diff --git a/example/mnist_cnn_one_iteration.py b/example/mnist_cnn_one_iteration.py index e9c9031..a575dd6 100644 --- a/example/mnist_cnn_one_iteration.py +++ b/example/mnist_cnn_one_iteration.py @@ -23,7 +23,7 @@ # number of convolutional filters to use nb_filters = 4 # size of pooling area for max pooling -nb_pool = 2 +nb_pool = 1 # convolution kernel size nb_conv = 3 @@ -46,10 +46,10 @@ model = Sequential() -model.add(Convolution2D(nb_filters, nb_conv, nb_conv, border_mode='same', +model.add(Convolution2D(nb_filters, (nb_conv, nb_conv), padding='same', input_shape=(1, img_rows, img_cols))) model.add(Activation('relu')) -model.add(Convolution2D(nb_filters, nb_conv, nb_conv, border_mode='same')) +model.add(Convolution2D(nb_filters, (nb_conv, nb_conv), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) model.add(Dropout(0.25))