Skip to content

AFLW20003dEvaluation.ipynb ERROR #2

@Chen94yue

Description

@Chen94yue

When I try to run AFLW20003dEvaluation.ipynb, I got this error in cell[23] with the checkpoint file download from google drive, my code is:

modelfile = '/home/Projects/neuralnet-tracker-traincode-master/repro300wlp4.ckpt'
net = trackertraincode.neuralnets.models.load_model(modelfile)
inputsize = net.input_resolution
net.cuda()
net.eval()
---------------------------------------------------------------------------
InvalidFileFormatError                    Traceback (most recent call last)
File ~/Projects/neuralnet-tracker-traincode-master/trackertraincode/neuralnets/models.py:384, in load_model(filename)
    [383](https://vscode-remote+ssh-002dremote-002b7b22686f73744e616d65223a224445563a4147585f6a706b5f6465766c6f70227d.vscode-resource.vscode-cdn.net/home/jd/Projects/neuralnet-tracker-traincode-master/scripts/~/Projects/neuralnet-tracker-traincode-master/trackertraincode/neuralnets/models.py:383) try:
--> [384](https://vscode-remote+ssh-002dremote-002b7b22686f73744e616d65223a224445563a4147585f6a706b5f6465766c6f70227d.vscode-resource.vscode-cdn.net/home/jd/Projects/neuralnet-tracker-traincode-master/scripts/~/Projects/neuralnet-tracker-traincode-master/trackertraincode/neuralnets/models.py:384)     return trackertraincode.neuralnets.io.load_model(filename, [NetworkWithPointHead])
    [385](https://vscode-remote+ssh-002dremote-002b7b22686f73744e616d65223a224445563a4147585f6a706b5f6465766c6f70227d.vscode-resource.vscode-cdn.net/home/jd/Projects/neuralnet-tracker-traincode-master/scripts/~/Projects/neuralnet-tracker-traincode-master/trackertraincode/neuralnets/models.py:385) except trackertraincode.neuralnets.io.InvalidFileFormatError as e:

File ~/Projects/neuralnet-tracker-traincode-master/trackertraincode/neuralnets/io.py:43, in load_model(filename, class_candidates)
     [42](https://vscode-remote+ssh-002dremote-002b7b22686f73744e616d65223a224445563a4147585f6a706b5f6465766c6f70227d.vscode-resource.vscode-cdn.net/home/jd/Projects/neuralnet-tracker-traincode-master/scripts/~/Projects/neuralnet-tracker-traincode-master/trackertraincode/neuralnets/io.py:42) if not all(x in contents for x in ['state_dict','class_name','config']):
---> [43](https://vscode-remote+ssh-002dremote-002b7b22686f73744e616d65223a224445563a4147585f6a706b5f6465766c6f70227d.vscode-resource.vscode-cdn.net/home/jd/Projects/neuralnet-tracker-traincode-master/scripts/~/Projects/neuralnet-tracker-traincode-master/trackertraincode/neuralnets/io.py:43)     raise InvalidFileFormatError(f'Bad dict contents. Got {list(contents.keys())}')
     [44](https://vscode-remote+ssh-002dremote-002b7b22686f73744e616d65223a224445563a4147585f6a706b5f6465766c6f70227d.vscode-resource.vscode-cdn.net/home/jd/Projects/neuralnet-tracker-traincode-master/scripts/~/Projects/neuralnet-tracker-traincode-master/trackertraincode/neuralnets/io.py:44) class_name = contents['class_name']

