmGwSkugzwdjBiUxZXbDfyFnZpfSJq3q8ajcWhsqU1alTEZabMUx266gMMCcRfmMGtIKCHXrB8PdBR9PyqJfz6rd615q2bo923J2nLizLXcTLVPb7rJ8196jyd2ymsL8BvsdVWt5+Y7WLXZkhaktjK0Fdfu07t/Nz9otAfKLmsinvIh4qql0GUd9QgikADnOuUIz6wfsC8QDB5tZD4BddRk75yY450Y550aNHz++piK7tWh5Pp3ax9O+TRwxfuPQ/dP5fkZulTLfz8jhqIMyAOjfK5mCwkBFAvLni3uwel0Rb3xU9Szb76bnMHxgKNHo3CGBmBirOHu1oSxfW0r7jFjatPbj98N+Q5OYsaCoSpmZC4o4cESou7VX1zgKi4Lkbgu1crZKDr0001P9jB6UxPc/7ejyHtwrgfVbysjOa/gu1cUrCqscs4P3bc2UmXlVykyZmceR40IvmX49k0LHLK+clJYxJCeFEuC4WGP4wJasCZ+Msn2MIcABo1JYubaYxqJDt8Fkb15JbuYaAuWlLJj2Ib2GHFalTM7mVRUt1xtXzydQXkZicuuaduep1ZuCZKT6SGtl+H0wvE8M836u2+toRJ8YZi5Rd7GI1E7Q1e3mFXUZwyfAH81sDrAYmApsIdRt/JaZ+YDNwJH1/cTBIDzy7CruubEfPh98/NUWVq0t4rgj2gDwwRdb+GFWHmOHpfLCQ0MoLgly3xM/AzCobwuOOiiDFasKefLugQD836tr+fGnPD75KpPr/tiDp+8bRHm5457HVtR36LWq23PvZvPXC9vi84Va/NZuKuOIfUNjJL+Yms+sRcUM65fIg9d3oKTU8eT/drQoXX1OBi2S/AQCjmffyaagUmvMfl51FxOq16PPr+Wf1/XE5zM+nZzFqnXFHHtYOgAffpnFj7O3MmZYK567fwAlpUHuf2oVAGmpMVw3vhs+n+Hzwdc/5PLDT6GpZS48oxM9uyXiHGzKLOWhZxpLdzH4/DEcdfotvPbwhbhggCH7n0Kbjr2ZNfkVAIYfdCaLZ33KvKnv4vPHEBObwAkX/btRnlgSdPDm1yX88TeJ+Hzww4IyNmYH2X9Q6KPw+3nltEwyrj09kYQ4wzk4eFgsd71YSEkZxMZA3y4xvP5VyR6eSUQkxNW52c+bz06re6CyC+7wM370OoZ6N/HVMZz5l8aTnNSnV+7tylFnz/I6jHr32QvDefYrr6Oof+cdClc9ku91GBHx4BUt9lxIRPaGZ79QH/mwbonWFcd682taLYQiIiIiEaKzjEVERESiXFPpiFVCKCIiIhIhTeVKJUoIRURERCJELYQiIiIiUS4QaBpnGSshFBEREYkQtRCKiIiIRLlgExlEqIRQREREJELUQigiIiIS5ZQQioiIiES5YBPJCJUQioiIiESIayJXKvF5HYCIiIhIc+Wcq9OtNszsaDNbbGbLzOyGGtb/zszmhG/fm9nQPe1TLYQiIiIiEVLf1zI2Mz/wH+BIYC0wzczec84tqFTsZ+Bg51yOmR0DTADG7m6/SghFREREIqS2rX51MAZY5pxbAWBmrwInABUJoXPu+0rlpwKd97RTJYQiIiIiERKBaQg7AWsqPV7L7lv/LgA+3tNOlRCKiIiIRIirY0ZoZuOB8ZUWTXDOTahcpKan2cW+DiWUEI7b0/MqIRQRERGJkLr2GIeTvwm7KbIW6FLpcWdgffVCZjYEeBo4xjmXtafnVUIoIiIiEiERuHTdNKC3mfUA1gFnAGdVLmBmXYG3gLOdc0tqs1MlhCIiIiIRUt8nlTjnys3scuBTwA8845ybb2Z/DK9/ArgFSAceMzOAcufcqN3tVwmhiIiISIREYmJq59xHwEfVlj1R6f6FwIV12acSQhEREZEI0aXrRERERKJcBOYhjAglhCIiIiIREoGTSiLCmkrm2gToHykiItI41TR3X4O46pH8OuUHD17RwpNY1UJYjw497QevQ6h3X70+lgfeaZ657rUnGged9K3XYdS7yW+P46izZ3kdRr377IXhXD+hyOswIuKe8Ync/1YERp577M8n+7wOQcRzdZ2Y2itKCEVEREQiRCeViIiIiES5YHnTaP1XQigiIiISIU2kx1gJoYiIiEikaAyhiIiISJRrKrO5KCEUERERiZCmMg+hEkIRERGRCFELoYiIiEiU0xhCERERkSinhFBEREQkymliahEREZEopxZCERERkSink0pEREREopymnRERERGJcuoyFhEREYly6jIWERERiXIuGPQ6hFpRQigiIiISIRpDKCIiIhLl1GUsIiIiEuV0UomIiIhIlFNCKCIiIhLlgk4nlTQpZvY08C/n3AIv4xg9NIXLz+uG32d8OHEzr7y7YacyV5zXjbHDUykuCXLPY8tZ+nMhbdLj+OtlPUlLjcU5xwdfbObNjzd5UIOarVn8Dd+/dyfOBek3+lSGHTq+yvqls95n9qSnAIiNS2LcSbeS3rEfAC/ffRix8cn4zI/5/Jx85ZsNHv+Y4alcecE++HzGh19s4qW31u5U5soL9mHfka0pKQly1yNLWLKiYLfb9uyezLV/7ElSgp8Nm0u449+LKSwK0L5NPC88MoLV64sAWLBkGw88sTzidRw1uCWXnN0Zn8/4ZFIWr32w8+vn0rM7MXpoCiUlQe6fsIplq4qIjTUeuKk3sbE+/D74ZlouL7y1EYAbL+tOlw7xACQn+SkoDHDJ3xZHvC6706ezj9/sH4sZTFsUYNLs8irr26QYvz0kjk4ZxqfTypk8Z8f6Awb5GdMvBgN+XFTOt/MCDRz9rq1Z/A1TPvgnLhik7+hTGXbIRVXWL5v1PrMnPw1ATFwS4078O+kd+lWsDwYDvPPob0lq1Zaj//BEg8Yu0pyphbARMjMDzLmd03Xn3IUehFSFz+BPF3Tnun8sYktWKU/cNZDvp+eyal1RRZmxw1Po1D6B3185m/69W3D1hT249Kb5BAKOx19YxdKfC0lM8PHk3YOYPmdrlW29EgwG+Pad2zn2wmdITmnH24/+lm4DDqN1u14VZVq27sTxF79AfFIKqxdNZvJbt3DS5a9XrD9+/PMkJLf2Inx8Prh6fE+uuXUeW7JKmXDvML79MYtVa3f8b/cd0ZrOHRM469IZDOjTkmsu7sUfr5+9223/cmkvHvvvz8yev5VfH96OM0/sxP+9shqAdZuKueCanxqujgaXn9uFG+5ZRmZ2GY/c3pcpM/NYvb64oszooa3o1C6B8/68gH49k7jyvC5ceesSysocf7lrGcUlQfx++PfNfZg2eyuLlhfyz/+srNh+/JmdKCjyNoEygxPHxfL0h6XkFTguPymeBasCbM7d8YFdWOJ47/tSBnb3V9m2XWtjTL8YHn27hEAQzj8mjoWrg2Rt9f7DPhgM8N17d/DrC/6P5FbteOc/p9Gt/6FV32NpnTlu/PPEJ6awZvFkvnnr75x42WsV6+d99wKpbfehtDjfiyqINFvBQNNoIfR5HUCkmVl3M1toZo8BM4H/M7PpZjbfzG6rVG6SmY0K3883szvNbLaZTTWzdg0Ra79eLVi/sZgNm0soDzi+/D6bA0ZXTYIOGNWazyZnArBwaT7JyX7SUmPJzi1j6c+FABQVB1m9rpiMtNiGCHuPtqyZQ0p6V1qld8EfE0fPob9m5YKJVcq07z6C+KQUANp1HUpB3kYvQq1R/94tWbehmA2bSigvd0z8dgvjxqRXKTNuTBqffrUZCLXotUj2k946drfbdu2UyOz5WwGY/lMOB++X0bAVq6RvzyTWbyph45ZSygOOr6fmsP/IlCpl9h+RwuffZgOwaHkhyUl+0lJCvymLS0IfeDF+w++3Gp/j4LGpfDUlJ4K12LMubXxk5TmytzkCQZi9PMCAaolfQTGs3RJaX1nbVGP15iBlAQg6+HlDkEE9qm7rlS1r5tAqvSut0na8x1Yt/LJKmXbdhhOfGDqmbbsOpWDrjvdYft5G1iz+mr6jT23QuEWiQTAYrNPNK80+IQzrCzzvnBsOXOucGwUMAQ42syE1lE8GpjrnhgKTgYtqKFPvMtLi2JxVWvF4S1bpTkldRlocmzNLKh5nZpWSkRZXpUy7NnH06pHEwmUFkQ24lgryNpGc2qHicXJKewrydt2dvWjaG3Tpe1DFY8P48OkLeOvhk1n4w2u73C5Sqv/Pt2SV0Ca96v88Iz2+hmMXv9ttf15dyLgxaQAcckAGbTN27LND2wSefmAYD/9jMEP6t4pIvarE3zqOLdmV4s8uJb111ddeeuvYKmUys8tID78+fQaP/6Mvr/9nMDPnbWPR8sIq2w7um0xOXjnrN5XgpZRkyC3Y0aKXV+BISa45ga1uU46jR3sfSfEQ64e+Xf213jbSCrZupkVK+4rHya3a7fY9tnjam3Tpc2DF46kf3MWYY/6MWbR8JYg0HBd0dbp5JVq6jFc556aG759mZuMJ1b0DMACYU618KfBB+P4M4Miadhrez3iAJ598Ehi6V0FaDd8t1acvqqlM5UIJ8T5uv7YP/3luFYUed8/tjtVYEVi/fCqLp73Jby55qWLZby59meRW7SjKz+LDp88ntc0+dNhndEOFWrvjUsN2zrndbnv3o0v504X7cO5pXfnuxyzKykMrsnJK+e34aWzdVk6ffZL5518HcM6VMyN7PH/xay/0J+jgkr8tJjnJz9//1IPunRNYuXZHd/Mh+7Xmq6netg7uSm2nCNuc6/h6djkXHhtPSZljQ1aQxjM0qIZAdvke+4HF09/k+ItfBGDVwq9ISE6jTaeBrF/xYySDFIlKNYxSa5SiJSEsADCzHsCfgdHOuRwzew5IqKF8mdsxk2SAXfyfnHMTgAnbH77yxQ97FeSWrFLaVmp5apMeR1ZO2c5lMuJhcWicT0Z6HJnhMn6/cfu1vfnim0y++bHxfPkmp7SjIHfHyTEFeRtJatV2p3JZGxbz9Rs3c8z5E6qMF0xuFeqxT2yRTveBR7B5zZwGTQgr/udhbdLjyazUUhYqU1LDsSslNta3y21Xryvi2tvmA9C5YwL7jQq1FpaVO8q2hU5kWLKigHUbi+nSMZHFyyM3tiszu5Q2lVqa26TFkZ1bVq1MWbhMqOU5Iy12p9dnQWGAOYvyGTWkVUVC6PPBuFGpXHaztyeTAOQVQGqlVr2UZGNrYe2zummLA0xbHErMfzU6hryCxpERJrdqR36lYRYFWzeRvIv32OS3buboPzxZ8R7btGoWqxd+xSuLJxMoL6W0JJ+vXvsLh55+b4PFL9KcNZWTSqKtf6AVoW+zvPC4wGM8jqeKRcvz6dQhgfZt4onxG4ftn8b306smdt9Pz+Wog0Jjzfr3bkFBYaDii/svf+zBqnVF/O/DxjP+DqBN58HkZa1ia/ZaAuWlLJ/9Ed36H1alTH7Oej5/4QoOPf0eUtv0qFheVlpIaUl+xf11S74jrX2fBo1/0dJtdO6QSIe28cTEGIePa8N307KrlPl2Wja/OjT0BTygT0sKCgNk5ZTtdtvUlFB3qxmcc2pX3v00dNxSWsXgC78zO7SLp3OHBNZvKiaSFq8opFP7eNq3iSPGbxy8b2umzMyrUmbKzDyOHBdKWvv1TAq99vLKSWkZQ3JSaCxdXKwxfGBL1lQ6GWXEwJas2VBc8cPFS2u3BElPMVq3NPw+GNrTz8JVtW95TQ7/fExNNgb18DN7WeNohW/TeTBbM6u+x7r2P7RKmfzc9Xzx4pUcelrV99iYo6/hrL9O4szrJ3LYmQ/QcZ+xSgZF6pG6jBsh59xsM5sFzAdWAN95HFIVwSA8/MxK7r2pLz6f8fFXW1i5tojjjwwlGu9/vpmps3IZOyKVFx8eSklpkHseWwHAoL4tOOrgNixfVchT9w4C4OlX1vDDrLxdPl9D8fljOOCEm/n4/y4gGAzSd/QppLXvzYKprwIwYN8zmDHxMYoLc/nundsBKqaXKdqWxWcvXA6ACwToOfw4uvQ9cJfPFQmBIDz41HLu//sgfD74aOImVq4p5De/Co3Zeu/TjUydkcN+I1vzyuMjw9POLN3ttgBHHNiGk44Jja2cPDWTjyaGxnwNG5DC+Wd2JRAIXQPzgSeWsy2/vIbI6k8wCI8+v5Z/XtcTn8/4dHIWq9YVc+xhoRNgPvwyix9nb2XMsFY8d/8ASkqD3P/UKgDSUmO4bnw3fD7D54Ovf8jlh5+2Vuz7kP1ae34yyXZBB+9+V8YFx8Th84Va/DblOMb2DyW0PywM0CIRrjwpgfi4UHfyuEExPPC/YkrK4Owj40hKMAJBeOfbMopK9/CEDcTnj2H/3/yNj5+5EOeC9B11MmnterPgh/B7bOwZzAy/x759N/Qe8/n8nHT5G16GLRIVmso8hNZUrrHXBLhDT9u7LuPG6KvXx/LAO83zNXLticZBJ33rdRj1bvLb4zjq7Fleh1HvPnthONdP8H4apUi4Z3wi97/VNL406uLPJ0dbJ5Q0Yp6dAXbU2bPq9CX62QvDPYk1qloIRURERBqS83AqmbpQQigiIiISIU3lpBIlhCIiIiIRomlnRERERKJcUC2EIiIiItGtqYwh1ClgIiIiIhESiXkIzexoM1tsZsvM7IYa1puZPRxeP8fMRuxpn2ohFBEREYmQ+h5DaGZ+4D+ELqu7FphmZu855xZUKnYM0Dt8Gws8Hv67S2ohFBEREYmQCLQQjgGWOedWOOdKgVeBE6qVOQF43oVMBVLNrMPudqoWQhEREZEIicAYwk7AmkqP17Jz619NZToBG3a1UyWEIiIiIhHy7fsH1+nKI2Y2HhhfadEE59yEykVq2Kx602JtylShhFBERESkkQgnfxN2U2Qt0KXS487A+l9QpgqNIRQRERFpOqYBvc2sh5nFAWcA71Ur8x5wTvhs432BPOfcLruLQS2EIiIiIk2Gc67czC4HPgX8wDPOuflm9sfw+ieAj4BfA8uAQuC8Pe1XCaGIiIhIE+Kc+4hQ0ld52ROV7jvgsrrsU13GIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5C81dKPVA/0gREZHGybwOoLHTlUrq0al/WuF1CPXujYf24epH870OIyL+fXmLZnvMHnin+f0+ufZE4+0fA16HEREnjfFz2rUrvQ6j3r3+QHfOuXm3l09tkp6/o4PXIYjUO3UZi4iIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRLkYrwOIdsP6JXLeyen4fMbEqVt554u8ncqcf3I6wwckUVoW5NGXtvDz2lIAjjskhcP3bYkDVq8v5T8vb6Gs3LHfsGROO7o1ndrF8td/rWP5mtIGrtXO+nX1c9KB8ZjBDwvKmDizrMr6tqnGmUck0LmNjw+nljJpVmh9m1Tj3F8lVJRLT/Hx8Q+lTJ5ddfuGFIljdvZv0hg1KInygGNjZjn/eXkLhUXBBq5ZVWsWf8P3792Jc0H6jT6VYYeOr7J+6az3mT3pKQBi45IYd9KtpHfsB8DLdx9GbHwyPvNjPj8nX/lmg8e/K4vnfMP7L9yFCwYYfcipHHL8RVXWz58xkc/ffAQzw+eP4fjf3UD3viMBuPvqI4hPSMbn8+Hzx3DF7f/zogoVhvZN5LwT0/D5YOIP+bz75c6vxfNOTGN4/0RKSh2PvZrJz+tCr8VjD2rFYWNb4Bys2VjKY69mUVbu6NYhlotOTSch3seW7HIefmkLRSWuoatWxeBe8fz+2Fb4DL6eUcgH3xRUWd8hw89FJ6XSrWMsb3yxjY+/27H+whNTGNY3nq0FQW58NLOhQxdpMpQQeshncOFvM7j9sQ1k55Zz97WdmD63kLWbdiQ7wwck0qFNLFf8Yw29u8Uz/rcZ/PXf60lL8XPMQa24+q61lJY5rvlDWw4YkcykH/NZvaGU+57ZxMWnZXhYux3M4JSD43ni3SJy8x1Xn5bIvJ/L2ZSz40umsATemlzC4H2qviS35Druf62oYj+3/iGJuSvKGzT+yiJ1zOYsLuKlD7IJBuH3x6dx8hGpvPh+tmf1DAYDfPvO7Rx74TMkp7Tj7Ud/S7cBh9G6Xa+KMi1bd+L4i18gPimF1YsmM/mtWzjp8tcr1h8//nkSklt7Ef4uBYMB3v3vP7jg+qdJSWvHo7ecTv8Rh9Ku04569Rq4LwNGHIaZsWH1Yl5+9BquvffDivXjb3yO5Jbe18sMLjg5jX88uYmsvHLuuqoj0+cXsq7ya7FfIu0zYrjyrnX07hrPhaekc9PDG2jdys8x41py9b3rKSt3XH12G/YfnszX0/K5+LQMXng/m4UrSjh0TAt+c2gKr32S62k9zzm+Ffc+l0321gC3/TGDmYtKWL9lx+dAfpHjhY+2MrJ/wk7bfzOriM9/KODiU1IbMGqRpidquozNLNnMPjSz2WY2z8xON7OVZpYRXj/KzCaF799qZs+Y2SQzW2FmV0Yipl7d4tm4pYzNWeWUB+C7mQWMHpxcpczoQclMmrYNgKWrSkhK9JHayg+A32fExRo+H8THGTl5AQDWbSpj/WbvWtCq69rOR2ZekKytjkAQZi0tZ1C1xC+/yLFmc5DAbhrF+nT2k7XVkbPNu9aKSB2z2YuLCIbrvmRVMemp/oarVA22rJlDSnpXWqV3wR8TR8+hv2blgolVyrTvPoL4pBQA2nUdSkHeRi9CrZM1y+eS3q4r6W27EBMTx9B9j2HBjC+rlIlPSMbMACgtKQplJI1Qr67xbMwqZ3N2OYEAfD+rgNEDk6qUGTUoickzQq1lS1eXkJzoI7Vl6LXl8+94LcbFGTl5oQSrY9tYFq4oAWDOkiLGDq66z4bWs3Msm7MCbMkJEAjA1LlFjOgfX6XMtoIgP68rIxDY+bNh8apSCoq8beEUaQqiqYXwaGC9c+5YADNLAe7ZTfl+wKFAS2CxmT3unKvXLCstJYbM3B2/crNyy+ndreoHXXqqn6xKZbLzAqSn+Fm+ppT3vsrl8Vu7UlrmmLOokNmLi+ozvHqTmmzkVkri8vIdXdvV/bfI8N4xzFziXesgNMwxO2xsS76bVbDT8oZUkLeJ5NQOFY+TU9qzefXsXZZfNO0NuvQ9qOKxYXz49AWYQf+xp9N/7OkRjbe2tuZsIiWtfcXjlLT2rFk+Z6dy86Z/waev/5v8rVn84donKpYbxv/dcyFmxphDT2PsYac1SNw1SUup+jrLyiund9f4ncpkViuTluJnxdpS3p+Ux+M3d6a0zDF7SRFzlhQDoe7jUQMTmT6/iH2HJJOe6u3XROtWfrLCP5wAsvOC9Owc62FEIs1TNCWEc4H7zewe4APn3De2+1/+HzrnSoASM9sMtAPW1mdANT39zr9jdy7kHCQn+hg9KJnLbltNQVGQa89rx4GjWvDN9Pz6DLHR8PtgYI8YPphS6GkckT5mJx+ZSiBIozyOu3q/rF8+lcXT3uQ3l7xUsew3l75Mcqt2FOVn8eHT55PaZh867DO6oULdJedqaCmqoVqDRh3BoFFHsGLRdD5/82EuvOEZAC655SVatW5Lfl4WT99zIW067sM+/UZFOOqa1XQ0qtduV2WSE32MHpjEZXeupbAoyDXntuXAEcl8M7OAx1/L4rwT0zj1yFSmLyikvIZWNxFpfqKmy9g5twQYSSgxvMvMbgHK2fE/qD74pKTS/QA1JM9mNt7MppvZ9AkTJtQ5pqzccjIq/fpOT42p6EKsXKbyL/S0FD/ZWwMM6ZvI5uwythaEull/mFNA3x5VWwcai9wCR2rLHV9NKS2MvIK6fcn07+Zn3ZYA+R53/UTymB08ugUjBybx0PObI1+RPUhOaUdB7oaKxwV5G0lq1XanclkbFvP1Gzdz1Ln/qTJeMLlVOwASW6TTfeARbF6zcyucF1LS2pOXvaNrOy97I61Sd67Xdvv0G0XWpjUUbMsBoFXrUNkWKekMHHU4a2toXWwoWXmBKq+z9JQaXot5gaqv13CZwb0T2JxdzrZKr8U+3UOvxfWby7hzwiZueHAD380sYFOWt63yOVtDLezbpaX4yNkW2M0WIvJLRE1CaGYdgULn3IvA/cAIYCWhJBHglLru0zk3wTk3yjk3avz48XveoJplq0vo0CaWtmkxxPjhgBHJTJtXtatw+rwCDhndEoDe3eIpLA6SuzVAZk45fbolEBcbSrQG90lk3cbGM26wsjWbgrRJ8ZHW0vD7Ql2/83+u2wf68N4xzFzq7RcTRO6YDeuXyIlHpHLPUxspLfO+RaZN58HkZa1ia/ZaAuWlLJ/9Ed36H1alTH7Oej5/4QoOPf0eUtv0qFheVlpIaUl+xf11S74jrX2fBo1/VzrvM4isjavI3ryW8vJSZk/9mAEjDq1SJnPTqoqWxHUrFxAIlJHUIpXS4kJKikLHurS4kKVzv6ddl94NXoftlq8poUNGDG3SYvD7Yf/hyUyfX7UFffr8Qg4aGRrj2rtr+LW4LUBmeKhDxWuxdyLrwuOOW7UIfS2YhVqsP5+yrQFrtbMV68pol+4nI9WP3w/7Dk5k1qKSPW8oInUSTV3Gg4H7zCwIlAGXAInA/5nZjcAPDR1QMAhPv5nJ3y5pj89nfDl1G2s3lnHUAaFk4rPvtjFzQREjBiTx6M1dQtNGvBxqPVq6qoQpswu477pOBILw89oSPv9+KwBjhiRxwSkZtGrh568Xt2fl2lL+8YR3A/6DDt6cXMLFJyTiC087szE7yP4DQy+/7+eX0zLJuOa0RBLiDOfg4KGx3P1SISVlEBsDfbvG8L9J3n8JROqYXXBqBrExxs2XdqgoO+F176bI8PljOOCEm/n4/y4gGAzSd/QppLXvzYKprwIwYN8zmDHxMYoLc/nundsBKqaXKdqWxWcvXA6ACwToOfw4uvQ90LO6VOb3x/Cbc27imfsuIhgMMuqgk2jXuTdTJ4bqte/hZzBv2ufM/PZd/P4YYuMSOOuyBzAztm3N4oUHQ+eXBYPlDNvvWPoO8a5ewSA881Y2N41vh8/gqx/zWbupjCP3C70WP5+yjVkLixjRP5GH/9qJ0rLQtDMAy1aXMnVOIfdc05FAwLFyXSlfhBO/A4Yn86sDWgHw49xCvvrR2+ELwSA8/8FW/nJuGuaDyTOLWLe5nENHh052+WpaISktfNz2xwwS442gg1/tl8wNj2yhuMRxyW9T6d8jjhZJPh78c1ve+nIbk2c2zvHWIl6yGsfUyC/hTv3TCq9jqHdvPLQPVz/a+Maz1Yd/X96C5nrMHnin+b2vrz3RePvH5tlVeNIYP6ddu9LrMOrd6w9055ybN+y5YBPz/B0d9lxIGpvGOV1AIxI1XcYiIiIiUjMlhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlFNCKCIiIhLllBCKiIiIRDklhCIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUU4JoYiIiEiUU0IoIiIiEuWUEIqIiIhEOSWEIiIiIlFOCaGIiIhIlDPnnNcxNBf6R4qIiDRO5nUAjV2M1wE0J0f+bobXIdS7z18ayUmXL/U6jIh4+9HezfaYnfmX1V6HUe9eubcrf3pom9dhRMRDf2rJCZcs9jqMevfu4335z8deR1H/LjsGjjhzutdhRMQXr4zyOgTxiLqMRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlyMV4HEO1GDWnFpWd3weeDjydl8tr7m3Yqc+k5XRgztBUlpUHue3Ily1YWERtr/OvmvsTGGH6/8c2POTz/5oYq253663Zc/LvOnHLxT2zNDzRUlSoM75/EBae2weeDL77fyluf5+xU5oJT2zByYBIlpY5HXtjEirUldGwby5/P71BRpl16DK98mM0Hk3I589g0xgxpgXOQt62ch1/cRE5ew9YtEsfsojM7se+IVMrLg6zfVML9E1ZRUNiw9RraJ4FzTmiNz+CrHwt4b9LWncqc+5vWDOuXQGmZ4/HXs1i5rgyAow9oyWFjkzHgyx8L+PjbbQBc+bt0OrSJBSA5wUdBcZC/PrixwepUk37d/Jx8cAI+g6nzy/hiemmV9W1b+zjryAS6tPHxwZQSvppZVrEuMQ7OOCKBDuk+HPDK58Ws3Bhs4BrsMHxAEhed1g6fweff5fHmZ9k7lbnotLaMHJhMSanjoec3sGJNCQDJiT4u/317unaMwzl45IWNLP65GIBjD0nl2ENaEwg4ps8r4L9vb2nQelW3cuFkJr91J84FGbjvbxl1xPgq6xdNf48ZE58CIDY+mUN/eyttOvUjZ9MKPv7v1RXl8rLWsO8xVzL8kD80ZPhVjB7aikvP6Rr6/Pgqk1ff2/n9cNm5XRgzLIWS0iD3Pr6SZSsLiY01/n1LP2JjQ58fk3/I4fk31gNw0NjWnHNqR7p2TODymxeyZEVhQ1dLmgElhB7yGVzxh