diff --git a/cohort_3_python_homework.xlsx b/cohort_3_python_homework.xlsx
new file mode 100644
index 0000000..20b24a2
Binary files /dev/null and b/cohort_3_python_homework.xlsx differ
diff --git a/cohort_3_python_lectures.xlsx b/cohort_3_python_lectures.xlsx
new file mode 100644
index 0000000..a0788e5
Binary files /dev/null and b/cohort_3_python_lectures.xlsx differ
diff --git a/cohort_3_rails_clean.xlsx b/cohort_3_rails_clean.xlsx
new file mode 100644
index 0000000..8304bb8
Binary files /dev/null and b/cohort_3_rails_clean.xlsx differ
diff --git a/cohort_data.ipynb b/cohort_data.ipynb
new file mode 100644
index 0000000..0bea0f5
--- /dev/null
+++ b/cohort_data.ipynb
@@ -0,0 +1,1249 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:cbc5d881684a3aa4cca6c7ca355ec7a00ed225916011625e854b406c99ee9b7e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import pandas as pd\n",
+ "import re\n",
+ "%matplotlib inline"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_lecture_data = pd.read_excel(\"cohort_3_python_lectures.xlsx\")\n",
+ "python_homework_data = pd.read_excel(\"cohort_3_python_homework.xlsx\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_lecture_data = pd.read_excel(\"cohort_3_rails_clean.xlsx\")\n",
+ "rails_homework_data = pd.read_excel(\"cohort_3_rails_clean.xlsx\", sheetname=1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_lecture_data.head()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "html": [
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1/12/15 | \n",
+ " 1/13/15 | \n",
+ " 1/14/15 | \n",
+ " 1/15/15 | \n",
+ " 1/20/15 | \n",
+ " 1/21/15 | \n",
+ " 1/22/15 | \n",
+ " 1/23/15 | \n",
+ " 1/26/15 | \n",
+ " 1/27/15 | \n",
+ " 1/28/15 | \n",
+ " 1/29/15 | \n",
+ " 2/2/15 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | P01 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 5.5 | \n",
+ " 4 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | P02 | \n",
+ " 4 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 5 | \n",
+ " NaN | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | P03 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " NaN | \n",
+ " 5.0 | \n",
+ " NaN | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | P04 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 5 | \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | P05 | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 4.0 | \n",
+ " 5 | \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 3 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 6,
+ "text": [
+ " 1/12/15 1/13/15 1/14/15 1/15/15 1/20/15 1/21/15 1/22/15 1/23/15 \\\n",
+ "P01 3 3 4 5.0 4 4 4 5.5 \n",
+ "P02 4 3 4 4.5 5 5 NaN NaN \n",
+ "P03 NaN 3 5 5.0 5 5 NaN 5.0 \n",
+ "P04 3 2 4 4.0 5 4 4 4.0 \n",
+ "P05 NaN 3 3 4.0 5 4 4 4.0 \n",
+ "\n",
+ " 1/26/15 1/27/15 1/28/15 1/29/15 2/2/15 \n",
+ "P01 4 NaN NaN NaN NaN \n",
+ "P02 5 NaN 5 5 NaN \n",
+ "P03 NaN 5 5 NaN NaN \n",
+ "P04 1 1 5 5 NaN \n",
+ "P05 3 NaN NaN NaN NaN "
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_homework_data.head()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1/12/15 | \n",
+ " 1/13/15 | \n",
+ " 1/14/15 | \n",
+ " 1/15/15 | \n",
+ " 1/20/15 | \n",
+ " 1/21/15 | \n",
+ " 1/22/15 | \n",
+ " 1/26/15 | \n",
+ " 1/27/15 | \n",
+ " 1/28/15 | \n",
+ " 1/29/15 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | P01 | \n",
+ " 4.0 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 5 | \n",
+ " 4 | \n",
+ " 5.5 | \n",
+ " NaN | \n",
+ " 5 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | P02 | \n",
+ " 3.5 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " NaN | \n",
+ " 5 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | P03 | \n",
+ " 5.0 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 6 | \n",
+ " NaN | \n",
+ " 5 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | P04 | \n",
+ " 3.0 | \n",
+ " 3 | \n",
+ " 4.0 | \n",
+ " 4 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | P05 | \n",
+ " 3.0 | \n",
+ " 3 | \n",
+ " 4.0 | \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4 | \n",
+ " 6 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 7,
+ "text": [
+ " 1/12/15 1/13/15 1/14/15 1/15/15 1/20/15 1/21/15 1/22/15 1/26/15 \\\n",
+ "P01 4.0 4 5.0 5 4 5.5 NaN 5 \n",
+ "P02 3.5 5 4.5 5 5 5.0 5 5 \n",
+ "P03 5.0 4 5.0 5 5 5.0 6 NaN \n",
+ "P04 3.0 3 4.0 4 NaN NaN NaN 3 \n",
+ "P05 3.0 3 4.0 4 4 5.0 4 6 \n",
+ "\n",
+ " 1/27/15 1/28/15 1/29/15 \n",
+ "P01 NaN NaN NaN \n",
+ "P02 NaN 5 NaN \n",
+ "P03 5 NaN NaN \n",
+ "P04 3 5 5 \n",
+ "P05 NaN NaN NaN "
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_lecture_data.head()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1/12/15 | \n",
+ " 1/13/15 | \n",
+ " 1/14/15 | \n",
+ " 1/15/15 | \n",
+ " 1/20/15 | \n",
+ " 1/21/15 | \n",
+ " 1/22/15 | \n",
+ " 1/23/15 | \n",
+ " 1/26/15 | \n",
+ " 1/27/15 | \n",
+ " 1/28/15 | \n",
+ " 1/29/15 | \n",
+ " 2/2/15 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | R01 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 4.0 | \n",
+ " 3.0 | \n",
+ " NaN | \n",
+ " 3.0 | \n",
+ " 5.0 | \n",
+ " 2.0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 4.0 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | R02 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.5 | \n",
+ " 4.0 | \n",
+ " NaN | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 3.5 | \n",
+ " 6 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | R03 | \n",
+ " 3 | \n",
+ " 4.5 | \n",
+ " 4.0 | \n",
+ " 3.5 | \n",
+ " NaN | \n",
+ " 6.0 | \n",
+ " 4.5 | \n",
+ " 4.0 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 4.0 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | R04 | \n",
+ " 2 | \n",
+ " 4.0 | \n",
+ " 4.0 | \n",
+ " 4.0 | \n",
+ " NaN | \n",
+ " 5.0 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 5 | \n",
+ " 4 | \n",
+ " 6.0 | \n",
+ " 5.0 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | R05 | \n",
+ " 2 | \n",
+ " 3.0 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " NaN | \n",
+ " 3.0 | \n",
+ " 4.0 | \n",
+ " 3.0 | \n",
+ " 5 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 4.0 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 9,
+ "text": [
+ " 1/12/15 1/13/15 1/14/15 1/15/15 1/20/15 1/21/15 1/22/15 1/23/15 \\\n",
+ "R01 2 2.0 4.0 3.0 NaN 3.0 5.0 2.0 \n",
+ "R02 3 3.5 4.5 4.0 NaN 4.5 4.5 3.5 \n",
+ "R03 3 4.5 4.0 3.5 NaN 6.0 4.5 4.0 \n",
+ "R04 2 4.0 4.0 4.0 NaN 5.0 5.0 4.0 \n",
+ "R05 2 3.0 5.0 4.5 NaN 3.0 4.0 3.0 \n",
+ "\n",
+ " 1/26/15 1/27/15 1/28/15 1/29/15 2/2/15 \n",
+ "R01 3 4 4.0 4.0 3 \n",
+ "R02 6 4 5.0 4.5 5 \n",
+ "R03 5 5 4.5 4.0 5 \n",
+ "R04 5 4 6.0 5.0 6 \n",
+ "R05 5 3 3.0 4.0 NaN "
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_homework_data.head()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1/12/15 | \n",
+ " 1/13/15 | \n",
+ " 1/14/15 | \n",
+ " 1/15/15 | \n",
+ " 1/20/15 | \n",
+ " 1/21/15 | \n",
+ " 1/22/15 | \n",
+ " 1/23/15 | \n",
+ " 1/26/15 | \n",
+ " 1/27/15 | \n",
+ " 1/28/15 | \n",
+ " 1/29/15 | \n",
+ " 2/2/15 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | R01 | \n",
+ " 4 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 4 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 4.0 | \n",
+ " 3 | \n",
+ " 4.5 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ "
\n",
+ " \n",
+ " | R02 | \n",
+ " 3 | \n",
+ " 4.0 | \n",
+ " 4.5 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 2.5 | \n",
+ " 3 | \n",
+ " 4.5 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ "
\n",
+ " \n",
+ " | R03 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 5.5 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 5 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.0 | \n",
+ " 4 | \n",
+ " 3.0 | \n",
+ " 4 | \n",
+ " 3.5 | \n",
+ "
\n",
+ " \n",
+ " | R04 | \n",
+ " 3 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 4.0 | \n",
+ " 5 | \n",
+ " 6.0 | \n",
+ " 5 | \n",
+ " 4.0 | \n",
+ "
\n",
+ " \n",
+ " | R05 | \n",
+ " 2 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 5 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 4.5 | \n",
+ " 3 | \n",
+ " 5.0 | \n",
+ " 4 | \n",
+ " 3.5 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 10,
+ "text": [
+ " 1/12/15 1/13/15 1/14/15 1/15/15 1/20/15 1/21/15 1/22/15 1/23/15 \\\n",
+ "R01 4 3.0 3.0 NaN NaN 4 3 3.0 \n",
+ "R02 3 4.0 4.5 NaN NaN 4 4 4.0 \n",
+ "R03 4 4.0 5.5 NaN NaN 5 4 4.5 \n",
+ "R04 3 4.5 3.0 NaN NaN 4 4 4.0 \n",
+ "R05 2 5.0 4.5 NaN NaN 5 3 3.0 \n",
+ "\n",
+ " 1/26/15 1/27/15 1/28/15 1/29/15 2/2/15 \n",
+ "R01 4.0 3 4.5 4 4.5 \n",
+ "R02 2.5 3 4.5 4 4.0 \n",
+ "R03 4.0 4 3.0 4 3.5 \n",
+ "R04 4.0 5 6.0 5 4.0 \n",
+ "R05 4.5 3 5.0 4 3.5 "
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_lecture_data_transposed = python_lecture_data.transpose()\n",
+ "python_lecture_data_transposed.index = pd.to_datetime(python_lecture_data_transposed.index, format=\"%m/%d/%y\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_homework_data_transposed = python_homework_data.transpose()\n",
+ "python_homework_data_transposed.index = pd.to_datetime(python_homework_data_transposed.index, format=\"%m/%d/%y\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_lecture_data_transposed = rails_lecture_data.transpose()\n",
+ "rails_lecture_data_transposed.index = pd.to_datetime(rails_lecture_data_transposed.index, format=\"%m/%d/%y\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_homework_data_transposed = rails_homework_data.transpose()\n",
+ "rails_homework_data_transposed.index = pd.to_datetime(rails_homework_data_transposed.index, format=\"%m/%d/%y\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "py_lecture_by_day = python_lecture_data_transposed.mean(1)\n",
+ "labels = [\"Lecture {}\".format(x) for x in range(1, 14)]\n",
+ "py_lecture_by_day.plot(kind=\"bar\", title=\"Mean Difficulty of Python Lectures by Day\")\n",
+ "plt.xticks(np.arange(13), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEwCAYAAAB1+oBxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHXhJREFUeJzt3XuYHFWZx/Fvkklgw8RsIkEBuRnJyyWCEFwx6qJcFERR\nWBEIoICsQV0XH69IBEUQVHQVBEmWRS4BREVQEZBriMhdQBDUNyCbGBGXkRkgISHX3j/OaehMume6\nO1XVZyq/z/PkyUx3db2nemp+/fap6pphlUoFERFJ0/BOD0BERBpTSIuIJEwhLSKSMIW0iEjCFNIi\nIglTSIuIJKyr0wMYSsxsa+AJ4HZ336PffRcCHwY2dvfenMdxG7Al8Fy8aRQwF/i8uy82s92AL7j7\nwWa2BXA9sAI4HjgDeEX8/xPu/pZ1GMP33P2nZnY+cJ67P7AOm1Vd7xuAnwJ9wL+5+4Ka++YDLwJL\ngQphu28EPuPuDc8ljeP7vrs/WDvudR1rnTpHxTG/N6P1Zfa8tlh3PvBBd7+3zcffxgD7ZwZDXK+o\nk27di8C2ZrZl9QYz2wh4KyE4ilABPuvuu7j7LsDO8fbLAdz9t+5+cLztHcBTcTmATdz99e5+ebsB\nXTOG6vbuDQxbh3XVOgC41d13qw3omprT4nbvCuwC7A58fJB17s3L+/pQ+mBAls9rKyrrWHfA/VNa\no066dauAHwGHE7pRgIOAnwGfqS5kZu8FZhC6iCWEnfZuM3sVMAvYBHg1sIDQtfTEDuZCYC9CJ/Ij\nd/9Cg3G89Evk7ivN7NPA383MgE2B7wGfBE4FxprZrcAWwOZm9gAwDfitu3ebWRfwTWB/YCVwJyH4\nZgCvdPdPxm36Su33wDAzOw3YDLjUzKYDvwRe4+7Pm9kwwAnd5e9rB29mJwGHxnrzgP8ghNLHgBFm\ntqG7H9lg26vbvcLMbge2M7MTgR3d/fC4/rfE5+C6mvF9OD70fWb2eeBVwM3Av7t7xczeD5wMjACe\nBz7t7vfF7d6a8PPaCugBDnH3pwYaX7/t3TyOZ0tgJHCFu58R73sP4ec0HHgBOA44pN+4v0nNO4DY\nrZ7t7leZ2TLC/rcz4ee6FPgu8Mq4LWe7+4Vm1k3Yv14HrAbuB6Y3eBdynJmdC2wIfDs+/nzgaXef\nEcdwOOFne1CdxzfaPycBjwPfAd4EjInLHgv8Dvgr8CZ3fyzWuCmO/5omn+rSUSfdntnAETXffwi4\nqPqNmW0LfA3YL3Z804GrzGw04ZfvDnef6u6vJQR4NYwqwEbu/q/AVOCTZrZVgzGs8Yvl7i8Swu71\nNbfdRgid2919T8Ivwp/jmF6sWcfHgV2BnYDJhF+cQ/rXYM3uGaDi7l8C/gYc7u6/Bm4hvIBB6OJ7\n6gT00cC+wG7uvjPwCHCRu18GzCQEWKOAfumX38w2A94L3AqcD+xvZv8c755OmCqoHd+98fHdhA58\ne2A/YKqZbQecBxwUx3Qy8HMzGxPX91bgA+6+PWEqZnqD8TUyG/iBu+9GCKd9zOzg+KI9G/hwrHsm\ncEYMwtpxr/Xc13w9EviFu28HPAxcCZwQa70d+KyZvQk4EOiO3e0b42O3aTDeF+Lj9wG+bmY7AOcA\nR5lZNTemE56zehrtnzsB/wK82t13d/cdgUvieJcAFxP2U8xsIjCJ8MK/3lIn3QZ3f8DMVpvZroSu\naoy7PxqaWCDs2JsCt9bctgqY6O5nm9nbYmexLSEU765Z/c9jjb+Z2dPAeEK33YwKoROrNazB17X2\nBi5x92Xx+0MBzOzLTdatdS6h6zuPxr/E+xICa2n8/ixghpmNjGNsNM5hwGVmtpTQYKwAznf3q+N4\nfwl8yMxmA+8kdKT9VQjvUCrAUjN7jNBR7wzc7O7zAdx9Tnz+p8THzKmZT32Q8HNpSpwO2wMYZ2an\nxps3ijVXAo+4+8Ox7tXA1c2uu8bt8f9JwGuBH9TsexsCbwBuAL5mZnOAm4DvuvsTDdY3K47nKTO7\nAdjL3b9nZv8LvCc+b5u6+00tjLFCCP+7zewkM/tYHOvbCe9cIOwvc81sBvBRws93KE1RZU4h3b5q\nN91D6ARqDQducfdDqzfEOey/mtk3CF3MBYQOsIs1Q2lpzddNzw3GLn17Qlc6saUtCWFXu64JhLfJ\n/etv0MS6bgFGm9lewNt4+V1CreH91juCtZ+Heqpz0o0OpJ1L+CVfCVwZO7N6are3uo31XhyGE7pU\nCO88+j+mWSPi/2+OHSVmtjHhZ70n/bpOM5vs7o/0W0eFNd/5jup3f/UFZATwbM0xCMzs1fG2F83s\ndYRQ3BO42cw+2eAg6uqar4cDy+PX5wLHELriWfU3d221+6eZ7U+YjvkWYZrmT8R3pu4+z8weBt5P\nmLp5Y/01rj803dG+S4EPEqYF+h8QmQO8M84PY2b7EubbNiR0eN+Nb+17CF33CFpX+7b/nwg7/XXu\nvrCNdd0MTDOzUfGt7EzgsDi+KbHGRnHs9awkhkbser4P/A9wmbsvr7P8DcDR8RcX4D+BuQ2WbZq7\n30UIl8+yZgf/0vii/gFbIbxgvtPMtgEwsz2B1xDe5fRfvqWDau7+fFzPZ+K6xxI63wOAe4Dt43QC\ncV78sjrj7gF2i8tMJEwb1C0HvBjni4ln9zwE7GpmxwEXuvuN7n4C4eewY511DAOOio/fkvBO65Z4\n35WEA7YHAT8YYLMH2j/3Bq5x91mEefEDWfN34FzCtM/d7v73AWqsFxTSratAmI4A/gDMc/dn+933\nKOGt2hVm9jvCQaH3xs7uq8C3zOxuQpBcSTiQ06ozzexBM7ufEADPE04BXGOcDDyXWf26+styP2FO\n82+EKYjLgJ741vZa4I4GY/kZ8CMz2zt+fwkh4Bp1WhcQXhjuNbM/EN6KV+ex+4+3VRcBT8afQe34\nrjCzfWpqrMHd/0iYm7/KzH4PnE74mS2qM6ZGY6wA+5rZopp/f4n3TQN2j13iPcAP3f2H7v40Ydsv\nNrMHgU8RXvir464+r6cRXkR+D3ydcEpbbd3qdiwH3gcca2YPEYL4JHe/k/BzGWFmfzCz+wjHHs5q\nsB0bxAPM1wL/4e6Px/WvIOyzd/nAp5oOtH/OBPaI23sdYepl65rHXkuYDpo5wPrXG8N0qVLJmpkd\nChzp7vsXXLeLMJ97ibv/pMja64v4jmou8DF3vy+nGlOBWe7++kEXXg8MOicdX02rJ6U/4e4fyXdI\nMpTFU8MmAP9WcN0dgN8A1yqg82Fm7yJM7V2QY0BfTDjIOuDpl+uTATtpM9sQuDOesiUiIgUbrJPe\nmXCk/oa47Inufk/+wxIRERj8wOELwJnu/i7COaeX1ZzILiIiORusk55H+Agn7v6YmT1D+JDGk/UW\nXrlyVaWrq52zyUREho558+Zx5BcvZ/TYTZp+zJLnnmb2GdOYNGlSvbsbntY5WEgfTTgf8xPxI7iv\nABper6Cvr9FnBxqbMGEMPT2LWn7c+lynTNtStjpl2pay1cmyRm/vYkaP3YTucZu3/Lh6Y5gwYUyd\npYPBQvoC4EIz+3X8/mh3Xz3QA0REJDsDhrS7r0SnwoiIdIwOAoqIJEwhLSKSMIW0iEjCFNIiIglT\nSIuIJEwhLSKSMIW0iEjCFNIiIglTSIuIJEwhLSKSMIW0iEjCFNIiIgkb9G8ciogMFcuXL2fhwgV1\n7+vr66a3d3Hd+7bYYitGjRqV59DappAWkdJYuHABx5/5i5Yvxn/W5w5g4sRtcxxZ+xTSIlIq7VyM\nP2WakxYRSZhCWkQkYQppEZGEKaRFRBKmA4ciLSrjaV6SLoW0SIvKeJqXpEshLdKGsp3mJelSSItI\n7gaaIoLG00SaIlJIi0gBNEXUPoW0iBRCU0Tt0Sl4IiIJU0iLiCRMIS0ikjCFtIhIwhTSIiIJU0iL\niCRMIS0ikjCFtIhIwvRhFsmdPhIs0j6FtOROHwkWaZ9CWgqhjwSLtKepkDazTYD7gb3cfV6+QxIR\nkapBDxya2UhgFvBC/sMREZFazZzdcSZwHvBUzmMREZF+BpzuMLOjgB53v9HMvggMK2RUUhj9vT6R\ntA02J300UDGzvYE3ABeb2fvc/f/qLTxu3Gi6uka0PIgJE8a0/Jh2lKlOVjXmzZvX1pkXs8+Yxuab\nT2pq+b6+7rbGNn58d+bPZRbrS2V7htL+XNRzVrY6MEhIu/se1a/NbA4wvVFAA/T1LWmpOIQdoKdn\nUcuPW5/rZFmjt3dxW2de9PYubnoMjbrxLGs0I6vnLYXtGWr7c1HP2VCtM1Bw6xS8RGkaQkSghZB2\n93fkORBZkz4A0jp9slHKSJ10wvQBkNbohU3KSCEtpaIXNikbXQVPRCRh6qRbpHlPESmSQrpFmvcU\nkSIppNugeU8RKYpCWiRROldeQCEtkixNrQkopEWSpqk1UUiLrMd0tlL6FNIi6zFNqaRPIS2yntOU\nStr0iUMRkYQppEVEEqaQFhFJmEJaRCRhCmkRkYQppEVEEqaQFhFJmEJaRCRhCmkRkYQppEVEEqaQ\nFhFJmEJaRCRhCmkRkYQppEVEEqaQFhFJmEJaRCRhCmkRkYQppEVEEqaQFhFJmEJaRCRhCmkRkYQp\npEVEEqaQFhFJmEJaRCRhCmkRkYR1DbaAmY0AzgcmARXgOHd/NO+BiYhIc530e4DV7v5W4EvA1/Id\nkoiIVA0a0u7+c2B6/HZroC/PAYmIyMsGne4AcPdVZnYRcCDwgVxHJCIiL2kqpAHc/Sgz+wJwj5lt\n7+5L+y8zbtxourpGtDyICRPGtPyYdmRRp6+vu63HjR/f3VL9MtUp07aUrU6ZtqWMdaC5A4dHAq9x\n9zOApcDq+G8tfX1LWioOITh7eha1/LhO1entXdz241qpX6Y6ZdqWstUp07YM5ToDBXcznfSVwEVm\nNhcYCRzv7svaGqGIiLRk0JCO0xqHFDAWERHpRx9mERFJmEJaRCRhCmkRkYQppEVEEtb0edLrYvny\n5SxcuKDufX193Q1PZ9lii60YNWpUnkMTEUlaISG9cOECjj/zF4weu0nTj1ny3NOc9bkDmDhx2xxH\nJiKStkJCGmD02E3oHrd5UeVEREqhsJDO20BTKtB4WkVTKiKSstKEtKZURKSMShPSoCkVESkfnYIn\nIpIwhbSISMIU0iIiCVNIi4gkTCEtIpIwhbSISMIU0iIiCVNIi4gkTCEtIpIwhbSISMIU0iIiCVNI\ni4gkTCEtIpIwhbSISMIU0iIiCVNIi4gkTCEtIpIwhbSISMIU0iIiCVNIi4gkTCEtIpIwhbSISMIU\n0iIiCVNIi4gkTCEtIpIwhbSISMIU0iIiCesa6E4zGwn8ANgK2AA4zd2vKWJgIiIyeCd9ONDj7v8K\n7Auck/+QRESkasBOGvgJcGX8ejiwMt/hiIhIrQFD2t1fADCzMYTAnlHEoEREJBisk8bMtgCuAs51\n9ysGWnbcuNF0dY1Y6/a+vu62Bjd+fDcTJoxpatkiaqhOe3XKtC1lq1OmbSljHRj8wOGrgBuBj7v7\nnMFW1te3pO7tvb2LWxpU7eN6ehY1vWzeNVSnvTpl2pay1SnTtgzlOgMF92Cd9InAWOBkMzs53raf\nu7/Y1ghFRKQlg81JHw8cX9BYRESkH32YRUQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRF\nRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQpp\nEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSZhC\nWkQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSVhLIW1mbzKzOXkNRkRE1tTV\n7IJm9nngCGBxfsMREZFarXTSjwMHAcNyGouIiPTTdEi7+1XAyhzHIiIi/TQ93dGMceNG09U1Yq3b\n+/q621rf+PHdTJgwpqlli6ihOu3VKdO2lK1OmbaljHUg45Du61tS9/be3vamsXt7F9PTs6jpZfOu\noTrt1SnTtpStTpm2ZSjXGSi42zkFr9LGY0REpA0tddLuPh+Yms9QRESkP32YRUQkYQppEZGEKaRF\nRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQpp\nEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSZhC\nWkQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKmkBYRSZhCWkQkYQppEZGEKaRFRBKm\nkBYRSZhCWkQkYV2DLWBmw4HvAzsBy4Bj3f3PeQ9MRESa66TfD4xy96nACcC38x2SiIhUNRPSbwF+\nBeDu9wC75ToiERF5yaDTHcArgOdrvl9lZsPdfXX/BadMmVx3BT/+8dUsee7ptW6/6ycn1V3+zQef\nWnf5Ruu///5HANZ6zEDrr7f8YOuvqj5usPX3X77Z9Vfd+aMTGTZ8xKDrr13+wOtHM3LkyKbWP2XK\nZFasWEHv80vWqNNo/dXtraxetUadgdYPrFVjsPX3rzHY+quqdaYecvqg66+tw0dvbWr9VUXtz7Dm\nPtrM/la7vPbngdff7v4Ma+7TzezPtXUeftjrLt/IsEqlMuACZvZt4G53/0n8fqG7b9FSFRERaUsz\n0x13AO8GMLPdgYdzHZGIiLykmemOq4F9zOyO+P3ROY5HRERqDDrdISIinaMPs4iIJEwhLSKSMIW0\niEjCFNIiIglr5uyOzJjZw8DGwLB+d1XcfbMM64wFVrj7kprbtnb3+VnVqFNzG2C1uy/Iq0ass5O7\n53oapJlNACYBf3T33ozX3eXuK+PPaFvgcXd/NuMa5u6tfWIgm7qbA6Pd/bEc1j0CmAyMBv6RdQ0z\n+ydgOrA3MBZ4Fvg1cI67L82wzhxgA+pnwNQM60wCzgCWAqdUny8zm+nux2VYpxs4FugD5gCXAKuA\nj2e1DxYa0sBBwA+BPWoDNEtmdizwBWCEmc1y92/Euy4E3pFhnT2Aswg/nAuBzwMrzOwcd78gwzrv\nAqqn4AwDvmlmnwNw9xszrHOtu+9vZvsD3wEeBCab2Qnufk1GNU4Aus3sduBs4I/ADmb2VXe/NIsa\n0aNm9nXCL+eKDNe7BjObStiO5cC3gFOAZWZ2qbt/N8M6ewHnAb3AjsADZvZK4Bh3vzejMhcSfuYn\nAouBMcB+wOXAgRnVgHD9n/MJWbAyw/X299/A6cBI4OdmdoS7PwBYxnUuJTxvrwdOIrzQLQbOJbzg\nrbNCQ9rdHzezswlheW1OZT5K2JEBLjazGe7+tRzqfB14H7A1cA2wGeEqgb8GMgtp4BvAauAhQkhv\nAhwW78sspAkdGoRfore4e0/sEn5F2L4sHATsDtwGvDXW2IjwnGUZ0r8hdIK/NbP/Aq5w92UZrr/q\n28ChhM7zJmAbwi/oHUBmIU0I/ze7+zNm9lpCE3IacAXh2jpZ2MzdD+1320Nm9puM1g+E6/+Y2aXA\nTu5+VZbr7qdSbWLM7HHg6tjwZG28u58Srxb6e3e/JdbMbCq56E4ad5+dc4mV7r4cwMw+BFxvZk/k\nUGdYnNpYYGbfc/fFseaqjOtMJbwq/8bdLzCzOe6exweKqhdIeBZ4BsDdF8e32VlZHes8BVTfSa3k\n5XcKWam4+7fM7Arg08CJZvYn4M/u/ukM6wyLjccGwHPA8+5eMbO1rmuzjka5+zPx678AO7r7wiyD\nAHgx/r78irAtryB80nhRhjUAcPdvZr3OOlaZ2QHAde7uZvYJ4Je8vJ9nZYWZHQFcBrwBwMzeztrT\nOW0r44HDO8zsp2b2z/Gt7sHA54hPYIZuMbObzGyEu88AMLNzyPhj8+6+JIbyODObSfY7WdUzZvYo\nsCtwvJmNNrNrCV1hVmYCc4Ee4K74ruo+IJcXbnf/awzl7QlvRe/MuMTNZnYXcC/hebrEzM4D5mVc\n53Yzu97MPkUImutioP41wxrTCFe4vB54hBDWU4APZ1ijSMcQ3rmNBXD3OcCnCFNTWToCmOLulZqp\ntYMJ0x6ZKOUnDs3sHcCd1be48aDIce7+nYzr7OLuD/arO7feFQIzqrcXYR7y8DzWH2u8ivBC8Hdg\nb3f/Vcbrn0iYq9sY+Adwh7vXv+xY+zXe5e43ZLnOAWptByxz9/81s2nARsBFWc+Fx2MFOwC/c/eb\n4oGxBTlN4+SmqJMHyqSUIS0iaTKz15HzyQNl05GQNrPJhKPV44CLCad6/bLwgYgIUGyHa2ZHAr3u\nntfJA0We7pt7ncIPHEZnE+aM/ptwis8vCHNtItIZuZ8eW1XAyQNQ3PbkXqdTIY27P2ZmuPuTZvb8\n4I9oTVHduuqkWUN1WlPQ6bGFKWp7iqjTqbM7es3sOGAjMzuMcNpX1qrdeg+hWz8lhxqqk24N1WmR\nu8/OcwqiaEVtT951OhXSxxBO/P8H4bSfj+RRpPpRUHd/kjX/TqPqdLhOmbaljHUkHZ2a7pjp7tNy\nrlFEt6466dZQnYTp5IHmdaqT3sDMdjazDc1slJmNyqFGId266iRbQ3XSVtQU0ZDXqU7agJ/1u22b\njGsU0a2rTro1VKcNRXa4eZ88AOU4qNuRkHb3yQWU2cDMdgaccM0Iqtf0UJ2O1ynTtpStTlGnxxY1\ndVPU9uRWpyMhbeGasrUq7r5n1mXIv1tXnXRrqE6biuhwCYE2gwKmbgrantzqdOoTh9tV6xMu6LOL\nu3+28IGIyBrM7ErgZkKIfgf4oLtneT3pap3Li5giKnB7cqvTqemOP9V8+0cLF+rPVEHduuokWkN1\n2lZUh1vUFFFR25NbnU5Nd9Rexm9TwpXDsvax+P9L3XoONVQn3Rqq056iDoIWNUU05A/qdursjlfX\nfL0U+GDWBYro1lUn3Rqq07ZCOtyCTh6AEhzU7VRIr3b3U6vfmNkZwBezLFBQt646idZQnfbLUECH\nW9QUESU4qFv0Xwv/COEv6+5gZu+ONw8HRpFxSFNAt646SddQnTYU2OEWMkVU1PbkWafoTvpS4BbC\nBPtphB/QKuDpHGrl3q2rTtI1VKcNRXW4RU0RleGgbtF/LXwZMN/MLgDe7+5nmdlswikrD2RRo6hu\nXXXSrKE666yQDreoKSJKcFC3U3PS5wDVPx//ZcLHKN+W0bqL6tZVJ80aqrMOiupwKWiKqAwHdTt1\ngaXl7v44gLs/QdjhMuHuy9x9PlDt1ucDpwM7ZlVDddKtoTrrxsym1/z7Cvl1uKvd/ZT47xtk+Ne1\naxW1PXnW6VQn/RczOx24G3gj8GQONfLs1lUn/Rqq055cO9yCp26gBAd1O9VJH024ROF+8f9jcqiR\nW7euOkOihuq0J+8O91LgMODHhBecw4APALtnXKeqkI49zzqd6qRXAIsIH6F8CBgDLMu4RhHduuqk\nW0N1WlBUh1vEyQNQroO6neqkZwFbAvsQrr96SQ41iujWVSfdGqrTmqI73HN4+Q+3fhk4K+P1F7U9\nudfpVEhPdPeTgaXu/jNgbA416nXreVCdNGuoTguKPDgZ5Tp1U6aDup0K6RFmtjGAmY0hftY9Y0V0\n66qTbg3VaU/eHW7VX8zsdDM7wMxOJb8poqK2J7c6nQrpLwF3AFOAe4Cv5lCjiG5dddKtoTrtKeog\naFFTREP+oG6nric9N174fwLhrdvEHMoU0a2rTro1VKc9RR0ELeLkASjBQd1OddK4e8Xdn3b31YS/\nCZa1Irp11Um3huq0p6gOt6gpoiF/ULdjIZ03d58LbAe8DpgMzFedNOqUaVtKWKeog6BFTREN+YO6\nnTpPuhDuXiFe38DMLie8DVGdBOqUaVtKVmcW4a36PsD9hA733QM+oj1FTREVtT251Sm0kzazH9b7\nB7y2yHGISENFdbhFTREN+YO6RXfSs4AK4SpetWYWPA4Rqa+QDregkwegBAd1i76e9G1514ideT2Z\nduuqk2YN1Vln1Q53U0KHe3wONYDCpoiK2p7c6pRxTrqobl110qyhOuugwA63EEVtT551hlUqlazW\nJSIlY2b3uXsuB0FVpzll7KRFJFEFT92UgkJaRIqkkwdapJAWkcI63CJOHoByHdRVSIsIlK/DLc1B\nXR04FBFJWGmv3SEiUgYKaRGRhCmkRUQSppAWEUmYQlpEJGH/D6qO2LoW72OMAAAAAElFTkSuQmCC\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "From the above graph we can see that as the course has progressed the average difficulty rating by students has increased, especially lectures toward the end of the week and the most recent lectures."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "py_homework_by_day = python_homework_data_transposed.mean(1)\n",
+ "labels = [\"Homework {}\".format(x) for x in range(1, 12)]\n",
+ "py_homework_by_day.plot(kind=\"bar\", title=\"Mean Difficulty of Python Homework by Day\")\n",
+ "plt.xticks(np.arange(11), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAE+CAYAAABP8OEBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH8ZJREFUeJzt3XmYnFWZ/vFvSCdgSMwkThCEQDRDPQSQ3S2gyA4CKriA\noAj+WHUAB2QXxFHAAVFhZBMRiIAw7CAi+yYQEEQB0QcEiREFWtIsIYQQUr8/zqmk0qmq3vK+53T1\n/bmuXOnuWu7zdFc976lTp6qGVatVREQkT8ukHoCIiDSnJi0ikjE1aRGRjKlJi4hkTE1aRCRjatIi\nIhnrSD2AXJnZJOAZ4B5337TbaecDXwb+3d1nFTyOO4FVgVfij0YCdwGHu/tsM9sIOMLdP2dmE4Eb\ngbeAg4GTgHfG/7/m7hsPYAz/6+5Xmtm5wFnu/rsBlFW73vWAK4Eu4DPuPqPutGeBucAbQJVQ983A\noe7edN9oHN+Z7v5I/bgHOtYGOR+P1/3+bj+/AHjM3U9d2plFaVZLg/M9C3ze3R/sZ86dtLgt9+c6\nhwLNpFubC6xuZqvWfmBmywObEBpHGarAN9x9fXdfH1g3/vwSAHd/yN0/F3+2GfDPeD6AFdz9/e5+\nSX8bdN0YavVuCQwbwHXV+yRwu7tvVN+g6zJ3i3VvAKwPfBj4ag/XuSWLbtcpXgRQ/7tqN1UG9rdv\neVuWxjSTbu1t4DJgd8JsFGBn4Brg0NqZzGxH4BjCzGAO4YY43czeDZwDrACsCMwgzEQ646zkfGAL\nwuziMnc/osk4Ft4x3H2+mR0CPG9mBqwE/C9wIPAdYKyZ3Q5MBFY2s98BuwEPuftoM+sATga2B+YD\n9xEa3zHAu9z9wFjT8fXfA8PM7LvAe4CLzGw/4JfAKu7+qpkNA5wwI36sfvBmdiywa8x7EvhPQjM9\nABhuZsu5+5ea1F6r+y0zuwdYw8yOBtZy993j9W8cfwe/qhvfl+NFP2VmhwPvBm4F9nH3qpl9GjgO\nGA68Chzi7r+NdU8i/L1WAzqBXdz9n63GV2dY/IeZrQX8GBhPaFCnuvvP48z1JOA5YC3CbeZbwEGA\nAVe6+yHxOpa4bQFPEW5LE9z9DTM7G5hSe8RnZk8BO8bamuWfBswGlgcOrw3ezDYBLgJ2dffpDerb\n38zOAJaL13d+fPTyorsfE69jd8LtYOcmvx9gidtyBfgL8EPgQ8CYeN69gd8Dfwc+5O5PxYxbgNPd\n/fpmf4h2oZl0z34OfLHu+z2AC2rfmNnqwAnAdnHGtx9wlZmNAnYB7nX3qe7+PsKdrNaMqsDy7v4x\nYCpwoJmt1mQMi83M3H0uodm9v+5ndxKazj3uvjnhxv10HNPcuuv4KrABsA6wNuHOsEv3DJacEVbd\n/ZvAP4Dd3f1u4DbCAQzCLL6zQYPeC9gW2Mjd1wUeBy5w94uBs4FLWzTohXdoM3sPofHcDpwLbG9m\n/xZP3o+wBFM/vgfj5UcTZuBTgO2AqWa2BnAWsHMc03HAtWY2Jl7fJsBn3X0KYSlmvybjm2xmj9T/\ni2OsxoPhdcBpMWM74EQz+3C87EbAd2LGC8BRwCcIf5uvmdmKzW5bhCWgB4DN6373q5vZ8ma2JvAm\noZG3yl+L0IjXA+bF3/FmhInDDk0aNMDr7r4RsBXwvZj3Y2BPM6v1k/3i77eRZrfldYAPAiu6+4fd\nfS1gGnCku88BLiTcpjGzyUCFMEloe2rSPYhrrwvMbIO45jvG3f9Yd5atCLPZ2+Od9CLCDHyyu58O\nTDezQ8zsLEJTXL7ustfGjH8ALxJmPL1VBV7v9rNhTb6utyUwzd3fdPequ+/q7hf1IbfeGcA+8etm\nd8xtgZ+5+xvx+9OALcxsBHWzzgaGARfH5vcHQsM5192vdvdOwh10DzMbB2wNXNzgOqqERyjVmP8U\nYUa9OXCruz8L4O53EH7/G8bL3FG3RvoIzf8uT9ceutc9hL8unlYBlnX3a2LGPwnr79vGjL+6+x9q\n10NY9pnv7i8RZvbvovlt6z+Aq4Ht4qOpvwP3ApsCn4o51kP+THefWVfLROB64Gp3f7xJvRAeGdau\n7yZgi1jHX4EdzGwKsJK739LiOrqrEpr/dOBYMzvAzE4BPsOi+8tZhL93B7Av4bbQrstKi9FyR+/U\nZtOdhKN7vWWA29x919oP4hr2383sf4APAOcRZoAdLN6U3qj7utfrfXGWPoUwK53cp0rCk4r11zWB\n8LC4e/6yvbiu24BRZrYF8FEWPUqot0y36x3Okr+HRmpr0s2eoDyDcMedD1wRZ1uN1Ndbq7HRwWEZ\nYET8em6Dy/RVo8vUaocw2603v8H5m962gJeAuwmz0FsIM/5tCLe3/Wk8AavP7/5E3VuEBn6dmV3u\n7r9tXBYLuo1vXvz6DOArcTznNLnsEupvy2a2PfAj4PuEJcU/Ex/FuvuTZvYo8GnC8t0Hepsx2Gkm\n3TsXAZ8nLAt0f5LjDmDrOKPBzLYlrKEtR5jh/Sg+tO8kzIyG9yO//mH/Owg35F91mwn11q3AbmY2\nMj48PRv4QhzfhjFj+Tj2RuYT1keJM5kzgZ8CF7v7vAbnvwnYK94ZIay73tXkvL3m7vcTGsY3WHwG\nv3B8UfdmWSUcMLc2s/cCmNnmwCrA9Abn7+8TZQ7MM7OdYsZ7CM9n3NLL66wfZ/fb1rLu/hzwL0JD\nvomw8+UzwHh3f7Qf+c/Hmew3CGv672hwnmHAnvH6ViU8KrstnnYF4cndnYGftair1W15S+B6dz8H\neBjYicXvL2cApwDT3f35FhltRU26tSosXI54AnjS3V/udtofCQ+/LjWz3xOevNsxzuz+G/i+mU0n\nNJIrCA9V++qU+LD/YUIjeZWwBXCxcdJgHbnB17U7wMPAo4Q13NMIywWd8UmnGwgPnxu5BrjMzLaM\n308jNLhms6fzCAeGB83sCWA9Fq1jD3QnxAXAc92Wn64h/C22qstYjLv/ibA2f5WZPQacSPibvdZg\nTK3G2HTs7j6fMOs7OC7X3AJ8293vanLZRuN8gsa3rdojsKsJ20Afcfe/Ep7zuDpe9q3+5Lv7NMIM\n9vtN6l02Phl9A/Cf7v6XurwrgPu99bbUVrfls4FN49LOr+KYJ9Vd9gbC8sfZLa6/7QzTW5XKQJjZ\nrsCX3H37knM7CA1pmrtfXma2LCk++roLOKDFUslAM6YC53gP+7nbTY9r0vGoWdt8/oy7/79ihySD\nhYUXJ0wgPMwuM3dN4DfADWrQ6ZnZNoRlwPMKbNAXEp4YbblVsx21nEmb2XLAfXH7j4iIlKynmfS6\nhGfvb4rnPdrdHyh+WCIiAj3PpNcmvMrnvLix/kag4u4LGp1//vy3qx0d/dm8ICKSr3nz5vHss8/2\n+/KTJk1i5MiRrc7SdMdPTzPpJwkv1cTdnzKzlwib659rdOaurmZbVXs2YcIYOjtf6/flByJVtmoe\nGtlDLTdldlG5Tz/9FAefch2jxq7Q58vOeeVFTjvsk0yevHrT80yYMKbpaT016b0IL9f8Wtxn+U6g\nt+9hICLSNkaNXYHR41YuPbenJn0ecL6Z3R2/36vZUoeIiCx9LZt03JA/5La8iIjkQq84FBHJmJq0\niEjG1KRFRDKmJi0ikjE1aRGRjKlJi4hkTE1aRCRjatIiIhlTkxYRyZiatIhIxtSkRUQypiYtIpIx\nNWkRkYypSYuIZKzHTwsXEak3b948Zs6c0fI8XV2jmTVrdtPTJ05craePk5JITVpE+mTmzBn9/igp\n6N3HSckiatIi0mepPkpqKNKatIhIxtSkRUQypiYtIpIxrUmLDIB2OkjR1KRFBkA7HaRoatIiA6Sd\nDlIkrUmLiGRMM2kRGTR6eg6gHdf/1aSlLQz0CbzBeOcdigbyHMBgXf9Xk5a2MBTvvENxVglD7zkA\nNWlpG0PtzjsUD0xDkZq0yCA21A5MQ5F2d4iIZExNWkQkY2rSIiIZU5MWEcmYmrSISMbUpEVEMqYm\nLSKSsV7tkzazFYCHgS3c/clihyQDpZdIi7SPHpu0mY0AzgFeL344sjTolWgi7aM3M+lTgLOAowoe\niyxFeiWaSHtouSZtZnsCne5+c/zRsMJHJCIiC/U0k94LqJrZlsB6wIVm9il3f6HRmceNG0VHx/B+\nD2bChDH9vuxApcouIrera/SALj9+/OhCfx/tVPNAc1Nmq+b8c6GHJu3um9a+NrM7gP2aNWiArq45\n/RoEhDtuZ+dr/b78QKTKLiq31dtT9vbyRf0+2q3mgeamzFbN+eS2auDagicikrFev1Wpu29W5EBE\nRGRJmkmLiGRMTVpEJGNq0iIiGVOTFhHJmJq0iEjG9EG0BerpjY5avckRDM43OhqKNYsUSU26QEPx\njY6GYs0iRVKTLthQfKOjoVizSFG0Ji0ikjE1aRGRjKlJi4hkTE1aRCRjatIiIhlTkxYRyZiatIhI\nxtSkRUQypiYtIpIxNWkRkYypSYuIZExNWkQkY2rSIiIZU5MWEcmYmrSISMbUpEVEMqYmLSKSMTVp\nEZGMqUmLiGRMTVpEJGOlfRDtvHnzmDlzRtPTu7pGM2vW7KanT5y4GiNHjixiaCIi2SqtSc+cOYOD\nT7mOUWNX6PNl57zyIqcd9kkmT169gJGJiOSrtCYNMGrsCowet3KZkSIig1qpTTqFnpZZoPVSi5ZZ\nRCSltm/SWmYRkcGs7Zs0aJlFRAYvbcETEcmYmrSISMbUpEVEMtbjmrSZDQfOBSpAFdjf3f9Y9MBE\nRKR3M+kdgAXuvgnwTeCEYockIiI1PTZpd78W2C9+OwnoKnJAIiKySK+24Ln722Z2AbAT8NlCRyQi\nIgv1ep+0u+9pZkcAD5jZFHd/o/t5xo0bRUfH8IaX7+oa3f9RAuPHj2bChDF9vlyq3JTZqnnw5KbM\nVs3550Lvnjj8ErCKu58EvAEsiP+W0NU1p+n1tHqHu96YNWs2nZ2v9etyKXJTZqvmwZObMls155Pb\nqoH3ZiZ9BXCBmd0FjAAOdvc3+zpIERHpux6bdFzW2KWEsYiISDd6MYuISMbUpEVEMqYmLSKSMTVp\nEZGMqUmLiGRMTVpEJGNq0iIiGVOTFhHJmJq0iEjG1KRFRDKmJi0ikjE1aRGRjKlJi4hkTE1aRCRj\natIiIhlTkxYRyZiatIhIxtSkRUQypiYtIpIxNWkRkYypSYuIZExNWkQkY2rSIiIZU5MWEcmYmrSI\nSMbUpEVEMqYmLSKSMTVpEZGMqUmLiGRMTVpEJGNq0iIiGVOTFhHJmJq0iEjG1KRFRDKmJi0ikjE1\naRGRjKlJi4hkrKPViWY2AvgZsBqwLPBdd7++jIGJiEjPM+ndgU53/xiwLfDj4ockIiI1LWfSwOXA\nFfHrZYD5xQ5HRETqtWzS7v46gJmNITTsY1qdf9y4UXR0DG94WlfX6H4OMRg/fjQTJozp8+VS5abM\nVs2DJzdltmrOPxd6nkljZhOBq4Az3P3SVuft6prT9LRZs2b3eXDdL9/Z+Vq/LpciN2W2ah48uSmz\nVXM+ua0aeE9PHL4buBn4qrvf0d8BiohI//Q0kz4aGAscZ2bHxZ9t5+5zix2WiIhAz2vSBwMHlzQW\nERHpRi9mERHJmJq0iEjG1KRFRDKmJi0ikjE1aRGRjKlJi4hkTE1aRCRjatIiIhlTkxYRyZiatIhI\nxtSkRUQypiYtIpIxNWkRkYypSYuIZExNWkQkY2rSIiIZU5MWEcmYmrSISMbUpEVEMqYmLSKSMTVp\nEZGMqUmLiGRMTVpEJGNq0iIiGVOTFhHJmJq0iEjG1KRFRDKmJi0ikjE1aRGRjKlJi4hkTE1aRCRj\natIiIhlTkxYRyZiatIhIxtSkRUQypiYtIpKxPjVpM/uQmd1R1GBERGRxHb09o5kdDnwRmF3ccERE\npF5fZtJ/AXYGhhU0FhER6abXTdrdrwLmFzgWERHpptfLHb0xbtwoOjqGNzytq2v0gK57/PjRTJgw\nps+XS5WbMls1D57clNmqOf9cWMpNuqtrTtPTZs0a2FL2rFmz6ex8rV+XS5GbMls1D57clNmqOZ/c\nVg28P1vwqv24jIiI9EOfZtLu/iwwtZihiIhId3oxi4hIxtSkRUQypiYtIpIxNWkRkYypSYuIZExN\nWkQkY2rSIiIZU5MWEcmYmrSISMbUpEVEMqYmLSKSMTVpEZGMqUmLiGRMTVpEJGNq0iIiGVOTFhHJ\nmJq0iEjG1KRFRDKmJi0ikjE1aRGRjKlJi4hkTE1aRCRjatIiIhlTkxYRyZiatIhIxtSkRUQypiYt\nIpIxNWkRkYypSYuIZExNWkQkY2rSIiIZU5MWEcmYmrSISMbUpEVEMqYmLSKSMTVpEZGMqUmLiGSs\no6czmNkywJnAOsCbwN7u/nTRAxMRkd7NpD8NjHT3qcCRwKnFDklERGp606Q3Bn4N4O4PABsVOiIR\nEVmox+UO4J3Aq3Xfv21my7j7gu5n3HDDtRtewcMPPw7AnFdeXOzn919+bMPzf+Rz31ns+9rlerr+\nRuN56623mPXqHIYtM7zp9TcbT3XB2+x04ygefdSbXn9P46mvubf11i630047MGLEiJbX32g83Wvu\nbb0Qambf21tef0/jqdXcl3oB7rvsaHa6cdQSNfdULyxec1/qBVh36wN7vP5W4+lvvfdffuzC21h9\nzb2pFxbVPHWXE5tef7PxdL8vNrr+VuOZ88qL/aoXWKLm3tYLoeZVp+7b8vqbjad7zX3tJ/dddvRi\nfaT79TcbT2/rbWZYtVpteQYzOxWY7u6Xx+9nuvvEPqWIiEi/9Ga5417gEwBm9mHg0UJHJCIiC/Vm\nueNqYCszuzd+v1eB4xERkTo9LneIiEg6ejGLiEjG1KRFRDKmJi0ikjE1aRGRjPVmd8dSZ2b7AVVg\nWLeTqu7+kwJzVwCOAN4AfujuL8WfH+/uxxeVGzOGAzsCLxO2Mf4AeBs42t1fKDK72zh+4O6HlJT1\neXf/PzMbDXwLWB94CPiuu88uMHcSsDZwO+HvvRHwOHCiu79SVG7MvgT4rzL/pjF3GLA9MA+4i/D2\nDf9GuH39rcDckcBXgU2B5YF/ATcB09y98F0JMX8dYCzQBTzu7vMKztyG5v3r5qWdl6RJA2sQGtbP\nS86dBlwFjADuMbNPuPuzhBtY0X4a/18ReBdwDjA7/nzHokLN7L74Ze0GtaaZfYRwg5paVG50APB/\nwI+AZ4CDgC2AnwC7FZg7DTgOOA34G3AM4W98CaGRFWkq8GszOx24oIxGFf0UWBYYA3ybcN/6J3Au\nsE2BuWcDzxH+pjsCLwAbAhsABxeYi5ltD5wE/AV4jVD7FDM72t2vLjB6H8KB/44Gp7VHk3b3/zKz\nNYAb3f3BEqOXrc3UzewR4Foz+3hJ2au7+ybxyP+4u58Xx7Ffwbk/Br4CfJ1wUPgFsCtLzgKKtLq7\n7x2/fsLMdi44r+rud5rZMe6+T/zZ783s8wXnAvwV2An4b+BQM7sYuBF4xt1fbXnJgam4+0fjjPoJ\ndz8TwMwKbZSEv+1X4tc3mtmt7r6lmd1fcC7AN4FN6n+vZjYWuI3w+o6i7ALcDfyPu/+5wBwg7Zr0\nHsCSbyBQrOFmtg6Au98HnAhcS3ioVDgz2yQ+FNsyfv8fwMgiM939EuAw4GRgOWCuu8+IjyCKtrqZ\nHQLMN7P1AczsA4RHMkV62cw+C/zKzL5sZuPM7IvA6wXnAuDuL7v7QcDmwCvAscB9rS81YMPMbFvC\nI5QJZjbFzFYh/M2L1BFfiYyZfQx4y8zGE2b1ResgLF3Wmwss8b5CS5O7v03oX4Xed2tSLXfg7p1A\nZ8mxBwGnm9ku7v6Cu19mZiMID4uLti9wgpndV7dG+ANCAy2Uuz9iZl8CzgMmFJ1XZ0fCQ18H1jWz\nZ4DTgf0Lzt2HcFCaCkwCvgf8Bti7xWWWludrX7j7i4T3Yj+zhNy9geMJTWtr4EpgFMXXvD/w03hA\neIbwiuQ9CctNRfsJ8HB8NfQrhOWOjxJuY4Uq8z319YpDwpN68ejY1uKTlxuWvMQkUhgzWxH4IKFB\nvwr81t2fb32pAWeWuvFBTVpEpA/M7Ic02fjg7t9e2nlJm7SZre3uj8evlwGOcPeTkg1IRAaNVFt5\nY/aNwLfKeFSa+sUs55nZZDN7L3AnsFoZoWa2dt3Xy5jZUWXkpsxWzaq5DXPXAA4nbGut/7dSCdml\nbXxI9sRhtDth7+o7gEPc/daScs8zs90IzwJfCDxRUm7KbNWsmtsqN+FW3lI3PqR8xWHNfcC2wPvM\nbN+iH6ZEqQ4OKbNVs2pux9w9CK90bFtJ1qTN7HjCWtISilh4r8utPzisQTg4/DDmFr2GlSRbNavm\ndswdSlK94vB4ADP7hbt/ocTolVh0cHgZuJRy1q9SZqtm1dyOucmVtvGhWq0m+1epVK6sVCrrViqV\n5SqVyshKpTKypNxfJKw5SbZqHhrZQy035b9KpfJApVKZXKlU3lupVO6uVCpnF5GT+olDA66p+74K\nvK+E3JFmti7hlXALAIp+56wMslVzebkps4dabsqtvKWswydt0u6+Nix8C9GXSnzVX6qDQ8ps1aya\n2zEXSt5ZUvbGh9QvZtmM8H4SrxLe+3bfIt6PtUV+2QeH5NmquVxDreYUufGNyi6mpJ0lZW98SN2k\n7wU+5+7/MLOVgavd/YMl5CY7OKTKVs2qud1yU+8sKWvjQ+pXHM53938AuPtzLPm2g0X5LuF9aNcD\nNo7flyVVtmpWze2WuxKLXmVYv7OkrN0lI81sXTNbzsxGWniv+KUu9ROHr5nZgYQ30P4YMKuk3MUO\nDmZW1sEhZbZqVs1tlZtwK29NKevwqZv07oQ3RD8B+BPhE0TKkOrgkDJbNavmdsyFRDtLytr4kHq5\n42TgFuDT7n6Yu3eVlLs74c2cTgBWpbyDQ8ps1aya2zEXFs1o/0Ro1IV/pBWEdfj4QRY3A0+b2dZF\n5KSeSU8DPgl8y8yeAq5y92tLyD2Z8IG0R7r7/BLycshWzeUaajUn+10n3MpbW4dfuPGBAj6INulM\n2t3vJXz0/BmEo2EZHzME4eCwOXC3mV1oZp8qKTdltmpWze2YW9qMtoFSNj6k3oL3B+Btwh7Hm939\nsRKzVwC2Ag4EJrr7yu2erZpVc5vmptrK+0vgJhatw2/u7jst7ZzUa9InAY8BnwD2svBpx4WLB4df\nE7bu7FPyHTdJtmpWze2YG6XaylvKOnzq5Y5LCZ/sfAqwAfCzkqKTHBwSZ6tm1dyOuRB3lsQ9ywdS\n3s6SUjY+pF7uuJ5wJLqJsOg+3d0XlJQ9krCGdiRQcff3lJGbMls1q+Y2zR1L2Mq7BmGHx4ll7BQz\ns40JGx8+ChS28SH17o5jgBnAJODpEht0/cHhaGB6Gbkps1Wzam7H3CjJzhJ3vzfuSnuUsA5/JtB2\nTbpCeNeqDuByM1vg7mW8nDTJwSFxtmpWze2YC4m28nbb+LBPURsfUj9xeAjwEeBfwInAziXlVgif\nTn4RcIiZfbOk3JTZqlk1t2Nuyq28pazDp27Sb7v7XID4MGV2SbmpDg4ps1Wzam7H3GQ7S8ra+JC6\nSf/GzH4BrGxm5wC/LSk31cEhZbZqVs3tmAvptvJeDzwEbEFYh1+liJzUW/COIqwnnQv80t0PLSk6\n1cEhZbZqVs3tmJtyK+8xhJ0dFwGPFrUOn3oL3vuAHYHl4o+q7n5ySdnbAWsDf3b368vITJ2tmlVz\nm+Ym2cprZp8lNOoO4HKgkI0PqZc7rgXGAXPjvzfLCI0Hhwqh/jXN7PAyclNmq2bV3I65USkz2gZK\nWYdP3aT/5u7Hu/tptX8l5SY5OCTOVs2quR1zId3OklLW4VPvk77ezL5H+HTfYYTljmkl5P6t9qkO\nCaTKVs1DI3uo5cKiGe2NhBntg5Tz8V2lrMOnbtK7El7GOaXk3FQHh5TZqlk1t2MuxBmtmeHu882s\nlJ0l7n5UXIf/HQWuw6du0m+6+wEJclMdHFJmq+ahkT3UciHRzpIG6/BTitj4kLpJzzCzowhHIghH\n38I/fp50B4eU2ap5aGQPtdzSZrQNXAtcCRT6Zk6pm/RIwpGoUvezMpp0qoNDymzVrJrbMbe0GW0D\npazDJ23S7r6nma0NrAk85e6PlBSd6uCQMls1l5ebMnuo5UJJM9oGSlmHT/1iloOA3QhvazgVuNzd\nTykpO8XBIWm2albNbZp7g7tvX1ZeXe6dhHX4l2s/i6+iXqpSN+nphE/bnW9mI4D73X2jEnJTHhyS\nZKtm1dyOuTF7f8JbpJa6s8TMbnL3bYrOSf1iltomcNz9LWBeSbG7EQ4OXwc2BnYpKTdltmpWze2Y\nC2FnyVjCzpI1KG+HyQwzO8rMton/CvmU8tRPHN5rZlcC9wCbAPeWFVx/cDCzsg4OSbNVs2pux1zS\n7SwpZR0+9ROHh5rZDoSj3/nufkNJ0ckODgmzVbNqbsdcSLSzpKyND0nWpM3sy01OKu1VSnUHhz+V\neHBImq2aVXOb5l4ALNbI3H2vEnJLWYdP1aS/R/ilDgO+AFxSO62IZ0frcpMdHFJlq+byclNmD7Xc\nBuMofWdJWRsfkix3uPuRta/N7ENFNuZuptDk4NDG2apZNbdj7kLdZrTfMLPSdpaUsg5frVaT/qtU\nKncMpVzVPDRyh2LNCXOnVyqVjvj1iEql8lBJuadWKpUrK5XK1yuVyhWVSuWUInKSb8ETERmoFFt5\nPXzc3/mEFYnz3f2wInKSLHfEd6yqWbPu+6q775ZiTCIyaJW6s6TBOnwn8O9mtkfbvCzczD7OonWs\nelV3v6vA3PqDw+bA7XW5hR4cUmWrZtXcjrkNxlHazpKyNz6keuLwzhS5wDks+uWeU/fzMo5UqbJV\nc3m5KbOHWm7pM9qasjc+JH3vDhGR/kq1lbfbGO5w982KzEj9snARkX5JuJW3VGrSIiJ9UPbGBzVp\nEZG+KXUdXmvSIjIo5bKzpGiaSYvIYJVyF09pNJMWEcmYXhYuIpIxNWkRkYypSYuIZExNWkQkY/8f\nnSzYygCE7RAAAAAASUVORK5CYII=\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The difficulty of the Python homework assignements have gone steadily up since the beginning of the course."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_lecture_by_day = rails_lecture_data_transposed.mean(1)\n",