InvalidFileFormatError: Bad dict contents. Got ['convnet.conv1.weight', 'convnet.bn1.weight', 'convnet.bn1.bias', 'convnet.bn1.running_mean', 'convnet.bn1.running_var', 'convnet.bn1.num_batches_tracked', 'convnet.dw2_1.conv_dw.weight', 'convnet.dw2_1.bn_dw.weight', 'convnet.dw2_1.bn_dw.bias', 'convnet.dw2_1.bn_dw.running_mean', 'convnet.dw2_1.bn_dw.running_var', 'convnet.dw2_1.bn_dw.num_batches_tracked', 'convnet.dw2_1.conv_sep.weight', 'convnet.dw2_1.bn_sep.weight', 'convnet.dw2_1.bn_sep.bias', 'convnet.dw2_1.bn_sep.running_mean', 'convnet.dw2_1.bn_sep.running_var', 'convnet.dw2_1.bn_sep.num_batches_tracked', 'convnet.dw2_2.conv_dw.weight', 'convnet.dw2_2.bn_dw.weight', 'convnet.dw2_2.bn_dw.bias', 'convnet.dw2_2.bn_dw.running_mean', 'convnet.dw2_2.bn_dw.running_var', 'convnet.dw2_2.bn_dw.num_batches_tracked', 'convnet.dw2_2.conv_sep.weight', 'convnet.dw2_2.bn_sep.weight', 'convnet.dw2_2.bn_sep.bias', 'convnet.dw2_2.bn_sep.running_mean', 'convnet.dw2_2.bn_sep.running_var', 'convnet.dw2_2.bn_sep.num_batches_tracked', 'convnet.dw3_1.conv_dw.weight', 'convnet.dw3_1.bn_dw.weight', 'convnet.dw3_1.bn_dw.bias', 'convnet.dw3_1.bn_dw.running_mean', 'convnet.dw3_1.bn_dw.running_var', 'convnet.dw3_1.bn_dw.num_batches_tracked', 'convnet.dw3_1.conv_sep.weight', 'convnet.dw3_1.bn_sep.weight', 'convnet.dw3_1.bn_sep.bias', 'convnet.dw3_1.bn_sep.running_mean', 'convnet.dw3_1.bn_sep.running_var', 'convnet.dw3_1.bn_sep.num_batches_tracked', 'convnet.dw3_2.conv_dw.weight', 'convnet.dw3_2.bn_dw.weight', 'convnet.dw3_2.bn_dw.bias', 'convnet.dw3_2.bn_dw.running_mean', 'convnet.dw3_2.bn_dw.running_var', 'convnet.dw3_2.bn_dw.num_batches_tracked', 'convnet.dw3_2.conv_sep.weight', 'convnet.dw3_2.bn_sep.weight', 'convnet.dw3_2.bn_sep.bias', 'convnet.dw3_2.bn_sep.running_mean', 'convnet.dw3_2.bn_sep.running_var', 'convnet.dw3_2.bn_sep.num_batches_tracked', 'convnet.dw4_1.conv_dw.weight', 'convnet.dw4_1.bn_dw.weight', 'convnet.dw4_1.bn_dw.bias', 'convnet.dw4_1.bn_dw.running_mean', 'convnet.dw4_1.bn_dw.running_var', 'convnet.dw4_1.bn_dw.num_batches_tracked', 'convnet.dw4_1.conv_sep.weight', 'convnet.dw4_1.bn_sep.weight', 'convnet.dw4_1.bn_sep.bias', 'convnet.dw4_1.bn_sep.running_mean', 'convnet.dw4_1.bn_sep.running_var', 'convnet.dw4_1.bn_sep.num_batches_tracked', 'convnet.dw4_2.conv_dw.weight', 'convnet.dw4_2.bn_dw.weight', 'convnet.dw4_2.bn_dw.bias', 'convnet.dw4_2.bn_dw.running_mean', 'convnet.dw4_2.bn_dw.running_var', 'convnet.dw4_2.bn_dw.num_batches_tracked', 'convnet.dw4_2.conv_sep.weight', 'convnet.dw4_2.bn_sep.weight', 'convnet.dw4_2.bn_sep.bias', 'convnet.dw4_2.bn_sep.running_mean', 'convnet.dw4_2.bn_sep.running_var', 'convnet.dw4_2.bn_sep.num_batches_tracked', 'convnet.dw5_1.conv_dw.weight', 'convnet.dw5_1.bn_dw.weight', 'convnet.dw5_1.bn_dw.bias', 'convnet.dw5_1.bn_dw.running_mean', 'convnet.dw5_1.bn_dw.running_var', 'convnet.dw5_1.bn_dw.num_batches_tracked', 'convnet.dw5_1.conv_sep.weight', 'convnet.dw5_1.bn_sep.weight', 'convnet.dw5_1.bn_sep.bias', 'convnet.dw5_1.bn_sep.running_mean', 'convnet.dw5_1.bn_sep.running_var', 'convnet.dw5_1.bn_sep.num_batches_tracked', 'convnet.dw5_2.conv_dw.weight', 'convnet.dw5_2.bn_dw.weight', 'convnet.dw5_2.bn_dw.bias', 'convnet.dw5_2.bn_dw.running_mean', 'convnet.dw5_2.bn_dw.running_var', 'convnet.dw5_2.bn_dw.num_batches_tracked', 'convnet.dw5_2.conv_sep.weight', 'convnet.dw5_2.bn_sep.weight', 'convnet.dw5_2.bn_sep.bias', 'convnet.dw5_2.bn_sep.running_mean', 'convnet.dw5_2.bn_sep.running_var', 'convnet.dw5_2.bn_sep.num_batches_tracked', 'convnet.dw5_3.conv_dw.weight', 'convnet.dw5_3.bn_dw.weight', 'convnet.dw5_3.bn_dw.bias', 'convnet.dw5_3.bn_dw.running_mean', 'convnet.dw5_3.bn_dw.running_var', 'convnet.dw5_3.bn_dw.num_batches_tracked', 'convnet.dw5_3.conv_sep.weight', 'convnet.dw5_3.bn_sep.weight', 'convnet.dw5_3.bn_sep.bias', 'convnet.dw5_3.bn_sep.running_mean', 'convnet.dw5_3.bn_sep.running_var', 'convnet.dw5_3.bn_sep.num_batches_tracked', 'convnet.dw5_4.conv_dw.weight', 'convnet.dw5_4.bn_dw.weight', 'convnet.dw5_4.bn_dw.bias', 'convnet.dw5_4.bn_dw.running_mean', 'convnet.dw5_4.bn_dw.running_var', 'convnet.dw5_4.bn_dw.num_batches_tracked', 'convnet.dw5_4.conv_sep.weight', 'convnet.dw5_4.bn_sep.weight', 'convnet.dw5_4.bn_sep.bias', 'convnet.dw5_4.bn_sep.running_mean', 'convnet.dw5_4.bn_sep.running_var', 'convnet.dw5_4.bn_sep.num_batches_tracked', 'convnet.dw5_5.conv_dw.weight', 'convnet.dw5_5.bn_dw.weight', 'convnet.dw5_5.bn_dw.bias', 'convnet.dw5_5.bn_dw.running_mean', 'convnet.dw5_5.bn_dw.running_var', 'convnet.dw5_5.bn_dw.num_batches_tracked', 'convnet.dw5_5.conv_sep.weight', 'convnet.dw5_5.bn_sep.weight', 'convnet.dw5_5.bn_sep.bias', 'convnet.dw5_5.bn_sep.running_mean', 'convnet.dw5_5.bn_sep.running_var', 'convnet.dw5_5.bn_sep.num_batches_tracked', 'convnet.dw5_6.conv_dw.weight', 'convnet.dw5_6.bn_dw.weight', 'convnet.dw5_6.bn_dw.bias', 'convnet.dw5_6.bn_dw.running_mean', 'convnet.dw5_6.bn_dw.running_var', 'convnet.dw5_6.bn_dw.num_batches_tracked', 'convnet.dw5_6.conv_sep.weight', 'convnet.dw5_6.bn_sep.weight', 'convnet.dw5_6.bn_sep.bias', 'convnet.dw5_6.bn_sep.running_mean', 'convnet.dw5_6.bn_sep.running_var', 'convnet.dw5_6.bn_sep.num_batches_tracked', 'convnet.dw6.conv_dw.weight', 'convnet.dw6.bn_dw.weight', 'convnet.dw6.bn_dw.bias', 'convnet.dw6.bn_dw.running_mean', 'convnet.dw6.bn_dw.running_var', 'convnet.dw6.bn_dw.num_batches_tracked', 'convnet.dw6.conv_sep.weight', 'convnet.dw6.bn_sep.weight', 'convnet.dw6.bn_sep.bias', 'convnet.dw6.bn_sep.running_mean', 'convnet.dw6.bn_sep.running_var', 'convnet.dw6.bn_sep.num_batches_tracked', 'boxnet.linear.weight', 'boxnet.linear.bias', 'boxnet.scales.hidden_scale', 'posnet.linear_xy.weight', 'posnet.linear_xy.bias', 'posnet.linear_size.weight', 'posnet.linear_size.bias', 'posnet.scales.lin.weight', 'posnet.scales.bn.weight', 'posnet.scales.bn.bias', 'posnet.scales.bn.running_mean', 'posnet.scales.bn.running_var', 'posnet.scales.bn.num_batches_tracked', 'quatnet.linear.weight', 'quatnet.linear.bias', 'quatnet.uncertainty_net.lin.weight', 'quatnet.uncertainty_net.bn.weight', 'quatnet.uncertainty_net.bn.bias', 'quatnet.uncertainty_net.bn.running_mean', 'quatnet.uncertainty_net.bn.running_var', 'quatnet.uncertainty_net.bn.num_batches_tracked', 'landmarks.deformablekeypoints.keypts', 'landmarks.deformablekeypoints.keyeigvecs', 'landmarks.shapenet.weight', 'landmarks.shapenet.bias', 'landmarks.point_distrib_scales.hidden_scale', 'landmarks.shape_distrib_scales.hidden_scale']