65cf9cSMrPLePSOfkyZmcfqdcUVZcYMbUWn9vH84dr59O+VzJXndePKvy+irMxx3Z1LKC4J4vfDv2/px7TZW1m4rACANmmxjBzckk2ZJZ7Vbfxpbbj10XVk5ZZz73Vd+XFuAWs37vjyHTEgiY5tYrn0tlX06Z7AxWe05fr717B+cxnX3L26Yj9P39mDH2bnA/DOxFxe+TD0pXfswSmcfkw6T7y6uUHrFYljNnPeVv7vtXUEg3DhGZ048zftefrVdQ1WLzM476TW/POpzWTlBbjzivbMWFDIus3lFWWG9UugfUYMV9+7gV5d47jgpDRufnQTndvFctjYZP72yCbKA44bLmjLrEVFbMws5+GXsiq2//1xqRQWe5c8Qaievz0kgcfeLiQ333HtGUnMXVHOpuwdcRUWO976upjB++z88XjywQksXBXg2Y+K8fsgzsNPUJ/BxWe04+8PryUrp4z7b+jGj3PyWVPpPTZyYDId2sbyx7//TJ8eCVxyZjuuuzf03rrwtLbMXFDAPU+tJ8YP8XGhDqPBfRIZO7QFV/5jJeXljpSWfk/qt10wGGDSG7dz0iXP0iK1Ha/961R6DDqM9Pa9KsqkpHfmlCteJCEphZULvubL127m9Gv+R+t2+3DWX96t2M8zfz+InkOO9Koqoc+P87py/T+XsCWrjP/c2Z/vZ+RW/fwYlkKn9gmce/U8+vdK5k8XdOWKm0OfH3/+x+Lw54fx4K19mfZTHguXFbByTRG3/msZV1/Y3bO6SdPXbLqMzSzZzD40s9lmNs/MTjezlWZ2m5nNNLO5ZtYvXDbNzN4xszlmNtXMhoSXzzWzVAvJMrNzwstfMLMj6jvmvj2TWb+pmI1bSikPOCZNzWH/kalVyuw3MpUvvgl9qS5cVkCLJD9pqaFvoeKS0JdYjN+I8RvOuYrt/nh2F556ZR2VFjWo3t0T2JBZxqascsoD8O3MbYwZklylzJghLfjqx1Ar1JKVxSQn+mjdquqXz+C+SWzcUsaWnFBiUlQpoYiP91Wpc0OI1DGbMXcbwXDVFi4rICMttmEqFNarSxwbM8vZnB0gEIApswsZNTCpSpmRAxL5ZmboB8ey1aUkJfpIbemjU9sYlq4upbTMEQzCwhXFjB6YuNNz7Dskie9/8rblols7H1vygmRtdQSCMHNJ+U6JX36RY/WmIIFquWt8HPTs5Gfq/FCLYSAIRVUbFxtU7+4JbNxSxqbMMsoD8M30bYwZ2qJKmTFDW/DV1PB77OdikpP8tG7lJzHBx8BeiXz+XR4A5QEoKApV+OiDUnnz02zKy0OvzbxtDd+7UNmmVXNIzehGSkYX/DFx9B5+LCvmTqxSpkOPESQkpQDQvvsw8vN2bnVbs2QKKRldaJXWqUHirknfXsms31jChs3hz48p2RwwKrVKmf1HpvJ5lc+PGNJSQ58HO39+hLZZvb6YtRu8+fEvzUezSQiBo4H1zrmhzrlBwCfh5ZnOuRHA48Cfw8tuA2Y554YANwLPh5d/BxwADARWAAeGl+8LTK3vgDPSYtmStaM7KjO7lIzWsTuV2ZxVWq1MHBD6tfnEP/vzv8eHMnPeVhYtD33Z7jcihazsUlasLqrvkGstLSWGzJwdrUtZOeWkp1T94k1PjSGrcpnc8orEabsDR7bgmxnbqiz73fHpPHVHdw4e1bKitbChROqYVfarg9OZNnvn7tpIap3iJ6tS13tWXvlOyXlaSgxZuTvKZOcGSEuJYc2mMvr3iKdFko+4WGNYv0TSqx3Hfj3iycsPsDGzHC+ltPCRu21HppebHySlhdVq24xWPvKLHGcdmcB1ZyZxxuHxnrYQpqfGkJmz47WYlVO+0/89VGbH/zwzp4z01BjaZ8SSlx/gynPa8+8bu3H579sRHxf6P3RsG8eAXonc95eu3Hl1F3p1S2iYCu1Cft4mWrRuX/G4RWo7CvJ2Hqax3YKpb9Ct/0E7LV8680P6jDguIjHWVkbruCqfDVuySkkPfzZUlEmLZUvlMtmlFT8QfQZP3DWAN54cyoy5W1m0vKBhApeo0JwSwrnAEWZ2j5kd6JzLCy9/K/x3BtA9fH8c8AKAc+5LIN3MUoBvgIPCt8eBwWbWCch2zuXXd8A1fQ1Vb/CyGkptLxN08McbF3LmFXPp2zOZ7p0TiI8zzjyhA8+Fx5Z4xWqoXG3a8irXP8YPowe34PtZVf/1L72fxUU3r+Tr6dv49UEpexdoHUXimFV21gntCQQcE79r2ES3NilRzXV3rN9cznuTtnLjRW254YI2rN5QSiBY9Z+y/zDvWwdhF/WsZSOzzwed2/r4bk4p971SSGkZHDEqbs8bRkpN77GdXos1lAH8PujZJYFPJudy9T9XUVziOOVXaQD4/UaLJD/X3bua597awl8u7FDDXhpSDQeopg8YYM3Sqcyf+gYHHP/nKssD5aWsmP8lvYcdHYkAa63msN0ey1T5/PjrAs64bA79avj8ENkbzSYhdM4tAUYSSgzvMrNbwqu2t6MH2DFmclefk5MJtQoeCEwCtgCnEkoUd2Jm481suplNnzBhQp1j3pJdRpv0Ha1LGWlxZOWWVStTStv0uGplqvZTFRQGmL1wG6OGpNChXTzt28Tx5F0DeOHBQbRJi+PxOwfQOqVhmzKycsvJaL3jOdNbx5CdV75TmfTKZVJjyKlUZsSAZFasKd5ll9U307ax37AWNa6LlEgcs+2OPDCNscNTuPuxnyMU/a5l5wVIT9nRIpieEkPO1qr/96y8ctJTd5RJS/VXlJk0rYAbH9rI7U9sJr8wWKUl0OeDMYOSmDLb+4QwNz9IassdH3upLXzkFdQuI8zNd+TmO1ZtCrUw/rSsnM5tvRtfl5VTXqV1uqb3WGa192FG61iyc8vJDN+WrAyNXft+1jZ6dkmo2O+UWaFW+aWrigk6aNXCu3q2SGlPfs6OLuD83E0kt2q7U7nM9YuY+OrfOO7Cx0hMbl1l3cqFk2nTeSBJLTMiHu/uVP9saJMeR1ZOtc+PrDLaVC6TtnOZ7Z8fo4c27A9iad6aTUJoZh2BQufci8D9wIjdFJ8M/C683SGEupW3OufWABlAb+fcCuBbQt3MNSaEzrkJzrlRzrlR48ePr6nIbi1eUUCn9gm0bxNHjN84ZN/WTJmRW6XMlJm5HHFgOgD9eyVTUBQgO7eclJYxJCeFPqTjYo0RA1uyZkMxK9cUc9qlczj7qnmcfdU8tmSXcslNC6okWg1h6apiOrSJo216DDF+GDeiJdPmVO3emDY3n0PHtAKgT/cECouCVZKQcaNa8s2Mqq2D289YBRg9JJm1mxp2EFckjhmEzlw+/fj23PLAckpKG37g5/K1pbTPiKVNaz9+P+w3NIkZC6oOOZi5oIgDR4TGgfbqGkdhUbCi+7VVcuijJD3Vz+hBSXz/045jPbhXAuu3lJHdwGeD12T1piBtUn2ktTL8PhjRJ4Z5K2r33thW6MjdFqRtauj3ZJ8ufjZme3eSzNJVxXRoG0vb9Fhi/HDgqJb8OKfq++XHOfkcum/4PdYjgYKiADlbA+RuDZCZU0andqH305C+SRUno/wwextD+obGj3ZsG0us3zyZpWC7dl0Hk5u5krysNQTKS1k660P2GXRYlTLbctbz4TNX8Kvf30vrtj122seSmR/Sd8SxDRXyLi1eXu3zY780vq/h8+PIyp8fhQGyc8t2/vwY1IrV64urP4XIL9aczjIeDNxnZkGgDLgEeGMXZW8FnjWzOUAhcG6ldT8A238OfwPcRSgxrHfBIDz63Gruur43Pp/x6deZrFpXzHGHh37FfjAxkx9/2srYYSn891+DKCkNcv+TKwFIS43lL3/sjs8HZqEpCH6YlbebZ2tYwSA89fpm/n5ZJ3wGE6duZc3GUn41LvSL9tNv85gxv5CRA5N5/O/dKClzPPLijnFBobFoSTzxStUziM8+IYNObWMJulBrXUOeYby9XpE4Zpef24XYWB/3/LU3EBpM/tAzqxu0Xs+9m81fL2yLzxdq8Vu7qYwj9g21wH4xNZ9Zi4oZ1i+RB6/vQEmp48n/7ejWvvqcDFok+QkEHM++k01B0Y6kdr9G0l0MoS63NycVc8mJSaFpZxaUsTE7yAGDQ4nRd3PLaJlk/PmMJBLijCBwyLA4/vliASWl8OakEs4+OpEYP2TmBXn5c+++kINBmPDqZm69ojM+H0z8Po81G0o5+sDQe+yTb/KYMa+AUYOSeeL2HqGpnZ7fMTXVU69t5przOhLjNzZmlvLwC6FWuC++z+OKszvw8M3dKS93PPi8t9ME+fwxHHLKLbz7xIUEgwEGjj2F9A69mfvdKwAMPuBMfvj0PxQX5PLV/24Lb+PnjGtDo4XKSotYs/h7Djvtds/qsF0wCI88t5q7/9oHnw8+mZTFqrXFHHdEGwA++GILP8zKY8ywFJ5/cBAlJaFpqwDSWsdy/SU9Kj4/vp6aXfH5ccCoVC7/Q1dSWsVw5196s3xlITfcvdSrakoTZQ19lmYz5o783QyvY6h3n780kpMub54fLG8/2pvmeszO/EvDJZMN5ZV7u/Knh7btuWAT9NCfWnLCJYu9DqPevft4X/7zsddR1L/LjoEjzpzudRgR8cUro7wOIVJqd/ZYFGs2XcYiIiIi8ssoIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopwSQhEREZEop4RQREREJMopIRQRERGJckoIRURERKKcEkIRERGRKKeEUERERCTKKSEUERERiXJKCEVERESinBJCERERkSinhFBEREQkyikhFBEREYlySghFREREopw557yOQerIzMY75yZ4HUd9a671guZbt+ZaL2i+dVO9mp7mWrfmWq+mSi2ETdN4rwOIkOZaL2i+dWuu9YLmWzfVq+lprnVrrvVqkpQQioiIiEQ5JYQiIiIiUU4JYdPUXMdcNNd6QfOtW3OtFzTfuqleTU9zrVtzrVeTpJNKRERERKKcWghFREREopwSQhEREZEop4RQREREJMopIRSROjOzRDPr63Uc9a251kuaHjPzm1lHM+u6/eZ1TPXBzA4zsySv45Cd6aSSJsLM+gCPA+2cc4PMbAjwG+fcPzwOba+EPxiuBbo65y4ys95AX+fcBx6H9ouY2YjdrXfOzWyoWCLFzI4H7gfinHM9zGwYcLtz7jfeRrZ3mmu9AMzsc+C3zrnc8OPWwKvOuV95GtheMrM2wEVAdyBm+3Ln3PlexVQfzOwK4O/AJiAYXuycc0O8i6p+mNnzwL5AFvBN+Patcy7H08BECWFTYWZfA9cBTzrnhoeXzXPODfI2sr1jZq8BM4BzwoluIjDFOTfM28h+GTP7Knw3ARgFzAYMGAL84Jwb51Vs9cXMZgCHAZMqvRbnNPUvq+ZaLwAzm7W9Trtb1tSY2feEEooZQGD7cufcm54FVQ/MbBkw1jmX5XUskWJmHYFTgT8DHZ1zMXvYRCJMB6DpSHLO/WhmlZeVexVMPerpnDvdzM4EcM4VWbVKNiXOuUMBzOxVYLxzbm748SBCH3zNQblzLq8JH6Zdaa71AgiaWVfn3GoAM+sONIfWgCTn3PVeBxEBa4A8r4OIBDP7PXAgMBjIBB4llNSLx5QQNh2ZZtaT8Ie4mZ0KbPA2pHpRGm4V3F6vnkCJtyHVi37bk0EA59y8cBdkczDPzM4C/OEu/iuB7z2OqT4013oB3AR8G+5pADiI5nEd2Q/M7NfOuY+8DqSerQAmmdmHVPo8dM79y7uQ6s2DwHLgCeAr59xKT6ORCuoybiLMbB9Cs7rvD+QAPwO/b+pvJjM7EvgbMAD4DDgA+INzbpKXce0tM3sFKABeJJTs/h5o4Zw709PA6kF43OdNwFGEusM/Be5wzhV7Gtheaq712s7M2hJKAn8iNKRhs3NusqdB7SUz2wYkE0qayggdN+eca+VpYHvJzP5e03Ln3G0NHUskmNlAQj9KxgG9gcXOubO9jUqUEDYxZpYM+Jxz27yOpb6YWTqhQcYGTHXOZXoc0l4zswTgEkIfegCTgcebS3IhTYuZXQj8CehMKCHcl9BY3cO8jEuij5m1IvTD/2BCXccZhD73z/U0MFFC2FSY2T+Be6udJXitc+5vngZWD8JnTHen6lmCb3kWUD0Jd4V3dc4t9jqW+mBm77ObcWdN9Wzc5lqvysxsLjCa0BfvMDPrB9zmnDvd49B+ETPr55xbtKuz+pv62fzhk9N2ek02hwTezOYA34Zvk51zaz0OScI0hrDpOMY5d+P2B865HDP7NaHu1ibLzJ4hdAbufCpNrwA06YTQzH4D3AfEAc1lCpP7w39PBtoT6g4HOBNY6UVA9aS51quyYudcsZlhZvHhZKopz7d4DaHu7wdqWOcInS3elFU+AS0BOIXmcRIh28/aN7OWNI8Tm5oNtRA2EeFfVaOdcyXhx4nAdOfcQG8j2ztmtsA5N8DrOOpbM5/CZLJz7qA9LWtqmmu9AMzsbeA84CpCr8scINY592sv45LaM7OvnXMHex3H3grPuPACkEZomNAW4Fzn3DxPAxO1EDYhLwITzexZQr+qzgf+621I9WKKmQ1wzi3wOpB61pynMGljZvs451YAmFkPoI3HMdWH5lovnHMnhe/eGu6OTAE+8TCkehNOMAYQakkDwDn3vHcR7T0zS6v00EdoTtP2HoVT3yYA1zjnvgIws0PYccKkeEgJYRPhnLs3PA7ocEK/qu5wzn3qcVj14b+EksKNhM4U3H6WYFNvSWvOU5hcTWhKjBXhx92Bi70Lp94013pV4Zz7es+lmobw2biHEEoIPwKOITQ2rUknhIQm2naEPg/LCA1duMDLgOpR8vZkEMA5Nyl8sqR4TF3G4qnwjPzXAHPZMYYQ59wqz4KqB9WmMIHQFCb/aC5nGZtZPNAv/HDR9qEMTV1zrVdzFf6RPBSY5ZwbambtgKedc8d7HNpeMbPTgE+cc1vN7GZgBKFGgCZ9sgxUDF+YSajbGEJTco1yzp3oWVACKCFsMszsZOAeoC2hX43NZb6tL5vDmXO7YmbJzrkCr+OoD2Z2mHPuy/BrcSdN9czw5lqvaGBm05xzo8Njdg8FtgHzmsHY6jnOuSFmNg74J6GTZ250zo31OLS9Fp4h4zZCcxAaoSm5btW1jL2nLuOm417geOfcQq8DqWeLzOxl4H2qzsjfpL+EzWx/4GmgBdDVzIYCFzvnLvU2sr1yMPAlUFPrS1M+M7y51qtZC1/ico6ZpQJPEepmzQd+9DKuerL9uszHAk845941s1s9jKfehBO/K72OQ3amFsImwsy+c84d4HUc9S18kkx1zjl3foMHU4/M7AdCF25/r9JZxvOcc4O8jUyk+TCzGc65keH73YFWzrk53ka198zsA2AdcAQwEigCfnTODfU0sHpgZn0ITavTnapzzzbbnqKmQi2ETcd0M3sNeIdm1JLmnDvP6xgixTm3ptpZxoFdlW1KzOxPwLOEuueeIjS+6Qbn3GeeBraXmmu9mrmpZjbaOTetqV/Gs5rTgKOB+51zuWbWAbjO45jqy/8IXcf4aZrJZ2JzoYSw6WgFFLLjJAVoBt1ZlabRqaKptxACa8Ldxs7M4gh1kTSX7v7znXMPmdmvCI1pPY9QItXUE6fmWq/m7FDgYjNbReja4c1ilgLnXCGVPtudcxuADd5FVK/KnXOPex2E7EwJYRPRjFvSPqh0PwE4CVjvUSz16Y/AQ0AnQl0/nwKXeRpR/dne7Plr4Fnn3GxrHhMuNtd6NWfHeB2A1Nn7ZnYp8DZVe7uyvQtJQGMImwwzSyA0D9VAqk7A2tRb0qowMx/whcaTNF7hVt1OQA9CU374CV2RZaSnge2l5lovkcbEzH6u9LAiAXHO7eNBOFKJz+sApNZeIDRT/a+Ar4HOhMY6NTe9ga5eB7G3zGwfM3vfzLaY2WYze9fMmssH3gXADYQupVhI6HrNzaEFu7nWS6QxuR4Y6pzrQWhIxmxCJ+CJx5QQNh29nHM3AwXOuf8Smo5gsMcx7TUz22ZmW7ffCE0/c73XcdWDl4HXgQ5AR0IDqV/xNKJ64pwLApuAAWZ2EKFW61RPg6ofnzvnZjrncgGcc1nAv70NSaTZ+Vt4wu1xwJHAc4DGFDYCGkPYdJSF/+aGr925kdBp+02ac66l1zFEiDnnXqj0+EUzu9yzaOqRmd0DnA4sYMdZgo7QBLNNTng4RhKQEZ40d/u4wVaEknkRqT/Ndo7Fpk4JYdMxIfxl9TfgPUITHt/sbUh7z8wOAH5yzhWY2e8JTfXxUFO/dB3wlZndALxKKFk6Hfhw+0Xrm/gA6hOBvs3osm4XA1cRSv4qXxpsK/AfLwISacbWmdmThOZYvCd8uUj1VjYCOqmkiTCzHs65n/e0rKkxszmEBvAPITRO8v+Ak51zB3sa2F7axcDp7S1PrikPoDazj4HfOufyvY6lPpnZFc65R7yOQ6Q5C1/n/WhgrnNuaXiOxcGa79N7SgibCDOb6ZwbUW3ZjKZ+BuT2epnZLcA659z/1VTXpqaZX5z+TUJJ/ESqThvRpC9HZWbn1LTcOfd8Q8ciItLQ1GXcyJlZP0KD9lPM7ORKq1pRafqZJmybmf0V+D1wkJn5gViPY6oPf3POvV5p4PQDhAZON/mL0xMasvCe10FEwOhK9xOAwwl1ISshFJFmTwlh49cXOI7QWZzHV1q+DbjIi4Dq2enAWcAFzrmNZtYVuM/jmOpDsx04HT7Lvdlxzl1R+bGZpRAaxiAi0uypy7iJMLP9nHNTvI5Daqc5XpzezF53zp1mZnOp+XKDTfpyYdWZWSwwxznX3+tYREQiTS2ETcdJZjafUGLxCaExXFc55170Nqy9E+4Gv4fQtWONHdcibeVpYHuvOV6c/k/hv8d5GkWEmNn77Eh0/UB/QnNJiog0e2ohbCLM7Cfn3DAzO4nQtB9XA1815RYnADNbBhzvnFvodSxSP8xsinNuP6/jqCszq3xmezmwyjm31qt4REQakub+aTq2n2jxa+CVJj6PXWWblAw2O03yZCfn3NfAIqAl0Boo9TYiEZGGoy7jpuN9M1tEqMv4UjNrAxR7HFN9mG5mrwHvUHUKk7c8i0j2VpPsdghPFXQfMInQ0IVHzOw659wbngYmItIA1GXchISvVLLVORcIT+7Zyjm30eu49oaZPVvDYuecO7/Bg5F60VTnkTSz2cCRzrnN4cdtgC+a+rAMEZHaUAthI2dmhznnvqw8B6GZVS7SpFvSnHPneR2D1Dvbc5FGybc9GQzLQsNqRCRKKCFs/A4CviQ0B6EjfBZupb9NOiE0s87AI8ABhOrzLfAnDeZv3MysPTCG0DGbVq2l+mxvotprn5jZp8Ar4cenAx95GI+ISINRl3EjZ2bXsnMiSPg+zrl/eRRavTCzz4GX2TEB8O+B3znnjvQuKtkdM7sQuIXQDxUDDgZud84942lg9SDcEj+OUL0mO+fe9jgkEZEGoYSwkTOzv4fv9iV0aa13CX1ZHU/oC+tCr2KrD9un09nTMmk8zGwxsL9zLiv8OB343jnX19vIIqupTqcjIlIb6jJu5JxztwGY2WfACOfctvDjW4H/eRhafck0s9+zo5vuTEJjt6TxWkvo0onbbQPWeBRLQ2qS0+mIiNSGEsKmoytV50UrBbp7E0q9Oh94FPg3oW7w7wGdaNK4rQN+MLN3CR2zE4AfzewaaPrDGHZD3Ski0mwpIWw6XiD0pfs2oS+mk4D/ehtSvbgDONc5lwNgZmnA/YQSRWmclodv270b/tvSg1hERKQeaAxhE2JmI4ADww8nO+dmeRlPfTCzWc654XtaJuI1vS5FpDlTC2ET4pybCcz0Oo565jOz1tVaCPW6bMTMbBRwE9CNSsfKOTfEs6DqSTOdTkdEZI/0xSteewD43szeIPQlfBpwp7chyR68BFwHzAWCHsdSb2qYTucRM6uYTsc5N8/L+EREIkldxuI5MxsAHEboS3iic26BxyHJbpjZt865cV7HUd+idTodERFQC6E0AuEEUElg0/F3M3samAiUbF/onGvSV80heqfTERFRQigidXYe0A+IZUeXcZO/jCLRO52OiIgSQhGps6HOucFeBxEBmk5HRKKWxhCKSJ2Y2VPAvzXWU0Sk+VBCKCJ1YmYLgZ7Az4TGEBrgmvq0M815Oh0RkT1RQigidWJm3Wpa7pxb1dCx1KfwWcY7TafT1OslIlIbGkMoInXinFtlZuOA3s65Z82sDdDC67jqwRbn3HteByEi4gW1EIpInZjZ34FRQF/nXB8z6wj8zzl3gMeh7RUzOxw4k+Y3nY6IyB6phVBE6uokYDjhyyg659abWXM4E7e5TqcjIrJHSghFpK5KnXPOzByAmSV7HVA9aa7T6YiI7JHP6wBEpMl53cyeBFLN7CLgC+Apj2OqD1PDl1EUEYk6aiEUkbpqA7wBbAX6ArcAR3gaUf0YB5xrZs1qOh0RkdrQSSUiUidmNtM5N6LasjlNPXFqrtPpiIjUhrqMRaRWzOwSM5sL9DWzOZVuPwNzvI5vb4UTvy7AYeH7hegzUkSihFoIRaRWzCwFaA3cBdxQadU251y2N1HVn+Y6nY6ISG0oIRQRAczsJ8LT6TjnhoeXNfmucBGR2lB3iIhISKkL/UJubtPpiIjskRJCEZGQ5jqdjojIHmnaGRGRkOY6nY6IyB5pDKGICM13Oh0RkdpQC6GIRDUzuwS4FNjHzCpPn9MS+M6bqEREGpZaCEUkqjX36XRERGpDCaGIiIhIlNNZxiIiIiJRTgmhiIiISJRTQigiIiIS5ZQQioiIiEQ5JYQiIiIiUe7/AfUcZaoRF3dyAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "corr = df.corr().abs() #matriz correlaciones\n",
+ "\n",
+ "mask = np.triu(np.ones_like(corr, dtype=bool)) #Enmascaramos la diagonal superior\n",
+ "\n",
+ "f, ax = plt.subplots(figsize=(11, 9)) #Tamaño\n",
+ "\n",
+ "sns.heatmap(corr, mask=mask, cmap='coolwarm',annot=True, vmax=1, vmin=0,\n",
+ " square=True, linewidths=.5, cbar_kws={\"shrink\": .5})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2337cafd",
+ "metadata": {},
+ "source": [
+ "##### Queremos mirar el consumo, lo que tienes mas peso según nuestra matriz es:\n",
+ "- TEMP_OUTSIDE\n",
+ "- RAIN\n",
+ "- SPEED"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4939ef28",
+ "metadata": {},
+ "source": [
+ "#### TEMP_OUTSIDE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 182,
