Skip to content

How can I use other algorithms (e.g., UMAP, PHATE) to do the dimensional reduction?  #73

@zyll123

Description

@zyll123

Hi! I am wondering which variable represent the distance matrix that can be used in other dimensional reduction algorithms? I checked the codes and tried to use the affinity matrix (kernel), but it dosen't seem to be right.

calculation of kernel:

data=np.reshape(st_data.obsm['COVET_SQRT'], [st_data.obsm['COVET_SQRT'].shape[0], -1])
k=30
nbrs = sklearn.neighbors.NearestNeighbors(n_neighbors=int(k), metric='euclidean', n_jobs=5).fit(data)
kNN = nbrs.kneighbors_graph(data, mode='distance')
# Adaptive k 
adaptive_k = int(np.floor(k / 3))
nbrs = sklearn.neighbors.NearestNeighbors(n_neighbors=int(adaptive_k),
                        metric='euclidean', n_jobs=5).fit(data)
adaptive_std = nbrs.kneighbors_graph(data, mode='distance').max(axis=1)
adaptive_std = np.ravel(adaptive_std.todense())
# Kernel
x, y, dists = scipy.sparse.find(kNN)
# X, y specific stds 
dists = dists / adaptive_std[x]
N = data.shape[0]
W = scipy.sparse.csr_matrix((np.exp(-dists), (x, y)), shape=[N, N])
# Diffusion components
kernel = W + W.T 

calculation of UMAP

st_data.obsp['ME_D_mat'] =kernel
# number of neighbors is set to construct ME graph
n_neighbors=200
sc.pp.neighbors(st_data, n_neighbors=n_neighbors)
kernel = kernel.toarray()

knn_indices, knn_dists, forest = sc.neighbors.compute_neighbors_umap(kernel, n_neighbors=n_neighbors, metric='precomputed' )
st_data.obsp['distances'], st_data.obsp['connectivities'] = sc.neighbors._compute_connectivities_umap(
    knn_indices,
    knn_dists,
    st_data.shape[0],
    n_neighbors, # change to neighbors you plan to use
)
# set the ME graph's associated information (connectivity matrix, distance matrix) to neighbors_COVET
st_data.uns['neighbors_COVET'] = st_data.uns['neighbors'].copy()
sc.tl.umap(st_data,neighbors_key='neighbors_COVET')
st_data.obsm['X_umap_COVET'] = st_data.obsm['X_umap']
sc.tl.leiden(st_data,neighbors_key='neighbors_COVET',key_added='leiden_COVET')
sc.pl.embedding(st_data,basis='X_umap_COVET',color='leiden_COVET')

the result UAMP graph is very different from the FDL algorithm.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions