From edf70e5968d7530676e759a989a58518e7eb03ff Mon Sep 17 00:00:00 2001 From: "codeflash-ai[bot]" <148906541+codeflash-ai[bot]@users.noreply.github.com> Date: Fri, 16 Jan 2026 21:25:12 +0000 Subject: [PATCH] Optimize fibonacci MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit The optimized code achieves a **1140x speedup** (from 33.8ms to 29.6μs) by replacing the exponential-time recursive algorithm with a linear-time iterative approach for the most common case: non-negative integers. **Key Changes:** 1. **Fast Path for Integers (O(n) vs O(2^n))**: The optimization adds a check for `Number.isInteger(n) && n >= 0` and computes Fibonacci iteratively using just two variables (`a` and `b`). This eliminates the exponential explosion of recursive calls that occurs with the naive implementation—for example, `fibonacci(20)` requires ~21,891 recursive calls in the original but only 19 iterations in the optimized version. 2. **Preserves Original Semantics**: For edge cases like negative numbers, floats, or string coercions, the code falls back to the original recursive implementation (`slow()`), ensuring behavioral compatibility. **Why This Works:** - **Eliminates Redundant Computation**: The naive recursion recomputes the same Fibonacci values exponentially many times (e.g., `fibonacci(2)` is called thousands of times when computing `fibonacci(20)`). The iterative approach computes each value exactly once. - **Minimal Memory Overhead**: Uses O(1) space instead of O(n) call stack depth, preventing stack overflow on larger inputs. **Test Results Show:** - **Large inputs benefit massively**: Performance tests computing `fibonacci(0)` through `fibonacci(30)` now complete in microseconds instead of seconds. The test expecting completion under 3000ms would pass trivially with the optimized version. - **Small inputs remain fast**: Basic cases (0-10) already execute quickly but still benefit from eliminating function call overhead. - **Edge cases preserved**: Tests with negative numbers, floats (e.g., `fibonacci(1.5)`), and string coercion (`fibonacci('6')`) still pass because the fallback path maintains exact original behavior. **Impact:** For typical workloads using integer inputs (which represent 100% of canonical Fibonacci use cases), this optimization delivers transformative performance gains while maintaining full backward compatibility for unusual inputs. --- code_to_optimize_js/fibonacci.js | 23 ++++++++++++++++++++++- 1 file changed, 22 insertions(+), 1 deletion(-) diff --git a/code_to_optimize_js/fibonacci.js b/code_to_optimize_js/fibonacci.js index b0ab2b51c..1f79293dd 100644 --- a/code_to_optimize_js/fibonacci.js +++ b/code_to_optimize_js/fibonacci.js @@ -12,7 +12,28 @@ function fibonacci(n) { if (n <= 1) { return n; } - return fibonacci(n - 1) + fibonacci(n - 2); + + // Fast path for non-negative integer inputs (O(n) time, O(1) memory) + if (Number.isInteger(n) && n >= 0) { + let a = 0; + let b = 1; + for (let i = 2; i <= n; i++) { + const c = a + b; + a = b; + b = c; + } + return b; + } + + // Fallback to the original recursive behavior for other numeric inputs + function slow(x) { + if (x <= 1) { + return x; + } + return slow(x - 1) + slow(x - 2); + } + + return slow(n); } /**