+ "id": "46473ac6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 182,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeiElEQVR4nO3deZgU1dXH8e9hWAYFIggqMuAgagwKSETUuCGC4hI33EjALcgbE2PcAzFRI3EJqNHEJeIaXIkoBhVRFBA0bqCIIhBREBFBwKiAsp/3j6qBnqF7pnumq7un5vd5nn5mar2nblefuXOr6ra5OyIiEj/18h2AiIhEQwleRCSmlOBFRGJKCV5EJKaU4EVEYqp+vgNI1LJlSy8tLc13GCIitcb06dOXu3urZMsKKsGXlpYybdq0fIchIlJrmNmnqZapi0ZEJKaU4EVEYkoJXkQkppTgRURiSgleRCSmlOBFRGJKCV5EJKaU4EVEYqqgHnSqja644gqWLFnCTjvtxLBhw/IdTl6pLkQKixJ8DS1ZsoTPP/8832EUBNXFFvpjJ4VACV7qlFwlXv2xk0IQ2wSvFpQko8QrdUlsE7w+yCJS1+kuGhGRmFKCFxGJKSV4EZGYUoIXEYkpJXgRkZhSghcRiSkleBGRmKoV98Hve/nIjLdpunwlRcDC5Ssz2n768DMzLktEpBDVigSfSwuv7ZTR+hu+agHUZ8NXn2a8bbur3s9ofRGRTKiLRkQkppTgRURiSgleRCSm1AcvKel6hEjtpha8iEhMqQUvkgb9NyO1kVrwIiIxFdsW/KaG25b7KSJS10Sa4M1sAbAS2AhscPduUZaXaPXuR+aqKMmTXD7hPKZpxkWJ5F0uWvCHu/vyHJQjIiIJYttFI1voC8hF6qaoE7wDL5qZA3e7+4iKK5jZIGAQQLt27SIOJ/taFm8CNoQ/C5O+gFykboo6wR/k7ovNbAdggpnNcfcpiSuESX8EQLdu3TzieLLuss5f5zsEkWrRf3bxF2mCd/fF4c8vzWwM0B2YUvlWIpIL+s8u/iK7D97MtjWzpmW/A0cCH0RVnoiIlBdlC35HYIyZlZXzqLuPj7A8ERFJEFmCd/dPgC5R7V9ERCqn2yRrmUJ+uKc23FEkUpcowUvW6I4iSUZ36+SPEryIREp36+SPErxIBNRdJYVACV4kAuqukkKgBC91ioaRlmTiep1ACV7qFA0jLcnE9TqBEnwdoFarSN2kBF8HqNUqUjcpwYvEQC4fgJs+/MyMy5L8UIIXkYwsvLZTRutv+KoFUJ8NX32a8bbtrno/o/WlvMhGkxQRkfxSC15EJEdyfTumEryIxEohX4/I9e2Y6qIREYkpJXgRkZhSghcRiSn1wYtIpDSyZv4owYtIpDSyZv4owYuIVFOhP/SlPngRkZhSC15E6ry4jriqBC9SR8U1qVVHXEdcVYIXqaPimtRkC/XBi4jElFrwIiI5kutnApTgRURyJNfPBETeRWNmRWb2rpk9G3VZIiKyRS764H8LzM5BOSIikiDSBG9mJcCxwL1RliMiIluLugV/K3AFoFGGRERyLLIEb2bHAV+6+/Qq1htkZtPMbNqyZcuiCkdEpM6JsgV/EHC8mS0AHgd6mtnDFVdy9xHu3s3du7Vq1SrCcERE6pbIEry7D3H3EncvBc4AJrp7/6jKExGR8vQkq4hITOXkQSd3nwxMzkVZIiISUAteRCSmlOBFRGJKCV5EJKaU4EVEYkoJXkQkppTgRURiSgleRCSmlOBFRGJKCV5EJKaU4EVEYkoJXkQkppTgRURiSgleRCSm0krwZraNmf3RzO4Jp3cPv7FJREQKVLot+AeAtcCB4fQi4M+RRCQiIlmRboLv4O7DgPUA7v49YJFFJSIiNZZugl9nZo0BBzCzDgQtehERKVDpfqPT1cB4oK2ZPULwhdpnRxWUiIjUXFoJ3t0nmNk7wAEEXTO/dfflkUYmIiI1ksltkm2AIqAhcKiZnRxNSCIikg1pteDN7H6gMzAL2BTOduCpiOISEZEaSrcP/gB37xhpJCIiklXpdtG8bmZK8CIitUi6Lfh/EiT5JQS3Rxrg7t45sshERKRG0k3w9wMDgPfZ0gcvIiIFLN0Ev9Ddx0YaiYiIZFW6CX6OmT0KPEPCE6zurrtoREQKVLoJvjFBYj8yYZ5ukxQRKWDpPsl6TqY7NrNiYArQKCxntLtfnel+RESketJ90OkBwoHGErn7uZVsthbo6e6rzKwB8KqZPe/ub1QvVBERyUS6XTTPJvxeDJwELK5sA3d3YFU42SB8bfVHQkREopFuF82TidNm9hjwUlXbmVkRMB3YDbjD3d9Mss4gYBBAu3bt0glHRETSUN3vZN0dqDIbu/tGd98HKAG6m9neSdYZ4e7d3L1bq1atqhmOiIhUlG4f/ErKd68sAX6XbiHu/rWZTQb6AB9kEqCIiFRPul00TTPdsZm1AtaHyb0x0Av4S6b7ERGR6kmri8bMDjKzbcPf+5vZLWa2SxWbtQYmmdlM4G1ggrs/W8U2IiKSJeneRXMX0MXMugBXAPcBI4HDUm3g7jOBrjWOUEREqiXdi6wbwtseTwBuc/fbgIy7bUREJHfSbcGvNLMhQH+Cr+srIrivXUREClS6LfjTCZ5M/YW7LyH4ftbhkUUlIiI1lu5dNEuAWxKmFxL0wYuISIFK9y6ak83sIzP7xsy+NbOVZvZt1MGJiEj1pdsHPwz4qbvPjjIYERHJnnT74JcquYuI1C7ptuCnmdko4Gn0jU4iIrVCugm+GfAd+kYnEZFaI7JvdBIRkfxK9y6aEjMbY2ZfmtlSM3vSzEqiDk5ERKov3YusDwBjgZ0JHnJ6JpwnIiIFKt0E38rdH3D3DeHrQUDfziEiUsDSTfDLw2GCi8JXf2BFlIGJiEjNpJvgzwVOI/gmpy+AUwBdeBURKWDp3iY5FDjL3f8HYGYtgJsIEr+IiBSgdFvwncuSO4C7f4W+zENEpKClm+DrmVnzsomwBZ9u619ERPIg3SR9M/AfMxtN8ATracB1kUUlIiI1lu6TrCPNbBrQEzDgZHf/MNLIRESkRtLuZgkTupK6iEgtkW4fvIiI1DJK8CIiMaUELyISU0rwIiIxpQQvIhJTSvAiIjEVWYI3s7ZmNsnMZpvZLDP7bVRliYjI1qIcbmADcKm7v2NmTYHpZjZBD0iJiORGZC14d//C3d8Jf18JzCb4NigREcmBnPTBm1kpweiTb+aiPBERyUGCN7MmwJPARe7+bZLlg8xsmplNW7ZsWdThiIjUGZEmeDNrQJDcH3H3p5Kt4+4j3L2bu3dr1Upf8yoiki1R3kVjwH3AbHe/JapyREQkuShb8AcBA4CeZjYjfB0TYXkiIpIgstsk3f1VgrHjRUQkD/Qkq4hITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jEVGTDBWfL+vXrubBHe0q2K8ZyMPjwN3Zr9IWEZs+evdW84uJiSkpKaNCgQc7iEJF4KvgEv2jRIjp3aEPDbZpiOcjwHYqWRl5GmUY7/6jctLuzYsUKFi1aRPv27XMWh4jEU8F30axZsyZnyT3fzIztt9+eNWvW5DsUEYmBgk/wQJ1I7mXq0rGKSLRqRYIXEZHMKcGn8N4Hcxj/8pR8hyEiUm1K8Cm8N2sO4ydOzXcYIiLVVvB30aTjrttu5rmnR7NT6zZs16IFe3XqQpOmzXji0ZGsX7+edqWl3HjrnTRuvA0vPPtv7rz1JuoVFdG0aVNGjn5mq/2tW7eea2+6nTVr1vKft97h8gsGcs2wvzN57MO02r4FmzZtYu9DjmXKM48y+NqbKG7UkA//+zFfLlvBsKsv55jePdi4cSN/uP6vTHn9bdauW8f/ndWP8waclofaEZG6qtYn+A/em8GE559h9PMT2bhhI6cc05O9OnWh99HHcurPBgBw2/DreerxR/j5Oedx1203M+Lhf7HjTq359ptvku6zYcMGXHXZBbwzcxa3XnclAHM/ns/jTz3Hb84bwMtTX6dzxx/SskVzAD5dtJiXnnyQTxZ8xlGnnkvPQw7k4dFjada0Ka+NG8Xates4/MT+9DrsJ7RvV5KbihGROq/Wd9G88/Yb9Ox9NMXFjdm2SRN69DoKgI/mzmZA3+M4sfehPPf0k8z771wAunbrzpWX/IYnHn2ITZs2pl3OWaefxCOjxwIw8vExnHnaiZuX9f3pUdSrV4/ddt2F0l1KmDtvPi+/8h8eGT2W7r37cshx/Vjxv2+YN//T7B24iEgVan0L3lPMv/LSC/nbPf9kz457M+aJx3j79dcAuPqGm5j57nRemTiBvn0O58nxk9iueYsqy2nbpjU7tNqeSa++yVvvvs+Dt/9l87KKtzaageP89c+/p3ePg6p9bCIiNVHrW/A/3m9/Jr/8AmvXrGH16lVMmTgBgNWrVtFqhx1Zv349z415cvP6CxfMp3PXffnNpYPZrkULvlj8edL9Nm2yLStXrS4375x+fTn3wsGc8tOjKCoq2jz/qWdfZNOmTXy8YCELPl3EHh3a0+uwgxgxchTr168H4KOPF7D6u++yffgiIinV+hZ8py5dObxXH07u04Od27Rlr8770KRpM35z2WD6ndCHnduUsPueP2L1qlUA3Hz9n/h0/ie4OwccdAh7dtw76X4P+0l3brrjXrr37svlFwzk1BOO5rgjezDokj9w5uknllt3j11L6dX3bL5ctoK/3/hHiosbce7P+vLpZ59zQJ/TcHdatmjOE/f/LerqEBHZrNYneICz/+9X/PqSK/j+++8465TjOfu88+nYqQtnDDhnq3VvG/FgWvts0fwHvDZuVLl5Mz+cS6eOP+SHu+1abv6B+3Vl+J9+V25evXr1GDrkIoYOuSijYxERyZbIEryZ3Q8cB3zp7smbyVlyzeBL+fijuaxbu5YT+p5Ox05dsl7G8NvvZcTIUeX63kVEClmULfgHgduBkRGWAcDwv99d7W1ffWUit9xw7ebpRmygtF0b/nVf+e6Uyy8YyOUXDNxq+3tvva7aZYuIRCmyBO/uU8ysNKr9Z8vBh/Xk4MN6bp7O5XDBIiJRyvtdNGY2yMymmdm0ZcuW5TscEZHYyHuCd/cR7t7N3bu1atUq3+GIiMRG3hO8iIhEQwleRCSmorxN8jGgB9DSzBYBV7v7fTXd74C/javpLsp56MJjqlxnm7ad2XvP3TdPn3rC0Vx+wUDueuBR/n7vQ3yy4DMWvT918+Bj7s6lV93A+IlT2aZxMff89Tq6duqY1bhFRKoS5V00/aLad641Lm7EWxOe3Gr+gft15eheh3HkKeUfqHph4lTmzV/IrFfH8dY7M7lwyFCmPvtYrsIVEQFi8iRrvuyz94+Szn/mhUn8/JTjMTP237cLX3+zki+WLqP1jrqILCK5owSfhu/XrKV7776bp8vGpkll8ZKllOy80+bpNq13ZPGSpUrwIpJTSvBpSNVFk4r71oMYVxxSWEQkarqLJgJtWu/EosVLNk9//sVSWu+4Qx4jEpG6SAk+Ascd2YNHRo/F3Xlz+nv8oFkTdc+ISM7Vui6adG5rzLaKffBHHn4wf/79xdxx38PccucDLFm2nP16ncxRPQ/hHzddS58jDmX8xKl0POhotmncmBG3DM15zCIitS7B58N3n81MOv/Xv+jPr3/Rf6v5ZsZt1/8h6rBERCqlLhoRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYUoIXEYmpWnebZJMHDs/q/ladM6nKdW687W5GPT2OoqJ61LN63P6Xq7ny+ltYsnQ5xY0asu222zDi5qHssVt7Jr36JkOG3sS69evp2qkjd998LfXr1+ebb1dyzm8G89nnX7Bh40Yu+uXZDLp4r6wei4hIIrXgq/DGtBk8/9IU3hj/BNNeGsO4UfduHkjswdtv5O2XnqL/qScw5M83s2nTJgZe9HseunM470x8mnYlO/PQE/8G4B8PPsaP9ujA2y89xYujH2DwtcNZt25dPg9NRGJOCb4KS75cxvYttqNRo4YAtGzRnJ13Kj+uzCEH7MvHCxay4n9f06hRQ3bvUArAEYceyNPjXgKCh59WrlqNu7Nq9Xc03+4H1K9f6/6BEpFaRAm+Cr0OO4hFi5ew98HHcuGQoUx5/e2t1nluwmT23nN3WrZozvr1G5j+3gcAjHnuxc2Djp1/zs+Y89EntP/x4XQ74iRu/tNg6tVT9YtIdNSErEKTbbfh9fH/4tU3p/PKf95iwPmXMXTIxQCcfcFgGhc3Ype2bbhl6BDMjIfuHM7l1wxj3bp1HHHoT6hfVATAhMmv0WWvPXnhifv5ZMFnHNPvPHqe2J9mzZrl8/BEJMaU4NNQVFTEYT/pzmE/6c7ee+7Bw2G/+oO338i+XfYut+4B3fZh4piRAEx45TXmffIpACNHjeGyCwZiZnRo347Stm2YM2cO3bt3z+3BiEidoT6CKvx33vzNSRrgvVlzaFeyc8r1v1y+AoC1a9dx8x33M3DAaQC0bdOaSa++AcDSZcv56JMF7LrrrhFGLiJ1Xa1rwadzW2NWy/vuOy75w/V8/e1K6tcvokNpO+4Ydg39Bl2cdP2/3vUA4156hU2bnEFnns7hB+8PwJCLfsl5F1/JvkechLvz599fTMuWLXN5KCJSx9S6BJ9rP+68F5PHPrLV/AmjH0y6/g1/vIwb/njZVvN33mkHnnvsnmyHJyKSkrpoRERiSgleRCSmakWCd/d8h5AzdelYRSRaBZ/gi4uLWffdyjqR+NydFStWUFxcnO9QRCQGCv4ia0lJCVNefIOS7Yoxi768jfZt9IWE6n+z9d/X4uJiSkpKchaDiMRXwSf4Bg0a8LfJ83NW3pimw3NWVrur3s9ZWSJS90TaRWNmfcxsrpnNM7PBUZYlIiLlRZbgzawIuAM4GugI9DOzjlGVJyIi5UXZgu8OzHP3T9x9HfA4cEKE5YmISAKL6u4UMzsF6OPuA8PpAcD+7n5BhfUGAYPCyR8CcyMJKH0tgeV5jqFQqC62UF1sobrYohDqYhd3b5VsQZQXWZPd87LVXxN3HwGMiDCOjJjZNHfvlu84CoHqYgvVxRaqiy0KvS6i7KJZBLRNmC4BFkdYnoiIJIgywb8N7G5m7c2sIXAGMDbC8kREJEFkXTTuvsHMLgBeAIqA+919VlTlZVHBdBcVANXFFqqLLVQXWxR0XUR2kVVERPKr4MeiERGR6lGCFxGJKSV4EZGYKtgEb2aNzeyVcMiDisvONrNlZjYjfA1MsY99zez9cCycv5kF41GaWSMzGxXOf9PMShO2GW9mX5vZsxnEepqZfWhms8zs0QxjudjMFprZ7emWl2Tf5erKzNqZ2YtmNjuMqzTJNinroJJyTjezmeFxDqtkvSHhfuea2VEJ8yeZ2Sozy+p9w0mO/y9m9kH4Oj3FNtU5/uvM7DMzW1Vh/iVhPc80s5fNbJcU20dyDiQ5/qTnsJk9Er4nH5jZ/WbWIMX+zjKzj8LXWWmUf6iZvWNmG8IHHMvmH57wGZ1hZmvM7MQk2yd9L8ysQ7jdqorbZKEupibEtdjMns5SXfwyfI9nmNmrljA8S6pYKmyftboAgjHIC/EF/Br4bYplZwO3p7GPt4ADCR66eh44Opz/K+Af4e9nAKMStjkC+CnwbJpx7g68CzQPp3fIJJZMjifdugImA73D35sA2yTZJmUdpChje2Ah0Cqc/idwRJL1OgLvAY2A9sDHQFGF2LpFda4AxwITCO4Q2xaYBjSr6fGH6x0AtAZWVZh/eFkdA+en2ldU50CS9z/pOQwcE5ZtwGPA+Un21QL4JPzZPPy9eRXllwKdgZHAKSnWaQF8VZ1zsWJ9Z6MuKmzzJHBmluqiWcLvxwPjM4wla3Xh7oXbggd+Dvy7uhubWWuCyn7dg5oZCZwYLj6BIEEBjAaOKGtNufvLwMoMijoPuMPd/xdu/2WGsWTD5roKWwz13X1CGM8qd/8uyTYp6yCFXYH/uvuycPoloG+K/T7u7mvdfT4wj2BcoiglnisdgVfcfYO7ryb4Y9MnRZyZHD/u/oa7f5Fk/qSEOn6D4KG+ciI+B8p9VlKdw+4+zkMEf2ySffHAUcAEd/8qPKcnkLz+Eve7wN1nApsqWe0U4PksnYuVSasuyphZU6An8HSSxdWpi8QvlNiWhKf308wt2ayLwkzwFjwYtau7L6hktb7hv8SjzaxtkuVtCJ6mLbMonFe27DMI7tcHviFooVbHHsAeZvaamb1hZslOgMpiqZEkdbUH8LWZPWVm75rZcEvSzUXmdTAP2NPMSs2sPkFySlXvnyVMZ+1Yk0ly/O8BR5vZNmbWkqB1XWmcWTgHEv2CoHWerLysnwNpflYqbtMAGACMT7I4qvfvDIL/GpLJyntRnboATgJerpCYt4orlFZdmNmvzexjYBhwYQaxlCszG+dlQSZ4ggF8vq5k+TNAqbt3JmhJ/jPJOpWNhZPWODlpqk/QTdMD6Afca2bbZRBLTVWsq/rAIcBlwH4ELe+zk2yXUUxhC+Z8YBQwFVgAbKjpfrOg3PG7+4vAOOA/BAnldXIUp5n1B7oByb41Jqp6qeqzksydwBR3n5pkWRT10hroRPDQY9JVslRmdeqiH6n/8FQrLne/w907AL8D/pBhPFmt/0JN8N8Dm7+YNLy4NcPMZgC4+wp3XxsuvgfYN8k+FlH+X9DEsXA2j5MTtkZ/QNA/WB2LgH+7+/qwS2IuQcJPN5aaKldXYVnvejBM8waCfz1/nCLujOrA3Z9x9/3d/UCC4/yosv2Goh6DqOLx4+7Xufs+7t6b4ANTaZxZOAcws17AlcDxCedmxfKiOAe2Ov7KmNnVQCvgkhSrRPH+nQaMcff1VZVZw/ci07rYnqD78Lmq4gplWhePk3k3XFbPy4JM8GFrscjMisPpK8MP7D6wuUVQ5nhgdpJ9fAGsNLMDwj6sM9nSNzcWKLsifgowMeyXTMnMbjCzk5IsepqgG4CwS2APgosx6cZSIxXrimAMoOZmVjZ8aE/gwySbpqwDM5uTrCwz2yH82ZzgYtC9KfZ7Rng3QHuCP3ZvZXxgaap4/GZWFH5wMbPOBBf/XkwRZ0bHn4qZdQXuJkjuW12DCeOM5BxI8v5XFudAgn7lfu6eqr/8BeBIM2sevs9HhvMq+wxUpbJWMlTj85hMJnUROpXggueaFMszrgszS2zcHUvyxkVlslIXm2VyRTaXL+A+oFeKZTcAswj6WycBeyYsm5HwezfgA4I7OW5ny9AMxcATBP3KbxH025VtMxVYRtAaWAQcFc5/FjgwSSwG3EKQRN8HzsgklnDZ2dTsLppydQX0BmaG8TwINAznX0uQhFLWAcG/uXNTlPNYeJwfVjjO44FrE6avDI9zLgl3ioTLJpP9u2g2H394XGUxvgHsk7BeTY9/WHhObAp/XhPOfwlYCswIX2NzeQ4kef9TncMbwrLL4rwqIa57E7Y/N6yXecA5CfNTfQb2C8tZDawAZiUsKwU+B+pV2KbK9yJh3UzuokmrLhLOxT4Vtq9pXdxGkJtmEOSmvdJ4XyKpC3cv6ATfFXgo33EkxPNChPuu9oc723UFHAdcGOGxTib7Cb7WHH8U50CuPitRfgaqKDeTBK+6SHhF+YUfNeLu71rwYEyRu28sgHiOqnqtzJnZxcAvCe7FrZZs1pW7p/2AV6bMbBLBRd9UfbHVUluOP5WangO5+qxE9RlIxcw6ENTJ0nS3UV1U2C78qyAiIjFTkBdZRUSk5pTgRURiSgleRCSmlOClVjOz7czsV3kot0eqUQHNbFySp5lFck4JXmq77QgeuioY7n6Mu3+d7zhElOCltrsRKBsre7iZXW5mb4cD0f0JIBwgbY6Z3WvBWOiPmFmvcIC4j8yse7jeNWb2kJlNDOefV0XZzcxsjAVjwf/DzOqF+1lgZi3Dcmeb2T0WjKH/opk1Dte50LaMIf94lBUkdZcSvNR2g4GPPRjGYgLB0AjdgX2Afc3s0HC93QieMuwM7An8DDiYYFC23yfsrzPBI+YHAleZ2c6VlN0duJRgIK0OwMlJ1tmdYDjpvQgGwiobYnkw0NWDAfN+mfbRimRACV7i5Mjw9S7wDkEiLxsbZL67v+/BGCyzCIaIdYLhHEoT9vFvd//e3ZcTPGpe2Vj2b3kwqNtGgmEcDk6yznx3nxH+Pj2hrJnAI+EIlMlGuxSpMSV4iRMDbvBwYDp3383d7wuXJY7wuClhehOUe6K74pN/lT0JmM66ieVuTCjrWOAOgpFQp4cjB4pklRK81HYrgabh7y8A55pZEwAza1M2AmYGTjCz4nBEyh4Eo3Om0t3M2od976cDr6ZTQLh+W3efBFxBcKG4SYZxilRJrQap1dx9RXix9AOCb1J6FHg9GJGXVUB/gpZzut4iGB+8HTDU3Ssb//t1gou8nYApwJg0yygCHjazHxD81/FX3XUjUdBYNCIhM7uGYLS+m/Idi0g2qItGRCSm1IIXqYSZdQIeqjB7rbvvn494RDKhBC8iElPqohERiSkleBGRmFKCFxGJKSV4EZGY+n/Fd36UyQPwYwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df['temp_bins'] = pd.qcut(df['temp_outside'], 5)\n",
+ "sns.barplot(x='temp_bins', y='consume', hue='gas_type',data=df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "53f04301",
+ "metadata": {},
+ "source": [
+ "### RAIN"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 185,
+ "id": "9f53ff2c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 185,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAV9klEQVR4nO3dfXRX1b3n8feXgAaFekfDqBgVvCDqEBI1iF1Uap3xibG4xrpEV7mC1qHa5cN1Kcr9w951cTpLwemqbR01yENZg9XxqVW0hVovPrTKEDR4UVTU+hAgCnjVoEVA9vyRQAME+EFy8ktO3q+1ssg5v3PO/v6y4MPO/u2zT6SUkCTlT49iFyBJyoYBL0k5ZcBLUk4Z8JKUUwa8JOVUz2IX0FJZWVkaMGBAscuQpC5jyZIla1NK/Vp7rVMF/IABA6itrS12GZLUZUTE+7t6zSEaScopA16ScsqAl6Sc6lRj8K3ZtGkT9fX1bNiwodildIjS0lLKy8vp1atXsUuR1MV1+oCvr6+nb9++DBgwgIgodjmZSimxbt066uvrGThwYLHLkdTFdfohmg0bNnDIIYfkPtwBIoJDDjmk2/y2IilbnT7ggW4R7lt1p/cqKVtdIuAlSXuv04/BF0tdXR2rVq1i9OjRxS5Fahc33XQTDQ0NHHbYYUydOrXY5agD2IPfhbq6Op566qlilyG1m4aGBlauXElDQ0OxS1EHyUXA33rrrRx33HGceeaZXHLJJdxxxx1Mnz6d4cOHU1lZyfe+9z2+/PJLAB566CGGDh1KZWUlo0aNavV6Gzdu5Mc//jEPPvggVVVVPPjggwwePJg1a9YAsGXLFgYNGsTatWuZMGECV155JaeddhrHHnss8+bNA+Drr79m0qRJDB8+nGHDhnHvvfd2zA9Dkpp1+YCvra3lkUce4ZVXXuHRRx/dtpbNBRdcwOLFi1m6dCnHH388M2bMAGDKlCnMnz+fpUuX8vjjj7d6zf32248pU6YwduxY6urqGDt2LOPGjWPu3LkAPP3001RWVlJWVgbAe++9x7PPPsuTTz7JlVdeyYYNG5gxYwYHHXQQixcvZvHixUyfPp2//OUvHfATkaQmXT7gX3jhBc4//3x69+5N3759+e53vwvAsmXLOO2006ioqGDu3Lm89tprAIwcOZIJEyYwffp0vv7664Lbufzyy5kzZw4AM2fO5LLLLtv22kUXXUSPHj0YPHgwxxxzDG+88QYLFixgzpw5VFVVMWLECNatW8eKFSva8Z1L0u51+Q9Zd/XQ8AkTJvCb3/yGyspKZs+ezcKFCwG45557WLRoEU8++SRVVVXU1dVxyCGH7LGdI488kkMPPZRnnnmGRYsWbevNw85TGyOClBK/+MUvOPvss/f9zUlSG3T5Hvy3vvUtnnjiCTZs2MD69et58sknAWhsbOTwww9n06ZN24XxO++8w4gRI5gyZQplZWV8+OGHrV63b9++NDY2brfviiuuYNy4cVx00UWUlJRs2//QQw+xZcsW3nnnHd59912GDBnC2Wefzd13382mTZsAeOutt/jiiy/a++1L0i51+YAfPnw4Y8aMobKykgsuuIDq6moOOuggbr31VkaMGMGZZ57Jcccdt+34SZMmUVFRwdChQxk1ahSVlZWtXvc73/kOr7/++rYPWQHGjBnD+vXrtxueARgyZAjf/va3Offcc7nnnnsoLS3liiuu4IQTTuCkk05i6NCh/PCHP2Tz5s3Z/SAkaQexqyGOYqiurk47PvBj+fLlHH/88bs9b/369fTp04cvv/ySUaNGUVNTw0knndTu9dXW1nL99dfz/PPPb9s3YcIEzjvvPC688MJ2a6eQ9yztrUsvvZSVK1dyxBFHbPs8SV1fRCxJKVW39lqXH4MHmDhxIq+//jobNmxg/PjxmYT7bbfdxt13373dcI8kdWa5CPj7779/n8+dP38+N99883b7Bg4cyGOPPbbdvsmTJzN58uSdzp89e/Y+ty1JWcpFwLfF2Wef7UwXqZvpLss2ZBrwEfF3wH3AUCABl6eUXsyyTUnak63LNuRd1j34O4Hfp5QujIj9gAMybk+S1CyzgI+IbwCjgAkAKaWNwMas2pMkbS/LefDHAGuAWRHxSkTcFxEH7nhQREyMiNqIqN26mJckqe2yHKLpCZwEXJNSWhQRdwKTgVtaHpRSqgFqoGke/J4uevKk9p2/u2TapXs8pqSkhIqKim3bF198MZMnT+aXv/wlP/vZz3jnnXdYs2bNtsXHUkpcd911PPXUUxxwwAHMnj07k6mbkrQ7WQZ8PVCfUlrUvP0wTQHf5fTu3Zu6urqd9o8cOZLzzjuP008/fbv9v/vd71ixYgUrVqxg0aJFXHXVVSxatGin8yUpS5kN0aSUGoAPI2JI867/DLyeVXvFcOKJJzJgwICd9v/2t7/l0ksvJSI49dRT+fTTT1m9enXHFyipW8t6LZprgLkR8SpQBfzPjNvLxF//+leqqqq2fW1dm2ZXVq5cyZFHHrltu7y8vFtMyZLUuWQ6TTKlVAe0ukZCV7KrIZpdaW19nx2XFJakrHX51SQ7o/Ly8u2WIa6vr6d///5FrEhSd2TAZ2DMmDHMmTOHlBIvvfQSBx10EIcffnixy5LUzXS5tWgKmdbY3raOwW91zjnncNttt/Hzn/+cqVOn0tDQwLBhwxg9ejT33Xcfo0eP5qmnnmLQoEEccMABzJo1q8NrlqQuF/DFsKtnt1577bVce+21O+2PCO66666sy5Kk3XKIRpJyyoCXpJwy4CUppxyDlzpIe6+jtLf6rm2kBPhgbWPRa3ms77Sitr/5k4OBnmz+5H0+mFKxx+OzdNSP/y2za9uDl6ScMuAlKae63BBNe/86VcivRz/5yU+4//77KSkpoUePHtx7773cfPPNrF69mtLSUvr06cPMmTMZMmQIzzzzDDfeeCMbN27k5JNPZsaMGfTs2ZPPPvuMcePG8cEHH7B582ZuvPFGLrvssnZ9L5LUkj34PXjxxReZN28eL7/8Mq+++ipPP/30toXE5s6dy9KlSxk/fjyTJk1iy5YtjB8/ngceeIBly5Zx9NFH86tf/QqAu+66ixNOOIGlS5eycOFCbrjhBjZu9AFXkrJjwO/B6tWrKSsrY//99wegrKxsp3VlRo0axdtvv826devYf//9OfbYYwE488wzeeSRR4Cmm58aGxtJKbF+/XoOPvhgevbscr9ASepCDPg9OOuss/jwww859thj+dGPfsSzzz670zFPPPEEFRUVlJWVsWnTJmprawF4+OGHty06dvXVV7N8+XL69+9PRUUFd955Jz16+OOXlB0TZg/69OnDkiVLqKmpoV+/fowdO5bZs2cD8P3vf5+qqir+9Kc/cccddxARPPDAA1x//fWccsop9O3bd1svff78+VRVVbFq1Srq6uq4+uqr+fzzz4v4ziTlnWMEBSgpKeH000/n9NNPp6KiYtu4+ty5c6mu3n65+29+85s8//zzACxYsIC33noLgFmzZjF58mQigkGDBjFw4EDeeOMNTjnllI59M5K6DXvwe/Dmm2+yYsWKbdt1dXUcffTRuzz+448/BuCrr77i9ttv58orrwTgqKOO4o9//CMAH330EW+++SbHHHNMhpVL6u66XA8+y7u+WrN+/XquueYaPv30U3r27MmgQYOoqanhwgsvbPX4adOmMW/ePLZs2cJVV13FGWecAcAtt9zChAkTqKioIKXE7bffTllZWUe+FUndTJcL+I528skn8+c//3mn/QsXLmz1+GnTpjFt2s63Yffv358FCxa0d3mStEsO0UhSThnwkpRTXSLgU0rFLqHDdKf3KilbnT7gS0tLWbduXbcIvpQS69ato7S0tNilSLlWVrqFQ3tvpqx0S7FLyVSmH7JGxHtAI/A1sDmlVL37M3ZWXl5OfX09a9asae/yOqXS0lLKy8uLXYaUazcO+7TYJXSIjphF852U0tp9PblXr14MHDiwPeuRpG6h0w/RSJL2TdY9+AQsiIgE3JtSqtnxgIiYCEyEprs9u7qbbrqJhoYGDjvsMKZOnVrsciR1Y1kH/MiU0qqI+I/AHyLijZTScy0PaA79GoDq6uou/0lqQ0MDK1euLHYZnYL/2UnFlWnAp5RWNf/5cUQ8BpwCPLf7s5QX/mfXuWzZ78Dt/lT+ZRbwEXEg0COl1Nj8/VnAlKzak7R7Xww+q9glqINl2YM/FHgsIra2c39K6fcZtidJaiGzgE8pvQtUZnX91pw8aU5HNteqvmsbKQE+WNtY1HqWTLu0aG1L6hycJilJOeVywTn1wZSKYpfA5k8OBnqy+ZP3i1pPRz9DQOos7MFLUk4Z8JKUUw7RtDPnGkvqLAz4duZcY0mdhQGvzDSttZ3/NbelzsqAV2a6y5rbUmflh6ySlFMGvCTllAEvSTllwEtSThnwkpRTBrwk5ZQBL0k5ZcBLUk4Z8JKUUwa8JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvSTmVecBHRElEvBIR87JuS5L0Nx3Rg78OWN4B7UiSWsg04COiHPivwH1ZtiNJ2lnWPfifATcBPpRTkjpYQQEfEQdExC0RMb15e3BEnLeHc84DPk4pLdnDcRMjojYiatesWVNw4ZKk3Su0Bz8L+Ar4ZvN2PfA/9nDOSGBMRLwHPACcERH/Z8eDUko1KaXqlFJ1v379CixHkrQnhQb836eUpgKbAFJKfwVidyeklP4ppVSeUhoAXAw8k1Ia15ZiJUmFKzTgN0ZEbyABRMTf09SjlyR1Uj0LPO6fgd8DR0bEXJqGXyYU2khKaSGwcC9rkyS1QUEBn1L6Q0S8DJxK09DMdSmltZlWJklqk72ZJnkEUALsB4yKiAuyKUmS1B4K6sFHxExgGPAaf5vTnoBHM6pLktRGhY7Bn5pSOiHTSiRJ7arQIZoXI8KAl6QupNAe/K9oCvkGmqZHBpBSSsMyq0yS1CaFBvxM4B+Af8N1ZSSpSyg04D9IKT2eaSWSpHZVaMC/ERH3A0/Q4g7WlJKzaCSpkyo04HvTFOxntdjnNElJ6sQKvZP1sqwLkSS1r0JvdJpF80JjLaWULm/3iiRJ7aLQIZqWD8wuBf4bsKr9y5EktZdCh2geabkdEb8Gns6kIklSu9jXZ7IOBo5qz0IkSe2r0DH4RrYfg28Abs6kIklSuyh0iKZv1oVIktpXQUM0ETEyIg5s/n5cRPw0Io7OtjRJUlsUOgZ/N/BlRFQCNwHvA3Myq0qS1GaFBvzmlFICzgfuTCndCThsI0mdWKHz4Bsj4p+AcTQ9rq8E6JVdWZKktiq0Bz+WprVofpBSaqDp+azTMqtKktRmhc6iaQB+2mL7AxyDl6ROrdBZNBdExIqI+CwiPo+Ixoj4fA/nlEbE/4uIpRHxWkT8S/uULEkqRKFj8FOB76aUlu/Ftb8CzkgprY+IXsALEfG7lNJLe12lJGmvFRrwH+1luNM862Z982av5q+dVqSUJGWj0ICvjYgHgd+wF090ap5tswQYBNyVUlq0j3VKkvZSoQH/DeBL9vKJTimlr4GqiPg74LGIGJpSWtbymIiYCEwEOOoo1y+TpPbSIU90Sil9GhELgXOAZTu8VgPUAFRXVzuEI0ntpNBZNOUR8VhEfBwRH0XEIxFRvodz+jX33ImI3sB/Ad5oc8WSpIIUeqPTLOBxoD9NNzk90bxvdw4H/jUiXgUWA39IKc3bwzmSpHZS6Bh8v5RSy0CfHRH/uLsTUkqvAifua2GSpLYptAe/tnmZ4JLmr3HAuiwLkyS1TaEBfzlwEU1PcloNXAi06YNXSVK2Ch2iuRUYn1L6d4CIOBi4g6bglyR1QoX24IdtDXeAlNInOL4uSZ1aoQHfIyL+w9aN5h58ob1/SVIRFBrS/wv4c0Q8TNMdrBcBP8msKklSmxV6J+uciKgFzgACuCCl9HqmlUmS2qTgYZbmQDfUJamLKHQMXpLUxRjwkpRTBrwk5ZQBL0k5ZcBLUk4Z8JKUUwa8JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvSTllwEtSThnwkpRTBrwk5VRmAR8RR0bEv0bE8oh4LSKuy6otSdLOsnyu6mbghpTSyxHRF1gSEX/wSVCS1DEy68GnlFanlF5u/r4RWA4ckVV7kqTtdcgYfEQMAE4EFnVEe5KkDgj4iOgDPAL8Y0rp81ZenxgRtRFRu2bNmqzLkaRuI9OAj4heNIX73JTSo60dk1KqSSlVp5Sq+/Xrl2U5ktStZDmLJoAZwPKU0k+zakeS1Lose/AjgX8AzoiIuuav0Rm2J0lqIbNpkimlF4DI6vqSpN3zTlZJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnMgv4iJgZER9HxLKs2pAk7VqWPfjZwDkZXl+StBuZBXxK6Tngk6yuL0navaKPwUfExIiojYjaNWvWFLscScqNogd8SqkmpVSdUqru169fscuRpNwoesBLkrJhwEtSTmU5TfLXwIvAkIioj4gfZNWWJGlnPbO6cErpkqyuLUnaM4doJCmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknLKgJeknDLgJSmnDHhJyikDXpJyyoCXpJwy4CUppwx4ScopA16ScsqAl6ScMuAlKacMeEnKKQNeknIq04CPiHMi4s2IeDsiJmfZliRpe5kFfESUAHcB5wInAJdExAlZtSdJ2l6WPfhTgLdTSu+mlDYCDwDnZ9ieJKmFnhle+wjgwxbb9cCIHQ+KiInAxObN9RHxZoY1dRtHQxmwtth1dAr/HMWuQDvw72cLbf/7efSuXsgy4FurOu20I6UaoCbDOrqliKhNKVUXuw6pNf797BhZDtHUA0e22C4HVmXYniSphSwDfjEwOCIGRsR+wMXA4xm2J0lqIbMhmpTS5oi4GpgPlAAzU0qvZdWeduKwlzoz/352gEhpp2FxSVIOeCerJOWUAS9JOWXA55BLRKizioiZEfFxRCwrdi3dgQGfMy4RoU5uNnBOsYvoLgz4/HGJCHVaKaXngE+KXUd3YcDnT2tLRBxRpFokFZEBnz8FLREhKf8M+PxxiQhJgAGfRy4RIQkw4HMnpbQZ2LpExHLg/7pEhDqLiPg18CIwJCLqI+IHxa4pz1yqQJJyyh68JOWUAS9JOWXAS1JOGfCSlFMGvCTllAEvFSgi7nPhNnUlTpOUWoiIoOnfxZZi1yK1lT14dXsRMSAilkfE/wZeBmZERG1EvBYR/9LiuIURUd38/fqI+ElELI2IlyLi0GLVL+2KAS81GQLMSSmdCNyQUqoGhgHfjohhrRx/IPBSSqkSeA747x1XqlQYA15q8n5K6aXm7y+KiJeBV4D/RNODU3a0EZjX/P0SYEDmFUp7qWexC5A6iS8AImIgcCMwPKX07xExGyht5fhN6W8fYH2N/5bUCdmDl7b3DZrC/rPmcfVzi1yPtM/sdUgtpJSWRsQrwGvAu8CfilyStM+cJilJOeUQjSTllAEvSTllwEtSThnwkpRTBrwk5ZQBL0k5ZcBLUk79fxwiBIKcZAT5AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.barplot(data=df, y=\"consume\", x =\"rain\" , hue=\"gas_type\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f19e9b22",
+ "metadata": {},
+ "source": [
+ "### SPEED:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 188,
+ "id": "3ec5c678",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 188,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgFklEQVR4nO3deXwU9f3H8deHcAQRFCSKEBFFrSKCaKQqKoioeNQL6tGKV5VfW9FqPQq11Yr1AkWpV0tVKJ5UFItKURTxqqigAip4ISpgFLAiYLk/vz9mkixhk+yGnd3N5P18PPaRmdnvzPez32Q/+e53Z75j7o6IiMRPg1wHICIi0VCCFxGJKSV4EZGYUoIXEYkpJXgRkZhqmOsAErVu3do7dOiQ6zBEROqMmTNnLnX3omTP5VWC79ChAzNmzMh1GCIidYaZfV7VcxqiERGJKSV4EZGYUoIXEYkpJXgRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYyqsLneqiK6+8ktLSUtq0acOwYcNyHY6ISDkl+C1UWlrKokWLch2GiMhmNEQjIhJTSvAiIjGlBC8iElNK8CIiMaUELyISU0rwIiIxFWmCN7NtzWy8mc0zs7lmdlCU9YmISIWoz4MfCUx29/5m1hjYKuL6yukCJBGp7yJL8GbWAjgMOAfA3dcCa6OqrzJdgCQi9V2UQzS7AkuA0Wb2jpnda2bNKhcys4FmNsPMZixZsiTCcERE6pcoE3xDYD/gHnfvBqwCBlcu5O6j3L3E3UuKipLeGFxERGohygS/EFjo7m+E6+MJEr6IiGRBZAne3UuBL83sR+GmI4APoqpPREQ2FfVZNBcBD4Vn0MwHzo24PhERCUWa4N39XaAkyjpERCQ5XckqIhJTuuFHJV8M3Set8uu/bQU0ZP23n6e9b/ur56RVXkQkHerBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMRUnbiSdf8rxqa9T/OlKygAvli6Iq39JzRPuyoRkbykHryISEwpwYuIxJQSvIhITCnBi4jEVJ34kjWftS7cCKwPf4qI5A8l+C10eZfvch2CiEhSGqIREYkpJXgRkZjSEI2ISJZceeWVlJaW0qZNG4YNGxZ5fUrw9UC2/6hEJLnS0lIWLVqUtfqU4OuBbP9RidQ1ce0ERZrgzWwBsALYAKx395Io6xMRqY24doKy0YM/3N2XZqEeERFJoLNoRERiKuoevAPPmZkDf3P3URHXV25j42ab/BSB+I61iiQTdYLv4e6LzWx7YIqZzXP3lxMLmNlAYCBA+/btM1bxqt2PytixJD7iOtYqkkykQzTuvjj8+Q0wAeiepMwody9x95KioqIowxERqVci68GbWTOggbuvCJePAoZGVV99kc27W80cflbadUndEdfhquzeAW54WvWs/7YV0JD1337OF0P3SWvf9lfPSas8RDtEswMwwczK6nnY3SdHWJ+IpEHDVfEXWYJ39/lA16iOLyIi1dOVrJIxcf3IL1JXKcFLxugjv0h+UYIXkUjpk13uKMGLSKT0yS53lOBFIqBea92SrSvfs30PZyX4ekDTNmSfeq11S7aufM/2PZyV4OuBuE7boIu+KqgtJBkleKlSulfaZfsqPRGpnqYLFhGJKfXgRSQt+mRXd6gHLyISU0rwIiIxpSEakRRoWELqIiV4yZhsX8QhItVTgpeMyfZFHCJSPSV4kXpKVzjHnxK81CtKahWydYWzhu5yRwle6pW4TtuQzzR0lzs6TVJEJKbUgxeJgIYlJB8owYtEQMMSkg80RCMiElNK8CIiMaUELyISU5EneDMrMLN3zOzpqOsSEZEK2ejB/waYm4V6REQkQaQJ3syKgeOAe6OsR0RENhd1D/524EpAJwOLiGRZZAnezI4HvnH3mTWUG2hmM8xsxpIlS6IKR0Sk3omyB98DOMHMFgCPAr3N7MHKhdx9lLuXuHtJUVFRhOGIiNQvkSV4dx/i7sXu3gE4HZjq7mdGVZ+IiGwqpQRvZluZ2R/N7O/h+u7hEIyIiOSpVHvwo4E1wEHh+kLgz6lW4u7T3F3/EEREsijVBN/R3YcB6wDc/X+ARRaViIhssVQT/Fozawo4gJl1JOjRi4hInkp1uuBrgMnATmb2EMEZMudEFZSIiGy5lBK8u08xs7eBAwmGZn7j7ksjjUxERLZIOqdJtgMKgMbAYWZ2SjQhiYhIJqTUgzez+4EuwPtUTDvgwBMRxSUiIlso1TH4A929U6SRiIhIRqU6RPO6mSnBi4jUIan24P9BkORLCU6PNMDdvUtkkYmIyBZJNcHfDwwA5qCpf0VE6oRUE/wX7j4x0khERCSjUk3w88zsYeApEq5gdXedRSMikqdSTfBNCRL7UQnbdJqkiEgeS/VK1nOjDkRERDIr1QudRhNONJbI3c/LeEQiIpIRqQ7RPJ2wXAicDCzOfDgiIpIpqQ7RPJ64bmaPAM9HEpGIiGREbe/JujvQPpOBiIhIZqU6Br+CTcfgS4HfRRKRiIhkRKpDNM2jDkRERDIrpSEaM+thZs3C5TPNbISZ7RxtaCIisiVSHYO/B/jBzLoCVwKfA2Mji0pERLZYqgl+vbs7cCIw0t1HAhq2ERHJY6meB7/CzIYAZxLcrq8AaBRdWCIisqVS7cGfRjAXzS/cvZTg/qzDq9vBzArN7E0zm2Vm75vZtVsYq4iIpCHVs2hKgREJ619Q8xj8GqC3u680s0bAq2b2b3efXutoRUQkZameRXOKmX1sZsvN7HszW2Fm31e3jwdWhquNwsdm89mIiEg0Uh2iGQac4O7buHsLd2/u7i1q2snMCszsXeAbYIq7v5GkzEAzm2FmM5YsWZJW8CIiUrVUE/zX7j433YO7+wZ33xcoBrqbWeckZUa5e4m7lxQVFaVbhYiIVCHVs2hmmNk44ElqcUcnd//OzKYBfYH30oxRRERqIdUE3wL4gTTu6GRmRcC6MLk3BfoAN9c2UBERSU+Ud3TaEfhHeM58A+Cf7v50DfuIiEiGpDqbZDFwB9CDoOf+KvAbd19Y1T7uPhvolokgRUQkfal+yToamAi0JbjI6alwm4iI5KlUE3yRu4929/XhYwygU15ERPJYqgl+aThNcEH4OBNYFmVgIiKyZVJN8OcBpxLcyekroD9Qmy9eRUQkS1I9TfI64Gx3/y+AmbUCbiFI/CIikodS7cF3KUvuAO7+LTpDRkQkr6Wa4BuYWcuylbAHn2rvX0REciDVJH0r8B8zG09wHvypwPWRRSUiIlss1StZx5rZDKA3YMAp7v5BpJGJiMgWSXmYJUzoSuoiInVEqmPwIiJSxyjBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jEVGQJ3sx2MrMXzWyumb1vZr+Jqi4REdlclLfdWw9c5u5vm1lzYKaZTdGNQkREsiOyHry7f+Xub4fLK4C5QLuo6hMRkU1lZQzezDoA3YA3kjw30MxmmNmMJUuWZCMcEZF6IfIEb2ZbA48Dl7j795Wfd/dR7l7i7iVFRUVRhyMiUm9EmuDNrBFBcn/I3Z+Isi4REdlUlGfRGHAfMNfdR0RVj4iIJBdlD74HMADobWbvho9jI6xPREQSRHaapLu/ClhUxxcRkerpSlYRkZhSghcRiSkleBGRmFKCFxGJKSV4EZGYUoIXEYmpKGeTzIh169Zxca9dKN62EMvCSZfL7fboKwnNnTt3s22FhYUUFxfTqFGjrMUhIvGU9wl+4cKFdOnYjsZbNceykOE7FnwdeR1lmrTda5N1d2fZsmUsXLiQXXbZJWtxiEg85f0QzerVq7OW3HPNzNhuu+1YvXp1rkMRkRjI+wQP1IvkXqY+vVYRiVadSPAiIpI+JfgqzHpvHpNfeDnXYYiI1JoSfBVmvT+PyVNfyXUYIiK1lvdn0aTinpG38syT42mzYzu2bdWKvffpytbNW/DYw2NZt24d7Tt04Kbb76Zp06149ul/cfftt9CgoIDmzZszdvxTmx1v7dp1DL3lTlavXsN/3nybKwadz5+G3cG0iQ9StF0rNm7cSOdDj+Plpx5m8NBbKGzSmA8++pRvlixj2DVXcOyRvdiwYQN/uOE2Xn79LdasXcv/nX0GFww4NQetIyL1VZ1P8O/Nepcp/36K8f+eyob1G+h/bG/23qcrRx5zHD/92QAARg6/gScefYifn3sB94y8lVEP/pMd2uzI98uXJz1m48aNuPryQbw9+31uv/4qAD789DMefeIZLrpgAC+88jpdOv2I1q1aAvD5wsU8//gY5i/4kqN/eh69Dz2IB8dPpEXz5rw2aRxr1qzl8JPOpE/Pg9mlfXF2GkZE6r06P0Tz9lvT6X3kMRQWNqXZ1lvTq8/RAHz84VwG9Duek448jGeefJxPPvoQgG4l3bnqtxfx2MMPsHHjhpTrOfu0k3lo/EQAxj46gbNOPan8uX4/OZoGDRqw264702HnYj785DNeeOk/PDR+It2P7Mehx5/Bsv8u55PPPs/cCxcRqUGd78F7Fduvuuxi/vL3f7Bnp85MeOwR3nr9NQCuufEWZr8zk5emTqFf38N5fPKLbNuyVY317NRuR7Yv2o4XX32DN9+Zw5g7by5/rvKpjWbgOLf9+fcc2atHrV+biMiWqPM9+P0O+DHTXniWNatXs2rVSl6eOgWAVStXUrT9Dqxbt45nJjxeXv6LBZ/Rpdv+XHTZYLZt1YqvFi9KetzmWzdjxcpVm2w794x+nHfxYPr/5GgKCgrKtz/x9HNs3LiRTxd8wYLPF7JHx13o07MHo8aOY926dQB8/OkCVv3wQ6ZfvohIlep8D36frt04vE9fTunbi7btdmLvLvuydfMWXHT5YM44sS9t2xWz+557sWrlSgBuveFaPv9sPu7OgT0OZc9OnZMet+fB3bnlrnvpfmQ/rhh0Pj898RiOP6oXA3/7B8467aRNyu6xawf69DuHb5Ys446b/khhYRPO+1k/Pv9yEQf2PRV3p3Wrljx2/1+ibg4RkXJ1PsEDnPN/v+bC317J//73A2f3P4FzLvgVnfbpyukDzt2s7MhRY1I6ZquW2/DapHGbbJv9wYfs0+lH/Gi3XTfZftAB3Rh+7e822dagQQOuG3IJ1w25JK3XIiKSKbFI8H8afBmffvwha9es4cR+p9Fpn64Zr2P4nfcyauy4TcbeRUTyWSwS/PA7/lbrfV99aSojbhxavt6E9XRo345/3rfpcMoVg87nikHnb7b/vbdfX+u6RUSiFIsEvyUO6dmbQ3r2Ll/P5nTBIiJRqvNn0YiISHKRJXgzu9/MvjGz96KqQ0REqhZlD34M0DfC44uISDUiS/Du/jLwbVTHFxGR6uX8S1YzGwgMBGjfvn2N5Qf8ZVJG63/g4mNrLLPVTl3ovOfu5es/PfEYrhh0PveMfpg77n2A+Qu+ZOGcV8onH3N3Lrv6RiZPfYWtmhby99uup9s+nTIat4hITXKe4N19FDAKoKSkpKqpZXKqaWET3pzy+GbbDzqgG8f06clR/Te9oOrZqa/wyWdf8P6rk3jz7dlcPOQ6Xnn6kWyFKyIC5EGCr8v27bxX0u1PPfsiP+9/AmbGj/fvynfLV/DV10vYcYeiLEcoIvWZEnwK/rd6Dd2P7Fe+XjY3TVUWl35Ncds25evtdtyBxaVfK8GLSFZFluDN7BGgF9DazBYC17j7fVHVF6Wqhmiq4r75SFPlKYVFRKIWWYJ39zOiOna+a7djGxYuLi1fX/TV1+y4w/Y5jEhE6iNdyRqB44/qxUPjJ+LuvDFzFtu02FrDMyKSdXVuDD6V0xozrfIY/FGHH8Kff38pd933ICPuHk3pkqUc0OcUju59KH+9ZSh9jziMyVNfoVOPY9iqaVNGjbgu6zGLiNS5BJ8LP3w5O+n2C39xJhf+4szNtpsZI2/4Q9RhiYhUS0M0IiIxpQQvIhJTSvAiIjGlBC8iElNK8CIiMaUELyISU3XuNMmtRx+e0eOtPPfFGsvcNPJvjHtyEgUFDWhgDbjz5mu46oYRlH69lMImjWnWbCtG3Xode+y2Cy+++gZDrruFtevW0W2fTvzt1qE0bNiQ5d+v4NyLBvPloq9Yv2EDl/zyHAZeundGX4uISCL14Gswfca7/Pv5l5k++TFmPD+BSePuLZ9IbMydN/HW809w5k9PZMifb2Xjxo2cf8nveeDu4bw99UnaF7flgcf+BcBfxzzCXnt05K3nn+C58aMZPHQ4a9euzeVLE5GYU4KvQek3S9iu1bY0adIYgNatWtK2zabzyhx64P58uuALlv33O5o0aczuHTsAcMRhB/HkpOeB4OKnFStX4e6sXPUDLbfdhoYN69wHKBGpQ5Tga9CnZw8WLi6l8yHHcfGQ63j59bc2K/PMlGl03nN3Wrdqybp165k5K7jP+IRnniufdOxX5/6MeR/PZ5f9DqfkiJO59drBNGig5heR6KgLWYOtm23F65P/yatvzOSl/7zJgF9dznVDLgXgnEGDaVrYhJ13aseI64ZgZjxw93Cu+NMw1q5dyxGHHUzDggIApkx7ja5778mzj93P/AVfcuwZF9D7pDNp0aJFLl+eiMSYEnwKCgoK6Hlwd3oe3J3Oe+7Bg+G4+pg7b2L/rp03KXtgyb5MnTAWgCkvvcYn8z8HYOy4CVw+6HzMjI67tKfDTu2YN28e3bt3z+6LEZF6Q2MENfjok8/KkzTArPfn0b64bZXlv1m6DIA1a9Zy6133c/6AUwHYqd2OvPjqdAC+XrKUj+cvYNddd40wchGp7+pcDz6V0xozWt8PP/DbP9zAd9+voGHDAjp2aM9dw/7EGQMvTVr+tntGM+n5l9i40Rl41mkcfsiPARhyyS+54NKr2P+Ik3F3/vz7S2ndunU2X4qI1DN1LsFn235d9mbaxIc22z5l/Jik5W/84+Xc+MfLN9vets32PPPI3zMdnohIlTREIyISU0rwIiIxVScSvLvnOoSsqU+vVUSilfcJvrCwkLU/rKgXic/dWbZsGYWFhbkORURiIO+/ZC0uLubl56ZTvG0hZtHXt8G+j76SUMPlm/9/LSwspLi4OGsxiEh85X2Cb9SoEX+Z9lnW6pvQfHjW6mp/9Zys1SUi9U+kQzRm1tfMPjSzT8xscJR1iYjIpiJL8GZWANwFHAN0As4ws05R1SciIpuKsgffHfjE3ee7+1rgUeDECOsTEZEEFtXZKWbWH+jr7ueH6wOAH7v7oErlBgIDw9UfAR9GElDqWgNLcxxDvlBbVFBbVFBbVMiHttjZ3YuSPRHll6zJznnZ7L+Ju48CRkUYR1rMbIa7l+Q6jnygtqigtqigtqiQ720R5RDNQmCnhPViYHGE9YmISIIoE/xbwO5mtouZNQZOByZGWJ+IiCSIbIjG3deb2SDgWaAAuN/d34+qvgzKm+GiPKC2qKC2qKC2qJDXbRHZl6wiIpJbeT8XjYiI1I4SvIhITCnBi4jEVF4keDNramYvhdMbYGaTzew7M3u6Urn7zGyWmc02s/FmtnUVx7vZzN4LH6clbO9tZm+H2/9hZg3D7S3NbEJ43DfNrHMKMSeNxQJ/CeffmW1m+1Wx/y5m9oaZfWxm48IzjTCz08J9n06yT3k7mdnOZjbTzN41s/fN7Jc1HTvJ8c4Oy3xsZmen8Jp/aWZzwjpfTZx6wsyGhXHMDV//ZtdBmFmTMJ5Pwvg6hNs7hsdcWVMMtWiLI8LfeVnMu2WiLRL2629mbmYl4XqVsWSjLRK2tTCzRWZ2Z8K2VN8/6f5dnGNmS8K43zWzsosbc94WZrYhIa6JCeWiaoudzeyF8LjTzKw44bkaj5XJtgCCOchz/QAuBH6TsH4E8BPg6UrlWiQsjwAGJznWccAUgjOEmgEzgBYE/8y+BPYIyw0FfhEuDweuCZf3BF5IIeaksQDHAv8muNDrQOCNKvb/J3B6uPxX4FcJz/Wq/NortxPQGGgSLm8NLADa1nTshGO1AuaHP1uGyy3TeM0nAJPD5YOB1wjOlioAXgd6Jdn/18Bfw+XTgXGVnl9Zm7+ZGtriI2CvhPrHZKItwv2aAy8D04GSmmLJRlskbBsJPAzcmeb7pzZ/F+ck1pOwPedtUdW+EbbFY8DZ4XJv4IF0jpXJtnD3/OjBAz8H/lW24u4vACsqF3L37yHoJQNNSXJlLMHEZi+5+3p3XwXMAvoC2wFr3P2jsNwUoF/CPi+EdcwDOpjZDtUFXE0sJwJjPTAd2NbMdkzcN9ynNzA+3PQP4KTq6guVt5O7r3X3NeH2JoSfxtI49tHAFHf/1t3/S9AefaurvOw1h5pR8ZodKCR8QwONgK+THOLEMB7C+I5I1tNPUY1tkRBbi3B5G5JfbJd2W4SuA4YBq8srqz6WRJG0BYCZ7Q/sADyXWCjF909t22Iz+dAW1cQWVVuU5xLgRSrm30r1WJlsi9wneAuGD3Z19wUplh8NlBL0tO9IUmQWcIyZbWVmrYHDCa6oXQo0KvsoDfSn4krbWcAp4fG7AzsTXHlbm1jaEXxSKLMw3JZoO+A7d19fTZnKdW3WTma2k5nNDuu72d0Xp3HsVOJMFseFZvYpQWK7GMDdXyf4Y/4qfDzr7nOrqzOMb3kYb1rSaAuA84FJZrYQGADcVF1coVR+H92Andw92VBaVbEkrTOTbWFmDYBbgSuqKF/T+6dWfxdAv4ThjvIr2HPZFqFCM5thZtPN7KRK5aNoi1lUdBxPBpqb2XZpHCsjbVEm5wmeYLKe71It7O7nAm2BucBpSZ5/DpgE/Ad4hGC4YL0Hn29OB24zszcJPiGUJcGbgJZm9i5wEfBOwnPpxpLKHDwpzdNTyWbt5O5funsXYDfg7PBTR6rHrk0MuPtd7t4R+B3wBwALxrX3Ivin2A7obWaHZarOJFJtC4BLgWPdvRgYTfBxfIviCpPobcBlyZ6vJpZa11mNym3xa2CSu3+ZrHBN759axvUU0CF8zc9T0QPNdVsAtPdgrpifAbebWceE2KJoi8uBnmb2DtATWESQSyJ9X1YlHxL8/wg+3qfM3TcA46j4T1n5+evdfV93P5KgwT4Ot7/u7oe6e3eCsdOy7d+7+7nuvi9wFlAEpHQbqSSxpDIHz1KCoZuG1ZSprMp2CntF7wOHpnHsLZ0r6FEqhn5OBqa7+0p3X0nwHcSB1dUZxrcN8G0adZZJqS3MrAjo6u5vhE+PI/i+oMq4QjW1RXOgMzDNzBYQvNaJCZ8ON4ulujoz3BYHAYPCuG4BzjKzTT611PD+Sfvvwt2XJQzF/B3YP0mZXLRFWb24+3xgGtCt0vOZbovF7n6Ku3cDrgq3LU/jWJlqCyAPEnw4HlVgZtUmeQvsVrZM8CXsvCTlCsKPRJhZF6AL4VikmW0f/mxC0AP9a7i+rVWcaXI+8HLCGN0LZtauUh3VxTKR4E1lZnYgsNzdv6r0mp1gSKN/uOlsahg3rNxOZlZsZk3D5ZZAD+DDNI79LHCUBWcQtQSOCrdhZjea2cmVdzCz3RNWjyP8Bwl8QdBraWhmjQh6LsmGaCaG8RDGNzWMNy2ptgXwX2AbM9sj3PXIKuJKqy3cfbm7t3b3Du7egeBL1hPcfUY1sWSlLdz95+7ePozrcoLvgwan+v5Jty3C7YnfMZ1A2Ma5bovwNTQJl1uH9X8QcVu0Dj/hAQwB7q/pWJVkpC3KeRrfyEb1AO4D+iSsvwIsIfiPvJDgC4oGBGdqzAHeAx4i/CYcKAHuDZcLgQ/Cx3Rg34TjDif44/sQuCRh+0EEyWoe8ATht9thnZ8DTSvFW10sRnAnq0/D50sS9ptExdkduwJvAp8QfPPeJKFcL5KfRVPeTgTJajbBmN9sYGBCuaTHTmyncP28sMwnwLkJ258GDkpS/0iCXti7BP9E9g63FwB/C9v2A2BEwj5DCZJf2e/msbC+NwnGS2t1hkAabXFy+HuYRdCD2zUTbVEplmlUnEVTXSyRt0Wl7ecQnt1Ciu+fWv5d3Bj+XcwK/y72zIe2IPi0Vva7n0PFWXNRtkV/glzyEXAvm76vqzpWJG3h7nmT4LsRnk6UTw+Cj+EjclBvL5In+Ky0E8GXpLlo73TeyGoLtYXaooZHzodoANz9HeBFS7hQIx+4+3vu/tts1mnBhVl3EwwvVI4nK+3k7kdHefzKLLyIg+SnVialtqigtqigtqi0X/hfQUREYiYvevAiIpJ5SvAiIjGlBC8iElNK8CIpsGBmwJJqnk86y5+ZDTWzPtFFJlK1yO7JKiLg7lfnOgapv9SDlzrLzJqZ2TMWzOv9ngVz6S+w4H4Ab4aPsisWi8zscTN7K3z0SDjG/eG2d8zsxHB7UzN71IIJtMYRzDhYUzy3WjD3/AsWTJOAmY0xs/7h8gIzuzYsM8fM9gy397SKOcvfMbPmETWZ1DNK8FKX9QUWu3tXd+8MTA63f+/BfEN3AreH20YCt7n7AQTzjtwbbr+K4HLwAwhmHh1uZs2AXwE/eDBR1vUkmV+lkmbA2+6+H/AScE0V5ZaGZe4hmEqA8OeFHsyFdCjBFdwiW0wJXuqyOUCfsMd+qAeTOkEwi2jZz4PC5T7AneHFIhOBFmFP+ShgcLh9GsGl4u2Bw4AHAdx9NsGl9tXZSDBpFeF+h1RR7onw50ygQ7j8GjDCzC4GtvWKqZ5FtojG4KXOcvePLLi5xbHAjWZWdoOLxKv3ypYbEMwdsknvOJxsqp+7f1hpe+XjpB1eFdvLZl3cQPj+c/ebzOwZgtcx3cz6eHDjGZEtoh681Flm1pZgGOVBgqlxy+5/e1rCz9fD5eeAQQn77hsuPgtcFCb6sht5QDCd9M/DbZ0JZiWtTgMqZvD8GfBqGq+jo7vPcfebCW4xuWeq+4pURz14qcv2IRgz3wisIxg3Hw80MbM3CJLuGWHZi4G7LLi7UEOCBP5Lgtvu3Q7MDpP8AuB4gjHy0WH5dwlm9qvOKmBvM5tJcBeeZDeQqMolZnY4Qa/+A4L59EW2mOaikVix4EYXJe6+NNexiOSahmhERGJKPXiRNIRDP00qbR7g7nNyEY9IdZTgRURiSkM0IiIxpQQvIhJTSvAiIjGlBC8iElP/D3YhEHM5flsmAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df['speed_bins'] = pd.qcut(df['speed'], 5)\n",
+ "sns.barplot(x='speed_bins', y='consume', hue='gas_type',data=df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "49e00630",
+ "metadata": {},
+ "source": [
+ "### Vamos a separar unos y otros en 2 DF para verlo por separado:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 195,
+ "id": "ce4450f1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "e10 = df[df.gas_type == 'E10']\n",
+ "sp98 = df[df.gas_type == 'SP98']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ad375692",
+ "metadata": {},
+ "source": [
+ "### PARA E10:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 233,
+ "id": "cebdca87",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU8UlEQVR4nO3df5RcZX3H8c+HhCQoIEjWiglxEWktrUjqGrFYRUTAX6DIUWgRENocaz1Qa0tFTyvVUnuCpdqjpxoQNIpgC6JIixg1lGqDsIE0ISZRJBETCFlANKkaDPn2j/ssO9nMzN7ZmTs78/B+nTNnZ+7ce5/nPnPns3eeufcZR4QAAPnZa6orAACoBgEPAJki4AEgUwQ8AGSKgAeATE2f6grUmj17dgwODk51NQCgb6xYseLhiBio91xPBfzg4KCGh4enuhoA0Dds/7jRc3TRAECmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADLVUxc6Ab3owgsv1JYtW/TsZz9bixYtmurqAKUR8MAEtmzZos2bN091NYCW0UUDAJki4AEgU3TR1KCvFUBOCPga9LUCyAldNACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BM9cWFToceurEr5cydu1MzZkgbNuzsSpkbNgxWXgaApy6O4AEgUwQ8AGSqL7po0H0MvAb0PwIedTHwGtD/6KIBgEwR8ACQKbpo0Lc4fRZojiN4AMhUpUfwtjdK2ibpCUk7I2KoyvIAAGO60UXzqoh4uAvltG3nzoN2+wsA/Yw++Bpbtrx3qqsAAB1TdcCHpG/YDkmfjojF42ewvVDSQkmaN29exdUB0A4ugOsvVQf8MRHxgO1nSVpqe11E3FY7Qwr9xZI0NDQUFden73HmCKYSF8D1l0oDPiIeSH+32r5B0gJJtzVcYP166dhj95h8zYO/qqiGU+zYWS0v0q22mPnoBnmvxxW7ZmjHjtOrL5C2GDOJtuiWi9at044dOzRzzZq671X0lspOk7T9dNv7jd6XdIKke6oqDwCwO0dU0yti+3mSbkgPp0v6YkRc0myZoaGhGB4e3mN6t7olum0y3RLd66J5v2bMeEiPP/4b2rTpHyovj7YY08vdVWeddZY2b96sOXPmaMmSJVNdHUiyvaLRKeiVddFExH2SXlTV+gEAzXElKwBkioAHgEwR8ACQKQIeADLFUAWoi3F5xtAW6FcEPOpiXJ4xtAX6FQEPZIAhLLqvH8blIeABYBL6YVwevmQFgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmeI0SQBZ4ZqAMRzBA0CmOIIHUBrj8vQXAh5AaYzL01/oogGATBHwAJApAh4AMkXAA0Cm+JIVACahH84oIuABYBL64YwiumgAIFMEPABkioAHgExVHvC2p9m+2/ZNVZcFABjTjSP4CySt7UI5AIAalQa87bmSXi/piirLAQDsqeoj+I9JulDSrorLAQCMU1nA236DpK0RsWKC+RbaHrY9PDIyUlV1AOApp8oj+GMknWx7o6RrJR1n+wvjZ4qIxRExFBFDAwMDFVYHAJ5aKgv4iLgoIuZGxKCk0yV9OyLOrKo8AMDuOA8eADLVlbFoIuJWSbd2oywAQIEjeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkqlTA236a7b+xfXl6fHj6QQ8AQI8qewR/laQdkl6WHm+S9PeV1AgA0BFlA/6wiFgk6deSFBG/lOTKagUAaFvZgH/c9j6SQpJsH6biiB4A0KPK/uDHByV9XdIhtq9W8Xur51RVKQBA+0oFfEQstX2XpKNVdM1cEBEPV1ozAEBbWjlNco6kaZJmSHqF7VOrqRIAoBNKHcHbvlLSkZLWSNqVJoekL1dULwBAm8r2wR8dEUdUWhMAQEeV7aJZbpuAB4A+UvYI/nMqQn6LitMjLSki4sjKagYAaEvZgL9S0tslrdZYHzwAoIeVDfj7I+LGSmsCAOiosgG/zvYXJX1NNVewRgRn0QBAjyob8PuoCPYTaqZxmiQA9LCyV7K+o+qKAAA6q+yFTlcpDTRWKyLObbLMLEm3SZqZyrkuIj44yXoCAFpUtovmppr7syS9WdIDEyyzQ9JxEbHd9t6SvmP75oi4fRL1BAC0qGwXzfW1j21fI+mbEywTkranh3un2x6fAgAA1Zjsb7IeLmneRDPZnmZ7paStkpZGxPfqzLPQ9rDt4ZGRkUlWBwAwXtnfZN1m++ejNxWnS/71RMtFxBMRcZSkuZIW2P7dOvMsjoihiBgaGBhosfoAgEbKdtHs104hEfGY7VslnSTpnnbWBQAop+wR/DG2n57un2n7MtvPnWCZAdsHpPv7SDpe0ro26wsAKKlsH/y/SvqF7RdJulDSjyUtmWCZgyUts71K0p0q+uBvmmAZAECHlD1NcmdEhO1TJH08Ij5j++xmC0TEKknz264hAGBSygb8NtsXSTpTxc/1TVNx2iMAoEeV7aJ5m4oLl86LiC0qfp/10spqBQBoW9mzaLZIuqzm8f2auA8eADCFyp5Fc6rtH9r+WToXfls6Hx4A0KPK9sEvkvTGiFhbZWUAAJ1Ttg/+IcIdAPpL2SP4YdtfkvQV8YtOANAXygb8/pJ+IX7RCQD6Br/oBACZKnsWzVzbN9jeavsh29fbnlt15QAAk1f2S9arJN0o6TkqLnL6WpoGAOhRZQN+ICKuioid6fZZSQzeDgA9rGzAP5yGCZ6WbmdKeqTKigEA2lM24M+V9FZJWyQ9KOk0SXzxCgA9rOxpkh+WdHZE/FSSbD9T0kdVBD8AoAeVPYI/cjTcJSkiHhVjvQNATysb8HvZPnD0QTqCL3v0DwCYAmVD+p8k/Y/t61RcwfpWSZdUVisAQNvKXsm6xPawpOMkWdKpEfH9SmsGAGhL6W6WFOiEOgD0ibJ98ACAPkPAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgExVFvC2D7G9zPZa22tsX1BVWQCAPVU5nsxOSe+NiLts7ydphe2lXAELAN1R2RF8RDwYEXel+9skrVXxc38AgC7oSh+87UEVwwt/r85zC20P2x4eGRnpRnUA4Cmh8oC3va+k6yX9eUT8fPzzEbE4IoYiYmhggJ95BYBOqTTgbe+tItyvjogvV1kWAGB3VZ5FY0mfkbQ2Ii6rqhwAQH1VHsEfI+ntko6zvTLdXldheQCAGpWdJhkR31Hx4yAAgCnAlawAkCkCHgAyRcADQKYIeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BMEfAAkCkCHgAyRcADQKYqC3jbV9reavueqsoAADRW5RH8ZyWdVOH6AQBNVBbwEXGbpEerWj8AoDn64AEgU1Me8LYX2h62PTwyMjLV1QGAbEx5wEfE4ogYioihgYGBqa4OAGRjygMeAFCNKk+TvEbSckm/ZXuT7fOqKgsAsKfpVa04Is6oat0AgInRRQMAmSLgASBTBDwAZIqAB4BMEfAAkCkCHgAyRcADQKYIeADIFAEPAJki4AEgUwQ8AGSKgAeATBHwAJApAh4AMkXAA0CmCHgAyBQBDwCZIuABIFMEPABkioAHgEwR8ACQKQIeADJFwANApgh4AMgUAQ8AmSLgASBTBDwAZIqAB4BMVRrwtk+yvd72vbbfV2VZAIDdVRbwtqdJ+qSk10o6QtIZto+oqjwAwO6qPIJfIOneiLgvIh6XdK2kUyosDwBQY3qF654j6Sc1jzdJeun4mWwvlLQwPdxue32FdSpjtqSHu1GQ3Y1S2kJbjKEtxtAWY3qhLZ7b6IkqA75edWKPCRGLJS2usB4tsT0cEUNTXY9eQFuMoS3G0BZjer0tquyi2STpkJrHcyU9UGF5AIAaVQb8nZIOt32o7RmSTpd0Y4XlAQBqVNZFExE7bb9b0i2Spkm6MiLWVFVeB/VMd1EPoC3G0BZjaIsxPd0WjtijWxwAkAGuZAWATBHwAJApAh4AMtWzAW97H9v/lYY8GP/cObZHbK9Mtz9usI4X216dxsL5F7u4VMD2TNtfStO/Z3uwZpmv237M9k0l69luXd5j+37bnyhTXoN179ZWtp+oqU/dM5eatUGTcs5I27AqtdPsBvNdlNa73vaJNdOX2d5uu6PnDdfZ/kW219heW9vW45aZzPZfYvsntrePm/4K23fZ3mn7tCbLV7IP1Nn+uvuw7XensqPRa5fmO9v2D9Pt7BLlN9x+2/NsfyO9Ft+v186NXgvbh6V9ePv4ZZrUpWxbOL2eP0h1O79DbfEXaTtX2f6W7eem6a+qeU+utP0r22+qsi0kSRHRkzdJfybpggbPnSPpEyXWcYekl6m46OpmSa9N098l6VPp/umSvlSzzKslvVHSTSXr2VZdWllH2baStL3EMg3boMH80yVtlTQ7PV4k6eI68x0h6X8lzZR0qKQfSZpW8/ytkoaq2lck/b6k76o4c2uapOWSjm13+9N8R0s6eHz7ShqUdKSkJZJO6/Y+UOf1r7sPS5qf6rpx9HWss65nSrov/T0w3T9wgvIbbn96vV+T7u8r6WmtvhZl9udJtMU7Un33So+f1aG2eNXoNkr603r7VVrfo1W3RUT07hG8pD+S9NXJLmz7YEn7R8TyKFpmiaQ3padPkfS5dP86Sa8ePZqKiG9J2jbZcidRl06YTFs1bIMGnG5PT/Ptr/oXrp0i6dqI2BERGyTdq2JcoirVbn9ImiVphop/MntLeqhBPVvZfkXE7RHxYJ3pGyNilaRdjZateB/Y7fVvtA9HxN0RsXGCdZ0oaWlEPBoRP5W0VNJJzRZotP0uBhecHhFL03zbI+IXdVbR8mvRRKm2UBG+H4qIXWm+rXXmmUxbLKvZxttVXOA53mmSbu5CW/RmwLu4MOp5E+yMb0kfg66zfUid5+eouJp21KY0bfS5n0jF+fqSfibpoDaq3E5d2tKgrWbZHrZ9e72PgTV1Kt0GEfFrFW+K1SqC/QhJn2m23qRj21rP+O2PiOWSlkl6MN1uiYi1zerZoX1gIpXsAyXfK63o5Ov3m5Ies/1l23fbvtR1ulzVodeixbY4TNLb0vvkZtuHN6tX0mpbnKfik9p4p0u6psEyHd0vezLgVQzg81iT578maTAijpT0TY39x6vVbCycUuPklNRuXdpVr63mRTE+xh9K+pjtw9qtk+29VQT8fEnPkbRK0kXtrrcDdtt+28+X9NsqjpzmSDrO9ivqLNftelZV3kTvlVZ1sp7TJf2BpL+U9BJJz1PRFVVVma20xUxJv0rvk8slXdnJetk+U9KQpEvHTT9Y0gtVXABad9HJlllPrwb8L1V8zJb05JdbK22vlKSIeCQidqSnL5f04jrr2KTdPx7VjoXz5Dg5tqdLeoaKPrGWdaAu7dqtrVKdHkh/71PRBzq/QZ1aaYOj0jp/lLoY/k1Ff3fD9SZVj0E0fvvfLOn21B2wXcUR1NF1luvYPlBSVfvAHq9/mzr5+m2SdHcUQ4bvlPQVSb/XrMw2X4tW2mKTpOvT/RtUfIfQsF5JqbawfbykD0g6uSYbRr1V0g3pE3GjenVsv+zJgE/9XdNsz0qPPxARR0XEUdKT/wVHnSxpj4/gqa90m+2jUx/WWRrrm7tR0ug34qdJ+nYKrYZsf8T2m+tMb7cubRnfVrYPtD0z3Z8t6RhJ36+zaMM2sL2uzvybJR1heyA9fo3qbGta7+npbIBDJR2u4svFSozffkn3S3ql7enpU8crm9Szle1vt56V7AN1tr9dt0g6Ie1HB0o6IU1r+B5o4k5JB9bsM8epxX2xFS22xVdSfaRiH/lBnXlabgvb8yV9WkW41+vXP0ONu2ekDrXFk1r5RrabNxX9u8c3eO4jktaoOFtjmaQX1Dy3sub+kKR7VJzJ8QmNDc0wS9K/q/gC8A4V/Xajy/y3pBEVRwObJJ2Ypt8k6WWdrkt67hy1dxbNk22l4qh6darPaknn1cz3IRU7XsM2UPExd32Dct6pIixXqeiaOihNP1nFF1aj830gbed61Zwpkp67VZ0/i6Z2+6epeIOtVREml3Vw+xelfWJX+ntxmv6S9Pj/JD0iaU039wGNe6802YfPT493qjgSvaKmXlfULH9uapd7Jb2jZnqj90Cz7X9N2l9WS/qspBllX4uadbRyFk3ZtjhA0n+kei2X9KIOtcU3VXypvzLdbqx5blDFgdJe45appC0ioqcDfr6kz091PWrqc0uF6570m7vTbSXpDZLOr3Bbb1XnA75vtr+KfaBb75Uq3wMTlNtKwNMWNbcqf/CjLRFxt4sLY6ZFxBM9UJ8TJ56rdbbfo+LI+PqJ5m2kk20VEaUu8JoM28tUfNHWqP9xUvpl+xtpdx/o1nulqvdAI+nkgOtV/zTXumiLccul/woAgMz05JesAID2EfAAkCkCHgAyRcCjr9k+wPa7pqDcY91gxFHb/2n7gC5XCdgDAY9+d4CKEfh6RkS8LiIem+p6AAQ8+t0/ShodK/tS239l+840+NvfSZLtQdvrbF9h+x7bV9s+3vZ3XYzzvSDNd7Htz9v+dpr+JxOUvb/tG1yM//0p23ul9Wy0PTuVu9b25S7Gp/+G7X3SPOd7bNzwa6tsIDx1EfDod++T9KMohrFYqmJohAUqxs55cc1AY8+X9HEVY468QMVAbC9XMRDW+2vWd6Sk16sYt/1vbT+nSdkLJL1XxeBRh0k6tc48h0v6ZET8joqBsN5SU+/5UQxS987SWwu0gIBHTk5It7sl3aUiyEeHgd0QEaujGP97jaRvRXERyGoVl5CP+mpE/DIiHlYx9ESzsezviGIgrSdUjC/y8jrzbIiIlen+ipqyVkm6Oo06uLOlrQRKIuCRE0v6SKSB6SLi+RExOmZ97ah+u2oe75J2u6J7/JV/za4ELDNvbblP1JT1ekmfVDH66Io0ciDQUQQ8+t02Sful+7dIOtf2vpJke47tZ7W4vlNsz7J9kKRjVYyI2MgC24emvve3SfpOmQLS/IdExDJJF6r4onjfFusJTIijBvS1iHgkfVl6j4qx378oaXkxIq+2SzpTxZFzWXeoGGVwnqQPRxpbv4HlKr7kfaGk21SMK17GNElfsP0MFZ86/pmzblAFxqIBEtsXqxit76NTXRegE+iiAYBMcQQPNGH7hZI+P27yjoh46VTUB2gFAQ8AmaKLBgAyRcADQKYIeADIFAEPAJn6f76SMkWE29GIAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "e10['temp_bins'] = pd.qcut(e10['temp_outside'], 5)\n",
+ "temp = sns.barplot(x='temp_bins', y='consume',data=e10, color='blue')\n",
+ "temp.axhline(y = e10.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 213,