During handling of the above exception, another exception occurred:

RuntimeError                              Traceback (most recent call last)
Cell In[23], [line 3](vscode-notebook-cell:?execution_count=23&line=3)
      [1](vscode-notebook-cell:?execution_count=23&line=1) # modelfile = '../model_files/pub_synface_oroi/run2/swa_NetworkWithPointHead_mobilenetv1.ckpt'
      [2](vscode-notebook-cell:?execution_count=23&line=2) modelfile = '/home/jd/Projects/neuralnet-tracker-traincode-master/repro300wlp4.ckpt'
----> [3](vscode-notebook-cell:?execution_count=23&line=3) net = trackertraincode.neuralnets.models.load_model(modelfile)
      [4](vscode-notebook-cell:?execution_count=23&line=4) inputsize = net.input_resolution
      [5](vscode-notebook-cell:?execution_count=23&line=5) net.cuda()

File ~/Projects/neuralnet-tracker-traincode-master/trackertraincode/neuralnets/models.py:387, in load_model(filename)
...
	size mismatch for posnet.linear_size.weight: copying a param with shape torch.Size([1, 1024]) from checkpoint, the shape in current model is torch.Size([1, 512]).
	size mismatch for quatnet.linear.weight: copying a param with shape torch.Size([4, 1024]) from checkpoint, the shape in current model is torch.Size([4, 512]).
	size mismatch for landmarks.shapenet.weight: copying a param with shape torch.Size([50, 1024]) from checkpoint, the shape in current model is torch.Size([50, 512]).
	size mismatch for landmarks.point_distrib_scales.hidden_scale: copying a param with shape torch.Size([68]) from checkpoint, the shape in current model is torch.Size([69]).
	size mismatch for landmarks.shape_distrib_scales.hidden_scale: copying a param with shape torch.Size([50]) from checkpoint, the shape in current model is torch.Size([51]).

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions