-
Notifications
You must be signed in to change notification settings - Fork 4
Open
Description
Question:
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
Solution:
class Solution {
public:
vector<vector<int>>finalresult;
vector<int>result;
void helper(vector<int>&can, int tar, vector<int>&re, vector<vector<int>>&fin, int begin)
{ if( tar == 0){
fin.push_back(re);
return;
}
for ( int i = begin; ( i <= can.size() - 1 )&&( tar >= can[i]); ++i){
if( i == begin || can[i] != can[i - 1]){
re.push_back(can[i]);
helper(can, tar - can[i], re, fin , i + 1);
re.pop_back();
}
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
helper(candidates, target, result, finalresult, 0);
return finalresult;
}
};Note: **if( i == begin || can[i] != can[i - 1])**is very important.