diff --git a/q01_plot/build.py b/q01_plot/build.py index 0425964..631427a 100644 --- a/q01_plot/build.py +++ b/q01_plot/build.py @@ -1,8 +1,28 @@ +# %load q01_plot/build.py +# Default imports import matplotlib.pyplot as plt import seaborn as sns import pandas as pd data = pd.read_csv('data/house_prices_multivariate.csv') -plt.switch_backend('agg') -# Write your code here : +# Write your code here: +def plot(num_cols): + +# Using Seaborn to plot hist of the individual columns in a loop + for i in range(0,len(num_cols), 2): + if len(cols) > i+1: + plt.figure(figsize=(10,4)) + plt.subplot(121) + sns.distplot(data[num_cols[i]], kde=False) + plt.subplot(122) + sns.distplot(data[num_cols[i+1]], kde=False) + plt.tight_layout() + plt.show() + else: + sns.distplot(data[num_cols[i]], kde=False) + + return None + + + diff --git a/q02_plot/build.py b/q02_plot/build.py index 67b4924..bb34426 100644 --- a/q02_plot/build.py +++ b/q02_plot/build.py @@ -1,11 +1,26 @@ +# %load q02_plot/build.py # Default imports import pandas as pd import matplotlib.pyplot as plt import seaborn as sns data = pd.read_csv('data/house_prices_multivariate.csv') -plt.switch_backend('agg') # Write your code here: +def plot(num_cols): + for i in range(0,len(num_cols), 2): + if len(num_cols) > i+1: + plt.figure(figsize=(10,4)) + plt.subplot(121) + sns.boxplot(data[num_cols[i]]) + plt.subplot(122) + sns.boxplot(data[num_cols[i+1]]) + plt.tight_layout() + # plt.show() + else: + sns.boxtplot(data[num_cols[i]]) + return None + + diff --git a/q03_regression_plot/build.py b/q03_regression_plot/build.py index 2aaf8f6..a077e88 100644 --- a/q03_regression_plot/build.py +++ b/q03_regression_plot/build.py @@ -1,3 +1,4 @@ +# %load q03_regression_plot/build.py # Default imports import pandas as pd @@ -6,11 +7,15 @@ data = pd.read_csv('data/house_prices_multivariate.csv') + plt.switch_backend('agg') -# Write your code here +def regression_plot(a,b): + sns.lmplot(a, b, data = data, fit_reg=True) + +regression_plot('GrLivArea','SalePrice') diff --git a/q04_cor/build.py b/q04_cor/build.py index f3fae50..d948a8b 100644 --- a/q04_cor/build.py +++ b/q04_cor/build.py @@ -1,10 +1,17 @@ +# %load q04_cor/build.py # Default imports import pandas as pd import matplotlib.pyplot as plt import seaborn as sns data = pd.read_csv('data/house_prices_multivariate.csv') -plt.switch_backend('agg') # Write your code here +def cor(data): + sns.heatmap(data.corr(), cmap='viridis') + return None + + + +