+ "labels = [\"Lecture {}\".format(x) for x in range(1, 14)]\n",
+ "rails_lecture_by_day.plot(kind=\"bar\", title=\"Mean Difficulty of Rails Lectures by Day\")\n",
+ "plt.xticks(np.arange(13), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEwCAYAAABBg0FtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXVV5//HP5EYbZkgndfCCKIr4CKIC0YqIICitNkCF\n1gsoKheJ2PpDaFUEwaIoKIoN1QKNQRRK8IaoCRfBRuSmVqFGqXwjKEgtLaMz5kKQ3Ob3x9oHTiYz\n55Z9dvY++b5fr7xyzt7nrGets888Z+219qVvbGwMMzOrpilbuwJmZtY5J3EzswpzEjczqzAncTOz\nCnMSNzOrMCdxM7MKm7a1K7AtiIhdgF8Ct0g6cNy6zwNvA54kaaTL9fgu8AxgRbZoBnAz8D5JqyPi\nxcD7Jb0+InYGrgPWAScD5wI7ZP//raSXb0Ed/lnS1yJiAXCRpDu3oFm1cvcCvgaMAn8t6YFxMevb\nPRXYDjhH0uVNyj0b+IWkKyJiI21sp4i4Hzgyp/a9BDhO0klbWlabcd8OvFHSazt8/ytJ36N7skVT\ngdXAhyVdn0cdt3VO4sX5A7BbRDxD0q8BImJ7YH+gqIP1x4B/kHR1Fn8acCFwJXC4pB8Br89eexDw\nkKRDIuIAYEdJu2XrrtzCOtTa+2rg4i0oq97hwL9LesckMR9vN0BEzAFui4irJT0yWaGSPrQFdcpz\nuz4feHqO5RXpXkl7155ExAuBGyLiryT9cCvWqyc4iRdnA/Al4M2k3izAkcA1wN/XXhQRhwFnkHrJ\na0jJ5/sR8WTgEmBH4CnAA8AbJA1nPb7PA68i9Ti/JOn9k9Sjr/ZA0vqIOBX434gI4KnAPwPvBj4C\nzIqIfwd2BnaKiDuBo4EfSerPfgQ+AcwF1gO3A+/K6v+nkt6dtekf658DfRFxDvA04IqImAcsBp4u\naWVE9AEi9ah/Wl/5iDgTeFMWbznwd6Qfg5OAqRHxR5KOadTuzK6kHuFjETEF+DTwUmAge+0Jkm6P\niMuAn0r6VF0dngJ8EfjTbNESSWdN8nlPKCKOz+o8Bfgd8HeSFBH9pG2wX9bGa4CLgA8DO0TEwiz2\nZyS9ICvrlaS9mxdkn/XLSN+Rn0h6a0ScQfquTQHuB94l6aGIOJK0rTaSvp/vlXTLBNV9ckRcC+xE\n+t69g7Qn8zNa2GbjSVoWERcCpwBHRcS+wMezMp8K3CjphKzee0h6c9bOl2ft3KfFj3mb4DHxYl0O\nvKXu+VuBy2pPImI34KPAa7Mv6jzg6oiYCbwRuE3SfpKeTUrwtWQ1Bmwv6QDSH/+7I+KZk9Rhk96h\npD+QkuEL6pZ9FziLNPxzMHACcF9Wpz/UlfEuYB/ghcCepAT4xvEx2LT3DTAm6YPA/wBvlvQ94Duk\nHzhIewHDEyTwY4HXAC+W9CJSErlM0r+RevRXNUjg50fEXRHxq4j4P+B1wKskrScl76dI2lfS80lJ\n8rRJ6t5HSmL3SZoDvIK0hzUwQdwJRcSBpG3/iuwzPR+o7SV8mPQD/jxgL+DlpB+cM0nb43g2/0Ea\nb2dg7yyBv5W0bf4s6w1fB3wue90ngJMkvSQr/8AJS4PnkH5kXgT8FJif7U023WYNLOOJ79z/A86U\ntC9pj+PwiNgb+FdgbkT8Sfa6eaQfNKvjnniBJN0ZERsjYh9gGBiQdHfqBANwCKkn8u91yzYAu0q6\nMCJekfWcdyP9YX6/rvhvZDH+JyIeBmaTek2tGAPGDyn0TfK43quBL0p6LHv+JoCI6GQI4rOkpHIR\nk/+xvga4VNKj2fP5wBkRMT2r42T1fHw4JSKeBFxLSjg/AZB0R0T8LiJOAp4NvBJY2aCs64BrI+IZ\nwE3AaZJWtdHWuaTEeHvddh6MiEHS3tQpksZI8xGvBIiIZ7VR/vclbcweHwq8BPhRFmsq8MfZuquA\nayJiCXAj6cdkIjdK+mX2eCHwH9njVrbZZMZIHRFIc0JzI+IDwO7ATKA/28tcDLw1Ii4H/hx4Zxsx\ntgnuiRev1ht/C6nHV28K8B1Je9f+kXpid0fEx4Gzgf8jDat8m02T1qN1j8do3lsDIOvl707q1bZr\n3biyhrKhhvHxt2uhrO8AMyPiVaTe7ZcneM2UceVOJXVEWmlrH4Ck35L2Fk6IiL/J6j0XWEIaVriG\n1Kuf9G8jmzt4FqmnuAvww4h4WQt1qG/H5XXbeB9gX0mjpCGUx0XEThExe9z7x3++M8atr/9BngKc\nVxfrxcABWTs+SPp+/Qh4O3BHNiwy3sa6x1N4Yru3ss0m8xJSbxzgVtIP9M9J3/H/rmvfZ4HjgKOA\nr0pag23CSbx4VwBvICWS8ROES4E/z8aniYjXAP8J/BGpF/JP2dDBMKnXPrWD+I//kUbEHwP/BFwr\n6cEOyroJODoiZmTjyheT/tiGgTlZjO2zuk9kPVkCynqe/0La1f83SWsneP0NwLHZDw+k3fCbJ3nt\neI8PiUj6FWnY6tNZWa8GviXpEuDHwBE88dmOT2p9EXEeaff/G8B7gLtJe0cTmSgpfps0FvyU7Pk7\nsmWQPtO3RURfRGxHOuLmAFLinJ69Zhh4Rvaj2UcaGprMDcA76oZ7/hH4QkRMjYhfkYbhLgH+lvRj\nPtHe+UHZXgekcfxroeVttpmI+DNSj3p+tvcxh7Q3cw1p8vY5ZJ+/pDtIPyL/gIdSJuThlOKMwePD\nHf8F/F7S78etuzsiTgSuyv441wGHSVoTER8GPhkRpwMPA18lfdnbdX5EfJD0hzGNtBv97rr1Y3X/\nj02wvP7xJaSe6I9JyWopaYijH3htRPwC+A1wGxMns2uAL0XE8ZJuIu2ZfCordyILSeO9P8x+NH7B\nE2Oy4+vbzCdJu/EfJP34XBkRd5EOUfwG8PfZNhjf7jHSJOgXIuKnwGOkH9pFk8T5XnZoYs17JV2c\n7VndmK1bQfrhgNQTnQ/8hJTIrpJ0TUQ8G/hoRHxN0l9HxCWkHvRDpEnhybbb50gTkt+PiDHSENvb\nJG2IiPdk7V5H+j4cK2mTvausrGXAwuxH579IQyc1zbbZGLBr9tmSxVkBHFUbP4+Ic4E7I+J/svKv\nJX23l2bvuQx4vaS7J4mxTevzpWitLCLiTcAxkuZu7bpYa7q9zbIjoL5Omnv5SjdiVF1LPfGI2JHU\n23qVpOV1y08Bjift3gHMq19v1qpIJ+QMAX+9latiLer2NouIPUjj5UucwCfXtCeezfx/mTRedvi4\nJH45cIGkuyZ7v5mZdU8rE5vnkyYUHppg3Rzg9Ii4JSJOm2C9mZl1UcMkHum6CcOSajPn4yenFpEm\nOQ4G9s8O1TIzs4I0HE6JiJt5YrZ7L9JptYdLejhbv4Okldnjk0inVp/TKOD69RvGpk3r5Mg4M7Nt\n1qTnQrR8dEpELKVu4jIiZpEOPdqDdObVl4GFanJlsuHhVW0dDjM0NMDwcDsnw3XGccoZw3HKHaeX\n2pJnnLVr1/Lgg5OfMD17dj8jI6s3W77zzs9kxozx527B0NDApEm83ePE+yLiKNIpsQuycfClpGNl\nb2qWwM3MtgUPPvgAJ5//TWbO2rHl96xZ8TDz33s4u+462XljE2s5iUs6qPawbtkiJj/JwcxsmzVz\n1o70D+7U9Tg+7d7MrMKcxM3MKsxJ3MyswpzEzcwqzEnczKzCnMTNzCrMSdzMrMKcxM3MKsxJ3Mys\nwpzEzcwqzEnczKzCnMTNzCrMSdzMrMKcxM3MKsxJ3Myswtq9KYSZlUSzu8eMjrZ39xirJidx26Y0\nSnxVS3pF3j3GyqulJB4ROwI/Bl5Vu8dmtvww4ExgPXCppM91pZZmOWk38ZU96RV19xgrr6ZJPCKm\nA5cAj0yw/ALgxaQbJd8WEd+U9HA3KmqWFye+cuqlvaQitdITPx+4CPjAuOW7A/dKWgEQEbcCBwBf\nzbWGZrZN6LW9pKI0TOIR8XZgWNK3I+IDQF/d6h2AFXXPVwGzcq9hBblHYdYZ7yW1r1lP/FhgLCJe\nDewFfCEiDs+GTFYAA3WvHQBGmwUcHJzJtGlT26rk0NBA8xflIK84y5cvb7tHcfm5R7PTTs/NJX5N\nEZ9b1bbN6Gh/2++ZPbs/93bmUV4nbYH821OlbbN27Vruv//+BnV4aMLlu+yyS1udrCK3TcMkLunA\n2uOIWArMqxvzvgfYLSIGSePlB5CGXhoaHV3TVgWHhgYYHl7V1ns6kWeckZHVbfcoRkZW59rOIj63\nqm6bTt5Txm3TSVtq78urPVXbNvfd94tCjujJe9s0SuztHmLYFxFHAf2SFkTEqcANpJOGFkqa+GfM\nzKwkem3IpuUkLumg2sO6ZYuBxXlXyrY9ncwjgOcSzHyyj5WCT1wx64yTuJVGr+3mmhXBF8AyM6sw\nJ3EzswpzEjczqzAncTOzCvPEZkX5WtJmBk7ileVD8swMnMQrzYfkmZmTuJk15LNpy81J3Mwa8tBd\nuTmJm1lTHrorLx9iaGZWYU7iZmYV5iRuZlZhTuJmZhXWdGIzIqYCC4DnAmPAOyXdXbf+FOB4YDhb\nNE/S8i7U1czMxmnl6JRDgY2S9o+IA4GPAq+rW78PcIyku7pRQTMzm1zT4RRJ3wDmZU93YfM72s8B\nTo+IWyLitHyrZ2ZmjbQ0Ji5pQ0RcBlwIXDlu9SJSkj8Y2D8i5uZaQzMzm1Q7N0p+e0S8H/hBROwu\n6dFs1XxJKwEiYgmwN7BksnIGB2cybdrUtio5NDTQ1us7lVec0dH+tt8ze3Z/W/E7idFJnGa25mcG\nxXxueX9mkM/nVubPrKg4vdSWTuJAaxObxwBPl3Qu8CiwkTTBSUTMApZFxB7AGlJvfGGj8kZH17RV\nwaGhAYaHV7X1nk7kGWeya0k0e0878TuJ0UmcRrb2Z1Z7X7c/tzw/M8jvcyvzZ1ZUnF5qS6M4jRJ7\nK8MpXwX2ioibgeuBk4EjIuIdklYApwFLge8BP5N0fQd1NzOzDjTtiWfDJm9ssH4RaVzczMwKtk1d\nAMuX1DSzXrNNJXFfUtPMes02lcTBl9Q0s97ia6eYmVWYk7iZWYU5iZuZVZiTuJlZhTmJm5lVmJO4\nmVmFOYmbmVWYk7iZWYU5iZuZVZiTuJlZhTmJm5lVmJO4mVmFOYmbmVWYk7iZWYW1co/NqcAC4Lmk\ne2u+U9LddesPA84E1gOXSvpcl+pqZmbjtNITPxTYKGl/4IPAR2srImI6cAFwCHAgcGJEtH7HBTMz\n2yJNk7ikbwDzsqe7AKN1q3cH7pW0QtI64FbggLwraWZmE2vpzj6SNkTEZcARwN/UrdoBWFH3fBUw\nK7famVVQo3u5wuT3c/W9XK0TLd+eTdLbI+L9wA8iYndJj5IS+EDdywbYtKe+mcHBmUybNrWtSg4N\nDTR/UQtGR/s7et/s2f1t1aGTOEXE6CROM942m1u+fHlH93K9/Nyj2Wmn57b8njJ/ZkXF6aW2dBIH\nWpvYPAZ4uqRzgUeBjaQJToB7gN0iYhB4hDSUcn6j8kZH17RVwaGhAYaHV7X1nslMdjf7Vt7XTh06\niVNEjE7iNOJtM/nrO7mXa1m/A2WO00ttaRSnUWJvZWLzq8BeEXEzcD1wMnBERLwjGwc/FbgBuB1Y\nKOmhDupuZmYdaNoTz4ZN3thg/WJgcZ6VMjOz1vhkHzOzCnMSNzOrMCdxM7MKcxI3M6swJ3Ezswpz\nEjczqzAncTOzCnMSNzOrMCdxM7MKcxI3M6swJ3EzswpzEjczqzAncTOzCnMSNzOrMCdxM7MKcxI3\nM6swJ3EzswpreGefiJgOXAo8E9gOOEfSt+rWnwIcDwxni+ZJWt6lupqZ2TjNbs/2ZmBY0jHZzZD/\nE/hW3fp9gGMk3dWtCpqZ2eSaJfGvkG6UDGnoZf249XOA0yPiKcASSeflXD8zM2ug4Zi4pEckrY6I\nAVJCP2PcSxYB84CDgf0jYm53qmlmZhNperf7iNgZuBr4rKSrxq2eL2ll9rolwN7AkkblDQ7OZNq0\nqW1VcmhooK3XT2Z0tL+j982e3d9WHTqJU0SMTuI0422TTwzH8bbpJA40n9h8MvBt4F2Slo5bNwtY\nFhF7AGtIvfGFzQKOjq5pq4JDQwMMD69q6z2TGRlZ3fH72qlDJ3GKiNFJnEa8bfKL4TjeNo3iNErs\nzXripwOzgLMi4qxs2QJge0kLIuI0YCnwGHCTpOs7qbiZmXWmYRKXdDJwcoP1i0jj4mZmthU0HRMv\nwtq1a3nwwQcmXDc62j/prsnOOz+TGTNmdLNqZmalVook/uCDD3Dy+d9k5qwdW37PmhUPM/+9h7Pr\nrrt1sWZmZuVWiiQOMHPWjvQP7rS1q2FmVim+doqZWYU5iZuZVZiTuJlZhTmJm5lVmJO4mVmFOYmb\nmVWYk7iZWYU5iZuZVZiTuJlZhTmJm5lVmJO4mVmFOYmbmVWYk7iZWYU5iZuZVVize2xOBy4Fngls\nB5wj6Vt16w8DzgTWA5dK+lwX62pmZuM064m/GRiWdADwGuAztRVZgr8AOAQ4EDgxIlq/q4OZmW2x\nZkn8K0DtBslTSD3umt2BeyWtkLQOuBU4IP8qmpnZZJrdKPkRgIgYICX0M+pW7wCsqHu+CpiVdwXN\nzGxyTW/PFhE7A1cDn5V0Vd2qFcBA3fMBYLRZeYODM5k2beomy0ZH+1uq7HizZ/czNDTQ/IUViFPW\ntjSTV1neNo7jbdPZ32ezic0nA98G3iVp6bjV9wC7RcQg8AhpKOX8ZgFHR9dstmyyu9k3MzKymuHh\nVW29vqxxytqWRoaGBnIry9vGcbxtJo/TKLE364mfThoiOSsiamPjC4DtJS2IiFOBG0jj5QslPdRJ\nxc3MrDPNxsRPBk5usH4xsDjvSpmZWWt8so+ZWYU5iZuZVZiTuJlZhTmJm5lVmJO4mVmFOYmbmVWY\nk7iZWYU5iZuZVZiTuJlZhTmJm5lVmJO4mVmFOYmbmVWYk7iZWYU5iZuZVZiTuJlZhTmJm5lVmJO4\nmVmFNb1RMkBEvBQ4T9JB45afAhwPDGeL5klanm8VzcxsMq3c7f59wFuAie78uQ9wjKS78q6YmZk1\n18pwyr3AkUDfBOvmAKdHxC0RcVquNTMzs6aaJnFJVwPrJ1m9CJgHHAzsHxFzc6ybmZk10dKYeAPz\nJa0EiIglwN7AkkZvGBycybRpUzdZNjra31Hw2bP7GRoaaPn1ZY5T1rY0k1dZ3jaO423T2d9nx0k8\nImYByyJiD2ANqTe+sNn7RkfXbLZsZGSi4fbmRkZWMzy8qq3XlzVOWdvSyNDQQG5leds4jrfN5HEa\nJfZ2kvgYQEQcBfRLWpCNgy8FHgNuknR9WzU2M7Mt0lISl3Q/sF/2eFHd8kWkcXEzM9sKfLKPmVmF\nOYmbmVWYk7iZWYU5iZuZVZiTuJlZhTmJm5lVmJO4mVmFOYmbmVWYk7iZWYU5iZuZVZiTuJlZhTmJ\nm5lVmJO4mVmFOYmbmVWYk7iZWYU5iZuZVVhLSTwiXhoRSydYflhE/DAibo+IE/KvnpmZNdI0iUfE\n+4AFwHbjlk8HLgAOAQ4EToyIHbtRSTMzm1grPfF7gSOBvnHLdwfulbRC0jrgVuCAnOtnZmYNNE3i\nkq4G1k+wagdgRd3zVcCsnOplZmYtaOdu9+OtAAbqng8Ao83eNDg4k2nTpm6ybHS0v6MKzJ7dz9DQ\nQPMXViBOWdvSTF5leds4jrdNZ3+fW5LE7wF2i4hB4BHSUMr5zd40Orpms2UjI6s7qsDIyGqGh1e1\n9fqyxilrWxoZGhrIrSxvG8fxtpk8TqPE3k4SHwOIiKOAfkkLIuJU4AbSsMxCSQ+1VWMzM9siLSVx\nSfcD+2WPF9UtXwws7krNzMysKZ/sY2ZWYU7iZmYV5iRuZlZhTuJmZhXmJG5mVmFO4mZmFeYkbmZW\nYU7iZmYV5iRuZlZhTuJmZhXmJG5mVmFO4mZmFeYkbmZWYU7iZmYV5iRuZlZhTuJmZhXmJG5mVmEN\n7+wTEVOAfwFeCDwGnCDpvrr1pwDHA8PZonmSlneprmZmNk6z27O9Dpghab+IeCnwqWxZzT7AMZLu\n6lYFzcxscs2GU14OXA8g6QfAi8etnwOcHhG3RMRpXaifmZk10CyJ7wCsrHu+IRtiqVkEzAMOBvaP\niLk518/MzBpoNpyyEhioez5F0sa65/MlrQSIiCXA3sCSRgUODs5k2rSpmywbHe1vucL1Zs/uZ2ho\noPkLKxCnrG1pJq+yvG0cx9ums7/PZkn8NuAw4CsRsS+wrLYiImYByyJiD2ANqTe+sFnA0dE1my0b\nGVndRpU3fd/w8Kq2Xl/WOGVtSyNDQwO5leVt4zjeNpPHaZTYmyXxrwOHRMRt2fNjI+IooF/Sgmwc\nfCnpyJWbJF3fUc3NzKwjDZO4pDHgpHGLl9etX0QaFzczs63AJ/uYmVWYk7iZWYU5iZuZVZiTuJlZ\nhTmJm5lVmJO4mVmFOYmbmVWYk7iZWYU5iZuZVZiTuJlZhTmJm5lVmJO4mVmFOYmbmVWYk7iZWYU5\niZuZVZiTuJlZhTmJm5lVWLPbs5Hd3f5fgBeSbsN2gqT76tYfBpwJrAculfS5LtXVzMzGaaUn/jpg\nhqT9gNOAT9VWRMR04ALgEOBA4MSI2LEbFTUzs821ksRfDlwPIOkHwIvr1u0O3CtphaR1wK3AAbnX\n0szMJtR0OAXYAVhZ93xDREyRtDFbt6Ju3SpgVqPC5szZc7Nl69at4xn7nTjh6+/4ypkTLn/Rn7+7\n5fIBfvzjnwGwZsXDLZX/std/ZMLXNyu/pva+ZuWPj9Fq+bX3tVJ+/euPOOJQpk+f3lL5tfqsW7du\ns+Vf//piRkf7GRlZvcnyI444FGCzGI3Kh/QdGFm5hr4pUyetP2z6eY5t3MAR181k+vTpTcuvqcXZ\n740fa1p+fYxly9RS+bUY2/L3uf717XyfAW7/0umPfwcalV+L0e73+YgjDt3ke9aofEjtrf+eNSu/\n29/nifSNjY01fEFEfAr4vqSvZM8flLRz9vgFwHmS5mbPLwBulXR1yzUwM7OOtTKcchvwlwARsS+w\nrG7dPcBuETEYETNIQyl35F5LMzObUCs98T6eODoF4FhgDtAvaUFEHAqcRfpBWCjpoi7W18zM6jRN\n4mZmVl4+2cfMrMKcxM3MKsxJ3MyswpzEzcwqrJWTfQoTEcuAJwF941aNSXpazrFmAeskralbtouk\n+/OMU1f2s4CNkh7oRvl1cV4oaVnzV25RjCHgucDPJY10ofxpktZn22g30lnBv885Rkia+AyeLomI\nnYCZkn7RhbKnAnsCM4HfdinGHwPzgFeTTur7PfA94DOSHs0xzlJgOybOA/vlFOO5wLnAo8DZtc8r\nIi6W9M48YmTl9QMnAKPAUuCLwAbgXXl9/0qVxIEjgUXAgfXJNW8RcQLwfmBqRFwi6ePZqs8DB+UU\n40BgPmnjfR54H7AuIj4jaWEeMbI4fwHUDjHqAz4REe8FkPTtHOMskTQ3IuYCnwbuAvaMiNMkfSvH\nOKcB/RFxC3Ah8HNgj4j4sKQr8ooD3B0R55H+gDc/JTUHEbEfqQ1rgU8CZwOPRcQVkv4pxzivAi4C\nRoDnA3dGxJ8Cx0n6YV5xSN/ju4DTgdXAAPBa4ErgiBzjnAYsIOWD9TmWW+9fgY8B04FvRMRbJN0J\nRM5xriB9Zi8gXShwHumz+yzpx3CLlSqJS7o3Ii4kJdIlXQx1IunLDvCFiDhD0kdzjnEe8FfALsC3\ngKeRrgL5PSC3JA58HNgI/ISUxHcEjsrW5ZbEST08SH9gL5c0nPUyrie1Ly9HAvsC3wX2z+JsT/rc\n8kzit5J6kj/KzjS+StJjOZYP6WJxbyL1Wm8EnkX6A74NyC2Jk34cXibpdxHxbFIH5RzgKtK1j/Ly\nNElvGrfsJxFxa44xkPSDiLgCeGEXz/4eq3VyIuJe4OtZhyhvsyWdnV0N9qeSvpPFzG0ou1RJHEDS\n5QWEWS9pLUBEvBW4LiJ+mXOMvmzo5IGI+GdJq7N4G3KOsx/pV/1WSQsjYqmkY3OOAanHAinx/Q5A\n0upsNz5PG7NYDwG1vbH1PLG3kZcxSZ+MiKuAU4HTI+Ie4D5Jp+YUoy/rmGxHusbQSkljEbExp/Jr\nZkj6Xfb418DzJT2YZ6LI/CH7e7me1J4dSGdzr8o5DpI+kXeZ42yIiMOBayUpIv4WWMwT3/O8rIuI\ntwD/BuwFEBGvZPOhoo5tqxObt0XE1yLiT7Jd6dcD7yX7kHPynYi4MSKmSjoDICI+w6aXLdhiktZk\nSXswIi4m/y9hze8i4m5gH+DkiJgZEUtIvco8XQzcDAwDd2R7Zv8BdOXHXdJ/Z0l7d9Lu7u05Fn9T\nRNwB/JD0OX0xIi4ClucYA+CWiLguIt5DSkTXZsn2v3OOczTpKqbXAT8jJfM5wNtyjlOE40h7fbMA\nJC0F3kMa+srTW4A5ksbqhu1eTxpWycU2e8ZmRBwE3F7bhc4mbd4p6dM5xthb0l3jYt6cXQEyd9nY\n6HGS3tyN8rMYTyb9UPwv8GpJ13chxq6k8cInAb8FbpPU+mXdWovxF5JuyLPMSeI8D3hM0q8i4mhg\ne+CyvMfhs7mKPYD/lHRjNnH3QBeGiLquyAMcesE2m8TNrJwi4jkUcIBDryhlEo+IPUmz7YPAF0iH\nsi3eurUy27YVfAjwMcCIpK4c4FBUW4qIU7qJzcyFpDGrfyUdvvRN0lifmW09hRwCDIUc4FBUW7oe\np6xJHEm/iAgk/SYiVjZ/R/uK6PEXtVfhOOWN0yttKfAQ4K4rqi1FxCnr0SkjEfFOYPuIOIp0WFs3\n1Hr8w6Qe/9kVjeE45Y7TM22RdHm3hjiKVlRbuh2nrEn8ONKJEb8lHdJ0fLcC1U63lfQbNr2XaKVi\nOE654/RSW6xcyjqccrGkowuIU0SPv6i9Cscpb5xeakthfIBDa8raE98uIl4UEX8UETMi3b+zG4ro\n8Re1V+E45Y3TS20pUlHDUJVW1p54ANeMW/asLsQposdf1F6F45Q3Ti+1pdAecrcPcOiFSedSJnFJ\nexYUaruIeBEg0jU7qF1TpWIxHKfccXqpLVDcIcBFDA8V1ZauxSllEo90PeF6Y5IO7kYout/jL2qv\nwnHKG6cxfXymAAAEo0lEQVSX2gIUcwgwKemdQZeHhwpqS9filPWMzedlD/tIF1zaW9I/bMUqmVkm\nIr4K3ERKsp8G3iApz+uJ1+Jc2e3hoQLb0rU4peyJS7qn7unPI93EIXdF9PiL2qtwnPLG6aW2ZArp\nIVPM8FBRbelanFIm8Yiov0zjU0lXfuuGk7L/H+/xVzSG45Q7Ti+1BYqbqC1ieKjyk86lTOLAU+oe\nPwq8oRtBiujxF7VX4TjljdNLbckUMoFa0AEOlZ90LmsS3yjpI7UnEXEu8IG8gxTR4y9qr8Jxyhun\nl9pSC0UBE6gFDQ9VftK5VEk8Io4n3Rl6j4j4y2zxFGAGXUjiFNPjL2SvwnFKHaeX2lLkIcBdHx4q\nqi3djFOqJE66Ee53SBMA55A23gbg4S7FK6LHX8heheOUOk4vtaWwCdQihod6YdK5VEk8u5XU/RGx\nEHidpPkRcTnpkJw784pTRI+/qL0KxylvnF5qyziFTKAWNDxU+UnnUiXxOp8B3pQ9/hDpNNVX5Fh+\nET3+ovYqHKe8cXqpLY8rcAK168NDvTDpXNYLYK2VdC+ApF+SvpC5kfSYpPuBWo//fuBjwPOrFMNx\nyh2nl9pSLyLm1f37R7o3gbpR0tnZv4+T4x3ia4pqSzfjlLUn/uuI+BjwfeAlwG+6FKfbPf6iYjhO\nueP0Ulugyz3kgoeHKj/pXNae+LGky0++Nvv/uC7F6WqPv8AYjlPuOL3UFuh+D/kK4Cjgy6QfpaOA\nvwH2zTkOFNDb73acsvbE1wGrSKeo/gQYAB7rQpwievxF7VU4Tnnj9ERbiuohF3GAQy9NOpe1J34J\n8AzgENL1d7/YpThF9PiL2qtwnPLG6ZW2FNlDhjQ8VLs35YeA+TmWXVRbuh6nrEl8V0lnAY9KugaY\n1aU4E/X4qxjDccodpyfaUvQEKl0cHuqlSeeyJvGpEfEkgIgYILvWQBcU0eMvaq/Cccobp5faAt3t\nIdf7dUR8LCIOj4iP0J1hqKLa0rU4ZU3iHwRuA+YAPwA+3KU4RfT4i9qrcJzyxumltkBxE6hFDENV\nftK5lBObkm7ObgwxRNo13LVLoYro8Re1V+E45Y3TS22B4iZqizjAofKTzmXtiSNpTNLDkjaS7knX\nDUX0+Ivaq3Cc8sbppbZAcRO1RQwPVX7SubRJvAiSbgaeBzwH2BO4v4oxHKfccXqpLZmiJmqLGB6q\n/KRzKYdTiiRpjOwaExFxJWlXp3IxHKfccXqpLaQe8m9IPeQfk3rIf9nwHZ0pYnioqLZ0LU6peuIR\nsWiif8Czt3bdzOxxRU2gFjE8VPlJ57L1xC8BxkhXYat38Vaoi5lNrJAJ1IIOcKj8pHOpkrik7xYR\nJ+vdTyS3Hn8RMRyn3HF6qS3j1HrITyX1kE/uUpwihoeKakvX4pQqiReoiB5/UXsVjlPeOL3UlscV\neAhw1xXVlm7G6RsbG8urLDPbBkXEf0jqykRt0XGq2JZttSduZiW1FYaHKs1J3MzKxgc4tMFJ3Mxa\nUlQPuYgDHHpp0tlJ3Mxa1Us95J6ZdPbEpplZhZXqjE0zM2uPk7iZWYU5iZuZVZiTuJlZhTmJm5lV\n2P8H7mpyhKDA2b0AAAAASUVORK5CYII=\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The rails lectures have stayed consistantly difficult, save the first two days of the course and one day on Jan 23."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_homework_by_day = rails_homework_data_transposed.mean(1)\n",
+ "labels = [\"Homework {}\".format(x) for x in range(1, 14)]\n",
+ "rails_homework_by_day.plot(kind=\"bar\", title=\"Mean Difficulty of Rails Homework by Day\")\n",
+ "plt.xticks(np.arange(13), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAE/CAYAAACw1fO4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXHV9//FXyAUbdkmTdlErCEqZj1AqcrEiUigg3rhU\nrIqIWFQk4u+HFLwhiLeiUFEstl4wBhHRqAhIIXIpGpCLSEFsQOWNoCK/emFt1pAQLgnZ3x/fszDZ\n7M5lOefknJP38/HIIzPnzJ7397sz+znf+c53ZqaNjo5iZmb1tMmGboCZmU2di7iZWY25iJuZ1ZiL\nuJlZjbmIm5nVmIu4mVmNzdjQDWiSiNgG+AVwnaS9x+37EvCPwJ9LWlZwO64BngkszzbNAq4F3iNp\nZUTsBrxX0msiYivgcmA1cBxwGrB59v//kfSiJ9GGf5N0YUQsAD4n6UdPoltjx30ecCEwAvyDpHvH\nZbb3ezqwKXCqpK90Oe6HgZ9LOj8i1tLH/dTe17Zt2wC3SxrssWuVMFFfJrjNkcChkl4+xYy/Iz3m\n7sw2TQdWAh+RdMVUjrkxcxHP38PAdhHxTEm/BoiIzYA9gbIW5Y8C75J0UZY/A/g08DXgYEm3AK/J\nbrsP8FtJ+0fEXsAWkrbL9n3tSbZhrL8vBj7/JI7V7mDge5LeOknm4/0GiIhdgRsi4iJJD052UEkf\nfBJtau9r3ZXVl7sl7Tx2JSKeC1wZEX8v6eYS8hvDRTx/jwHfAA4njWYBXgV8G3jn2I0i4iDgZNIo\neRWp+NwUEU8Fzga2AJ4G3Au8VtJwRPwK+BKwH2nE+Q1J752kHdPGLkhaExEnAL+LiACeDvwbcCzw\nz8CciPgesBXwjIj4EfB64BZJA9lJ4OPAAcAa4Ebg7Vn7/0zSsVmfPtR+HZgWEacCfwGcHxHzgcuA\nLSU9EBHTAJFG1Le3Nz4iTgFel+XdBfxf0sngGGB6RDxF0hGd+p3ZljTKeyQiNgE+BbwAGMxue5Sk\nGyPiXNLI+ZNtbXgacB7wZ9mmxZI+0O33PZGJ+iPp99nI9xZgX9J9fhbwVGBvYDPSfX9HRMzJ9u0I\nzAS+C7wb+ASwUtIpWXt/A+wnaUlEHE46aR/aJf9/gecAn2tr7wzSSfwR4EhJj43r0lMj4jvAM0iP\n0beSnvXcQQ/373iSlkbEp4HjgcMiYnfgX7JjPh34T0lHRcTJwA6SDs/a+SLSM4ddOh2/yTwnXoyv\nAG9ou/5G4NyxKxGxHfBR4OXZg28+cFFEzAYOBW6QtIekZ5MK/FixGgU2k7QXsAdwbERsPUkb1hlN\nSXqY9Mf7123brgE+QJr+2Rc4Crgna9PDbcd4O7AL8FxSERnM2jl+xDZ+FDcq6f2kwnK4pO+Tis/h\n2f59gOEJCvibgJcBu0naiVQYzpX0VdKI/usdCvgZEXFbRPwyIn4PvJJU1NaQivfTJO0u6a9IBfrE\nSdo+jVSY7pG0K/C3pGdYE02PtOfeFhG3AYvHjjdZf9p+fuvsd/4qUuFaIun5wBWkEy2kk88tknYj\n3RdDwAnARdmxyf7/HelkB/D3wAVd8keBZZL+StK/Z9s2BS4AfifpiAkKOMBfkk4EOwG3A2dlzzy7\n3r8dLOWJx+c7gFMk7Q78FXBwROwMfAE4ICL+NLvdfNpOPhsjF/ECZHO/ayNil2zOeVDST9pusj9p\ndPG97A/+fNIIfltJnwZuiogTIuJzpKK5WdvPXpJl/Aa4H5jXR9NGgfFTCtMmudzuxcB5kh6RNCrp\ndZLO7yO33WdIxREm/wN8GXCOpIey62cB+0XEzKyNk7VzbDplZ+D5pBHisKT/BpD0A+CUiDgmIs4A\n/oF1f7fjj3U58A8RsThr64mSVnTKHfsHvKKtnS8f159Pt/VnlFSIIb2eAql4j12fm10+EJifPV5u\nyfq3I3A9sGVEDGW/t1OB/bNj75X1oVM+wHVtfZkGfJL0bO+fJ/ndQBoZj7V3IekxDb3dv5MZJQ1a\nIL1+NC8i3gd8FpgNDEgaJj2be2NEzAVeAny1j4zGcREvztho/A2kEV+7TYDvjvujfxHwk4j4F+DD\nwO9J0ypXsW7Reqjt8ihdnsaPyUb525NGYf1aPe5YQ9lT9/H5m/ZwrO8CsyNiP9Lo9psT3GaTcced\nTpr666Wv0wAk/YH0bOGoiHh11u4DSCPktaTprc/T4W8ge+3gWaTR3zbAzRHxwh7a8Hg72i63X9+E\ndfvzyLjciUa+mwCvbnu87A68Q9IocCmpyL8AWEAaILwGuDF7HaBb/sq2faOkx+vngS926N/acccb\ne4z0cv9O5vmk0Tikk9PLgJ+R/h7+X1t7PwO8GTgM+JakVWzEXMSLcz7wWlIhGf8C4RLgJdn8NBHx\nMuDHwFNII4t/zaYOhkkjnOlTyH/8jzYi/gT4V+A7ku6bwrGuBl4fEbOyeeXPk/6AhoFds4zNsrZP\nZA1p7p+s6HyWVCC+KunRCW5/JfCm7MQD6an1tZPcdrzHp0Qk/ZI0bfWp7FgvBi6VdDZwK3AIT/xu\nx58gpkXE6aSn9JcA/wT8BNiO/nXrT6eT09i+K4ETImJaRMwCLiZNc5Fdfg+wVNJq4Huk12O+NcX8\nm4FTgL+MiKMmadc+EfHM7PIxwHeg5/t3PRHxN8DbgLOyEfaupGc+3wa2JE3fTM8yfkA6ibyLjXwq\nBVzEizAKj093/BS4S9Ifx+37CXA08PWI+DHpaetB2YjiI8AnIuIm0gP0W6QHcL/G5mhvBW4CHiA9\nRV2nnUwwjz3B5bGidytppPQb0hTHV4HhiPg5aYR7wyRt+TbwjYgYm6s9j/SHefYkt19IOnHcHBE/\nBZ7HE/Os/a6e+ATpKfr7SSefvbMpie8A/wlsk70AN77fo6R56OdFxO3Af5GmNxb1kT12zE79ab/d\nRJfHrr+DNPWzNPt3B+nFZkhF+y+y/kAq2luQRuj95gMg6RHgSNLj6FkT9GspsDD73WxJmp8f0+3+\nHQW2bXsN4VbgdOAwSbdLGiGdhH4UEddnbf0O6/4dnAv8z7hpyo3SNH8UrZUtIl4HHCHpgA3dFstf\n0fdvtnLmYtLrNBcUkVEnPS0xjIgtSKOw/STd1bb9eOAtpKfVAPPb95uNly1pGyK9qGgNU/T9GxE7\nkObLF7uAJ11H4tkr2N8kvSh28Lgi/hXgTEm3FdpKMzObUC9z4meQ5mZ/O8G+XYGTIuK6iDhxgv1m\nZlagjkU80mckDEu6Kts0/lXsRaS1oPsCe2ZLuMzMrCQdp1Mi4lqeeIX8eaS30B4s6f5s/+aSHsgu\nH0N6y/WpnQLXrHlsdMaMqayYMzPbaE26DLXn1SkRsYS2Fy6zz3JYCuxAWsL1TWChunwK2fDwir6W\nwwwNDTI8PNGb5PLlnGpmOKfaOU3qS5VzhoYGJy3i/X4A1rSIOIz09tcF2Tz4EtI7zq7uVsDNzCxf\nPRdxSfuMXWzbtoj+3vxgZmY58kfRWiU8+uij3HffvRPuGxkZYNmylRPu22qrrZk1a1aRTTOrNBdx\nq4T77ruX4874D2bP2aLnn1m1/H7OevfBbLvtVD7OxKwZXMStMmbP2YKBuc/Y0M0wqxV/AJaZWY25\niJuZ1ZiLuJlZjbmIm5nVmIu4mVmNuYibmdWYi7iZWY25iJuZ1ZiLuJlZjbmIm5nVmIu4mVmNuYib\nmdWYi7iZWY25iJuZ1VhPH0UbEVsAtwL7jX3HZrb9IOAUYA1wjqQvFtJKMzObUNeReETMBM4GHpxg\n+5nA/sDewNFZsTczs5L0Mp1yBvA54Lfjtm8P3C1puaTVwPXAXjm3z8zMOuhYxCPiSGBY0lXZpmlt\nuzcHlrddXwHMybV1ZmbWUbc58TcBoxHxYuB5wJcj4mBJ95MK+GDbbQeBkW6Bc+fOZsaM6X01cmho\nsPuNcuCcDZcxMjIwpZ+bN28g13426b4pK6dJfaljTsciLmnvscsRsQSYnxVwgDuB7SJiLmm+fC/S\n1EtHIyOr+mrg0NAgw8Mr+vqZqXDOhs2Y7Nvse/m5vNrQpPumrJwm9aXKOZ0Kfr9flDwtIg4DBiQt\niIgTgCtJ0zILJY2fNzczswL1XMQl7TN2sW3bZcBleTfKzMx60+9I3Hrw6KOPct999064b2RkYMKp\ng6222ppZs2YV3TSzyvLfzdS4iBfgvvvu5bgz/oPZc3pbNr9q+f2c9e6D2Xbb7QpumVl1+e9malzE\nCzJ7zhYMzH3Ghm6GWa0U/XfTabQP9Rzxu4ib2Uaj39E+VH/E7yJuZhuVpj1L9qcYmpnVmIu4mVmN\neTrFrKaa+CKd9c9F3CxnZRXXJr5I1xRlnmBdxM1yVmZxbdqLdE1R5mNgoyriU3lHGPjpp/XPxdXK\negxsVEXcTz/NrGk2qiIOHiGZWbN4iaGZWY25iJuZ1ZiLuJlZjXWdE4+I6cACoAWMAm+T9JO2/ccD\nbwGGs03zJd1VQFvNzGycXl7YPBBYK2nPiNgb+Cjwyrb9uwBHSLqtiAaamdnkuhZxSZdExNhXsG3D\n+t9ovytwUkQ8DVgs6fR8m2iWH397jDVNT0sMJT0WEecChwCvHrd7EfAZYAVwcUQcIGlxrq00y4m/\nPcaapp8vSj4yIt4L/DAitpf0ULbrLEkPAETEYmBnwEXcKsvvFbAm6eWFzSOALSWdBjwErCW9wElE\nzAGWRsQOwCpgX2Bhp+PNnTubGTOm99XIoaHBvm4/mZGRgSn93Lx5A321YSo5/Wb0Iu/jFZnRpPum\nyn2ZSk43G/IxUNXfWZn3TS8j8W8B50bEtcBM4DjgkIgYkLQgIk4ElgCPAFdLuqLTwUZGVvXVwKGh\nQYaHV/T1M5OZ7LNRevm5ftowlZx+M7rJ8/dWRkaT7psq92UqOZ1s6MdAVX9need0Kuy9vLD5EHBo\nh/2LSPPiZmZWMr/Zx8ysxja6D8Ays/74I5yrzUXczDryRzhXm4u4mXXlZZnV5TlxM7MacxE3M6sx\nF3EzsxpzETczqzEXcTOzGnMRNzOrMRdxM7MacxE3M6uxSrzZx2/rNTObmkoUcb+t18xsaipRxMFv\n6zUzmwrPiZuZ1ZiLuJlZjfXyHZvTgQVAi/Tdmm+T9JO2/QcBpwBrgHMkfbGgtpqZ2Ti9jMQPBNZK\n2hN4P/DRsR0RMRM4E9gf2Bs4OiJ6f3XSzMyelK5FXNIlwPzs6jbASNvu7YG7JS2XtBq4Htgr70aa\nmdnEelqdIumxiDgXOAR4dduuzYHlbddXAHNya52ZmXXU8wubko4kzYsviIg/yTYvBwbbbjbIuiN1\nMzMrUC8vbB4BbCnpNOAhYC3pBU6AO4HtImIu8CBpKuWMTsebO3c2M2ZMX2fbyMhA/y0H5s0bYGho\nsPsNa5DTb0Yv8j5ekRlNum+q3Jem5TSpL1PJgd6mU74FnBsR1wIzgeOAQyJiQNKCiDgBuJI0ql8o\n6bedDjYysmq9bZO9rb6bZctWMjy8oq/bVzWn34xuhoYGcz1e0RlNum+q3Jem5TSpL51yOhX2rkVc\n0kPAoR32XwZc1lsTzcwsT36zj5lZjbmIm5nVmIu4mVmNuYibmdWYi7iZWY25iJuZ1ZiLuJlZjbmI\nm5nVmIu4mVmNuYibmdWYi7iZWY25iJuZ1ZiLuJlZjbmIm5nVmIu4mVmNuYibmdWYi7iZWY11/Gaf\niJgJnANsDWwKnCrp0rb9xwNvAYazTfMl3VVQW83MbJxuX892ODAs6Yjsy5B/DFzatn8X4AhJtxXV\nQDMzm1y3In4B6YuSIU29rBm3f1fgpIh4GrBY0uk5t8/MzDroOCcu6UFJKyNikFTQTx53k0XAfGBf\nYM+IOKCYZpqZ2US6ftt9RGwFXAR8RtLXx+0+S9ID2e0WAzsDizsdb+7c2cyYMX2dbSMjA/20+XHz\n5g0wNDTY8+2rnNNvRi/yPl6RGU26b6rcl6blNKkvU8mB7i9sPhW4Cni7pCXj9s0BlkbEDsAq0mh8\nYbfAkZFV621btmxlH01e9+eGh1f0dfuq5vSb0c3Q0GCuxys6o0n3TZX70rScJvWlU06nwt5tJH4S\nMAf4QER8INu2ANhM0oKIOBFYAjwCXC3piqk03MzMpqZjEZd0HHBch/2LSPPiZma2AfjNPmZmNeYi\nbmZWYy7iZmY15iJuZlZjLuJmZjXmIm5mVmMu4mZmNeYibmZWYy7iZmY15iJuZlZjLuJmZjXmIm5m\nVmMu4mZmNeYibmZWYy7iZmY15iJuZlZjLuJmZjXW7Ts2ZwLnAFsDmwKnSrq0bf9BwCnAGuAcSV8s\nsK1mZjZOt5H44cCwpL2AlwH/PrYjK/BnAvsDewNHR8QWRTXUzMzW162IXwCMfUHyJqQR95jtgbsl\nLZe0Grge2Cv/JpqZ2WS6fVHygwARMUgq6Ce37d4cWN52fQUwJ+8GmpnZ5DoWcYCI2Aq4CPiMpK+3\n7VoODLZdHwRGuh1v7tzZzJgxfZ1tIyMDPTV2vHnzBhgaGux+wxrk9JvRi7yPV2RGk+6bKvelaTlN\n6stUcqD7C5tPBa4C3i5pybjddwLbRcRc4EHSVMoZ3QJHRlatt23ZspW9tne9nxseXtHX7aua029G\nN0NDg7ker+iMJt03Ve5L03Ka1JdOOZ0Ke7eR+EmkKZIPRMTY3PgCYDNJCyLiBOBK0nz5Qkm/nUrD\nzcxsarrNiR8HHNdh/2XAZXk3yszMeuM3+5iZ1ZiLuJlZjbmIm5nVmIu4mVmNuYibmdWYi7iZWY25\niJuZ1ZiLuJlZjbmIm5nVmIu4mVmNuYibmdWYi7iZWY25iJuZ1ZiLuJlZjbmIm5nVmIu4mVmNuYib\nmdVY1y9KBoiIFwCnS9pn3PbjgbcAw9mm+ZLuyreJZmY2mV6+7f49wBuAib75cxfgCEm35d0wMzPr\nrpfplLuBVwHTJti3K3BSRFwXESfm2jIzM+uqaxGXdBGwZpLdi4D5wL7AnhFxQI5tMzOzLnqaE+/g\nLEkPAETEYmBnYHGnH5g7dzYzZkxfZ9vIyMCUwufNG2BoaLDn21c5p9+MXuR9vCIzmnTfVLkvTctp\nUl+mkgNPoohHxBxgaUTsAKwijcYXdvu5kZFV621btmyi6fbuli1byfDwir5uX9WcfjO6GRoazPV4\nRWc06b6pcl+altOkvnTK6VTY+yniowARcRgwIGlBNg++BHgEuFrSFX212MzMnpSeirikXwF7ZJcX\ntW1fRJoXNzOzDcBv9jEzqzEXcTOzGnMRNzOrMRdxM7MacxE3M6sxF3EzsxpzETczqzEXcTOzGnMR\nNzOrMRdxM7MacxE3M6sxF3EzsxpzETczqzEXcTOzGnMRNzOrMRdxM7Ma66mIR8QLImLJBNsPioib\nI+LGiDgq/+aZmVknXYt4RLwHWABsOm77TOBMYH9gb+DoiNiiiEaamdnEehmJ3w28Cpg2bvv2wN2S\nlktaDVwP7JVz+8zMrIOuRVzSRcCaCXZtDixvu74CmJNTu8zMrAdP5oXN5cBg2/VBYOTJNcfMzPrR\n07fdT+JOYLuImAs8SJpKOaPbD82dO5sZM6avs21kZGBKDZg3b4ChocHuN6xBTr8Zvcj7eEVmNOm+\nqXJfmpbTpL5MJQf6K+KjABFxGDAgaUFEnABcSRrRL5T0224HGRlZtd62ZctW9tGMdX9ueHhFX7ev\nak6/Gd0MDQ3meryiM5p031S5L03LaVJfOuV0Kuw9FXFJvwL2yC4vatt+GXBZn+00M7Oc+M0+ZmY1\n5iJuZlZjLuJmZjXmIm5mVmMu4mZmNeYibmZWYy7iZmY15iJuZlZjLuJmZjXmIm5mVmMu4mZmNeYi\nbmZWYy7iZmY15iJuZlZjLuJmZjXmIm5mVmMu4mZmNdbxm30iYhPgs8BzgUeAoyTd07b/eOAtwHC2\nab6kuwpqq5mZjdPt69leCcyStEdEvAD4ZLZtzC7AEZJuK6qBZmY2uW7TKS8CrgCQ9ENgt3H7dwVO\niojrIuLEAtpnZmYddCvimwMPtF1/LJtiGbMImA/sC+wZEQfk3D4zM+ugWxF/ABhsv72ktW3Xz5K0\nTNJqYDGwc94NNDOzyXWbE78BOAi4ICJ2B5aO7YiIOcDSiNgBWEUajS/sFjh37mxmzJi+zraRkYE+\nm53MmzfA0NBg9xvWIKffjF7kfbwiM5p031S5L03LaVJfppID3Yv4xcD+EXFDdv1NEXEYMCBpQTYP\nvoS0cuVqSVd0CxwZWbXetmXLVvbV6PafGx5e0dftq5rTb0Y3Q0ODuR6v6Iwm3TdV7kvTcprUl045\nnQp7xyIuaRQ4Ztzmu9r2LyLNi5uZ2QbgN/uYmdWYi7iZWY25iJuZ1ZiLuJlZjbmIm5nVmIu4mVmN\nuYibmdWYi7iZWY25iJuZ1ZiLuJlZjbmIm5nVmIu4mVmNuYibmdWYi7iZWY25iJuZ1ZiLuJlZjbmI\nm5nVWLevZyP7dvvPAs8lfQ3bUZLuadt/EHAKsAY4R9IXC2qrmZmN08tI/JXALEl7ACcCnxzbEREz\ngTOB/YG9gaMjYosiGmpmZuvrpYi/CLgCQNIPgd3a9m0P3C1puaTVwPXAXrm30szMJtR1OgXYHHig\n7fpjEbGJpLXZvuVt+1YAczodbNddd1xv2+rVq3nmHkdPePsfXHDKhNt3esmxPR8f4NZb7wBg1fL7\nezr+C1/zzxPevtvxx4z9XLfjj8/o9fgA99zzcw455MAJb3/ttddM+I3br33tIT0ff6w9q1evXm/7\nxRdfxsjIwHoZY+2ZOXNmz8eH9BhY9sAqpm0yHVj399Ou/fc5uvYxDrl8NjNnzux6/DFjOXsc+rGu\nx2/PWLpUPR1/LGNjfjy3376fxzPAjd846fHHQKfjj2UccsiB6z3WOh3/kEMOXOdx1un4kPrb/jjr\ndvyiH88TmTY6OtrxBhHxSeAmSRdk1++TtFV2+a+B0yUdkF0/E7he0kU9t8DMzKasl+mUG4BXAETE\n7sDStn13AttFxNyImEWaSvlB7q00M7MJ9TISn8YTq1MA3gTsCgxIWhARBwIfIJ0QFkr6XIHtNTOz\nNl2LuJmZVZff7GNmVmMu4mZmNeYibmZWYy7iZmY11subfUoTEfOBUWDauF2jkr6QY84WwHuBh4BP\nSfrfbPuHJH0op4zpwEHAH0nLMs8EHgNOkvT7PDImyT1T0gkFHPe1kr4ZEQPAB4GdgVuAUyWt/66i\nqedsA+wIfI90H+0G3AF8TNLyDj/ab87XgOMLvi+mAQcAjwLXkj6y4k9Jj4Ff55gzC3g76aMvNgP+\nAFwJnCcp15ULWdZzSW/qGwHukPRozhkvZfI6cFWOOX8NPCTp7rZtu0u6Ka+MCTL/DnhM0nV5HbNS\nRRx4DqnwfaXgnPOAi4CZwHUR8QpJvyL9EeRl7IPAngb8GXA2sDLbflBeIRFxY3Zx7AG/Q0S8kPSA\n3yOvHOAY4JvAvwK/AN4B7Ad8AXh9jjnnkZasngX8GjiZdL98jVQQ87IHcEVEfBo4N+9il/kisCkw\nCHyY9Lj+LbAAeGmOOZ8H/od0XxwE/J60DHgX4Li8QiLiAOA04G7Su7MHge0j4iRJF+eVA7yVdPJe\nMsG+XIp4RHwAeAkwMyJ+BLw9ewycBuyTR0aW8xrSyfth0v2/N/BIROwt6dQ8MipVxCUdHxHPAS6X\ndHOBUZuOjewj4jbgkuwMmaftJO2ZjVzukLQwy5ufc86/A28G/ol0klgEvI71RzF52U7SUdnln0bE\nq3I+/qikayLiZElvzbb9OCJem3POL4FDgI8A74yIrwKXA7+Q9EDHn+xdS9LfZiPyn0r6LEBE5FZY\nM9tJenN2+fKIuFrSiyMi7zfevR/Ys/33ExFzgO8CeRbxQ4HvA/8i6c4cj9vuFZJ2B4iIT5DeC3NM\nATnvAnYAnk56I+TTSZ/4egOQSxGv4pz4G4H7u97qyZkeEc8FkHQj8DHgErp87ku/ImLP7Knmi7Pr\nfwnMyjND0teAdwMfB54CPCzp3uyZRZ62i4gTgDURsTNARDyf9GwmT3+MiFcD34mIf8zeDfwG4MGc\nc5D0R0nvAPYlfQbQKcCNnX+qL9Mi4mWkZypDEbF9RGxJup/yNCN7NzURsRewOiLmkZ4F5JpDmoJs\n9zCwNs8QSY+R6kCufyvjZSdXSH8/cyLiPaRpnDxNI03Z/Bz4oKTV2Yg/t0FWpUbiAJKGgeGCY94B\nfDoiDpX0e0nfyD5W96wcM44GPhoRN7bNf55JesDkStJtEXEEsBAYyvv4mYNIT9EF7BQRvwA+Dbwt\n55y3kk5IewDbAKeTPh3zqA4/MxW/G7sg6X7SSOyzOWccBXyIVPheAlwIzCb/vrwN+GJ2gvgF6V3V\nR5KmpfL0BeDWiLiBdNIbBP6W9DjIVft3FhTkG8DNEfFSScsi4s2kgdwLc875MumZ5E6SPgMQEReR\nnvXlwu/YbBMR07NRQC1lL6buWvBUlG3EIuJpwN+QCvgDwH9J+l3nn+o7o6wFDs8Gfi1pTXZ9GvDK\nnOf3iYg/l/SHtushaeKPxZwCF3Ezq5SI+BSTLHCQ9OHyW1RtlSziEbGjpDuyy5sA75V02gZultlG\nrawRcpZ1OWkOuZBnlSWO9gvPqeILmwALI2LbiHgWcA2wdREhEbFj2+VNIuJ9dcxwTrVzGtSX5wDv\nIS2bbf/39JxzoPgFDmX1pfCcyr2wmTmctC74T4ATJF1dUM7CiHg96dX1LwM/rWmGc6qd04i+lLgE\nuPAFDmX1pYycShXxcWuobwReBjw7Io7O++lapoyTRVknJOdUN6dJfXkj6V2hTVBWXwrNqdSceER8\niEnWaeb5gsa4k8VzSCeLT2U5uZwsyshwTrVzmtQXq65KjcTHPrckIhZJOqzAqKfzxMnij8DXyX8u\nrIwM51Q7p0l9KZ0XOPRodHS0cv9ardaFrVZrp1ar9ZRWqzWr1WrNKihnUQl9KTzDOdXOaVJfyvzX\narV+2Gq1tm21Ws9qtVrfb7Van9/Qbariv0qNxNsE8O2266PAswvImRURO5HehbgWIO9PZCspwznV\nzmlSX8ocIRc+x19WX4rMqWQRl7QjPP6Rsf9b4LsoyzhZlHVCck51c5rUFyh4FUzJCxxqv3KoUi9s\njomIfUjUBzZwAAAH90lEQVSfA/IA6fOXj87zc4QnyCv6ZFFKhnOqndOUvmQf5PZVChohl7XAIcsq\ntC9l5FS1iN8AvEbSbyLiGcDFkv6mgJzCTxZlnZCcU92cpvSl7FUwRS5waNLKoaq+Y3ONpN8ASPof\n1v/4y7ycSvp85OcBLyKnz/fdABnOqXZOU/rydJ54x2H7KpiiVsLMioidIuIpETEr0mfz56WsvhSe\nU8k5cWBFRBxL+mD4vYBlBeWsc7KIiCJOFmVkOKfaOY3oS4lLgMcUNsdfVl/KyKlqET+c9AH9HwV+\nRvrmmiKUcbIo64TknOrmNKkvUNIqmJIWONR+5VBVp1M+Dvwn6bN93y1ppKCcw0kfrvVR4JkUc7Io\nI8M51c5pUl/giRHyz0hFqZCvUIuIfSJ9+chVwD0R8ZIiYiihL0XmVPWFzRcBB5O+NeTnwEWSLikg\n52zSFyZ/d+yD4euY4Zxq5zSpL+Pyil4FU8oChyyrtiuHKjkSl3QD6RuiP0M6g+X9tVljziN9v+L3\nI+LLEfH3Nc1wTrVzmtSXskbIUMICh7L6UmROJYt4RPw3cAXpFd23SnpGETllnCzKOiE5p7o5TepL\npqzVNisi4thshcqxFDPHX/uVQ5Us4sBpwO3AK4A3RfrG8NyVcbIo64TknOrmNKkvmbKWAJcxx19W\nXwrLqWQRl/R10reenwHsApxTUFQZJ4tSTkjOqXROk/oC5YyQoZwFDmX1pbCcShbxiLgUuAXYDzgJ\n2LKInDJOFmWdkJxT3Zwm9SVT1iqYMub4a79yqKrrxE8G7gW2Ae6RtLaIkOxksTVwJelkcVMdM5xT\n7Zwm9SXzcdIqmBOLXAUj6YaI+DmwFDiWNMef9yq1UvpSZE5Vi3iL9ElfM4ALImKtpCJecCjjZFHK\nCck5lc5pUl8gjZAPBj6YFdmilgD/N/AY6YOj3irp9rwzKKkvReZUcjoFOAF4IfAH4GPAqwrKaQHX\nAOcDJ0TE+2ua4Zxq5zSpL2Wugil8jr8JK4eqWsQfk/QwQPbUY2VBOWWcLMo6ITmnujlN6kuZS4AL\nn+Nvwsqhqhbx6yNiEfCM7F1o/1VQThkni7JOSM6pbk6T+gLlLQEuY4FD7VcOVfJt9wAR8XJgR+BO\nSZcWlHEaaf5wV2AJsFLSO+uW4Zxq5zSpL21Zs0grR04EWpL+ooCM57LuHH8hJ6Uy+lJkTiWLeEQ8\nGzgIeEq2aVTSxwvKKuNkUXiGc6qd07C+tK+CuRi4qYgXUSPi1aQXa2cAFwC5L3AosS+F5VR1OuUS\nYC7wcPbvkSJCspNFi/R72CEi3lPHDOdUO6dJfcmcTPpwuvOBpQWugiljjr+svhSWU9Ui/mtJH5J0\n1ti/gnLKOFmUckJyTqVzmtQXKG+1TRlz/LVfOVTVdeKXRsTppG+EnkaaTjmvgJxfK/vmjQKVkeGc\nauc0qS/wxAj5ctII+WaK+eCoMhY4lNWXwnKqWsRfR/rw9O0LzinjZFHWCck51c1pUl8gGyFHBJLW\nREQhLzhKel82x/8jipvjL6UvReZUtYg/IumYEnLKOFmUdUJyTnVzmtQXKGkJ8ARz/NsXsMChrOXM\nheVUtYjfGxHvI52BIY0oriogp4yTRVknJOdUN6dJfSlrhAxpjv9CoKivZyytL0XmVHWJ4bmkb7Z+\nnKQ3FZDzBeCXFHiyKCPDOdXOaVJfspxSlgBHxGJJB+R93HEZZfWlsJxKjsQlHRkROwI7AD+XdFtB\nUbNIT9dabdvyftCXkeGcauc0qS9Qwgg5U8Ycf1l9KSynqiPxdwCvJ32U5h7ABZLOKCir8JNFSSck\n51Q4p2F9KXyEnOVcQ5rj/+PYNknvyzmjrL4UllPVIn4T6fvo1kTETOAHknYrIKfwk0VZJyTnVDen\nSX3Jct5Geit8oatgIuJKSS/N+7jjMsrqS2E5lZxOgccX9yNpdUQ8WlDM6xl3siB9YlrdMpxT7Zwm\n9QXKWwVTxgKH2q8cqmoRvyEiLgSuA/YEbigqqIyTRUknJOdUOKdJfaG81TZlzPHXfuVQJYu4pHdG\nxIHAc4AvSVpcUFQZJ4uyTkjOqW5Ok/oCJS0BLmmBQ1nLmQvLqdSceET84yS7inrnGW0ni58VdbIo\nI8M51c5pWF/OpZwlwGW8XnEu5fSlsJyqFfHTSR2dBhwGfG1sX56vSpdxsijrhOSc6uY0qS8TZJax\nCqasBQ61XjlUqekUSSeOXY6IF+S9nKjN9kxysqhZhnOqndOkvjxu3Aj5XRFR2BLgouf4y+pLoTmj\no6OV/NdqtZY0JadJfXFOdTNK7MtNrVZrRnZ5ZqvVuqWgnE+2Wq0LW63WP7VarW+1Wq0zatyXwnKq\n+nniZlZh7SNkoKgVPe8EvkSaMfiSpHcXlFN4X4rMqdR0SvYpX2N2aLs+Kun1G6JNZraeQlfBTDDH\nPwz8eUS8sYA5/tqvHKraC5t/xxNze+1GJV2bY077yWJf4HttObmcLMrIcE61c5rUlwkyC1sFU9YC\nh7a8Wq8cqtRIXNI1JUWdzRMPkrPbtud5RisjwznVzmlSX0obIZexwKGsvpSRU6kiXpYyThZlnZCc\nU92cJvUlU+oqmII1ZuVQpaZTzKweImKJpH2akFP3vmyUI3Ezqy4vcOiPi7iZVU1ZryU0gqdTzKwn\nG2IVTFGatHLII3Ez61WTRsiNWTnkkbiZWY35bfdmZjXmIm5mVmMu4mZmNeYibmZWYy7iZmY19v8B\nE0UNohaFUCsAAAAASUVORK5CYII=\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Rails homeworks seems to be consistantly difficult, with the most difficult assignment occuring on Jan 21."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_lecture_week_1 = python_lecture_data_transposed[0:4].mean().mean()\n",