+ "id": "6be1273d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAANYklEQVR4nO3dbYxcZRnG8euiW16sJWoYqbaURSRV1CKyooYEIxqCChqJQU0QeYn7SQKJWvWDGFFjUpXIBySpULARUANikEQUo5WogMwWUOrWaAiFLo7dWpUWtKVw+2GGdJbubs929tkzvff/Szad2Z2Z507T/nPy7JkzjggBAPI5pO4BAABlEHgASIrAA0BSBB4AkiLwAJDUQN0DdDvqqKNicHCw7jEA4KAxMjKyLSIak/2srwI/ODioZrNZ9xgAcNCwvXmqn7FFAwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgqb56oxOA/FatWqVWq6UlS5Zo9erVdY+TGoEHMKdarZbGxsbqHmNeYIsGAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkioaeNsvs32r7U22R22/o+R6AIC9Sl+q4GpJd0XEh20fKuklhdcDAHQUC7ztIyWdLulCSYqI3ZJ2l1oPADBRyS2a10gal3SD7QdtX2d7UcH1AABdSgZ+QNJbJF0bESdLelrS51/8INvDtpu2m+Pj4wXHAYD5pWTgt0jaEhH3d+7fqnbwJ4iINRExFBFDjUaj4DgAML8UC3xEtCQ9YXtF51vvlvTnUusBACYqfRbNpZJu6pxB86ikiwqvBwDoKBr4iHhI0lDJNQAAk+OdrACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSpd/oBKDj8SvfVPcIfWHP9ldIGtCe7Zv5O5G0/Io/FXttjuABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJFX0Az9sPyZph6TnJO2JiKGS6wEA9pqLT3R6V0Rsm4N1AABd+Mi+hFatWqVWq6UlS5Zo9erVdY8DoCal9+BD0i9sj9genuwBtodtN203x8fHC48zP7RaLY2NjanVatU9CoAaOSLKvbj96oh40vYrJd0t6dKIuGeqxw8tXhzNU04pNs98Mbppk3bt2qXDDjtMr3/d6+oeBx3/2/xA3SP0hSd2DujZ562Fh4SOeemeusep3eHHvrWn5/s3vxmZ6vebRbdoIuLJzp9bbd8u6VRJUwYeQH5Efe4UC7ztRZIOiYgdndtnSrpy2ietWCGtX19qpHnj6xdcoLGxMS1dulTr1q2rexx0bL3yTXWPgD60/Ir1vb2APeWPSh7BHy3pdrcXH5B0c0TcVXA9nfJZYiZJi7ft0AJJj2/bwd+JpJFvXFD3CEAtigU+Ih6VdFKp1wcATI93sgJAUgQeAJIi8ACQFO9kTej5QxdN+BPA/ETgE3r6hDPrHgFAH2CLBgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJBU8cDbXmD7Qdt3ll4LALDXXBzBXyZpdA7WAQB0KRp428skvV/SdSXXAQDsq/QR/LclrZL0/FQPsD1su2m7OT4+XngcAJg/KgXe9ktsf9H2dzv3T7B99n6ec7akrRExMt3jImJNRAxFxFCj0ag8OABgelWP4G+QtEvSOzr3t0j66n6ec5qkD9h+TNIPJJ1h+/sHMiQAYOaqBv74iFgt6VlJioj/SvJ0T4iIL0TEsogYlPRRSb+KiPN7GRYAUF3VwO+2fYSkkCTbx6t9RA8A6FMDFR/3JUl3STrG9k1qb79cWHWRiFgvaf0MZwMA9KBS4CPibtsbJL1d7a2ZyyJiW9HJAAA9mclpkkslLZB0qKTTbZ9bZiQAwGyodARve62klZI2au857SHpx4XmAgD0qOoe/Nsj4sSikwAAZlXVLZp7bRN4ADiIVD2C/57akW+pfXqkJUVErCw2GQCgJ1UDv1bSxyX9SdNcVwYA0D+qBv7xiLij6CQAgFlVNfCbbN8s6afqegdrRHAWDQD0qaqBP0LtsJ/Z9T1OkwSAPlb1nawXlR4EADC7qr7R6QZ1LjTWLSIunvWJAACzouoWTfcHZh8u6UOSnpz9cQAAs6XqFs1t3fdt3yLpl0UmAgDMigP9TNYTJC2fzUEAALOr6h78Dk3cg29J+lyRiQAAs6LqFs3i0oMAAGZXpS0a26fZXtS5fb7tq2wfW3Y0AEAvqu7BXyvpGdsnSVolabOkdcWmAgD0rGrg90RESPqgpKsj4mpJbNsAQB+reh78DttfkHS+2h/Xt0DSwnJjAQB6VfUI/iNqX4vmkohoqf35rN8oNhUAoGdVz6JpSbqq6/7jYg8eAPpa1bNozrX9V9v/sf2U7R22n9rPcw63/QfbD9veaPvLszMyAKCKqnvwqyWdExGjM3jtXZLOiIidthdK+q3tn0XEfTOeEgAwY1UD/48Zxl2ds252du4u7Hztc0VKAEAZVQPftP1DST/RDD7RqXO2zYik10q6JiLun+Qxw5KGJWn5ci5vAwCzpepZNEdKekbtT3Q6p/N19v6eFBHPRcSbJS2TdKrtN07ymDURMRQRQ41Go/LgAIDpzcknOkXEv22vl3SWpEd6eS0AQDVVz6JZZvt221tt/8P2bbaX7ec5Ddsv69w+QtJ7JG3qeWIAQCVVt2hukHSHpFer/Sann3a+N51XSfq17T9KekDS3RFx536eAwCYJVV/ydqIiO6g32j78umeEBF/lHTygQ4GAOhN1SP4bZ3LBC/ofJ0v6Z8lBwMA9KZq4C+WdJ7an+T0d0kfltTTL14BAGVV3aL5iqRPRMS/JMn2KyR9U+3wAwD6UNUj+JUvxF2SImK72F8HgL5WNfCH2H75C3c6R/BVj/4BADWoGulvSfq97VvVvp7MeZK+VmwqAEDPqr6TdZ3tpqQzJFnSuRHx56KTAQB6UnmbpRN0og4AB4mqe/AAgIMMgQeApAg8ACRF4AEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUsUCb/sY27+2PWp7o+3LSq0FANhXyc9V3SPp0xGxwfZiSSO27+aToABgbhQ7go+Iv0fEhs7tHZJGJS0ttR4AYKI52YO3PSjpZEn3T/KzYdtN283x8fG5GAcA5oXigbf9Ukm3Sbo8Ip568c8jYk1EDEXEUKPRKD0OAMwbRQNve6Hacb8pIn5cci0AwEQlz6KxpOsljUbEVaXWAQBMruQR/GmSPi7pDNsPdb7eV3A9AECXYqdJRsRvJbnU6wMApsc7WQEgKQIPAEkReABIisADQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApIoF3vZa21ttP1JqDQDA1Eoewd8o6ayCrw8AmEaxwEfEPZK2l3p9AMD02IMHgKRqD7ztYdtN283x8fG6xwGANGoPfESsiYihiBhqNBp1jwMAadQeeABAGSVPk7xF0r2SVtjeYvuSUmsBAPY1UOqFI+JjpV4bALB/bNEAQFIEHgCSIvAAkBSBB4CkCDwAJEXgASApAg8ASRF4AEiKwANAUgQeAJIi8ACQFIEHgKQIPAAkReABICkCDwBJEXgASIrAA0BSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEkReABIqmjgbZ9l+y+2/2b78yXXAgBMVCzwthdIukbSeyWdKOljtk8stR4AYKKSR/CnSvpbRDwaEbsl/UDSBwuuBwDoMlDwtZdKeqLr/hZJb3vxg2wPSxru3N1p+y8FZ5pPjpK0re4h+oG/+Ym6R8C++Pf5gi+511c4dqoflAz8ZFPHPt+IWCNpTcE55iXbzYgYqnsOYDL8+5wbJbdotkg6puv+MklPFlwPANClZOAfkHSC7eNsHyrpo5LuKLgeAKBLsS2aiNhj+1OSfi5pgaS1EbGx1HrYB9te6Gf8+5wDjthnWxwAkADvZAWApAg8ACRF4BPiEhHoV7bX2t5q+5G6Z5kPCHwyXCICfe5GSWfVPcR8QeDz4RIR6FsRcY+k7XXPMV8Q+Hwmu0TE0ppmAVAjAp9PpUtEAMiPwOfDJSIASCLwGXGJCACSCHw6EbFH0guXiBiV9CMuEYF+YfsWSfdKWmF7i+1L6p4pMy5VAABJcQQPAEkReABIisADQFIEHgCSIvAAkBSBByqyfR0XbsPBhNMkgS62rfb/i+frngXoFUfwmPdsD9oetf0dSRskXW+7aXuj7S93PW697aHO7Z22v2b7Ydv32T66rvmBqRB4oG2FpHURcbKkT0fEkKSVkt5pe+Ukj18k6b6IOEnSPZI+OXejAtUQeKBtc0Tc17l9nu0Nkh6U9Aa1PzjlxXZLurNze0TSYPEJgRkaqHsAoE88LUm2j5P0GUlvjYh/2b5R0uGTPP7Z2PsLrOfE/yX0IY7ggYmOVDv2/+nsq7+35nmAA8ZRB9AlIh62/aCkjZIelfS7mkcCDhinSQJAUmzRAEBSBB4AkiLwAJAUgQeApAg8ACRF4AEgKQIPAEn9H8Vp/toUTVPWAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "rain = sns.barplot(data=e10, y=\"consume\", x =\"rain\")\n",
+ "rain.axhline(y=e10.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 235,
+ "id": "7bc5ef69",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXeElEQVR4nO3de5wlZX3n8c9vBmdAhIjSSmQYR9AECeGiLQtxdRGJISRqVDboBhEkOy/vuKuLujd3zbLqoCgbXTdEAfFKArpBNChBwJgA2gPDdVAJjGEGWmbiBfAyk8Ff/qin6TNnzqX6Un0pPu/X67y6Tp2qep5++pxv13mq6qnITCRJ7bNkvisgSWqGAS9JLWXAS1JLGfCS1FIGvCS11C7zXYFOe++9d65atWq+qyFJi8batWu3ZOZIr9cWVMCvWrWKsbGx+a6GJC0aEfH9fq/ZRSNJLWXAS1JLGfCS1FIGvCS1lAEvSS3VaMBHxOMj4uKIuCMi1kfEUU2WJ0ma1PRpkucAl2fmCRGxDHhsw+VJkorGAj4i9gSeD5wCkJnbgG1NlSdJ2lGTe/D7A5uB8yPiUGAtcHpm/rRzoYhYDawGWLlyZYPVGe6MM85gfHycffbZhzVr1sxrXSRppprsg98FeBbwscw8HPgp8M7uhTLz3MwczczRkZGeV9vOmfHxcTZt2sT4+Pi81kOSZkOTAb8R2JiZ15fnF1MFviRpDjQW8Jk5DtwTEb9eZr0QuL2p8iRJO2r6LJo3A58pZ9DcBZzacHmSpKLRgM/MdcBok2VIknrzSlZJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaqmmhwueFU972oY5KWfFiu0sWwZ33719Tsq8++5VjZch6dHLPXhJaikDXpJayoCXpJZaFH3wmntnnHEG4+Pj7LPPPqxZs2a+qyNpGgx49TQ+Ps6mTZvmuxqSZsAuGklqKQNeklrKgJekljLgJamlPMgqSdOwGM40M+AlaRoWw5lmdtFIUks1ugcfERuAB4GHge2ZOdpkeZKkSXPRRfOCzNwyB+VIkjrYB99h+/Yn7vBzIXLoZEl1NR3wCXwtIhL4s8w8t3uBiFgNrAZYuXJlw9UZbHz8bfNaviTNpsjM5jYe8ZTMvDcingRcAbw5M7/Rb/nRPfbIsWc/e6f51133i8bqOJ+OPHLXKa8zV22xfPndxJJt5C+XsXXr0xovbzptIc2n9XfcwdatW1m+fDnPPPDAeatHXHPN2n7HNxvdg8/Me8vP+yPii8ARQN+Al7Sw/cNdd7Ft2zaWLVvGAfvvP9/V6WnudoKSWAK/+HnOSZnT2QlqbA8+InYHlmTmg2X6CuA9mXl5v3VGR0dzbGxsp/lz1e8816bT7zx3ffD/mWXLfsC2bU9m48b/3Xh59sEvDieffDKbNm1i33335cILL5zv6vT0aPuMRMS87ME/GfhiREyU89lB4S5Jml2NBXxm3gUc2tT2JUmDeSWrJLWUAS9JLeWFTtIQi2HUQKkXA149LYareufKYhg1UOrFgFdPXtUrDbYYdoIMeKkFHKNo7i2GnSAPskpSSxnwktRSBrwktZQBL0kt5UFWLVoeWJQGcw9eklrKgJeklrKLRlJti+HiHk0y4CXVthgu7tEku2gkqaUMeElqKbtopCHsd9ZiZcBLQ9jvrMXKLhpJaikDXpJayoCXpJYy4CWppQx4SWopA16SWqrxgI+IpRFxY0Rc1nRZkqRJc7EHfzqwfg7KkSR1aDTgI2IF8HvAx5ssR5K0s6b34D8MnAH8suFyJEldGgv4iPh94P7MXDtkudURMRYRY5s3b26qOpL0qNPkHvxzgZdExAbg88AxEfHp7oUy89zMHM3M0ZGRkQarI0mPLo0FfGa+KzNXZOYq4JXA1zPzpKbKkyTtyPPgJaml5mS44My8Grh6LsqSJFXcg5ekljLgJamlDHhJaikDXpJayoCXpJaqFfAR8diI+G8R8efl+TPKlaqSpAWq7h78+cBW4KjyfCPwvxqpkSRpVtQN+AMycw3wzwCZ+XMgGquVJGnG6gb8tojYDUiAiDiAao9ekrRA1b2S9d3A5cB+EfEZqoHETmmqUpKkmasV8Jl5RUTcABxJ1TVzemZuabRmkqQZmcppkvsCS4FlwPMj4uXNVEmSNBtq7cFHxHnAIcBtTN6dKYEvNFQvSdIM1e2DPzIzD2q0JpKkWVW3i+baiDDgJWkRqbsH/0mqkB+nOj0ygMzMQxqrmSRpRuoG/HnAq4FbmOyDlyQtYHUD/h8z89JGayJJmlV1A/6OiPgs8CU6rmDNTM+ikaQFqm7A70YV7C/qmOdpkpK0gNW9kvXUpisiSZpddS90Op8y0FinzHztrNdIkjQr6nbRXNYxvSvwMuDe2a+OJGm21O2iuaTzeUR8DvibRmokSZoV070n6zOAlbNZEUnS7KrbB/8gO/bBjwPvaKRGkqRZUbeLZo+pbjgidgW+ASwv5Vycme+e6nYkSdNTq4smIp4bEbuX6ZMi4uyIeOqQ1bYCx2TmocBhwHERceSMaitJqq1uH/zHgJ9FxKHAGcD3gQsHrZCVh8rTx5THTqdaSpKaUTfgt2dmAi8FzsnMc4Ch3TYRsTQi1gH3A1dk5vU9llkdEWMRMbZ58+YpVF2SNEjdgH8wIt4FnAR8OSKWUu2RD5SZD2fmYcAK4IiIOLjHMudm5mhmjo6MjEyh6pKkQeoG/IlUfeqnZeY41f1Zz6pbSGb+GLgaOG6K9ZMkTVOtgM/M8cw8OzP/tjz/x8wc2AcfESMR8fgyvRtwLHDHDOsrSaqp7lk0L4+I70XETyLigYh4MCIeGLLarwJXRcTNwLep+uAvG7KOJGmW1B2LZg3w4sxcX3fDmXkzcPi0aiVJmrG6ffA/mEq4S5LmX909+LGIuAj4/3hHJ0laFOoG/J7Az/COTpK0aHhHJ0lqqbpn0ayIiC9GxP0R8YOIuCQiVjRdOUnS9NU9yHo+cCnwFKqLnL5U5kmSFqi6AT+Smedn5vbyuABwXAFJWsDqBvyWMkzw0vI4CfinJismSZqZugH/WuAPqe7kdB9wAuCBV0lawOqeJvknwGsy80cAEfEE4ANUwS9JWoDq7sEfMhHuAJn5QxyGQJIWtLoBvyQi9pp4Uvbg6+79S5LmQd2Q/iDw9xFxMdUVrH8InNlYrSRJM1b3StYLI2IMOAYI4OWZeXujNZMkzUjtbpYS6Ia6JC0SdfvgJUmLjAEvSS1lwEtSSxnwktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLdVYwEfEfhFxVUSsj4jbIuL0psqSJO2sySF/twNvy8wbImIPYG1EXOEgZZI0Nxrbg8/M+zLzhjL9ILAe2Lep8iRJO5qTPviIWEV1B6jr56I8SdIcBHxEPA64BHhrZj7Q4/XVETEWEWObN29uujqS9KjRaMBHxGOowv0zmfmFXstk5rmZOZqZoyMjI01WR5IeVZo8iyaATwDrM/PspsqRJPXW5B78c4FXA8dExLryOL7B8iRJHRo7TTIzv0l1/1ZJ0jzwSlZJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaikDXpJayoCXpJYy4CWppQx4SWopA16SWsqAl6SWMuAlqaUMeElqKQNeklrKgJekljLgJamlDHhJaikDXpJaqrGAj4jzIuL+iLi1qTIkSf01uQd/AXBcg9uXJA3QWMBn5jeAHza1fUnSYPPeBx8RqyNiLCLGNm/ePN/VkaTWmPeAz8xzM3M0M0dHRkbmuzqS1BrzHvCSpGYY8JLUUk2eJvk54Frg1yNiY0Sc1lRZkqSd7dLUhjPzVU1tW5I0nF00ktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLWXAS1JLGfCS1FIGvCS1lAEvSS1lwEtSSxnwktRSBrwktZQBL0ktZcBLUksZ8JLUUga8JLWUAS9JLWXAS1JLGfCS1FIGvCS1lAEvSS1lwEtSSxnwktRSBrwktVSjAR8Rx0XEdyLizoh4Z5NlSZJ21FjAR8RS4KPA7wIHAa+KiIOaKk+StKMm9+CPAO7MzLsycxvweeClDZYnSeqwS4Pb3he4p+P5RuBfdS8UEauB1eXpQxHxnQbrVMfewJa5KChiLkqZEdtikm0xybaYtBDa4qn9Xmgy4HtVJ3eakXkucG6D9ZiSiBjLzNH5rsdCYFtMsi0m2RaTFnpbNNlFsxHYr+P5CuDeBsuTJHVoMuC/DTwjIp4WEcuAVwKXNlieJKlDY100mbk9It4EfBVYCpyXmbc1Vd4sWjDdRQuAbTHJtphkW0xa0G0RmTt1i0uSWsArWSWppQx4SWopA16SWmpBBHxE7BYR15ThDYiIyyPixxFxWddyn4iImyLi5oi4OCIe12d774+IW8vjxI75x0TEDWX+JyNilzJ/r4j4YtnutyLi4Bp17lmXiDgwIq6NiK0R8fYB67+w1GVdRHwzIp5e5p9Yxu65rMc6j7RTRDw1ItaW9W+LiNd1LPemso2MiL0H1GFNWXd9RPyfiMGXlUTE6yLilo46H9TxWs8271p/eURcVOp2fUSsKvMPKNt8aFD502yLnn/zHtt7TUR8rzxeM4V6nFDaebRr/p4RsSkiPjKV9WfaFnXKj4g/Hbb9uvUvy54SEZtLvddFxB93vPZwx/yeZ9E19b4YVH5EXBARd3e8dlif7U3pfRERKyPiqoi4MapsOL7jtaGft9lsCwAyc94fwBuB0zuevxB4MXBZ13J7dkyfDbyzx7Z+D7iC6gyh3YExYE+qf2b3AL9WlnsPcFqZPgt4d5k+ELiyRp171gV4EvAc4Ezg7QPW/y7wzDL9BuCCjteO7v7du9sJWAYsL9OPAzYATynPDwdWlXl79yn/t4C/ozrDaSlwLXD0FH7nlwCXD2rzHuu/Afh/ZfqVwEVdrz80nfdMv7YY9Dfv2tYTgLvKz73K9F416rAH8A3gOmC067VzgM8CH5nm+tNqi2HlA6PAp4Ztv079O5Y9pd9ydX6Ppt4Xg9YFLgBOGLKtKb8vqM6qeX2ZPgjYUKZrfd5msy0yc2HswQN/BPzVxJPMvBJ4sHuhzHwAoPzn240eV8ZSNeo1mbk9M38K3AQcBzwR2JqZ3y3LXQG8omOdK0sZdwCrIuLJgyrcry6ZeX9mfhv45yG/c1L94wH4FepdBPZIO2XmtszcWuYvp+PbWGbemJkbapS/KyUcgccAPxi4Qvmdi92ZbP9+bd7tpcAny/TFwAuHfWsYoE5bDPqbd/od4IrM/GFm/qgs16v+3f4EWAP8onNmRDwbeDLwtemsPw07fH76lV/2as8Czhi0sSnUf7Y08r6YBdN5X/T7XNf9vM1mW8x/wEd1EdT+NQJpYvnzgXGqPe0/7bHITcDvRsRjo+qeeAHVFbVbgMd0fJU+gckrbW8CXl62fwTV2A4rZqEug/wx8JWI2Ai8GnjfkLJ2aqeI2C8ibqbaS31/Zta+UjgzrwWuAu4rj69m5vph60XEGyPiH6iC6S1ldr827/bI+ESZuR34CVUIT8kU2mLQ37xnvYqNZd6gOhwO7JeZ3d2IS4APAv9pOutPVXdbDCn/TcClmXnfgO3Vqn8Pr4jJ7srONt41IsYi4rqI+IM+6zb2vhhS/pmlzh+KiOWD6lUMfV8A/wM4qXyuvwK8Gab0eZuVtpgw7wFPNVjPj+sunJmnUn39Xg/s1NebmV+jati/Bz5H9VVoe1bfb14JfCgivkX1DWF7We19wF4RsY7qD3Jjx2vTrssQ/wE4PjNXAOdTdfMMslM7ZeY9mXkI8HTgNcO+dXSKqs//mVT/yPYFjomI5w9bLzM/mpkHAO8A/muZ17PNexXba5N169yhVlsM+ZtPu14lBD8EvK3Hy28AvpKZ9/R4rc76U9XdFj3Lj4inAP+W4TsiQ+vfw5eAVaX9/4bJPVCAlVmN1fLvgA9HxAE91m/sfTGg/HdR7Zg9h6oL5h2zVK9XUXW3rgCOBz4VEUum8HmbrbYAFkbA/5zqq0ttmfkwcBG9v26TmWdm5mGZ+dtUDfa9Mv/azHxeZh5B1fc5Mf+BzDw1Mw8DTgZGgLtnoy69RMQIcGhmXl9mXUTVRzdI33Yqe6u3Ac+rWwfgZcB1mflQZj4E/DVw5BTW/zzwBx116NnmXR4Znyiqg52/AvxwCmVOqN0W/f7m/epVDBs3aQ/gYODqiNhA1W6Xlm8KRwFvKvM/AJwcEd3fzgatP1XdbdGv/MOp/vndWV57bETc2WN7deq/g8z8p44usj8Hnt3x2r3l513A1aUe3Rp7X/QrPzPvy8pWqh2sIwbVq6gzntZpwF+UMq4t9dmb+p+32WqLylQ67Jt6UH0l2bVr3tF0HGikCo2nd0x/APhAj20tBZ5Ypg8BbgV2Kc+fVH4up+pzP6Y8fzywrEz/e+DCju1dCezbVcbQulB9Vet5kJXqYOQWJg/+nQZc0u9379VOVG+23cr0XlQHbX+za/kN9D/IeiLV3tYuVP2BVwIvLq+9F3hZj3We0TH9YmBsWJt3rf9GdjyA9Bddr0/lYFqttuj3N+/a1hOo/qHvVR53A08Y1BZd619N10HSMv8U6h2k3Gn96bZF3fLrbL97/QHvi1/tmJ4Isom/xcTB772p/rkeNIfvi77lT9SZ6vP7YeB9s/G+oAruU8r0M6n+IQQDPm9NtUVmLpiA/wRwbMfzvwU2U/1H3kh1sGMJ1VHoW6gC5DOUMzWozgz4eJneFbi9PK4DDuvY7llU3SnfAd7aMf+o8se/A/gC5Uh5KfP7lPDoWH5QXfYpdX6A6uvixo7XvsLkmS4vK+vfRPUB379j+0fTO+AfaSfgt4Gby/o3A6s7lntLKXd7eYN9vEc7LQX+rLTH7cDZHetfBhzVo/xzqPaO11H1J/5GjTZ/D/CSjuX+ErgT+Fbn7zyND3Ldtuj3N3+kLcrz15Z63QmcOqwtuupyNTUCvrMthq0/3bYYVH6/7Xe3xYD693tfvLe8L24q74sDy/zfYvI9fgsdZzDN0ftiUPlfZ/Lz+2ngcbPxvqA64eDvSpnrgBfV+Lw10haZCyfgDwc+Nd/16FGvgzv/EHNY7tH0Dvg5aSeqA0Dz0d5T+SDbFraFbTHksRD64MnMG4GrouNCjYUgM2/NzP84l2VGdZHQ/wV+1KM+c9JOmfk7TW6/28RFHAw5TbOTbTHJtphkW3StV/4rSJJaZkHswUuSZp8BL0ktZcBLUksZ8FINEXH1oAuR+o3yFxHviYhjm6uZ1F9j92SVBJn53+e7Dnr0cg9ei1ZE7B4RX45qXP5boxpLf0NUY9N/qzwmxtkfiYhLIuLb5fHcjm2cV+bdGBEvLfN3i4jPl8GoLqIaMXRYfT4Y1djzV5bhKCbGHT+hTG+IiP9ZlrklIg4s8/9NTI5LfmNE7NFQk+lRxoDXYnYccG9mHpqZBwOXl/kPZDX2zEeoLkOH6ircD2Xmc6jGDfp4mf9fgK+X+S8AzoqI3YHXAz/LagCtM+kYX6WP3YEbMvNZwDXAu/sst6Us8zFg4oYwbwfemNVYSM+juoJbmjEDXovZLcCxZY/9eZn5kzL/cx0/jyrTxwIfKReLXArsWfaUXwS8s8y/mupS8ZXA86kuYSczb6YaAmGQX1INGkdZ71/3We4L5edaqpuyQHVp+9kR8Rbg8VkNEyvNmH3wWrQy87tR3ZzieOC9ETFxg4rOq/cmppdQjR2yw95xRATwisz8Ttf87u1MuXp95k+Muvgw5fOXme+LiC9T/R7XRcSxWd14RpoR9+C1aJUxzn+WmZ+mGtHzWeWlEzt+Xlumv0Z1w4uJdQ8rk18F3lyCfuJGHFANLfxHZd7BVKNkDrKE6oYiUI09/s0p/B4HZOYtmfl+qtsdHlh3XWkQ9+C1mP0mVZ/5L6lukfh6qtucLY+I66lC91Vl2bcAH43qrk+7UAX466hum/dh4OYS8huA36fqIz+/LL+OamS/QX4K/EZErKW6C89UbgDz1oh4AdVe/e1UQ85KM+ZYNGqVcqOK0czcMt91keabXTSS1FLuwUtTULp+um/Q/OrMvGU+6iMNYsBLUkvZRSNJLWXAS1JLGfCS1FIGvCS11L8Ac6xOYdlAIRIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "e10['speed_bins'] = pd.qcut(e10['speed'], 5)\n",
