diff --git a/02_newton.md b/02_newton.md index 4b01352..e60d877 100644 --- a/02_newton.md +++ b/02_newton.md @@ -12,11 +12,27 @@ Iterative techniques for solving $f(x) = 0$ for $x$. *Bisection*: start with an interval $[a, b]$ bracketing the root. Evaluate the midpoint. Replace one end, maintaining a root bracket. -Linear convergence. Slow but **robust**. +Linear convergence. Slow but **robust**. Error bound is defined by +$|x_{n}-{x}^*|<(b-a)/{2}^n$. + +*Fixed-point iteration*: A number $p$ is a **fixed point** for a given +function g if $g(p)=p$. so given a root-finding problem $f(p)=0$,we can +define function $g$ with a fixed point at $p$ in a number of ways, for +example, as $g(x)=x-f(x)$ or as $g(x)=x+3f(x)$. Conversey, if the function +$g$ has a fixed point at $p$, then the function defined by $f(x)=x-g(x)$ +has a zero at $p$. *Newton's Method*: $x_{k+1} = x_k - f(x_k) / f'(x_k)$. Faster, quadratic convergence (number of correct decimals places doubles each -iteration). +iteration).when $|p_{n}-p_{n-1}|