+ "python_lecture_week_2 = python_lecture_data_transposed[4:8].mean().mean()\n",
+ "python_lecture_week_3 = python_lecture_data_transposed[8:12].mean().mean()\n",
+ "python_lecture_week_4 = python_lecture_data_transposed[12:].mean().mean()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "labels = [\"Week {}\".format(x) for x in range(1,5)]\n",
+ "pd.DataFrame([python_lecture_week_1, python_lecture_week_2, python_lecture_week_3, python_lecture_week_4]).plot(kind=\"bar\", \n",
+ " title=\"Python Lecture Difficulty By Week\")\n",
+ "plt.xticks(np.arange(0,4), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEiCAYAAAA75CPhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFs9JREFUeJzt3XuUZGV57/HvXKPDjOOM9CSRM6IZnCdEHVExXFQISCJ4\nFINJVrwSURSMHlkrARWIHnNRQQQXCAJHQViu5HiCYoIoCihwDCp4iYwcw8NFM5mDInPsdmDsMXPr\n88feDUXbXV3Ts6vrrervZ61Z01W9e9dTz67+1bvfvXf1vLGxMSRJZZrf6wIkSVMzpCWpYIa0JBXM\nkJakghnSklQwQ1qSCraw1wXMdRHxVOA+YH3L3fOA8zPzk21+bjnwucw8sr69C9g7M4e7UOMVwPcz\n89wG1vWYuruh7sWdwE6qXgJ8arz+iDgJeGJmnh0RfwB8HHgAOAX4e2AEuBLYLzNP2YMa9q5r2K3n\nGxHvA/4cuL+ufzHwXeDkzNzS4TquA76UmefXt9cCdwFnZeYZ9X2rgI1Ur5uHO62v5TGuoKHXhaZm\nSJdhNDOfM34jIp4M3BkR387M70/xMyuA50+4b95kCzZgrP7XhMnq7obfG3/DiognAddGxFhmnpeZ\nl7Ys9yrg0sz8QES8F/hqZr65wTpm8nzHgE9n5jsAImI+8E/AO4APdLiOLwJHAufXt18OfB44Fjij\nvu9I4F9mEtAtdXqhRZcZ0gXKzB9HxD3A2og4F7gqMz8OEBFnAk8CDgAeHxHfBQ6sf/SvI+Lg+vvn\nZObH6p95D1UY7QDuBt6emT+NiJuBrwMvAJ4CfA34s8yc7Bdv0jeAiDgUOAvYC9gFvC8zv1B/73Tg\n+Ppx7wHeAHxyQt07aNkDaBmBrqMKmC3AEuAg4CXAmVQjy1Hg1Mz8Zgf9/FlE/AXwWeC8eqT6JGAD\n8Apga0S8AVgGLIiIxwM3AH+cmS+PiN8ALgGifo6XZOZH6/59NDM/W9d+M3BBZl7d0rPW5/th4G2Z\n+YJ6+acA3wD2zcwdbfr9+Lq/P46IJVQj7N/NzHvq9dxQP+7nW37mS8D7Wm6/jCqcPx0RT8vMHwEv\nBsa3Vbvt+CbgrVTToz+jev1ka7ERcR7VNntFZv7iV7eCZso56QJFxCHAfsA3gYuAE+v75wNvAi4G\nTgC2ZuZzM3NX/aP3ZeaBwHHAuRGxMCJOAI4GDszMZ1NNA1zR8nC/lZmHA8+iGlkdvht1rgAuB16X\nmc+jCryLI2J1RBwL/BlwcGY+C/gR8DaqoJ5Y91SeAbyq3svYF3g/cExmPhc4Cbi6Dq1OrAd+IyL2\nph4BZuaHgWuA8zJzLVUQfzozX0cVkuNvVh8D7srM/YFDgLdExBp+dSQ58c1trPX5Ap8B1kTE/vX3\nTwSumCKg/zQi/jUi7qAK5b2ppk1Gqbbf+GtiDbAWuLZ1BXWAD0fEuno7BdXr6YtU2wmq7f2Fabbj\n4VRvtC+qn8M5wNUtDzU/Ii6iepM/xoBuniPpMjw+Iv61/noh8P+A12Tm/RHxAHBBRKwD9gF+mJn3\n1HPZE/1D/f8dwK8BTwCOAS7PzK319y4AzoyIRVQh8nmAzNwSEfdS7Z536hDgN4F/jojx+3ZRjahe\nDPxjZm6u1/+X8MgcfKc2ZubG+uvfrx/rqy2PtRNYA0w1JdRqPEBHqUJwsj2DifePf/1i4FSAzHyI\n6g2NljraeWR9mbktIj4BvDkiTqV6E3vRFLW2TncsBM4G/hfVG+7FwC31XtVbgI9PsfdzHXAEsAm4\nPjPHIuJa4G0R8bm6poyIlzL1djycasDw9ZbvraiDfR7wF8AQcEBmbu+kIdo9hnQZtrbOSbfKzJ0R\ncQnVCPo3qUZ7U9le/8xY/Qs1j18NnvlU2338vq0t3xtj6nntyUJgPvBvmXnw+B0RsQ/wU6pRGi33\nPwF44hTrnlcvs3jC/a0HyeYDX8nMV7Ws8ynA/51inRM9n+oNbrTuTSdzqePLPGakGxFPo9rtH+Ox\ne6MT65/MpcDtwC1UB93+Y4rlWsN9R0RcBny7vn13RKwH/hB4DVPPeV9HNeL+JfC5+r6bqA6UHsWj\no+8FTL0dj6A66Pru+v55wOrMHImIMeBmqimzKyPi4En2CrSHnO7oD5+gmsJ4Lo/+su2g+uVqZwz4\nMnBCy7TAO4BbMnNbfbvTg42TLXcb8PSIOAygHu3fRfVmciPwyohYVi/7N1Sjru0T6t7EoyHzyjaP\n/1XgD6JO2Ig4Gvge1R5D23rrA7FnUc0JT/z+VKPq1mVupJpeGj875StUo8tN1McD6mmHdZOs4zHb\nqd4z+AbwEaoRcdvaWxxH1e9xF1FNPXwzMx+YYj03Ac+hGg1/uX78UaozRd5OPR9NNQ0y1Xa8Hnh1\nPS8P8Ob6vvE6v52ZFwI/57Fz4GqII+kytB3VZeamiPgW8IPM3Fnf/WPguxHxA+CFk6xj/PZlwGrg\n9npO+x7gtZ0+dov31wfcxl2Tma+NiD8CPhQRj6N60399HUQbI+J3gFvrXL2T6hd864S63wFcFBE/\npzpY9+PJasvMH0TEW6gOfM2jCvuXt0zjTHRTROykmhIZAy7LzPG9kNa55E6+fjvVHO0d9XP8QGZ+\nNyL+jmoE+V+pQu2WSWpv3U4vyMwRqjnlC6jmhyczRjUnPb5dH0d1mubxLct8gerNe8o9q8z8ZUQk\nsGjCGRxfAD5ENQoef321245nAzfUB3U3U71htD5HgDcC34uIazs5mKvOzfOjSstXH+y6nergzf29\nrkczV79RXgj8KDPP2YP1HEp16uCzGitORZp2JF2fOrS5vvnDzHxTd0tSq4h4M9VZDe83oPtbPfWz\ngWra4i/3YD1XUk1hvL6h0lSwtiPpetfn6/WpN5KkWTbdSPrZwJKI+HK97BmZeds0PyNJash0I+ln\nAgdl5mUR8XSqU3rWTnURwo4dO8cWLpzuhANJeqy7776b15/+DyxZvqrXpbQ1uvlBPvXB17B27dqm\nVz3lWVbTjaTvBu6F6gqmiPgZ1Wk5k86NjoyMzrTAWTU0tIxNm2b6cQWayH42Z672cnh4C0uWr2Lp\nin16Xcq0hoe3NL6NhoaWTfm96c6TPgEY/+SwJ1NdwfaTxiqTJLU13Uj6MuCTEfG/69sndPB5C5Kk\nhrQN6foST0/zkaQe8bJwSSqYIS1JBTOkJalgs/oBS9u2bWPjxg2NrnP16n1ZvLiTT4iUpP4zqyG9\nceMGTjnnmsZOWB/d/CDnn3Ysa9Y8vZH1SVJpZv2jSmf7hPVdu3Zx7rlncd9997Jo0SLe/e73MDS0\n//Q/KEkFGPg56a997Wa2b9/OJZdczskn/zcuvPAjvS5Jkjo28CG9fv0dHHTQoQA84xnP5K67/q3H\nFUlS5wY+pEdHf8Fee+31yO358+eza5cXTUrqDwMf0kuW7MXo6KMf/DQ2Nsb8+QP/tCUNiFk/cDi6\n+cFZXde6dc/m1lu/xpFHHsWdd36fNWv2a+zxJanbZjWkV6/el/NPO7bxdbZz2GFH8K1v3cZb3/pG\nAE4//b83+viS1E2zGtKLFy+e9XOa582bx6mnnj6rjylJTXFyVpIKZkhLUsEMaUkqmCEtSQUzpCWp\nYIa0JBXMkJakghnSklQwQ1qSCmZIS1LBDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgpm\nSEtSwWb9D9Gqd7Zt28bGjRsaX+/IyFKGh7c0us7Vq/dl8eLFja5T6keG9ByyceMGTjnnGpYsX9Xr\nUtoa3fwg55927Kz/PUypRIb0HLNk+SqWrtin12VI6pBz0pJUMENakgrW0XRHRKwCvgO8ODPv7m5J\nkqRx046kI2IRcCnwi+6XI0lq1cl0xznAxcBPulyLJGmCtiEdEW8ANmXm9fVd87pekSTpEdPNSZ8A\njEXEUcABwJUR8YrM/OlkC69YsYSFCxc0XWNXDA0t63UJs25kZGmvS+jYypVL5+Q2Al+bpZvt12bb\nkM7Mw8e/joibgJOmCmiAkZHRBkvrnqGhZWza9HCvy5h1TV8V2E3Dw1vm5DbytVm+brw224W+F7NI\nM9SNy+y9xF4TdRzSmXlENwuR+k0/XGbvJfb9z5G0tAe8zF7d5hWHklQwQ1qSCmZIS1LBDGlJKpgh\nLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgpmSEtSwQxpSSqYIS1JBTOkJalghrQkFcyQlqSCGdKS\nVDBDWpIKZkhLUsEMaUkqmCEtSQUzpCWpYIa0JBXMkJakghnSklSwhb0uoJ1t27axceOGxtc7MrKU\n4eEtja5z9ep9Wbx4caPrlKSiQ3rjxg2ccs41LFm+qteltDW6+UHOP+1Y1qx5eq9LkTRgig5pgCXL\nV7F0xT69LkOSesI5aUkqmCEtSQUzpCWpYIa0JBXMkJakghnSklQwQ1qSCmZIS1LBpr2YJSIWAB8H\n1gJjwMmZ+X+6XZgkqbOR9MuAXZn5QuCvgPd3tyRJ0rhpQzoz/xk4qb75VGCkmwVJkh7V0Wd3ZObO\niLgCOA74465WJEl6RMcfsJSZb4iIdwG3RcT+mbl14jIrVixh4cIFjRU3MrK0sXV128qVSxkaWtbr\nMtqyn83ql37ay2bNdj87OXD4euC/ZOYHga3ArvrfrxgZGW20uKY/87mbhoe3sGnTw70uoy372ax+\n6ae9bFY3+tku9DsZSX8GuCIibgEWAadk5n82VJskqY1pQ7qe1vjTWahFkjSBF7NIUsEMaUkqmCEt\nSQUzpCWpYIa0JBXMkJakghnSklQwQ1qSCmZIS1LBDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJU\nMENakgpmSEtSwQxpSSqYIS1JBTOkJalghrQkFcyQlqSCGdKSVDBDWpIKZkhLUsEMaUkqmCEtSQUz\npCWpYIa0JBXMkJakghnSklQwQ1qSCmZIS1LBDGlJKpghLUkFM6QlqWCGtCQVbGG7b0bEIuByYF/g\n14C/y8zPz0ZhkqTpR9KvBTZl5mHA0cCF3S9JkjSu7UgauAr4TP31fGBHd8uRJLVqG9KZ+QuAiFhG\nFdhntlt+xYolLFy4oLHiRkaWNraublu5cilDQ8t6XUZb9rNZ/dJPe9ms2e7ndCNpImI1cDVwUWZ+\nut2yIyOjTdUFwPDwlkbX103Dw1vYtOnhXpfRlv1sVr/00142qxv9bBf60x04/HXgeuDPM/OmRquS\nJE1rupH0GcBy4L0R8d76vmMy85fdLUuSBNPPSZ8CnDJLtUiSJvBiFkkqmCEtSQUzpCWpYIa0JBXM\nkJakghnSklQwQ1qSCmZIS1LBDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgpmSEtSwQxp\nSSqYIS1JBTOkJalghrQkFcyQlqSCGdKSVDBDWpIKZkhLUsEMaUkqmCEtSQUzpCWpYIa0JBXMkJak\nghnSklQwQ1qSCmZIS1LBDGlJKpghLUkFM6QlqWCGtCQVbLdCOiIOioibulWMJOmxFna6YES8E3gd\nsKV75UiSWu3OSPpe4JXAvC7VIkmaoOOQzsyrgR1drEWSNEHH0x2dWLFiCQsXLmhsfSMjSxtbV7et\nXLmUoaFlvS6jLfvZrH7pp71s1mz3s9GQHhkZbXJ1DA/3z/T38PAWNm16uNdltGU/m9Uv/bSXzepG\nP9uF/kxOwRubeSmSpN2xWyPpzPx34NDulCJJmsiLWSSpYIa0JBXMkJakghnSklQwQ1qSCmZIS1LB\nDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgpmSEtSwQxpSSqYIS1JBTOkJalghrQkFcyQ\nlqSCGdKSVDBDWpIKZkhLUsEMaUkqmCEtSQUzpCWpYIa0JBXMkJakghnSklQwQ1qSCmZIS1LBDGlJ\nKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgq2cLoFImI+8DFgHfCfwImZeV+3C5MkdTaS/kNg\ncWYeCrwbOLe7JUmSxnUS0i8AvgSQmbcBB3a1IknSI6ad7gCeADzUcntnRMzPzF0TF3ze85456Qq+\n8507J72/k+VHNz/4yNffuOo9ky5/yJ/87aT3z9byY7t2ctx1S1i0aBGwZ8+328vbz2aXL72fE3sJ\n5faztZcw9/o5lXljY2NtF4iIc4FvZuZV9e2Nmbl6tx5FkjQjnUx33Aq8FCAiDgbWd7UiSdIjOpnu\n+Bzw+xFxa337hC7WI0lqMe10hySpd7yYRZIKZkhLUsEMaUkqmCEtSQXr5OyOvhYR64G9gXkTvjWW\nmU/uQUl9LSKWA9szc7Tlvqdm5r/3rqrBEBFPA3Zl5oZe1zIIImJdZvb9KcMDf3ZHROwH/E/g8NZg\n0e6LiBOBdwELgEsz8+z6/psy84ieFteHIuJw4HxgBPgk8E5gO3BhZl7Wy9r6UUS8BBgPtHnAh4DT\nADLz+l7VtacGfrojM+8FLgAMkT33FuAZwG8DB0TEmT2up9+dBbwCeB9wIXAw8LvAiT2sqZ+dTdXT\nV9f/VrV83bcGfroDIDM/1esaBsSOzNwGEBHHA9dFxA97XFM/m1dPbWyIiI9m5haAiNjZ47r61aHA\nRcC/ZOZl9R5e3198N/AjaTXq1oj4bEQ8MTO3A39CtTt5QI/r6ldfiYgbImJBZp4JEBEX4kcvzEhm\njtahvCIiLgEWTfcz/cCQVscy8zSq3fKt9e0Rqo+y/Zte1tWv6mB+Z2a2jpw/C7y9RyUNhMz8MHAV\nMBAHYAf+wOFUImJFHTKSVKw5M5KudyPHv34JcHsPy5GkjsyZkAYeioizI+Ii4HTg6F4XNCgiYkWv\naxgk9rNZ/d7PORPSmXkG1fNdk5m/5x/TnTn3SpplP5s1aP0c+FPwIuIBHj3BHeDXI+IneMXhnngo\nIs4GllKdN+1eyZ6xn80aqH7O2QOH2jMRcQ7wrMzs61+AUtjPZg1SP+dMSEfEM4GLgRXAFcBdmXlt\nT4vqM5PtlQA/xb2SGbGfzRrUfs6lkP4qcBLwP4DXAddk5vN6W5UktTfwc9KtMvOeiCAz74+Ih3pd\nT79yr6RZ9rNZg9bPOXN2BzAcEScDe0XEq4Gf97qgPnYB8EZgE9UnDP51b8vpe/azWQPVz7kU0m8C\nnka14Q6sb2uGMvOe+v/7AfdK9pD9bNYg9XPOhHRmbgZuAK4BrgT8bOmZc6+kWfazWQPVzzkT0hHx\nQeB4qs/qPZDqQ9Y1M+6VNMt+Nmug+jlnQhp4YWYeD2zJzMupNqJmwL2SZtnPZg1aP+fS2R0LIuJx\nABGxAPCD1Weo3ivZB9if6s89nU6f//WLXrKfzRq0fs6lkfRHgO9QXSZ6O/Cx3pbT19wraZb9bNZA\n9XPgQzoi1gFk5lXAi4CXAUdn5t/3tLD+5l5Js+xnswaqn3NhuuOCiHgKcDPwJeD6zOzro70FGN8r\nGaLaKzmvt+X0PfvZrIHq55y4LLx+Vz0EOBx4IdWfe78lM/2zT7shItZl5vr665XAfsCPMnNTbyvr\nT/azWYPazzkR0gAR8QTgKKqQfi4wkpnH9baq/hIRNwPulTTEfjZrUPs58CEdEacCLwWeCNwIXEf1\nJ9+397SwPuVeSbPsZ7MGsZ8Df+AQeA/VSe3vAv4qM28yoGcuM39JNd+3vv63AHhOT4vqY/azWYPY\nz7kwkl5MdVbHMcBhwAPAF4EvZuZ/9LK2fuNeSbPsZ7MGtZ8DH9ITRcTRwJnAoZm5oNf19JOI2Ew1\n1/cJql3IbT0uqa/Zz2YNaj8HPqQj4vlUI+kXAb8N3EF1yeiNmbmhl7X1G/dKmmU/mzWo/ZwLIX0j\nVSjfAHwvM3f1uKSB4V5Js+xnswalnwN/MUtmHtXrGgbFFHslV1D9OTLtJvvZrEHt58CHtBr1Qao9\nkr/FvZIm2M9mDWQ/B366Q5L62Vw4T1qS+pYhLUkFM6QlqWCGtCQV7P8D02VZe+C29wsAAAAASUVO\nRK5CYII=\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Python lecture difficulties have stayed fairly consistant over the past couple of weeks. Week 4 data is not really accurate because it contains only a single data point."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_homework_week_1 = python_homework_data_transposed[0:4].mean().mean()\n",
+ "python_homework_week_2 = python_homework_data_transposed[4:8].mean().mean()\n",
+ "python_homework_week_3 = python_homework_data_transposed[8:12].mean().mean()\n",
+ "python_homework_week_4 = python_homework_data_transposed[12:].mean().mean()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "pd.DataFrame([python_homework_week_1, python_homework_week_2, python_homework_week_3, python_homework_week_4]).plot(kind=\"bar\", \n",
+ " title=\"Python homework Difficulty By Week\")\n",
+ "plt.xticks(np.arange(0,4), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEiCAYAAAA75CPhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF75JREFUeJzt3XuUZGV57/HvXBOHGXBGGi8jIBnkkSOMIqiIFyIQhQRF\nPGblmCBKBCWGhCyjKBARY1QQwQWCQBSE5ckJWdyOqKCADhzFIEGIwFEehlEns/BCL7sDDI2Zgen8\nsXdD0falpmfX1FvV389as6arateuZz/V/dvvfmtX1ZzR0VEkSWWa2+0CJEmTM6QlqWCGtCQVzJCW\npIIZ0pJUMENakgo2v9sFzAYR8QJgDXBXy9VzgLMz80tT3G874OrMPKC+vAnYPjOHOlDjTcDnMvPK\npte9tUTEqcCzMvOvplluE3AP8ATV8wDw5cw8s779vcAzM/P0iHgD8AXgl8DxwD8Bw8ClwK6ZefwM\na90EbF/X8ORz3OZ9TwXeBzxQ178QuAM4NjPXt7mO64BvZObZ9eXdgHuB0zLzpPq6HYB1VL9zj7Rb\nX8tjXALcPdZXzYwhvfWMZOZeYxci4nnAPRFxe2bePcl9lgIvH3fdnIkWbEA/nDC/Odvw+2M7u4h4\nFvC1iBjNzLMy88KW5f4XcGFmfjIiTgG+nZnHNFjzRM/xdEaByzLzrwEiYi7wf4G/Bj7Z5jquBQ4A\nzq4vvwn4KvBm4KT6ugOA784koFvq7Iffq64ypLskM38eEauB3SLiTODyzPwCQEScDDwLeCnwjIi4\nA9invuvHImLf+vYzMvPz9X0+QhUojwP3Acdl5q/qEfL3gFcDOwHfAd6ZmRP98RwWEScAzwZuBI7J\nzNGIeAtwCjAPeBh4f2b+Wz2iWwH8HvA84PvA9cA7gV2AEzLzspZteivVFNvPqEaCrwA+kJmvrZe5\nF/iXzPxoRDy/Xt/zgcOmePxXAc+hOkq5f2xDIuJv6jremJkPTvNc/Doi3g9cCZw1NiIH1taP/VhE\nvAtYAsyLiGcANwBvy8w3RcRzgAuAADYBF2Tm58YfndSXz8nMq+qHngN8iaee488Af5mZr66X3wn4\nV2DnzHx8XNmtO+tnANsAP4+IRVQj7Fdk5up6PTfUj/vVlvt8Azi15fKhVOF8WUTskpk/BQ4Evl6v\nYz/gtPpxNgGnZubYbe8G/oLquf011e9ethYbEWcBK4HDMvPR334WNBnnpLskIl4F7ArcCpwHHF1f\nPxd4N3A+cBTwWGa+LDM31Xddk5n7AIcDZ0bE/Ig4CjgY2CczX0J1KH9Jy8P9XmbuD+xJNTraf4KS\n5gCLgX2B3YFDgP0i4kV1LW+t130K8JWIWFLf79X1Y+8O/AGwe/1YxwEfq7fpSGAPquDYC7gO+CLw\nTWDPiNi2nhLalioYoBrRXU0VfFM9/o7AXpn5jpbengD8T2D/6QK6xV3AcyJie+oRYGZ+BrgGOCsz\nd6MK4ssy84i6X2M7us8D92bm7lQ7jfdExAp+eyQ5fsc4CryL+jkGrgBWRMTu9e1HA5dMEtB/EhF3\nRsQPqUJ5e6ppkxGq537s92kFsBvwtdYV1AE+FBErI2IpVZ9vpRphH1YvdgDw9fr2i4EjMnPv+vbz\nI2LHiNgfOBJ4bb0NZwBXtTzU3Ig4j2qAcIgBvfkM6a3nGfUf1Z0RcTfVYemfZuYDVH9Az4mIlcAb\ngZ/Uf0QTTW38n/r/HwK/QxVshwAXZ+Zj9W3nAAdGxAKqIPgqQD1feT/VIfZ4o1Sj2NF6PaupRtQH\nADdm5s/qdawCHgT2ru9zQ2Y+kpm/AX5ONUID+AmwrP75UKrwvz0i7qQK8N3q+9wIvKHe7guBXSJi\nW6qQvrKNx7+1ZQc2hyqcTwM+lZkPT7CdkxkL0JF6PRP1fvz1Yz8fCPxjXd/DmblnZq5p83GfXF9m\nbqDaeR1T76zfSdWTiWq9LDP3qndc21P18V/q288HjoyI+cB7gC9McuR0HfB6qt+f6+tlvga8ISJ2\nrmtKqh3Pc6l2jndSja43UY2M/4hqsPG9+rbTgaV1sM8B3l/X8NHM3NhmT9TC6Y6t57HWOelWmflE\nRFxANYJ+LtWIbTIb6/uMRgQ8FRyt4TGX6rkdu+6xlttGmXxee+MEy00UWHOBBfXPG6ZYR+vyp43N\n9UbEQqrpBKhGXX8EbAd8GngR1VHCHsDNwP+Y5vHHj8zuo9oJnB8RKzPzoQnqmcjLqXaOI3Vf25lL\nHVvmaSPdiNiF6rB/lKcPhBa2sc4Lgduotv3uzPyPSZZrDffHI+Ii4Pb68n0RcRfwFuBPmXzO+zqq\nEfdvqI5aAFZRvVB6EE+NvucBP87MfVu2cTnwK6qQ/3Jmfri+fg6wY2YOR8QocBPVdNulEbHvBEcF\nmoYj6XJ8kSqcXsZTfzCPU/2BTGWUatrgqHo+EqoXkG6uR2bQ/ouN45cbBb5NNbLaBSAiDqCaJ751\nM9b7TarR4dgUxalUZ0dANSo7EHgJVThdD3wcuLYeIa/azMe/u57z/RbVNNK021q/iHsa1Zzw+Nsn\nG1W3LnMj1dTU2Bk536IaXQ5Sv5ZQTzusnGAdT3uOM3Md1Tz0Z6lGxFPW3uJwqjn8MedRTT3cmpm/\nnGQ9q4C9qKa/vlk//gjVmSLHUc9HU/X6hRHxunpbVlKdCfJcqufr7fW8PMAx9XVjdd6emecC/8nT\n58DVJkN665lyZJaZg8C/Af+cmU/UV/8cuCMifhQRyyZYx9jli6iC4raI+BHVC45/1u5jT7VcZv6Y\n6kW+q1qmad5Uv+I/3av3Y7d9kWpUdmtE3EMVyO+s1/8Q8CPgzjqUbwCWU011kJk/2ozHb738N8Dr\nIuJtk9S2qp56uh34CnBpZo4dwbSup52fjwN2r+eHvwt8MjPvAP6BagdzN9VO4OYJetP6HI9NQ11C\n9bd57SS1j/LUnPQd9XO+L9Xc8JivU73IN+lRWT3dlFTz6a1ncHydaidzU73cINU00qcj4t+B/w28\nIzPXZeb1VFMcN9TbfwTVDqN1GwH+HHhf/aK3NsMcP6q0DPULVrdRvQDzQLfrUXfUc9HnAj/NzDO2\nYD37UZ06uGdjxakrpp2Trk8NGpvX+0lmvruzJc0+EXEM8AngEwb07FVPB62lmrb42y1Yz6VUUxjv\nmG5ZlW/KkXRE/C7wvfrUGknSVjbdSPolwKKI+Ga97EmZ+f1p7iNJash0I+k9gFdm5kUR8UKqU3Z2\nazkv9Wkef/yJ0fnzpzsZQZI0zqRnSk03kr6P+q22mbk6In5NddrNhPOmw8MjMy1wqxoYWMLg4Ew/\njkDj2c/m2Mtm9Uo/BwaWTHrbdKfgHQWMfTLY86je3faLxiqTJE1pupH0RcCXIuL/1ZePmmyqQ5LU\nvClDun4Lp6fxSFKX+I5DSSqYIS1JBTOkJalgflSppL60YcMG7rvvPoaG2vrax7bsuOPOLFzYzifO\nNseQltSX1q1by/FnXMOi7XZoZH0jDz3I2R98MytWvLCR9bXLkJbUtxZttwOLly7fao+3adMmzjzz\nNNasuZ8FCxbw4Q9/hOXLn79F63ROWpIa8p3v3MTGjRu54IKLOfbYv+Lccz+7xes0pCWpIXfd9UNe\n+cr9AHjxi/fg3nt/vMXrNKQlqSEjI4+yzTbbPHl57ty5bNq0ZW/SNqQlqSGLFm3DyMhTHzQ3OjrK\n3LlbFrO+cCjN0IYNG1i3bm2j6xweXtzoKWPQndPGSjHy0INbdV0rV76EW275DgcccBD33HM3K1bs\nusWP2+h3HA4OPtITX5jYKx9f2Ctmaz/XrFnd6ClendCt08ZKsGHDBh599Ndb9Tzp0dHR+uyO1QCc\neOJH2Wmnnadd78DAkhl/nrSkKWztU7zUvoULF7J8+W5bdQAxZ84cPvCBExtdp3PSklQwQ1qSCmZI\nS1LBDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgpmSEtSwQxpSSqYIS1JBTOkJalghrQk\nFcyQlqSCGdKSVDBDWpIK5tdnzSKd+OJU8MtTpU4ypGeRdevWFv/FqTC7vzxVGs+QnmX84lSptzgn\nLUkFM6QlqWBtTXdExA7AD4ADM/O+zpYkSRoz7Ug6IhYAFwKPdr4cSVKrdqY7zgDOB37R4VokSeNM\nGdIR8S5gMDOvr6+a0/GKJElPmm5O+ihgNCIOAl4KXBoRh2XmryZaeOnSRcyfP6/pGjtiYGBJt0vY\n6oaHF3e7hLYtW7a4+OeoV/rZC73spF7f9ilDOjP3H/s5IlYB750soAGGh0caLK1zBgaWMDj4SLfL\n2OqafldgJw0NrS/+OeqVfvZCLzulV/7Wp9qReAqeJBWs7XccZubrO1mIJOm3OZKWpIIZ0pJUMENa\nkgpmSEtSwQxpSSqYIS1JBTOkJalghrQkFcyQlqSCGdKSVDBDWpIKZkhLUsEMaUkqmCEtSQUzpCWp\nYG1/nnQ3bNiwgXXr1ja+3uHhxY1/q8aOO+7MwoULG12nJBUd0uvWreX4M65h0XY7dLuUKY089CBn\nf/DNrFjxwm6XIqnPFB3SAIu224HFS5d3uwxJ6grnpCWpYIa0JBXMkJakghnSklQwQ1qSCmZIS1LB\nDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgpmSEtSwQxpSSqYIS1JBTOkJalghrQkFcyQ\nlqSCTfsdhxExD/gCsBswChybmf+/04VJktobSR8KbMrM1wB/B3yisyVJksZMG9KZ+RXgvfXFFwDD\nnSxIkvSUaac7ADLziYi4BDgceFtHK5IkPamtkAbIzHdFxIeA70fE7pn52Phlli5dxPz58xorbnh4\ncWPr6rRlyxYzMLCk22VMyX42q1f62Qu97KRe3/Z2Xjh8B/D8zPwU8Biwqf73W4aHRxotbmhofaPr\n66ShofUMDj7S7TKmZD+b1Sv97IVedsrAwJKe2PapdiTtjKSvAC6JiJuBBcDxmflfDdUmSZrCtCFd\nT2v8yVaoRZI0jm9mkaSCGdKSVDBDWpIKZkhLUsEMaUkqmCEtSQUzpCWpYIa0JBXMkJakghnSklQw\nQ1qSCmZIS1LBDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgpmSEtSwQxpSSqYIS1JBTOk\nJalghrQkFcyQlqSCGdKSVDBDWpIKZkhLUsEMaUkqmCEtSQUzpCWpYIa0JBXMkJakghnSklQwQ1qS\nCmZIS1LBDGlJKtj8qW6MiAXAxcDOwO8A/5CZX90ahUmSph9J/xkwmJmvAw4Gzu18SZKkMVOOpIHL\ngSvqn+cCj3e2HElSqylDOjMfBYiIJVSBffJUyy9duoj58+c1Vtzw8OLG1tVpy5YtZmBgSbfLmJL9\nbFav9LMXetlJvb7t042kiYgdgauA8zLzsqmWHR4eaaouAIaG1je6vk4aGlrP4OAj3S5jSvazWb3S\nz17oZacMDCzpiW2fakcy3QuHzwauB96XmasarkuSNI3pRtInAdsBp0TEKfV1h2TmbzpbliQJpp+T\nPh44fivVIkkaxzezSFLBDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgpmSEtSwQxpSSqY\nIS1JBTOkJalghrQkFcyQlqSCGdKSVDBDWpIKZkhLUsEMaUkqmCEtSQUzpCWpYIa0JBXMkJakghnS\nklQwQ1qSCmZIS1LBDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ0pJUMENakgpmSEtSwQxpSSqYIS1J\nBTOkJalgmxXSEfHKiFjVqWIkSU83v90FI+IE4AhgfefKkSS12pyR9P3AW4E5HapFkjRO2yGdmVcB\nj3ewFknSOG1Pd7Rj6dJFzJ8/r7H1DQ8vbmxdnbZs2WIGBpZ0u4wp2c9m9Uo/e6GXndTr295oSA8P\njzS5OoaGemf6e2hoPYODj3S7jCnZz2b1Sj97oZedMjCwpCe2faodyUxOwRudeSmSpM2xWSPpzPwZ\nsF9nSpEkjeebWSSpYIa0JBXMkJakghnSklQwQ1qSCmZIS1LBDGlJKpghLUkFM6QlqWCGtCQVzJCW\npIIZ0pJUMENakgpmSEtSwQxpSSqYIS1JBTOkJalghrQkFcyQlqSCGdKSVDBDWpIKZkhLUsEMaUkq\nmCEtSQUzpCWpYIa0JBXMkJakghnSklQwQ1qSCmZIS1LBDGlJKpghLUkFM6QlqWCGtCQVzJCWpIIZ\n0pJUMENakgo2f7oFImIu8HlgJfBfwNGZuabThUmS2htJvwVYmJn7AR8GzuxsSZKkMe2E9KuBbwBk\n5veBfTpakSTpSdNOdwDbAg+3XH4iIuZm5qbxC+699x4TruAHP7hnwuvbWX7koQef/PlfL//IhMu/\n6o8/PuH1W2v50U1PcPh1i1iwYAGwZdvb6eXtZ7PLl97P8b2Ecvu5Zs3qp11/+OGHTrj81Vd/bcLr\nJ1p+3ry5XHHFNW0v3876W3sJzfVnMnNGR0enXCAizgRuzczL68vrMnPHzXoUSdKMtDPdcQvwhwAR\nsS9wV0crkiQ9qZ3pjquBP4iIW+rLR3WwHklSi2mnOyRJ3eObWSSpYIa0JBXMkJakghnSklSwds7u\n6GkRcRewPTBn3E2jmfm8LpTU0yJiO2BjZo60XPeCzPxZ96rqDxGxC7ApM9d2u5Z+EBErM7PnTxnu\n+7M7ImJX4J+B/VuDRZsvIo4GPgTMAy7MzNPr61dl5uu7WlwPioj9gbOBYeBLwAnARuDczLyom7X1\nooh4IzAWaHOATwMfBMjM67tV15bq++mOzLwfOAcwRLbce4AXAy8CXhoRJ3e5nl53GnAYcCpwLrAv\n8Arg6C7W1MtOp+rp2+t/O7T83LP6froDIDO/3O0a+sTjmbkBICKOBK6LiJ90uaZeNqee2lgbEZ/L\nzPUAEfFEl+vqVfsB5wHfzcyL6iO8nn/zXd+PpNWoWyLiyoh4ZmZuBP6Y6nDypV2uq1d9KyJuiIh5\nmXkyQEScix+9MCOZOVKH8tKIuABYMN19eoEhrbZl5gepDssfqy8PU32U7d93s65eVQfzCZnZOnK+\nEjiuSyX1hcz8DHA50BcvwPb9C4eTiYildchIUrFmzUi6Powc+/mNwG1dLEeS2jJrQhp4OCJOj4jz\ngBOBg7tdUL+IiKXdrqGf2M9m9Xo/Z01IZ+ZJVNu7IjN/3y/TnTmPSpplP5vVb/3s+1PwIuKXPHWC\nO8CzI+IX+I7DLfFwRJwOLKY6b9qjki1jP5vVV/2ctS8castExBnAnpnZ038ApbCfzeqnfs6akI6I\nPYDzgaXAJcC9mTnxN05qQhMdlQC/wqOSGbGfzerXfs6mkP428F7gH4EjgGsyc+/uViVJU+v7OelW\nmbk6IsjMByLi4W7X06s8KmmW/WxWv/Vz1pzdAQxFxLHANhHxduA/u11QDzsH+HNgkOoTBj/W3XJ6\nnv1sVl/1czaF9LuBXaieuH3qy5qhzFxd//8A4FHJFrKfzeqnfs6akM7Mh4AbgGuASwE/W3rmPCpp\nlv1sVl/1c9aEdER8CjiS6rN696H6kHXNjEclzbKfzeqrfs6akAZek5lHAusz82KqJ1Ez4FFJs+xn\ns/qtn7Pp7I55EfG7ABExD/CD1WeoPipZDuxO9XVPJ9Lj337RTfazWf3Wz9k0kv4s8AOqt4neBny+\nu+X0NI9KmmU/m9VX/ez7kI6IlQCZeTnwWuBQ4ODM/KeuFtbbPCpplv1sVl/1czZMd5wTETsBNwHf\nAK7PzJ5+tbcAY0clA1RHJWd1t5yeZz+b1Vf9nBVvC6/3qq8C9gdeQ/V17zdnpl/7tBkiYmVm3lX/\nvAzYFfhpZg52t7LeZD+b1a/9nBUhDRAR2wIHUYX0y4DhzDy8u1X1loi4CfCopCH2s1n92s++D+mI\n+ADwh8AzgRuB66i+8n1jVwvrUR6VNMt+Nqsf+9n3LxwCH6E6qf1DwN9l5ioDeuYy8zdU83131f/m\nAXt1tageZj+b1Y/9nA0j6YVUZ3UcArwO+CVwLXBtZv5HN2vrNR6VNMt+Nqtf+9n3IT1eRBwMnAzs\nl5nzul1PL4mIh6jm+r5IdQi5ocsl9TT72ax+7Wffh3REvJxqJP1a4EXAD6neMnpjZq7tZm29xqOS\nZtnPZvVrP2dDSN9IFco3AP+emZu6XFLf8KikWfazWf3Sz75/M0tmHtTtGvrFJEcll1B9HZk2k/1s\nVr/2s+9DWo36FNURycfxqKQJ9rNZfdnPvp/ukKReNhvOk5aknmVIS1LBDGlJKpghLUkF+2/NkKt9\nN6E3nwAAAABJRU5ErkJggg==\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Python homeworks have become increasingly difficult as the course has progressed."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_lecture_week_1 = rails_lecture_data_transposed[0:4].mean().mean()\n",
+ "rails_lecture_week_2 = rails_lecture_data_transposed[4:8].mean().mean()\n",
+ "rails_lecture_week_3 = rails_lecture_data_transposed[8:12].mean().mean()\n",
+ "rails_lecture_week_4 = rails_lecture_data_transposed[12:].mean().mean()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "pd.DataFrame([rails_lecture_week_1, rails_lecture_week_2, rails_lecture_week_3, rails_lecture_week_4]).plot(kind=\"bar\", \n",
+ " title=\"Rails Lecture Difficulty By Week\")\n",
+ "plt.xticks(np.arange(0,4), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEiCAYAAAAPneL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHHZJREFUeJzt3X2UXHWd5/F3p5PgJN2EjjZ41uFhVvFrAIEQXDTGBCIR\nlIcBZ9TDaFyeJOAOcEARhMFxfFiCGVBQHjSExXU0uDC4SiLhwQksT4IiEOMZPoizMCyD0jPdk6Rp\nBpJ07x/3NimK7qrq7ltd/av+vM7pQ9W9Vfd+61vkU/f+bt26LQMDA5iZWZqmNLoAMzMbPYe4mVnC\nHOJmZglziJuZJcwhbmaWMIe4mVnCpja6ABu9iOgHNgLbgQFgBrAZOEPSI1Weuxb4DPBm4JuS3lnj\nOvcCfi2pfQylly7vVGCapGuKWN4Qy/8i8GnguXzSNOCfgM9I+m3+mEeBRUAv8CPgHcCVwH7AEcAP\ngLn5c54YZQ1vlHTmaF5v2fs8hey9/mtJP67x+YcAP5X0xpJpPwA+DLxJUm8+7SqgV9L5tdZWsry9\nKPD/C6udQzx9h0rqHrwTEZ8BvgnMr/QkSUflj39zfcuragHw6zoufwC4UdJZgxMi4hPAzyJiX0lb\nJM3Np+8BfACYIWkgIrYDu0v6lwJqGDwhY7Sv99X3OSLeBayPiF0kbavhub8A+iPiAEmPR8RU4DBg\nPXAkcHP+uMXAaaOozRrIIZ6+lsEb+T/OPYF/y+/vBnwb2JVsi/sZ4KOSuiLiaeDPShcUEQuAy4BW\nstC5RNIttRYSEdOBS4GF+TIeBc6StCUi3p7X0gn0A18BXgGOAQ6PiJfyOt8o6cx8eV9kxxbs3fnr\negdwNfB3wBVkW8vTgJ8B50naXqlHAJL+LiKWAn8BfDvf0t0DWJcv61cR8cb8ebdFxH/L1/dhSb+K\niJOBc8m2jP8V+K/A2yjZo4mIQ0vutwAtEXFc/nrfn7/es4AzJd2ZP2cl2dbslVVew5uAF4DtEXER\nsI+kj+fLeG++3oNKXm9/RNwOHAo8TvZBsgG4CTgWuDki3gLsBtxf5X18C9lGwh55r26UdElpoREx\nB1gLnFPr3oKNnsfE07c+Ih6LiOcAkQXkSfm8jwH3S5ov6T8DfcDSfF7p1uGgvwEul3QwcDLZ1tpI\nXABslTRP0oHA88DyfN6NwA8l7Qd8CPjvZMH7k3ydVw9RT2mNA0C3pH0lXQV8HfhlXutBZB8O546g\n1sfJPgAG9QEfBF6SNFfSHvn0wyTdN1hHRByQv6YjJB2Q13/RELW/jqT/nT/+6/nrvQY4NV/uzmSB\nesMwT18fEY9GxG+BNcBXJQ0A3wGOiohd8scty5db7jayEIfsg+RW4KfAkRExBXg/cLukfiq/j98D\nrs/7fgiwJCI+MriSiNgvf42nOMDHh7fE03eopO6IOJDsH+qDkv4VQNKVEfG+iDgX2JsstH5eYVk/\nBK6KiGOAu8jCaSSOBmZFxJL8/nTgDxHRAewPXJfX9f/ItlyJCNixlfmaLeYh3Fu2rndFxCn5/TeQ\nfYCNRF/Z/WrrbyELu3WSngOQdAW8uuVdq8H1fBf464h4E/AR4FZJm4d5TulwSgD3RMQ/SnogItYA\nn4yI75ENB50+xPPvAL4RES1kvTtC0u8j4hngYLKhlLX5Y4d7H2eQHTvoiIgv5/NmAgcAD5O9B/8A\n3C1p/Qj6YWPgLfEmIekx4BzguojYEyAiLiXbuv4D2VDGHVQIKknfAd4J3El2QG9DvoVYqylku91z\n83HmQ4CPkg07QMnWakTsHRFvKJs+UFbfTmXL7y1b15+XrOs9ZMMTtXoXoxub3lp6JyJ2yoeKymuf\nXva8gfLbkv6dbEhjKdne07W1FCBJwD1kwyIAV5HtOZ0A3Cyp/MMJSV1kB3T/DNgm6el81lrgfWRD\nJ7fl04Z7Hwc3+t5TMm8+cEn+2geAPwXmRcTxtbwWGzuHeBORdCPwIPCNfNIHgG9I+j7QBSwhG+Mc\nUkQ8AMyV9F2y3fJd8r9a3Q6cGRHT8130a8l2+zcDjwAn5uvZHXgAmAVsY0fgvQDMyx8zM6+/VGlI\n3g6cGxEt+Rjuj8i+hVLudR9a+db7XsD/GsFrgyyk1pON4Q8eED4DWJHXvkdEdOZbu8cNU0fp64Us\ngM8CWiT9ssK6S4997EoWng8DSHqQbC/ksww9lDLoNuBisqGUQWvIPkR+L+nf8mmV3sefk32riYiY\nRbZ3dGz+vJfzWk4Grs2PyVidOcTTNtQ47F8CH8x3hb8E/G1E/JzsH/fN5MMYZcsYXM55wJci4ldk\nu8VflPTPQ6xjZkRsKfvbF/gy8DTZgbDfkP3/9Zn8OX8BfDQiHmPHmOkfyILlrIg4H/g+0JWP+64F\n7q/wes8i25XfkP9tBL42TI8+lo8n/ypf/xKy4YlXhljucLcBkLQx79O6fFkfAJZJ+keyvZ1fkn2Q\n/guv3cMYvF36epG0Aeim+lb44Jj4o8DdZAed7y6ZfwPwnKTfVFjGbWRDamtKpj1CdkBzbcm0au/j\nuyNiA/AQsFrS6pLXiaR7yI6BrKrymqwALf4pWrPGiYi3km3dv13Sf4xyGVPJ9kT+p6SbiqzPJr6a\nDmzmu2+PAO+X9GTJ9HOAU8h21SHbInlyiEWYWZmI+BLwKbLx59EG+D7AfcBaB/jkVHVLPCKmkY0d\nzgGOLQvx75F9PezRulZpZmZDqmVMfAXZeOrzQ8ybB1wYEfdGxAWFVmZmZlVVDPGIOBHoknRHPqn8\nSP9qsm8xLAYWRMRR1Va4bdv2wYM8/vOf//znv9r+hlVxOCUi7ilZyIFkZwQeK+mFfP7OgycnRMQZ\nZKdIf6XSCru6tlQsaCLo7Gynq2tLo8toGu5nsSZrP1955RWeffaZwpc7e3Yb3d291R9Yo91335Pp\n08tPExibzs72Yc/vqHhgU9KiwdsRsZ7swOVggM8iOxlkH7Iz3xbjrxSZWZ08++wznL3iJ8yYtWuj\nSxlW36YXuOK8Y3nrW/cet3WO9LT7log4AWiTtDIfB18PvAzcJWld4RWameVmzNqVto63NLqMCaXm\nEJc0+GNIKpm2mmxc3MzMGsBnbJqZJcwhbmaWMIe4mVnCJtzvidfja0T1+MqPmdlEMOFCvOivETXi\nKz9mZuNlwoU4jP/XiPr7+7nssuX87ndPMW3aNL72teX80R91jNv6zcxGy2PiwL333s3WrVu59trr\nOf30M1m+fHn1J5mZTQAOcWDDhsc55JD5AOy7735s3LixwRWZmdXGIQ709b3IzJkzX73f2tpKf/9I\nr7lrZjb+HOLAjBkz6evbcW3Z/v5+pkxxa8xs4puQBzb7Nr0wrsvaf/8DuP/+e1m8+HA2bvw1EVHY\n+s3M6mnChfjuu+/JFecdW/2BI1xmJQsXHsYvfvEQZ5xxMgArVgx1vV0zs4lnwoX49OnTx/073S0t\nLXz2s59/9f5k/b1mM0uPB37NzBLmEDczS5hD3MwsYQ5xM7OE1XRgMyJ2BR4B3i/pyZLpxwAXA9uA\n6yVdV5cqzcxsSFW3xCNiGvBt4MUhpl8OLAEWAaflYW9mZuOkluGUFcA1wPNl0+cAT0naJGkrcB+w\nsOD6zMysgorDKRFxItAl6Y6I+DzQUjJ7Z2BTyf0twKxqK+zomMHUqa2jKHV8dXa2N7qEpuJ+Fmsy\n9rOnp63RJdRk9uy2cX1/qo2JnwQMRMThwIHAdyPiWEkvkAV4aaXtQE+1Ffb09FV7SMP5ZJ9iuZ/F\nmqz97O7ubXQJNenu7i38/an0oVAxxCUtGrwdEeuBZXmAAzwB7B0RHWTj5QvJhl7MjPpcahCyLdKi\nA82XMEzXSE+7b4mIE4A2SSsj4lzgdrKx9VWSysfNzSatoi81WC++hGHaag5xSYcN3iyZtgZYU3RR\nZs1ivC81aJOPT/YxM0uYQ9zMLGEOcTOzhDnEzcwS5hA3M0uYQ9zMLGEOcTOzhDnEzcwS5hA3M0uY\nQ9zMLGEOcTOzhI30B7CsiflX98zS4xC3V/lX98zS4xC31/Cv7pmlxWPiZmYJc4ibmSWs6nBKRLQC\nK4G3AwPA6ZJ+UzL/HOAUoCuftEzSk3Wo1czMytQyJn400C9pQUQsAr4KHFcy/yBgqaRH61GgmZkN\nr+pwiqQfA8vyu3vx+ivazwMujIh7I+KCYsszM7NKahoTl7Q9Im4ArgR+UDZ7NVnILwYWRMRRhVZo\nZmbDGsmFkk+MiPOBhyJijqSX8llXSNoMEBFrgbnA2uGW09Exg6lTW8dS87jo7GxvdAnjrqenrdEl\n1Gz27LYJ/x65n8VKpZ/j3ctaDmwuBf5Y0iXAS0A/2QFOImIWsCEi9gH6yLbGV1VaXk9P31hrrrvO\nzna6urY0uoxxV/RZlfXU3d074d8j97NYqfSzHr2s9KFQy3DKzcCBEXEPsA44Gzg+Ij4laRNwAbAe\n+D/ARknrxl6ymZnVouqWeD5s8rEK81eTjYubmdk4S/60+3r8aJN/sMnMUpF8iKfwo03+wSYzq5fk\nQxz8o01mNnn5t1PMzBLmEDczS5hD3MwsYQ5xM7OEOcTNzBLmEDczS5hD3MwsYQ5xM7OEOcTNzBLm\nEDczS5hD3MwsYQ5xM7OEOcTNzBLmEDczS1gt19hsBVYCbye7tubpkn5TMv8Y4GJgG3C9pOvqVKuZ\nmZWpZUv8aKBf0gLgr4CvDs6IiGnA5cASYBFwWkRM3KszmJk1maohLunHwLL87l5AT8nsOcBTkjZJ\n2grcBywsukgzMxtaTVf2kbQ9Im4Ajgf+vGTWzsCmkvtbgFmFVWdmZhXVfHk2SSdGxPnAQxExR9JL\nZAHeXvKwdl67pf46HR0zmDq1dVTFDqWnp62wZdXT7NltdHa2V39gA6XSS3A/i+Z+Fme8e1nLgc2l\nwB9LugR4CegnO8AJ8ASwd0R0AC+SDaWsqLS8np6+MRVcruir0tdLd3cvXV1bGl1GRan0EtzPormf\nxalHLyt9KNRyYPNm4MCIuAdYB5wNHB8Rn8rHwc8FbgceAFZJen7sJZuZWS2qbonnwyYfqzB/DbCm\nyKLMzKw2PtnHzCxhDnEzs4Q5xM3MEuYQNzNLmEPczCxhDnEzs4Q5xM3MEuYQNzNLmEPczCxhDnEz\ns4Q5xM3MEuYQNzNLmEPczCxhDnEzs4Q5xM3MEuYQNzNLmEPczCxhFa/sExHTgOuBPYGdgK9IurVk\n/jnAKUBXPmmZpCfrVKuZmZWpdnm2jwNdkpbmF0N+DLi1ZP5BwFJJj9arQDMzG161EL+J7ELJkA29\nbCubPw+4MCLeDKyVtLzg+szMrIKKY+KSXpTUGxHtZIF+UdlDVgPLgMXAgog4qj5lmpnZUKpe7T4i\ndgduAa6SdGPZ7Cskbc4ftxaYC6yttLyOjhlMndo6ynJfr6enrbBl1dPs2W10drY3uoyKUukluJ9F\ncz+LM969rHZgczfgDuDTktaXzZsFbIiIfYA+sq3xVdVW2NPTN/pqh9Dd3Vvo8uqlu7uXrq4tjS6j\nolR6Ce5n0dzP4tSjl5U+FKptiV8IzAK+EBFfyKetBGZKWhkRFwDrgZeBuyStK6BeMzOrUcUQl3Q2\ncHaF+avJxsXNzKwBfLKPmVnCHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4\nmVnCHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4mVnCql1jcxpwPbAnsBPw\nFUm3lsw/BrgY2AZcL+m6OtZqZmZlqm2JfxzokrQQOBL41uCMPOAvB5YAi4DTImLXehVqZmavVy3E\nbwIGL5A8hWyLe9Ac4ClJmyRtBe4DFhZfopmZDafahZJfBIiIdrJAv6hk9s7AppL7W4BZ1VbY0TGD\nqVNbR17pMHp62gpbVj3Nnt1GZ2d7o8uoKJVegvtZNPezOOPdy4ohDhARuwO3AFdJurFk1iagtNJ2\noKfa8np6+kZaY0Xd3b2FLq9eurt76era0ugyKkqll+B+Fs39LE49elnpQ6Hagc3dgDuAT0taXzb7\nCWDviOgAXiQbSlkxtlLNzGwkqm2JX0g2RPKFiBgcG18JzJS0MiLOBW4nGy9fJen5+pVqZmblqo2J\nnw2cXWH+GmBN0UWZmVltfLKPmVnCHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaW\nMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4mVnCql4oGSAiDgGW\nSzqsbPo5wClAVz5pmaQniy3RzMyGU8vV7j8HfAIY6lLTBwFLJT1adGFmZlZdLcMpTwEfBlqGmDcP\nuDAi7o2ICwqtzMzMqqq6JS7plojYa5jZq4GrgC3AjyLiKElrKy2vo2MGU6e2jrjQ4fT0tBW2rHqa\nPbuNzs72RpdRUSq9BPezaO5ncca7lzWNiVdwhaTNABGxFpgLVAzxnp6+Ma7ytbq7hxrlmXi6u3vp\n6trS6DIqSqWX4H4Wzf0sTj16WelDYdQhHhGzgA0RsQ/QBywGVo12eWZmNnIjCfEBgIg4AWiTtDIf\nB18PvAzcJWldHWo0M7Nh1BTikp4G5ue3V5dMX002Lm5mZg3gk33MzBLmEDczS5hD3MwsYQ5xM7OE\nOcTNzBLmEDczS5hD3MwsYQ5xM7OEOcTNzBLmEDczS5hD3MwsYQ5xM7OEOcTNzBLmEDczS5hD3Mws\nYQ5xM7OE1RTiEXFIRKwfYvoxEfFwRDwQEacWX56ZmVVSNcQj4nPASmCnsunTgMuBJcAi4LSI2LUe\nRZqZ2dBq2RJ/Cvgw0FI2fQ7wlKRNkrYC9wELC67PzMwqqBrikm4Btg0xa2dgU8n9LcCsguoyM7Ma\njORq9+U2Ae0l99uBnmpP6uiYwdSprWNY7Wv19LQVtqx6mj27jc7O9uoPbKBUegnuZ9Hcz+KMdy/H\nEuJPAHtHRAfwItlQyopqT+rp6RvDKl+vu7u30OXVS3d3L11dWxpdRkWp9BLcz6K5n8WpRy8rfSiM\nJMQHACLiBKBN0sqIOBe4nWxYZpWk58dSqJmZjUxNIS7paWB+fnt1yfQ1wJq6VGZmZlX5ZB8zs4Q5\nxM3MEuYQNzNLmEPczCxhDnEzs4Q5xM3MEuYQNzNLmEPczCxhDnEzs4Q5xM3MEuYQNzNLmEPczCxh\nDnEzs4Q5xM3MEuYQNzNLmEPczCxhDnEzs4RVvLJPREwBrgb2B14GTpX0u5L55wCnAF35pGWSnqxT\nrWZmVqba5dmOA6ZLmh8RhwCX5dMGHQQslfRovQo0M7PhVRtOeS+wDkDSQ8DBZfPnARdGxL0RcUEd\n6jMzswqqhfjOwOaS+9vzIZZBq4FlwGJgQUQcVXB9ZmZWQbXhlM1Ae8n9KZL6S+5fIWkzQESsBeYC\naystsKNjBlOnto6m1iH19LQVtqx6mj27jc7O9uoPbKBUegnuZ9Hcz+KMdy+rhfj9wDHATRHxbmDD\n4IyImAVsiIh9gD6yrfFV1VbY09M3+mqH0N3dW+jy6qW7u5euri2NLqOiVHoJ7mfR3M/i1KOXlT4U\nqoX4j4AlEXF/fv+kiDgBaJO0Mh8HX0/2zZW7JK0romAzM6tNxRCXNACcUTb5yZL5q8nGxc3MrAF8\nso+ZWcIc4mZmCXOIm5klzCFuZpYwh7iZWcIc4mZmCXOIm5klzCFuZpYwh7iZWcIc4mZmCXOIm5kl\nzCFuZpYwh7iZWcIc4mZmCXOIm5klzCFuZpYwh7iZWcKqXZ6N/Or2VwP7k12G7VRJvyuZfwxwMbAN\nuF7SdXWq1czMytSyJX4cMF3SfOAC4LLBGRExDbgcWAIsAk6LiF3rUaiZmb1eLSH+XmAdgKSHgINL\n5s0BnpK0SdJW4D5gYeFVmpnZkKoOpwA7A5tL7m+PiCmS+vN5m0rmbQFmVVrYvHn7DTn9kUc2jvrx\nfZteePX2gzddPOTj3/ORLw85fTweP9C/neNvm8G0adNenT6W11vPx5f2EtzPsT7e/Zxc/Xzghxe+\nrpdQXH+G0jIwMFDxARFxGfBzSTfl95+VtHt++53AcklH5fcvB+6TdEvNFZiZ2ajVMpxyP/AhgIh4\nN7ChZN4TwN4R0RER08mGUh4svEozMxtSLVviLez4dgrAScA8oE3Syog4GvgC2QfCKknX1LFeMzMr\nUTXEzcxs4vLJPmZmCXOIm5klzCFuZpYwh7iZWcJqOdmnqUXEBuBNQEvZrAFJ/6kBJSUvImYBWyX1\nlUzbS9LTjasqfRHxJ0C/pGcaXUsziIj9JW2o/siJbdJ/OyUi3gasBhaVho6NTkScCpwPtALflnRp\nPn29pMMaWlxiImIRcAXQA/wP4HPAVuBbklY1srYURcQRwGDgtQBfA84DkHRHo+oaq0k/nCLpKeBK\nwAFTjNOAfYF3AAdGxEUNridly4E/Bb4IfAt4N/BfgFMbWFPKLiXr6Qn5364lt5M16YdTACR9r9E1\nNJFtkl4BiIhPArdFxD81uKZUteRDJ89ExDcl9QJExPYG15Wq+cBVZD8NsirfOzyp0UWN1aTfErfC\n3R8Rfx8Ru+S/bPkRsl3WAxtcV4p+FhF3RkSrpIsAIuJbvPanL6xGkvry0O6IiGuBadWekwKHuBVK\n0nlku/4v5fd7yH7O+EuNrCtFeXB/TlLplvffA3/ZoJKagqS/BW4CmuIA8aQ/sDmciOjIA8jMbMLy\nlngu300dvH0E8HADyzEzq4lDfIfNEXFpRFwFfB44stEFNZOI6Gh0Dc3CvSxW6v10iOckXUjWj7dK\nOrT0YtA2ct6zKY57Waxm6+ek/4phRPyeHScAAOwWEc/jMzbHanNEXAq0kX1v3Hs2o+deFqup+ukD\nm1Y3EbECeKekpP+RTATuZbGaqZ8O8VxE7AdcA3QANwBPSFrT0KISNNSeDfAHvGczYu5lsZq1nw7x\nXET8A7AM+A7wCeAnkuY1tiozs8om/Zh4KUm/jQgkPRcRmxtdT8q8Z1Mc97JYzdZPfztlh+6IOB2Y\nGREnAP/e6IISdyVwMtBF9iuRf9PYcpLmXharqfrpEN/hFOBPyN7Yg/P7NgaSfpv/9znAezZj4F4W\nq5n66RDPSdoE3An8BPgu4N8WHxvv2RTHvSxWU/XTIZ6LiEuAT5L9VvPBZD/Cb6PnPZviuJfFaqp+\nOsR3WCDpk0CvpOvJ3mQbJe/ZFMe9LFaz9dPfTtmhNSLeABARrYB/eH8M8j2btwBzyC4p9nkSv4JK\no7iXxWq2fnpLfIevA4+QnYb7MHB1Y8tJnvdsiuNeFqup+jnpQzwi9geQdBPwPuBo4EhJ329oYenz\nnk1x3MtiNVU/PZwCV0bEHsDdwDrgDklJH62eIAb3bDrJ9mwub2w5SXMvi9VU/fRp90D+qfweYBGw\nAGgB7pHkS4qNUETsL2lDfns28Dbg/0rqamxl6XEvi9Ws/XSI5yJiZ+BwshA/COiRdHxjq0pPRNwN\neM+mAO5lsZq1n5M+xCPis8CHgF2Au4DbgPvyK7XbKHjPpjjuZbGasZ+T/sAmcDHZl/7PB/5K0noH\n+NhI+g+yMccN+V8rMLehRSXKvSxWM/bTW+IR08m+lfJBYCHwe+CnwE8l/XMja0uR92yK414Wq1n7\nOelDvFxEHAlcBMyX1NroelITEZvIxhuvI9tNfaXBJSXLvSxWs/Zz0od4RLyLbEv8fcA7gMfJTsm9\nS9IzjawtRd6zKY57Waxm7adDPOIustC+E3hMUn+DS2oq3rMpjntZrGbp56Q/2UfS4Y2uoZkMs2dz\nA9kl72wE3MtiNWs/J32IW+EuIdur+TLesxkr97JYTdnPST+cYmaWMn9P3MwsYQ5xM7OEOcTNzBLm\nEDczS9j/B0QvLRJDUaMoAAAAAElFTkSuQmCC\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Rails lectures have had a near linear increase in difficulty over the first four weeks."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_homework_week_1 = rails_homework_data_transposed[0:4].mean().mean()\n",
