Skip to content

Support complex-valued kernels #78

@kevinsung

Description

@kevinsung

Is your feature request related to a problem? Please describe.
The documentation says that the correlation kernel can be a complex Hermitian matrix with eigenvalues between 0 and 1. However, if you pass such a complex-valued matrix, it complains that the array is not symmetric:

import numpy as np
from dppy.finite_dpps import FiniteDPP

rng = np.random.default_rng(12345)
dim = 5
mat = rng.standard_normal((dim, dim)) + 1j * rng.standard_normal((dim, dim))
mat @= mat.T.conj()
mat /= np.trace(mat)
assert np.allclose(mat, mat.T.conj())
eigs, vecs = np.linalg.eigh(mat)
assert all(0 <= e <= 1 for e in eigs)
dpp = FiniteDPP("correlation", K=mat)
Traceback (most recent call last):
  File "/home/kjs/projects/ffsim/scratch/repro.py", line 12, in <module>
    dpp = FiniteDPP("correlation", K=mat)
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/kjs/.pyenv/versions/ffsim/lib/python3.12/site-packages/dppy/finite_dpps.py", line 121, in __init__
    self.K = is_symmetric(params.get('K', None))
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/kjs/.pyenv/versions/ffsim/lib/python3.12/site-packages/dppy/utils.py", line 133, in is_symmetric
    raise ValueError('array not symmetric: M.T != M')
ValueError: array not symmetric: M.T != M

The same issue exists for the likelihood kernel,

dpp = FiniteDPP("likelihood", L=mat)

Describe the solution you'd like
Complex-valued kernels should be supported.

Describe alternatives you've considered
N/A

Additional context
Complex-valued kernels arise when using DPPs to sample from fermionic systems.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions