Skip to content

Commit 44e137a

Browse files
committed
loco
1 parent 91925a1 commit 44e137a

File tree

2 files changed

+51
-1
lines changed

2 files changed

+51
-1
lines changed

notes/Master.bib

Lines changed: 19 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,18 @@
1+
12
@article{chen2025identification,
23
title={Identification and Debiased Learning of Causal Effects with General Instrumental Variables},
34
author={Chen, Shuyuan and Zhang, Peng and Cui, Yifan},
45
journal={arXiv preprint arXiv:2510.20404},
56
year={2025}
67
}
8+
9+
@article{wang2024multi,
10+
title={Multi-source stable variable importance measure via adversarial machine learning},
11+
author={Wang, Zitao and Si, Nian and Guo, Zijian and Liu, Molei},
12+
journal={arXiv preprint arXiv:2409.07380},
13+
year={2024}
14+
}
15+
716
@article{barber2015controlling,
817
title = {Controlling the false discovery rate via knockoffs},
918
author = {Barber, Rina Foygel and Cand{\`e}s, Emmanuel J},
@@ -27244,7 +27253,16 @@ @article{hoeffding1948class
2724427253
year = {1948},
2724527254
publisher = {Institute of Mathematical Statistics}
2724627255
}
27247-
27256+
@article{lei2018distribution,
27257+
title={Distribution-free predictive inference for regression},
27258+
author={Lei, Jing and G’Sell, Max and Rinaldo, Alessandro and Tibshirani, Ryan J and Wasserman, Larry},
27259+
journal={Journal of the American Statistical Association},
27260+
volume={113},
27261+
number={523},
27262+
pages={1094--1111},
27263+
year={2018},
27264+
publisher={Taylor \& Francis}
27265+
}
2724827266
@article{lei2014distribution,
2724927267
title = {Distribution-free prediction bands for non-parametric regression},
2725027268
author = {Lei, Jing and Wasserman, Larry},

notes/main.typ

Lines changed: 32 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -314,7 +314,21 @@ S8 in @graham2024towards
314314
==== Nuisance tangent space
315315

316316

317+
== Neyman orthogonality
317318

319+
@wang2024multi used a little different neyman orthogonality. Their problem can be summarized by following:
320+
321+
When the model is $X ~ PP_( theta, overline(eta))$ where $overline(eta)$ is the (nuisance) parameter and $theta$ is the finite dimensional parameter of interest and $ theta = R( overline(eta) ) = limits("max")_(eta) R( eta )$ where $ R(eta) = EE_(X)L(X;eta)$ and $L$ is a loss function.
322+
323+
$ theta = EE_(X) L(X; overline(eta) ) = limits("max")_(eta) EE_(X) L(X; eta) $
324+
325+
Then $ psi (X;eta) := L(X;eta)$ naturally satisfies that the Gâteaux derivative of $eta$ is always zero in $overline(eta)$:
326+
327+
$ & frac(partial EE_(X) [psi (X; eta_0 + t(eta - eta_0))] , partial t) |_(t = 0) =0, forall eta. \ $
328+
329+
The parameterization need to check, if in above setting, $theta$ is totally determined by $overline(eta)$.
330+
331+
Their paper mentioned the indenfication of $theta$, need to check.
318332

319333
=== Higher order influence function
320334

@@ -374,4 +388,22 @@ Their another work is consider the inference after variable selection, using the
374388
)
375389

376390
e-valuede 的#link("https://sas.uwaterloo.ca/~wang/")[王若度](U of Waterloo, Chair profess) 曾经是星际争霸职业选手。
391+
392+
393+
= Machine Learning
394+
395+
== Why named black box model?
396+
397+
#link("https://slds-lmu.github.io/iml_methods_limitations/introduction.html")[Introduction of #emph("Limitations of ML Interpretability")] give a good review to ML Interpretability. Black box model is because the model is based algorithm not as generalized linear model have a simple representation. As @breiman2001statistical saying, two cultures of modeling.
398+
399+
== Varibale importance
400+
401+
=== Leave-One-Covariate-Out(LOCO)
402+
403+
@lei2018distribution give a measure named loco:
404+
$ I_x = l( y, f(x,z) ) - l( y, f(z) ) $
405+
to measure the importance of variable $x$ by comparing the loss when including $x$ versus excluding $x$.
406+
407+
@wang2024multi proposed an extension of LOCO under multiple source data and using semiparametric theory to provide the inference of their measure.
408+
377409
#bibliography("Master.bib")

0 commit comments

Comments
 (0)