+ "rails_homework_week_2 = rails_homework_data_transposed[4:8].mean().mean()\n",
+ "rails_homework_week_3 = rails_homework_data_transposed[8:12].mean().mean()\n",
+ "rails_homework_week_4 = rails_homework_data_transposed[12:].mean().mean()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 40
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "pd.DataFrame([rails_homework_week_1, rails_homework_week_2, rails_homework_week_3, rails_homework_week_4]).plot(kind=\"bar\", \n",
+ " title=\"Rails Homework Difficulty By Week\")\n",
+ "plt.xticks(np.arange(0,4), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEiCAYAAAAPneL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHCFJREFUeJzt3XuUXHWZ7vFvJ53gCh1CRzu4jgaYQXgNIBCCB40xAQRF\nIQjOOB4G45GLBJwRFggSQBhHhgUMAwpy0xCEMzrhHC6OkJBwcQIHENHhFvHIg9GBYSGOPdNlLjRC\nku7zx95NKkV3VXX3rlT/up/PWlnp2nvXrrfeTp767d/eVdXS29uLmZmlaVyzCzAzs6FziJuZJcwh\nbmaWMIe4mVnCHOJmZglziJuZJay12QVY/yKiB3gW2Az0ApOAdcCpkp6ocd/lwJeBdwLfkvS+QT7u\nOyR1lS37PPBnkuYP9nk0U3/PpZ9tvgZ8EXg5XzQB+A3wZUm/yrd5CpgHbAB+ALwXuBrYG/gY8E/A\nzPw+zw2hzq8Bb5f0pYg4CZgg6fpB3L/838o4sn8vfyPph3Xe/0DgHklvL1v2T8CnyPq3IV92LbBB\n0jn11la2v12Bn0uaPNj7WnUO8ZHtoIow/TLwLWB2tTtJOiLf/p0F1TGa30zQC9wq6bS+BRHxWeBH\nEbGXpPWSZubLdwY+CkyS1BsRm4Hpkn5bQA19PZ4D/HwI+3jz30pEvB9YFRE7StpUx31/BvRExL6S\nnomIVuBgYBVwOHB7vt0hwMlDqM0ayCE+srX0/ZD/x9oF+K/89k7At4FpZCPuF4G/kNQZES8Af1a+\no4iYA1wBjCcLjEsk3VnrcfupYwpwLbBvvp8VwHmSNkfEH4ErgSOBHYCzgU8D7wN+C8yX1B0RM4Bv\nAm/P67la0nfzEe9Zkn4UEf8D+C6wo6TXI2Ix8CTZqHegx38d+Od83XFlNb8TeAC4TtJ1tZ6vpO9F\nxALgL4Fv5yPdnYGVZCP1JyPi7fn9VkTEXwHfAz4l6cmIOAE4k2xk/J/A/wTeQ9lRUUQcVHa7BWiJ\niKOB+cBHIuI14DTgS5Luz++zmGw0e3WN5/AO4PfA5og4H9hT0nH5Pj6UP+7+Zc+3JyLuBQ4CniF7\nIVkN3AYcBdweEe8CdgIejYiJwGXAXLLf31PAaZLW59t9K+/XBLIXyEvKC81//8uBM+o9WrCBeU58\nZFsVEU9HxMuAgB7g+HzdZ4BHJc2W9KdAN7AgX1c+suvzt8CVkg4ATiAbaVV73Kf6/uT37dvf1UBn\nHj4HkAXmWfm6icBvJe0DXAfcCJwO7AlMAY7KX4xuBxbltRwEnJUf0t9JNvIj/7sLmBsR44BPAHfU\nePwJwF2S3ls25TQd+BFw8QABPpBnyKZL+nQDHwdekzRT0s758oMlPdLXn4jYF7gU+JikfYG7gPOp\n42hG0j/n238jr/V64KR8vzuQBerNA9y973f2K2BZ/nx7ge8AR0TEjvl2C/P9VlpB9ruA7IXkbuAe\n4PC8/x8B7pXUAywCNkqaJWk/4JX8OQP8I3BT/rs9EDgsIj7d9yARsXf+HE90gBfDIT6yHZT/JzmC\nbE78MUn/CZCPxn4SEWdGxPVkgbN9lX39b+DaiPgeMIssWKo97sy+P8CFbBnpHQ5ck9fwBnADWbj1\nuSP/+zdko8ZX8jD5N2AqsAfwp8BN+QvEg8DbgP3I5pv79jWHbFR/GFkYrJH0+zoe/+GK53IPsF7S\n0irPdyDdFbcrj1AqtZCF3UpJL+c1XiXp1Dru29/j3EIWgu8gO7K4W9K6Ae7T9zvbnexF8+KImC2p\nkyzUPxcR7WTTQd/v5/73AXMiooXsSGqZpN+RHeEdQDaVsjzf9kjgk2Uv8p8EZkTEJLJzBxflyx8D\n3s2Wo6a3Af8CPCVp1SD6YVU4xBMg6WngDODGiNgFICIuIxsh/wfZtMp9VAkKSd8hm9a4n+xk3Op8\ndFePFraMJMdVPM54tp6We73s54397Gsc8IeKF4kPAbdIehaYGBHzgTVk4fNRspHhHWX3r/b4Gyoe\n72SgNyLOrP4U3+L9DG1ueqvnHBHbRcQeZP0rr3tixf16K3+W9AeyKY0FZEdgN9RTgCQBD5G9EEI2\n/XQCcCxwu6TKFyfysP8N2TTcJkkv5KuWAx8mmzpZkS8bRzZ90vf7OxD4C7b8Hj5Ytm42cAlb/g19\nEpgVEcfU81ysNod4IiTdSjay+Wa+6KPANyV9H+gkG7GOH+j+EfFjYKakW8gOqXfM/9SrL4DuBf4q\n3+d2ZCF5/yD2I+CPEdE3RzudbOpiZr7+B8Dfkx26K6/xOLaE+GAf/zGyOemvRsReVZ7XmyLiRGBX\n4P8M4nlBFlKrgEPLTiqfClxONke9c0R05KPdoweoYxNbB/y1ZHPjLZL+tcpjl5+3mEYWnj8FkPQY\n2VTcWfQ/ldJnBXAB2VRKn2VkLyK/k/Rf+bJ7gS9FxMR8quUGsumbdcBPyK6M6jt/8jDZNBDA63kt\nJwA35Od1bJgc4iNXf3Oofw18PCIOA74O/ENE/ITsP+btZCfPKvfRt5+zga9HxJNkh7Rfk/TvdT5u\n+X5OA6ZFxM/JTn79Eri4n/v2Ny+PpI1ko7GTIuIZskC4IP/PDVmI78GWYL6PbJ697xLAeh//zduS\nngcuAr6Xz8lXbvOZfGrgyYh4muwF8aB8uqa/59Xfz33P71myXq/M9/VRYKGkX5IdMf0r2QvLb8vu\nX96rFcBpEXFOvr/VZOcGao3C3zyPQTZFdYmkB8vW3wy8LOkXVfaxgmxablnZsifITmguL1t2EfAC\n2QnNX5DlyJfzdX8JfCAiVgOPA0vLprL6fh8PAbcCS2o8J6tDiz+K1mzkiojdyEb3e0j64xD30Ur2\n4vi/JN1WZH3WfHVdYpgfnj0BfCQf1fQtn092+LWJ7Iz0jQ2p0mwMioivA18gm38eaoDvCTwCLHeA\nj041R+IRMYFsbnAGcFRfiOfL/x/Zmetu4FHgyPwKAjMz2wbqmRO/nGzO9ZWK5TPILvtam89zPkJ2\nBtvMzLaRqtMp+WdmdEq6LyLOZesz+TsAa8turyd7Q8eANm3a3NvaOuAFFGZm1r8BLx+uNSd+PNk1\ntoeSvRnjlog4Kp8yWQuUf5jNZKBUbWel0lsuTx2ROjom09m5vtlljBruZ7Hcz+Kk0suOjoE/N6xq\niEua1/dzRKwiu1Sqb877OWD3/F1gr5JNpVw+7GrNzKxug/0ArJaIOBZok7Q4fxfcvWRz60skVc6b\nm5lZA9Ud4pL6PjBJZcuWsfUbA8zMbBvyOzbNzBLmzxO3N73xxhu89NKLhe+3VGqjq6vyc6mGZ/r0\nXZg4sfIzpMzGHoe4vemll17k9MvvYtKUac0uparutb/nqrOPYrfddm92KWZNN6JCvBEjQY/YBmfS\nlGm0tb+r2WWYWZ1GVIgXPRL0iM3MRrsRFeKw7UeCPT09XHHFpfz612uYMGECixZdQEfHjG32+GZm\nwzHmr055+OEH2bhxIzfccBOnnPIlrrnmG80uycysbmM+xFevfoYDD5wNwF577c1zz/2yyRWZmdVv\nzId4d/erbL/9lu8XHjduHD09PU2syMysfiNuTnxbmzRpe7q7t3wwV29vL+PGjfnXNiuAr7svViP6\nORp6OeJCvHttcd8pUc++9tlnXx599GEOOeRQnn325+y2W+XXVJoNja+7L1YK/WxGL0dUiE+fvgtX\nnX1U7Q0Huc9q5s49mJ/97HFOPfUEAM49928KfXwb23zdfbHcz7caUSE+ceLEbT4aaGlp4ayzzt2m\nj2lmVhRP/pqZJcwhbmaWMIe4mVnCHOJmZgkbUSc2B8vX4ZrZWJd0iKdw3Sikcx2umaUn6RAHXzdq\nZmNb1RCPiPHAYmAPoBc4RdIvytafAZwIdOaLFkp6vkG1mplZhVoj8SOBHklzImIecDFwdNn6/YEF\nkp5qVIFmZjawqlenSPohsDC/uStQqthkFnBeRDwcEYuKL8/MzKqpOScuaXNE3AwcA/x5xeqlwLXA\neuAHEXGEpOUD7au9fRKtreOHUe7WSqW2wvbVaFOnttHRMbnZZVTlfhbL/SxWKv3c1r2s68SmpM9H\nxDnA4xExQ9Jr+aqrJK0DiIjlwExgwBAvlboHWjUkRV8G2EhdXRvo7Fzf7DKqcj+L5X4WK5V+NqKX\n1V4Uap3YXAC8W9IlwGtAD9kJTiJiCrA6IvYEuoFDgCUF1WxmZnWo9Y7N24H9IuIhYCVwOnBMRHxB\n0lpgEbAK+L/As5JWNrRaMzPbStWReD5t8pkq65eSzYubmVkT+LNTzMwS5hA3M0uYQ9zMLGEOcTOz\nhDnEzcwS5hA3M0uYQ9zMLGEOcTOzhDnEzcwS5hA3M0uYQ9zMLGEOcTOzhDnEzcwS5hA3M0uYQ9zM\nLGEOcTOzhDnEzcwS5hA3M0uYQ9zMLGEOcTOzhFX9omSAiBgPLAb2AHqBUyT9omz9fOACYBNwk6Qb\nG1SrmZlVqGckfiTQI2kO8FXg4r4VETEBuBI4DJgHnBwR0xpRqJmZvVXNEJf0Q2BhfnNXoFS2egaw\nRtJaSRuBR4C5RRdpZmb9qzmdAiBpc0TcDBwD/HnZqh2AtWW31wNTBtpPe/skWlvHD6HM/pVKbYXt\nq9GmTm2jo2Nys8uoyv0slvtZrFT6ua17WVeIA0j6fEScAzweETMkvUYW4OXVTmbrkfpWSqXuIRfa\nn66uDYXur5G6ujbQ2bm+2WVU5X4Wy/0sVir9bEQvq70o1HNicwHwbkmXAK8BPWQnOAGeA3aPiHbg\nVbKplMuHW7CZmdWnnhObtwP7RcRDwErgdOCYiPhCPg9+JnAv8GNgiaRXGlatmZltpeZIPJ82+UyV\n9cuAZUUWZWZm9fGbfczMEuYQNzNLmEPczCxhDnEzs4Q5xM3MEuYQNzNLmEPczCxhDnEzs4Q5xM3M\nEuYQNzNLmEPczCxhDnEzs4Q5xM3MEuYQNzNLmEPczCxhDnEzs4Q5xM3MEuYQNzNLmEPczCxhVb9j\nMyImADcBuwDbAX8n6e6y9WcAJwKd+aKFkp5vUK1mZlah1hclHwd0SloQEe3A08DdZev3BxZIeqpR\nBZqZ2cBqhfhtwO35z+OATRXrZwHnRcQ7geWSLi24PjMzq6LqnLikVyVtiIjJZIF+fsUmS4GFwCHA\nnIg4ojFlmplZf2qNxImI6cCdwLWSbq1YfZWkdfl2y4GZwPKB9tXePonW1vHDKHdrpVJbYftqtKlT\n2+jomNzsMqpyP4vlfhYrlX5u617WOrG5E3Af8EVJqyrWTQFWR8SeQDfZaHxJtf2VSt3Dq7ZCV9eG\nQvfXSF1dG+jsXN/sMqpyP4vlfhYrlX42opfVXhRqjcTPA6YAF0bEhfmyxcD2khZHxCJgFfA68ICk\nlQXUa2Zmdaoa4pJOB06vsn4p2by4mZk1gd/sY2aWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4mVnC\nHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaW\nMIe4mVnCHOJmZglziJuZJazqFyVHxATgJmAXYDvg7yTdXbZ+PnABsAm4SdKNDazVzMwq1BqJHwd0\nSpoLHA5c07ciD/grgcOAecDJETGtUYWamdlb1Qrx24ALy7bdVLZuBrBG0lpJG4FHgLnFl2hmZgOp\nOp0i6VWAiJhMFujnl63eAVhbdns9MKXoAs3MbGBVQxwgIqYDdwLXSrq1bNVaYHLZ7clAqdq+2tsn\n0do6fih19qtUaitsX402dWobHR2Ta2/YRO5nsdzPYqXSz23dy1onNncC7gO+KGlVxerngN0joh14\nlWwq5fJq+yuVuodR6lt1dW0odH+N1NW1gc7O9c0uoyr3s1juZ7FS6WcjelntRaHWSPw8simSCyOi\nb258MbC9pMURcSZwL9l8+RJJrxRQr5mZ1anWnPjpwOlV1i8DlhVdlJmZ1cdv9jEzS5hD3MwsYQ5x\nM7OEOcTNzBLmEDczS5hD3MwsYQ5xM7OEOcTNzBLmEDczS5hD3MwsYQ5xM7OEOcTNzBLmEDczS5hD\n3MwsYQ5xM7OEOcTNzBLmEDczS5hD3MwsYQ5xM7OEOcTNzBJW69vuAYiIA4FLJR1csfwM4ESgM1+0\nUNLzxZZoZmYDqRniEfEV4LPAhn5W7w8skPRU0YWZmVlt9UynrAE+BbT0s24WcF5EPBwRiwqtzMzM\naqoZ4pLuBDYNsHopsBA4BJgTEUcUWJuZmdVQ15x4FVdJWgcQEcuBmcDygTZub59Ea+v4YT7kFqVS\nW2H7arSpU9vo6Jjc7DKqcj+L5X4WK5V+buteDjnEI2IKsDoi9gS6yUbjS6rdp1TqHurD9aurq79p\n+pGpq2sDnZ3rm11GVe5nsdzPYqXSz0b0stqLwmBCvBcgIo4F2iQtzufBVwGvAw9IWjmcQs3MbHDq\nCnFJLwCz85+Xli1fSjYvbmZmTeA3+5iZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4mVnC\nHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaW\nMIe4mVnCHOJmZgmrK8Qj4sCIWNXP8vkR8dOI+HFEnFR8eWZmVk3NEI+IrwCLge0qlk8ArgQOA+YB\nJ0fEtEYUaWZm/atnJL4G+BTQUrF8BrBG0lpJG4FHgLkF12dmZlXUDHFJdwKb+lm1A7C27PZ6YEpB\ndZmZWR1ah3HftcDkstuTgVK1O7S3T6K1dfwwHnJrpVJbYftqtKlT2+jomFx7wyZyP4vlfhYrlX5u\n614OJ8SfA3aPiHbgVbKplMur3aFU6h7Gw71VV9eGQvfXSF1dG+jsXN/sMqpyP4vlfhYrlX42opfV\nXhQGE+K9ABFxLNAmaXFEnAncSzYts0TSK8Mp1MzMBqeuEJf0AjA7/3lp2fJlwLKGVGZmZjX5zT5m\nZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4\nmVnCHOJmZglziJuZJcwhbmaWMIe4mVnCHOJmZglziJuZJcwhbmaWMIe4mVnCqn5RckSMA64D9gFe\nB06S9Ouy9WcAJwKd+aKFkp5vUK1mZlah1rfdHw1MlDQ7Ig4ErsiX9dkfWCDpqUYVaGZmA6s1nfIh\nYCWApMeBAyrWzwLOi4iHI2JRA+ozM7MqaoX4DsC6stub8ymWPkuBhcAhwJyIOKLg+szMrIpa0ynr\ngMllt8dJ6im7fZWkdQARsRyYCSwfaGft7ZNobR0/1FrfolRqK2xfjTZ1ahsdHZNrb9hE7mex3M9i\npdLPbd3LWiH+KDAfuC0iPgCs7lsREVOA1RGxJ9BNNhpfUm1npVL38Kqt0NW1odD9NVJX1wY6O9c3\nu4yq3M9iuZ/FSqWfjehltReFWiH+A+CwiHg0v318RBwLtElanM+DryK7cuUBSSuLKNjMzOpTNcQl\n9QKnVix+vmz9UrJ5cTMzawK/2cfMLGEOcTOzhDnEzcwS5hA3M0uYQ9zMLGEOcTOzhDnEzcwS5hA3\nM0uYQ9zMLGEOcTOzhDnEzcwS5hA3M0uYQ9zMLGEOcTOzhDnEzcwS5hA3M0uYQ9zMLGEOcTOzhDnE\nzcwS5hA3M0tY1S9KjohxwHXAPmTfaH+SpF+XrZ8PXABsAm6SdGMDazUzswq1RuJHAxMlzQYWAVf0\nrYiICcCVwGHAPODkiJjWqELNzOytaoX4h4CVAJIeBw4oWzcDWCNpraSNwCPA3IZUaWZm/ao6nQLs\nAKwru705IsZJ6snXrS1btx6YUm1ns2bt3e/yJ554dsjbd6/9/Zs/P3bbBf1u/8FPX9Tv8m21fW/P\nZo5ZMYkJEyYAw3u+jd7e/Sx2e/ez2O1Hej8rewnF9WcgLb29vQOujIgrgJ9Iui2//ZKk6fnP7wMu\nlXREfvtK4BFJdw6qAjMzG7Ja0ymPAp8AiIgPAKvL1j0H7B4R7RExkWwq5bGGVGlmZv2qNRJvYcvV\nKQDHA7OANkmLI+JI4EKyF4Mlkq5vcL1mZlamaoibmdnI5jf7mJklzCFuZpYwh7iZWcIc4mZmCav1\nZp9RLyJWA+8AWipW9Ur6b00oKXkRMQXYKKm7bNmukl5oXlXpi4g/AXokvdjsWkaDiNhH0uraW45s\nY/7qlIh4D7AUmFceOjY0EXEScA4wHvi2pMvy5askHdzU4hITEfOAq4AS8F3gK8BG4BpJS5pZW4oi\n4mNAX+C1AH8PnA0g6b5m1TVcY346RdIa4GrAAVOMk4G9gPcC+0XE+U2uJ2WXAp8EvgZcA3wA+O/A\nSU2sKWWXkfX02PzPtLKfkzXmp1MAJP1js2sYRTZJegMgIj4HrIiI3zS5plS15FMnL0bEtyRtAIiI\nzU2uK1WzgWvJPh5kSX50eHyzixquMT8St8I9GhF3RMSO+adbfprskHW/JteVoh9FxP0RMV7S+QAR\ncQ1bf/yF1UlSdx7a7RFxAzCh1n1S4BC3Qkk6m+zQ/7X8donsI42/3sy6UpQH91cklY+87wD+ukkl\njQqS/gG4DRgVJ4jH/InNgUREex5AZmYjlkfiufwwte/njwE/bWI5ZmZ1cYhvsS4iLouIa4FzgcOb\nXdBoEhHtza5htHAvi5V6Px3iOUnnkfVjN0kHlX8htA2ej2yK414Wa7T1c8xfYhgRv2PLGwAAdoqI\nV/A7NodrXURcBrSRXTfuI5uhcy+LNar66ROb1jARcTnwPklJ/ycZCdzLYo2mfjrEcxGxN3A90A7c\nDDwnaVlTi0pQf0c2wH/gI5tBcy+LNVr76RDPRcS/AAuB7wCfBe6SNKu5VZmZVTfm58TLSfpVRCDp\n5YhY1+x6UuYjm+K4l8Uabf301SlbdEXEKcD2EXEs8IdmF5S4q4ETgE6yT4n82+aWkzT3slijqp8O\n8S1OBP6E7Bd7QH7bhkHSr/K/XwZ8ZDMM7mWxRlM/HeI5SWuB+4G7gFsAf7b48PjIpjjuZbFGVT8d\n4rmIuAT4HNlnNR9A9iH8NnQ+simOe1msUdVPh/gWcyR9Dtgg6SayX7INkY9siuNeFmu09dNXp2wx\nPiLeBhAR4wF/8P4w5Ec27wJmkH2l2Lkk/g0qzeJeFmu09dMj8S2+ATxB9jbcnwLXNbec5PnIpjju\nZbFGVT/HfIhHxD4Akm4DPgwcCRwu6ftNLSx9PrIpjntZrFHVT0+nwNURsTPwILASuE9S0merR4i+\nI5sOsiObK5tbTtLcy2KNqn76bfdA/qr8QWAeMAdoAR6S5K8UG6SI2EfS6vznqcB7gH+T1NncytLj\nXhZrtPbTIZ6LiB2AQ8lCfH+gJOmY5laVnoh4EPCRTQHcy2KN1n6O+RCPiLOATwA7Ag8AK4BH8m9q\ntyHwkU1x3MtijcZ+jvkTm8AFZBf9nwN8VdIqB/jwSPoj2Zzj6vzPeGBmU4tKlHtZrNHYT4/EIyaS\nXZXycWAu8DvgHuAeSf/ezNpS5COb4riXxRqt/RzzIV4pIg4HzgdmSxrf7HpSExFryeYbbyQ7TH2j\nySUly70s1mjt55gP8Yh4P9lI/MPAe4FnyN6S+4CkF5tZW4p8ZFMc97JYo7WfDvGIB8hC+37gaUk9\nTS5pVPGRTXHcy2KNln6O+Tf7SDq02TWMJgMc2dxM9pV3NgjuZbFGaz/HfIhb4S4hO6q5CB/ZDJd7\nWaxR2c8xP51iZpYyXyduZpYwh7iZWcIc4mZmCXOIm5kl7P8DoCTjkODCapEAAAAASUVORK5CYII=\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Rails homeworks have maintained an almost equal level of difficulty for the duration of the course."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_monday_lecture = python_lecture_data[[\"1/12/15\", \"1/20/15\", \"1/26/15\", \"2/2/15\"]].mean().mean()\n",
+ "python_tuesday_lecture = python_lecture_data[[\"1/13/15\", \"1/21/15\", \"1/27/15\"]].mean().mean()\n",
+ "python_wednesday_lecture = python_lecture_data[[\"1/14/15\", \"1/22/15\", \"1/28/15\"]].mean().mean()\n",
+ "python_thursday_lecture = python_lecture_data[[\"1/15/15\", \"1/23/15\", \"1/29/15\"]].mean().mean()\n",
+ "python_monday_homework = python_homework_data[[\"1/12/15\", \"1/20/15\", \"1/26/15\"]].mean().mean()\n",
+ "python_tuesday_homework = python_homework_data[[\"1/13/15\", \"1/21/15\", \"1/27/15\"]].mean().mean()\n",
+ "python_wednesday_homework = python_homework_data[[\"1/14/15\", \"1/22/15\", \"1/28/15\"]].mean().mean()\n",
+ "python_thursday_homework = python_homework_data[[\"1/15/15\", \"1/29/15\"]].mean().mean()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "labels = [\"Monday\", \"Tuesday\", \"Wednesday\", \"Thursday\"]\n",
+ "python_difficulty_by_weekday = pd.DataFrame([python_monday_lecture, python_tuesday_lecture, python_wednesday_lecture, \n",
+ " python_thursday_lecture]).plot(kind=\"Bar\", title=\"Python Lecture Difficulty by \"\\\n",
+ " \"Weekday\")\n",
+ "plt.xticks(np.arange(0,4), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAE2CAYAAACX2qJwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWd9/FPViR0EzvQiCyiIvwEFNl8WAWBQVGWEdTH\nDRREiDg+ogiKID4ogtEI84rKGkDUYaKCMAJRUDQgO4JoBIcvBBUZRWntnpDQGc3S88e5RRed7qpK\nd1Vunc73/Xrllap7b9369enkW6fOXc6EgYEBzMwsTxPLLsDMzEbPIW5mljGHuJlZxhziZmYZc4ib\nmWXMIW5mlrHJZRewrouIlwKPAwurFk8A5kj6eo3XTQeuk3RA8XwVsLGk3hbUeCXwa0nnNWFfz6u7\nFYq2eAhYSWpLgG9V6o+ImcALJX0xIt4AzAX+DJwEXAX0Ad8AXiHppDHUsHFRwxr9vEV7/6ekL47i\nfTcFngS6Jf13sexc4DTglZIeLZadCuwm6R1r+h7F6+v+e4uIjYGnJbmz2EIO8fbQL2nnypOI2Ax4\nKCLul/TrEV7TBbx2yLIJw23YBAPFn2YYru5WeH0lYCJiI+DGiBiQdL6kS6q2eydwiaRzI+IzwE8l\nHd/EOkbz8466rSX9OSIWAvsB3y8WHwZcDxwOfLlYdiDpA8sy5xBvQ5L+FBGPAdtGxHnA1ZLmAkTE\nGcBGwE7A+hHxC2C34qWfjYg9ivWzJV1YvOZMUlitAB4FPizpLxFxK3AXsDfwEuB24H2ShguRYT8g\nImIvYBawAbAKOEvS/GLdp4D3Fu/7GHAM8PUhda+gqkdX1YPdEZgDLAWmAbsDbwTOAKYC/cApku5p\noD3/FhEnA98Dzo+Is4o2egL4Z2BZRBwDdAKTImJ94MfA2yQdVvRuLwai+BkvlvTVov2+Kul7Re23\nAl+RdG1Vm1X/vF8G/kXS3sX2LwHuBraStGJI2XtGxN3AhsCPgFNIv8MPNfD6HwKvB75ffNObAnwF\nOAv4ckRMBfYCjir2cwZwJGl49ffFezxVfGuaA7yq2MdPgFMlray8UdE2twAXSrowIo4EPk/6/TxQ\ntd0GwEXANsAMYAnwbuB/SN+atpD0TERMAAS8tUYHxqr4a04biog9gVcA9wAXAB8olk8EjiP9ZzgW\nWCZpF0mripc+Lmk34AjgvIiYHBHHAgeTvjq/hvQf5sqqt3u5pP2AVwMHkHpwjdbZBVwBHCVpV1Ig\nXhQRW0bE4cD7gD0kvRr4HfAvpCAfWvdIdgDeWXxL2Qo4B3iTpF2AmcC1ETGtwXIXApsWX/EHgAFJ\nXyb1UM+XtC0pqL8t6ShSAFc+zC4EHpG0HbAncEJEbM3q31CGfvgNVP+8wDXA1hGxXbH+A8CVwwT4\nBGAz0u9jJ+A1wPHAdxt8fSXEIfXCbwR+Bryq+FayB/CwpL9GxHtJIf1/inb+IXBZ8dp/Be4v/k3t\nAnQDJ1e9z5akYD+nCPAXAZcDRxaveaxq24OBXkl7Sgrg56TOxB+Kfbyn2G5/oMcB3jiHeHtYPyIe\nLP78GjgXeLekP5L+A24aETuSeqK/lfQYw/eM/734+1fAeqRe3JuAKyQtK9Z9BTgwIqaQQuYGAElL\ngUWkr/+N2hN4ManH9yAwn9RT3ZH0df27khYX+/+4pC+MUPdInpT0ZPH4oOK9flq817+Rxpu3bnBf\nlYDtL2oYro6hyyuPDwQuBZD0jKRXS3q8wfd9bn+S/kEKyOOLD+T3AZcM85oB0hj+MknLST/rQcXj\nRl5/D7Bl8SF7GHBjEfQ/KX6WA0i/K4BDSaF+f9GuHwa2rVo3s1h+P2lY6FVV7/MDYImkecXzfUjH\nTh4pnl9a9bN/D/hmRPy/iJhD+pDZoFh9AelDCtKH80XD/Ew2Ag+ntIdl1WPi1SStjIiLST3wF5N6\niyNZXrxmICJgMJSqg2ki6fdeWbasat0AI4fscEMsE0kH4PaoLIiIzYG/kIKCquUbAi8cYd8Tim2m\nDlm+dMh7/UTSO6v2+RLgv0bY51CvJX0A9hdt08i4c2Wb5/V0I+JlwN+K9dUdoaH1D+cS4D7gNlLg\n/WGE7aq/pUyk+N2SgvHeWq8v/s38BHgzqRd/e7FqPvA60ofsR6v2PatynKD4HWxUte5tklSseyHP\nb7cTgE9HxMmSzi9qrv7381y7RcSJpKD+Kmks/m/Ay4rVPwGmRcSBRX1Hj9AmNgz3xPNwGWmIZBfg\numLZCmBSndcNADcDx1YNO3wEuK3oFULjPePhtrsX2CYi9gUovi08QvqwuQU4MiI6i20/R/oqvnxI\n3T0MHvg7ssb7/xR4QxQJHBEHA78kfeOoWW9xoHgWgwf1qteP1Cuv3uYW0vBV5eyan5CGu3oojkcU\nwys7DrOP5/2eim8Wd5OGKkbqcU4A3hkRUyPiBaQe9w+K1/+hgddDGhb5BLCgagz7B6Se+BaSHiyW\n3Uzq2Vd+T2eRzsyprDs5IiYU4X4d8KGq97i7qO3TEbEDcAewQ/HvANJQUsUbSEM/Xycdlzm80i7F\nMZgLSf/Or6r6t2kNcE+8PdTsFUrqiYifA7+p+g/5J+AXEfEb0tfY4cZjIY1RbgncV3wFf4zB8ce6\n713lnOKAYMX1kt4TEW8FvlSEzUTg6CKonoyI7YE7i9x9iNQTWzak7o8AF0TEf5MOJv5puNok/SYi\nTgC+XRz8Wg4cVjVMNNSCiFhJGnIZAC6XVPkWUz2W3cjjD5PG+n9V/IznSvpFRHwe+EZEHEL68Lpt\nmNqrf097S+ojHZP4CkUwD2MA+C0pFDuAayV9s2p9vddDCuArgNmVBZKejoglwJ1V210GbA7cExED\npIO97yvWfYR0YHMh6cDmj4EvVf98kh6NiLOBb5EOPr8buCoi/k4ah6+0w5eBS4sx+L8B/0Ea6qv4\nJnAeww8PWQ0TfCva9lccjLsPeF0xTm6ZKj5Ivwb8TtLsets3+/XtKiLeSeoAHFJ2LblpqCceEZuQ\nThc6sHKxQLH8Y6Sx2p5i0czq9TZ2EXE86ayMcxzgeSuGLJ4gDUN9fG2/vl0Vp2Z2A28tuZQs1e2J\nF2cxfBfYDjh8SIh/i3R61oMjvd7MzFqnkQObs0kHUJ4aZt2uwOkRcXtEnNbUyszMrK6aIV5cxdYj\n6UfFoqFH8eeRzus8ANinOMBjZmZrSc3hlIi4jcGj9DuRLoc9XNLTxfoNJT1TPD4R2EjS52u94YoV\nKwcmT653ZpyZmVUZ8VTghs9OiYgFVB24LM6XXQhsT7oK7ruk07huqrWfnp4lbX86THd3Jz09S8ou\nY9xwezaX27O5cmjP7u7OEUN8Tc8TnxAR7wI6JM0txsEXAH8HbqkX4GZm1lwNh7ik/SsPq5bNI42L\nm5lZCXzZvZlZxhziZmYZc4ibmWXMN8Aysyz84x//4Mknn2j6fvv6OujtXVp/wwZtueVWTJ3ayF2J\nm6PtQrwVv6i13ahm1nxPPvkEJ82+nmnTNym7lBH1L36aOaceztZbb7PW3rPtQrzZv6hGGnXVqlWc\nd94sHn98EVOmTOFLX5rF+uuvyQQ3ZrY2TJu+CR1dm5ddRltpuxCHtf+Luv32W1m+fDkXX3wFDz/8\nELNmzeKzn/3iWnt/M7PR8oFNYOHCX7H77nsBsMMOr+Khhx4quSIzs8Y4xIH+/mfZYIMNnns+adIk\nVq2qNxG7mVn5HOLAtGkb0N/f/9zzVatWMXGim8bM2p+TCthxx9dwzz1p2sGHHvo1xZyQZmZtry0P\nbPYvfnqt7mvffffn5z+/lxNPfD8As2d/qc4rzMzaQ9uF+JZbbsWcUw9v+j5rmTBhAqec8qnnnudw\na0ozM2jDEJ86depaPVHezCxnHhM3M8uYQ9zMLGMOcTOzjDU0Jh4RmwAPAAdW5tgslh8GnAmsAK6Q\ndFlLqjTLUC533QPfJC5ndUM8IqYAlwDPDrP8fGA30kTJd0bE9ZKad36gWcZyuOselHPnPWueRnri\ns4GLgE8NWb4dsEjSYoCIuAPYF7imqRWaZcx33bNWqzkmHhHHAD2SflQsmlC1ekNgcdXzJcD0plZn\nZmY11euJHwsMRMQ/ATsB34iIw4shk8VAZ9W2nUBfvTfs6prG5MmTRlvvWtPd3Vl/I2vYutiefX0d\nZZfQsBkzOtr+d5RLe67ttqwZ4pL2qzyOiAXAzKox70eAbSKiizRevi9p6KWmvr7+epuUzldsNte6\n2p7NPvjYSr29S9v+d5RLe7aiLWt9KKzpFZsTIuJdQIekuRFxMnAzaVjmcklPjb5MMzNbUw2HuKT9\nKw+rlt0I3NjsoszMrDFtd++UNdWKc3F9Hq6Z5SL7EM/hXFyfh2tmrZJ9iIPPxTWzdZfvnWJmljGH\nuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXM\nIW5mlrG6dzGMiEnAXGBbYAD4oKSHq9Z/DDgO6CkWzZT0aAtqNTOzIRq5Fe2hwCpJ+0TEfsA5wFuq\n1u8CHC3pwVYUaGZmI6sb4pK+HxGVKdheyuoz2u8KnB4RmwLzJc1qbom2trRiliTwTElmrdTQpBCS\nVkbElcARwNuGrJ4HXAAsAa6LiEMkzW9qlbZW5DBLEnimJLNqazJR8jER8Ung3ojYTtKyYtUcSc8A\nRMR8YGdgxBDv6prG5MmTxlLz8/T1dTRtX600Y0YH3d2dZZdRU19fRzazJOXSnrlwezbP2m7LRg5s\nHg1sIekLwDJgFekAJxExHVgYEdsD/cABwOW19tfX1z/Wmp+n2V/TW6W3dyk9PUvKLqOmXNoS3J7N\n5vZsnla0Za0PhUZOMbwG2CkibgNuAk4CjoiI4yUtBk4DFgA/Ax6SdNPYSzYzs0Y0cmBzGfCOGuvn\nkcbFzcxsLfPFPmZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOI\nm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGWtkjs1JwFxgW9Lcmh+U9HDV\n+sOAM4EVwBWSLmtRrWZmNkQjPfFDgVWS9gE+DZxTWRERU4DzgYOA/YATImKTVhRqZmarqxvikr4P\nzCyevhToq1q9HbBI0mJJy4E7gH2bXaSZmQ2v7nAKgKSVEXElcATwtqpVGwKLq54vAaY3rTozM6up\noRAHkHRMRHwSuDcitpO0jBTgnVWbdfL8nvpqurqmMXnypFEVO5y+vo6m7auVZszooLu7s/6GJcql\nLcHt2Wxuz+ZZ223ZyIHNo4EtJH0BWAasIh3gBHgE2CYiuoBnSUMps2vtr6+vf0wFD9Xbu7Sp+2uV\n3t6l9PQsKbuMmnJpS3B7Npvbs3la0Za1PhQaObB5DbBTRNwG3AScBBwREccX4+AnAzcDdwGXS3pq\n7CWbmVkj6vbEi2GTd9RYfyNwYzOLMjOzxvhiHzOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy\n5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOz\njNWc2ScipgBXAFsB6wGfl3RD1fqPAccBPcWimZIebVGtZmY2RL3p2d4D9Eg6upgM+ZfADVXrdwGO\nlvRgqwo0M7OR1Qvxq0kTJUMaelkxZP2uwOkRsSkwX9KsJtdnZmY11BwTl/SspKUR0UkK9DOGbDIP\nmAkcAOwTEYe0pkwzMxtO3dnuI2JL4FrgAknfHrJ6jqRniu3mAzsD82vtr6trGpMnTxpluavr6+to\n2r5aacaMDrq7O8suo6Zc2hLcns3m9myetd2W9Q5svgj4EfAhSQuGrJsOLIyI7YF+Um/88npv2NfX\nP/pqh9Hbu7Sp+2uV3t6l9PQsKbuMmnJpS3B7Npvbs3la0Za1PhTq9cRPB6YDn4mIzxTL5gIbSJob\nEacBC4C/A7dIuqkJ9ZqZWYNqhrikk4CTaqyfRxoXNzOzEvhiHzOzjDnEzcwy5hA3M8uYQ9zMLGMO\ncTOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uY\nQ9zMLGMOcTOzjNWbY3MKcAWwFbAe8HlJN1StPww4E1gBXCHpshbWamZmQ9Trib8H6JG0L3Aw8LXK\niiLgzwcOAvYDToiITVpVqJmZra5eiF8NVCZInkjqcVdsByyStFjScuAOYN/ml2hmZiOpN1HyswAR\n0UkK9DOqVm8ILK56vgSY3uwCzcxsZDVDHCAitgSuBS6Q9O2qVYuBzqrnnUBfvf11dU1j8uRJa1rn\niPr6Opq2r1aaMaOD7u7O+huWKJe2BLdns7k9m2dtt2W9A5svAn4EfEjSgiGrHwG2iYgu4FnSUMrs\nem/Y19c/ylKH19u7tKn7a5Xe3qX09Cwpu4yacmlLcHs2m9uzeVrRlrU+FOr1xE8nDZF8JiIqY+Nz\ngQ0kzY2Ik4GbSePll0t6qgn1mplZg+qNiZ8EnFRj/Y3Ajc0uyszMGuOLfczMMuYQNzPLmEPczCxj\nDnEzs4w5xM3MMuYQNzPLmEPczCxjDnEzs4w5xM3MMuYQNzPLmEPczCxjDnEzs4w5xM3MMuYQNzPL\nmEPczCxjDnEzs4w5xM3MMlZ3omSAiNgdmCVp/yHLPwYcB/QUi2ZKerS5JZqZ2Ugame3+E8BRwHCz\nlO4CHC3pwWYXZmZm9TUynLIIOBKYMMy6XYHTI+L2iDitqZWZmVlddUNc0rXAihFWzwNmAgcA+0TE\nIU2szczM6mhoTLyGOZKeAYiI+cDOwPxaL+jqmsbkyZPG+LaD+vo6mravVpoxo4Pu7s6yy6gpl7YE\nt2ezuT2bZ2235ahDPCKmAwsjYnugn9Qbv7ze6/r6+kf7lsPq7R1uqL799PYupadnSdll1JRLW4Lb\ns9ncns3Tiras9aGwJiE+ABAR7wI6JM0txsEXAH8HbpF001gKNTOzNdNQiEv6PbBX8Xhe1fJ5pHFx\nMzMrgS/2MTPLmEPczCxjDnEzs4w5xM3MMuYQNzPLmEPczCxjDnEzs4w5xM3MMuYQNzPLmEPczCxj\nDnEzs4w5xM3MMuYQNzPLmEPczCxjDnEzs4w5xM3MMtZQiEfE7hGxYJjlh0XEfRFxV0R8oPnlmZlZ\nLXVDPCI+AcwF1huyfApwPnAQsB9wQkRs0ooizcxseI30xBcBRwIThizfDlgkabGk5cAdwL5Nrs/M\nzGqoG+KSrgVWDLNqQ2Bx1fMlwPQm1WVmZg1Yk9nuh1oMdFY97wT66r2oq2sakydPGsPbPl9fX0fT\n9tVKM2Z00N3dWX/DEuXSluD2bDa3Z/Os7bYcS4g/AmwTEV3As6ShlNn1XtTX1z+Gt1xdb+/Spu6v\nVXp7l9LTs6TsMmrKpS3B7dlsbs/maUVb1vpQWJMQHwCIiHcBHZLmRsTJwM2kYZnLJT01lkLNzGzN\nNBTikn4P7FU8nle1/EbgxpZUZmZmdfliHzOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3\nM8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjNWc\n2SciJgIXAjsCfwc+IOnxqvUfA44DeopFMyU92qJazcxsiHrTs70FmCppr4jYHTivWFaxC3C0pAdb\nVaCZmY2s3nDK3sBNAJLuBXYbsn5X4PSIuD0iTmtBfWZmVkO9EN8QeKbq+cpiiKViHjATOADYJyIO\naXJ9ZmZWQ73hlGeAzqrnEyWtqno+R9IzABExH9gZmF9rh11d05g8edJoah1WX19H0/bVSjNmdNDd\n3Vl/wxLl0pbg9mw2t2fzrO22rBfidwKHAVdHxB7AwsqKiJgOLIyI7YF+Um/88npv2NfXP/pqh9Hb\nu7Sp+2uV3t6l9PQsKbuMmnJpS3B7Npvbs3la0Za1PhTqhfh1wEERcWfx/NiIeBfQIWluMQ6+gHTm\nyi2SbmpGwWZm1piaIS5pADhxyOJHq9bPI42Lm5lZCXyxj5lZxhziZmYZc4ibmWXMIW5mljGHuJlZ\nxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5m\nljGHuJlZxupNz0Yxu/2FwI6kadg+IOnxqvWHAWcCK4ArJF3WolrNzGyIRnribwGmStoLOA04r7Ii\nIqYA5wMHAfsBJ0TEJq0o1MzMVtdIiO8N3AQg6V5gt6p12wGLJC2WtBy4A9i36VWamdmw6g6nABsC\nz1Q9XxkREyWtKtYtrlq3BJhea2e77vqqYZc/8MBDo96+f/HTzz2+++ozh91+z7efPezytbH9wKqV\nHPHDaUyZMuW55WP5eVu5fXVbgttzrNu7Pdet9rzrO6ev1pbQvPYZzoSBgYGaG0TEecA9kq4unj8p\nacvi8auBWZIOKZ6fD9wh6dqGKzAzs1FrZDjlTuDNABGxB7Cwat0jwDYR0RURU0lDKXc3vUozMxtW\nIz3xCQyenQJwLLAr0CFpbkQcCnyG9IFwuaSLWlivmZlVqRviZmbWvnyxj5lZxhziZmYZc4ibmWXM\nIW5mljGHeCEiLoiIncquY7woTjk1sxbz2SmFiHgT8H5gc+BbwFWSnqn9KhtJRCwEfgpcJqnxy89s\nNRFxI3AZcIOklWXXk7vx1p4O8SEiohuYA/wzcDVwdvVdG60xETEJOBg4BugGrgLmSVpaZl05iojt\nSB2Mg4CbSddjPFpuVfkab+3pEC9ExPbA+4DDgQXAXGAScKmkXcqsLVfFbYzfCBwPbA0sBb4t6aul\nFpapiNgY+CpwJPAz4DOSfIX0KI2X9mzkBljriktJX7E+J+nZysKIuKK8kvIVEV8i3cb4NtL9de4r\nQv0B0n8ca1BEvJnUwdieNNR3EqmDcTODV1Jbg8ZbezrEC5L2iYjNgI2KT+jNJN0t6Wtl15apx4Bd\nqodPJK2KiCNLrClX7wEuknRr9cKIOKuUavI3rtrTwymFose9B9ABrA/cK+nQcqvKV0RsA7yd1FGY\nCLxY0sxyq8pTMfnKa0ltOYHUwZhXblX5Gm/t6Z74oNcArwIuBs4gHdy00ft34FpgH+BPwF/LLSdr\n15H+r25B+kD8BZBt6LSBcdWePk980N+KiS46JPUAm5ZdUOaWSvoC8EdJxwCvLLmenG0s6WDgHtLM\nWtNKrid346o9HeKDHoiIU4E/RcS3ScMqNnqrIuLFQEdEbABsVnZBGXu2uCV0h6R+YOOyC8rcuGpP\nD6cUJH0qIjqBZcCbgPtKLil3nyOdnfJvwG+Lv210rgPOBH4VEfcAz9bZ3mobV+25zh/YjIj/Xzwc\nIB3kqBiQ9LkSSjJbTURMkDRQTIm4SNKysmvK2XhqT/fE4eHi7/cCvyad9L8n6RxSW0MR8evi4SRg\nKtBD+rraK2n30grLUER8fcjzysMB0hWHtgbGa3uu82Pikq6RdA3wAklnSLpZ0lnARiWXliVJr5b0\nauBe4BBJe5Iuv3+s3MqydEHxZxpwFzCLdPHUpDKLyti4bE/3xAe9MCK2kfRYROyAD2yO1daSBCDp\n8Yh4acn1ZEfS/QARsZGkuZXFEXF0iWVla7y2p0N80EeBayJiU+CPwAdKrid3f42Is4H7gb2BJ0qu\nJ2frR8SBwM9J591n3XNsA+OqPR3iBUl3kS74seY4Cvgg8GbgN6SzAWx03g/MBoLUlseUWk3+xlV7\nOsQLEfE+4DTgBcWiAUkvL7Gk3E0k3cp3OXAC6eIp98ZHQZIi4ghSm+5JugLWRmm8tadDfNAngcOA\n/yq7kHHiGuAi4G2kM4AuJd2W1tZQRMwB/hPYCtgZ+AvpLnw2CuOtPdf5s1OqPC5pkaT/qfwpu6DM\nTQOuBzaXNIvMxx1L9lpJFwN7FpeLb1F2QZkbV+3pnvigZRFxE/BL0nmjA5JOL7mmnE0l3af5geJs\nnw1KridnEyNiV+B3EbEe0Fl2QZkbV+3pEB/0A1J4W3N8nDTF3Tmkg5wnlVtO1r5JGpo6FvgicEm5\n5WRvXLXnOn/ZfUVETAZmAjsAAi6W9Pdyq8pbRPwT8HLS3eIey/nS5rJFxHTgpaRhP89TOgYRcaqk\n2WXX0SweEx90KWkeyB8BLyPNsWmjFBFfIN3K4ATS7T49zd0oRcTbgFtJNxE7OSI+XW5F2Xtz0Wkb\nFxzig7aRdLKk/5D0UWCbsgvK3D6S3gsskXQF6YPRRudk0qlwfwXOJU3sa6O3MemW0/dGxN0RcVfZ\nBY2FQ3zQesV9r4mIabhtxmpSRLwAICImAStLridnKytnS0laAXg4ZWwOJU3P9n+BdwLvKrecsRk3\nXymaYA7wy4h4GNgOOKvccrL3r6SZ7btJ92Y/v9xysnZHRMwDNo+IS0iXi9voHTPk+QDp/vdZWucP\nbBa3p6zcS3xjBu8p/rSkbG9P2Q4iogt4BfA7SZ5jcwwi4k2kOWAfkXRD2fXkLCI+SPo/PxHYBZgo\n6bhyqxo9h3jEQtKFKVeRbk/5HEk3l1LUODD03s2k8+79oTgKEbEhabap6ltCfLPEksaViLipuOgn\nS+v8cIqkHYvZPY4iXXp/O/AtSYvKrSx73+H5vR3PsTl63yfdWfPJsgsZDyJi26qnmwEvKauWZljn\ne+JDRcS+wEeALSTtUXY940VE/FjSQWXXkaOIuFXS68uuY7yIiFsZvLDvf4CvSPpheRWNzTrfE68o\nvrIeSTpavQGe2HdMIuKNDP5H2QzYpMRycrcwIvYAHqRoU0n/KLekfI23D8R1PsQj4h2k4H4J8D3g\nREm/K7eqfEXEdyS9g3TaVnVvx+Pho/d60h02q/m8+1EqJkf/MLCiWDQgKdvhvnV+OCUiVgGPAL8a\nsmpA0rtLKClrEbFA0v5l12E2koi4H3jdeLkNxDrfEwcOKP6ufJpNGPLc1szLI+JcBtuxwneFXEMR\nsaB4WDkFtmJA0gHDvMQa8zSDvfDsrfMhLunWsmsYZ/pJNxCrNgF/KI7G24u/v0w6BfZ2YA/S8J+t\noeKCKUiJ2xIWAAABy0lEQVTHZx6MiIcYvO10tt+61/kQt6b7s6RvlF3EeFC5QCoitpL042LxrRFx\nVnlVZe1A0gfjat8SS6ilaRzi1mwPlF3AOLQyIo4D7gf2Bp4tuZ5cPSzptrKLaLZ1/sCmWbuLiBcB\nZzA4O/vZknrLrSo/EfEEaVhqXB2vcU/crM1J+ktEXE+63/3dpOMOtuaGO16TPYe4WZsrJtjYnHR3\nzeXAp8j89qklGZfHa3zPbLP2V5lgY6kn2BiTcXm8xiFu1v48wUYTSDql7BpawSFu1qYiYsfiYWWC\njR1IE2xcWFpR1nZ8dopZmyrutvcS4DbSBN6L8AQbNoRD3KyNFcMoewL7AfuQTo+7TVK204lZc3k4\nxayNFRMkPwAsLP5MAnYutShrK+6Jm7WpiDgFeDPwQuAW4IfAHZKWl1qYtRWHuFmbiojFwE3AZaQh\nFE8EYatxiJu1qYiYCryONEnyvsCfgR8AP5D0hzJrs/bhEDfLREQcTLqHyl6SJpVdj7UHX3Zv1qYi\n4rWknvjrgFeSZp+6EjiqxLKszTjEzdrXF4AfA2cDv5S0quR6rA15OMXMLGM+T9zMLGMOcTOzjDnE\nzcwy5hA3M8uYQ9zMLGP/C0MXBo8lI88ZAAAAAElFTkSuQmCC\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 43
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "From this data it appears that Tuesdays are generally the easiest days for lecture, while Thursdays are the most difficult in the Python class."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_hw_difficulty_by_weekday = pd.DataFrame([python_monday_homework, python_tuesday_homework, python_wednesday_homework, \n",
+ " python_thursday_homework]).plot(kind=\"Bar\", title=\"Python Homework Difficulty by \"\\\n",
+ " \"Weekday\")\n",
