Skip to content

Commit f363c1c

Browse files
committed
Merge branch 'main' of github.com:cxy0714/cxy0714.github.io
2 parents 7031757 + 6879626 commit f363c1c

File tree

3 files changed

+58
-9
lines changed

3 files changed

+58
-9
lines changed

notes/Master.bib

Lines changed: 26 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,23 @@
11
@article{wang2025causal,
2-
title={Causal Inference: A Tale of Three Frameworks},
3-
author={Wang, Linbo and Richardson, Thomas and Robins, James},
4-
journal={arXiv preprint arXiv:2511.21516},
5-
year={2025}
2+
title = {Causal Inference: A Tale of Three Frameworks},
3+
author = {Wang, Linbo and Richardson, Thomas and Robins, James},
4+
journal = {arXiv preprint arXiv:2511.21516},
5+
year = {2025}
66
}
77
@article{chen2025identification,
8-
title={Identification and Debiased Learning of Causal Effects with General Instrumental Variables},
9-
author={Chen, Shuyuan and Zhang, Peng and Cui, Yifan},
10-
journal={arXiv preprint arXiv:2510.20404},
11-
year={2025}
8+
title = {Identification and Debiased Learning of Causal Effects with General Instrumental Variables},
9+
author = {Chen, Shuyuan and Zhang, Peng and Cui, Yifan},
10+
journal = {arXiv preprint arXiv:2510.20404},
11+
year = {2025}
1212
}
13+
14+
@article{wang2024multi,
15+
title = {Multi-source stable variable importance measure via adversarial machine learning},
16+
author = {Wang, Zitao and Si, Nian and Guo, Zijian and Liu, Molei},
17+
journal = {arXiv preprint arXiv:2409.07380},
18+
year = {2024}
19+
}
20+
1321
@article{barber2015controlling,
1422
title = {Controlling the false discovery rate via knockoffs},
1523
author = {Barber, Rina Foygel and Cand{\`e}s, Emmanuel J},
@@ -27250,7 +27258,16 @@ @article{hoeffding1948class
2725027258
year = {1948},
2725127259
publisher = {Institute of Mathematical Statistics}
2725227260
}
27253-
27261+
@article{lei2018distribution,
27262+
title = {Distribution-free predictive inference for regression},
27263+
author = {Lei, Jing and G’Sell, Max and Rinaldo, Alessandro and Tibshirani, Ryan J and Wasserman, Larry},
27264+
journal = {Journal of the American Statistical Association},
27265+
volume = {113},
27266+
number = {523},
27267+
pages = {1094--1111},
27268+
year = {2018},
27269+
publisher = {Taylor \& Francis}
27270+
}
2725427271
@article{lei2014distribution,
2725527272
title = {Distribution-free prediction bands for non-parametric regression},
2725627273
author = {Lei, Jing and Wasserman, Larry},

notes/main.typ

Lines changed: 32 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -328,7 +328,21 @@ S8 in @graham2024towards
328328
==== Nuisance tangent space
329329

330330

331+
== Neyman orthogonality
331332

333+
@wang2024multi used a little different neyman orthogonality. Their problem can be summarized by following:
334+
335+
When the model is $X ~ PP_( theta, overline(eta))$ where $overline(eta)$ is the (nuisance) parameter and $theta$ is the finite dimensional parameter of interest and $ theta = R( overline(eta) ) = limits("max")_(eta) R( eta )$ where $ R(eta) = EE_(X)L(X;eta)$ and $L$ is a loss function.
336+
337+
$ theta = EE_(X) L(X; overline(eta) ) = limits("max")_(eta) EE_(X) L(X; eta) $
338+
339+
Then $ psi (X;eta) := L(X;eta)$ naturally satisfies that the Gâteaux derivative of $eta$ is always zero in $overline(eta)$:
340+
341+
$ & frac(partial EE_(X) [psi (X; eta_0 + t(eta - eta_0))] , partial t) |_(t = 0) =0, forall eta. \ $
342+
343+
The parameterization need to check, if in above setting, $theta$ is totally determined by $overline(eta)$.
344+
345+
Their paper mentioned the indenfication of $theta$, need to check.
332346

333347
=== Higher order influence function
334348

@@ -388,4 +402,22 @@ Their another work is consider the inference after variable selection, using the
388402
)
389403

390404
e-valuede 的#link("https://sas.uwaterloo.ca/~wang/")[王若度](U of Waterloo, Chair profess) 曾经是星际争霸职业选手。
405+
406+
407+
= Machine Learning
408+
409+
== Why named black box model?
410+
411+
#link("https://slds-lmu.github.io/iml_methods_limitations/introduction.html")[Introduction of #emph("Limitations of ML Interpretability")] give a good review to ML Interpretability. Black box model is because the model is based algorithm not as generalized linear model have a simple representation. As @breiman2001statistical saying, two cultures of modeling.
412+
413+
== Varibale importance
414+
415+
=== Leave-One-Covariate-Out(LOCO)
416+
417+
@lei2018distribution give a measure named loco:
418+
$ I_x = l( y, f(x,z) ) - l( y, f(z) ) $
419+
to measure the importance of variable $x$ by comparing the loss when including $x$ versus excluding $x$.
420+
421+
@wang2024multi proposed an extension of LOCO under multiple source data and using semiparametric theory to provide the inference of their measure.
422+
391423
#bibliography("Master.bib")

static/notes/notes.pdf

269 KB
Binary file not shown.

0 commit comments

Comments
 (0)