-
Notifications
You must be signed in to change notification settings - Fork 121
Description
Dear Spyros Gidaris, Praveer Singh and Nikos Komodakis,
i have read your paper "Unsupervised Representation Learning by Predicting Image Rotations" and was impressed by your work and the astonishing results receive by pretraining a "RotNet" on the rotation task and later train classifiers on top of the feature maps.
I have downloaded your code from GitHub and tried to reproduce the values in Table 1 for a RotNet with 4 conv. blocks. However, running "run_cifar10_based_unsupervised_experiments.sh" and altering line 33 and for 'conv1' also line 31 in the config file "CIFAR10_MultLayerClassifier_on_RotNet_NIN4blocks_Conv2_feats.py", i obtain slightly lower values than in the paper especially for the fourth block:
Rotation Task: 93,65 (Running your Code) / ---
ConvBlock1: 84,65 (Running your Code) / 85,07 (Paper)
ConvBlock2: 88,89 (Running your Code) / 89,06 (Paper)
ConvBlock3: 85,88 (Running your Code) / 86,21 (Paper)
ConvBlock4: 54,04 (Running your Code) / 61,73 (Paper)
Are there further things I need to consider before running the code to achieve the results in the paper? I have used a GeForce GPX 1070 to run the experiment.