+ "plt.xticks(np.arange(0,4), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAE2CAYAAACjo2NsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG8pJREFUeJzt3XmYXGWZ9/FvVjUkYIBWZHFDuEUWFXUEBVQYFXEbGX31\ndQNURB1n8GLUcUVGFFBAL1wQEBFlGHVEGJdBERUQlUVwYVFuFhV53YgmAwmJsqTfP57TSdF0ujud\nqj5PVX8/19VXd1Wdc+qup7p+56nnbLOGh4eRJNVpdtsFSJLWzZCWpIoZ0pJUMUNakipmSEtSxQxp\nSarY3LYL6GcR8XDgJuCqjrtnASdk5mfHmW8T4JzM3Lu5vRrYPDOX9qDGI4DNMvOfR93/G2D/zPxJ\nt5+zV9b1WsaYbjVwDXAP5f0AOCMzj28ePwR4YGZ+KCKeBXwa+CNwKHAmsAz4HPCozDx0irWuBjZv\naljzXk9y3tOBX2bmh6bwvFsAtwBDmfm/zX1HAe8AHp2Z1zf3vQ14Yma+dH2fo5l/wv/ZiNgcuDUz\n7QxuAEN6w63MzMeP3IiILYFrIuKKzLx6HfMsBp406r5ZY03YBcPNz1j395v1qfnpIwESEZsB34iI\n4cz8SGae3DHdy4CTM/OoiDgc+F5mHtzFmsd6rycy5fcmM/8YEVcBTwO+2tz9fOBrwAuA45r79qGs\nkFQ5Q7rLMvP3EXEDsH1EHA98OTM/DRAR7wY2Ax4HPCAifgI8sZn13yNit+bxYzPzxGae91KC5G7g\neuDNmfmniLgQ+BHwVOChwMXAAZk51gd83BVARPwDcDgwB7gdOCwzf9z0XLcFHglsCVwGfBs4AHgE\n8PbM/GLHa9ufMoT2G+BNwN8Bb83MPZtprgO+lJnvi4itm+VtDbxwnOffHdiC8m3lxo6a39LU8ezM\nvHW815eZf4mIw4CvAB8Z6ZEDNzfPvSoiDgQWAXMi4gHA+cCLM/P5Te/0JCCA1cBJmfnx5j34eGZ+\npanpQuBjmXl2R7t/lrXv9XHAP2XmU5vpHwpcAjwsM+8eVfbuEXEJsHHT5m+l/B+8aRLzfxN4OvDV\n5tvePOBjwBHAcRExH3gK8MpmOfd57zLzD803vhOAnZplfBd4W2be0/E+bAF8BzgxM0+MiP2BDwAr\ngSs7ptsI+BSwHbApsBx4OfBXyreerTPz9oiYBSTwj+N0cmYUv4Z0WUTsDjwKuBT4JPC65v7ZwGsp\n/6gHAasyc9fMXN3MelNmPhF4EXB8RMyNiIOAfSlfSx9L+Wc+vePpHpmZTwN2Bvam9J5GmwW8NCJ+\n2vlDCV0i4tFNTfs3z3E45cO9qJn/qU0NOwDPBHZonvPNwL83y3g15YP8d823im8CpwLnATtHxMZN\nWGxM6cFB6dWdQwm+8Z5/G+DxmfmqjjZ+O/CPwNMmCugOVwFbNF/Bh4HhzDyO0sP8SGZuTwniL2bm\nK5t2G1nhnQhcl5k7UFYar4+Ibbnvt5TRK8hh4ECa9xo4C9g2InZoHn8dcPoYAT2L8v7sTVmhPxY4\nGPivSc4/EtJQetHfAL4P7NR8q9gNuDYz/zzOewfwUeCK5v9yV2AIOKzjebahBPcHm4B+MPAZynv5\nROCGjmn3BZZm5u6ZGcCPKR2O3zbLeEUz3TOAJQb0Wob0hntAR/hdDRwFvDwzf0f5cGwREbsAzwZ+\nlZk3MHbP9j+b3z8H7kcJtOcAp2XmquaxjwH7RMQ8SgB8HSAzV1B6mYvHWO4wJXge3/kD/L6pY2/g\nO5n5m2ZZFwC3Ak9o5j0/M5dn5l+beb7VLPdXlB4RwPMoH/wrmhXAm4Htm3m+Azyref0nA4+IiI0p\nIf2VSTz/pR0rslmUcD4GODozbx/j9a7LSICubJYz1nsw+v6Rv/cBTmnquz0zd87Mmyb5vGuWl5l3\nUgLw4GalfQClTcaq9YzMXJWZdwH/ATyz+Xsy818KbBMRi2lCugny7zavZW/gf5ppx3zvOh47pLn/\nCsqwzU4dz3MusDwzv9Dc3gO4OjOva26f0vHavwJ8PiL+OSJOoKxENmoe/iRlJQRwCGWlrYbDHRtu\nVeeYdKfMvCciTqL0oB9C6amty13NPMMRAWsDozM0ZlPes5H7VnU8Nsy6hzXGG+4YK7BmU77eAtw5\nVp1jTH/MyFhv83V6s+axs4HnApsAHwYeTfm2sBNwEfCYCZ7/jlGPXU8Jkk9FxC6Zeds4r63Tkygr\nyZVN+05m3Hdkmnv1VCPiEcBfmsc7OzrzJ7HMk4HLKa/96qYnOZbVHX/PZm27n0IZJlrn/M3/3XeB\n/Si98Iubh/4H2BPYBXhLx7LX9d7Npgz5ZPPYA7l3u70eeE9EHJaZH2lq7nwv17RbRLyREsQfp4yF\n/4UyZAZl5bEgIvZp6nsVWsOedO+dSgmlXSlf76H8886ZYL5hynDBQRGxoLnvX4CLmh4ZTG5j43jT\nDAPfA57VBA8RsTdlnPjSSS6fps6DO4YojqDsHQElGPahhMXllPHVI4Fzmx7yBev5/Fc3Y77fpfTA\n1mXNvM3G3GNYu9Gs8/F19ao7p/kOZYhqZM+c71KGtJbQbFNohj92GWMZ93qvM/MWyjjyR1l3j3EW\n8LKImB8R96f0mM9t5v/tJOaHMmzxduCCjjHkcynvxdaZ+dPmvvHeu/OAwyJiVhPe51C2NYy4pKnt\nPRGxI/ADYMfmmyOUoZ4Rz6IMzXyWsqJ9wUi7NNtRTqR8Vs7s+P8WhnQ3jNsjy8wllPG3L3R8WH4P\n/CQifhERm46xjJHbn6EExOUR8QvK+OQrxphuovrWOV1m/pLywTu7Y7jm+Zm5fKJ5Ox47lTK0c2lE\nXEMJ5AOa5d8G/AL4aRPK5wNbUYY6yMxfrMfzd95+C7BXRLx4HbVd0AxBXUHZy+FzmTnyTaZzOZP5\n+83ADhHxc0oQHZVl18UPUFYwV1NWAheN0Tad7/XIcNTplM/eueuofZgynPQD4CeUFfPnOx6faH5o\ntgdQ3hcAmvH75ZQV84h1vneUTsFGlPH8qyjbRD7c+fqy7NJ3JHAG8L+UjYFnNu3+qI52OI4ydHIF\n8CXgvykbpUd8nrJyHmv4Zkab5alKe6vZUHU5sGczTq0ZrBlL/gTw68w8drrnr1VEvAx4VWY+t+1a\najPhmHSz69DIuN+vMvO1vS1pcETEwcAHKVu/DegZrhlSuJkypvyv0z1/rZpdF4coG4U1yrg96WY8\n7EfN7kOSpGk2UU/6sZStruc1074rMy/rfVmSJJh4w+EdlKPfng28gbJBwI2NkjRNJupJX09zKG5m\n3hARf6Hs7zvm+Ordd98zPHfuRHuWSZJGWefurhOF9EGUfT//qdnXdGPgD+uaeNmylVOqbroNDS1i\nyZLlbZcxMGzP7rEtu6tf2nNoaNE6H5sopD8DfDYivt/cPqjjEF1JUo+NG9LN8f4eoilJLXEjoCRV\nzJCWpIoZ0pJUMUNakio2reeTvvPOO7nllpu7usxttnkY8+dP5jS+ktR/pjWkb7nlZg499mss2ORB\nXVneyttu5YS3vYBtt91undOsXr2a448/hptuupF58+bxjne8l6GhHdY5vSTVZNqvzLJgkwexcPFW\n0/Z8F198IXfddRcnnXQa1157DZ/4xEc59dRTJp5Rkiow8GPSV131c5785KcAsOOOO3Hddb9suSJJ\nmryBD+mVK+9go402WnN79uzZrF7tQZOS+sPAh/SCBRuxcuXac4oMDw8ze/bAv2xJA2Lg02qXXR7L\npZf+EIBrrrmabbd9VMsVSdLkTfuGw5W33Tqty9prr2fw4x9fxhvf+BoA3vnO93Xt+SWp17p6Idol\nS5aPu7Ba9pPul9MX9gvbs3tsy+7ql/YcGlo05fNJd9X8+fPH3adZknRvAz8mLUn9zJCWpIpN+4ZD\nSRqtF9urAJYtW8jSpSu6uszpPl+QIS2pdd0+r0+vTOZ8Qd1mSEuqwnSf16dfOCYtSRUzpCWpYoa0\nJFXMkJakihnSklQxQ1qSKmZIS1LFDGlJqpghLUkVM6QlqWKGtCRVzJCWpIoZ0pJUMc+CJ01RL86B\nPAjnP1Z3GdLSFPXDOZDbOP+xusuQljaA50BWrzkmLUkVm1RPOiIeBFwJ7JOZ1/e2JEnSiAl70hEx\nDzgZuKP35UiSOk1muONY4FPAH3pciyRplHGHOyLiQGBJZn47It4JzJqWqtQTvdhlDNxtTOqlicak\nDwKGI+LvgccBn4uIF2bmn8aaePHiBcydO6fbNfbE0NCitkuYdtdff331u4xB2W3sjKNfzlZbbd92\nKeNatmxh2yVMyqabLqz+/71f2hKmvz3HDenMfNrI3xFxAXDIugIaYNmylV0srXeGhhaxZMnytsuY\ndkuXruibXcaWLl1R/XvU7W8PvWJbdlcv2nO80HcXPEmq2KQPZsnMZ/SyEEnSfdmTlqSKGdKSVDFD\nWpIqZkhLUsUMaUmqmCEtSRWr+nzSHsYsaaarOqT74coX4NUvJPVO1SENXvlC0szmmLQkVcyQlqSK\nGdKSVDFDWpIqZkhLUsUMaUmqmCEtSRUzpCWpYoa0JFXMkJakihnSklQxQ1qSKmZIS1LFDGlJqpgh\nLUkVM6QlqWKGtCRVzJCWpIoZ0pJUMUNakipmSEtSxQxpSaqYIS1JFTOkJalihrQkVcyQlqSKGdKS\nVDFDWpIqNneiCSJiDvBpYHtgGHhDZl7b68IkSZPrST8PWJ2ZewDvAT7Y25IkSSMmDOnM/CpwSHPz\n4cCyXhYkSVprwuEOgMy8JyJOB14EvLinFUmS1phUSANk5oER8W/AZRGxQ2auGj3N4sULmDt3TteK\nW7ZsYdeW1WubbrqQoaFFbZcxLtuzu/qlPW3L7pru9pzMhsNXAVtn5tHAKmB183Mfy5at7GpxS5eu\n6Oryemnp0hUsWbK87TLGZXt2V7+0p23ZXb1oz/FCfzI96bOA0yPiImAecGhm/q1LtUmSxjFhSDfD\nGi+dhlokSaN4MIskVcyQlqSKGdKSVDFDWpIqZkhLUsUMaUmqmCEtSRUzpCWpYoa0JFXMkJakihnS\nklQxQ1qSKmZIS1LFDGlJqpghLUkVM6QlqWKGtCRVzJCWpIoZ0pJUMUNakipmSEtSxQxpSaqYIS1J\nFTOkJalihrQkVcyQlqSKGdKSVDFDWpIqZkhLUsUMaUmqmCEtSRUzpCWpYoa0JFXMkJakihnSklQx\nQ1qSKmZIS1LF5o73YETMA04DHgbcD/hAZn59OgqTJE3ck34FsCQz9wL2BT7R+5IkSSPG7UkDXwbO\nav6eDdzd23IkSZ3GDenMvAMgIhZRAvvd01GUJKmYqCdNRGwDnA18MjO/ON60ixcvYO7cOd2qjWXL\nFnZtWb226aYLGRpa1HYZ47I9u6tf2tO27K7pbs+JNhw+GPg28KbMvGCihS1btrJbdQGwdOmKri6v\nl5YuXcGSJcvbLmNctmd39Ut72pbd1Yv2HC/0J+pJvwvYBDg8Ig5v7ntOZv61S7VJksYx0Zj0ocCh\n01SLJGkUD2aRpIoZ0pJUMUNakipmSEtSxQxpSaqYIS1JFTOkJalihrQkVcyQlqSKGdKSVDFDWpIq\nZkhLUsUMaUmqmCEtSRUzpCWpYoa0JFXMkJakihnSklQxQ1qSKmZIS1LFDGlJqpghLUkVM6QlqWKG\ntCRVzJCWpIoZ0pJUMUNakipmSEtSxQxpSaqYIS1JFTOkJalihrQkVcyQlqSKGdKSVDFDWpIqZkhL\nUsXWK6Qj4skRcUGvipEk3dvcyU4YEW8HXgms6F05kqRO69OTvhHYH5jVo1okSaNMOqQz82zg7h7W\nIkkaZdLDHZOxePEC5s6d07XlLVu2sGvL6rVNN13I0NCitssYl+3ZXf3SnrZld013e3Y1pJctW9nN\nxbF0af8Mfy9duoIlS5a3Xca4bM/u6pf2tC27qxftOV7oT2UXvOGplyJJWh/r1ZPOzN8AT+lNKZKk\n0TyYRZIqZkhLUsUMaUmqmCEtSRUzpCWpYoa0JFXMkJakihnSklQxQ1qSKmZIS1LFDGlJqpghLUkV\nM6QlqWKGtCRVzJCWpIoZ0pJUMUNakipmSEtSxQxpSaqYIS1JFTOkJalihrQkVcyQlqSKGdKSVDFD\nWpIqZkhLUsUMaUmqmCEtSRUzpCWpYoa0JFXMkJakihnSklQxQ1qSKmZIS1LFDGlJqpghLUkVM6Ql\nqWJzJ5ogImYDJwK7AH8DXpeZN/W6MEnS5HrS/wDMz8ynAO8Aju9tSZKkEZMJ6acC3wLIzMuAJ/a0\nIknSGhMOdwAbA7d33L4nImZn5urREz7hCTuNuYArr7xmzPsnM/3K225d8/clX37vmNPv/pIjx7x/\nuqYfXn0PL/rmAubNmwds2Ovt9fS2Z3enr709R7cl1NuenW0JM68912XW8PDwuBNExPHApZn55eb2\nLZm5zXo9iyRpSiYz3PFDYD+AiNgNuKqnFUmS1pjMcMc5wDMj4ofN7YN6WI8kqcOEwx2SpPZ4MIsk\nVcyQlqSKGdKSVDFDWpIqNmNCOiI+GRGPa7uOQRAR89uuQZopZszeHRHxHOA1wFbAGcCZmXn7+HNp\nLBFxFfA94NTMXL/Dp3QfEfEN4FTg65l5T9v19LtBa88ZE9IjImIIOAF4IfBl4EjP6rd+ImIOsC9w\nIDAEnAl8ITNXtFlXv4qIHSgdiGcC5wGfyczr262qfw1ae86YkI6IxwAHAC8ALgA+DcwBTsnMXdus\nrR81p7B9NnAwsC2wAvhiZn681cL6WERsDnwc2B/4PnB4Zl7SblX9a1DaczJHHA6KUyhfgd6fmXeM\n3BkRp7VXUn+KiA9TTmF7EXBMZl7ehPaVlA+F1kNE7EfpQDyGMhR3KKUDcR7lPO5aD4PWnjMmpDNz\nj4jYEtisWcNumZmXZOYn2q6tD90A7No5vJGZqyNi/xZr6mevAD6VmRd23hkRR7RSTf8bqPacScMd\npwG7AQuBBwCXZebz2q2qP0XEdsBLKCv52cBDMvOQdqvqXxExD3gSpT1nUToQX2i3qv41aO05Y3rS\nwGOBnYCTgHdTNh5qav4TOBvYA/g98Od2y+l751A+i1tTVno/Afo2VCowUO05Y/aTBv7SXKhgYWYu\nAbZou6A+tiIzjwZ+l5kHAo9uuZ5+t3lm7gtcSrny0YKW6+l3A9WeMymkr4yItwG/j4gvUoY9NDWr\nI+IhwMKI2AjYsu2C+twdETGL0oFYCWzedkF9bqDac8YMd2TmOyNiEbAKeA5wecsl9bP3U/bu+A/g\nV81vTd05wHuBn0fEpcAdE0yv8Q1Uew78hsOIeF/z5zBlI8KI4cx8fwslSfcREbMyczgidgZuzMxV\nbdfUzwapPWdCT/ra5vergaspO7XvTtmHUushIq5u/pwDzAeWUL5KLs3MJ7dWWJ+KiM+Ouj3y5zDl\niDmth0Ftz4Efk87MszLzLOD+mfnuzDwvM48ANmu5tL6TmTtn5s7AZcBzM3N3yuHhN7RbWd/6ZPOz\nAPgRcAzlAKE5bRbVxwayPWdCT3rEAyNiu8y8ISJ2xA2HG2LbzEyAzLwpIh7ecj19KTOvAIiIzTLz\n0yN3R8SrWiyrbw1qe86kkH4LcFZEbAH8Dnhdy/X0sz9HxJHAFcBTgZtbrqffPSAi9gF+TNn3vK97\nfhUYqPacMSGdmT+iHNCiDfdK4A3AfsAvKFvSNXWvAY4FgtKeB7ZaTf8bqPacMSEdEQcA7wDu39w1\nnJmPbLGkfjabcprXu4DXUw4Msjc9RZmZEfEiSrvuTjmKU1M0aO05Y0Ia+Dfg+cD/a7uQAXAW8Cng\nxZS9Z06hnLZUUxARJwC/BB4GPB74E+UsbpqCQWvPgd+7o8NNmXljZv515KftgvrYAuBrwFaZeQx9\nPuZXgSdl5knA7s3hzFu3XVCfG6j2nEk96VUR8S3gZ5T9Jocz810t19Sv5lPO0Xtls6fMRi3X0+9m\nR8QTgF9HxP2ARW0X1OcGqj1nUkifSwlnbbh/pVx+7IOUjYiHtltO3/s8ZfjoIOBDwMntltP3Bqo9\nB/6w8BERMRc4BNgRSOCkzPxbu1X1r4j4e+CRlDON3dDPh93WICI2AR5OGZbzWpEbICLelpnHtl1H\nt8ykMelTKNfi+zbwCMo1DjUFEXE05TD711NOBeklyDZARLwYuJByoqrDIuI97VbU9/ZrOmUDYSaF\n9HaZeVhm/ndmvgXYru2C+tgemflqYHlmnkZZ6WnqDqPsKvZn4CjKhVM1dZtTTkl8WURcEhE/arug\nDTGTQvp+zbmPiYgFzKzX3m1zIuL+ABExB7in5Xr63T0jextl5t2UK69r6p5HuXzW/wFeBvzfdsvZ\nMAPzlWASTgB+FhHXAjsAR7RbTl/7KOXK4EOU83J/pN1y+t4PIuILwFYRcTLlcGZN3YGjbg9TzoHe\nlwZ+w2Fz+sKRc0lvztpzSt+amX17+sK2RcRi4FHArzPTaxxuoIh4DuUanNdl5tfbrqefRcQbKJ/5\n2cCuwOzMfG27VU3dTAjpqygHX5xJOX3hGpl5XitF9bnR5+2l7HPuCm+KImJjytWCOk9Z8PkWSxoo\nEfGt5qCWvjTwwx2ZuUtzdYZXUg4Nvxg4IzNvbLeyvvYl7t1T8RqHG+arlDMz3tJ2IYMgIrbvuLkl\n8NC2aumGge9JjxYRewH/Amydmbu1Xc8giIjzM/OZbdfRryLiwsx8ett1DIqIuJC1B679FfhYZn6z\nvYo2zMD3pEc0Xyn3p2zt3QgvnjplEfFs1n4ItgQe1GI5g+CqiNgN+ClNu2bmne2W1L8GbYU38CEd\nES+lBPNDga8Ab8zMX7dbVX+KiC9l5kspuzR19lQcj94wT6ecobGT+55PUXPx6TcDdzd3DWdm3w7J\nDfxwR0SsBq4Dfj7qoeHMfHkLJfWtiLggM5/Rdh3SeCLiCmDPQTlVwcD3pIG9m98ja6NZo25r8h4Z\nEUextg1HeEbBKYiIC5o/R3YRHTGcmXuPMYsm51bW9qL73sCHdGZe2HYNA2Ql5eRUnWbhCm+qXtL8\nPo6yi+jFwG6U4Tmtp+aAICjbSH4aEdew9rTEffuteeBDWl31x8z8XNtFDIqRg4Ai4mGZeX5z94UR\ncUR7VfW1fSgrvvt802uhlq4xpLU+rmy7gAF1T0S8lrVXX7+j5Xr61bWZeVHbRXTbwG84lGoXEQ8G\n3s3aq1sfmZlL262q/0TEzZRho4HaZmJPWmpZZv4pIr5GOd/5JZSxf62/sbaZ9D1DWmpZcxGFrShn\nZ7wLeCd9fnrNlgzkNhPPqSy1b+QiCiu8iMIGGchtJoa01D4votAFmfnWtmvoBUNaaklE7NL8OXIR\nhR0pF1E4sbWiVB337pBa0pyt7aHARZQLJN+IF1HQKIa01KJmmGN34GnAHpTdxy7KzL693JO6y+EO\nqUXNBWivBK5qfuYAj2+1KFXFnrTUkoh4K7Af8EDgO8A3gR9k5l2tFqaqGNJSSyLiNuBbwKmUIQ5P\n9K/7MKSllkTEfGBPykVo9wL+CJwLnJuZv22zNtXDkJYqERH7Us7h8ZTMnNN2PaqDh4VLLYmIJ1F6\n0nsCj6ZcPeh0ypXtJcCQltp0NHA+cCTws8xc3XI9qpDDHZJUMfeTlqSKGdKSVDFDWpIqZkhLUsUM\naUmq2P8HDsCpmQvQ+2oAAAAASUVORK5CYII=\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The difficulty of the homework assignments increases almost linearly throughout the week, with the most difficult assignments being the weekend assignments."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_monday_lecture = rails_lecture_data[[\"1/12/15\", \"1/20/15\", \"1/26/15\", \"2/2/15\"]].mean().mean()\n",
+ "rails_tuesday_lecture = rails_lecture_data[[\"1/13/15\", \"1/21/15\", \"1/27/15\"]].mean().mean()\n",
+ "rails_wednesday_lecture = rails_lecture_data[[\"1/14/15\", \"1/22/15\", \"1/28/15\"]].mean().mean()\n",
+ "rails_thursday_lecture = rails_lecture_data[[\"1/15/15\", \"1/23/15\", \"1/29/15\"]].mean().mean()\n",
+ "rails_monday_homework = rails_homework_data[[\"1/12/15\", \"1/20/15\", \"1/26/15\", \"2/2/15\"]].mean().mean()\n",
+ "rails_tuesday_homework = rails_homework_data[[\"1/13/15\", \"1/21/15\", \"1/27/15\"]].mean().mean()\n",
+ "rails_wednesday_homework = rails_homework_data[[\"1/14/15\", \"1/22/15\", \"1/28/15\"]].mean().mean()\n",
+ "rails_thursday_homework = rails_homework_data[[\"1/15/15\", \"1/23/15\", \"1/29/15\"]].mean().mean()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_difficulty_by_weekday = pd.DataFrame([rails_monday_lecture, rails_tuesday_lecture, rails_wednesday_lecture, \n",
+ " rails_thursday_lecture]).plot(kind=\"Bar\", title=\"Rails Lecture Difficulty by\"\\\n",
+ " \"Weekday\")\n",
+ "plt.xticks(np.arange(0,4), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAE2CAYAAACX2qJwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXGWd7/FPVjTpJnagkRFZrkz4CSiy6IvFEBRFZb2A\nooMSRUEiXoUBdWQZHK6o4DDgoCJggCtuQeHiApGwzASGHVkDXPkCjjqIC63dE5I0mpD0/eM5RRed\n7qrq7qqcfrq/79eLF13nVJ361dPp73nqOcszqa+vDzMzy9PksgswM7ORc4ibmWXMIW5mljGHuJlZ\nxhziZmYZc4ibmWVsatkFWG0RsQ54FFgL9AEzgOeA4yXdX+e1i4FPAZsDX5P0+gbfcxvgEUntoyi9\nenvHAtMkXdSM7Q2y/TOBjwPPFIumAf8JfErSk8VzHgT2AVYCPwJeC3wVeB3wTuD7wC7Fax4fYQ2b\nSPrkcD9v0d6/kPTyBp8/DfgzsLekh4tlxwEXA++SdGOx7Ajg05J2H+7nKV7/a+BwSQ/Ued5KYAdJ\n/zWS97HRcYjn4S2SuisPIuJTwNeAvWq9SNKBxfM3b215dc0FHmnh9vuAKyWdUFkQEUcB/xYRO0pa\nIWmXYvlWwDuAGZL6ImItsKWk3zWhhspFFy39vJLWRMRNwFuAh4vFBwM/BQ4BbiyWvQ24bhRv1ehF\nJL7YpEQO8TxMqvwQEVOBrUk9MSLilcAlwGakHvdvgPdK6ip6Uu+u3lBEzAXOA6aQ/vjOlnRNo4VE\nxHTgy8C8YhsPAidIWhER2xW1dALrgC8Aq0kB8/aIeL6ocxNJnyy2dyb9Pdhbis/1WuAbwHeBC0i9\n5WnAvwGfkbS2VhsBSPpuRMwH3g9cUnyj2QpYUmzrgYjYpHjd9RHxv4r3O1zSAxHxEeBk0jegPwEf\nAv6Wqm80EfGWqseTgEkRcWjxed9WfN4TgE9Kuql4zULSt5yvDqw/Ii4B3gSsKV53L/A48ImBrweu\nBw4ELoiIlxeve2vx+T5RbHNf4O+K1x0DHE8aQv1zsU3V+n1WCouINuBnwB2STo2IvUmdiHXAfcU2\niYjJwFeA3YH2ok2OBR4CfgvsXvXN6Cbgq5KuHeR3acPgMfE8LI2IhyLiGUCkP54PF+veR/rj2kvS\na4BeYH6xrrp3WPG/gfMlvRH4COkPfzhOAdZI2k3SzsDvgXOKdVcCP5D0OuAA4Euk4P1p8Z7fGKSe\n6hr7gG5JO0q6kBQI9xW17kraOZw8jFofJu0AKnqB/YHnJe0iaati+Vsl3V6pIyLeUHymd0p6Q1H/\n6YPUvh5JPy6e/5Xi815ECjIiYmNST/lbg7x0OnCzpF2BM4AfkjpZ3xji9UuAvSNiEvB24HZJvwB6\nI2Ln4htHe7FD2gf4IGn4ZVfgXKCy4671+wR4Balnf20R4NOBq4CTim3dCFSGgXYHNpe0h6QdgW8D\np0jqBa6o+hzbAtsxum8JVnBPPA9vkdQdETuTemB3SfoTgKSvRsTeEXEyMIcUWnfX2NYPgAsj4mDg\nZlI4DcdBwKyI2K94PB34Y0R0ADsBlxZ1/ZbUcyUioL+n/JIe8yBuG/Bebyp6kQAvI+3AhqN3wON6\n7z+JNAyxRNIzAJIugBd73o2qvM8VwD9FxKbAEaQwfG6Q5/+3pKuK97uxCOeo8frnIuJ3pDY/mP5A\nvI40XPRHYHGx7EDS7+LO4ncB0FH8zgb9fVZ9hu+QvhlUvjm8HlgtaWlR69UR0VP8fFdE/Dkijgde\nQxruqXzWi4BbI+J04DhgoSQPwzSBe+IZkfQQcBJwaURsDRARXyb1rv9IGsq4kRpBJembpD/Em0gH\n9JYVPbxGTSZ93d6lGGfeHXgvadgBqnqrETEnIl42YHnfgPo2GrD9lQPe6z1V77UnaZihUW9iZGPT\na6ofRMRGxVDRwNqnD3hd38CfJf03qec6n/Tt6eIh3nPgENEkUg+51uuvJwXl/vQH9mLSmPy+Vcsm\nA9+pasddgT0k9TD077PyGc4iDeucW7Vs4L+vFwAi4sDiPdcBPy5qnVy0wxPAMuBQ0hDXpUO0gw2T\nQzwzkq4E7gL+tVj0DuBfJX0P6AL2I41tDioi7gR2kXQFsID0dfkVwyjhBuCTETG9GAO9GPhi0Tu8\nHzi6eJ8tgTuBWaQ/8krgPQvsVjxnZlF/teqAuAE4OSImFV/jf0Q6C2Wg9XZaRe99G9KwxHD0AUtJ\nY/iVA8LHk0LsWWCriOgsesqHDlFH9ecFuJC085kk6b4h3neTIgQpviU9DzxZ5/XXk4bEnpHUVSy7\njbST3ou0o4a0Yz+y6vN8lP6Dn4P+Pqve415Smx9R9NYfIY3f71/UegBpmKsyrHOtpEtI/xYO46X/\nFi8ktePdkv4wRDvYMDnEx77BvnJ+Ati/+KP6PPAvEXE36Svr1RTDGAO2UdnOZ4DPR8QDwL8DZw5x\natjMiFgx4L8dST2zX5MOgD1G+jf0qeI17wfeGxEPkcaFj5H0R1LYnBARnwW+B3RFxJOkXtsdNT7v\nCcBMUg9uGelUy38eoo3eFxEPRsQDxfvvRxqGWj3Idof6GQBJjxbttKTY1juABcWY8yWkg3l3Ab/j\npd8wKj9Xf14kLQO6GboXDmkH8e7iVMjPAu+WtK7O6+8g7aheHFsuDvreC/xa0spi2Y2kg5c3RcTD\nwFGkgIXav8/KNv9ECvLLSae4HgqcVdT6HtK3wL6ivn2K5T8j7US2qdrUYtLvs1Y72DBN8q1ozVqr\nOJC3FNhO0l829OvHiojYC7ik0esVrDENHdiMiM1IX4/eVoxtVZafBBxD+hoPqbfyxCCbMJuQIuLz\npOGLE0YY4KN6/VgREVeQLraaX++5Njx1e+LF1WE/BLYHDhkQ4t8hnTr2YEurNDOzQTUyJn4uaaz1\n94Os2w04LSJui4hTmlqZmZnVVTPEI+JooKtyLwbWPwtgEekMh32BuZWj62ZmtmHUHE6JiFvpP+q+\nM+lqwUMkPVus37hy4UJxgv8mkr5Q6w1feGFt39SpQ54BZ2Zm6xvy2o+Gz06JiKVUHbiMiFmk0752\nIF0V90PgMklLam2nq2vFmD8dprOzna6uFfWfaA1xezaX27O5cmjPzs72IUN8uJfdT4qII4E2SQuL\ncfClwF9J932oGeBmZtZcDYe4pMqNklS1bBFpXNzMzErgKzbNzDLmEDczy5hD3MwsYw5xM7OMeVII\nM5uwVq9ezRNPPEF398r6T27QlltuzfTpA2813zoOcTObsJ5++jeceO5PmTFrs6Zsr3f5s1zwmUPY\ndts5Qz5n3bp1nHfeOfzyl08xbdo0TjnlDLbY4tUjfk+HuJlNaDNmbUZbxxYb7P1uu+0W1qxZw8UX\nX85jjz3K17/+Fc4++7wRb89j4mZmG9CyZQ+z++57AbDjjq/j8cd/MartOcTNzDag3t5VzJw588XH\nkydPZt264c7/3c8hbma2Ac2YMZPe3t4XH/f19TF58sij2CFuZrYB7bTTG7j77jS17KOPPsK22w6c\nEnd4fGDTzCa03uXPbtBtzZv3Vn7+83s4/viPAHDqqf80qvfc4BMl+1a0E4/bs7ncns2zevVqVq36\n85g/T7yZt6I1Mxs3pk+fzhZbbJf1TtFj4mZmGXOIm5llzCFuZpaxhsbEI2Iz4H7gbZU5NovlBwNn\nAC8Al0u6tCVVmpnZoOqGeERMAy4BVg2y/HzgjaSJku+IiJ9Kat75OmYZW716NU8//Zumb7enp62p\nZ1PAhr/znjVPIz3xc4GLgFMHLN8eeErScoCIuB2YB1zd1ArNMtXsO+S1SiN33rOxq2aIR8TRQJek\nGyPiVKD6XMWNgeVVj1cAs5peoVnGNvQd8mziqdcT/zDQFxFvB3YGroiIQ4ohk+VAe9Vz24Geem/Y\n0TGDqVOnjLTeDaazs73+k6xhE7E9e3rayi6hYbNnt03I31FFzp+9ZohL2qfyc0QsBRZUjXk/DsyJ\niA7SePk80tBLTT09vfWeUjpfEddcE7U9mz1u3Urd3Ssn5O8I8vj3WWsnM9wrNidFxJFAm6SFEXEy\ncAPpVMXLJP1+5GWamdlwNRzikt5a+bFq2XXAdc0uyszMGuOLfczMMuYQNzPLmEPczCxjDnEzs4w5\nxM3MMuYQNzPLmEPczCxjDnEzs4w5xM3MMuYQNzPLmEPczCxjw70Blo1jnonGLD/Zh3grgmeiho5n\nojHLT/YhnkPw5BQ6nonGLC/Zhzg4eMxs4vKBTTOzjNXtiUfEFGAhsB3QB3xM0mNV608CjgG6ikUL\nJD3RglrNbALL5cD7hj7+1chwykHAOklzI2If4IvAoVXrdwXmS3qwFQWamYGPfw2lbohL+klEVKZg\n24b1Z7TfDTgtIjYHFks6p7klmpklPv61vobGxCWtjYhvAV8Fvj9g9SJgAbAvMDciDmxqhWZmNqTh\nTJR8dER8FrgnIraX9Hyx6gJJzwFExGJgF2DxUNvp6JjB1KlTRlPzS/T0tDVtW600e3YbnZ3tZZdR\nUy5tCW7PZnN7Ns+GbstGDmzOB14t6WzgeWAd6QAnETELWBYROwC9pN74ZbW219PTO9qaX6LZF+W0\nSnf3Srq6VpRdRk25tCW4PZvN7dk8rWjLWjuFRoZTrgZ2johbgSXAicBhEfFRScuBU4ClwH8Aj0pa\nMvqSzcysEY0c2HweeF+N9YtI4+JmZraB+WIfM7OMOcTNzDLmEDczy5hD3MwsYw5xM7OMOcTNzDLm\nEDczy5hD3MwsYw5xM7OMOcTNzDLmEDczy5hD3MwsYw5xM7OMOcTNzDLmEDczy5hD3MwsYw5xM7OM\nNTLH5hRgIbAdaW7Nj0l6rGr9wcAZwAvA5ZIubVGtZmY2QCM98YOAdZLmAv8IfLGyIiKmAecD+wH7\nAMdFxGatKNTMzNZXN8Ql/QRYUDzcBuipWr098JSk5ZLWALcD85pdpJmZDa7ucAqApLUR8S3gMOA9\nVas2BpZXPV4BzGpadWZmVlNDIQ4g6eiI+CxwT0RsL+l5UoC3Vz2tnZf21NfT0TGDqVOnjKjYwfT0\ntDVtW600e3YbnZ3t9Z9YolzaEtyezeb2bJ4N3ZaNHNicD7xa0tnA88A60gFOgMeBORHRAawiDaWc\nW2t7PT29oyp4oO7ulU3dXqt0d6+kq2tF2WXUlEtbgtuz2dyezdOKtqy1U2jkwObVwM4RcSuwBDgR\nOCwiPlqMg58M3ADcCVwm6fejL9nMzBpRtydeDJu8r8b664DrmlmUmZk1xhf7mJllzCFuZpYxh7iZ\nWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFu\nZpYxh7iZWcYc4mZmGXOIm5llrObMPhExDbgc2BrYCPiCpGur1p8EHAN0FYsWSHqiRbWamdkA9aZn\n+wDQJWl+MRnyQ8C1Vet3BeZLerBVBZqZ2dDqhfhVpImSIQ29vDBg/W7AaRGxObBY0jlNrs/MzGqo\nOSYuaZWklRHRTgr00wc8ZRGwANgXmBsRB7amTDMzG0zd2e4jYkvgGuBCSVcOWH2BpOeK5y0GdgEW\n19peR8cMpk6dMsJy19fT09a0bbXS7NltdHa2l11GTbm0Jbg9m83t2Twbui3rHdh8JXAj8HFJSwes\nmwUsi4gdgF5Sb/yyem/Y09M78moH0d29sqnba5Xu7pV0da0ou4yacmlLcHs2m9uzeVrRlrV2CvV6\n4qcBs4DPRcTnimULgZmSFkbEKcBS4K/AzZKWNKFeMzNrUM0Ql3QicGKN9YtI4+JmZlYCX+xjZpYx\nh7iZWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5ll\nzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFuZpaxenNsTgMuB7YGNgK+IOnaqvUHA2cALwCXS7q0hbWa\nmdkA9XriHwC6JM0D3gV8vbKiCPjzgf2AfYDjImKzVhVqZmbrqxfiVwGVCZInk3rcFdsDT0laLmkN\ncDswr/klmpnZUOpNlLwKICLaSYF+etXqjYHlVY9XALOaXaCZmQ2tZogDRMSWwDXAhZKurFq1HGiv\netwO9NTbXkfHDKZOnTLcOofU09PWtG210uzZbXR2ttd/YolyaUtwezab27N5NnRb1juw+UrgRuDj\nkpYOWP04MCciOoBVpKGUc+u9YU9P7whLHVx398qmbq9VurtX0tW1ouwyasqlLcHt2Wxuz+ZpRVvW\n2inU64mfRhoi+VxEVMbGFwIzJS2MiJOBG0jj5ZdJ+n0T6jUzswbVGxM/ETixxvrrgOuaXZSZmTXG\nF/uYmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZ\nxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWWs7kTJABGxO3COpLcOWH4ScAzQVSxaIOmJ\n5pZoZmZDaWS2+38AjgIGm6V0V2C+pAebXZiZmdXXyHDKU8DhwKRB1u0GnBYRt0XEKU2tzMzM6qob\n4pKuAV4YYvUiYAGwLzA3Ig5sYm1mZlZHQ2PiNVwg6TmAiFgM7AIsrvWCjo4ZTJ06ZZRv26+np61p\n22ql2bPb6OxsL7uMmnJpS3B7Npvbs3k2dFuOOMQjYhawLCJ2AHpJvfHL6r2up6d3pG85qO7uwYbq\nx57u7pV0da0ou4yacmlLcHs2m9uzeVrRlrV2CsMJ8T6AiDgSaJO0sBgHXwr8FbhZ0pLRFGpmZsPT\nUIhL+jWwV/Hzoqrli0jj4mZmVgJf7GNmljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZ\nc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWWsoRCPiN0jYukg\nyw+OiHsj4s6IOLb55ZmZWS11Qzwi/gFYCGw0YPk04HxgP2Af4LiI2KwVRZqZ2eAa6Yk/BRwOTBqw\nfHvgKUnLJa0BbgfmNbk+MzOroW6IS7oGeGGQVRsDy6serwBmNakuMzNrwHBmux9oOdBe9bgd6Kn3\noo6OGUydOmUUb/tSPT1tTdtWK82e3UZnZ3v9J5Yol7YEt2ezuT2bZ0O35WhC/HFgTkR0AKtIQynn\n1ntRT0/vKN5yfd3dK5u6vVbp7l5JV9eKssuoKZe2BLdns7k9m6cVbVlrpzCcEO8DiIgjgTZJCyPi\nZOAG0rDMZZJ+P5pCzcxseBoKcUm/BvYqfl5Utfw64LqWVGZmZnX5Yh8zs4w5xM3MMuYQNzPLmEPc\nzCxjDnEzs4w5xM3MMuYQNzPLmEPczCxjDnEzs4w5xM3MMuYQNzPLmEPczCxjDnEzs4w5xM3MMuYQ\nNzPLmEPczCxjDnEzs4zVnNknIiYD3wB2Av4KHCvpl1XrTwKOAbqKRQskPdGiWs3MbIB607MdCkyX\ntFdE7A6cVyyr2BWYL+nBVhVoZmZDqzec8mZgCYCke4A3Dli/G3BaRNwWEae0oD4zM6uhXohvDDxX\n9XhtMcRSsQhYAOwLzI2IA5tcn5mZ1VBvOOU5oL3q8WRJ66oeXyDpOYCIWAzsAiyutcGOjhlMnTpl\nJLUOqqenrWnbaqXZs9vo7Gyv/8QS5dKW4PZsNrdn82zotqwX4ncABwNXRcQewLLKioiYBSyLiB2A\nXlJv/LJ6b9jT0zvyagfR3b2yqdtrle7ulXR1rSi7jJpyaUtwezab27N5WtGWtXYK9UL8R8B+EXFH\n8fjDEXEk0CZpYTEOvpR05srNkpY0o2AzM2tMzRCX1AccP2DxE1XrF5HGxc3MrAS+2MfMLGMOcTOz\njDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zM\nLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGP1pmejmN3+G8BOpGnYjpX0y6r1BwNnAC8Al0u6tEW1mpnZ\nAI30xA8FpkvaCzgFOK+yIiKmAecD+wH7AMdFxGatKNTMzNbXSIi/GVgCIOke4I1V67YHnpK0XNIa\n4HZgXtOrNDOzQdUdTgE2Bp6rerw2IiZLWlesW161bgUwq9bGdtvtdYMuv//+R0f8/N7lz774811X\nnTHo8/c84qxBl2+I5/etW8th189g2rRpLy4fzedt5fOr2xLcnqN9vttzYrXnnT84bb22hOa1z2Am\n9fX11XxCRJwH3C3pquLx05K2LH5+PXCOpAOLx+cDt0u6puEKzMxsxBoZTrkDOAAgIvYAllWtexyY\nExEdETGdNJRyV9OrNDOzQTXSE59E/9kpAB8GdgPaJC2MiIOAz5F2CJdJuqiF9ZqZWZW6IW5mZmOX\nL/YxM8uYQ9zMLGMOcTOzjDnEzcwy5hAvRMSFEbFz2XWMF8Upp2bWYj47pRAR+wMfAbYAvgN8T9Jz\ntV9lQ4mIZcC/A5dKavzyM1tPRFwHXApcK2lt2fXkbry1p0N8gIjoBC4A/idwFXBW9V0brTERMQV4\nF3A00Al8D1gkaWWZdeUoIrYndTD2A24gXY/xRLlV5Wu8tadDvBAROwAfAg4BlgILgSnANyXtWmZt\nuSpuY/xO4KPAtsBK4EpJXyu1sExFxKbA14DDgf8APifJV0iP0Hhpz0ZugDVRfJP0FevzklZVFkbE\n5eWVlK+I+GfSbYxvJd1f594i1O8n/eFYgyLiAFIHYwfSUN+JpA7GDfRfSW0NGm/t6RAvSJobEa8C\nNin20K+SdJekr5ddW6aeBHatHj6RtC4iDi+xplx9ALhI0i3VCyPizFKqyd+4ak8PpxSKHvceQBvw\ncuAeSQeVW1W+ImIOcASpozAZ+BtJC8qtKk/F5CtvIrXlJFIHY1G5VeVrvLWne+L93gC8DrgYOJ10\ncNNG7vvANcBc4HfAn8otJ2s/Iv2tvpq0Q3wAyDZ0xoBx1Z4+T7zfn4uJLtokdQGbl11Q5lZKOht4\nRtLRwGtLridnm0p6F3A3aWatGSXXk7tx1Z4O8X73R8RngN9FxJWkYRUbuXUR8TdAW0TMBF5VdkEZ\nW1XcErpNUi+wadkFZW5ctaeHUwqSTo2IduB5YH/g3pJLyt3nSWenfBf4z+L/NjI/As4AHo6Iu4FV\ndZ5vtY2r9pzwBzYj4p+KH/tIBzkq+iR9voSSzNYTEZMk9RVTIj4l6fmya8rZeGpP98ThseL/HwQe\nIZ30vyfpHFIbpoh4pPhxCjAd6CJ9Xe2WtHtphWUoIv7PgMeVH/tIVxzaMIzX9pzwY+KSrpZ0NfAy\nSadLukHSmcAmJZeWJUmvl/R64B7gQEl7ki6/f7LcyrJ0YfHfDOBO4BzSxVNTyiwqY+OyPd0T7/eK\niJgj6cmI2BEf2BytbSUJQNIvI2KbkuvJjqT7ACJiE0kLK4sjYn6JZWVrvLanQ7zf3wNXR8TmwDPA\nsSXXk7s/RcRZwH3Am4HflFxPzl4eEW8Dfk467z7rnuMYMK7a0yFekHQn6YIfa46jgI8BBwD/j3Q2\ngI3MR4BzgSC15dGlVpO/cdWeDvFCRHwIOAV4WbGoT9JrSiwpd5NJt/JdAxxHunjKvfERkKSIOIzU\npnuSroC1ERpv7ekQ7/dZ4GDgt2UXMk5cDVwEvId0BtA3SbeltWGKiAuAXwBbA7sAfyTdhc9GYLy1\n54Q/O6XKLyU9Jekvlf/KLihzM4CfAltIOofMxx1L9iZJFwN7FpeLv7rsgjI3rtrTPfF+z0fEEuAh\n0nmjfZJOK7mmnE0n3af5/uJsn5kl15OzyRGxG/CriNgIaC+7oMyNq/Z0iPf7GSm8rTk+RZri7ouk\ng5wnlltO1r5NGpr6MPBl4JJyy8neuGrPCX/ZfUVETAUWADsCAi6W9Ndyq8pbRLwdeA3pbnFP5nxp\nc9kiYhawDWnYz/OUjkJEfEbSuWXX0SweE+/3TdI8kDcC/4M0x6aNUEScTbqVwXGk2316mrsRioj3\nALeQbiJ2ckT8Y7kVZe+AotM2LjjE+82RdLKkH0v6e2BO2QVlbq6kDwIrJF1O2jHayJxMOhXuT8CX\nSBP72shtSrrl9D0RcVdE3Fl2QaPhEO+3UXHfayJiBm6b0ZoSES8DiIgpwNqS68nZ2srZUpJeADyc\nMjoHkaZney/wd8CR5ZYzOuPmK0UTXAA8FBGPAdsDZ5ZbTva+QprZvpN0b/bzyy0na7dHxCJgi4i4\nhHS5uI3c0QMe95Huf5+lCX9gs7g9ZeVe4pvSf0/xZyVle3vKsSAiOoC/BX4lyXNsjkJE7E+aA/Zx\nSdeWXU/OIuJjpL/5ycCuwGRJx5Rb1cg5xCOWkS5M+R7p9pQvknRDKUWNAwPv3Uw67947xRGIiI1J\ns01V3xLi2yWWNK5ExJLiop8sTfjhFEk7FbN7HEW69P424DuSniq3suz9gJf2djzH5sj9hHRnzafL\nLmQ8iIjtqh6+CtiqrFqaYcL3xAeKiHnACcCrJe1Rdj3jRUTcJGm/suvIUUTcIuktZdcxXkTELfRf\n2PcX4KuSri+votGZ8D3xiuIr6+Gko9Uz8cS+oxIR76T/D+VVwGYllpO7ZRGxB/AgRZtKWl1uSfka\nbzvECR/iEfE+UnBvBfxf4HhJvyq3qnxFxA8kvY902lZ1b8fj4SP3FtIdNqv5vPsRKiZH/wTwQrGo\nT1K2w30TfjglItYBjwMPD1jVJ+n9JZSUtYhYKumtZddhNpSIuA/Ye7zcBmLC98SBfYv/V/ZmkwY8\ntuF5TUR8if52rPBdIYcpIpYWP1ZOga3ok7TvIC+xxjxLfy88exM+xCXdUnYN40wv6QZi1SbhneJI\nHFH8/19Ip8DeBuxBGv6zYSoumIJ0fObBiHiU/ttOZ/ute8KHuDXdHyRdUXYR40HlAqmI2FrSTcXi\nWyLizPKqytrbSDvG9b4lllBL0zjErdnuL7uAcWhtRBwD3Ae8GVhVcj25ekzSrWUX0WwT/sCm2VgX\nEa8ETqd/dvazJHWXW1V+IuI3pGGpcXW8xj1xszFO0h8j4qek+93fRTruYMM32PGa7DnEzca4YoKN\nLUh311ziueQXAAABMUlEQVQDnErmt08tybg8XuN7ZpuNfZUJNlZ6go1RGZfHaxziZmOfJ9hoAkmf\nLruGVnCIm41REbFT8WNlgo0dSRNsfKO0omzM8dkpZmNUcbe9rYBbSRN4P4Un2LABHOJmY1gxjLIn\nsA8wl3R63K2Ssp1OzJrLwylmY1gxQfL9wLLivynALqUWZWOKe+JmY1REfBo4AHgFcDNwPXC7pDWl\nFmZjikPcbIyKiOXAEuBS0hCKJ4Kw9TjEzcaoiJgO7E2aJHke8AfgZ8DPJP1XmbXZ2OEQN8tERLyL\ndA+VvSRNKbseGxt82b3ZGBURbyL1xPcGXkuafepbwFEllmVjjEPcbOw6G7gJOAt4SNK6kuuxMcjD\nKWZmGfN54mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGfv/XwHj+8QNr7kAAAAASUVORK5CYII=\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 46
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Rails lectures have an almost uniform difficulty, however it appears that Wednesdays tend to be slightly more difficult."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_hw_difficulty_by_weekday = pd.DataFrame([rails_monday_homework, rails_tuesday_homework, rails_wednesday_homework, \n",
+ " rails_thursday_homework]).plot(kind=\"Bar\", title=\"Rails Homework Difficulty by\"\\\n",
+ " \"Weekday\")\n",
+ "plt.xticks(np.arange(0,4), labels)\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAE2CAYAAACX2qJwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWd//F3VjR0iAk0MijLTwa+BhQJ6BPAsCojWxBQ\nRAaiKEjEURgQRhZh+ME44DDggLIGUNyCA+ICgbBoYNiVNcDIB4LLIKA0dk9IaIQsPX+c23Sl0l3V\nS3Vun+7P63nypOveure+dbrrU+eeu43q6OjAzMzyNLrsAszMrP8c4mZmGXOIm5llzCFuZpYxh7iZ\nWcYc4mZmGRtbdgEjWUSsBJ4AVgAdwATgFeBoSQ/VWXYe8GVgA+Cbkt7bx9ddT1JrxbTDgY9JmtnX\n91Gm7t5LN885A/gC8HwxaRzwW+DLkp4pnvMIsAuwFPgJ8G7gQuA9wEeAHwLTimWe6kedZwDrSvpS\nRBwJjJN0SS+X3RT4jaS39vL544C/ADtJeqyYdhRwKbCnpFuLaQcBJ0ia3tf3Uyz/e+BASQ/Xed5S\nYEtJ/9Of17HaHOLl27UqTL8MfBPYsdZCkvYpnr9Bg+oYzicMdADXSDqmc0JEHAb8IiK2krRE0rRi\n+sbA3wETJHVExApgI0kvNKCGzjaeATw+wPX1SNKyiLgN2BV4rJg8E/g5sB9wazHtQ8CNA3ip3v7N\nDOe/rdI5xMs3qvOHiBgLbELqRRERbwcuA9Yn9bj/AHxCUkvRC/pY5YoiYgZwHjCG9ME5W9L19V63\nmzomARcB7yvWczNwiqQVEfFX4HxgX2Ad4ETgIOC9wAvATEntETEV+A9g3aKeCyV9u+jxniDpFxHx\nSeDbwNskvR4Rc4CHSb3enl7/deCnxbxDK2reALgduFjSxfXer6TvR8Qs4O+By4oe/cbAfFJP/eGI\nWLdY7uaI+Afg+xQ9z4j4LHA8aSvqZeDTwN9SsVUUEbtWPB4FjIqI/UmB+qGIeA04BviSpNuKZeYA\nj0u6sLr+iLgM+ACwrFjuV8BTwBerly/abB/ggoh4a7HcbsX7+2Kxzt2BTxbLHQEcTRpi/UuxTkXE\neODrwM7F7/ER4BhJSyravgm4CbhH0skRsROpI7ISeLBYJxExGvgGMB2YWLTJkcCjwB+B6RVbRreR\n/mZu6OZ3aRU8Jl6+BRHxaEQ8D4j0h/+ZYt7BpA/GjpLeBbQDs4p5lT27Tv8fOF/S+4HPkj60tV73\nkc5/xbKd67sQaCnC5/2kwDyhmDceeEHS1sDFwBXAscCWwCRgv+LL6DrgpKKWXYETImI6cD2wZ7Gu\nPYFWYOfiA7438OM6rz8O+Lmkd1cMOW0E/AL4Wg8B3pPHSMMlndqBvYDXJE2TtHExfTdJd3e2T0S8\nDzgH+Iik95F6uKfSix6npJ8Wz/9GUeslpCAjItYh9ZS/082i44HbJW0LnAb8J6kTdnEPy88HdoqI\nUcCHgbsl/QZoj4htii2OicUX0i7Ap0jDL9sC55J+TwAnAcskbSdpG+DF4r13ehupZ39DEeDjgWuB\n44p13Qp0DgNNBzaQtL2krYDvkv5G2oGrK97HZsAWDGwrYcRwiJdv1+LDsQ9pTPw+SS8DFL2x+yPi\n+Ii4hBQ4a9dY14+AiyLi+8B2pGCp9brTOv8Bp9PVW90T+FZRwxuksdS9Kpb9cfH/b0m9xhcldQC/\nA6aQPoDvAq4qviDuAN4CbEMab+5c1wxSr34P0gd8kaSXevH6d1W9l5uAJZLm1ni/PWmvely9hVJt\nFGkYYr6k54saL5B0dC+W7e51rgb2iIj1SFsWN0h6pZvn/6+ka4vXu7VYPnpaXtIfSVtGW5N6/p2B\neCNpuGg3YF4xbR/SVsS9xe/r68DkiJhM2uL6aMWX/UeBqRXv4XvAhqQvXkhbZG9IWlDUeh3QVvx8\nH3BaRBwdEeeStiQ7/54vAT5VdACOAuYUf1NWh0N8iJD0KHAccEVEbAIQEV8n9ZD/TBpW6fzw9rSO\ny0kfottIO+MWFr2z3hhFV09ydNXrjGHVobfXK35e1s26RpNCp/JL4oPA1ZKeAMZHxExgEV2hMpOu\nL4d6r7+06vWOAjoi4vjab3E1H6B/Y9OrvOeIWCsitiC1X2Xd46uW66j+WdL/knqus0hbYJf28Jor\nqh6PIvWQay1/M2kraC+6Anse6ctz94ppo4HvVfyutgW2l9RWzDumYt504BMV7+Es0rDOuRXTqv9G\nlwNExD7Fa64kDYldWqwfSU8DC4H9SUNcV/TQDlbFIT6ESLoGuI80lgwp3P5D0g+AFlKPdUxPy0fE\nvcA0SVcDs0mbum/rQwmdH75bgH8o1rkWKSRv68N6BPw1Ig4t1rERaehiWjH/J8C/AbdIUlHjoXSF\neF9f/z7SmPRXI2KrGu/rTcUY8KakYYm+6AAWAB+u2Kl8NCnEXgI2jojmYhhj/x7qWM6qAX8RaYx7\nlKQHe3jddYsQpPgCfA14ps7yN5OG1Z6X1FJMu4v0Rb8jXW16K3BIxfv5HF07P28BvhQR44shr0uB\nr1W8xq9IR/4cFBF7kL4UR0XEXkWtewPNxXv/MGlL4TLgIeAAVv17vojUjvdL+lMP7WBVHOLl6m5z\n8YvAXsUH4kzg3yPiftLm5nWkzd7qdXSu50TgzIh4GPglcEYPh3V197qV6zkGWD8iHif1jn5D1we3\nuje52rokLSNtdh8ZEY+RguC0YnMaUohvwaoh8kLn8EQfXv/Nx0VP7izg+8UmefVzDi6GBB6OiEdJ\nX4i7FsM13b2v7n7ufH9PkNp6frGuvwNmF2POl5F25t1HGs7oqFhP5883A8dExFeK9S0k7RvoqRcO\n6QviY8WQxldIh4OurLP8PaQvqjfHliWtIAXv7yUtLabdShpCua34fR1GClhIbfp70g7NJ0mZ8eWq\n9niZFORXkYYE9wfOKmr9OGlLsqOob5di+k2k3/+mFauaRxpeqdUOVmWUL0VrVq5iR94CYAtJf13T\nyw8VEbEjcJn6cM6D9fIQw4hYn7T586Gix9M5fSZpT/ly4CpJHscy64OIOJM0fHFMPwN8QMsPFRFx\nNelkq1n1nmurqtsTL87++k/SHun9OkO8mP7fpEPA2kmbbvsWRxeYmdka0Jsx8XNJ47EvVk2fSjok\nbHExBno36YQAMzNbQ2qGeKTrabQUOz5g1b386wCLKx4vIZ3sYWZma0i9MfHPkI6//TDpRI2rI2K/\nYshkMenU2U4TKQ7q78ny5Ss6xo7t8Qg5MzPrXo/nh/T66JSIWEA6jKpyTPxJ0sH/rwL3kq6bUT3s\n8qaWliVZHArT3DyRlpYl9Z9oveL2bCy3Z+Pk0pbNzRN7DPG+XgBrVEQcAjRJmlOcIXcLaVjmyloB\nbmZmjdfrEJfUeTElVUy7EV+kxsysND5j08wsYw5xM7OMOcTNzDLmEDczy9iQuj3bG2+8wXPP/aGh\n69xoo00YP776ss7WncFof4C2tiZaW6svAT4w/r2aJUMqxJ977g8ce+7PmTBp/Yasr33xS1xw4n5s\nttnmPT5n5cqVnHfeOTz77CLGjRvHSSedRnPz1B6fP5w1uv0HS29+r2YjxZAKcYAJk9anafI71tjr\n3XXXHSxbtoxLL72KJ598gm996xtcccXla+z1h5o13f5mvTUYW4rDYStxyIX4mrZw4WNMn74jAFtt\n9R6eeuo3JVdkw4WHpxorhy3FMrYSR3yIt7e/ytprd917ePTo0axcubLEimy4yCF0IK/hKW8prm7E\nh/iECWvT3t51w/OOjg5Gj/ZBO9YYDh0bbCM+rbbe+n3cf/89ADzxxONstln1LSzNzIauIdcTb1/c\nuBsD9WZdO++8G7/+9QMcffRnATj55H9u2OubmQ22IRXiG220CRecuF/D11nLqFGjOOGEkxv6mmZm\na8qQCvHx48dnsXPFzGyoGPFj4mZmOXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llrOYhhhExBpgD\nbAF0AJ+X9GTF/OOAI4CWYtJsSU8PUq2r8QWGzGykq3ec+L7ASkkzImIX4GvA/hXztwVmSXpksAqs\nxRcYMrORrmaIS/pZRNxYPNwUaKt6ynbAKRGxATBP0jmNL7E2X2DIzEayumPiklZExHeAC4EfVs2e\nC8wGdgdmRMQ+Da/QzMx61KvT7iUdHhFfAR6IiKmSXitmXSDpFYCImAdMA+b1tJ7JkycwduyYgdb8\npra2poata7BNmdJEc/PEssuoye3ZWG7PxsqlPdd0W9bbsTkLeKeks4HXgJWkHZxExCRgYURsCbST\neuNX1lpfW1t7rdl91uidj4OptXUpLS1Lyi6jJrdnY7k9GyuX9hyMtqz1pVBvOOU6YJuIuBOYDxwL\nHBARn5O0GDgJWAD8F/CEpPmNKdnMzHqj3o7N14CDa8yfSxoXNzOzEvhkHzOzjDnEzcwy5hA3M8uY\nQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGMOcTOzjDnEzcwy\n5hA3M8uYQ9zMLGMOcTOzjDnEzcwy5hA3M8uYQ9zMLGM1b5QMEBFjgDnAFkAH8HlJT1bMnwmcBiwH\nrpJ0xSDVamZmVXrTE98XWClpBvBV4GudMyJiHHA+sAewC3BURKw/GIWamdnq6oa4pJ8Bs4uHmwJt\nFbOnAoskLZa0DLgb2LnRRZqZWffqDqcASFoREd8BDgA+XjFrHWBxxeMlwKSGVWdmZjX1KsQBJB0e\nEV8BHoiIqZJeIwX4xIqnTWTVnvoqJk+ewNixY/pdbLW2tqaGrWuwTZnSRHPzxPpPLJHbs7Hcno2V\nS3uu6bbszY7NWcA7JZ0NvAasJO3gBHgK2DwiJgOvkoZSzu1pXW1t7QMuuFJr69KGrm8wtbYupaVl\nSdll1OT2bCy3Z2Pl0p6D0Za1vhR6s2PzOmCbiLgTmA8cCxwQEZ8rxsGPB24B7gWulPTiwEs2M7Pe\nqNsTL4ZNDq4x/0bgxkYWZWZmveOTfczMMuYQNzPLmEPczCxjDnEzs4w5xM3MMuYQNzPLmEPczCxj\nDnEzs4w5xM3MMuYQNzPLmEPczCxjDnEzs4w5xM3MMuYQNzPLmEPczCxjDnEzs4w5xM3MMuYQNzPL\nmEPczCxjNe+xGRHjgKuATYC1gH+RdEPF/OOAI4CWYtJsSU8PUq1mZlal3o2SDwVaJM2KiMnAo8AN\nFfO3BWZJemSwCjQzs57VC/FrgeuKn0cDy6vmbwecEhEbAPMkndPg+szMrIaaY+KSXpW0NCImkgL9\n1KqnzAVmA7sDMyJin8Ep08zMulN3x2ZEbAT8EviupGuqZl8gqVXSMmAeMG0QajQzsx7U27H5duBW\n4AuSFlTNmwQsjIgtgXZSb/zKWuubPHkCY8eOGVjFFdramhq2rsE2ZUoTzc0Tyy6jJrdnY7k9GyuX\n9lzTbVlvTPwUYBJwekScXkybA6wtaU5EnAQsAF4Hbpc0v9bK2traB1rvKlpblzZ0fYOptXUpLS1L\nyi6jJrdnY7k9GyuX9hyMtqz1pVAzxCUdCxxbY/5c0ri4mZmVwCf7mJllzCFuZpYxh7iZWcYc4mZm\nGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFuZpYxh7iZ\nWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGat5o+SIGAdcBWwCrAX8i6QbKubPBE4DlgNXSbpi\nEGs1M7Mq9XrihwItknYG9gS+1TmjCPjzgT2AXYCjImL9wSrUzMxWVy/ErwVOr3ju8op5U4FFkhZL\nWgbcDezc+BLNzKwnNYdTJL0KEBETSYF+asXsdYDFFY+XAJMaXaCZmfWsZogDRMRGwPXARZKuqZi1\nGJhY8Xgi0FZrXZMnT2Ds2DH9qbNbbW1NDVvXYJsypYnm5on1n1git2djuT0bK5f2XNNtWW/H5tuB\nW4EvSFpQNfspYPOImAy8ShpKObfW+tra2gdQ6upaW5c2dH2DqbV1KS0tS8ouoya3Z2O5PRsrl/Yc\njLas9aVQryd+CmmI5PSI6BwbnwOsLWlORBwP3EIaL79S0osNqNfMzHqp3pj4scCxNebfCNzY6KLM\nzKx3fLKPmVnGHOJmZhlziJuZZcwhbmaWMYe4mVnGHOJmZhlziJuZZcwhbmaWMYe4mVnGHOJmZhlz\niJuZZcwhbmaWMYe4mVnGHOJmZhlziJuZZcwhbmaWMYe4mVnGHOJmZhlziJuZZcwhbmaWsXp3uwcg\nIqYD50jarWr6ccARQEsxabakpxtbopmZ9aRuiEfEPwGHAUu7mb0tMEvSI40uzMzM6uvNcMoi4EBg\nVDfztgNOiYi7IuKkhlZmZmZ11Q1xSdcDy3uYPReYDewOzIiIfRpYm5mZ1dGrMfEaLpD0CkBEzAOm\nAfN6evLkyRMYO3bMAF+yS1tbU8PWNdimTGmiuXli2WXU5PZsLLdnY+XSnmu6Lfsd4hExCVgYEVsC\n7aTe+JW1lmlra+/vy3WrtbW7YfqhqbV1KS0tS8ouoya3Z2O5PRsrl/YcjLas9aXQlxDvAIiIQ4Am\nSXOKcfAFwOvA7ZLmD6RQMzPrm16FuKTfAzsWP8+tmD6XNC5uZmYl8Mk+ZmYZc4ibmWXMIW5mljGH\nuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXM\nIW5mljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxnoV4hExPSIWdDN9ZkT8KiLujYgjG1+emZnV\nUjfEI+KfgDnAWlXTxwHnA3sAuwBHRcT6g1GkmZl1rzc98UXAgcCoqulTgUWSFktaBtwN7Nzg+szM\nrIa6IS7pemB5N7PWARZXPF4CTGpQXWZm1gtjB7DsYmBixeOJQFutBSZPnsDYsWMG8JKramtrati6\nBtuUKU00N0+s/8QSuT0by+3ZWLm055puy4GE+FPA5hExGXiVNJRybq0F2traB/Byq2ttXdrQ9Q2m\n1taltLQsKbuMmtyejeX2bKxc2nMw2rLWl0JfQrwDICIOAZokzYmI44FbSMMyV0p6cSCFmplZ3/Qq\nxCX9Htix+HluxfQbgRsHpTIzM6vLJ/uYmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZ\nxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5mljGHuJlZxhziZmYZc4ibmWXMIW5m\nljGHuJlZxhziZmYZq3mj5IgYDVwMbA28Dhwp6dmK+ccBRwAtxaTZkp4epFrNzKxKvbvd7w+Ml7Rj\nREwHziumddoWmCXpkcEq0MzMelZvOOWDwHwASQ8A76+avx1wSkTcFREnDUJ9ZmZWQ70QXwd4peLx\nimKIpdNcYDawOzAjIvZpcH1mZlZDveGUV4CJFY9HS1pZ8fgCSa8ARMQ8YBowr6eVTZ48gbFjx/S3\n1tW0tTU1bF2DbcqUJpqbJ9Z/Yoncno3l9mysXNpzTbdlvRC/B5gJXBsR2wMLO2dExCRgYURsCbST\neuNX1lpZW1v7wKqt0tq6tKHrG0ytrUtpaVlSdhk1uT0by+3ZWLm052C0Za0vhXoh/hNgj4i4p3j8\nmYg4BGiSNKcYB19AOnLldknzG1GwmZn1Ts0Ql9QBHF01+emK+XNJ4+JmZlYCn+xjZpYxh7iZWcYc\n4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llzCFuZpYx\nh7iZWcYc4mZmGXOIm5llzCFuZpYxh7iZWcYc4mZmGXOIm5llrOaNkiNiNHAxsDXpjvZHSnq2Yv5M\n4DRgOXCVpCsGsVYzM6tSrye+PzBe0o7AScB5nTMiYhxwPrAHsAtwVESsP1iFmpnZ6uqF+AeB+QCS\nHgDeXzFvKrBI0mJJy4C7gZ0HpUozM+tWzeEUYB3glYrHKyJitKSVxbzFFfOWAJNqrWy77d7T7fSH\nHnqi389vX/zSmz/fd+1p3T5/h4PO6nb6mnp+x8oVHHDzBMaNGwcM7P0O9vPdno19vtuzsc8f6u1Z\n3ZbQuPbpyaiOjo4eZ0bEecD9kq4tHj8naaPi5/cC50jap3h8PnC3pOv7VIGZmfVbveGUe4C9ASJi\ne2BhxbyngM0jYnJEjCcNpdw3KFWamVm36vXER9F1dArAZ4DtgCZJcyJiX+B00pfBlZIuGeR6zcys\nQs0QNzOzoc0n+5iZZcwhbmaWMYe4mVnGHOJmZhlziBci4qKI2KbsOoaL4rBTMxtkPjqlEBF7AZ8F\n3gF8D/iBpFdqL2U9iYiFwC+BKyT17RQ0W0VE3AhcAdwgaUXZ9eRuuLWnQ7xKRDQDFwAfBa4Fzqq8\ncqP1TkSMAfYEDgeagR8AcyUtLbOuHEXEVFIHYw/gFtI5GU+XW1W+hlt7OsQLEbEl8GlgP2ABMAcY\nA1wuadsya8tVcSnjjwCfAzYDlgLXSPpmqYVlKiLWA74JHAj8F3C6JJ8l3U/DpT3rXQBrJLmctIl1\npqRXOydGxFXllZSviPg30qWM7yRdY+dXRag/RPrgWC9FxN6kDsaWpKG+Y0kdjFvoOpvaemm4tadD\nvCBpRkRsCKxbfENvKOk+Sd8qu7ZMPQNsWzl8ImllRBxYYk25OhS4RNIdlRMj4oxSqsnfsGpPD6cU\nih739kAT8FbgAUn7lltVviJic+AgUkdhNPA3kmaXW1WeihuwfIDUlqNIHYy55VaVr+HWnu6Jd3kf\n8B7gUuBU0s5N678fAtcDM4AXgJfLLSdrPyF9Vt9J+kJ8GMg2dIaAYdWePk68y1+Km100SWoBNii7\noMwtlXQ28Lykw4F3l1xPztaTtCdwP+nuWhNKrid3w6o9HeJdHoqIE4EXIuIa0rCK9d/KiPgboCki\n1gY2LLugjL1aXBa6SVI7sF7ZBWVuWLWnh1MKkk6OiInAa8BewK9KLil3Z5KOTvk+8Nvif+ufnwCn\nAY9FxP3Aq3Web7UNq/Yc8Ts2I+Kfix87SDs5OnVIOrOEksxWExGjJHUUt0VcJOm1smvK2XBqT/fE\n4cni/08Bj5MO+t+BdAyp9VFEPF78OAYYD7SQNldbJU0vrbAMRcS3qx53/thBOuPQ+mC4tueIHxOX\ndJ2k64C3SDpV0i2SzgDWLbm0LEl6r6T3Ag8A+0jagXT6/TPlVpali4p/E4B7gXNIJ0+NKbOojA3L\n9nRPvMvbImJzSc9ExFZ4x+ZAbSZJAJKejYhNS64nO5IeBIiIdSXN6ZwcEbNKLCtbw7U9HeJd/hG4\nLiI2AJ4Hjiy5nty9HBFnAQ8CHwT+UHI9OXtrRHwI+DXpuPuse45DwLBqT4d4QdK9pBN+rDEOAz4P\n7A38N+loAOufzwLnAkFqy8NLrSZ/w6o9HeKFiPg0cBLwlmJSh6R3lVhS7kaTLuW7DDiKdPKUe+P9\nIEkRcQCpTXcgnQFr/TTc2tMh3uUrwEzgj2UXMkxcB1wCfJx0BNDlpMvSWh9FxAXAb4BNgGnAn0lX\n4bN+GG7tOeKPTqnwrKRFkv7a+a/sgjI3Afg58A5J55D5uGPJPiDpUmCH4nTxd5ZdUOaGVXu6J97l\ntYiYDzxKOm60Q9IpJdeUs/Gk6zQ/VBzts3bJ9eRsdERsB/wuItYCJpZdUOaGVXs6xLvcRApva4wv\nk25x9zXSTs5jyy0na98lDU19Bvg6cFm55WRvWLXniD/tvlNEjAVmA1sBAi6V9Hq5VeUtIj4MvIt0\ntbhncj61uWwRMQnYlDTs5/uUDkBEnCjp3LLraBSPiXe5nHQfyFuB/0e6x6b1U0ScTbqUwVGky336\nNnf9FBEfB+4gXUTs+Ij4arkVZW/votM2LDjEu2wu6XhJP5X0j8DmZReUuRmSPgUskXQV6YvR+ud4\n0qFwLwP/Srqxr/XfeqRLTj8QEfdFxL1lFzQQDvEuaxXXvSYiJuC2GagxEfEWgIgYA6wouZ6creg8\nWkrScsDDKQOzL+n2bJ8APgkcUm45AzNsNika4ALg0Yh4EpgKnFFuOdn7BunO9s2ka7OfX245Wbs7\nIuYC74iIy0ini1v/HV71uIN0/fssjfgdm8XlKTuvJb4eXdcUf0lStpenHAoiYjLwt8DvJPkemwMQ\nEXuR7gH7lKQbyq4nZxHxedJnfjSwLTBa0hHlVtV/DvGIhaQTU35AujzlmyTdUkpRw0D1tZtJx937\nS7EfImId0t2mKi8J8d0SSxpWImJ+cdJPlkb8cIqkrYu7exxGOvX+LuB7khaVW1n2fsSqvR3fY7P/\nfka6suZzZRcyHETEFhUPNwQ2LquWRhjxPfFqEbEzcAzwTknbl13PcBERt0nao+w6chQRd0jatew6\nhouIuIOuE/v+Clwo6ebyKhqYEd8T71Rssh5I2lu9Nr6x74BExEfo+qBsCKxfYjm5WxgR2wOPULSp\npDfKLSlfw+0LccSHeEQcTArujYEfA0dL+l25VeUrIn4k6WDSYVuVvR2Ph/ffrqQrbFbycff9VNwc\n/YvA8mJSh6Rsh/tG/HBKRKwEngIeq5rVIenvSygpaxGxQNJuZddh1pOIeBDYabhcBmLE98SB3Yv/\nO7/NRlU9tr55V0T8K13t2MlXheyjiFhQ/Nh5CGynDkm7d7OI9c5LdPXCszfiQ1zSHWXXMMy0ky4g\nVmkU/lLsj4OK//+ddAjsXcD2pOE/66PihClI+2ceiYgn6LrsdLZb3SM+xK3h/iTp6rKLGA46T5CK\niE0k3VZMviMiziivqqx9iPTFuNpWYgm1NIxD3BrtobILGIZWRMQRwIPAB4FXS64nV09KurPsIhpt\nxO/YNBvqIuLtwKl03Z39LEmt5VaVn4j4A2lYaljtr3FP3GyIk/TniPg56Xr395H2O1jfdbe/JnsO\ncbMhrrjBxjtIV9dcBpxM5pdPLcmw3F/ja2abDX2dN9hY6htsDMiw3F/jEDcb+nyDjQaQdELZNQwG\nh7jZEBURWxc/dt5gYyvSDTYuLq0oG3J8dIrZEFVcbW9j4E7SDbwX4RtsWBWHuNkQVgyj7ADsAswg\nHR53p6QIgn19AAAAx0lEQVRsbydmjeXhFLMhrLhB8kPAwuLfGGBaqUXZkOKeuNkQFREnAHsDbwNu\nB24G7pa0rNTCbEhxiJsNURGxGJgPXEEaQvGNIGw1DnGzISoixgM7kW6SvDPwJ+Am4CZJ/1NmbTZ0\nOMTNMhERe5KuobKjpDFl12NDg0+7NxuiIuIDpJ74TsC7SXef+g5wWIll2RDjEDcbus4GbgPOAh6V\ntLLkemwI8nCKmVnGfJy4mVnGHOJmZhlziJuZZcwhbmaWMYe4mVnG/g8sTMCufdzf+QAAAABJRU5E\nrkJggg==\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 47
