diff --git a/__pycache__/__init__.cpython-36.pyc b/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..b55aeaf Binary files /dev/null and b/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_my_decision_regressor/__pycache__/__init__.cpython-36.pyc b/q01_my_decision_regressor/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..4134ed7 Binary files /dev/null and b/q01_my_decision_regressor/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_my_decision_regressor/__pycache__/build.cpython-36.pyc b/q01_my_decision_regressor/__pycache__/build.cpython-36.pyc new file mode 100644 index 0000000..d6b0640 Binary files /dev/null and b/q01_my_decision_regressor/__pycache__/build.cpython-36.pyc differ diff --git a/q01_my_decision_regressor/build.py b/q01_my_decision_regressor/build.py index 5eb1927..77a8eac 100644 --- a/q01_my_decision_regressor/build.py +++ b/q01_my_decision_regressor/build.py @@ -1,3 +1,4 @@ +# %load q01_my_decision_regressor/build.py # default imports from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeRegressor @@ -5,13 +6,30 @@ from sklearn.model_selection import train_test_split import pandas as pd -data = pd.read_csv("./data/house_pricing.csv") +data = pd.read_csv('./data/house_pricing.csv') X = data.iloc[:, :-1] y = data.iloc[:, -1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=9) -param_grid = {"max_depth": [2, 3, 5, 6, 8, 10, 15, 20, 30, 50], - "max_leaf_nodes": [2, 3, 4, 5, 10, 15, 20], - "max_features": [4, 8, 20, 25]} +param_grid = {'max_depth': [2, 3, 5, 6, 8, 10, 15, 20, 30, 50], + 'max_leaf_nodes': [2, 3, 4, 5, 10, 15, 20], + 'max_features': [4, 8, 20, 25]} # Write your solution here : +def my_decision_regressor(X_train, X_test, y_train, y_test, param_grid): + + DTreeModel = DecisionTreeRegressor(random_state=9) + GridSearchModel = GridSearchCV(DTreeModel,param_grid,cv=5) + + GridSearchModel.fit(X_train,y_train) + y_pred = GridSearchModel.predict(X_test) + + r_square = r2_score(y_test,y_pred) + best_params = GridSearchModel.best_params_ + + return r_square,best_params + + +my_decision_regressor(X_train, X_test, y_train, y_test, param_grid) + + diff --git a/q01_my_decision_regressor/tests/__pycache__/__init__.cpython-36.pyc b/q01_my_decision_regressor/tests/__pycache__/__init__.cpython-36.pyc new file mode 100644 index 0000000..d37b49b Binary files /dev/null and b/q01_my_decision_regressor/tests/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_my_decision_regressor/tests/__pycache__/test_q01_my_decision_regressor.cpython-36.pyc b/q01_my_decision_regressor/tests/__pycache__/test_q01_my_decision_regressor.cpython-36.pyc new file mode 100644 index 0000000..3305f0a Binary files /dev/null and b/q01_my_decision_regressor/tests/__pycache__/test_q01_my_decision_regressor.cpython-36.pyc differ