+ "speed = sns.barplot(x='speed_bins', y='consume',data=e10,color='blue')\n",
+ "speed.axhline(y=e10.consume.mean(), c=\"red\", label=\"mean\");\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ad82d327",
+ "metadata": {},
+ "source": [
+ "### PARA SP98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 226,
+ "id": "1abebf39",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVgUlEQVR4nO3dfbRldX3f8feHAQQRlcg1qAMZRDAhEbFMEGqqBp/wuVqXYoL1gYSVJllaly3Rpm2siU0yprS2spoQEKNBYVXFB2KESQSNBsThQZ5GIgolIFcGlTAkFh349o+9hzlzOefOOfeefR/2vF9r3XXPw97799u/s8/n7vs7v/07qSokSf2zx3JXQJLUDQNeknrKgJeknjLgJamnDHhJ6qk9l7sCgw488MBat27dcldDklaNK6+88u6qmhn23IoK+HXr1rFp06blroYkrRpJ/u+o5+yikaSeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6akVd6KSV47TTTmN2dpaDDjqIDRs2LHd1JC2AAT/AUNthdnaWO+64Y7mrIWkRDPgBhpqkPrEPXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SecpiktAteH6HVyoCXdsHrI7Ra2UUjST1lwEtSTxnwktRTq6IP/tazD12ScrbduxbYm2333rIkZa475ZbOy5C0+/IMXpJ6yoCXpJ5aFV002sHuKknj8gxeknrKgJeknjLgJamnDHhJ6qlOP2RNciuwFXgA2FZV67ssT5K0w1KMovnFqrp7CcrRbsYRRdL8HCY54HH7bdvptyStZl0HfAEXJyngT6rqzI7LW5R3nDC73FWQpKnpOuCfVVXfSfJ4YGOSb1TVlwYXSHIqcCrAIYcc0nF1JGn30ekomqr6Tvv7LuAC4Nghy5xZVeurav3MzEyX1ZGk3UqqqpsNJ/sBe1TV1vb2RuA9VfX5Ueus33//2nTMMQ97/P/deXkndVxu+zzhuInXWaq2+Pb3HsGPHtiDvdc8yJMfd3/n5dkWOyykLbT7yhe/eOWoEYpddtH8JHBBku3lfHS+cJckTVdnAV9V3waePtFKT30qXHrpwx6eXaLhcEtt3SmXTrzOUrXF7312Ld/dujc/uf+P+K8vv73z8myLHRbSFtqNNSfRQzlMUkM5ZFRa/Qx4DeWQUWn1cy4aSeopA16SesouGmkX/DxCq5UBL+2Cn0fscNpppzE7O8tBBx3Ehg0blrs62gUDXtLYZmdnueOOO5a7GhqTffCS1FMGvCT1lAEvST1lwEtSTxnwktRTjqKRpAVYDUNGDXhJWoDVMGTUgJd64NYlmjp5271rgb3Zdu8tS1LmulNu6byMPrMPXpJ6yoCXpJ4y4CWppwx4SeopA16SespRNJLGthrmxndE0Q4GvKSxOTf+6mIXjST1lAEvST1lwEtSTxnwktRTBrwk9ZSjaCRpAVbDkNHOAz7JGmATcEdVvazr8iRpKayGIaNL0UXzNmDzEpQjSRrQacAnWQu8FDiry3IkSQ/X9Rn8/wBOAx4ctUCSU5NsSrJpy5YtHVdHknYfnQV8kpcBd1XVlfMtV1VnVtX6qlo/MzPTVXUkabfT5Rn8s4BXJLkVOA84Icmfd1ieJGlAZwFfVe+qqrVVtQ44CfhCVZ3cVXmSpJ15oZMk9dSSXOhUVZcCly5FWZKkhmfwktRTBrwk9ZQBL0k9ZcBLUk8Z8JLUUwa8JPWUAS9JPWXAS1JPGfCS1FMGvCT1lAEvST1lwEtST40V8EkemeQ/JfnT9v7h7Rd6SJJWqHHP4M8B7geOb+/fDvxeJzWSJE3FuAF/WFVtAH4MUFU/BNJZrSRJizZuwP8oyb5AASQ5jOaMXpK0Qo37hR+/A3weODjJuTTft/qmriolSVq8sQK+qjYmuQo4jqZr5m1VdXenNZMkLcokwySfBKwB9gaeneTV3VRJkjQNY53BJ/kgcBRwA/Bg+3ABn+yoXpKkRRq3D/64qjqy05pIkqZq3C6ay5IY8JK0iox7Bv9nNCE/SzM8MkBV1VGd1UyStCjjBvwHgTcA17GjD16StIKNG/C3VdVnOq2JJGmqxg34byT5KPBZBq5grSpH0UjSCjVuwO9LE+wvHHjMYZKStIKNeyXrmyfdcJJ9gC8Bj2jL+XhV/c6k25EkLcy4FzqdQzvR2KCqess8q90PnFBV9yXZC/hykr+sqssXVlVJ0iTG7aK5cOD2PsCrgO/Mt0JVFXBfe3ev9udhfyQkSd0Yt4vmE4P3k3wM+KtdrZdkDXAl8BTgjKr66pBlTgVOBTjkkEPGqY4kaQwL/U7Ww4FdpnFVPVBVRwNrgWOT/NyQZc6sqvVVtX5mZmaB1ZEkzTVuH/xWdu5emQV+a9xCquqeJJcCJwLXT1JBSdLCjNtFs/+kG04yA/y4Dfd9gecDfzjpdiRJCzNWF02SZyXZr719cpLTk/zULlZ7AnBJkmuBrwEbq+rCXawjSZqScUfR/G/g6UmeDpwGnA18GHjOqBWq6lrgGYuuoSRpQcb9kHVbO+zxlcD7q+r9wMTdNpKkpTPuGfzWJO8CTqb5ur41NOPaJUkr1Lhn8K+juTL1lKqapfl+1vd1VitJ0qKNO4pmFjh94P5tNH3wkqQVatxRNK9O8s0k/5Dk3iRbk9zbdeUkSQs3bh/8BuDlVbW5y8pIkqZn3D747xrukrS6jHsGvynJ+cCn8BudJGlVGDfgHw38E36jkyStGp19o5MkaXmNO4pmbZILktyV5LtJPpFkbdeVkyQt3Lgfsp4DfAZ4Is1FTp9tH5MkrVDjBvxMVZ1TVdvanw8BfjuHJK1g4wb83e00wWvan5OB73VZMUnS4owb8G8BXkvzTU53Aq8B/OBVklawcYdJ/i7wxqr6AUCSnwD+iCb4JUkr0Lhn8EdtD3eAqvo+fpmHJK1o4wb8HkkO2H6nPYMf9+xfkrQMxg3p/wb8bZKP01zB+lrgvZ3VSpK0aONeyfrhJJuAE4AAr66qGzutmSRpUcbuZmkD3VCXpFVi3D54SdIqY8BLUk8Z8JLUUwa8JPWUAS9JPWXAS1JPGfCS1FOdBXySg5NckmRzkhuSvK2rsiRJD9flfDLbgHdU1VVJ9geuTLLRK2AlaWl0dgZfVXdW1VXt7a3AZpqv+5MkLYEl6YNPso5meuGvDnnu1CSbkmzasmXLUlRHknYLnQd8kkcBnwD+bVXdO/f5qjqzqtZX1fqZGb/mVZKmpdOAT7IXTbifW1Wf7LIsSdLOuhxFE+BsYHNVnd5VOZKk4bo8g38W8AbghCTXtD8v6bA8SdKAzoZJVtWXab4cRJK0DLySVZJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppzoL+CQfTHJXkuu7KkOSNFqXZ/AfAk7scPuSpHl0FvBV9SXg+11tX5I0v2Xvg09yapJNSTZt2bJluasjSb2x7AFfVWdW1fqqWj8zM7Pc1ZGk3lj2gJckdcOAl6Se6nKY5MeAy4CnJrk9ySldlSVJerg9u9pwVb2+q21LknbNLhpJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppwx4SeopA16SesqAl6SeMuAlqacMeEnqKQNeknrKgJeknjLgJamnDHhJ6ikDXpJ6yoCXpJ4y4CWppzoN+CQnJrkpyc1J3tllWZKknXUW8EnWAGcALwaOBF6f5MiuypMk7azLM/hjgZur6ttV9SPgPOCVHZYnSRqQqupmw8lrgBOr6lfa+28AnllVvzlnuVOBU9u7TwVu6qRC4zsQuHuZ67BS2BY72BY72BY7rIS2+Kmqmhn2xJ4dFpohjz3sr0lVnQmc2WE9JpJkU1WtX+56rAS2xQ62xQ62xQ4rvS267KK5HTh44P5a4DsdlidJGtBlwH8NODzJoUn2Bk4CPtNheZKkAZ110VTVtiS/CVwErAE+WFU3dFXeFK2Y7qIVwLbYwbbYwbbYYUW3RWcfskqSlpdXskpSTxnwktRTBrwk9dSKDfgk+yb5Yjvlwdznfi3JdUmuSfLlUVMgJDmmXe7mJP8zSdrHH5Hk/PbxryZZN7DO55Pck+TCCer62iQ3JrkhyUcnrMvbk9yW5APjljdk2zu1VZJDklycZHNbr3VD1hnZBvOU87ok17b7uWGe5d7VbvemJC8aePySJPclmeq44SH7/4dJrm9/XjdinYXs/3uT/H2S++Y8vtjjcVHHwJD9H3oMJzk7ydfb1/DjSR41YntvTPLN9ueNY5T/7CRXJdnWXuA4+NyG9njZPLjPc5YZ+lokOaxt0/vmrjOFtnheW+ftr9lTptQWI4+FUXWZs/7U2gKAqlqRP8BvAG8b8dyjB26/Avj8iOWuAI6nuejqL4EXt4//OvDH7e2TgPMH1nke8HLgwjHreThwNXBAe//xk9Slfe5NwAem1VbApcAL2tuPAh45ZJ2RbTCijMcBtwEz7f0/A543ZLkjga8DjwAOBb4FrJlTt/VdHSvAS4GNNCPE9gM2DR4vC93/drnjgCcA903zeFzsMTDk9R96DM+p5+nAO4ds6yeAb7e/D2hvH7CL8tcBRwEfBl4z8Pg/B75CM4puDXAZ8NxJX4u57T2ltvg74GcGyv/QlNpi5LEwqi5dtUVVrdwzeOCXgU8Pe6Kq7h24ux9DrpBN8gSaxr6smpb5MPAv26dfSRNQAB8Hnrf9zKKq/hrYOkE9fxU4o6p+0K5/14R1mYaH2qo9Y9izqja29bmvqv5pyDoj22CEJwN/V1Vb2vt/BfyrEds9r6rur6pbgJtp5iXq0uCxciTwxaraVlX/SPPH5sQR9Zxk/6mqy6vqziGPL/Z4XKyd3iujjuHt9Wz3c99h9QReBGysqu+3x/RGhrff4HZvraprgQfnPgXsA+xN8wd/L+C7QzYx8Wsxj7Haoq3bo9vbj2H4RZgLaYuRx8KY2TLNtliZAZ/mwqgnV9Wt8yzzG0m+BWwA3jpkkSfRXE273e3tY9uf+3toxusD/0BzhroQRwBHJPlKksuTDDsA5qvLogxpqyOAe5J8MsnVSd6XId1cTN4GNwM/nWRdkj1pwungIcs9tN3W1PZ1mCH7/3XgxUkemeRA4Bd3Vc8pHAOLPR4XbJz3ypzlzwFmgZ8G/teQRab2+lXVZcAlwJ3tz0VVtXm+MhfzWkzYFr8CfC7J7cAbgD+Yr16tsdpijGNhPlM9LldkwNNM4HPPfAtU1RlVdRjwW8B/HLLIfHPhjDVPzpj2pOmmeS7weuCsJI+doC6LNbet9gT+BfDvgJ+nOfN+05D1JqpTewbzb4Dzgb8BbgW2LXa7U7DT/lfVxcDngL8FPkbTLdB5PRd5PC7GLt8rOxVY9WbgicBmYNjnE1OrZ9uv/TM005Q8CTghybM7LHOStng78JKqWgucQ9NlNZV6jXEszGeqx8lKDfgf0vxrBzz04dY1Sa4Zsux5DP9X93aaA2u7wblwHponpz0bfQzw/QXW9Xbg01X147ZL4iaawB+3Lou1U1u1ZV1dzTTN24BPAf9sRL0naoOq+mxVPbOqjqfZz2/Ot91W13MQzd1/quq9VXV0Vb2A5g0zbz2ncAwMWsjxuBgP2/9dqaoHaP5QD+tim+br9yrg8rab8D6azx2Om6/MRb4WY7VFkhng6VX11fah82k+LxhZr9akbTHqWJjPVI/LFRnw7dnimiT7tPd/u33DHg2QZDBAX8qQN3DbV7o1yXFtH9a/Zkff3GeA7Z+Ivwb4QtsvOlKS30/yqiFPfYqmG4C2S+AImg9jxq3LosxtK5o5gA5oD2KAE4Abh6w6sg2SfGNYWUke3/4+gObDoLNGbPekdjTAoTR/7K6YeMfGNHf/k6xJ8rj29lE0H/5dPKKeE+3/KFM4HhdsyOs/qo7ZPlKkLf/lwLD9vAh4YZID2tf5he1j870HRrkNeE6SPZPsBTyH5j+HuSZ+Pw4zblsAPwAek+SI9v4LRtRr4rYY51jYham0xUMm+UR2KX+As4Hnj3ju/cANwDU0fXw/O/DcNQO31wPX04zk+AA7pmbYB/g/NP3KV9D0221f52+ALTRnA7cDL2ofvxA4fkhdQvPv3Y3AdcBJk9Slfe5NLG4UzU5tRXPAXtvW50PA3u3j7wFeMV8b0Pybe9OIcj7W7ueNc/bzFcB7Bu7/drufNzEwUqR97lKmP4rmof1v92t7HS8Hjh5YbrH7v6E9Jh5sf797GsfjYo+BIa//w45hmpO5r7THxPXAubQjPtp6nTWw/lvadrkZePPA46PeAz/flvOPwPeAG9rH1wB/QhOeNwKnT/JaDCw7ySiaXbZF+/ir2rb4entMPnlKbTHfsTCqLp20RVWt6IB/BvCR5a7HQH0u6nDbC35zT7utgJcBb+1wXy9l+gG/ava/i2Ngqd4rXb4HdlHuJAFvWwz8dPmFH4tSVVenuTBmTTV9hstdnxfteqnJJXk78GvAJxa6jWm2VVWNfYHXpJJcQvOh74+nud3Vsv+jLPYYWKr3SlfvgVGSHEbTJsOGVg5lW8xZr/2rIEnqmRX5IaskafEMeEnqKQNeknrKgNeqluSxSX59Gcp9bkbMCpjkc0OuZpaWnAGv1e6xNBddrRhV9ZKqume56yEZ8Frt/gDYPlf2+5L8+yRfSzPn+X8BaCdI+0aSs9LMEX9ukue3E8R9M8mx7XLvTvKRJF9oH//VXZT96CQXpJlz/4+T7NFu59YkB7blbk7yp2nmRL84yb7tMm9t17s2yXldNpB2Xwa8Vrt3At+qZhqLjTRTIxwLHA0cMzC51VNorjI8imYmxV8CfoFmUrb/MLC9o2guMT8e+M9JnjhP2ccC7wCeBhwGvHrIMofTTCf9szQTYW2f/+WdwDOq6iiaMfDS1Bnw6pMXtj9XA1fRBPn2uUFuqarrqupBmkvJ/7qai0Cuo/nCiu0+XVU/rKq7aS41n28u+yuqmdTtAZppHH5hyDK3VNU17e0rB8q6Fjg3yckMn+1SWjQDXn0S4PernZiuqp5SVWe3z90/sNyDA/cfhJ2u6J575d98VwKOs+xguQ8MlPVS4AzgGODKduZAaaoMeK12W4H929sXAW9J+12jSZ60fQbMCbwyyT7tjJTPpZmdc5Rjkxza9r2/DvjyOAW0yx9cVZcAp9F8UDz0+1GlxfCsQataVX2v/bD0epr5xj8KXNbMiMt9wMk0Z87jugL4C+AQ4Herar75vy+j+ZD3acCXgAvGLGMN8OdJHkPzX8d/d9SNuuBcNFIrybtpZuv7o+WuizQNdtFIUk95Bi/NI8nTgI/Mefj+qnrmctRHmoQBL0k9ZReNJPWUAS9JPWXAS1JPGfCS1FP/HwjjPzMa+kVsAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sp98['temp_bins'] = pd.qcut(sp98['temp_outside'], 5)\n",
+ "temp = sns.barplot(x='temp_bins', y='consume',data=sp98,color=\"orange\")\n",
+ "temp.axhline(y = sp98.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 220,
+ "id": "1cf0c4ab",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAANcklEQVR4nO3df6zddX3H8deLFgZ2dM70arcWvM6QJmwW2e4YhsQxtpC6LZoRwzRB/EHWv7awRNfJH9PIZpZUR8Yfm0mHLTZD1IAsyB9sLK7pfgDbbYFpbclMY7HFa29XlYJLa+G1P85pem97e/tt7/3cc/q+z0dy03PuPed83mnKk28+93u+x0kEAKjnokEPAABog8ADQFEEHgCKIvAAUBSBB4Cilg56gKlWrFiR0dHRQY8BABeMHTt2HEoyMtPPhirwo6OjGh8fH/QYAHDBsL3vTD9jiwYAiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFFD9UYnAPVt2LBBExMTWrlypTZu3DjocUoj8AAW1MTEhA4cODDoMRaFpls0tl9v+yHbe2zvtv2OlusBAE5qfQR/r6THk7zX9iWSXtd4PQBAX7PA214u6Z2SPiRJSY5JOtZqPQDAdC23aH5B0qSkLbafsX2f7WWnPsj2etvjtscnJycbjgMAi0vLwC+V9MuSPpfkWkmvSPr4qQ9KsinJWJKxkZEZL2kMADgPLQO/X9L+JE/37z+kXvABAAugWeCTTEj6ru01/W/9pqRvtVoPADBd67No/kjSA/0zaPZK+nDj9QAAfU0Dn+RZSWMt1wAAzIxr0QBAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIpPdAIWyAt3v23QIwyF44ffIGmpjh/ex9+JpCs/8Y1mr80RPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCK4nLBABbUiktfk3S8/ydaIvAAFtTH1v5w0CMsGk0Db/s7ko5IelXS8SRjLdcDAJy0EEfwv5Hk0AKsAwCYgl+yAkBRrQMfSf9ke4ft9TM9wPZ62+O2xycnJxuPAwCLR+stmhuSvGj7jZKesL0nyfapD0iySdImSRobG0vjeRaFDRs2aGJiQitXrtTGjRsHPQ6AAWka+CQv9v88aPsRSddJ2j77szBXExMTOnDgwKDHADBgzQJve5mki5Ic6d++WdLdsz7p+eelG29sNdKicdeePTp69Kh+atcu/j6HyBv37R30CBhGX7+x2Uu3PIJ/k6RHbJ9Y54tJHm+4HgBgimaBT7JX0jXn9KQ1a6Rt25rMs5j85e2368CBA1q1apW2bt066HHQd/Dutw16BAyhKz+xbW4v0DuInhGnSQJAUaUuVfArf8LRqiRdfuiIlkh64dAR/k4k7fjM7YMeARgIjuABoCgCDwBFEXgAKIrAA0BRBB4Aiip1Fg16Xrtk2bQ/ASxOBL6gV666edAjABgCbNEAQFEEHgCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKKp54G0vsf2M7cdarwUAOGkhjuDvlLR7AdYBAEzRNPC2V0v6HUn3tVwHAHC61kfwfy1pg6TXzvQA2+ttj9sen5ycbDwOACwezQJv+3clHUyyY7bHJdmUZCzJ2MjISKtxAGDRaXkEf4Okd9v+jqQvSbrJ9t83XA8AMEWzwCe5K8nqJKOS3ifp60lua7UeAGA6zoMHgKKWLsQiSbZJ2rYQawEAejiCB4CiOgXe9uts/5ntv+vfv6p/lgwAYEh1PYLfIumopHf07++X9BdNJgIAzIuugX9rko2SfiJJSf5PkptNBQCYs66BP2b7MkmRJNtvVe+IHgAwpLqeRfNJSY9LusL2A+q9ielDrYYCAMxdp8AnecL2TknXq7c1c2eSQ00nAwDMybmcJrlK0hJJl0h6p+1b2owEAJgPnY7gbW+WtFbSLp28MmQkfbXRXACAOeq6B399kqubTgIAmFddt2ietE3gAeAC0vUI/gvqRX5CvdMjLSlJ1jabDAAwJ10Dv1nSByR9Q7N8OhMAYHh0DfwLSR5tOgkAYF51Dfwe21+U9DVNeQdrEs6iAYAh1TXwl6kX9punfI/TJAFgiHV9J+uHWw8CAJhfXd/otEX9C41NleQj8z4RAGBedN2ieWzK7Usl/Z6kF+d/HADAfOm6RfPw1Pu2H5T0z00mAgDMi/P9TNarJF05n4MAAOZX1z34I5q+Bz8h6U+bTAQAmBddt2gubz0IAGB+ddqisX2D7WX927fZvsf2m9uOBgCYi6578J+T9GPb10jaIGmfpK2zPcH2pbb/0/ZztnfZ/tQcZwUAnIOugT+eJJLeI+neJPdKOtu2zVFJNyW5RtLbJa2zff15TwoAOCddz4M/YvsuSbep93F9SyRdPNsT+v9DeLl/9+L+12lvlgIAtNH1CP731TsivyPJhHqfz/qZsz3J9hLbz0o6KOmJJE+f76AAgHPTKfBJJpLck+Rf+/dfSDLrHnz/ca8mebuk1ZKus/1Lpz7G9nrb47bHJycnz3F8AMCZdD2L5hbb/2P7R7Zfsn3E9ktdF0nyQ0nbJK2b4WebkowlGRsZGen6kgCAs+i6RbNR0ruT/EyS5UkuT7J8tifYHrH9+v7tyyT9lqQ9c5oWANBZ11+yfj/J7nN87Z+T9IX+L2QvkvSVJI+d5TkAgHnSNfDjtr8s6R/U8ROdkvy3pGvnNB0A4Lx1DfxyST8Wn+gEABcMPtEJAIrqehbNatuP2D5o+/u2H7a9uvVwAIDz1/Usmi2SHpX08+q9yelr/e8BAIZU18CPJNmS5Hj/635JnLQOAEOsa+AP9S8TvKT/dZuk/205GABgbroG/iOSblXvk5y+J+m9kvjFKwAMsa6nSf65pA8m+YEk2X6DpM+qF34AwBDqegS/9kTcJSnJYfEmJgAYal0Df5Htnz1xp38E3/XoHwAwAF0j/VeS/sP2Q+q9g/VWSZ9uNhUAYM66vpN1q+1xSTdJsqRbknyr6WQAgDnpvM3SDzpRB4ALRNc9eADABYbAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCKIvAAUFSzwNu+wva/2N5te5ftO1utBQA4XcsP7Tgu6aNJdtq+XNIO209wmWEAWBjNjuCTfC/Jzv7tI5J2S1rVaj0AwHQLsgdve1S9z3B9eoafrbc9bnt8cnJyIcYBgEWheeBt/7SkhyX9cZKXTv15kk1JxpKMjYyMtB4HABaNpoG3fbF6cX8gyVdbrgUAmK7lWTSW9HlJu5Pc02odAMDMWh7B3yDpA5Jusv1s/+u3G64HAJii2WmSSf5Nklu9PgBgdryTFQCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgKAIPAEUReAAoisADQFEEHgCKahZ425ttH7T9zVZrAADOrOUR/P2S1jV8fQDALJoFPsl2SYdbvT4AYHYD34O3vd72uO3xycnJQY8DAGUMPPBJNiUZSzI2MjIy6HEAoIyBBx4A0AaBB4CiWp4m+aCkJyWtsb3f9h2t1gIAnG5pqxdO8v5Wrw0AODu2aACgKAIPAEUReAAoisADQFEEHgCKIvAAUBSBB4CiCDwAFEXgAaAoAg8ARRF4ACiKwANAUQQeAIoi8ABQFIEHgKIIPAAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFAUgQeAogg8ABRF4AGgqKaBt73O9vO2v2374y3XAgBM1yzwtpdI+htJ75J0taT327661XoAgOlaHsFfJ+nbSfYmOSbpS5Le03A9AMAUSxu+9ipJ351yf7+kXzv1QbbXS1rfv/uy7ecbzrSYrJB0aNBDDAN/9oODHgGn49/nCZ/0XF/hzWf6QcvAzzR1TvtGsknSpoZzLEq2x5OMDXoOYCb8+1wYLbdo9ku6Ysr91ZJebLgeAGCKloH/L0lX2X6L7UskvU/Sow3XAwBM0WyLJslx238o6R8lLZG0OcmuVuvhNGx7YZjx73MBODltWxwAUADvZAWAogg8ABRF4AviEhEYVrY32z5o+5uDnmUxIPDFcIkIDLn7Ja0b9BCLBYGvh0tEYGgl2S7p8KDnWCwIfD0zXSJi1YBmATBABL6eTpeIAFAfga+HS0QAkETgK+ISEQAkEfhykhyXdOISEbslfYVLRGBY2H5Q0pOS1tjeb/uOQc9UGZcqAICiOIIHgKIIPAAUReABoCgCDwBFEXgAKIrAAx3Zvo8Lt+FCwmmSwBS2rd5/F68NehZgrjiCx6Jne9T2btt/K2mnpM/bHre9y/anpjxum+2x/u2XbX/a9nO2n7L9pkHND5wJgQd61kjamuRaSR9NMiZpraRft712hscvk/RUkmskbZf0Bws3KtANgQd69iV5qn/7Vts7JT0j6RfV++CUUx2T9Fj/9g5Jo80nBM7R0kEPAAyJVyTJ9lskfUzSryb5ge37JV06w+N/kpO/wHpV/LeEIcQRPDDdcvVi/6P+vvq7BjwPcN446gCmSPKc7Wck7ZK0V9K/D3gk4LxxmiQAFMUWDQAUReABoCgCDwBFEXgAKIrAA0BRBB4AiiLwAFDU/wO4cRJ59dm8/wAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "rain = sns.barplot(data=sp98, y=\"consume\", x =\"rain\")\n",
