From 286639d2017d518a56be1292f09777f167d58489 Mon Sep 17 00:00:00 2001 From: UBCgradate Date: Sun, 27 Sep 2015 15:37:53 -0700 Subject: [PATCH] Update 02_newton.md I introduced the fixed-point iteration method and secant method. I also added the error bound in bisection and judgement of stopping iterations in Newton's --- 02_newton.md | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) diff --git a/02_newton.md b/02_newton.md index 4b01352..e60d877 100644 --- a/02_newton.md +++ b/02_newton.md @@ -12,11 +12,27 @@ Iterative techniques for solving $f(x) = 0$ for $x$. *Bisection*: start with an interval $[a, b]$ bracketing the root. Evaluate the midpoint. Replace one end, maintaining a root bracket. -Linear convergence. Slow but **robust**. +Linear convergence. Slow but **robust**. Error bound is defined by +$|x_{n}-{x}^*|<(b-a)/{2}^n$. + +*Fixed-point iteration*: A number $p$ is a **fixed point** for a given +function g if $g(p)=p$. so given a root-finding problem $f(p)=0$,we can +define function $g$ with a fixed point at $p$ in a number of ways, for +example, as $g(x)=x-f(x)$ or as $g(x)=x+3f(x)$. Conversey, if the function +$g$ has a fixed point at $p$, then the function defined by $f(x)=x-g(x)$ +has a zero at $p$. *Newton's Method*: $x_{k+1} = x_k - f(x_k) / f'(x_k)$. Faster, quadratic convergence (number of correct decimals places doubles each -iteration). +iteration).when $|p_{n}-p_{n-1}|