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Rails homework assignments difficulty ratings are all very close, but Monday assignments get rated slightly lower."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_student_lec = python_lecture_data_transposed[\"P07\"]\n",
+ "python_student_hw = python_homework_data_transposed[\"P07\"]"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_student_lec.plot(title=\"Random Student Lecture Difficulty Ratings\")\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEPCAYAAACDTflkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYXGWV/z/V+97pTncnnTQkZKmTgAQIO7KIyDagIm64\nsDj8lJnBkXGZGZdxl1HEQUVnHEZQoiKMIuPGKooCsokhhCWchCSEdCfp9JL0Vr1UV9Xvj/dWd6Xp\ntfZKnc/z5ElX3apb37pVdb/3vOd9z/FFIhEMwzAMIx4KMi3AMAzDyF3MRAzDMIy4MRMxDMMw4sZM\nxDAMw4gbMxHDMAwjbsxEDMMwjLgpyrQAI3mISBh4HggBEaAC6AX+XlX/mqTXeAdwtaqemYz9TbL/\nfwHeA/iAQuA+4NOqGhSR44G/VdW/n+M+vwt0qOoX49R0GHC9qr5jkm23As+p6n/Es+8J+6oF/k9V\n35jovqZ5jdjviM+7+8dR/SJyFTBPVa8TkXOA7wN7gGuA24B9wDpghapek4CGBk/DnN6viFwBfBvY\n5t3lA2qAR4APqerwDM9/ALhEVbtF5G7g46r60tzfhRHFTOTg4w2q2h29ISIfB74DnJI5SbNDRN4J\nXAScpKrDIlIK3Al8AfgMcATQEseuI96/eFkCSIr2HUsdcHyS9jUdY98REZkP/FZEIqp6g6reFPO4\nS4CbVPXfReRzwB9U9YNJ1BHv+/2Tqr4lesP7njwKXA78zwzPfROeearqBXG8tjEBM5GDj+jVJSJS\nhDsBdnm3FwA3AU3AQmAH8C5V7RCRV4AfAmcBhwL/q6r/6j3vS8B7vf28HLP/WuA/gaNwJ9J7cVFD\nSESGgBuAC3FXiv8MvBM4EtgFvFlVAxO0L8RFHxXAsGckHwYaRaQF+BJQIyK3AD8CvquqR3pa3gB8\nR1WPFJEa4GZgDe4qOgh0eo9bjDPVQ4Fi4A5V/aqILAV+D9wNnAjU44zrTm9fi0TkXlU9f7pjHouI\nnAJ8DagEwsAXVPVub9ungMuAUWALcIV3/MtFZD1wnLetIeaEH72CX4O7Gu/3jtWJwLme3hIgAHxC\nVZ+YTFcsqtolIh8DfgHcICJfAObjvhtvBQa9q/9qoFBEyoHfAe9Q1TeLyELgv3EmGwb+W1W/IyJ/\nxH0ev/C0/xG4UVXvijlmse/3G7gI9/Xe4w8FHgeWqOroDMe7Aahl/Ht+IfAp71g0AetU9XMi8kPv\n8X8QkQtwxvN2771dC2wFXgeUelr+KCKNns5l3v7bcZHnF0Xki7iLnhFv2xWqumemY36wYTmRg4+H\nRGSDiLQBivthf8Db9m7gz6p6iqouw51sLvW2RYBKVT0dF7X8o4gsFZG3AhfjjOIU3AkxeuV9I26Y\n6EjcSe8o4BPethJgl6quAf4LdyK+Bjgc94N/6yTa1wH7gT0i8piIfAM4VFWfVtVW4LPAI6p6JVOc\nuD2+CAyo6ircSWJljOYfAz9Q1eNwJ9+zvQgI4DDgPlU9EfhX4OuqGgauBLZOYSCTIiJ1wA+A96vq\nsd77/Z6IHCIib8FdNZ/kHbvtwNU4IxlU1bXe607HEbhhmWNwFwrXAuer6lrgKuAuEamYpdyNwEIR\nacCLrFT1G8CvgRtU1Y8zijtU9f24Yx89nv8FvKSqq4GTgQ+JyHJeG6FNjNYise8XZ9bLRWS1t/3/\nAbdOYiAAp4nIMyLyoojsBf4XN9z4CxHxAR8DLlPV4z1NnxKRelWN/g7O9L5PsRpPAL7habkFF/2C\n+44/p6qH4y6CTgYiInII7vt8nPc6D3j7yDvMRA4+3qCqRwMX4K5SH1fVTgBVvRF4QkQ+JiLfw111\nVcY891fe43YBe3FX428CfqGqA6oawv3Aoifw84Dves8ZwZ1oYk+0v/D+34b7Ie5W1QjupFk3Ubiq\n9qrqucAqnOk0AXeLyNe8h0xnHLGchYtUUNWuqA7vpHoG8GUReQZ3pduCMz+AoKre4/39jPf+5/K6\nsZwMNAO/8l7rbpyhr/H0/UxVezyNH1fVr87xdXaq6k7v77O91/qD91o/weUbls9yX9ETacDTMJmO\nifdH/z4LbwjJ+/yOVNWts3zdsf1535+bgQ+KSAHOZG+a4nmPeOZ5BC6qbMAZHt73683A8d4Q3H94\nr1M5xb6i7FDVjd7fsZ/9+THvbw/O7ABagWeBZ0TkemCDqv56Nm/6YMOGsw5SVHWDiHwUuFlEnlDV\nHSJyHW4M+hbgD7jPP/bEMBjzd8TbFubAi41QzN8FE55fyIHfqdgkZ3AmzSLyr8DDqvo4zmh+ICKv\nxyXXPznh4VF9UUombJtMc6H3/8mqOuS9ZgPufTfihiWm2v90TJYTKQA2qepJ0Tu8obR24IBEsjf8\nNm+Kffu8x5RMuL9/wmv9XlUvidnnobgT3Ww4HtimqgERgdnleKKPOSBS8CYhdPHaz2Ci/sm4CXgK\n+BPuouPV6R7sGcaXvWHDW4ALRaQS2IC7cHgEFw1exMyf5WTffXDvL/Z9hAGf99pniMixOBP/pog8\npKr/NPPbPLiwSOQgRlXvwF1tf8u76xzgW6p6G9CB+/IXTvF0cD+m+4B3ikitd4V4acz2+3HDMNHk\n5odw4+WzYbIfdRnwNe/EHuVwIDqzbBSXx8DTf6iINHpDGBfFPOc+4EoR8YnIvOg2Ve0DngA+7mmu\nxZ1o3sL0xL7ubN/Lk8BKETnde601wEu4iOFB4GIRqfYe+yXcEEyQAz+PDsYTzxdP8/p/AM4RzwFE\n5DzcibR0Jr0isgiXt/nGJNunikpiH/Mg3nCpdzx/D6zwtB/n3b8cF4FNZJSY9+tFVo8D3wS+N8Xr\nTsbVwFne0OtKXI7js17+6Q244xB9nRCzM7Qod+OGM6OTEC4CwiKyRkSexw3lfQ33G5vsPR70mIkc\nXEx2Bflh4HwRORt3svqGiDyB+5HeifvBT4mq3ou7mnsadwLuj3mdjwBNIvIcblx9E25sfqKWyWYw\nTab1y7iT0qMisklEFDgdeJe3/TFglYj8QlVfxF25Po078eyK2ecXcCfkl4Df4Ka0RnkvcJKIbMSd\n6G9X1dun0BS9/TwQ8o7bZFwrIn0x/25T1Q5cPubrIrIBN8R0qaru9I7pD4E/ezqacEnx3cB6b6y/\nHnd8/1NE/goc7b3H1xw/71h8CLjDe60v4yYuxF5dx/KQl1N4GjeEuU5V/ztmv5E5/P1hYLWIPItL\nVP+7qq4HvoIztudwJvWnSbTvinm/0eHNW3HnpXuYnNd8l1R1G3AdbuhKgd8Cm0TkEdyQ7dOMf8/v\nAh4RkSOm22fM7Y/ivnMbcb+XHUDAG/r6GfC0iPwFl9/56BSaD2p8VgreMIxswIt0vwtsV9XrM60H\nQET+HnhGVZ/wou2Hgc+p6v0ZlpY1ZH1OxJv+1+Pd3ObNzIluezNuxs4obsbNzRmQaBhGgnhDeztw\n0eHHMywnlheB74hIIW4Y7GdmIAeS1ZGIiJQBj3nT7iZuK8Z9wMfhZpX8GbhQVfemV6VhGEb+ku05\nkaOAChG5X0R+LyInxmxbDbysqj2qGsSNx56eEZWGYRh5SrYPZw3gFhHdIiIrgXtFxO8txKphfJgL\noA+3iG1KIpFIxOeLZ8p/4nzh+4/z7JYObv3cudRWTTVpxkg2r+7p5bs/f5ZNr3TP/OAZOPuEQ/nI\nu49Jgqq5sfHlDj7zvcfS/rrJpqmunL9/+1Ect3pBpqUYc2fKE2e2m8hmvDIbqrpFRLpwUyTbcAZS\nHfPYalxxuCnx+Xx0dPSlSOr07OkcYDQU4fdPvMJpRy2Kax+NjdUZ058M0qk/OBri7sd3cPfjOwiF\nIxwrjZywekFcqwYjwPd/8wKv7O7NyPF/fnMHAOedeCjLmmvi3k9NTTm9vVNN2Eot23f38sBfdvLF\nm5/ghNVNvOdNfmorZz/T1r77maWxsXrKbdluIh/Azb2+2pvPXoOrhQRu+uZKb2rgAG4oKytmdExG\n36Bba7d+c0fcJmLMDn11H+vuU/Z0B6irLuX95/g5ZmVjQvv89aPbad3bTyQSId3R7O5uV2Ls5CMW\nckhTVdz7yeSJ7LhVTZx8xEJuve8lntq0l+e3dfOuN67g1DXNFGRodMBIDtluIrcAPxSRh73bHwDe\nJSJVqvp9cYXj7sfldm5R1d2ZEjod4UiE/oAzkRde2cfg8Cjlpdl+6HOPgaEgP3/oZR5+djc+4Kxj\nW7j49GVJOdYL51fQ1jnA/v4R6qrTOxy5u3MAH7Cgrjytr5tsWpqq+PT7j+WhZ9r4xZ+2cuu9L/HY\n83u4/Dyhef5MVUmMbCWrz2Re8bVLJ9z9RMz23+IWFmU1g8OjhL1ZcKOhMM9v7+b4VU0ZVnXwEIlE\neGrTXm5/cDO9gSAtjVVcfr6wfNG0KbI54U5yHezuGki/iXQHaJhXRknxdMUFcoOCAh9nHdvCMSsb\nuO13m3lmSyef/8FTXHjyUs4/aQnFRdk+18eYiH1iaSAahSxZ4MYV13tj3EbidO4f5Fs/38hNv36B\nwZEQ73jDcj53xXFJNRCA5vmuIO7uronV61PLwFCQ3oGRg+5Kvb6mjH98+xquftuRVJUX88tHt/OF\nHz7F5p37My3NmCNZHYkcLETzIauX1jEwFGTj1k5GQ2GKCs3D4yUUDvPg06383yPbGAmGOXxpHZed\nKzTVzbb6+dxY5J3Ed3cNpGT/UxE1raiJHWwcK42sXlLHXQ9v5aH1bXzttvWccfQi3vmG5VSUTVeu\nzMgWzETSQF/AFYetrihmrb+RB/6yk0079nHksvkZVpabvLKnl3X3Kjva+6gqL+ayc4WTj1iY0oT3\nwvrMRCK7O51pHWyRSCwVZUW8/xzhpCMWsu6+l/jThl1s2NLJe8/2c5w0pn0igzE37FI4DUSHs6rK\nnYmADWnFw/BIiDt+v4Uvr3uaHe19vP51C7n2gydyyuuaU36iKS0ppLGuPP2RSPfBHYnEsmJxLZ+/\n4nguPn0ZA0OjfO+Xz3PjnRvp6hnKtDRjGiwSSQP93nBWdUUJKxbXUl1RzDNbOrn0nAgFBXaVNRs2\nbu3ix/crXb1DNM0r57LzhMOX1s/8xCTS0ljFM5s7CAyNUlGWnp9OPkQisRQVFnDhKUs5flUTP7pf\neXZrFy/d/CSXX3A4J61KbJp2vASGRmnfF+CwBNboHMxYJJIGojmR6vJiCgp8HLOygd6BEbbu6pnh\nmUbPwAj//avn+dbPn2V//zAXnLyEL115QtoNBOAQb2LEnu70DWnt7g5QXVFMVXl+5QcW1FfwiUuO\n5soLVlNU6ON/fvlcxpLu//fINr687ml6AyMzPzgPMRNJA9GcSFWFOxHYkNbMRCIRHn52F5/5nyd4\natNeli2q4XNXHM/bz1iesamuLd5Cv3QNaQVHQ3TsH6S5/uAfypoMn8/H649s5rLzVgGwbVdvRnRs\n391LYYGPClvbNSl2VNJANCdS7V1Nrl5ST1lJIes3d/CuM1dY4nACu7sG+NF9iu7cT1lJIe8728+Z\nxyzO+NBfixeJpCu53r5vkEgEmhvyYyhrKloa3ftv6+if4ZHJJxyJ0NYxQPP8CptNOQVmImmgfzBI\nYYFvbOV0cVEBa5bP56lNe2ntGEiolMXBRHA0zL1P7OC3j7/CaCjCMSsbeN/ZfupryjItDUh/JDI2\nvTdPI5EoTXXlFBcV0NqR3kkNAJ09QwwHQ7Q02m90KsxE0kDfYJCq8uIDIo61/kae2rSX9Zs7zESA\nzTv3s+6+l9jdFWBeVQnvO1s4VjKTSJ2KeVWlVJYVpS0SiZpVvkcihQUFHLKgmp3tfYTD6Z2M0rbX\nRT+LG/P7M5gOM5E00BcIUl9zYKmMI5fNp6jQx/rNHbz11MMypCzzBIaC3PnHrfxxwy58wJlrF/P2\n05enbfbTXPD5fCycX8H2XX1pWSxqkcg4S5tr2NbWQ/u+QFpnqrV6Q2gWiUxN9v1SDzJGQ2EGh0ep\nLj/wS1heWsThS+vZuLWLjv2DNM7L7eJ6cyUSifC0dvDT322mZ2CExQ2VXH7+KlYsTm65kmTTPL+S\nrW297N03yKIURwi7uwYoKSqgvjY7hvMyyZKFbnqty0+k00RcNGgmMjWWKUoxA9703qqK1/ZOyNdZ\nWt29Q9x450a+98vnGRga5eLTl/H5Dxyf9QYC6auhFY5E2NMdYGF9hZVKx0UiMB4ZpIvWjn7KS4te\nM5JgjGORSIqJXSMykaNXNODzORM594RD0y0t7YTCEX73l53c9cg2hkdCrDp0Hpeft4oFOTRc03xA\nDa3U5Wy6e4cYCYZZmAcr1WfDkmY3My6dyfXgaJj27kGWLa6xGZTTYCaSYvpiSp5MpKayhJWLa9nS\n2kPPwMicOr3lGq+29/HV29azZed+KsuKeN/frOb1R6a23lUqSFckssfb/6I8Wak+E/U1ZVSWFaU1\nEtndNUA4ErGhrBkwE0kx/WPDWZOvOF7rb2Rzaw8btnRwxtGL0yktLQwHQ/z60e3c/9ROwpEIJx2x\ngEveuJKaHDXMxtpyigp9KZ/mu8szEYtEHD6fj5bGKjbv3M/wSIjSktQvOB1PqpuRT4flRFJMf0wF\n38kYz4t0pk1Tunh+exefvflJ7n3yVeprSvniB0/mQ28+ImcNBFxTpQX1FezuDhDxGo2lgj2eSVkk\nMk5LYxURYFea1ulYUn12WCSSYsZzIpOfOBvmlXNoUxWbdnQfNG1zewdGuOMPW3jihXYKfD7OP/FQ\n3nLqYbQsmpexHt/JpHl+JW0dA+zrG07ZQshdXQF8PlhQn1+z9qZjcZMz1Na9/WkphhiNRGyNyPTk\n/hkry5kuJxJlrb+RVx/tZ+PWLk48fEG6pCWdSCTCn5/bw//+YQsDQ6MsXVjNFeev4lCvXMjBQnTd\nxu7uQMpMZE/XAI215RQX5X5L3GQRjQjSlVxv63CtkCutOda02HBWihkvAz+9iUBuT/Vt7w5w/e3P\n8IN7NjEaivCes1byb5cdd9AZCEBzg2cinak5mfUPBukNBC0fMoHF3rqcdCTXB4aC7OsbtqGsWWCR\nSIqJ5kSmi0QWN1bSNK+cjdu6CI6GcurqczQU5t4nX+U3f36F0VCYo5bP5/3nCPMP4gVyzfXeNN8U\nlYS3mVmTU15aRENtWVoKMbbutaT6bDETSTF9g0FKiwunLV/u8/lY62/kvqde5cVX9nHUioY0Koyf\nl9t6WHffS7R1DFBbWcL7zvZzbB60M41GCKmKRKKJY4tEXktLYxUbXu6kd2AkpRM0LKk+e2w4K8X0\ne8UXZyKXhrQCQ6P8+AHlqz/+K20dA7zh6EVc+8ETOW5V00FvIAClxYXMrymzSCQDRJPcqR7SarOk\n+qyxSCSFRCIR+gLBWdVYWra4htrKEja83Jn2SqVz4a/awW2/U/b3j9A8v4LLz1uF/5B5mZaVdpob\nKnh+W3dKWuVaJDI1scn1VHa3bO0YoMDny5u2xIlgJpJCRoJhgqPhaZPqUQp8rm3uHzfsYkvrfuTQ\nujQonD3dvUPc9rvNPLOlk6JCHxedehjnn7SE4qL8DGab6yt5fls3u7sHWL4ouTW/9nQFqMnDlriz\noSUNkUgkEqGts58F9eV5+/2eC2YiKaRv0FtoOMuTwVp/I3/csIv1mzuzxkTC4QgPPdPGL/60laGR\nEP5D5nH5eZL3V2jjM7QCSTWR4GiIjp5BVrbkX3Q3GxbUV1BY4Etpcr2rd4jB4RCvO8zyIbPBTCSF\njJU8mWKh4URWLamjvNS1zb3krMy3zW3d28+t973Etl29VJQWccX5qzh1TbNVlSV2rUhyk+vt3a4l\n7iIbypqUosICt9iz09W1SsV3cTypnt8XSrPFTCSFjC00nMVwFrgfyJrlDTz5YjuvtvezZGFm1liM\nBEP85rFXuO/JVwmFI5ywuon3nLWS2iorhx0l2m1wd2dyk+vj+RA7gU1FS1MlrR39dOwfZEFd8s22\nzRpRzQkzkRTSH5h5oeFE1vobefLFdtZv7siIibz4Sjc/uk/Zu3+Q+TVlXHqunzXLc2PKcTqpLi92\nrXKTPENrfGaWRSJT4U7u7bTuHUiJiUQjkcXWtnpWmImkkOl6iUzFkcvqKSosYP2WDt52+rJUSXsN\nfYERfvaHl/nz83vw+eCc4w/hotMOo6zEviKT4fP5aG6oZFtbb1Jb5drMrJmJDjO1dfRzrCS/p0tr\nRz+lxYU0HMQLZpOJnSFSSP/gzKvVJ1JWUsQRS+t4dmsX7fsCKbnSiiUSifDEC+3c/vst9A8GWbKg\nmsvPF5YuTH2Bu1ynub6Cl1t7aN83OFaSI1H2dAUoKS5IWU2ug4Hxab7JT66PhsLs6QqwZGG15f5m\niZlIChnPicxtZe1afyPPbu1i/eYOzj9xSSqkAbB3X4Af36+88Mo+SooLePcbV/Cm41ooLLBpjbNh\nrMth50BSTGSsJe58a4k7HXXVpZSXFqWkEOOergChcMSS6nPATCSFxJMTAThqZQO++0iZiYyGwjzw\nl5386tHtBEfDHLlsPpee46dhnpUdnwtjXQ6TlBfp7hliZDRsK9VnwDWoquTlth5GgqFpSwrNlfHy\n75YPmS1mIimkbzCID6ic44rmmooS/C3z0J372d8/zLwkzoratquXW+99idaOfmoqivnbv1nNCavz\no1xJshmboZWkJknWzXD2tDRWsaW1h93e0FOysJpZc8dMJIX0DwapKCuKa3horb8R3bmfZ7Z0cuYx\nibfNHRwe5f8e3sbv/9pKBDhtTTPvPHOFrYpOgIaaMooKC5LWb926Gc6e2JXryTURq947V8xEUkhf\nYGTO+ZAox/gbuP33W1i/uSNhE3lmSwc/eWAz+/qGWVBfwRXnSdasiM9lCgp8LKyvYE9XICkL3ywS\nmT2LU5Rcb+vop7ayhOo4f7f5iJlIighHIvQPBllQH98JoaG2nCULqnlpxz4CQ0Eq4uiutq9vmJ8+\nuJm/ageFBT7e8vqlXHDykpzqV5LtNM+voLWjn/1JaJW7p2vAtcRN8Yy8g4HxSCR5yfXA0ChdvcMc\nsdQusOaCmUiKCAyNEonMbY3IRNb6G9jR3sfGrV2cdMTCWT8vHInwpw27uPOPLzM4HGJFSy2Xn7cq\nadNQjXGiyfVdXQMJm8iurgCN86zo32yoKCumvqY0qZFIW6cl1ePBvq0pYrxuViImMvceI20d/Xzt\nJ+v58f0K+LjsXOGT71trBpIixqb5JpgX6QuM0D8YtHzIHGhprKKnf2Tst5YollSPD4tEUkRftC3u\nHKf3xrKooZIFdeU8t62bkWBo2scGR0P89rEd3PPEDkLhCMetauK9b1qZ1JldxmsZm+aboInstnzI\nnFncWMnGrV207u1n1ZLEh6DGkupNZuRzwUwkRYytEZllBd/JiLbNvfdJ1zZ38aLJy4O/tGMf6+5X\n2rsD1NeU8v6zhaNXWr2rdLCgvgIf4zOr4mWPt9ak2Uxk1sSuXE+GibTt7cfns9lxc8VMJEWM1c1K\nIBIBxkxk/eYOzj7lsAO29Q8G+dlDL/Poxt34gDcd18LbTltGeal9rOmitLiQ+bVlYzOr4mWX1689\n3/u0zIXYLoeJEolEaO0YoKmuIqmLF/OBnDjbiEgT8FfgLFXdHHP/R4ErgWjS4KrY7ZkkGTkRgMMW\n1VBb5drmhkJhwH3hn9zUzh0PbqE3EOSQpiquOH8VhzVbvatM0Dy/kue2dTEwFKQyjll0YJFIPDTP\nT16Dqn19wwSGR1ltM7PmTNabiIgUAzcBk11urAUuVdVn0qtqZpKREwHXNnftykYeeqaNF7d3UxgJ\n8+MHlOe3dVNSVMA737Ccs48/JGlVZI250zy/gue2dbG7K8CKxfF1OdzVOUBNZUncJpSPFBUWsLC+\ngtYkNKiypHr8ZL2JANcD3wM+Ncm2Y4FPi8hC4G5V/VpalU3DeN2sxBctrfU7E7nlN8+zs72PkWCY\nI5bWcel5q2iyelcZZzy5PhCXiYwEQ3T1DOE/xFrizpXFja7LYVfPEI0J/BbabKV63GT15auIXAF0\nqOoD3l0TLzVuB64C3gicKiIXpFHetMTTS2Qq5NB5VJQWsbW1h5KiQj745sP52LuPNgPJEhKd5run\nO0CE8VpcxuxJVln4VutmGDfZHol8AIiIyJuAo4F1IvIWVd3rbf+2qvYCiMjdwDHA3dPtsLExPd0C\nh4Nhigp9HLJ4XlKKG1518Rq27+rhnWf5qanM3ZIM6Tr+qWIy/SXeDLzuvpG43t9Lrb0ArDy0LuXH\nJ5eP/2Taj1jRyF0Pb2NfIJjQe9uzb5CS4kJWr2yisCA1xUhz+dhPR1abiKqeEf1bRB7CJc73erdr\ngY0icjgQwEUjt8y0z46OvhSpPZDu3kEqy4vp7EzOitojl8zjjccdQkdHHx2B4aTsM900Nlan7fin\ngun0V5UX88runrje30vbOwGoLitM6fHJ5eM/lfbqEjeYsvmV7rjf22gozM72Ploaq+juSn6jK8jt\nYw/TG2BWD2dNgk9E3iMiH1TVHuCTwEPAw8DzqnpfZuWN0z8YTGiNiJFbNM+voGP/IMHR8JyfOzYz\nq96Gs+bK/NoyykoKE5rm275vkNFQxIay4iSrI5FYVPXM6J8x992Oy4tkFaOhMIPDoYTXiBi5Q/P8\nCra09tC+LzDnk9GuzgClxYXU1Vh1gbni8/lY3FjJ9l19BEfDcdUds6R6YuRaJJITJGuNiJE7RJPr\ne+aYXA+HI7TvC7Cw3lrixktLYxXhSCTu5mBj3QybLBKJBzORFNA/1lvdTCRfiK3mOxc6e4cIjoZp\nbrBFhvESjfza4hzSat1ra0QSwUwkBUQXGiZjeq+RG8QbiURrbjXH2XfGOLDLYTy0dvRTXVFMbQ7P\neswkZiIpYLxuln0p84X5NWUUFxXMORLZ1Rktd2Lj8fGyOIEaWoPDo3T2DFkUkgBmIinAciL5x1ir\n3G7XKne27OmOFl60SCReqsqLmVdVElckEi18udiS6nFjJpICLCeSnzTPr2AkGGZf7+zX8ezuClDg\n89FkLXEToqWxin19wwwMza1Bla1UTxwzkRTQF0heyRMjdxgvfzL7YZXdXQEa55VZS9wEiTe5boUX\nE8e+uSlBK6Q2AAAeWklEQVSgb9BLrFtOJK+Ya5fDaEtcy4ckzuI4k+ttHf34wNpHJ4CZSAoYz4nk\nzFpOIwnMNRKJmo3lQxInngZV0UZUjfPKKS2xRlTxYiaSAvoDQUpLCikusi9mPrGgrhwfs49EomZj\nkUjiLGpwizXnEon0DLhI0JLqiWEmkgL6BoOWD8lDSooLaZhXZpFIBiguKmRBfTltHQNEZjk7zpLq\nycFMJMlEIhH6AkGrm5WnNM+vpDcQHBvSnA4zkeSyuLGKweFRumc5O25spbqVO0kIM5EkMxwMMRoK\nU2UVfPOSqCHMZuX67q4BaitLqLCWuElhrivXrfBicjATSTJja0RsOCsvmW1yfdhriWtRSPKYa5fD\n1o4BigoLaKqzDqGJYCaSZMZLnpiJ5COznebbHm2Ja0n1pBGNKGazViQcjrCra4BFDRUUFthpMBHs\n6CWZsYWGZiJ5yWwjEcuHJJ+GeeWUFhfOKhJp3xcgOBq2pHoSMBNJMv3eQkMbzspPqsqLqa4onjES\nsem9yafA52NRQyW7uwKMhqbvMNlmK9WThplIkhnPiVhiPV9prq+go2eQ4GhoysdYJJIaWhorCYUj\nYy2Hp6LVkupJw0wkyVhOxGhuqCQSgfbuwSkfs7trgNKSQuqqrSVuMpltcj26sn2xRSIJYyaSZCwn\nYkQbTO2e4mo4HI6wp3uQ5voKfNYSN6nMNrne2tFPZVkR86psxCBRzESSjPUSMZq9Yn67Oyc/kXX2\nDDIaCttQVgqI9klv3Tt1JDI8EqJj3yAtjVVm4knATCTJ9AdG8AGVtoAsb5kpEhnPh9h4fLKpqSih\nprJk2kKMu7oGiGBJ9WRhJpJk+gaDVJYXU1BgVzj5Sn1tGSVFBVNGIpZUTy0tjZV09Q4xODw66fZo\nlLK4yUw8GZiJJBmrm2UU+KZvlWvTe1PLTA2qrBFVcjETSSLhcISBoaDlQwyaGyoZGQ3T3TP0mm3j\nLXGt3EYqmKlBVfR+a0SVHMxEkkhgeJRIxJLqxtR5kUgkwu6uAZrqyikqtJ9fKphpmm9bRz8NtWWU\nl1rTuGRg3+Ik0hewtriGY6oZWn2BIANDo5YPSSGLGirxMXmXw96BEXoDQRvKSiJmIknE1ogYUaaK\nRKL5kIVmIimjtLiQprpy2jr6X9Ogamwoy1aqJw0zkSRia0SMKAvqy/H5XhuJRGdmLbKkekppaaxi\nYGiU/f0jB9xvSfXkYyaSRMxEjCjFRYU01pZPEom42xaJpJapkutWMyv5mIkkkfGciJmI4daB9E1o\nlTs2vbfeTmKpZKrkeltHP4UFPhbUm4knCzORJDKeE7HEujF5b5HdXQFqq0qoKLOZQamkZaz8yfix\nD0citHUO0Dy/0mbGJRE7kknEhrOMWCZ2ORweCdHVO2T5kDTQNK+ckqKCsT7qAB37BxkJhmmxlepJ\nxUwkiZiJGLFMjESiPS4sH5J6Cgp8NDdUsqsrQCjsGlRFoxJLqicXM5Ek0hcIUlToo6ykMNNSjCxg\n4YRIJGomFomkh5bGSkZD4bG+Lm2WVE8JZiJJpC8wQnVFiZWXNgAXkdZUFI+Zh83MSi8Tk+vjM7Ms\nEkkmZiJJpH/Q6mYZB9I8v5LO/UOMBEMWiaSZcRMZGPu/vLTIukkmGTORJBEcDTM0EjITMQ6geX4F\nEaB93yC7uwOUlRRaN700Md7lsJ+RYIj2fQFaGittpCDJmIkkiX7rrW5MQjS53tbRT3t3gOb51hI3\nXdRUllBVXkxrRz+7uwJEIjaUlQrMRJLE2ELDcrvKNMaJTvN9blsXo6EIC22RYdrw+Xy0NFbSsX+I\nrbt6AEuqpwIzkSQxNr3XIhEjhmgk8uzLXQAsarCkejpZ7EUeT73YfsBtI3mYiSQJWyNiTEZdTSkl\nxQUEvFatFomkl2jksbnVRSJWvTf5mIkkCSsDb0xGgc93QJ0si0TSS2wOpK66lMoy+30mm5wo4CMi\nTcBfgbNUdXPM/W8GPguMAj9Q1ZszJDEmJ2JfUuNAmudXsKO9j8ICH43zrCVuOlkU0wLXkuqpIesj\nEREpBm4CBia5/wbgbOAM4EOe2WSE8ZyIJdaNA4km160lbvopLy2iobYMsKR6qsiFb/T1wPeA3RPu\nXw28rKo9qhoEHgVOT7e4KJYTMaYimlxfaOXHM0I0ArFIJDVk9XCWiFwBdKjqAyLyKSB2gn0N0BNz\nuw+onWmfjY3VSdUYZXjUFXk77NA6iotSVzsrVfrTRT7qP764iNJ7NnHi65oz/v4z/fqJEK/2k9Ys\n4sUd+zjpqMU0ZtDIc/nYT0dWmwjwASAiIm8CjgbWichbVHUvzkBiP5VqYN9MO+zo6EuJ0K79Q5SX\nFrJ/X2DmB8dJY2N1yvSng3zW/51rTqOwwJfR95/Lxz8R7cevnM8x15yGLxTK2PvP5WMP0xtgVpuI\nqp4R/VtEHgKu8gwE4CVgpYjU4fIlp+OGvjJC/+CIDWUZU2K5kMzh8/koLrIqAakiq01kEnwi8h6g\nSlW/LyIfA+7H5XZuUdWJeZO0EIlE6B8MckjTwRmuGoZhTEXOmIiqnhn9M+a+3wK/zYyicYZGQoyG\nIrZGxDCMvMNi7CQwVnzRhrMMw8gzzESSQHS1utXNMgwj3zATSQL9g261uiXWDcPIN8xEksB43Sxb\nrW4YRn5hJpIELCdiGEa+YiaSBCwnYhhGvmImkgQsJ2IYRr5iJpIELCdiGEa+YiaSBPoHg/h8UFGW\nM2s3DcMwkoKZSBLoCwSpKi+mwGf1eQzDyC/MRJJA/2DQ8iGGYeQlZiIJEg5HGBgM2vRewzDyEjOR\nBBkYChLBkuqGYeQnZiIJYmtEDMPIZ8xEEsR6qxuGkc+YiSTI2BoRMxHDMPIQM5EEia5Wt5yIYRj5\niJlIglhOxDCMfMZMJEEsJ2IYRj5jJpIglhMxDCOfMRNJkLFeIpYTMQwjDzETSZC+wAjFRQWUFNuh\nNAwj/7AzX4JE62b5rPiiYRh5iJlIgvRZ3SzDMPIYM5EECI6GGB4JUW3Tew3DyFPMRBJgfI2IJdUN\nw8hPzEQSwNaIGIaR75iJJEDfoK0RMQwjvzETSYD+6EJDy4kYhpGnmIkkwNhwluVEDMPIU8xEEqAv\n4Cr4Wk7EMIx8xUwkASwnYhhGvmMmkgCWEzEMI98xE0mAaE6k0iIRwzDyFDORBOgLjFBeWkRRoR1G\nwzDyEzv7JYDVzTIMI98xE4mTSCRCfyBo+RDDMPIaM5E4GRoJEQpHbHqvYRh5jZlInIytEbFIxDCM\nPMZMJE7G14jYanXDMPIXM5E4sTUihmEYZiJxY2XgDcMwoCjTAqZDRAqB7wN+IAL8naq+ELP9o8CV\nQId311Wqujkd2sYbUpmJGIaRv2S1iQAXAmFVPVVEzgCuBS6K2b4WuFRVn0m3sL5Bl1i3nIhhGPlM\nVg9nqeqvgKu8m0uBfRMecizwaRF5REQ+OdP+OvcPJk2b5UQMwzCy3EQAVDUkIrcCNwI/nbD5dpzJ\nvBE4VUQumG5fV331Qbp6hpKia7yXiJmIYRj5S7YPZwGgqleIyL8CT4rIalWNhhTfVtVeABG5GzgG\nuHuq/YyMhtFdvbx1RWPCmoaCYQoKfBy6uI6CAl/C+5stjY3VaXutVGD6M0su689l7ZD7+qciq01E\nRC4FWlT1q8AgEMYl2BGRWmCjiBwOBHDRyC3T7c/ng4fXt3LK6qaEtXX3DlFVVkRXV3/C+5otjY3V\ndHT0pe31ko3pzyy5rD+XtcPBoX8qsn04607gaBH5E3AfcA3wNhH5oKr2AJ8EHgIeBp5X1fum29mq\nJfVsad1Pr7faPBH6AyNUW1tcwzDynKyORLxhq3dPs/12XF5kVpz0umY2vdLNhi2dnH7Uorh1hcJh\nAkOjtDRWxb0PwzCMg4Fsj0SSyslHNgOwfnPHDI+cnoHBUSJYUt0wDCOvTKS5oZKWxkpefKWbweHR\nuPdjvdUNwzAceWUiAGv9jYyGIjy3rSvuffSPVfC1nIhhGPlNXpoIJDak1W+RiGEYBpCHJnJIUxUN\ntWVs3NpFcDQc1z76bKGhYRgGkIcm4vP5WOtvZGgkxKYdE6uozI5o8UWLRAzDyHfyzkQg8SGt8bpZ\nlhMxDCO/yUsTWbG4luqKYjZs6SAcjsz5+f1eBV/rJWIYRr6TlyZSUODjmJUN9AaCvNzWM+fnW07E\nMAzDkZcmAnDMyviHtPoCQUqKCigtLky2LMMwjJwib03k8KV1lJYUsn5zB5HI3Ia0+gNB6yNiGIZB\nHptIcVEha5bNp7NniJ1751aJt38wSJV1NDQMw8hfE4H4ZmmNBEMMB0OWDzEMwyDPTWTN8vkUFfpY\nv7lz1s+x1eqGYRjj5LWJlJcWsXpJPa0d/eydZf/16EJDi0QMwzDy3EQA1vobAHhmlkNaFokYhmGM\nk/cmcvTKRnzMPi/SN2gVfA3DMKLkvYnUVpawoqWWl1t76BmYuW2u1c0yDMMYJ+9NBNwsrQiwYcvM\n0ch43SwzEcMwDDMRYqf6zjxLK5oTsbpZhmEYZiIANM4r55CmKjbtmLlt7njdLMuJGIZhmIl4RNvm\nbtw6fdvcaGvcyrKidMgyDMPIasxEPGa7er1vMEhlWRFFhXboDMMw7Ezo0dJYSeO8MjZu6yI4Gpry\ncf2BoOVDDMMwPMxEPKJtc4dHQrz4yuRtcyORiCu+aDOzDMMwADORA5hpSGtweJRQOEK1VfA1DMMA\nzEQOYPniWmoqS9jwcuekbXOto6FhGMaBmInEUOBzbXP7AkG2tO5/zfZ+W61uGIZxAGYiE5hu4aFF\nIoZhGAdiJjKB1UvqKC+dvG1uNBKx2VmGYRgOM5EJFBUWsGZ5A129Q7zafmDb3GgF32pbrW4YhgGY\niUzKVLO0LCdiGIZxIGYik3DksnqKCgtYP6Gqr+VEDMMwDsRMZBLKSoo4YmkdbR0DtO8LjN1vkYhh\nGMaBmIlMwWRDWn2DIxQW+CgvteKLhmEYYCYyJUetbMDnO9BEonWzfD5fBpUZhmFkD2YiU1BTUYK/\nZR5b23rZ3z8MYHWzDMMwJmAmMg3RIa1ntnQSCocZGBq1fIhhGEYMZiLTcIy/AXBDWv2DruOhdTQ0\nDMMYx0xkGhpqy1myoJqXduxjrzdLyyIRwzCMccxEZmCtv4FQOMKfn9sDWMkTwzCMWMxEZiCaF3ly\nUztgCw0NwzBiyeoFDyJSCHwf8AMR4O9U9YWY7W8GPguMAj9Q1ZuTrWFRQyUL6spp3zcIQLWZiGEY\nxhjZHolcCIRV9VTg34BroxtEpBi4ATgbOAP4kIg0JVtAtG1uFOtqaBiGMU5Wm4iq/gq4yru5FIht\nfr4aeFlVe1Q1CDwKnJ4KHbEmYjkRwzCMcbJ6OAtAVUMicivwNuAdMZtqgJ6Y231AbSo0HLaohtqq\nEnr6R2w4yzAMIwbfxMZL2YqILACeBFar6qCIHAl8TVUv8LbfADyqqndlUqdhGEY+kdWRiIhcCrSo\n6leBQSCMS7ADvASsFJE6YAA3lHV9RoQahmHkKVkdiYhIOXArsBAoBr4KVAFVqvp9EbkQ+Bwut3OL\nqn4vU1oNwzDykaw2EcMwDCO7yerZWYZhGEZ2YyZiGIZhxI2ZiGEYhhE3B62JiMjCTGtIhFzWn8va\nwfRnGtOfWxx0iXURWQv8C/An4PuqOpphSXMil/XnsnYw/ZnG9GceEfkbIKSq98/2OVm9TmSuiMjX\ngXOBv1XVv2Zaz1zJZf25rB1Mf6Yx/ZlFRE4G/gm3Hu/Lc3nuQWUiwGZgCDhURD4N/Bl4XFUfz6ys\nWZPL+nNZO5j+TGP6M8uXgMdU9fMicqaI9Ktq+2yemLM5ERHxichCEVkXc3crcBzwVuBruBLxWbkA\nMZf157J2MP2ZxvRnB17pKESkAPghsEJEHgIuA74jIh+bzX5y1kRUNYKr7HupiLzfu3sL8CBwrar+\nRVVvBLaLyFkZkjkluaw/l7WD6c80pj/ziMjrgXtFpERVw0A/MAJ8RlU/gGu78SGvrNS05JSJiEiR\n10cEEZmPq+x7A/BVESlV1a3AzcBu7zF1uPLxT2dI8gHksv5c1g6mP9OY/uxBRKqA9wDVwHXe3Y8C\n/wP8BUBVn8WZYtlM+8sZExGRjwJ3ANeKyCJV7QIeVtVPAA8D3/QeWgx83ysf/0vgVVyZ+IySy/pz\nWTuY/gxIPgDTn1lEpFJE3ikiR3h3lQMbcdHUu0Rklap2A5uA94rIqSLyFaAJ6Jhp/zkxxVdETgI+\nDXwY+Afv7l+r6mPe9gbgGeAcVd0kIs3ASmCPqm7OhOZYcll/LmsH058JzbGY/swiIqcAt+CiimW4\nduO/xVVHf0VEvgicrKrniEgZ8FHgKGAr8BVVHZzpNbLWRERkCa7seyvw98BhqvoJEVkMXIxzya+r\nap/3+C8BF6rq2kxpjiWX9eeydjD9mcb0Zw8i8g9At6reISIXAScCG1T1f2Me8wLwpeh9Xp5kZLav\nkXXDWSJSIG6K3C9xZd6/B/wcOF9E5qtqG7ABNz15afR5qvo54D/Tr/hAcll/LmsH059+xQdi+jOP\niBwmIj8UkatF5DDc0NVbvM0PAgqsEZGmmKddB3wgemMuBgJZaCLACcApwGmq+v+ANbhWuPfgPlhU\n9RHgcDz9IlLk3X9LJgRPIJf157J2MP2ZxvRnEBE5G/gJLjk+ijPAm4GlIrJWVftxJtIEFImID0BV\nf6Sq58X7utm42PBw4G5g0Asf+4F24D+Ah0XkN8AenPboB5hN5QVyWX8uawfTnxFExOdNe81J/THk\npP6Y478I+JWq/pdnbqfhzOR/cavQL1DVx0Xk34BS7zkJk9FIRETqxJs2F8NvgJtVNYSbgtauqn2q\nugdXl+Y8nLveqhkuLyBuwdGpIlISc3dO6BeRypi/fd6fOaEd3LhtVLe4xVKQW/rniUiF93f0Yi6X\n9C8QkX8SkaaYk1Eu6a/I5e9PlBgDAdcm/Dfe38cBDcCIqn4bqBOR68QtJtwJdCdLQ8YiEc8NzwX+\nIiKPqupdAKoaO6Xs/cB93uOvAn6sqr9Mu9hJEJHP4r5U31TVkeiHmQv6vUTgkSLyLPBtVd0HOXXs\nj8KN4X4b2K5usVQu6W8Gvgs8hrvKDUFO6b8GuBpXqO9bufTdB/BmJK0GnhORm1R1L+TU8V8IfAj4\nHa7cSheAqt4Z87BLgHtUNejdfiNwLK4US1LfR0YiERF5F3AY8G7cQThWRKpjrojxIpRTcbVofok7\nAIWxj8kE4hYdXYMbOz0LeEzc4qPo9uhYabbqvxg3BfEjnr63e/cXxjwmW7VHX/8knO4TRKR8ksdl\nu/5ioAV4vYi8TlUjOXL8l4rIX4BDgHcAfxaRionDItmqH0DcDKWVuGKDC4CrReRob1tW/3Zh7Pd7\nD1AHvBe4bKIu73YJ8DMRuUZEfgdUq+qfU2GEaYtEROQQVd3p3Xwfztl3ich24G3R6XIxNALLcR/g\nv6vqU+nSOhlR/ao6KiL7gSdxMzJacAtyNojIDaoa9r6MWaN/wrE/HXc1slNEHsRFJOXqzQfPNu2e\nplXAftxxDuHmu/8fcDJugdTGmMf6yH79flwU8iRucdf10WgwS/WvBrrUrSu4RFW3ilt/UKmqgdgh\nlSzVvxzY4eUvTgce9c49NwIX4WZfPZuNv91YvGHPc4DLVfU5EfkAcGj0IsQbhgOYB1wBHI8rBHnZ\nhCgrqaQlEhGRecCNnosCfAK41/u7ArdYZyJdwFWq+vZMf4gx+i/y7noGOBP4i6qeC9wELMENb+EN\nr2SF/hjtb/Pu+i1wnog8iguJC4FvR99blmmvFJHrcDNOrsUNXwH8SFU/gruiP817j7Hjw9mo/yvA\nd7xNPtzYdSvuiv4WEakRkaIs1f9j4Gsi8p/qynsAbAPqRaQlNhLJMv0V4kq03wFcJ65Xxs/xprOq\nWwy4ETcDa4l3X9Z8/wFE5GgRuUFETvJMsBMo9TaHgRUAMQYCcARwP/AhVf0nVd2dSo0pNZGYMOsd\nuDf2ZhGpUtUtwJC4hPQ7cG8YEXl9dHhCVYdV9Z5U6puJSfS/VUSqVXUjbg55NIn1KO4D7faeV5hp\n/ZNof4uI1Kjqg7jx7JdVdZmqfhh4BWcmWaE9hnNxV1rH4YbfjheRRlV9wdt+B3AM7v3hXZEVZKn+\na4C14uoWvcm7/XngeaBXVXu9KDdb9f8jbtg52rWvAqf9gNlJnpFni/434U6yr8fVsDoLN/11s4h8\n0nvME7gV2iPgIvFs0S8il+AuPHYBF3n5m39T1ae9iOkc3G8gOgQHgKo+qqpvU9XJLs6TTkpNJOYK\npQn3g9kBXOltCwHzcSev+SJyD3A27iotK5hC/we9+36GO6ktx+VHVgIB73khMsx0x97jEnEzbN6A\ni6CiyfWMa49hGfAr7+/luOmWPTI+v/0RnO4Lxas2Gk2yZwkT9Xfimv5sBbYDf4v7TCIicg5kvf69\njH9PtuHM+4B8wsT8SIZpwk15HcENfTbjDONTwFXiSqEfhRtijF68Zvz4x1wAlgE/V9Vv4EqvrBWR\nS71thwB9qnq3iFwN/IuIVGdAbsojkej+/wcXbTyBSyYu9+4/BXgX8GbgP1T1C6oaSKWmuTCF/pNE\nZLn3ZTsW+AKuf8B1XoSSFUyh/WQR8avqdpzmb+Ca0XxOVf+QGaWvJeZHdBvOrAEW4qKnkQknqu8A\nt0VzCtnANPq3eCa9zhtm2Im78PhXVX0gA1InZYbjPxzz0HtwRpgVJ98oMfp/pqrrRKQGF5E8CNwF\nvA74OG5Y66vADTHDdBkn5vvdjFsUWOEd308D0R4fq4FzReTXuFIm6ybJK6eHSCSSlH9+v79wwm3f\nJI9p8Pv9n/b7/dd7txf4/f6rk6Uhjfq/EXNfUQ5p/0z02Hv31Wda+xT6CyZ5zA/8fv/pfr+/LFu+\nM3HoP8Pv95f7/f5/mOpzynL90eP/4UxrnkG/b7K/vdt/6/f7PzLZ8zKo3xerJXr8/X7/KX6//26/\n37/M7/cXe/fd5vf7j/b7/Vf6/f4dfr//hEzrT7gAY8zQQnR2xsXAX1V1R3R77JWjuF6+Hwc+5eVG\nMkoC+j+pqi9nQPIY+XLsvcT574Gf4oY8N+LeQ0aH3vJc/6eBcCYjkFnoL1A34+o0oB53Zf8B4J80\nC9rWejnh5aq6ybtdrOPrOqKP+SaunPwtuKHEm3DVhPdny9Bh3CYyyQlqDfB3uJWSW3GrOu+f5Hnl\nQFmmhx9yWX8ua/d0zFq/d6I4AvgjbiLDdar6UtpFx2D6c0e/t/083ND5Epz+F9MseVJE5C3ANap6\nlohcjlvgeBfOCJ/yHrMQl4ddjVtO8DjjBp67JiIHzklGRI7DfcH+UVXvFFcJMwL8VFV3TPzQM00u\n689l7TB3/d5jmoAjVPWhjIiOwfRnlnj0ZxNertIXfQ8i8gPcuo42xvM1bwQuic0/eZMABjM9+jEZ\ncSXWVTUkbuX2J0XkIlV9Gjd1TryH3ItLxJ3phZRZcxKD3Nafy9ph7vq95+zNhhMYmP5ME4/+bEJV\nw957iJZi/wpumO0n3jG+Hbco9YQJz3suGw0EZmkiIrJCRG4W18ULETkft2jtEOACEfkE8M+4xvUV\n6uYnb8ON5WV8ym4u689l7WD6M6U7iunPLOJ6lFwpMaVVRORa4C4RWQfUAg/h1rCAW29WDbww6Q6z\nkFmZiOeAixlvbrIAVzju87gFdhfj5pA/jGu/CPBfqvqLTCcPIbf157J2MP1plvsaTH/mEJF34KYV\nCxCdyPI+oEJVT8WVmv8cbsHgG8VVB7gJN7TVL1lQq2s2zGgiMl4Y7uvAu8V1y9qMW2T0TdyHtx33\nAV6Dq13PxFkGmSKX9eeydjD9mcb0ZwZxZf6fBN4DfERV/0VVB2Ie0iIit+IWWr+Ii5rW4WaQfUpV\nP6GvXQ+VtcwpsS4iNwGv4q4E/hk3/rgct1q7V1VvTIXIZJHL+nNZO5j+TGP604cXQdwJPKKuVH4L\nbpHgjbhuif8M3Keq14rId4GnVPVHmVOcGLPNiUSr/V6Pq3rZiCs1fB3wNuC/s+lDnEgu689l7WD6\nM43pTz9eBPF5XPR0PW6Iql9VX8FVb74FWCKuQVRvLhsIMPsV636/v8H7/2a/33+J93djpldL5oP+\nXNZu+jP/z/RnTPdX/H7/Tr/fXz7JNsmF9zCbf7MazhLXb/hbuPnXi4GrVXVDiv0taeSy/lzWDqY/\n05j+zOFN470N+IyqPiVuhXowV3Ids2XWORERWYGrhPkzPbAIW06Qy/pzWTuY/kxj+jOHiFyJ601y\nwowPzlESrp1lGIZhTI6IlOH6na+DrCuVnxTMRAzDMIy4ybqyAIZhGEbuYCZiGIZhxI2ZiGEYhhE3\nZiKGYRhG3JiJGIZhGHFjJmIYhmHEjZmIYRiGETf/Hxn5C8C1898GAAAAAElFTkSuQmCC\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 49
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This student seems to have days that they understand the material better than others, but is staying on the edge of their panic zone."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "python_student_hw.plot(title=\"Random Student Homework Difficulty Ratings\")\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEPCAYAAACukxSbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXl4HOWV7/9pLdYu2ZLlBbDxqsMOAROWhNUmGSZsIRCW\nTGYgmYSZQG5mktyZO7lPMsnkN5OF7MmEkJCFmWEJP0ggCYTFYPbVLAECHGMDBhtsa22t3VKr+/5R\nVVLTyLLUquqqVp/P8/hxq6q76tvVVd9667znPW8sk8lgGIZhlAZlYQswDMMwCoeZvmEYRglhpm8Y\nhlFCmOkbhmGUEGb6hmEYJYSZvmEYRglREbaA2YyIpIHngVEgA9QCvcDfq+qTPu3jHOBSVT3Jj+1N\nsP1/Ai4AYkA5cDvwBVUdEZEjgY+p6t9Pc5s/AtpV9St5aloOXK6q50yw7stAi6p+Omf5a8DZqvpU\nPvsMg919lwnel32exdzF/62q33bXXwLMVdVviMj7gJ8BO4DPANcA3cDVwCpV/UyeWtPAfFfDb1X1\n5Gl89iLg+8Ar7qIY0Ag8AHxSVZN7+PydwPmq2iUitwKfU9WXpv8tSgMz/eA5UVW7vD9E5HPAD4Fj\nw5M0NUTkXOAs4GhVTYpIFXAj8GXg/wIHAvvksemM+y9f9gVkmtsuxgEp09E8dp6JSAvwBxHJqOp3\nVPXKrPedD1ypqv8hIl8C7lHVT/ioeR5wZB6fu09Vz/D+cM+1B4G/AX66h8+uw73ZqeoH8th3SWGm\nHzxeywsRqcAxrE7374XAlcACYBGwFfiwqra7LdNfAmuBpcCvVfWf3c/9G3Chu53NWdtvAv4TOBTH\nMP6I0yofFZEE8B3gNJxW1P8GzgUOBt4ETlfVwRzti3Ba97VA0jX+y4BWEdkH+DegUUR+DvwX8CNV\nPdjVciLwQ1U9WEQagauAQ3BamCNAh/u+vXFugkuBSuB6Vf2aiCwD7gZuBY4CmnFuNDe629pLRP6o\nqqdOdswnQkTOAr7kfrde4LOq+oTbsl4JrAD2Ah4D7sQxnuXAP6nq9e42/i9wNk6I9DXgU8C7gc+r\n6nHue17C+d3+1T1ej+HcJM+cZP/HuMf9Wd7+2/6Dq+P9qrprsu+nqp0i8lngJuA73hMDzvl1JjDk\ntq4bgHIRqQHuAs5R1dNFZBHwE5wbaxr4iar+UETuxflNb3I13Qv8QFV/k3XcfwnUiMhTwLdwnkLf\n475/KfAIsK+qpnJk5/5m84Emxq+V04B/AebgXC9Xq+qXROSX7vvvEZEP4NwoPuR+t38HtgAHAVWu\nlntFpNXVucLd/k7gOVX9ioh8BaehM+yuu0hVd0x2vIsNi+kHzwYReUZEtgOKcxFd7K47D3hIVY9V\n1RXAIPBRd10GqFPV43GeCj4tIstE5EwcsznUXV7HeIvwBzhhk4OBNe57Pu+umwO8qaqHAD/GMc7P\nAAfgXFxnTqD9aqAH2CEiD4vIt4ClqrpRVbcBXwQeUNWPM7nRfgUYUNX9cC7I1Vma/xv4haquwTH3\nU9wnDHCM9nZVPQr4Z+CbqpoGPg5smcTwzxORp7P/4Zg4IrIfcAVOqOdQHPO9RUQa3M+/B/gLYH/g\nFGB/VT0BuMz9HojIX+MYybtV9V04N9ergDuAg0Wk0b1pNeLctAHOAH6LY6ST7X8J8C5V9c4DL8T2\nIeCEPRl+Fs8Ci0RkPu7Tj6p+C/gd8B1VbcMx9utV9a/c4+b9Jj8GXlLV/XFuQp8UkZW88ykq90kk\nA1wEDKnq4Tg36JUisr+7/m+BX01g+ADHub/VCyKyC/g1TgjvJhGJAZ8F/lpVj3Q1/YuINKuqdy2d\n5J6T2RrfDXzL1fJznCdUcK6T51T1AJyGzzFARkSW4FwTa9z93OluY1Zhph88J6rqYcAHcFrMj6hq\nB4Cq/gB4VEQ+KyJX4BhJXdZnb3Hf9yawC6e1uw64SVUHVHUU52T2DPcvgB+5nxnGuaizjfEm9/9X\ncE76t1Q1A7yK81j+NlS1V1XfD+yHY2oLgFtF5OvuWyZtUWexFudJAFXt9HSISC1wAvBV15gfwWkJ\nH+p+bkRVb3NfP+1+/z3tN4NjZO/K/ofzNBMDTgbWq+prrp4NOMf2CPezd6lqn6om3M/c7m73laz9\nnwYcDWx0dV8GtLmfWQ+8D3g/zlPccvdJ5wz3e+9p/4+6Nzbve34I+DrwNVXtneR7T3QcwGlIxHZz\nzHKXe6/X4oZU3HPgYFXdMsX9jm3PPQevAj4hImU4TypX7uZzD7i/04E4T37zcW5QuOfo6cCRbkjq\n2+5+6nazLY+tqvqs+zr7/Dk16/vtwLk5AWwD/gQ8LSKXA8+o6u+m8qWLCTP9AqGqzwD/CFwlIvsC\niMg3cFqPO3Euhjt5+0U4lPU6465L8/bfbTTrdVnO58t5ewgvu0NsZE+aReSfReQYVX1VVX+hqn+N\nc8FcOsHbPX0ec3LWTaS53P3/mCxzPhb4mrt8eJLtT8Zk75vIAMtwQku5+4SJj1MZ8PUszWuA4911\nv8G5wb8fp+V/P/BBnBv6fVPY/0DOuk3AOcAVbvhuqhwJvJIVsptK/4D3nre1xEXEu3Hl/o7Zv/Hu\nuBInEeB0nIbG65O9WVUzqvpVnIbIz9391wHPAIcBT+KEJkfY8/kw0fUDzvfL/h5pIObu+wScm1Mn\n8F0R+d4ev2GRYaZfQNx48COAdyK9D/ieql4DtOOEE8p383FwTtzbgXNFpMltPX00a/0duIbsdoR9\nEidWOxUmuoCqga+7IQKPA3AuPHAuHs+s2oGlItLqPo6flfWZ24GPi0hMROZ661S1D3gU+JyruQkn\nY+MMJid7v1P5Hh4Z4B7gfW4GECJyMs7TxaN7+Gw2d+C0Xr2QzJdxQmHg9EGsxXlaeRznRv5V4Da3\nBb9hmvt/zo2Z343TX7M7svuO9sJ5OvjWBOt31+rPfs963BCk+5vcDazC+Y3XuMtX4vTR5JIi6xxW\n1Tdwzvnv4oS1psqlwFo3nLkaJ0b/RVW9FTgRJ0bv7WeUqd2APG7FCRF6nd5nAWkROUREnscJbX0d\n5zqd6DsWNWb6wTJR6+oy4FQROQWnI/RbIvIozgVxI87FtVtU9Y/AL4CNOEbRn7Wf/wUsEJHncGK6\nL+J0ZuVqmSjDZSKtX8UxgAdF5EURUZwW7Yfd9Q8D+4nITar6Ak6rbiPORf5m1ja/jNMyewn4PU56\noceFwNEi8ixOR+d1qnrdbjR5fz8PjLrHLZdJM4NU9UWcTtffuMfpP3A6sfv29NmsdVcBf8AJzT2P\nY/B/424/DrwAPO2a/F3A3rghLfc4TXX/2X//A3C8OCm6E7HBjYlvxAkLXq2qP5lgO1N5fRmwv4j8\nCadj9D/USXX9/3BuWM/h3FTum+DYvAk85cbmvZDhr3C85jYm5h3HXVVfAb6BE8pRnOP9oog8gPPU\ntJHxa+U3wAMicuBk28z6+x9xzttnca65rcCgGwq6ASds9wRO/8Q/7kZz0RKz0sqGYQSF+zT6I+BV\nVb08bD0AIvL3ODflR90n4vuBL6nqHSFLKwiBpGy66Vpx989X3OwOb90FOD3kKeA54FNuR41hGLMI\nN/y1FecJ7nMhy8nmBeCHIlKOExa6oVQMHwJo6YtINfCwmyaVu64Gx+gPUtWEiFyL8zj/e19FGIZh\nGBMSREv/UKBWRO5wt/8FVX3MXZfAydRIZO1/aIJtGIZhGAEQREfuAM6givcDfwdc48b1vHSsdgAR\n+TTO4KP1AWgwDMMwJiCIlv4m3OHjqvqyiHQCi4HtMNax802cnvcP7WljqdRopqJisixGwzAMI4fd\nph8HYfoX4+S2XurmCzfi1FvxuBInzPPBqXTgdnfnloPJn9bWBtrb+3zbnt9EWZ9py58o64uyNoi2\nvqhr2x1BmP7PgV+KyP3u3xcDHxaRepzc2o/hpEjdIyIA31fVmwPQYRiGYeTgu+m7xZQ+mrM4exCN\nxWoMwzBCwkbkGoZhlBBm+oZhGCWEmb5hGEYJYaZvGIZRQpjpG4ZhlBBm+oZhGCWEmb5hGEYJYaZv\nGIZRQpjpG4ZhlBBm+oZhGCWEmb5hGEYJYaZvGIZRQpjpG4ZhlBBm+oZhGCWEmb5hGEYJYaZvGIZR\nQpjpG4ZhlBBm+oZhGCWEmb5hGEYJYaZvGIZRQpjpG4ZhlBBm+oZhGCWEmb5hGEYJYaZvGIZRQpjp\nG4ZhlBAVQWxURJ4C4u6fr6jqx7PWnQ58EUgBv1DVq4LQYBiGYbwT301fRKoBVPWkCdZVAt8B1gCD\nwEMi8jtV3eW3DsMwDOOdBBHeORSoFZE7RORuETkqa93+wGZVjavqCPAgcHwAGgzDMIwJCCK8MwBc\nrqo/F5HVwB9FpE1V00Aj42EfgD6gKQANhpEX3X1JtmyP7/mNUyQWg/fUVfm2PSMadMYTlM0JJDoe\nOEGo3gRsBlDVl0WkE1gMbMcx/Ias9zYA3QFoMIxpM5JK881rn2Jn95Cv2926a4Czj1vu6zaNcLn8\n+qeZ21DF/7nw8LClTJsgTP9i4BDgUhHZC6d1v8Nd9xKwWkTm4TwRHA9cPtnG5s2rpaKi3Ddxra0N\ne35TiERZ32zXdtM9L7Oze4hjDl7MwSvn+6AKymJw5IGLaJ1X68v2giDKvytET19yZJRd3UPEB4aZ\nP7+eWCwWtqRpEYTp/xz4pYjc7/59MfBhEalX1Z+JyGeBO3D6E36uqm9NtrHu7kHfhLW2NtDe3ufb\n9vwmyvpmu7buviTX3aXU11TykbWrqK2u9EkdtM6rndXHLkiiqG9nl+NJyeFRXnujm/oa/84Vv5js\nRum76atqCvhozuJHs9b/AfiD3/s1jJlw471bSA6PcsGpq301fGP20dmbGH8dT0TS9CfDBmcZJc/m\nbXEe+fMO9l3UwHsPXhy2HCPiZJt+V9brYsFM3yhp0ukM16zfBMBH1rVRVlZc8Vmj8HT1Jsded5rp\nG0Zx8eBzb7F1Rx/HHLiIVftY9rCxZ97e0k9O8s5oYqZvlCwDiRFuvHcLVXPKOefElWHLMYqE7JCO\ntfQNo4i45YFX6R8a4YxjlzGvwQZQGVOjszdJXXUFFeWxoozpF+eQMsOYIdva+7nnqe0snFfDujVL\nwpZjFAmZTIau3gR7za8jOTJqLX3DKAYymQzXrX+ZdCbDBetWU1lhl4ExNfqGRhhJpWlprKZ1bi3x\n/mFSo+mwZU0LO9uNkuNJbefFrd0csrKFQ3waeWuUBl44p7mxitZ5NWRwBvYVE2b6RkmRHBnl1/e8\nTHlZjAvWrg5bjlFkdMYdg3da+jVA8eXqW0zfKCluf+x1OnuTnHr0UhY2R7cejhFNPINvaaymrNKp\nCVZscX0zfaNk6IgPcdujW2mqn8NpxywLW45RhHSOhXeqqayqdJcVV3jHTN8oGW64ZzMjqTQfPnEV\nNVV26hvTZ7ylX0VVbdXblhULFtM3SoIXX+tio7azcu9Gjj5wYdhyjCKlszdJRXmMhro5zHdj+lEL\n7+ypY9lM35j1jKbTXLv+ZWLAR05pK7r650Z06OpN0NxQTVksRk1VBXXVFZErxbB+4xuTrjfTN2Y9\nG57azvaOAY47dC+WLWoMW45RpIyk0sQHhmluHB+93dJYTWdvgkwmE6Kyt7Onmd/M9I1ZTe/gMDc/\n8Co1VRWcfcKKsOUYRUx333jmjkdzYzXJ4VEGk6mwZL2Djh4zfaOE+e39rzCYTHHWcctprJ0Tthyj\niPGydJqzTN+7AXTGoxHXz2QytMfN9I0SZeuOPu5/5k32nl/HyYfvHbYco8gZy9xpymrpN3kZPNGI\n6w8kUgwlRyd9j5m+MSvJZDJcc9cmMsCF61ZTXmanujEzOrNKMHiMtfQjksHTsYdWPpjpG7OUR1/Y\nyebtcdZIK/svaw5bjjELyB6N6+GFeqKSq9/es2cdZvrGrGMomeKGDZuprCjjwyevCluOMUsYi+k3\nTBDTj4jp76kTF8z0jVnIrY9sJd4/zF8evS/zm2rClmPMErp6E9TXVFI1p3xsWVPdHMrLYpGJ6bdP\noUPZTN+YVezsGuSOx1+npbGaU49aGrYcY5aQyWTo7E28LZ4PUFYWY15DVWRa+u3W0jdKjevufpnR\ndIbzTl7FnMryPX/AMKbAQCLF8Ej6bfF8j+bGanr6k5GYTKWjZ4iG2spJ32Omb8wa/rS5g2e3dLL/\nvvM4QlrDlmPMIrw8/OYJTL+lsYpMBnr6ww3xpNPO08ieQppm+sasYCSV5vq7X6YsFuOCdautvo7h\nKxNl7niMZ/CEa/rO00aG1rnv1JhNIPVlRWQB8CSwVlU3ZS3/IPAFIAP8QlV/EsT+jdJj/cY32Nk9\nxLoj9mGf1vqw5RizjIly9D2iksHjxfO9Gb12h+8tfRGpBK4EBiZY/R3gFOA9wOdEpMnv/RulR2d8\niN89/Br1NZWcedzysOUYsxCvFT95Sz9c0+9wQ1DzmyZv6QcR3rkcuAJ4a4J1I8BcoAaI4bT4DWNG\nXH3rCySHR/nQCSuoq568E8sw8iF7xqxcWtzWf9gzaHkt/fmFbOmLyEVAu6re6S7KDax+Gyfs8zzw\ne1Xt9XP/RumxeVucDU9uY9+FDRx3yF5hyzFmKV29CcrLYjTVv7NoX1Ra+t5o3D2Fd/yO6V8MZERk\nHXAYcLWInKGqu0RkKXAZsC8wCPyPiJyjqjdOtsF582qpqPAv9a61tcG3bQVBlPVFTdtoOsMN//Mk\nAJ8691AWLoxurfyoHbtsoqwNoqGvu3+Y+XNrWLjg7eeYp62uppL4wHCoWuODw5TFQFbMn/R9vpq+\nqp7gvRaRDcAlqrrLXVQNjAJJVU2LyC6cUM+kdHcP+qavtbWB9vY+37bnN1HWF0Vt9//pTTZvi3Pi\nEfvQWj8ncvo8onjsPKKsDaKhLzWaprs3QduSuW/Tkq1tXn0Vu7oHQ9X6Zns/8xqq6e4amPTmE3TK\nZkxELhCRT7hZPFcDD4vIA0AT8KuA92/MUgYTI9x47xaqKsu56AMHhC3HmMV09yXJMHE836OlsYqh\n5CiDiXAmUxlJjdLTP7zHdE0IKGUTQFVP8l5mLfsu8N2g9mmUDjc/+Cr9QyOcc+JKWppqQm8NGrOX\n8Tr670zX9GhuGo/r11YXPmV4LHNnD/F8sMFZRhGyvb2fe57czoJ5NZyyZknYcoxZzmSZOx5h5+qP\ndeLuIV0TzPSNIiOTyXDt+pdJZzJcsHY1lRV2ChvB0jlJjr6HN2grrAweb/KUPWXugJm+UWQ8tamd\nF7d2c8jKFg5dNXmWgmH4Qde0Wvrh5OpPNUcfzPSNImJ4ZJTr795MeVmM89euDluOUSKMhXcadh/T\nbwk5V7/DwjvGbOT2x16nszfB+45cwqLm2rDlGCVCV2+SuuoKaqp2n/fSVD+HslgsvJh+fIg5FWU0\n1r1z8FguZvpGUdARH+LWR7fSVD+H045dFrYco0QYnzxl8hZ0eVkZ8xrmhNbSb+9JMH9uzZSqy5rp\nG0XBDfdsZiSV5sMnrpq0xWUYfjKYTJEcHp20E9ejubGa7r5hRtOFnUxlIDHCUDK1x0JrHmb6RuR5\n8bUuNmo7K/du5OgDF4YtxyghxidP2X0836OlsZp0JkNP33DQst5GxxRr7niY6RuRZjSd5tr1LxMD\nPnJKm02OYhSUyUoq59IcUq7+WB19a+kbs4ENT21ne8cAxx26F8sWRbegmjE7mcrALI+WkHL12+NT\nT9cEM30jwvQODnPzA69SU1XB2SesCFuOUYJMNk1iLmG19C28Y8wafnv/KwwmU5x13HIaa/ecimYY\nfjPZNIm5tIQ0V+7YwCwL7xjFzNYdfdz/zJvsPb+Ok961d9hyjBKlqzdJWSzG3Po9m35oMf14gvqa\nyilntZnpG5Ejk8lwzV2byAAXrFtNRbmdpkY4dPYmmNdQRVnZnhMIaqsrqKkqL2hMP53J0BkfmlJJ\nZQ+7mozI8egLO9m8Pc4R0soBy5rDlmOUKKnRND39ybEO2qnQ3Fhd0Po7PX1JUqMZ5jdNLZ4PZvpG\nxBhKprhhw2YqK8o476RVYcsxSpie/iSZzHit/KnQ0ljNUDJVsMlUxuvoW0vfKFJufWQr8f5hTj1q\n6ZRT0AwjCKaTo+8xNkl6X2FCPGM5+tO4Vsz0jciws2uQO594nZbGKk49et+w5RglznRy9D0Knas/\nPjDLTN8oQq6/+2VSoxnOO3k1VZXlYcsxSpzxHP3pxfShcHX1LbxjFC3PbungT1s62W/pXI6Q1rDl\nGMaYcU+vpV/YuvodPUPEYtMLQZnpG6GTGk1z3fqXKYvFuHCd1dcxosF0RuN6eIO4CpWr3x5P0NxQ\nNa20ZjN9I3Tu2vgGO7uHOOnwvdlnQX3YcgwDcIy7pmryyVNymVtfRSwGXfHgTX8klaanLzmtdE0w\n0zdCpqc/ye8eeo36mkrOOm552HIMY4yu3sS04vkAFeVlzK2vKkhMv7M3QYbpZe6Amb4RMjfeu4Xk\n8Chnn7CCuurKsOUYBgCDiRRDydFpxfM9Whqr6e5Lkk5nAlA2zvhk6NPTaKZvhMbm7XEefn4HSxfW\nc/whe4UtxzDGyCee79HcWOVMptIfbGu/I490TTDTN0IinXbq64AzOcpUapsYRqGYTnXNXApVbbM9\nPr2Syh6BTDYqIguAJ4G1qropa/mRwLeBGLAd+GtVLezcYkYkePC5t9i6o4+jD1zI6n3mhi3HMN7G\nzFr649U2V9Hkq65sIhPeEZFK4EpgIGd5DPgpcJGqHgfcDVjPXQkymBjhxnu3UFVZzrknWn0dI3rk\nk6PvUahc/Y6eBJUVZTTVTW+uiSDCO5cDVwBv5SxvAzqBz4rIvcBcVdUA9m9EnJsffJX+oRFOf88y\n5jVM//HZMIJmpjF9CD5XvyM+xPym6mmPa/HV9EXkIqBdVe90F2WrmQ8cC/wQWAesFZGT/Ny/EX22\nt/dzz5PbWTCvhlPWLAlbjmFMSGdvglgM5jZMf8a2lqbgY/qDiREGEqlpx/PB/5j+xUBGRNYBhwFX\ni8gZqroLp5W/2Wvdi8jtwBpgw2QbnDevlooK/+qwtLY2+LatIIiyvplqy2QyfP+mZ0lnMvzd2Yew\n12L/4p1RPm4QbX1R1gbh6OsZGKalqYZFCyc/RyfSNj+ToaaqnPjgcGDat2zrAWDposZp78NX01fV\nE7zXIrIBuMQ1fIBXgHoRWamqW4DjgKv2tM3u7kHf9LW2NtDe3ufb9vwmyvr80Pak7uJPL3dwyMoW\nlrXW+fZdo3zcINr6oqwNwtE3mk7T2ZNgxd6Nk+57Mm3zGqrZ1TUYmPZNr3YCUFdVPuE+JrsRBJ2y\nGRORC0TkE26WzseBa0XkceB1Vf1jwPs3IsLwyCjX372Z8rIY569dHbYcw9gt8f5h0plMXvF8j+bG\nKgYSKYaSwUymMlZdc5o5+hBQyiaAqnrxes1atgE4Kqh9GtHl9sdep7M3walHLWVRc23Ycgxjt8wk\nR99jLIOnL8ne06jdM1Xa497kKdO/MdngLCNwOuJD3ProVprq5nDascvClmMYk9I5g8wdj+aA0zbz\nmTHLw0zfCJwbNmxhJJXm3JNWTqtioWGEQdcMcvQ9WgJO2+zoSVBXPb0KoB5m+kagvLi1m40v7WLl\n3o0cfeCisOUYxh7xo6Uf5ACtdCZDRzyRVysfzPSNABlNp7l2/SZiwIXr2iizyVGMIsCrhT/dssrZ\njJViiPufqx/vHyY1mma+mb4RNe59+k22tw9w3KGLWb64MWw5hjElOnuTVM8pn1Eocl5DFTGCaemP\nT4ae35OImb4RCH2Dw/z2/leoqarg7ONXhi3HMKaMM3nK9MsbZFNRXkZT/ZxAYvod8fw7ccFM3wiI\n397/CoPJFGe9dzmN0ywIZRhhMZRMMZhMzagT1yOoyVTae9wc/TzSNcFM3wiArTv6uO+ZN9lrfh0n\nHb532HIMY8qMF1qbeSHA5sZqRtMZ4gP+Vo/Pd/IUDzN9w1cymQzXrN9EBrhg3Woqyu0UM4qH8YFZ\n/rT0wf+4fns8QYzxwm7Txa5Iw1cefWEnm7fFOaKtlQOXNYctxzCmhVdHfybpmh5BlVhu7xliXmNV\n3g0qM33DN4aSKW7YsJnKijLOO9kmRzGKjy4fSjB4BDFt4kgqTU9fMq+aOx5m+oZv3PrIVuL9w5x6\n1NK8c4gNI0z8GJjlkT1tol909SbIkF/NHQ8zfcMXdnYNcucTr9PcWMWpR+8bthzDyIsuN14+14cZ\n3cYnU/HP9Ntn2IkLZvqGT1x/98ukRjOcd/Jqqir9m/TGMApJZ2+SuQ35x8uzqauuYE5lma8t/fb4\nzNI1wUzf8IFnt3Twpy2d7Ld0LmukNWw5hpEX6XSG7r6kL/F8gFgsRktjta8x/Y4ZVNf0MNM3ZkRq\nNM11618mFnPq68xkFKNhhElPf3LGk6fk0txYTf/QCMnhUV+254V3rCPXCI27Nr7Bzu4hTn7XPuyz\noD5sOYaRN36UVM7FG+TV1edPiKc9nhgr8ZAvZvpG3vT0J/ndQ69RX1PJWccvD1uOYcwIPzN3PPzO\n4OnoGaJ1bvWMKtaa6Rt5c+O9W0gOj3L2CSuoq64MW45hzAg/c/Q9/MzVH0ykGEikZhTaATN9I082\nb4/z8PM7WLqwnuMP2StsOYYxYwJt6cdn3tL3qmvOJHMHzPSNPEhnMlxz1yYAPnJKG2Vl1nlrFD+B\nxvR9CO941TVnkqMPZvpGHjz47Fts3dHH0QcuZPU+c8OWYxi+0NmboKqynLpq/+ZxntfgX0x/fDJ0\na+kbBWQwMcJN922hqrKcc0+0+jrG7KGrN0FzY5WvaceVFWU01c3xJaY/Ft6xlr5RSG558DX6Bkc4\n7dh9mefDUHXDiAJDSaeT1M94vkdzYzVdfQnSmZlNpjIW3plhXSszfWPKbO8Y4O4nt7Fgbg3vO3Jp\n2HIMwze6+vyP53u0NFaRGs3QN8PJVDriQ9RVV1A7w/BTIKYvIgtE5A0RadvN+p+KyNeC2LcRDJlM\nhmvv2kQ6k+H8dauprLD2gjF78HPGrFzGc/XzD/GkMxk64okZh3YgANMXkUrgSmBgN+svAQ4C/J04\n0giUR5/9iOYQAAAY50lEQVR/ixe3dnPwihYOXdkSthzD8BU/Z8zKxY8ZtOL9w4yk0jPuxIVgWvqX\nA1cAb+WuEJFjgXfj3BQsz69IGB4Z5arf/Znyshjnr11l9XWMWUdXADn6Hn6Myh3P0Y9YS19ELgLa\nVfVOd1Esa91i4EvAZZjhFxW3P/Y6u7oGOeXIJSxuqQtbjmH4TmfcjennOe/sZLQ0zXzaxI6xHP2Z\n6/MvIdXhYiAjIuuAw4CrReQMVd0FnAPMB24DFgG1IvKiqv7XZBucN6+Wigr/6rO3tjb4tq0giJq+\nXV2D3PboVuY1VHHxGQdRG9FyC1E7brlEWV+UtUFh9PUlRojFoG15C5XT8JupaJtT4xRHG0iO5v1d\nBkbeBGDVvi0zPh6+mr6qnuC9FpENwCWu4aOqPwR+6K77G2C/PRk+QHf3oG/6WlsbaG/v8217fhNF\nfVfc/DzDqTSXnnYAA30JBnyqFugnUTxu2URZX5S1QeH07egYoLFuDj3T8JupastkMlRWlPFme3/e\n32Xrmz0AVMYyU9rGZDeGoFMwYiJygYh8YoJ11pEbcV7c2s3Gl3axcq9GTjx8SdhyDCMQvMlTgojn\ngzOZSnNj9Yw6cjt6nGkc/dDod3hnDFU9yXs5wbqrg9qv4Q+j6TTXrt9EDLjQ6usYs5j4wDCj6Uwg\nmTseLY1V7OwaZHhklDl5TCfaHh9ibkOVL6nSlmxtTMi9T7/J9vYB3nvIYpYvbgxbjmEERpA5+h7e\nDcUbBDYdUqNpunuTvnTigpm+MQF9g8P89v5XqKkq50MnrAxbjmEESpA5+h4tM0jb7OxNkGHm5Rc8\nzPSNd/Db+19hMJnizPeuoLEu/2nZDKMY8IqhBRXTh/GJWbryqKs/Ni+umb4RBFt39HHfM2+yuKWW\nkw/fO2w5hhE4QUyekstMWvpejv58C+8YfpPJZLhm/SYywIXr2qgot9PDmP0EMU1iLjOZNrE97tXR\nt5a+4TOPvbCTzdviHN7WyoHLm8OWYxgFobM3wZyKMuprght46JUhz6el71dJZQ8zfQOAxHCKGzZs\nprKijPNPtslRjNKhqzdJc2N1oDWl5lSW01hbmVeufkfPEBXlZTTV+9O/ZqZvAHDrI1vp6R/m1KOW\n+tZhZBhRJzk8Sv/QSKDpmh7NjdV09ibJTHMyFaekcjVlPt2UzPQNdnYPcsfjr9PcWMWpR+8bthzD\nKBhdfcGna3q0NFaTGk3TNzgy5c8MJVP0D40w34eSyh5m+ga/vnszqdEM5528mqo8RgsaRrFSiMwd\nj3xKLI9Nhu7D5CkeZvolzrNbOnlmcwf7LZ3LGmkNW45hFBQvm6YwLX03V38apt8R97cTF8z0S5rU\naJrr7n6ZWMxJ0bTJUYxSozMefAkGj3ymTRwbmOVjnX8z/RJm/cZt7Owa5OR37cM+C+rDlmMYBWcs\nRz+AyVNyaWma/rSJHT6na4KZfsnS05/klodepb6mkjOPWx62HMMIhbG6Ow2FbOlPI6Y/NjDLWvrG\nDLnx3i0kh0c5+/gVgQ5KMYwo09WbpLFuzrRmy8qXhtpKKsrLptXSb+8ZoraqwtcZ68z0S5DN2+M8\n/PwOli6o5/hD9wpbjmGEQjqToasvUZB4PkBZLEZzY9WUY/qZTIbOeMLXdE0w0y850pkM19y1CbDJ\nUYzSpm9gmNRosJOn5NLSWE3vwDAjqdE9vrd3YJjhVNrXeD6Y6ZccDz77Flt39HH0AQtpWzI3bDmG\nERqdBSipnMtYieUpTKYyVnPHxxx9MNMvKQYTI9x03xaqKss59ySrr2OUNl0FmDwll7Fqm1Ooq+91\n4lp4x8ibWx58jb7BEU47dt+xqn+GUap0FmCaxFymk6s/NhrXwjtGPmzvGODuJ7exYG4N7ztySdhy\nDCN0CjFNYi7jdfX33NL3e/IUDzP9EiCTyXDtXZtIZzKcv3Z1QdLTDCPqFGKaxFy8mP5UcvU74v6P\nxgUz/ZLgqU0dvLi1m4NWNHPoqpaw5RhGJOjsTVBRXkZDbeHGqTRPo6Xf3jPEvIYq3xtpZvqznOGR\nUX59z8uUl8W4YO1qq69jGC5dvU6OfiGviarKcuprKvcY00+NpunqS/reygcz/VnP7Y+/Tkc8wSlr\nlrC4pS5sOYYRCYZHRukbHCloPN+jpbGart7EpJOpOOthvs/pmmCmP6vpjCe47ZGtNNbN4fT3LAtb\njmFEBi9PvpDxfI/mxiqGU2n6h3Y/mcr4vLj+66vwfYuAiCwAngTWquqmrOUXAJ8BUsBzwKdUdXpz\nhxlT5oYNmxlOpfno+1dSUxXIT20YRclYumYBqmvmMl5tM0lD7cTz3o4XWiuClr6IVAJXAgM5y2uA\nrwInqup7gSbgNL/3bzi8tLWbJ17axYq9GjnmoEVhyzGMSOENjmouYI6+R8sUqm0Gla4JwYR3Lgeu\nAN7KWZ4AjlFV75tWAEMB7L/kGU2nuXb9JmLAR05p821CZcOYLRRymsRcpmL6QQ3MAp9NX0QuAtpV\n9U530ZjbqGpGVdvd930aqFPV9X7u33C49+k32dY+wHsPWczyxY1hyzGMyBFGjr7HVNI2O+JDVJTH\nmBvAyHm/A70XAxkRWQccBlwtImeo6i4AESkDvgmsAj40lQ3Om1dLhY95qq2tDb5tKwhmqi/en+SW\nB1+ltrqCT559qK8nTZSPXZS1QbT1RVkbBKOvL+F0oq5eMZ+qyvz9JR9tFVXOuID+5OhuP9/Zm2TB\nvFoWLvC/0ear6avqCd5rEdkAXOIZvsuVOGGeD061A7e7e9A3fa2tDbS39/m2Pb/xQ99/3aH0D41w\n/trVjCSGaU8MR0ZbUERZG0RbX5S1QXD6dnQM0FhbSW9P/v6Sr7Z0JkNFeYy32vsn/PxQMkXvwDBL\nF9Tn/d0nuxkFndIRczN26oGNwMeA+4F7RATg+6p6c8AaSoatO/q47+ntLG6p5eTD9w5bjmFEkkwm\nQ2dvkn1awxm3UhaL0dxQvduYfofbyTw/gHg+BGj6qnqS9zJrsRV9CYhMJsM16zeRAS5c10ZFuQ3B\nMIyJ6BscITWaDiWe79HcWMVLr/cwkkpTWfH2a7XD68QNKJ3UnGGW8NgLO9m8Lc7hba0cuLw5bDmG\nEVnCqK6Zi3fD6e5/ZzmGIDN3wEx/VpAYTnHDhs1UlJdx3sk2OYphTEZXCHX0cxmrqz/BZCrtY+Ed\na+kbu+HWR7bS0z/MqUctDax1YBizBa/YWagt/abdp2164Z0g6u6AmX7Rs7N7kDsef53mxir+8ph9\nw5ZjGJGnK8QSDB6T1dVvjyeoqaqgrjqYLlcz/SLn13dvJjWa4cMnrZpRvrFhlApRiunntvQzmQwd\n8SFam6oDK/lspl/EPLulk2c2dyBL5nLkfgvClmMYRUFXCJOn5NLcMPFcub2DIwyPpAMN05rpFymp\n0TTX3f0ysRhceEqbTY5iGFOkszdJc2NVqDWpquY4k6nktvS9zJ2gOnHBTL9oWb9xGzu7BjnpXXuz\nZEF92HIMoygYSY3SOzAcao6+R3NjFZ05k6kE3YkLZvpFSU9/klseepW66grOOm5F2HIMo2jwJk8J\no6RyLi2N1QyPpBlIpMaWeemaFt4x3sZN924hOTzK2SespL4mvLikYRQbXh39aLT035mrPz4wy8I7\nhsuW7XEeen4HSxbUc8Khe4UtxzCKiijk6HtMlMEzHt4x0zdwqvNdc5cz++RHTmmjrMw6bw1jOnSF\nOHlKLhPl6rf3JJhbP4dKH8vJ52KmX0Q89OxbvLajj6MOWEjbkrlhyzGMomM8Rz8aMX0Yn9AlNZqm\nqy8RWHVNDzP9ImEwMcKN921hTmUZ5564Mmw5hlGUdEVgYJZHc860iV19STKZ4KprepjpFwm/e+g1\n+gZHOO2YZZE4YQ2jGOnsTVJfUxmJ0etN9XMoL4uN3YiCrq7pYaZfBGzvGODuJ7fROrea9797Sdhy\nDKMoyWQydPUmIhHPB2cylXkNVWMt/ULk6IOZfuTJZDJct34To+kM569dHWgHj2HMZvqHRhhOpSMR\nz/doaawm3j9MajQ9NmNWkOmaYKYfeZ7a1MELr3Vz0IpmDls1P2w5hlG0eB2mUWnpgxPXzwDdfUkL\n7xgwPDLKr+95mfKyGBesXW31dQxjBkShumYuLU3OU0dXb4L2ngTlZTHm1gf7JGKmH2Fuf/x1OuIJ\nTlmzhMUt4UzibBizhc4I1NHPJTuDpyM+REtTdeDjb8z0I0pnPMFtj2ylsW4Op79nWdhyDKPo6YpQ\njr6HF2p6s2OQvsGRgsx8Z6YfUW7YsJnhVJpzT1xJTVUwM+gYRinRGdGYPoC+0Q0En6MPZvqR5KWt\n3Tzx0i5W7NXIMQctCluOYcwKunqdmHlj3ZywpYzR3OA8dbz2Vh9A4KNxwUw/coym01y7Pqu+jnXe\nGoYvdPYmQp88JRdvLtzRtFNT38I7Jci9T7/JtvYB3nvIYpYvbgxbjmHMCkZSaeL90Zg8JZfsbKIg\nq2t6BBIsFpEFwJPAWlXdlLX8dOCLQAr4hapeFcT+i5V4f5KbH3iFmqpyPnSC1dcxDL/o7o9OSeVc\nWhqreWNXP1CkLX0RqQSuBAYmWP4d4BTgBOCT7s3BcLnm9pcYSKQ48z3LaYpQ3NEwih1v8pQomr6X\nTVRTVU5ddfBJG0GEdy4HrgDeylm+P7BZVeOqOgI8CBwfwP6Lkq07+rj90ddY3FLLyUfsE7Ycw5hV\njOXoRyhd08MLOc1vqinIAExfbysichHQrqp3isi/ANnfoBGIZ/3dBzTtaZsbX9rlm77Gt/rojQ/5\ntj0/uePx18lk4MJ1bVSUW1eLYfhJlCZPyaV5zPQLo83vZ4mLgYyIrAMOA64WkTNUdReO4TdkvbcB\n6N7TBn988/M+S4wuRx24iAOXN4ctwzBmHUPJUQBa5wUfM58ui5prAdhrfmFG3ccymUwgGxaRDcAl\nXkeuG9P/M3AUTrz/YeB0Vc0NAxmGYRgBEXSvQUxELgDqVfVnIvJZ4A6cvoSfm+EbhmEUlsBa+oZh\nGEb0sB5DwzCMEsJM3zAMo4Qw0zcMwyghZq3pi0hky1OatvyJsr4oa4No6zNt+TNdfbOuI1dEDgf+\nCbgP+JmqpkKWNIZpy58o64uyNoi2PtOWP/nqm1Wzc4jIN4H3Ax9T1SfD1pONacufKOuLsjaItj7T\nlj8z0TerTB/YBCSApSLyBeAh4BFVfSRcWYBpmwlR1hdlbRBtfaYtf/LWV7QxfRGJicgiEbk6a/E2\nYA1wJvB1nBLOV5i24tAWdX1R1hZ1faYtOvqK1vRVNQMsAz4qIn/lLn4ZWA/8u6o+oao/AF4VkbWm\nLfraoq4vytqirs+0RUdfUZm+iFS4NXwQkRbggzg1+r8mIlWqugW4Cress4jMwynqttG0RVNb1PVF\nWVvU9Zm2aOorGtMXkX8Ergf+XUT2UtVO4H5V/TxwP/Bd962VwM9E5FfAzcDrOGWcTVvEtEVdX5S1\nRV2faYuuvqJI2RSRo4EvAJcBn3IX/05VH3bXzweeBt6nqi+KyGJgNbAje7pG0xYdbVHXF2VtUddn\n2qKtL7KmLyL7AhmcDou/B5ar6udFZG/gbGAB8E1V7XPf/2/Aaap6uGmLprao64uytqjrM23Foy9y\n4R0RKRMnBelm4Es4PdL/P3CqiLSo6nbgGZx002Xe51T1S8B/mrboaYu6vihri7o+01Z8+iJn+sC7\ngWOB41T1b4FDcKZavA3nwKCqDwAH4OoXkQp3+c9NWyS1RV1flLVFXZ9pKzJ9URycdQBwKzDkPt70\nAzuBbwP3i8jvgR042r0DUKjh0ZHTJiIxdVK6Iqcthyjri7K2qOuLnDa7JiYn1Ja+iNRnvfYmUf89\ncJWqjuLMo7tTVftUdQdOnYm/wElV+pUGODxanMEQ7xWROVmLo6JtoYj8g4gscE/uyGhz9dVPsDgS\n+kRkjneuiYh3/kdCm6vJron8tNk1MUVCa+m7nRGHicjTwI9UtR3A+9/lr4Db3fdfAvy3qt5cAG1f\nxDng31XVYa/lEBFtnwEuBUZV9XtR0ubu7ys4v+tzwC2q+gRE5nc9FLgY+D7wqqqmo6LN3Z9dE/lp\ns2tiGoTS0heRDwIrcVKSjgL+0l1elvWeSuC9OLUlbgaOAMqzWj9B6KpwT6BjgbXAw+IMjPDWe3G1\ngmoTZxj2MhF5HFgCnAM8JCK1Wa0a770FP25Z+74AaAP+DhgELhYnBS20Y+fu09v20cCHgHeLSM0E\n7wvz2J1NdK+JfyBi14S7z2Ui8gR2TUyLgrX0RWSJqr7h/vlh4EZV3SYiz+BchH9QZxCCdzBacS6C\nI4D/UNXHg9amqikR6QEew+kd3wdoB54Rke+oajosbcBrIvK3qvqsiBwL1KnqYFb80jO3gmnL0Qdw\nOvCAqr4lIr8GfgycLSKPh3Ts9gN6cH7DUWAF8FvgGOBF4Nms94Zx7PYDetzH+Q/g5GNH5ZrYH+hS\n1Z0ish1npGdUron9gU5VfU1EzlfVLRG7JrJ/15OBh6NyTUCB8vRFZC7wS5xHlt+IyL6qutX98f4H\nx2RrcB59bnY/UwWsVdXbCqTtalW9WUQOAX4IXKeqPxGR43BuUn/0tISlLWv5IuBq4OOqui3nMwXR\nlqPP+13PAT6P0yqcA3wLpxDUT1X1hULpE5E6nOyHtcCfgCFVvUxEDlTVP4vIfwIvANeoao9nEgX8\nXbP1PQ+8BnzF1RDqNZGj7VmcjsVv4MSfrwnzmphA25CqXuquC/2amOB3fRX4I/AjnKfM0K6JbAIN\n72Q9npwDHAicLiL1qroVQFVfVNUjVPVTOCf+iPu5clVNBnwC5Wo7U0QaVPVZnHzZ37vrHwTSQFfI\n2rI7gmpxTqpU7ueC1rYbfd7veiOwFef4PQS8hNO6HnA/V1YIfTh1xpeq6hrgfwFHikirqv7ZXX89\n8C5XO67ZFkpbrr5LcWLli10toV0TE2j7NI6BJYDvAX9w31Pwa2I32o6Q8VmjQr0mJtB3KU6I7kVA\ngZ8Q7jUxRqCmnxVbWwD8K44hfNxbLyIni8h8ETkROB7nURx1erMDZTfaPuEuuwHHKFbitFpX48Tj\nwtT28az1r+AY1mEwHhvMjWUWWN8l7rK/wmmpno2TbzyEM9oQdTtOC8AK4Bb39Uqc1mrcu1mpk/vc\nDZwmTqGqQmqbSN8uwAvjhHZNTKJtGPgNsCasa2ISbd2uhlCviQn0rQI61BlFezHw34R7TYwRdEvf\n2/5PgTuAR4H3uCcOODGsbwFfBr6qqg8FqWcK2o4WkZXuD3GEq+vrwDfcJ4AwtWUfN3CeRD4GhT9x\ndqPvKPfYjeDcDP4Z5+b5U1V9vUC6vCeQa9x9AywCNqvqcI4B/BAnXNFdCG1T0Jd0/z4Ip6DWlyng\nNTGJtk2qmnaP3UHAVynwNTHF4waOoRb8mtiNvoU4LXwvt74Jp6ZOQa+JCclkMr78a2trK8/5OzbB\ne+a3tbV9oa2t7fKsZfV+afBJ27eyllVETNs3gtbj4++6NARtZRO85xdtbW3Ht7W1Vbe1tV0a8rGb\nTF9dW1vbJ91lNRHW9o7fPwK/62UR/l1r29raLnGX7VNInbv7N+OWvjjphDHvEU9EznY7arN7zwFQ\n1Q5gA7BcRFa7y/pnqsFnbctEZJW7LLDReXlqW+lpCxofftfAWjKTaEtna3M7mg8FjsSpb7KviJQH\npWuG+m4CVrnx8aGIags0228Gv+tScVJLA++jzEPfbxj/XbftbtuFJO/sHS/jIevvQ3ByUdcAW3BG\nkd0xwedqgOogH6tN2+zUNx1t7gV4IHAvTijsG6r6UlDaoq7PtM1efdMlrzuje9fKPghrcGK796jq\nu4HngMPFKRma2yocCtgYTNss1Dddbe57dwHnqurFBTCGyOozbbNXXz7kZfqqOuo+Tv0fETlLVTcC\nTwDivuWPOB0tJ4mTklSwHnTTNjv1TVeb+5ldqrqh1PWZttmrLx+mZPoiskpErhJn1hZE5FScnN0l\nwAdE5PPA/8aZuLdWVZ8GXsGZuivQoc6mbXbqi7K2qOszbbNXnx9MyfRVdTOwN3CGu2ghTvnPf8UZ\noHE2ziPN/cDP3Pf8WFVv0oBzeE3b7NQXZW1R12faZq8+P9ij6ct4tsM3gfNEZDmwCWcQxHdxvvyr\nOAfgM8CvAdTJ1w4U0zY79UVZW9T1mbbZq88vppW9IyJX4sy4/m2cR5w/4oyMWw30quoPghBp2oIl\nyvqirA2irc+05U/U9c2Eqcb0vfzcy4GzcKrCzcEpxPRB4CdhHQTTlj9R1hdlbRBtfaYtf6Kuzxem\nMQptvvv/VW1tbee7r1vDHl1m2mavvihri7o+0zZ79c3035TCO+LM3/g9nCJBewOXquozAd+PpoRp\ny58o64uyNoi2PtOWP1HX5wdTjumLM/z/GOAGfXuRo9AxbfkTZX1R1gbR1mfa8ifq+mZKQSZRMQzD\nMKJBKHPkGoZhGOFgpm8YhlFCmOkbhmGUEGb6hmEYJYSZvmEYRglhpm8YhlFCmOkbhmGUEGb6hmEY\nJcT/A3trZVYcuLNLAAAAAElFTkSuQmCC\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The student seems to be faring a little better on homework assignments than in lectures, however several data points are missing."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_student_lec = rails_lecture_data_transposed[\"R03\"]\n",
+ "rails_student_hw = rails_homework_data_transposed[\"R03\"]"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_student_lec.plot(title=\"Random Student Lecture Difficulty Ratings\")\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEPCAYAAACDTflkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8nGW5//HPZGm2JmmztE33UjoXbaEtZSu7bIVSiqgI\n6AGPiICKiiLHo55z1ONylAOioB5FQEXlByKoLGUTZIdSCt2Xq7TQPWnSpE2apVnn98f9TDsN2TPJ\n80zmer9evGhmeeY7k8lccy/PfYcikQjGGGNMX6T4HcAYY0zisiJijDGmz6yIGGOM6TMrIsYYY/rM\niogxxpg+syJijDGmz9L8DmDiR0TagDVAKxABsoEa4POq+nacHuNS4AZVPSsex+vg+F8HPgGEgFTg\naeBbqtosIicAn1HVz/fymL8AKlT1v/uYaQpwq6pe2sF1vwdWq+pP+nLsdsfKB/6mqmf391hdPEbs\neyTkXfzHaH4RuR4Yoaq3iMh84G6gDLgRuB/YC9wHHKmqN/YjQ5GXoVfPV0Q+DdwBvOddFALygFeA\n61S1sZv7PwtcoapVIrIY+Jqqbuj9szBRVkSGng+palX0BxH5GvBz4BT/IvWMiHwcuASYp6qNIpIB\nPAx8F/gPYCYwvg+Hjnj/9dUkQAbo2LFGAifE6VhdOfgeEZFC4AkRiajq7ap6V8ztrgDuUtX/EZFv\nA/9U1WvjmKOvz/clVb04+oP3PnkV+FfgN93c91y84qmqC/vw2KYdKyJDT/TbJSKShvsArPR+Hg3c\nBYwCxgBbgctUtUJEtgC/A84BJgJ/VtV/9+73PeCT3nE2xRw/H/glMBv3QfoUrtXQKiIHgNuBi3Df\nFP8N+DhwDLALWKSq9e2yj8G1PrKBRq+QfBEoFpHxwPeAPBG5F/gD8AtVPcbL8iHg56p6jIjkAfcA\ns3DfopuBPd7txuGK6kQgHXhQVX8kIpOB54HFwElAAa5wPewda6yIPKWqC7p6zWOJyCnAj4EcoA34\nrqou9q77JvApoAV4F/i09/pnicg7wPHedUUxH/jRb/CzcN/Ga73X6iTgfC/vMKAeuFlVl3SUK5aq\nVorITcAjwO0i8l2gEPfe+DDQ4H37zwVSRSQL+AdwqaouEpExwK9xRbYN+LWq/lxEXsT9Ph7xsr8I\n3Kmqf415zWKf7224Fu6p3u0nAm8Ak1S1pZvXuwjI59D7/CLgm95rMQq4T1W/LSK/827/TxFZiCs8\nH/Oe2w+BzcDRQIaX5UURKfZyHuEdfzeu5fnfIvLfuC89Td51n1bVsu5e86HGxkSGnhdEZIWI7AQU\n94d9tXfd5cBrqnqKqh6B+7C5yrsuAuSo6hm4VsuXRGSyiHwY+CiuUJyC+0CMfvO+E9dNdAzuQ282\ncLN33TBgl6rOAv4P90F8IzAD9wf/4Q6y3wfsA8pE5HURuQ2YqKrLVHUH8F/AK6p6DZ18cHv+G6hT\n1aNwHxLTYjL/Efitqh6P+/A9z2sBAUwBnlbVk4B/B/5XVduAa4DNnRSQDonISOC3wJWqepz3fH8l\nIhNE5GLct+Z53mv3PnADrpA0qOpc73G7MhPXLXMs7ovCD4EFqjoXuB74q4hk9zDuKmCMiBThtaxU\n9TbgMeB2VQ3jCsWDqnol7rWPvp7/B2xQ1enAycB1IjKVD7bQ2rfWIrHPF1esp4rIdO/6zwK/76CA\nAJwuIstFZJ2IlAN/xnU3PiIiIeAm4FOqeoKX6ZsiUqCq0b+Ds7z3U2zGE4HbvCz34lq/4N7jq1V1\nBu5L0MlAREQm4N7Px3uP86x3jKRjRWTo+ZCqzgEW4r6lvqGqewBU9U5giYjcJCK/wn3ryom576Pe\n7XYB5bhv4+cCj6hqnaq24v7Aoh/gFwC/8O7ThPugif2gfcT7/3u4P8RSVY3gPjRHtg+uqjWqej5w\nFK7ojAIWi8iPvZt0VThinYNrqaCqldEc3ofqmcD3RWQ57pvueFzxA2hW1Se9fy/3nn9vHjfWyUAJ\n8Kj3WItxBX2Wl+8hVa32Mn5NVX/Uy8fZrqrbvX+f5z3WP73H+hNuvGFqD48V/SCt9zJ0lKP95dF/\nn4PXheT9/o5R1c09fNyDx/PeP/cA14pICq7I3tXJ/V7xiudMXKuyCFfw8N5fi4ATvC64n3iPk9PJ\nsaK2quoq79+xv/sFMc+vDFfsAHYAK4HlInIrsEJVH+vJkx5qrDtriFLVFSLyVeAeEVmiqltF5BZc\nH/S9wD9xv//YD4aGmH9HvOvaOPzLRmvMv1Pa3T+Vw99TsYOczd1lFpF/B15W1Tdwhea3InIqbnD9\nG+1uHs0XNazddR1lTvX+f7KqHvAeswj3vItx3RKdHb8rHY2JpADrVXVe9AKvK203cNhAstf9NqKT\nY4e82wxrd3ltu8d6XlWviDnmRNwHXU+cALynqvUiAj0b44ne5rCWgjcJoZIP/g7a5+/IXcBS4CXc\nl45tXd3YKxjf97oN7wUuEpEcYAXui8MruNbgJXT/u+zovQ/u+cU+jzYg5D32mSJyHK6I/1REXlDV\nr3T/NIcWa4kMYar6IO7b9s+8i+YDP1PV+4EK3Js/tZO7g/tjehr4uIjke98Qr4q5/hlcN0x0cPM6\nXH95T3T0R50J/Nj7YI+aAURnlrXgxjHw8k8UkWKvC+OSmPs8DVwjIiERGRG9TlX3A0uAr3mZ83Ef\nNBfTtdjH7elzeROYJiJneI81C9iAazE8B3xURHK9234P1wXTzOG/jwoODTx/tIvH/ycwX7wKICIX\n4D5IM7rLKyJjceM2t3VwfWetktjbPIfXXeq9ns8DR3rZj/cun4prgbXXQszz9VpWbwA/BX7VyeN2\n5AbgHK/rdRpujOO/vPGnD+Feh+jjtNKzgha1GNedGZ2EcAnQJiKzRGQNrivvx7i/sY6e45BnRWRo\n6egb5BeBBSJyHu7D6jYRWYL7I30Y9wffKVV9CvdtbhnuA7g25nG+DIwSkdW4fvX1uL759lk6msHU\nUdbv4z6UXhWR9SKiwBnAZd71rwNHicgjqroO9811Ge6DZ1fMMb+L+0DeADyOm9Ia9Ulgnoiswn3Q\nP6CqD3SSKfrzGqDVe9068kMR2R/z3/2qWoEbj/lfEVmB62K6SlW3e6/p74DXvByjcIPipcA7Xl9/\nAe71/aWIvA3M8Z7jB14/77W4DnjQe6zv4yYuxH67jvWCN6awDNeFeZ+q/jrmuJFe/PuLwHQRWYkb\nqP4fVX0H+AGusK3GFamXOsi+K+b5Rrs3f4/7XHqSjn3gvaSq7wG34LquFHgCWC8ir+C6bJdx6H3+\nV+AVEZnZ1TFjfv4q7j23Cvf3shWo97q+HgKWichbuPGdr3aSeUgL2VLwxpgg8Fq6vwDeV9Vb/c4D\nICKfB5ar6hKvtf0y8G1VfcbnaIER+DERbyrkIlx3wi9U9b6Y6xbhZuy04Gbc3ONPSmNMf3hde1tx\nrcOv+Rwn1jrg5yKSiusGe8gKyOEC3RLx5v7fpKoXewNmX1fV73jXpeN+wcfjZpW8BlykquV+5TXG\nmGQT9DGR+cBqEfk7rm87dgrddGCTqlarajOuP/YMHzIaY0zSCnp3VjEwAXfW8xG4InKUd10eUB1z\n2/24k9g6FYlEIqFQX6b8m2RWXdvIld95mvNOnMiXLz/W7zjG+KHTD86gF5E9uLn2LcBGETkgIkXe\nyXPVuKl8Ubm4xeE6FQqFqKjYP3BpB1hxca7l90FrWxtpqSG2lNYkZP6oRH39IbGzw9DI35mgd2e9\nijsrOjqfPQeILi64ATcPf6R3ItYZuKmexsRVakoKo0dms6O8liCPIRrjh0AXEe9koeUishTXlfUF\n4HIRudYbB7kJd8Lb68C9qlrqX1ozlI0pzKahsYV9tU3d39iYJBL07iyiK8l2ct0TuBOLjBlQJYU5\nQAWllXWMzO3sRHBjkk+gWyLGBEVJoVsQt7Sy/er1xiQ3KyLG9MDYQrcIbGllnc9JjAkWKyLG9MCY\nAmuJGNMRKyLG9EDGsFSKR2ZZS8SYdqyIGNND44uHs6+2ifoDHW22Z0xysiJiTA9NGO1OuCqrsi4t\nY6KsiBjTQ+NHDQdscN2YWFZEjOmh8V5LxAbXjTnEiogxPWQtEWM+yIqIMT00YngGOZlp1hIxJoYV\nEWN6KBQKMaYwm4p9DbS0tvkdx5hAsCJiTC+UFObQ2hahfG+D31GMCQQrIsb0gq2hZczhrIgY0wsl\ntoaWMYexImJML1hLxJjDWRExpheK87NISw1ZS8QYjxURY3ohJSXE6IJsSqvqbatcY7AiYkyvlRTm\n0NjUyt79jX5HMcZ3VkSM6aWS6N4ithCjMVZEjOmtkiKviOyxcRFjrIgY00slBd40X2uJGGNFxJje\nGlNoLRFjoqyIGNNLGempFOZlWkvEGKyIGNMnJYXZVNtWucZYETGmLw4uf1JlXVomuaX5HaA7IvIO\nUO39+J6qXhNz3VeBa4AK76LrVXXjIEc0Sejg8id76pk6Nt/nNMb4J9BFREQyAVT1rE5uMhe4SlWX\nD14qY2KKiLVETJILdBEBZgPZIvIMLuu3VPXNmOuPA74lImOAxar6Yz9CmuRzsDtrjw2um+QW9DGR\nOuBWVT0f+Bxwv4jEZn4AuB44GzhNRBb6kNEkodzsdLdVrs3QMkku6C2RjcAmAFV9V0QqgRJgp3f9\nHapaAyAii4FjgcVdHbC4OHfg0g4Cy++v2PwTx+Sh2/YyYmQO6WlB/z7mJPLrn8jZIfHzdyboReRq\nYBZwg4iMBfKAMgARyQdWicgMoB7XGrm3uwNWVOwfuLQDrLg41/L7qH3+orwM1rdFWPtuOeOKcnxM\n1jOJ/PoncnYYGvk7E/SvT/cCeSLyMvAgrqhcJiLXqmo18A3gBeBlYI2qPu1fVJNsDo2L2OC6SV6B\nbomoagtwVbuLl8Rc/wBuXMSYQXdohpaNi5jkFfSWiDGBdWirXGuJmORlRcSYPirKzyItNcX2WzdJ\nzYqIMX2UkhJiTEEWZZX1tNlWuSZJWRExph9KCnNobG5ln22Va5KUFRFj+iE6LrLLxkVMkrIiYkw/\nHJzma+MiJklZETGmHw7N0LIiYpKTFRFj+mF0QTYhoMy6s0ySsiJiTD9kpKdSmJ/JLmuJmCRlRcSY\nfiopzKGmrom6A81+RzFm0FkRMaafbFzEJDMrIsb0ky1/YpKZFRFj+ik6zbfMWiImCVkRMaafrDvL\nJDMrIsb0U272MIZnpVt3lklKVkSMiYOSwmzK9zXQ3NLmdxRjBpUVEWPioKQwm0gEyvdal5ZJLlZE\njIkDW0PLJCsrIsbEgU3zNcnKiogxcWAtEZOsrIgYEweFeZmkp9lWuSb5WBExJg7cVrnZlFbV2Va5\nJqlYETEmTkoKs2lqbmNvjW2Va5KHFRFj4uTQuIgNrpvkYUXEmDix5U9MMrIiYkycWEvEJKM0vwN0\nR0TeAaq9H99T1WtirlsE/BfQAvxWVe/xIaIxAIwemUUIa4mY5BLoIiIimQCqelYH16UDtwPHA/XA\nayLymKqWD25KY5xh6akUjci0lohJKoEuIsBsIFtEnsFl/ZaqvuldNx3YpKrVACLyKnAG8LAvSY3B\ndWmt2lxJbUMzw7PS/Y4TGDsqajnQ1Nrn+ze0RshKDcUxkemphsaWLq8PehGpA25V1XtFZBrwlIiE\nVbUNyONQNxfAfiDfj5DGRJUUZrNqcyVllfUcOd7ejgB/f+U9HnttS7+Pc9Nlszn6iML+BzI9VrGv\ngR/f/w5/+O4Fnd4m6EVkI7AJQFXfFZFKoATYiSsguTG3zQX2dnfA4uLc7m4SaJbfX93lnzapkGeW\nbqe2qTWQz3WwM63ZvIfHX9/CqJFZnHHs+D4do7mljUdf3szTb23nrJMmxzfgIAri+6ErldUN/PQv\nK9m7v+vznoJeRK4GZgE3iMhYXOujzLtuAzBNREbiWixnALd2d8CKiv0DFHXgFRfnWn4f9SR/boab\n8LhxSxVzjigYjFg9Ntivf/2BZm790zJChPjsRTM4clzfW2Y7K2pZtn43r72znfCEEXFMOTgS7b1f\nU9/ELfe/Q1llPRefOrnL2wZ9iu+9QJ6IvAw8iCsql4nItaraDNwEPAO8DtyrqqX+RTXGpvlGRSIR\n/vCMUlXTyKJTJ/ergABcdk4YgMVvbI1HPNOF+gPN3P7nFZRW1jP/hAl8+LQpXd4+0C0RVW0Brmp3\n8ZKY658AnhjUUMZ0YXhWOrnZ6Uk/zfeNtWUsXV/O1HF5XHTKpH4fb/qUAsITRrD6vUq2lu1n0pjE\n6hpKFI1NrfzsL6vYtruWM2aP5fKzjyQU6npCQ9BbIsYknJKCbCqqG2hu6ftspERWvq+BPz27kcxh\nqVy7aCapKfH5mLnoZFeMnlxirZGB0NzSyp2PrGLTzmrmzRjNp86XbgsIWBExJu5KinKIRGB3VYPf\nUQZda1sbdz++lgNNrVw5P8yoEVlxO/bMKQVMHD2cZRvKKatK7pZevLW0tvGrv69l/da9HDutiM8s\nnE5KSs+mVFsRMSbOSgq8NbSS8IPu8de2sHlnDSfNGM3JM8fE9dihUIiLTp5MBHjKWiNx09YW4Z4n\n1rFi0x5mTB7J5z48k7TUnpcGKyLGxFlJkTe4vie5Btc37ajm8de3UJiXwVXzwz3qCumtueFiRhdk\n8/qaMqpqDsT9+MnGTYDYwNL15Rw5Pp8vfXQW6WmpvTqGFRFj4iwZWyINjS385vG1AFy7aCbZmQNz\ntn5KSogL502ktS3CM0u3D8hjJItIJMKDz2/i5ZWlTBqdy1cunU3GsN4VELAiYkzcFeRnMiwtJala\nIn96diN7qg+w8ORJA34ex8kzxzAyN4OXVu5kf33TgD7WUPboq+/zj2XbGVuUw02XzyY7s2+Tda2I\nGBNnKSG3VW5ZVX1SbJW7ZF0Zb6wtY0pJHhef2vU5BfGQlprCBSdNpKm5jeeW7RjwxxuKnn5zG4+9\ntoVRI7L42uVzyM0e1udjWRExZgCUFOXQ1NJGVfXQ7rffs6+BPz6jZKSnct3FM3o1INsfZ8wey/Cs\ndJ5/e0e3CwSaw72wfCcPvbCJkbkZ3HzFHEbmZvTreFZEjBkAyTAu0tYW4e4n1tHQ2Monz5vG6JHZ\ng/bYGempnHfCBOobW3hxxc5Be9xE98aaMv70jJKXnc7NV8yhKA5TsK2IGDMAkmGG1uIlW3l3RzXH\nSzGnHVMy6I9/ztxxZA5L5dml25P2xM7eeFsruHfxerIy0rjp8jkHl+jpLysixgyAod4S2byrmkdf\neZ+RuRl86oKjBmQ6b3eyM9M5a+44quuaeHV1Wfd3SGJr3qvk14+uIT0tha9eNpuJo+O3bIwVEWMG\nwOiCLEKhodkSaWhs4e7H1hGJRPjsRTN83Xxr/vETSEtN4aklW2lta/MtR5Dptr384q+rSUkJ8eVL\nZzG1n4thtmdFxJgBkJ6WSnF+1pBsiTzw3LuU72vggnkTmT5ppK9Z8odncPrsEvZUH2DpetsZu733\nS2u44+FVtLZF+MIlRw/I78uKiDEDpKQwm/31zdQ2NPsdJW7e2lDOq6vdyWkfOf0Iv+MAsODEiaSE\nQjy5ZGtSTKnuqR0Vtdz+5xU0Nrdy3cUzmX1k0YA8jhURYwbIUNtbpKrmAPc9tYFhaSmDOp23O0Uj\nsjhpxih2VtSxalOl33ECYXdVPbc9uIK6Ay1cvWA6Jxw1asAeKxjvAmOGoJJCb3B9COwtEl2kr76x\nhSvOnRa3mT3xcuE8t0z84je2EEny1khl9QFufXA5NXVN/Mt5YU6bNbAz56yIGDNAhlJL5Oml29iw\nbR/HTivizNlj/Y7zAeOKh3PstCI276pBt+3zO45vqmsbufXB5VTVNPKxM4/gnOP6tq99b1gRMWaA\njBkiLZEtZTX87eX3yB8+jE8v8Gc6b09cePKh1kgyqm1o5rY/r6B8bwMLT57EwpMnD8rjWhExZoAM\nz0onLzs9oVsijU2t3PXYOlrbInx24Yx+rbE00KaOzWf6pJGs3bKX90tr/I4zqBoaW7j9zyvYWVHH\nOceN56NnDN6kBysixgygksIc9uw7kLBnVD/4z3fZXVXP/BMmMHNKgd9xurUwuoXuG8mzaVVjcyt3\nPLyKLWX7OfWYMXzi3GmD2lq0ImLMACopzCYClCXgVrlvawUvrdjF+OLhfOzMqX7H6ZHpk0YypSSX\ndzZWsGsInujZXnNLG7/822o2bt/H8UeN4uoF00kZ5O5GKyLGDKBEHVzfu7+R3z+1nvS0FK7/8EzS\n0xLjoyIUCrEwSbbQbW1r4zePrWXNe1XMmlrIdYtm9Hhf9HhKjHeGMQkqEaf5tkUi3Lt4HXUHWrj8\n7CMZVxSs6bzdmTOtiLFFOSxZt5vKIboUf1skwm8Xb+DtjRUcNXEEX7jkaN/O27EiYswASsSWyD/e\n2s66LXuZNbWQs44d53ecXksJHdpC9+ml2/yOE3eRSIT7n93IG2vLOGJsHl/62CyGpfd+W9t4sSJi\nzAAamZfBsPSUhGmJbNu9n0de2kxedjqfuXB6YKfzdufE6aMpzMvk5ZW7qKkbOlvoRiIRHn5xMy8s\n38mEUcP56mWzycro27a28WJFxJgBlBIKUVKQkxBb5TY2t3LXY2tpaY3wmYUzyMsJ7nTe7qSlprBg\n3kSaW9r4x7LtfseJmyde38JTb25jTEE2X7t8DjmZ/q2gHJUQRURERonIdhEJt7v8qyKyRkRe8P4L\nd3YMY/xSUphNc0tb4PvnH3phE6WV9Zx73HhmTS30O06/nXZMCXnZ6fzznR3UH0j8LXSffWs7f3vl\nfQrzMrn5ijmBKfKBLyIikg7cBXTUqTwXuEpVz/L+2zi46YzpXiIMrq/YtIcX3tnJuOIcPn5WYkzn\n7c6w9FTmnziRhsZWXli+w+84/fLyyl08+Py75A8fxr99Yg4FeZl+Rzoo8EUEuBX4FVDawXXHAd8S\nkVdE5BsDGWLzzmqeXbot6Rd3M70X9MH16tpGfvfketJSU7h+0UzS0/wbpI23s44dR1ZGGs++tZ2m\n5sQ84fPNdbu576kNDM9K5+YrjmXUIO5l3xP+jsh0Q0Q+DVSo6rMi8k2g/SjfA8Avgf3A30Rkoaou\n7uqYxcV92xbyzkdWs+LdCqZPLWbuAC6r3J2+5g+KZMx/bEoK/H0Nq9+v4sqFMwcgVc+1z9/WFuEX\nf1/D/vpmrv3w0Rw7c/D3Su+pvr53Fp1+BA89t5EV71Wx8DT/9kDpS/6la8u454l1ZGWm8f3PncKR\n40cMQLL+CXQRAa4GIiJyLjAHuE9ELlbV6BZmd6hqDYCILAaOBbosIhUV+/sUZEtpNQD3P72eCYVZ\nfTpGfxUX5/Y5fxAka/5UYNbUQlZtruS1d7YTnuDPB0FH+f+xbDvvbCjn6CkFnHRUcWB/P/1575wy\nYxR/f3ETf3l+I3OPLPTlfIq+5F+3pYqf/WUVqakhbrx0FvkZqb79froqgIHuzlLVM1X1Q6p6FrAC\n+FS0gIhIPrBaRHJEJAScDSwbiBwNjS3sq3XTBDdu38e7O5J3qWnTNxd5K6ouDtCaTjvKa/nLC5sZ\nnpXONQsHf7mMwZKXPYwzZo+lsqaRN9ft9jtOj2zaUc2dj6wCInzpY7OYFsAWSFSgi0gHQiLyCRG5\nVlWrgW8ALwAvA2tU9emBeNDogOiUEleNg/RBYBLDkePzCU8Ywer3Ktla5v+3/eaWVu56fC0trW18\n5sLp5A/P8DvSgDr/xImkpiTGFrpby/bz07+spKUlwuc/fDQzJwd74cugd2cd5LVGADTmsgdw4yID\nKjogetqssaSllrFqcyXbdu9n4ujE7t83g+uikydx+/Z9PLlkK5+/5Ghfs/zlxc3srKjjrGPHMWfa\nwOy9HSSF+ZnMmzma11aXsXzjHo6TYr8jdWjnnjp+8ucVHGhs4dqLZ3BsOJg5YyVaS8QX0ZZISUH2\nwY1enhzii7uZ+Js5pYCJo4ezbEM5ZVX+Tfdd/V4lzy3bQUlhNpedfaRvOQbbhfMmESK4W+iW72vg\nJw8up7ahmU9dIMybMcbvSD1iRaQHoi2RkqIcjjmigImjhvPWhnJ27w3uvH8TPKFQiIt8XmG2pq6J\nexevJzUlxHWLZpLh45pLg62kMIe5UsyWsv2s27rX7ziH2bu/kdseWM6+2iauOPtIzpyTOGuWWRHp\ngdLKerIz0sjLTicUCnHhyZOIRODpN4fe4m5mYM0NFzO6IJvX15RRVTO4Z7BHIhF+9+R6auqa+NiZ\nU5k0Jvm6Y6ObVi1+fYu/QWLU1DVx24PL2VN9gEtOm8L8Eyf6HalXrIh0o6W1jYp9DZQUZR9cjO54\nGcWokVm8trqUvfsbfU5oEklKyqEVZp9ZOrhrOj31xhZWbq5k+qSRzD9xwqA+dlBMHpPHzCkFbNi2\nj807q/2OQ/2BZm7/8wpKK+u54MSJLDp1st+Res2KSDfK9zbQ2hahpODQngrug2ASLa0Rnn3LWiOm\nd06eOYaRuRm8tHIn++sHZ4XZXXvquPfRNeRkpvHZi2YM2em8PXFRtDXi8yzLA00t/PShlWwrr+VD\nx47j42dNTchVk62IdOPgoHrR4UsNRD8IXly+i9qGZj+imQSVlprCBSdNpKm5jeeWDfyaTs0tbdz1\n2FqaWtr49ILpjMwd2tN5uxOeMIKp4/JYsWkPOypqfcnQ3NLKzx9ZzeZdNZw8czRXzg8nZAEBKyLd\nOjioXnD47m7paSmcf8IEGptbef7txF7czQy+M2aPZXhWOs+/vYOGxoFdYfavL29me3kt80+aFNip\nrYMpuoUu+DPLsqW1jf/72xrWb93L3HAxn0nwEz2tiHSjs5YIwBlz3AfBc8u2c6Ap8ZeaNoMnIz2V\n806YQH1jCy+u2Dlgj7N2SxXPLN3O6IJsrv2wv+emBMnsqYWML85h6bpyyvc1DNrjtrVFuOeJdazc\nXMnRUwq4/uKZpKYk9sdwYqcfBKWVdaSlhijK/+DSy5nD0jj3uPHUHWjhpRW7fEhnEtk5c8eROSyV\nZ5dup7kl/ivM1jY0c88T67zpvDPI9HkHvCCJzrJsi0QGbZZlWyTC75/ewNL15YTH53PDR48hPS3x\nP4IT/xm+UT6hAAAeFklEQVQMoEgkQmlVPaMLsjv9tnD2cePJGJbKM0u30dzSNsgJTSLLzkznrLnj\nqK5r4tXVZXE9diQS4fdPbaC6tolLTp/ClJK8uB5/KDjhqFEUj8jk1VWl7Ksd2FmWkUiEB597l1dX\nlTJ5TC43fnz2kDlHx4pIF/bub6SxqZWSgs7X7x+elc5Zc8axr7aJ19d0tOWJMZ2bf/wE0lJTeGrJ\nVlrb4vcl5OWVu3hnYwUyYQQLTpoUt+MOJakpKSyYN4mW1jaefWtgp1v/6ekNPPf2DsYV5XDT5XN8\n3xc9nqyIdKHUW5piTGFOl7c774QJpKWGeGrJtrh+EJihL394BqfPLmFP9QGWri/v/g49UFpZxwPP\nv0t2RhrXLppBSkriDtoOtFOPLiF/+DBeWL6TugMDM8vyySVbeei5jYwamcXXrpjD8Cz/90WPJysi\nXSjd42ZmjS3seiexkbkZnHZMCeX7Gli2oWIwopkhZMGJE0kJhXjyjf6vMNvS2sZvHl9HU3Mb/7rg\nqEBtoxpEbpblRBqbBmaW5fNv7+DhFzdTNCKLm6+Yw4ghuFqyFZEuRFsiJd20RAAuOGkioZA7gSmI\ni7uZ4CoakcVJM0azc08dKzft6dex/v7K+2wt28+px4zhBB934EwkZ84ZS05mGs8t20FjU/wmOLy2\nupT7/7GRvJxh/OBzp1CU789mdgPNikgXoi2RMV2MiUSNGpnNSdNHs6OillWbKwc6mhliLpzn1kvq\nz5eQDVv38tSSrRSPyOST54bjGW9Iy8pI45zjxlPb0MxLK+Mzy3LZhnJ+++R6cjLTuPnyOYwrHh6X\n4waRFZEulFbVU5iXQcawns2iuHDeoeUUrDViemNc8XCOnVbEe7tq2LCt9ztn1jY0c/cT6wiF3Oq8\nQ2ngdjCce/wEMtLdLMuW1v6Na67aXMldj61lWHoqX71sDuNHDd0CAlZEOlV/oIXq2qYedWVFjR81\nnDlHFrFpZzUbt9sWuqZ3Fh7cQndLr+4XiUT4w9Mb2Lu/kYtPm8zUcflxzzbUDc9K58w5Y9m7v5HX\n1/R9urVu28sv/7aalJQQX7l0FkeMHfpTq62IdKK0yuvK6mZQvb0Lo4u72aZVppeOGJvH9EkjWbdl\nL++X1vT4fq+tLmOZVjBtfP7BvdxN70W30H1qyVba2nrfk/Derhp+9vAq2toifPGjxyATRw5AyuCx\nItKJMm+5k7G9aIkAHDkun6MmjmDNe1WB2EvbJJaFvVxhdvfeeu5/biNZGalce5FN5+2PkbkZnHrM\nGHbvbWCZ9m669fbyWn760Aqamlu5/uKZHHNE4QClDB4rIp3YFV14sZctEbDWiOm76ZNGMqUkj3c2\nVrDLm9jRmZbWNn7z2Doam1q5ar5QNGJozv4ZTAtOmkQoBE/2YlyzrKqenzy4nLoDLXzmwukcn2Sz\n4qyIdCLaEunNmEjUzMkFTBqdy9sbyg+uAmxMT7gVZt2XkO620H3stS28X1rDvJmjmTczMfbjDrrR\nBdmccNQotpXXsvq9qm5vv6e6gdseXE5NfTNXzg9z6jElg5AyWKyIdGJXZT05mWnkZvf+7NLoB0EE\neMq20DW9NGdaEWOLcliybjd7qjteYXbj9n0sfmMLRfmZXHmeDG7AIS46y/LJN7Z0ebt9tY3c9sAK\nqmoa+fiHpnL23PEDHy6ArIh0oKW1jYq9DZQU5vR5o5i5UsyYgmze8GEvbZPYUkIxW+i++cE1neoP\nNHP342sBuHbRDLIzbTpvPE0cncusqYVs3NH5LMv99U385MEVlO9r4KJTJrNgXvKuT2ZFpAO79zbQ\nFon0emZWLPdBMInWtghPL7XWiOmdE6ePpjAvk5dX7aK67vAtdP/07EYqaxpZdMpkpo0f4VPCoS3a\npdjRplX1B1q4/aGV7NxTx7nHj+cjp08Z7HiBYkWkA2WV0TWzej8eEmvezNEU5GXw8opd1AzSXtpm\naEhLTWHBvIk0t7Tx3LJDrZE31pSxZN1upo7NY9Gpk/0LOMRNGz+C8Ph8Vm2uZNvuQ7MsG5tauePh\nlWwt28/ps0r4xDnTEnZb23hJiCIiIqNEZLuIhNtdvkhElorI6yLy2Xg93q7K6Oq9fW+JgLeX9okT\naWoZnL20zdBy2jEl5GWn8893dlB/oIWKfQ388VklY1gq1y6akfA74gXdwlMmA4daI80tbfzir6t4\nd0c1J04fxb9ecFTSFxBIgCIiIunAXUBdB5ffDpwHnAlcJyJxmVt3qCXSvyICcPrsseRmD85e2mZo\nGZaeyvwTJ9LQ2Mpzb2/n7sfXcaCplSvPCzNqZP/fm6ZrR08pYOLo4by1oZxde+r49aNrWLtlL3OO\nLOKzdk7OQYEvIsCtwK+A9js+TQc2qWq1qjYDrwJnxOMBd1XWk5aaEpdVNzPSUznv+Ak0NLbw4vKB\n20vbDE1nHTuOrIw0Hn3lfTbtdN+ATznapvMOBjfLcjKRCPzoT2+z/N09TJ80ks9fMpO01ET46Bwc\ngX4lROTTQIWqPutdFFv684DqmJ/3A/1eNCgSiVBWWc+Ygqy4fdM429tL+5m3ttPUHP+9tM3Q5VaY\nHUcEKMjL4KrzxbpQBtFx4WJGF2RTd6CFqePy+NLHjiE9bWhsaxsvQZ8beDUQEZFzgTnAfSJysaqW\n4wpIbsxtc4G93R2wuDi3y+sr9jbQ2NzKpLH53d62NxaeOoVHXtjEyi17ufCUvs/miGcmP1j+3vuX\nBTOob2pj4alTmDyhf+sxJfLr71f2r33yOF58ZztXXTijX7sSJvJr35VQoixZLiIvANer6kbv53Rg\nLXASbrzkdWCRqna10XmkoqLr9azWvl/FT/68gotPncwlpx8Rn/BAdV0TX//V6+TnDONH18/r06Bo\ncXEu3eUPMsvvr0TOn8jZYUjk77T5G+jurA6EROQTInKtNw5yE/AMroDc200B6ZHomln9nZnVXn7O\nME6b5e2lvS4+e2kbY4zfgt6ddZCqnhX9Z8xlTwBPxPNx+rp6b08sOHEiLy3fxeIlWzlp5mhSrG/b\nGJPgEq0lMuBKK+sI4RZii7foXtq79tSx8t3+7aVtjDFBYEWkndLKegrzM8lIH5gZGNFl4p+wLXSN\nMUOAFZEY9Qeaqa5rivt4SKxxRTkcO62I90tr2LC128lkxhgTaFZEYpQO4HhIrIN7adumVcaYBGdF\nJMZAzcxqr697aRtjTNBYEYkxkDOz2ruol3tpG2NMEFkRiVEap9V7e+KomL20d3azl7YxxgSVFZEY\npZV1DM9KJy972IA/VigUOtga6W4vbWOMCSorIp7mljbK9zUMSiskanZ0L+21u9mzr+O9tI0xJsis\niHjK99YTicRnD5GeSgmFWDhvEm0R20LXGJOYrIh4Do6HFAz8oHqsE2eMoig/k1dWlX5gL21jjAk6\nKyKe0uhuhkWDu2NcakoKC05ye2n/463t3d/BGGMCxIqI59DMrMFtiQCcNquEvJxh3l7azYP++MYY\n01dWRDyllfWkp6VQlJc56I+dnpbK+SdM4EBTK/98x7bQNcYkDisiQFskQmlVHaNHZsdtS9ze+tCx\n48jOSOPZt7bTaFvoGmMShBURYG9NI03NbYM+HhIrKyONs48bT21DM6+s3OVbDmOM6Q0rIhwaVB8z\nAHuI9Ma5x49nWFoKTy/dRktrm69ZjDGmJ6yIELN6b9HgD6rHyssexhlzxlJV08iStbt9zWKMMT1h\nRYTgtEQALjhxIqkpIZ5cspW2Ntu0yhgTbFZEcC2REMEoIgV5mZx89BjKqup5Z2OF33GMMaZLVkRw\nLZHC/EyGDdCWuL214KSJhHDLxNsWusaYIEv6IlLb0ExNfbPv4yGxSgpzOO6oUWzdvZ+1W6r8jmOM\nMZ1K+iJSdnDNLP+7smItnOdtWvW6LRNvjAmupC8ih9bMCk5LBGDSmFyOnlKAbt/Hph3VfscxxpgO\nWRGpCmZLBGDhwS10t/iawxhjOmNFZE8wWyIA4QkjOHJcPis3V7K9vNbvOMYY8wFpfgfoioikAncD\nYSACfE5V18Zc/1XgGiA6F/Z6Vd3Ym8corapneFY6w7PS45Q6fkKhEAtPnsQdD6/iySVbmTuzxO9I\nxhhzmEAXEeAioE1VTxORM4EfApfEXD8XuEpVl/fl4M0trVTsa2DauPw4RB0Ys6YWMr54OEvX76Z0\nT13gf2HGmOQS6O4sVX0UuN77cTKwt91NjgO+JSKviMg3env83XsbiET82UOkp6KtkUgEHnnhXb/j\nGGPMYQL/xVZVW0Xk98BHgEvbXf0A8EtgP/A3EVmoqou7Ol5xce6hY++qAWDapILDLg+aBacP54k3\ntrDq3T188eNz/I7TL0F+nXvC8vsnkbND4ufvTOCLCICqflpE/h14U0Smq2qDd9UdqloDICKLgWOB\nLotIRcX+Q8d9vxKA3IzUwy4Popsum8Pw3MzA5+xKcXGu5fdRIudP5OwwNPJ3JtDdWSJylYh80/ux\nAWjDDbAjIvnAahHJEZEQcDawrDfHP7h6b2Hwpve2NzI3g7HFw/2OYYwxhwl0EQEeBuaIyEvA08CN\nwEdE5FpVrQa+AbwAvAysUdWne3Pw0so6hqWlUJA/+FviGmPMUBDo7iyv2+ryLq5/ADcu0mttkQhl\nlfWMKcgmJeTPlrjGGJPogt4SGTBVNQdoamljTAJ0ZRljTFAlbRE5NB4S3Om9xhgTdElfRKwlYowx\nfZfERcRbM8taIsYY02dJXETqCYVgdEGW31GMMSZhJXERqaM4P4v0tGBsiWuMMYkoKYtIbUMz++ub\nbTzEGGP6KSmLiI2HGGNMfCRpEbGZWcYYEw9JWkSsJWKMMfGQpEXEWiLGGBMPSVpE6sjLDuaWuMYY\nk0iSrog0t7SyZ9+BQO9maIwxiSLpikhZVQMREmMPEWOMCbqkKyLRQXVriRhjTP8lYRFJnN0MjTEm\n6JKwiERbIlZEjDGmv5KwiNQzLD2FgjzbEtcYY/orqYpIW1uEsirbEtcYY+IlqYpI+d56mlva7Ex1\nY4yJk6QqIjvKawEbDzHGmHhJsiKyH7A1s4wxJl6SrIhYS8QYY+IpqYrI9t373Za4I62IGGNMPCRV\nEdlRXkvxiCzS05LqaRtjzIBJ8ztAV0QkFbgbCAMR4HOqujbm+kXAfwEtwG9V9Z6ujldT18QRJUUD\nmNgYY5JL0L+SXwS0qeppwH8CP4xeISLpwO3AecCZwHUiMqq7A9p4iDHGxE+gi4iqPgpc7/04Gdgb\nc/V0YJOqVqtqM/AqcEZ3xyyxImKMMXET6O4sAFVtFZHfAx8BLo25Kg+ojvl5P5Df3fFKbHqvMcbE\nTSgSifidoUdEZDTwJjBdVRtE5Bjgx6q60Lv+duBVVf2rnzmNMSaZBLolIiJXAeNV9UdAA9CGG2AH\n2ABME5GRQB2uK+tWX4IaY0ySCnRLRESygN8DY4B04EfAcGC4qt4tIhcB38aN7dyrqr/yK6sxxiSj\nQBcRY4wxwRbo2VnGGGOCzYqIMcaYPrMiYowxps+GbBERkTF+Z+iPRM6fyNnB8vvN8ieWITewLiJz\nga8DLwF3q2qLz5F6JZHzJ3J2sPx+s/z+E5ELgVZVfaan9wn0eSK9JSL/C5wPfEZV3/Y7T28lcv5E\nzg6W32+W318icjLwFdz5eN/vzX2HVBEBNgIHgIki8i3gNeANVX3D31g9lsj5Ezk7WH6/WX5/fQ94\nXVW/IyJniUitqu7uyR0TdkxEREIiMkZE7ou5eAdwPPBh4Me4JeIDeQJiIudP5Oxg+f1m+YPBWzoK\nEUkBfgccKSIvAJ8Cfi4iN/XkOAlbRFQ1glvZ9yoRudK7+F3gOeCHqvqWqt4JvC8i5/gUs1OJnD+R\ns4Pl95vl95+InAo8JSLDVLUNqAWagP9Q1atx225c5y0r1aWEKiIikubtI4KIFOJW9r0d+JGIZKjq\nZuAeoNS7zUjc8vHLfIp8mETOn8jZwfL7zfIHh4gMBz4B5AK3eBe/CvwGeAtAVVfiimJmd8dLmCIi\nIl8FHgR+KCJjVbUSeFlVbwZeBn7q3TQduNtbPv7vwDbcMvG+SuT8iZwdLL8PkQ9j+f0lIjki8nER\nmeldlAWswrWmLhORo1S1ClgPfFJEThORHwCjgIrujp8QU3xFZB7wLeCLwBe8ix9T1de964uA5cB8\nVV0vIiXANKBMVTf6kTlWIudP5Oxg+f3IHMvy+0tETgHuxbUqjsBtN/4EbnX0LSLy38DJqjpfRDKB\nrwKzgc3AD1S1obvHCGwREZFJuGXfdwCfB6ao6s0iMg74KK5K/q+q7vdu/z3gIlWd61fmWImcP5Gz\ng+X3m+UPDhH5AlClqg+KyCXAScAKVf1zzG3WAt+LXuaNkzT19DEC150lIinipsj9HbfM+6+AvwAL\nRKRQVXcCK3DTkydH76eq3wZ+OfiJD5fI+RM5O1j+wU98OMvvPxGZIiK/E5EbRGQKruvqYu/q5wAF\nZonIqJi73QJcHf2hNwUEAlhEgBOBU4DTVfWzwCzcVrhP4n6xqOorwAy8/CKS5l1+rx+B20nk/Imc\nHSy/3yy/j0TkPOBPuMHxFlwBvAeYLCJzVbUWV0RGAWkiEgJQ1T+o6gV9fdwgnmw4A1gMNHjNx1pg\nN/AT4GUReRwow2WP/gKDtLxAIudP5Oxg+X0hIiFv2mtC5o+RkPljXv+xwKOq+n9ecTsdV0z+jDsL\nfaGqviEi/wlkePfpN19bIiIyUrxpczEeB+5R1VbcFLTdqrpfVctw69JcgKuuv1eflxcQd8LRaSIy\nLObihMgvIjkx/w55/0yI7OD6baO5xZ0sBYmVf4SIZHv/jn6ZS6T8o0XkKyIyKubDKJHyZyfy+ycq\npoCA2yb8ce/fxwNFQJOq3gGMFJFbxJ1MuB2oilcG31oiXjU8H3hLRF5V1b8CqGrslLIrgae9218P\n/FFV/z7oYTsgIv+Fe1P9VFWbor/MRMjvDQQeIyIrgTtUdS8k1Gs/G9eHewfwvrqTpRIpfwnwC+B1\n3LfcVkio/DcCN+AW6vtZIr33AbwZSdOB1SJyl6qWQ0K9/mOA64B/4JZbqQRQ1YdjbnYF8KSqNns/\nnw0ch1uKJa7Pw5eWiIhcBkwBLse9CMeJSG7MN2K8FsppuLVo/o57AVJjb+MHcScd3YjrOz0HeF3c\nyUfR66N9pUHN/1HcFMQve/k+5l2eGnOboGaPPv48XO4TRSSrg9sFPX86MB44VUSOVtVIgrz+k0Xk\nLWACcCnwmohkt+8WCWp+AHEzlKbhFhscDdwgInO86wL9twsH/36fBEYCnwQ+1T6X9/Mw4CERuVFE\n/gHkquprA1EIB60lIiITVHW79+O/4Cr7LhF5H/hIdLpcjGJgKu4X+D+qunSwsnYkml9VW0RkH/Am\nbkbGeNwJOStE5HZVbfPejIHJ3+61PwP3bWS7iDyHa5FkqTcfPGjZvUxHAftwr3Mrbr7734CTcSdI\nrYq5bYjg5w/jWiFv4k7uujXaGgxo/ulApbrzCq5Q1c3izj/IUdX62C6VgOafCmz1xi/OAF71Pnvu\nBC7Bzb5aGcS/3Vhet+d84F9VdbWIXA1MjH4J8brhAEYAnwZOwC0E+al2ray4GpSWiIiMAO70qijA\nzcBT3r+zcSfrtFcJXK+qH/P7lxiT/xLvouXAWcBbqno+cBcwCde9hde9Eoj8Mdk/4l30BHCBiLyK\naxKnAndEn1vAsueIyC24GSc/xHVfAfxBVb+M+0Z/uvccY/uHg5j/B8DPvatCuL7rHbhv9PeKSJ6I\npAU0/x+BH4vIL9Ut7wHwHlAgIuNjWyIBy58tbon2B4FbxO2V8Re86azqTgZchZuBNcm7LDDvfwAR\nmSMit4vIPK8I7gEyvKvbgCMBYgoIwEzgGeA6Vf2KqpYOZMYBLSIxzaxLcU9skYgMV9V3gQPiBqQv\nxT1hROTUaPeEqjaq6pMDma87HeT/sIjkquoq3Bzy6CDWq7hfaJV3v1S/83eQ/WIRyVPV53D92ZtU\n9QhV/SKwBVdMApE9xvm4b1rH47rfThCRYlVd613/IHAs7vnhfSNLCWj+G4G54tYtOtf7+TvAGqBG\nVWu8Vm5Q838J1+0c3bUvG5f9sNlJXiEPSv5zcR+yp+LWsDoHN/11o4h8w7vNEtwZ2k3gWuJByS8i\nV+C+eOwCLvHGb/5TVZd5Lab5uL+BaBccAKr6qqp+RFU7+nIedwNaRGK+oYzC/cFsBa7xrmsFCnEf\nXoUi8iRwHu5bWiB0kv9a77KHcB9qU3HjI9OAeu9+rfisq9fec4W4GTYfwrWgooPrvmePcQTwqPfv\nqbjpltVyaH77K7jcF4m32mh0kD0g2uffg9v0ZzPwPvAZ3O8kIiLzIfD5yzn0PnkPV7wPG09oPz7i\ns1G4Ka9NuK7PElzB+CZwvbil0GfjuhijX159f/1jvgBmAn9R1dtwS6/MFZGrvOsmAPtVdbGI3AB8\nXURyfYg74C2R6PF/g2ttLMENJk71Lj8FuAxYBPxEVb+rqvUDmak3Osk/T0Smem+244Dv4vYPuMVr\noQRCJ9lPFpGwqr6Py3wbbjOab6vqP/1J+kExf0T344o1wBhc66mp3QfVz4H7o2MKQdBF/ne9In2f\n182wHffF499V9Vkfonaom9e/MeamT+IKYSA+fKNi8j+kqveJSB6uRfIc8FfgaOBruG6tHwG3x3TT\n+S7m/V2COykw23t9vwVE9/iYDpwvIo/hljK5r4Nx5cERiUTi8l84HE5t93Oog9sUhcPhb4XD4Vu9\nn0eHw+Eb4pVhEPPfFnNZWgJl/4/oa+9dVuB39k7yp3Rwm9+Gw+EzwuFwZlDeM33If2Y4HM4Kh8Nf\n6Oz3FPD80df/i35n7iZ/qKN/ez9/JhwOf7mj+/mYPxSbJfr6h8PhU8Lh8OJwOHxEOBxO9y67PxwO\nzwmHw9eEw+Gt4XD4RL/z93sBxpiuhejsjI8Cb6vq1uj1sd8cxe3l+zXgm97YiK/6kf8bqrrJh8gH\nJctr7w2cPw/8P1yX5yrcc/C16y3J838LaPOzBdKD/CnqZlydDhTgvtlfDXxFA7BtrTcmPFVV13s/\np+uh8zqit/kpbjn5e3FdiXfhVhPeF5Suwz4XkQ4+oGYBn8OdKbkZd1bnMx3cLwvI9Lv7IZHzJ3J2\nL0eP83sfFDOBF3ETGW5R1Q2DHjqG5U+c/N71F+C6zifh8q8b5MgdEpGLgRtV9RwR+VfcCY5/xRXC\npd5txuDGYafjTid4g0MFPHGLiBw+JxkROR73BvuSqj4sbiXMCPD/VHVr+1+63xI5fyJnh97n924z\nCpipqi/4EjqG5fdXX/IHiTdWGYo+BxH5Le68jp0cGq85G7gidvzJmwTQ4HfvR0f6NLCuqq3iztz+\nhohcoqrLcFPnxLvJU7iBuLO8JmVgPsQgsfMncnbofX7vPuVB+AADy++3vuQPElVt855DdCn2H+C6\n2f7kvcYP4E5KPbHd/VYHsYBAD4uIiBwpIveI28ULEVmAO2ltArBQRG4G/g23cX22uvnJ7+H68nyf\nspvI+RM5O1h+v3JHWX5/iduj5BqJWVpFRH4I/FVE7gPygRdw57CAO98sF1jb4QEDqEdFxKuA4zi0\nuclo3MJx38GdYPdR3Bzyl3HbLwL8n6o+4vfgISR2/kTODpZ/kON+gOX3j4hciptWLEB0Isu/ANmq\nehpuqflv404YPFvc6gB34bq2aiUAa3X1RLdFRA4tDPe/wOXidsvaiDvJ6Ke4X977uF/gjbi162k/\ny8AviZw/kbOD5feb5feHuGX+3wQ+AXxZVb+uqnUxNxkvIr/HnWi9Dtdqug83g+ybqnqzfvB8qMDq\n1cC6iNwFbMN9E/g3XP/jVNzZ2jWqeudAhIyXRM6fyNnB8vvN8g8erwXxMPCKuqXyx+NOErwTt1vi\nvwFPq+oPReQXwFJV/YN/ifunp2Mi0dV+b8WtelmMW2r4FuAjwK+D9EtsL5HzJ3J2sPx+s/yDz2tB\nfAfXeroV10VVq6pbcKs33wtMErdBVE0iFxCg52esh8PhIu//94TD4Su8fxf7fbZkMuRP5OyW3///\nLL9vuX8QDoe3h8PhrA6uk0R4Dj35r0fdWeL2G/4Zbv71OOAGVV0xwPUtbhI5fyJnB8vvN8vvH28a\n7/3Af6jqUnFnqDcnylhHT/V4TEREjsSthPmQHr4IW0JI5PyJnB0sv98sv39E5Brc3iQndnvjBNXv\ntbOMMcZ0TEQycfud3weBWyo/LqyIGGOM6bPALQtgjDEmcVgRMcYY02dWRIwxxvSZFRFjjDF9ZkXE\nGGNMn1kRMcYY02dWRIwxxvTZ/weg7d1X+ZgRHgAAAABJRU5ErkJggg==\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 52
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This student seemed to be in full panic mode after the first week, but has gotten things under a little better control since then."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "rails_student_hw.plot(title=\"Random Student Homework Difficulty Ratings\")\n",
+ "plt.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEPCAYAAACDTflkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4HOXV8OHfqne5SLZcZWN7DwaMjW0MBDChk5deQkih\nBQjJSxJCKiFASIAQAiG0LwmhBEMIhABvCr2GEqppNu0YA5YLSJZsS5Zkde33xzNr1kJdu5qd1bmv\ny5e1O7M7Z9uceXooEolgjDHGDEaa3wEYY4wJLksixhhjBs2SiDHGmEGzJGKMMWbQLIkYY4wZNEsi\nxhhjBi3D7wBM/4hIJ/AW0AFEgDxgM/AtVX01Tsc4DjhLVfeNx/N18/w/Br4MhIB04GHgPFVtE5Fd\nga+r6rcG+JzXA9Wq+otBxjQduEJVj+tm20XAWFX9Tpf7VwHHqOprgzmmH3p6Ld3sF/s9C3l3366q\nv/W2nwmMUtXLReQg4EagEjgbuAPYBCwBZqrq2YOMtRMo8WL4P1XdbwCPPQW4BvjQuysEFAHPAt9Q\n1ZY+Hv8ocIKqbhSRB4AfqOp7A38VI4clkWD5vKpujN4QkR8A1wGf8y+k/hGRLwJHAburaouIZAP3\nABcBPwN2BCYP4qkj3r/BKgdkgM8dxMFVA4l56/dMRMYC94tIRFWvUtUbYvY7AbhBVX8lIhcCT6rq\nGXGMeTSw6yAe97SqHhG94X3XngNOBv7Ux2MPwEueqnroII494lgSCZbolSEikoE7AW7wbo8HbgDG\nAWVABXC8qlZ7V85/BvYHpgJ/U9WfeI/7JfAV73lWxjx/MfD/gLm4E9BDuFJDh4g0A1cBh+Gu8n4E\nfBGYA3wMHK6qW7rEXoYrfeQBLV4i+TZQKiKTgV8CRSJyM3AbcL2qzvFi+TxwnarOEZEi4CZgZ9wV\ncBtQ4+03CZdUpwKZwF2qepmITAOeAB4AdgPG4BLXPd5zTRSRh1T1C729590RkaOAC73Xthn4vqq+\n4l35zwC2AyYCLwGP4k5k04Efq+pd3nP8DDgGV728CvhfYBHwQ1Xd29vnPdzn9nPv/XoJl3SP7OX4\ne3jv+zK2/Wy/58VxsKqu7+31qeoGEfk+cC9wVbREg/t+HQk0eVf/hUC6iOQCjwHHqerhIlIG/BGX\nqDuBP6rqdSLyH9xneq8X03+Aa1X1vpj3/c9Aroi8BlyJKyXv6e0/FXgBKFfV9i5hd/3MSoBiPv2t\nHAb8FMjC/V6WqOqFIvJnb/8nReRQXOI51nttlwIfADsB2V4s/xGRUi/O7bznrwKWq+ovROQXuAun\nVm/bKapa2dv7HUTWJhIsT4nIGyKyDlDcj/JUb9uXgP+q6udUdTtgC3City0C5KvqYlyp5TsiMk1E\njsSdvOZ69+fz6RXrtbhqojnAQm+fH3rbsoCPVXVn4Pe4E/HZwA64H+uR3cS+BKgFKkXkeRG5Epiq\nqktVdS1wAfCsqp5G7yfuXwCNqro97gc+Kybm24FbVHUhLlkc6JWAwJ24H1bV3YCfAL9R1U7gNOCD\nXhLIl0Tk9dh/uKSAiGwP/AFXtTUXdzL/p4gUeo/fEzgEmA0cCMxW1X2Ab3uvAxE5CXdiWqSqu+CS\n9U3AI8AcESnykmAR7iIA4Ajg/3An5t6OPwXYRVWj34NoleKxwD59JZAYy4AyESnBK52p6pXAv4Cr\nVDWMSxR3qerXvPct+pn8HnhPVWfjkto3RGQGny3ldS0pRYBTgCZVnY9L+DNEZLa3/XTg1m4SCMDe\n3mf1joisB/6Gq7K8V0RCwPeBk1R1Vy+mn4rIGFWN/pb29b6TsTEuAq70YrkZV4IG9ztZrqo74C6k\n9gAiIjIF95tY6B3nUe85Uo4lkWD5vKrOAw7FXdG/oKo1AKp6LfCiiHxfRP6AOzHlxzz2n95+HwPr\ncVfjBwD3qmqjqnbgfhzRE/ghwPXeY1pxJ4nYE+293v8f4n5En6hqBPgIVw2xDVXdrKoHA9vjTpLj\ngAdE5NfeLr1e8cfYH1dSQVU3ROMQkTxgH+Bi70T/Au5Kfa73uDZVfdD7+3Xv9fd13AjuxLhL7D9c\naSsE7Ac8rqqrvHiewr23C7zHPqaq9ara7D3mYe95P4w5/mHA7sBSL+5vA2HvMY8DBwEH40qZ072S\n2BHe6+7r+C96iTL6Oo8Ffg1cpqqbe3nd3b0P4C5MQj28Z13vj/69P14VkvcdmKOqH/TzuFufz/sO\n3gScISJpuJLUDT087lnvc9oRVzItwSU8vO/o4cCuXhXcb73j5PfwXFEVqrrM+zv2+/OFmNdXiUt2\nAGuBN4HXReQK4A1V/Vd/XnTQWBIJIFV9AzgHuElEygFE5HLc1W0V7sf1KNv+qJti/o542zrZ9jvQ\nEfN3WpfHp7Nt9WdsA2VbXzGLyE9EZA9V/UhVb1HVk3A/wLO62T0aX1RWl23dxZzu/b9HzMn+c8Bl\n3v2tvTx/b3rbr7sTahquKq3rMaH79ykN+HVMzAuBxd62+3AXDAfjSibPAEfjLhCe7sfxG7tsWwEc\nB/zBq67sr12BD2OqKPvTvhLdZ5uSgohEE2HXzzH2M+7JDbiOGYfjLlxW97azqkZU9WLchc3N3vHz\ngTeAecCruKrYNvr+PnT3+wH3+mJfRycQ8o69Dy7ZbQB+JyJX9/kKA8iSSEB59ekvANEv5kHA1ap6\nB1CNqz5J7+Hh4H4IDwNfFJFi7+ruxJjtj+Cd4L2GyW/g6rr7o7sfZA7wa69KJGoH3A8Z3I8xevKr\nBqaKSKlX/XBUzGMeBk4TkZCIjIpuU9V64EXgB17MxbgeOUfQu9jj9ud1REWAJ4GDvB5eiMh+uNLP\ni308NtYjuKvraBXURbiqP3BtOPvjSlMv4y4MLgYe9EoYTw3w+Mu9NocncO1dPYlte5uIK71c2c32\nnkolsfs8jlfl6n0mTwAzcZ/xQu/+Gbg2rq7aifkOq+oa3Hf+d7hqvP46C9jfq76dhWvjuEBVHwA+\nj2vjiB6ng/4ltKgHcFWi0U4IRwGdIrKziLyFq8r7Ne532t1rDDxLIsHR3dXft4EviMiBuIbpK0Xk\nRdwP7B7cj7VHqvoQcAuwFHfiaYg5zneBcSKyHFcn/i6ucbFrLN31YOou1otxJ5TnRORdEVHcFffx\n3vbnge1F5F5VfQd31bkUd9L4OOY5L8JdOb4H/BvXHTXqK8DuIrIM1/B8p6re2UNM0dtvAR3e+9ZV\nrz2/VPVdXCP4fd779Ctcp4L6vh4bs+0m4H5cVeRbuIRxsvf8dcA7wOte0ngMmIRXhee9T/09fuzt\n7wGLxXXp7s5TXpvCUlw16BJV/WM3z9Ofv78NzBaRN3EN1b9S1zX6ElwCXI5LUk938958DLzmtW1E\nq0hvxZ23HqR7n3nfVfVD4HJc1ZXi3u93ReRZXKluKZ/+Vu4DnhWRHXt7zpjb5+C+t8twv7kKYItX\n9XU3rpryFVz7zjk9xBxoIZsK3hgTBF5p+XrgI1W9wu94AETkW7gk/6JXYn8GuFBVH/E5tGGT9F18\nve59dd7ND73eO9Ft5+CKktXeXWeq6ophDtEYk2BedV8FroT5A5/DifUOcJ2IpOOqwe4eSQkEkrwk\nIiI5wPNet7rutt+O62L4+vBGZowxBpI/ieyGa2SswJWazlPVl2K2vwO8jRtQ9YDXgGWMMWaYJHvD\neiNukNDBwDeBO7x60ag7gTNx/eX38kaZ9ijiMqYv/y744/OR48+7P+JnDPbP/tk/+zfIfz1K9jaR\nFXjTNajq+yKyAZgArPO2XxMdNCVusrRdcF3uuhUKhaiurk9sxD2oqNxMXnYGNTUNg36O0tJC3+KP\nB4vfX0GOP8ixQ2rE35NkL4mciuuWF+2vXoSbLyna53y5iOR7Ywn2w3XVSzpt7Z3U1rdQOirX71CM\nMSaukj2J3IyblO8Z4C5cUjleRM7w+tCfixtw9Qzwlqo+3PNT+WfD5mYiQEmxJRFjTGpJ6uosb3K1\nE7vc/WLM9jtx7SJJrbrWzZhQOirH50iMMSa+kr0kkhI+TSJWEjHGpBZLIsOgprYZsCRijEk9lkSG\nQbQkUmJJxBiTYiyJDIPq2iayMtMoyutpslhjjAkmSyIJFolEqK5ronRULqFQf2cHN8aYYLAkkmCN\nze00tXRQat17jTEpyJJIgn3aHmLde40xqceSSIJZ915jTCqzJJJglkSMManMkkiC1dR5Y0SKrTrL\nGJN6LIkkmI0RMcakMksiCVZd20RxfhbZmel+h2KMMXFnSSSBOjo72VBnU8AbY1KXJZEE2rS5hc5I\nxLr3GmNSliWRBNraM8sGGhpjUpQlkQSqrrPZe40xqc2SSALZYlTGmFRnSSSBbKChMSbVWRJJoOra\nZjLSQ4wqyPY7FGOMSQhLIglUXdvE2OJc0tJsCnhjTGqyJJIgTS3tNDS1WXuIMSalWRJJkE/nzLL2\nEGNM6rIkkiDWqG6MGQksiSSIde81xowElkQSxEoixpiRwJJIgkTbREqsTcQYk8IsiSRIdW0T+TkZ\n5OVk+B2KMcYkjCWRBOiMRKiubbaqLGNMyrMkkgB1Da20d3TaaobGmJRnSSQBrGeWMWaksCSSANYz\nyxgzUlgSSQBLIsaYkSLpuw6JyGtAnXfzQ1U9LWbb4cAFQDtwi6re5EOIn1FdG53yxKqzjDGpLamT\niIjkAKjqvt1sywSuAhYCW4D/isi/VHX98Eb5WTV1TYRCMKbIkogxJrUle3XWXCBPRB4RkSdEZLeY\nbbOBlapap6ptwHPAYl+i7KK6tomxRTlkpCf722v6q6290+8QjElKyX6WawSuUNWDgW8Cd4hINOYi\nPq3mAqgHioc5vs9obeugtqHV2kNSSHNrO9+77jn+9pj6HYoxSSepq7OAFcBKAFV9X0Q2ABOAdbgE\nUhizbyGwqa8nLC0t7GuXIVlTVQ/A5PGFCTlWouNPtCDG39LWQUtbB6++t54vHSh+hzMkQXz/o4Ic\nOwQ//p4kexI5FdgZOEtEJuJKH5XetveAWSIyGldiWQxc0dcTVlfXJyhUZ8VHNQAU5mTE/VilpYUJ\njz+Rghz/xLH5fPhxHVVVmwO7UmWQ3/8gxw6pEX9Pkr0662agSESeAe7CJZXjReQMrx3k+8AjwPPA\nzar6iX+hOlt7Zll1VkqZVlZIS2sHn2xo9DsUY5JKUpdEVLUdOLHL3S/GbL8fuH9Yg+qDjRFJTeVl\nhTy3/BMqquqZVFrgdzjGJI1kL4kETjSJlNiUJymlvMwV51dVBrdKwphEsCQSZ9W1zWRnpVOYm+l3\nKCaOpowrIC0Eqy2JGLMNSyJxFIlEqK5rorQ4l1AomI2vpnvZmelMHl9IxfoGOiMRv8MxJmlYEomj\n+qY2Wlo7bPbeFDVz8ihaWjuo2rjF71CMSRqWROKoxnpmpbQZk9xY1gqr0jJmK0sicWQ9s1LbjMmj\nAGtcNyaWJZE4ssWoUtt2k4oJAaurLIkYE2VJJI6sJJLacrMzKBubR0VVvTWuG+OxJBJHNXWuTaTE\n1hFJWeVlhTS1dFC9qcnvUIxJCpZE4qi6tolRBVlkZqT7HYpJkPLxbtBhhVVpGQNYEomb9o5ONmxu\ntqqsFDfNRq4bsw1LInGycXMzkQiUFFsSSWVToyURSyLGAJZE4qa6LjpGxNpDUlludgbjR+dSUVlP\nxBrXjbEkEi/WM2vkKC8rZEtL+9YLB2NGMksicWJJZOSIzuhrkzEaY0kkbmwxqpFj2nhrXDcmypJI\nnNTUNpGRnkZxQZbfoZgEi5ZEKio3+xyJMf6zJBIn1bVNlI7KIc2mgE95eTmZlI7KoaKqwRrXzYhn\nSSQOtjS30djcblVZI0h5WRENTW1s2GyN62ZksyQSB9H2EJvuZOQoH+/WWa+obPA5EmP8ZUkkDmrq\nrGfWSDOtrAiAiiprFzEjmyWROLCeWSNPuU1/YgxgSSQubIzIyFOQm8nYohwbuW5GPEsicRBNItYm\nMrJMKyukfksbm+pb/A7FGN9YEomD6rpmCnIzyc3O8DsUM4ymltlkjMZYEhmizs4IG+qarCprBIpO\nC29ri5iRzJLIENU2tNDeEbHZe0egcpv+xBhLIkNljeojV1F+FqMLs60kYkY0SyJDZN17R7ZpZYXU\nNbRS22CN62ZksiQyRFtLItYza0Sy8SJmpLMkMkTV3mj1EiuJjEjRdhFbW8SMVJZEhqi6tom0UIgx\nRdl+h2J8MM1KImaEC8TABhEZB7wK7K+qK2LuPwc4Daj27jozdvtwqKltZmxxNulplo9HouKCbIoL\nsqxx3YxYSZ9ERCQTuAFo7GbzfOBEVX19eKNyWto6qGtsZYdpo/04vEkS08YX8uYHG9jc2EpRvi1K\nZkaWIFw+XwH8Afikm20LgPNE5FkROXd4w3KrGQKUFFt7yEhmjetmJEvqJCIipwDVqvqod1fXZQPv\nBM4E9gP2EpFDhzG8mO691jNrJCtP8Mj1hqY2/vSvt3ltRXXfOxszzJK9OutUICIiBwDzgCUicoSq\nrve2X6OqmwFE5AFgF+CB3p6wtLQwbsE1vefCmDF1TFyftzfDdZxEScX4F2RlwL3LqdzUlJDX9+Rj\nyovvVPHiO1Wc9D+zOW6/WYQGuQxzkN//IMcOwY+/J0mdRFR1n+jfIvIUruF8vXe7GFgmIjsAW3Cl\nkZv7es7q6vhdLX60thaA7LT4Pm9PSksLh+U4iZKq8UciEYryMllRsTHur68zEuHhF1aRlZlGfk4m\ntz34LitXb+LkQ7YnM2NgFQlBfv+DHDukRvw9SerqrG6EROTLInKGqtYB5wJPAc8Ab6nqw8MZTI2N\nVjdAKBSivKyIDZtbqN/SGtfnfmfVRmrqmtlt9nguOHkh0ycU8vxblVx51+txP5Yxg5HUJZFYqrpv\n9M+Y++7EtYv4orq2idzsdPJzAvM2mgQpLytk+YcbqKiqZ6fpY+P2vM+88TEAi+dNZFRBNj/5ynxu\neuBdlr63nouXLOXsL85lUkl+3I5nzEAFrSSSNCKRCNV1TZQW5w66ftqkjujI9XiuLVLX2Mrr79cw\nuTSf7Sa4Nd2zMtP55pE7cvjnplFT18yvbl/KWx9tiNsxjRkoSyKDtHlLG61tnVaVZYCYtUXimESe\nX/4JHZ0RFs+duM2FSlooxNGLt+OMw3egrb2Tq+9expOvrY3bcY0ZCEsig7R1SVzr3muAMUXZFORm\nxm2sSCQS4Zk3PyYzI409dirrdp89dizjx1+eT35uBn95dAV3PLaCjs7OuBzfmP6yJDJIto6IieUa\n1wupqWumsbltyM+nq2up2tTEQhlHfk5mj/vNnFzMBSctZFJJPk+8upZr7lnGlub2IR/fmP6yJDJI\nNZZETBfxrNJ6+k3XoL7PvIl97lsyKpfzTlzAnO3G8taHG7nsL69uvcgxJtEsiQySLUZlutrauD7E\nkesNTW28quuZMDaPWZOL+/WY3OwMvnvcHA5YMJl1NY1ccttSVq6tG1IcxvSHJZFBqq5tIgSMLbI2\nEeOUx6kk8vxblbR3RNh754kD6vmXnpbGVw4Mc+JBYRqb2vnNna/xwtuVQ4rFmL5YEhmkmromRhVm\nD3jUsEldJcU55OdkDKlxPdqgnpEeYs853Teo92Xf+ZM55/i5ZGakc+O/3+G+Zz6kMxIZdEzG9MbO\ngIPQ3tHJxs0tVpVlthEKhZg6vpD1m5oG3bj9wbrNfFzTyPxwKYV5g59WfsfpY/jZiQsoHZXD/c+v\n4o//fJvmVmtwN/FnSWQQNtQ1E8Fm7zWfFW1cXz3IdpGn31gHwOK5fTeo92ViST7nn7SQ8ORilr63\nnvN+/19qG1qG/LzGxLIkMghbu/faOiKmi6GsLbKluY1X3ltP6agcti+Pz0JnhXlZ/OCEXdhzpzLe\nX1PLxUuWDjrBGdMdSyKDUF1nPbNM98qHUBJ58Z0qWts7WTx3ImlxnEonMyONrx86m5MP3YFN9S1c\n9pfXeP19W5vExIclkUGwgYamJ6WjcsnNTh9wSSQSifDMGx+TnhZirzkT4h5XKBTiuP1mcdbROxGJ\nRLj+3uU8/NJqItbgbobIksgg2JQnpidpoRDl4wup2riFppb+N2Svqqxn9foG5s4sobggO2HxLZBx\nnPu1+RQXZHH3Uyu59aH3aO+wqVLM4FkSGYTq2iYyM9Iozh987xmTusrLCokAa9Y39PsxT0enfI9D\ng3pfppUVccHJu1I+vpBnl33CVX97g4amoU/VYkYmSyKDUFPbTOkomwLedC86cr2/VVrNre289G4V\nY4uy2Wn6mESGttXowmzO/ep8FoRLeW91LZfetpTKjVuG5dgmtVgSGaDG5ja2tLRTWmxVWaZ7Ax25\n/vK762lp7WDvnSeSljZ8FybZWel86+idOHSPcqo2NXHJkqW8u2rjsB3fpAZLIgP0aXuINaqb7o0f\nk0d2Vnq/59B6+o2PCYVgr53j36Del7RQiGP3mcFph86mpa2Dq+5+c+tYFWP6w5LIANnEi6YvaaEQ\n5eMK+GRDIy2tHb3uu7qqno8+2cyc7cYyxsd52PacM4EffXkXcrMzWPKwctcT79PZaT23TN8siQzQ\np1PAW3WW6Vl5WRGRSN+N689Ep3wfhgb1voSnjOL8kxYwYWwej76yhuvuXTagHmZmZLIkMkA2RsT0\nR3lZAQCrKjf3uE9LWwcvvF1FcUEWO88cO1yh9Wrc6Dx+duICdpw2mjc/2MBlf3mNDd7gWmO6Y0lk\ngLa2iVjDuulFeVkR0PvaIkvfW09TSzt77zyB9LTk+Snm5WTyvePnsu8uk1hb3cDFty3lg49tbRLT\nveT55gZEdW0zRXmZ5GRl+B2KSWITxuSRlZnWaw+taFXW3jv7X5XVVXpaGl87KMxXDphF/ZZWLr/j\ndV5+t8rvsEwSsiQyAJ2dETZsbraqLNOntLQQU8cV8nHNFlrbPtu4vq6mkffX1rHjtNFJ+30KhUIc\nsHAKZx83l4z0EH/859v867mPbKoUsw1LIgOwsb6Zjs5I0v7oTXIpLyukMxJhTfVnG9ef3bqG+qTh\nDmvAdp4xlvNOXEBJcQ7/eO4j/vTvd2hr773XmRk5LIkMQLR7r82ZZfpj65rrXaq02to7ef6tSgrz\nMpk3q8SP0AZscmkB55+0kJmTinnpnSp+c+fr1DW2+h2WSQKWRAbA1hExAzGth5Hrr62opqGpjT3n\nTCAjPTg/waL8LH705XnsvuN4Pli3mUuWvMLaAcwPZlJTcL7BSaCmzrr3mv6bUJJHZsZnG9ejDerD\nMdlivGVmpHPGYTtw9N7T2bC5hUv/8irLPqjxOyzjI0siA2Cj1c1ApKelMWVcAetqGre2IVRt2sK7\nFZvYfuooysbk+Rzh4IRCIQ7fczrfPHJHOjsjXHPPMh57ZY01uI9QlkQGoLq2ifS0EKMLE7feg0kt\n5WWFdHRGWFvdCAS7FNLVotnj+clX5lOUl8WdT7zP7Y+usLVJRiBLIgNQXdvE2OKcYZ1p1QRbbON6\ne0cn/11eSX5OBguk1OfI4mO7iUVccPJCpowr4D+vr+Pqv7/JlmZbm2QksSTST82t7dRvabOqLDMg\nWxvXq+p5c2UNmxtb2WOnMjIz0n2OLH7GFOXw06/NZ97MEt5ZtYlLb3+Vqk22NslIYUmkn2qi7SE2\n3YkZgIkl+WSkh1hVWc/TSTTZYrzlZGXw7WPmcMiiqXyyYQuXLFmKrt7kd1hmGARi7g4RGQe8Cuyv\nqiti7j8cuABoB25R1ZsSFYNNvGgGIyM9jcmlBaxZ30BnZ4SZk4qZVFrgd1gJkZYW4vj9ZlI2No/b\nH1GuvOsNTjpEknJaFxM/SV8SEZFM4AagsZv7rwIOBPYBvuElm4SwJGIGa5rXuB4hNRrU+7J47kR+\n8KV55GSl8+cH3+Pv/1lJp/XcSllBKIlcAfwB+GmX+2cDK1W1DkBEngMWA/f09ET/95+V1NcPblrr\nNz/YAFgSMQM31WsXyc1OZ9ftE3adk1S2Lx/N+Sct5Op7lvHQi6tZV92ITBk16OcbX1rAvOljfOnU\nUtfYyoo1tewyqyRQg0OHS1InERE5BahW1UdF5KdA7DeoCIidn7oeKO7t+W7599tDiiczI40dZpWS\nl5M5pOcZitLSQt+OHQ8jMf7d5kzk9keUAxeVM3nS4E+k8TCc739paSFXn7MPly15hWUra1jmXYgN\n1s9P352Fs8fHKbr+u/PJ13ns5dVMGV/Id744j9nTxwzqeYL+3e9JUicR4FQgIiIHAPOAJSJyhKqu\nxyWQ2E+lEOi1Je8XZ+zBptrG3nbp1djiXBrrm2kcZGlmqEpLC6mu7t+63clopMafmx7il19fxPgx\neb6+fr/e/+8csxMr1tQNetLGNesbuPfpD3njvSrKS4Z/gOY7H24gLRRiTVU9P77+WfbdZRLH7jOD\nvJz+nz5T4bvfk6ROIqq6T/RvEXkKONNLIADvAbNEZDSuvWQxruqrR/O3HxfoD9IEV6o2pvdHeloa\ns8tHD/rx5WVF3Pv0h72uzZIoLa0dfLyhkVmTijn28zNY8rDy1OvreO39ar56QJgFUkooNLLHjQWt\ngi8kIl8WkTNUtQ34PvAI8Dxws6p+4m94xph4K87PYmxxTq9LDSfKmvUNRCKuXWvW5FFcdOquHL33\ndBqb2vj9P97iunuXs3HzyF4+OKlLIrFUdd/onzH33Q/c709ExpjhMnPyKF56u5K6hhaKC4Zv2qHo\n8sbRQaMZ6Wkcvud0Fm4/jtseVt5YWcO7qzdx7OLt2G/+5BE5m0XQSiLGmBFoxiTXZ6a3NesTIVr6\nKS8r2ub+CWPz+fFXduHUL2xPRlqIvz7+Ppfe/iprRuDU+JZEjDFJb4bXPXjVMLeLVFTWk5WZxoRu\nZlwOhULsPXcil56xO7vtMJ6PPtnML/78Cn//z0paulkSOVVZEjHGJL2Zk10SGc7G9da2Dj6u2cLU\ncYW9VlMV5Wdx5hE7cs7xcxlTlM1DL67mwptf4u2PNg5brH6yJGKMSXpjinIozs8a1uqsNdUNdEYi\nlJf1b3zHnO3GcvFpu3HIoqnU1DXz27+9wY3/fofNW1J7GWFLIsaYQCgvK2Tj5pZhOymv9ko90en8\n+yM7K52ldiBnAAAaN0lEQVTj95vJhSfvSnlZIS+8Xcn5N77Ek0tXp+yiXZZEjDGBED2Zrx6mKq1o\n+8u0fpZEYpWXFXL+SQs4Yb+ZtLZ38Ls7X+fKu95IySnyLYkYYwIhejIfrsb1isp6MjPSmDDIUfLp\naWkctGgql5y+Gwtnj+fdik1cePPLPPDCqpRaAdKSiDEmEMpjFvhKtLb2TtbVNDJlXAHpaUM7TZYU\n53LhabvxzSN3JDc7g3uf/pBf3voKH6yr6/vBAWBJxBgTCKMLsynMyxyWHlprqxvo6Ox/o3pfQqEQ\ni2aP59IzdmPx3ImsrW7kV7e/yh2PrqCppT0ux/CLJRFjTCCEQiHKywqpqWumoSmx67hHSzsDaVTv\nj/ycTE75wvac+9X5lI3N44nX1nL+TS/x2orquB5nOFkSMcYERvSknugqrYohNKr3R3jKKC46dRFH\n7jWd+i2tXH/fcq6/bzmb6lsScrxEsiRijAmM6Ek90VVaqyrryUgPMbEkP2HHyMxI48i9pnPRqYuY\nNbmY11ZU87MbX+TJ19YGaiVISyLGmMAoH4Yk0t7RybrqBiaXFgzLSoYTS/L5yVfnc/IhQigU4i+P\nruCyv7zK2upgzMNlScQYExhji3LIz8lIaBJZV91Ie0ckYVVZ3UkLhdhn3iQuPWM3dt1+HB+sc/Nw\n3fv0B7Qm+TxclkSMMYERCoWYVlbI+tomtjQnpnE92t4ydRiTSNSogmy+ddROfPe4nSkuyOKBFyq4\n8JaXeXdV8s7DZUnEGBMoU7eOF0lMdU+iG9X7Y97MEi45fTcO2nUK1bVNXHHXG9z8wDsJ75U2GJZE\njDGBMs1b2yNRVVqrKutJTwsxqcTfJY1zsjI4Yf9ZnH/SQqaOK+C/yys5708v8sLblUk1D5clEWNM\noCRy5Hp7Rydr1jcwqTSfzIzkOD1On1DEBacs5Ph9Z9La1sGN/36Hq+5+k/W1TX6HBlgSMcYETGlx\nDnnZGQmZQ+uTDVto7+j0tSqrO+lpaRyy21QuPn03dpo+hrc/2siFN73EQy9W+D4PlyURY0ygREeu\nV23cEvcpQ7YuhxvnkerxUjoql3OOn8s3jtiB7Kx0/v6fD7h4yVI++mSzbzFZEjHGBM7WaeHjXKW1\nutI11nddUz2ZhEIhdt+hjEvP2J29dp7AmvUNXHLbUv76uD/zcFkSMcYETqIGHa6q2kxaKMSUcYkb\nqR4vBbmZfP1/ZvOjL+/CuFG5PL50LRfc/BJvvF8zrHFYEjHGBM60BDSud3ZGWFPVwMSSfDIz0uP2\nvIk2u3w0vzxtEYd9bhp1Da1ce+8yfv9/y6ltGJ55uDKG5SjGGBNHpaNzyclKj2vj+icbGmltT75G\n9f7IzEjnmMXbsWj2OJY8/B5LtZq3V23ii5+fweJ5E0kLhRJ2bCuJGGMCJy0Uonx8IZUbttDcGp92\ngGhCitcaIn6YXFrAT7+2gBMPCgMRbntE+fUdr7GupjFhx7QkYowJpPKyQiLAmvXxGbm+dQ2RACcR\ncAl23/mTueT03VkgpaxcW8dFt7zMP579kLb2+M/DZUnEGBNI5XFec72isp5QCKaM83ekeryMLszm\nrKPn8J1j5lCUn8W//ruKn9/yCrp6U1yPY0nEGBNI8VxbpLMzwuqqBiaOzSc7MziN6v2xS7iUS07f\njf0XTKZq4xYu/+vr3PrQuzTGaQJLSyLGmEAaPzqP7Mz0uPTQqtq0hZa2jsBXZfUkNzuDrx4Y5ryT\nFjC5tIBn3vyEn/3pRV56p2rI83BZEjHGBFJaWoip4wv4uKaRliGuuZEKjer9MWNiMReespDjPj+D\nptYObvjX21z992XUDGEeLksixpjAKi8rJBKBtUNsXI9WiSXrdCfxlJGexv/sXs7Fpy1ih2mjWf7h\nBs6/+SUeeXk1HZ0Dn4fLkogxJrCiJ/2hNq5XVNYTAqaOT41G9f4YNzqPH3xpHqcfNpusjHT+9uRK\nLlny6tb5w/orqQcbikg6cCPgOj3DN1X17Zjt5wCnAdXeXWeq6ophD9QY44t4NK53RiJUVNVTNjaP\nnKykPiXGXSgU4nM7TWDOdmP525Mref6tSi5espQDF07hqL2n9+v9SPZ37DCgU1X3EpF9gEuBo2K2\nzwdOVNXXfYnOGOOrsrF5ZGWkDalxvXpTE82tqduo3h+FeVmcftgO7LFTGbc/rDz6yhpe1WpOPDjM\nzjNKen1sUldnqeo/gTO9m9OArh2cFwDnicizInLucMZmjPFfeloaU7zG9cEOpItWhU0bAe0hfdlx\n2hh+edoiDt2jnNqGFq7++zL++M+3en1MUicRAFXtEJFbgWuBv3bZfCcuyewH7CUihw5zeMYYn00b\nX0RHZ4S11YOb2iNVRqrHS1ZmOsfuM4MLT9mV7SYW8fK763vdP9mrswBQ1VNE5CfASyIyW1Wj/dGu\nUdXNACLyALAL8EBvz1VaGuwvisXvL4vfPz3FvtOsEp54bS0bGlpZNIjX9/GGLQDM33ECeTmZQ4qx\nN0F770tLC5k7u4wnX1nd635JnURE5ERgsqpeBjQBnbgGdkSkGFgmIjsAW3ClkZv7es7q6vgvqTlc\nSksLLX4fWfz+6S32MflZALy1spqFs3qvv+8qEomwck0t40fn0ljfTGN985Bj7U6Q3/t5243pdXuy\nV2fdA8wTkaeBh4GzgaNF5AxVrQPOBZ4CngHeUtWH/QvVGOOHCWPzyEhPo6Jy4GNFquua2dLSblVZ\nQ5DUJRGv2upLvWy/E9cuYowZoTLS05gyroDVVfW0tXeSmdH/a+No1+BpSbwcbrJL9pKIMcb0aVpZ\nIR2dEdbVDKw0Eh1YVz6CBhnGmyURY0zgDXbN9dUjZM6sRLIkYowJvOj0JwNJIpFIhFWV9YwblZvQ\nXlmpzpKIMSbwJpXmk5EeGtDI9Q2bm2lsbmeqlUKGxJKIMSbwMtLTmFRawJr1jbR39G8m2k8b1S2J\nDIUlEWNMSphWVkh7Rycf1/Rv5PqqETT9eyJZEjHGpISBtovYdCfxYUnEGJMSoslgVT/aRSKRCBWV\n9ZQU51CQa43qQ2FJxBiTEiaX5pOeFtrabbc3m+pbqN/SZlVZcWBJxBiTEjIz0plUks+a9Q19LvNa\nYeND4saSiDEmZZSXFdLa3sknNVt63W+VJZG4sSRijEkZW0eu99EuYo3q8WNJxBiTMrY2rvfRLlJR\nWc+YomyK8rKGI6yUZknEGJMyppQWkBYK9drNd1N9C3WNrdaoHieWRIwxKSMrM52JJXmsXl9PZ2ek\n232sKiu+LIkYY1JKeVkhrW2dfLKx+8Z1m+4kviyJGGNSSrSaqqfxIhU23UlcWRIxxqSU6CqFPTWu\nV1TVM6ogi+KC7OEMK2VZEjHGpJQp4woIhaDCW7UwVl1jK5vqW6wUEkeWRIwxKSU7K50JY/OpWN9A\nZ2TbxnUbqR5/lkSMMSmnfHwhLa0dVHVpXI+WTqJVXmboLIkYY1JOTyPXK6oattluhs6SiDEm5US7\n73YddFhRuZmi/CxGFdhI9XixJGKMSTlTxhUQYtskUr+llQ2bXaN6KBTyL7gUY0nEGJNycrMzGD8m\nj4qq+q2N6zZSPTEsiRhjUtK0skKaWjqorm0CbKR6olgSMcakpKld1lxfZSPVE8KSiDEmJXVtXK+o\nrKcgN5MxRTZSPZ4siRhjUlK0JLKqsp6GpjZq6pqZVmaN6vFmScQYk5LycjIYNzqX1VX11qieQJZE\njDEpa1pZIY3N7bym1YC1hySCJRFjTMqKJo0X3q50t60kEncZfgfQGxFJB24EwkAE+Kaqvh2z/XDg\nAqAduEVVb/IlUGNMUoomjebWDvJzMigpzvE5otST7CWRw4BOVd0LOB+4NLpBRDKBq4ADgX2Ab4jI\nOF+iNMYkpdiSR7k1qidEUicRVf0ncKZ3cxqwKWbzbGClqtapahvwHLB4eCM0xiSz/JzMraUPaw9J\njKROIgCq2iEitwLXAn+N2VQE1MXcrgeKhzE0Y0wARMeLWHtIYoQiXRZtSVYiMh54CZitqk0iMgf4\ntaoe6m2/CnhOVe/zM05jjBlJkr1h/URgsqpeBjQBnbgGdoD3gFkiMhpoxFVlXeFLoMYYM0IldUlE\nRHKBW4EyIBO4DCgAClT1RhE5DLgQVy13s6r+wa9YjTFmJErqJGKMMSa5JX3DujHGmORlScQYY8yg\nWRIxxhgzaCmbRESkzO8YhiLI8Qc5drD4/WbxB0vKNayLyHzgx8DTwI2q2u5zSAMS5PiDHDtY/H6z\n+P0nIv8DdKjqI/19TFKPExkoEfkNcDDwdVV91e94BirI8Qc5drD4/Wbx+0tE9gC+hxuPd/FAHptS\nSQRYATQDU0XkPOC/wAuq+oK/YfVbkOMPcuxg8fvN4vfXL4HnVfXnIrKviDSoalV/HhjYNhERCYlI\nmYgsibl7LbAQOBL4NW6K+KQcgBjk+IMcO1j8frP4k4M3dRQikgb8GZgpIk8BJwHXicj3+/M8gU0i\nqhrBzex7ooh8zbv7feBx4FJVfUVVrwU+EpH9fQqzR0GOP8ixg8XvN4vffyKyJ/CQiGSpaifQALQC\nP1PVU3HLbnzDm1aqV4FKIiKS4a0jgoiMBY7GrSlymYhkq+oHwE3AJ94+o3HTxy/1KeRtBDn+IMcO\nFr/fLP7kISIFwJeBQuBy7+7ngD8BrwCo6pu4pNjnKl6BSSIicg5wF3CpiExU1Q3AM6r6Q+AZ4Hfe\nrpnAjd708f8AVuOmifdVkOMPcuxg8fsQ8jYsfn+JSL6IfFFEdvTuygWW4UpTx4vI9qq6EXgX+IqI\n7CUilwDjgOq+nj8QXXxFZHfgPODbwP96d/9LVZ/3tpcArwMHqeq7IjIBmAVUquoKP2KOFeT4gxw7\nWPx+xBzL4veXiHwOuBlXqtgOt9z4/bjZ0VeJyC+APVT1IBHJAc4B5gIfAJeoalNfx0jaJCIi5bhp\n39cC3wKmq+oPRWQScAwuS/5GVeu9/X8JHKaq8/2KOVaQ4w9y7GDx+83iTx4i8r/ARlW9S0SOAnYD\n3lDVv8Xs8zbwy+h9XjtJa3+PkXTVWSKSJq6L3D9w07z/Afg78AURGauq64A3cN2Tp0Ufp6oXAv9v\n+CPeVpDjD3LsYPEPf8Tbsvj9JyLTReTPInKWiEzHVV0d4W1+HFBgZxEZF/Owy4FTozcGkkAgCZMI\nsAj4HLC3qp4O7IxbCvdB3AeLqj4L7IAXv4hkePff7EfAXQQ5/iDHDha/3yx+H4nIgcBfcI3j7bgE\neBMwTUTmq2oDLomMAzJEJASgqrep6iGDPW4yDjbcAXgAaPKKjw1AFfBb4BkR+TdQiYs9+gEm0/QC\nQY4/yLGDxe8LEQl53V4DGX+MQMYf8/5PBP6pqr/3ktveuGTyN9wo9ENV9QUROR/I9h4zZL6WRERk\ntHjd5mL8G7hJVTtwXdCqVLVeVStx89Icgsuut6rP0wuIG3C0l4hkxdwdiPhFJD/m75D3ZyBiB1dv\nG41b3GApCFb8o0Qkz/s7ejEXpPjHi8j3RGRczMkoSPHnBfn7ExWTQMAtE/5v7++FQAnQqqrXAKNF\n5HJxgwnXABvjFYNvJREvGx4MvCIiz6nqfQCqGtul7GvAw97+ZwK3q+o/hj3YbojIBbgv1e9UtTX6\nYQYhfq8hcI6IvAlco6qbIFDv/VxcHe41wEfqBksFKf4JwPXA87ir3A4IVPxnA2fhJuq7OkjffQCv\nR9JsYLmI3KCq6yFQ738Z8A3gMdx0KxsAVPWemN1OAB5U1Tbv9n7AAtxULHF9Hb6URETkeGA68CXc\nm7BARApjrojxSih74eai+QfuDUiP3ccP4gYdnY2rO90feF7c4KPo9mhdabLGfwyuC+J3vfiO9e5P\nj9knWWOPHn93XNyLRCS3m/2SPf5MYDKwp4jspKqRgLz/00TkFWAKcBzwXxHJ61otkqzxA4jroTQL\nN9ngeOAsEZnnbUvq3y5s/f0+CIwGvgKc1DUu73YWcLeInC0ijwGFqvrfRCTCYSuJiMgUVV3j3fwq\nLrN/LCIfAUdHu8vFKAVm4D7AX6nqy8MVa3ei8atqu4jUAi/hemRMxg3IeUNErlLVTu/LmDTxd3nv\nF+OuRtaIyOO4Ekmuev3Bky12L6btgVrc+9yB6+/+f8AeuAFSy2L2DZH88YdxpZCXcIO7roiWBpM0\n/tnABnXjCk5Q1Q/EjT/IV9UtsVUqSRr/DKDCa79YDDznnXuuBY7C9b56Mxl/u7G8as+DgJNVdbmI\nnApMjV6EeNVwAKOAU4BdcRNBntSllBVXw1ISEZFRwLVeFgX4IfCQ93cebrBOVxuAM1X1WL8/xJj4\nj/Lueh3YF3hFVQ8GbgDKcdVbeNUrSRF/TOxHe3fdDxwiIs/hisTpwDXR15ZkseeLyOW4HieX4qqv\nAG5T1e/iruj39l5jbP1wMsZ/CXCdtymEq7tei7uiv1lEikQkI0njvx34tYj8P3XTewB8CIwRkcmx\nJZEkiz9P3BTtdwGXi1sr4+943VnVDQZchuuBVe7dlzTffwARmSciV4nI7l4SrAGyvc2dwEyAmAQC\nsCPwCPANVf2eqn6SyBgTmkRiilnH4V7Y4SJSoKrvA83iGqSPw71gRGTPaPWEqrao6oOJjK8v3cR/\npIgUquoyXB/yaCPWc7gPdKP3uHS/4+8m9iNEpEhVH8fVZ69U1e1U9dvAKlwySYrYYxyMu9JaiKt+\n21VESlX1bW/7XcAuuNeHd0WWlqTxnw3MFzdv0QHe7Z8DbwGbVXWzV8pN1vi/g6t2jq7al4eLfZve\nSV4iT5b4D8CdZPfEzWG1P6776woROdfb50XcCO1WcCXxZIlfRE7AXXh8DBzltd+cr6pLvRLTQbjf\nQLQKDgBVfU5Vj1bV7i7O4y6hSSTmCmUc7gdTAZzmbesAxuJOXmNF5EHgQNxVWlLoIf4zvPvuxp3U\nZuDaR2YBW7zHdeCz3t57zwnieth8HleCijau+x57jO2Af3p/z8B1t6yTT/u3P4uL+zDxZhuNNrIn\nia7x1+AW/fkA+Aj4Ou4ziYjIQZD08a/n0+/Jh7jkvU17Qtf2EZ+Nw3V5bcVVfU7AJYyfAmeKmwp9\nLq6KMXrx6vv7H3MBmAP8XVWvxE29Ml9ETvS2TQHqVfUBETkL+LGIFPoQbsJLItHn/xOutPEirjFx\nhnf/54DjgcOB36rqRaq6JZExDUQP8e8uIjO8L9sC4CLc+gGXeyWUpNBD7HuISFhVP8LFfCVuMZoL\nVfVJfyL9rJgf0R24ZA1Qhis9tXY5UV0H3BFtU0gGvcT/vpekl3jVDGtwFx4/UdVHfQi1W328/y0x\nuz6IS4RJcfKNion/blVdIiJFuBLJ48B9wE7AD3DVWpcBV8VU0/ku5vs9ATcoMM97f88Domt8zAYO\nFpF/4aYyWdJNu/LwiEQicfkXDofTu9wOdbNPSTgcPi8cDl/h3R4fDofPilcMwxj/lTH3ZQQo9p9F\n33vvvjF+x95D/Gnd7HNLOBxeHA6Hc5LlOzOI+PcJh8O54XD4f3v6nJI8/uj7/22/Y+4j/lB3f3u3\nvx4Oh7/b3eN8jD8UG0v0/Q+Hw58Lh8MPhMPh7cLhcKZ33x3hcHheOBw+LRwOV4TD4UV+xz/kCRhj\nqhaivTOOAV5V1Yro9tgrR3Fr+f4A+KnXNuKrIcR/rqqu9CHkrUbKe+81nD8B/BVX5bkM9xp8rXob\n4fGfB3T6WQLpR/xp6npc7Q2MwV3Znwp8T5Ng2VqvTXiGqr7r3c7UT8d1RPf5HW46+ZtxVYk34GYT\nrk2WqsNBJ5FuTlA7A9/EjZT8ADeq85FuHpcL5Phd/RDk+IMcuxdHv+P3ThQ7Av/BdWS4XFXfG/ag\nY1j8wYnf234Iruq8HBf/O8MccrdE5AjgbFXdX0ROxg1wvA+XCF/29inDtcPOxg0neIFPE3hwk4hs\n2ycZEVmI+4J9R1XvETcTZgT4q6pWdP3Q/Rbk+IMcOww8fm+fccCOqvqUL0HHsPj9NZj4k4nXVhmK\nvgYRuQU3rmMdn7bX7AecENv+5HUCaPK79qM7g2pYV9UOcSO3zxWRo1R1Ka7rnHi7PIRriNvXK1Im\nzUkMgh1/kGOHgcfvPWZ9MpzAwOL322DiTyaq2um9huhU7Jfgqtn+4r3Hd+IGpS7q8rjlyZhAoJ9J\nRERmishN4lbxQkS+gBu0NgU4VER+CPwIt3B9nrr+yR/i6vJ877Ib5PiDHDtY/H7FHWXx+0vcGiWn\nSczUKiJyKXCfiCwBioGncGNYwI03KwTe7vYJk1C/koiXASfx6eIm43ETx/0cN8DuGFwf8mdwyy8C\n/F5V7/W78RCCHX+QYweLf5jD/QyL3z8ichyuW7EA0Y4sXwXyVHUv3FTzF+IGDO4nbnaAG3BVWw2S\nBHN19UefSUQ+nRjuN8CXxK2WtQI3yOh3uA/vI9wHeDZu7nq69jLwS5DjD3LsYPH7zeL3h7hp/l8C\nvgx8V1V/rKqNMbtMFpFbcQOt38GVmpbgepD9VFV/qJ8dD5W0BtSwLiI3AKtxVwI/wtU/zsCN1t6s\nqtcmIsh4CXL8QY4dLH6/WfzDxytB3AM8q26q/Mm4QYLX4lZL/BHwsKpeKiLXAy+r6m3+RTw0/W0T\nic72ewVu1stS3FTDlwNHA39Mpg+xqyDHH+TYweL3m8U//LwSxM9xpacrcFVUDaq6Cjd7881AubgF\nojYHOYEA/R+xHg6HS7z/bwqHwyd4f5f6PVpyJMQf5Ngtfv//Wfy+xX1JOBxeEw6Hc7vZJkF4Df35\n16/qLHHrDV+N6389CThLVd9IcH6LmyDHH+TYweL3m8XvH68b7x3Az1T1ZXEj1NuC0tbRX/1uExGR\nmbiZMO/WbSdhC4Qgxx/k2MHi95vF7x8ROQ23NsmiPncOqCHPnWWMMaZ7IpKDW+98CSTdVPlxYUnE\nGGPMoCXdtADGGGOCw5KIMcaYQbMkYowxZtAsiRhjjBk0SyLGGGMGzZKIMcaYQbMkYowxZtD+P5DF\nBq6nYZzXAAAAAElFTkSuQmCC\n",
+ "text": [
+ ""
+ ]
+ }
+ ],
+ "prompt_number": 53
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This student has dramatically improved on their homework ratings sine the beginning of the course."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file