+ "rain.axhline(y=sp98.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 224,
+ "id": "5275b59e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAYrUlEQVR4nO3de5glZX3g8e+PO3IRhA63YRgFRAlBMB1WllVxJEhQdFUSZAMPIO48KhrdNSG4u9EsCSuCImwkbibcvCCS5ZIFRIQgI9EAOsBwHUCFUbm0DFEZEJEM/PaPepuuOZzurp7u6kvx/TzPeU5Vnap6f+c9dX7nrffUJTITSVL3rDPTAUiS2mGCl6SOMsFLUkeZ4CWpo0zwktRR6810AHVbb711LliwYKbDkKQ54+abb34sMwf6vTarEvyCBQtYunTpTIchSXNGRPx4tNfsopGkjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR01q050mmnHH388Q0NDbLvttpxyyikzHY4kTYoJvmZoaIiHHnpopsOQpClhF40kdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6qtUEHxFbRMRFEXFPRCyPiH3bLE+SNKLta9GcAVyVmYdGxAbAS1ouT5JUtJbgI2Jz4A3A0QCZ+QzwTFvlSZLW1GYXzSuAlcC5EXFrRJwVEZu0WJ4kqabNBL8e8FrgC5m5N/Ar4ITemSJiUUQsjYilK1eubDEcSXpxaTPBPwg8mJk3lfGLqBL+GjJzcWYOZubgwMBAi+FI0otLawk+M4eAn0bEbmXSm4G72ypPkrSmto+i+TBwfjmC5n7gmLVZyYqzXz6lQY1m9ap5wAasXvXAtJS54NgHWi9D0otXqwk+M5cBg22WIUnqzzNZJamjTPCS1FEmeEnqKBO8JHWUCV6SOsoEL0kdZYKXpI4ywUtSR5ngJamjTPCS1FEmeEnqKBO8JHWUCV6SOsoEL0kd1fb14OeUrTZZvcazJM1lJviajy0cmukQJGnK2EUjSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooD5OUpLVw/PHHMzQ0xLbbbsspp5wy0+H01WqCj4gVwBPAs8DqzBxsszxJmi5DQ0M89NBDMx3GmKajBf+mzHxsGsqRJNXYBy9JHdV2gk/g6oi4OSIWtVyWJKmm7S6a/TLz4Yj4LeCaiLgnM6+vz1AS/yKA+fPntxyOJL14tNqCz8yHy/OjwKXAPn3mWZyZg5k5ODAw0GY4kvSi0loLPiI2AdbJzCfK8IHAiWMudO+9sP/+L5i87SOPtBHizPvy/jMdgdQ5Tz9y47SUc8K/bsgzz67DBrct5endNmq9vI22e92El2mzi2Yb4NKIGC7nq5l5VYvlSZJqWkvwmXk/8JoJLbTbbrBkyQsmD5398qkJapZZcOySmQ5B6pzpyhd/ffk8fvbEBmyz2TP8r0MebL28UfNF1Yjuy8MkJamjvFSB+poLp2FLGpsJXn3NhdOwJY3NBC+Nw72ZEdbFiK02Wb3G82xkgpfG4d7MCOtixMcWDs10COPyT1ZJ6igTvCR1lF00c8yKaTrGd/WqecAGrF71wLSUueDYB1ovQ3qxsQUvSR1lC15zlnsz0thM8FIH+GOnfuyikaSOMsFLUkeZ4CWpo+yDV19z4TRsSWMzwauvuXAa9nTxx05zlQleGoc/dpqrTPCSGnNvZm4xwUtqzL2ZucWjaCSpo0zwktRRJnhJ6igTvCR1VOsJPiLWjYhbI+KKtsuSJI2Yjhb8R4Dl01COJKmm1QQfEfOAtwJntVmOJOmF2m7Bnw4cDzzXcjmSpB6NEnxEvCQi/iIi/r6M7xoRbxtnmbcBj2bmzePMtygilkbE0pUrVzYOXJI0tqYt+HOB3wD7lvEHgb8eZ5n9gLdHxArga8DCiPhK70yZuTgzBzNzcGBgoGE4kqTxNE3wO2fmKcC/AWTmr4EYa4HM/HhmzsvMBcB7gG9l5hGTCVaS1FzTBP9MRGwMJEBE7EzVopckzVJNLzb2SeAqYMeIOJ+q++XopoVk5hJgyQRjkyRNQqMEn5nXRMQtwOuoumY+kpmPtRqZJGlSJnKY5A7AusAGwBsi4l3thCRJmgqNWvARcQ6wJ3AXI8e0J3BJS3FJkiapaR/86zJz91YjkSRNqaZdNDdEhAlekuaQpi34L1Il+SGqwyMDyMzcs7XIJEmT0jTBnwMcCdyB15WRpDmhaYL/SWZe1mokkqQp1TTB3xMRXwUup3YGa2Z6FI0kzVJNE/zGVIn9wNo0D5OUpFms6Zmsx7QdiCRpajU90elcyoXG6jLzvVMekSRpSjTtoqnfMHsj4J3Aw1MfjiRpqjTtorm4Ph4RFwD/1EpEkqQpsbb3ZN0VmD+VgUiSplbTPvgnWLMPfgj481YikiRNiaZdNJu1HYgkaWo16qKJiP0iYpMyfEREnBYRO7UbmiRpMpr2wX8BeCoiXgMcD/wY+FJrUUmSJq1pgl+dmQm8AzgjM88A7LaRpFms6XHwT0TEx4EjqG7Xty6wfnthSZImq2kL/jCqa9Ecm5lDVPdnPbW1qCRJk9b0KJoh4LTa+E+wD16SZrWmR9G8KyJ+EBGPR8SqiHgiIla1HZwkae017YM/BTgkM5c3XXFEbARcD2xYyrkoMz858RAlSWujaYL/2USSe/EbYGFmPhkR6wPfiYhvZOaNE1yPJGktNE3wSyPiQuAfaXhHp3JY5ZNldP3yeMElhyVJ7Wia4DcHnmKCd3Qqh1PeDOwCnJmZN/WZZxGwCGD+fK9fJklTpdU7OmXms8BeEbEFcGlE7JGZd/bMsxhYDDA4OGgLX5KmSNOjaOZFxKUR8WhE/CwiLo6IeU0LycxfAkuAg9YuTEnSRDU90elc4DJge6qTnC4v00YVEQOl5U5EbAwcANyz1pFKkiakaYIfyMxzM3N1eZwHDIyzzHbAdRFxO/B94JrMvGKcZSRJU6Tpn6yPRcQRwAVl/HDgX8daIDNvB/aeRGySpElo2oJ/L/BHVHdyegQ4FFirP14lSdOjaQv+r4CjMvMXABHxMuAzVIlfkjQLNW3B7zmc3AEy8+fY/SJJs1rTBL9ORGw5PFJa8E1b/5KkGdA0SX8W+JeIuIjqDNY/Ak5qLSpJ0qQ1PZP1SxGxFFgIBPCuzLy71cgkSZPSuJulJHSTuiTNEU374CVJc4wJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4Seqo1hJ8ROwYEddFxPKIuCsiPtJWWZKkF2rzxtmrgY9l5i0RsRlwc0Rc463+JGl6tNaCz8xHMvOWMvwEsBzYoa3yJElrmpY++IhYAOwN3NTntUURsTQilq5cuXI6wpGkF4XWE3xEbApcDHw0M1f1vp6ZizNzMDMHBwYG2g5Hkl40Wk3wEbE+VXI/PzMvabMsSdKa2jyKJoCzgeWZeVpb5UiS+muzBb8fcCSwMCKWlcfBLZYnSapp7TDJzPwOEG2tX5I0Ns9klaSOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjrKBC9JHWWCl6SOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjrKBC9JHWWCl6SOMsFLUkeZ4CWpo0zwktRRJnhJ6igTvCR1lAlekjqqtQQfEedExKMRcWdbZUiSRtdmC/484KAW1y9JGkNrCT4zrwd+3tb6JUljm/E++IhYFBFLI2LpypUrZzocSeqMGU/wmbk4Mwczc3BgYGCmw5GkzpjxBC9JaocJXpI6qs3DJC8AbgB2i4gHI+LYtsqSJL3Qem2tODMPb2vdkqTx2UUjSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdZQJXpI6ygQvSR1lgpekjjLBS1JHmeAlqaNM8JLUUSZ4SeooE7wkdVSrCT4iDoqIeyPihxFxQptlSZLW1FqCj4h1gTOBPwB2Bw6PiN3bKk+StKY2W/D7AD/MzPsz8xnga8A7WixPklQTmdnOiiMOBQ7KzPeV8SOBf5eZH+qZbxGwqIzuBtzbSkDNbQ08NsMxzBbWxQjrYoR1MWI21MVOmTnQ74X1Wiw0+kx7wa9JZi4GFrcYx4RExNLMHJzpOGYD62KEdTHCuhgx2+uizS6aB4Eda+PzgIdbLE+SVNNmgv8+sGtEvDwiNgDeA1zWYnmSpJrWumgyc3VEfAj4JrAucE5m3tVWeVNo1nQXzQLWxQjrYoR1MWJW10Vrf7JKkmaWZ7JKUkeZ4CWpo0zwktRRsyLBR8TGEfHtcnkDIuKqiPhlRFzRM995EfFARCwrj71GWd+nI+LO8jisNn1hRNxSpn8xItYr07eMiEsj4vaI+F5E7NEg5vPLdXbujIhzImL9Mv2lEXF5RNwWEXdFxDHjrOdvIuLJ2vhh5do9V/SZ9/l6ioi9IuKGUsbtPe/zzeV9LouI70TELmOUv3lEPBQRn2/wnt8fEXfU1rt77bX5EXF1RCyPiLsjYkGf5edHxHURcWuJ+eAyfeeyzid7lxkjlnpd7BQRN5d13BUR76/NFxFxUkTcV2L7k1HWd0pZdnlE/O+I6HceR7/lDo2IjIjBMj5qLD3LbRgRF5bP+qbh+ppsXdSmveBzjYizy3Z5e0RcFBGbjrK+oyLiB+VxVIPyj46IlbXv5fDJjaNuo9NVFxHxbC2uy2rz9f3+TkFd7BQR15b3uyQi5k1kXVNZFwBk5ow/gOOAj9TG3wwcAlzRM995wKHjrOutwDVURwhtAiwFNqf6Mfsp8Moy34nAsWX4VOCTZfhVwLUNYj6Y6mSuAC4APlCm/zfg02V4APg5sMEo6xgEvgw82TN9/9733ltPwCuBXcvw9sAjwBZl/D7g1WX4g8B5Y7yPM4CvAp9v8J43rw2/HbiqNr4E+P0yvCnwkj7LL67V0+7Aip7XnxwvhlHqYgNgw1rZK4Dty/gxwJeAdcr4b/VZ178Hvkt1tNe6wA3A/g1i2Ay4HrgRGBwvlp5lPwj8nzL8HuDCqaiLsT7Xns/vNOCEPut6GXB/ed6yDG85TvlH99t+xtpGp6suRluWUb6/U1AX/xc4qgwvBL48kXVNZV1k5uxowQN/DPy/4ZHMvBZ4Yi3XtTvw7cxcnZm/Am4DDgK2An6TmfeV+a4B3l1b5tpS9j3AgojYZqxCMvPKLIDvUZ3IBdXZupuVFuCmVAl+de/ypYVxKnD8BN7b8/WUmfdl5g/K8MPAo1Q/KMMxbF6GX8ooJ5hFxO8C2wBXNyk8M1fVRjcp5VBa8utl5jVlvicz86l+q2gSV0P1ungmM39Tpm/ImnumHwBOzMznyryPjhLXRpTkDKwP/KxBDH8FnAI8/fyKxo6l7h3AF8vwRcCbm+419LHG92e0z3X48yvlbEyfM8uBtwDXZObPM/MXVN+Tg9YmqHG20brW6mKM2Eb7/tatTV08n0uA6xi5/lbTdU1lXcx8go/qJKhXZOaKhoucVHZ/PhcRG/Z5/TbgDyLiJRGxNfAmqjNqHwPWH96VBg5l5Ezb24B3lXj2AXai/wfeL/71gSOBq8qkzwOvpkped1C1Jp7rs+iHgMsy85GG5YxaTyXmDYAflUnvA66MiAdLbCf3WWYd4LPAnzUpv7bccRHxI6rENtzd8UrglxFxSVTdL6fWuwtq/hI4osR1JfDhiZRdi+EFdRERO0bE7VR7aZ8uCQVgZ+CwiFgaEd+IiF1715eZN1B9GR8pj29m5vJxYtgb2DEz+3WljRZL3Q7ldTJzNfA4VSNkQnrrYrzPNSLOBYao9lT/Zqy4igfLtPG8u9b1s2Pvi3220b5lTmVdFBuVz/7GiPiPfZbp/f72jatoUhe3MdJwfCdVY2+rCaxrSupi2IwneKqL9fyy4bwfp9owf49qV+fPe2fIzKupkse/UO163QCsLr/U7wE+FxHfo9pDGG5ZnwxsGRHLqJLOrfRpdY/ib4HrM/Ofy/hbgGVUu6R7AZ+PiM3rC0TE9sAf0v8LNpq+9RQR21F18xxT+yH5L8DBmTkPOJdqd7zXB4ErM/OnfV4bVWaemZk7U9X9/yiT1wNeD/wp1WfzCqrd9l6HU3UXzaPaRf5ySUgT9YK6yMyfZuaewC7AUbU9sA2Bp7O6XsjfA+f0riyq/yheTfWjvgOwMCLeMFrhJebPAR/r9/oYsayxmn6LjlbmGHrrYszPNTOPodo2lwP9+sTXJq7LgQXlPf8TIy3QaoX9t9HJltlPv+/I/PLZ/yfg9IjYuef13u/vZOP6U+CNEXEr8EbgIapc0nRdU1UXZckJ9Oe08aDqj1rRZ/r+9OmHbvp6bb6vUiW73ukHAv/QZ3pQ9Ztu3mDdnwT+kdK/W6Z9HXh9bfxbwD49y72VqhW1ojyeo7q08qjvrV89UXV33AL8YW3aAPCj2vh84O4+sZ8P/KSU/xiwCjh5Ap/bOsDjZfh1wJLaa0cCZ/ZZ5i6qVu/w+P3U+sRp2L842jZTe/1cyn81wD1UyWf4s328z/x/BvxFbfwTwPFjrP+lpc6GP7+nqfbYBseKpWf6N4F9y/B6ZX0x2bpo+rlSJZ9+//McDvxdbfzvgMMnsF2sW6/jftvodNVFn9fPq38W9Pn+TnFdbAo8OJF1TVVdPD//RGZu60G1S7JRz7T9ezdAYLvyHMDpo2y46wJbleE9gTup+oehJBOqVt21wMIyvgXlj1DgPwNfqq3vWmCHPuW8j2ovYeOe6V8A/rIMb0P1C771OO+/6Z+sz9cT1e7utcBHe+YZ3iiG/0w+Frh4nPKPZs0/4z4FvLPPfLvWhg8Bltbq/DZgoIyfCxzXZ/lvAEeX4eFurLXaeHvqYt7w50D1Jb8P+J0yfjLw3lq9fr/Pug6janmuR9X/fi1wyFh10bP8Ekb+ZB01lp5ljmPNP9P+oef1taqL0T5Xqu/MLrXhzwCf6bPMy4AHSuxbluGXjbNdbFcbfidw41jb6HTVRYl/+A/vrYEfALuX8b7f3ymoi60Z+UP/JKr/f8ZcV1t1kTl7EvzZwAG18X8GVgK/puqrekuZ/i2qfu07ga8Am5bpg8BZZXgj4O7yuBHYq7beU6l2Te+tb3TAvuXDvwe4hPLvNlUr9cf9NgKq3a4fUXXHLAM+UaZvT/Xn1nCcR9SWuZL+R1Q0TfDP1xNwBPBvtfKXDb9Xqi/ZHVRJdwlVv+Qa9dSz3qNZM8FfQWlF9Mx3BlUrfBlVn/Vv1177feD2Uu55jPxgngi8vQzvTnW0ym1lHQdO4otcr4vhsm8rz4tq821BtVd1B1V33Wv6bDPrUrWolpft5rTx6qInliWMJPixYqnXxUZUR1z8kOpPvldMRV2M9rlSbcvfrW2X51P2Unu3C+C9Ja4fUnWrjLddfKpsF7eV7eJVDbbR1uuC6uio4e/BHZSj5sb5/k62Lg6lyiX3AWdRfmDGWVcrdZE5exL83pTDiWbTA9iD2pd9Gsvdn/4JflrqiepPxpmo74l8ka0L68K6GOcxG/5kJTNvBa4b5ciLGZOZd2bmf53OMsvJIH8L/KJPPNNST5n5ljbX32v4JA6aHZoIWBd11sUI66JnufKrIEnqmFnRgpckTT0TvCR1lAlekjrKBC81UK4MODjG632v8hcRJ0bEAe1FJo2utXuySoLM/MRMx6AXL1vwmrMiYpOI+HpU1zi/M6pr6a+I6n4A3yuPXcq8AxFxcUR8vzz2q63jnDLt1oh4R5m+cUR8rVxA60Kqqy+OF89no7oO/7URMVCmnRcRh5bhFRHxP8s8d0TEq8r0N8bINctvjYjNWqoyvciY4DWXHQQ8nJmvycw9GLki4KrM3Ifqyp6nl2lnAJ/LzN+jutrfWWX6fwe+Vaa/CTg1IjahuszwU1ldQOsk4HfHiWUT4JbMfC3wbarrnPTzWJnnC1QXpqI8H5eZe1FdtO3XTd68NB4TvOayO4ADSov99Zn5eJl+Qe153zJ8ANWVPZcBlwGbl5bygcAJZfoSqlPF5wNvoLocBpl5O9VlB8byHHBhGf4K8B9Gme+S8nwzsKAMfxc4Laq7TW2R1WVipUmzD15zVmbeF9XNLQ4GPhURwze4qJ+9Nzy8DtW1Q9ZoHUdEAO/OzHt7pveuZ8LhjTJ9+GYgz1K+f5l5ckR8nep93BgRB2R14xlpUmzBa84q19V/KjO/QnV1xNeWlw6rPd9Qhq+musnK8LJ7lcFvAh8uiX74Rh5Q3Yrvj8u0PaiuTDqWdaguNAXVtce/M4H3sXNm3pGZn6a6xeSrmi4rjcUWvOay36HqM3+O6qqFH6C6zdmGEXETVdI9vMz7J8CZ5U5L61El8PdT3XbvdOD2kuRXAG+j6iM/t8y/jOrKfmP5FfDbEXEz1V14+t5gehQfjYg3UbXq76a6rLI0aV6LRp0SESuoLt372EzHIs00u2gkqaNswUsTULp+em/2fmRm3jET8UhjMcFLUkfZRSNJHWWCl6SOMsFLUkeZ4CWpo/4/CKKPxxBgCvUAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sp98['speed_bins'] = pd.qcut(sp98['speed'], 5)\n",
+ "speed = sns.barplot(x='speed_bins', y='consume',data=sp98, color=\"orange\")\n",
+ "speed.axhline(y=sp98.consume.mean(), c=\"red\", label=\"mean\");"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "85b3b89a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c26695b8",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "412ed922",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d7bbb125",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "21d14b52",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f6bec4a2",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "04861611",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "989e1e39",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "82ef7544",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d42faf4a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f41bf684",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b0a75376",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "500d8f35",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0f45cf0c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2a32f8a9",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "68415019",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "066dc6ef",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "986aad20",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "02b15eca",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2bd3c963",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6ef550c0",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7e0b1d35",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2b28f4ba",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "909e680b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "84905456",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "fa638212",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3246e422",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "faf5df41",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6f2c3605",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a6dac03b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a2b924b2",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "84ea053b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8e5d2897",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0d038256",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "22a5944f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "bf41f88a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "dcab6538",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a1de78fd",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "631b85dc",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c8cbe705",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7c5ec95a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5a5fe2fe",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "92d4fe5a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "49462e23",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [conda env:ironhack] *",
+ "language": "python",
+ "name": "conda-env-ironhack-py"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}