Skip to content

I think the code has some question in ' def getFeature()' #9

@StormArcher

Description

@StormArcher
def getFeatures(self, image, inithann, scale_adjust=1.0):
	extracted_roi = [0,0,0,0]   #[int,int,int,int]
	cx = self._roi[0] + self._roi[2]/2  #float
	cy = self._roi[1] + self._roi[3]/2  #float

	if(inithann):
		padded_w = self._roi[2] * self.padding
		padded_h = self._roi[3] * self.padding

		if(self.template_size > 1):
			if(padded_w >= padded_h):
				self._scale = padded_w / float(self.template_size)
			else:
				self._scale = padded_h / float(self.template_size)
			self._tmpl_sz[0] = int(padded_w / self._scale)
			self._tmpl_sz[1] = int(padded_h / self._scale)
		else:
			self._tmpl_sz[0] = int(padded_w)
			self._tmpl_sz[1] = int(padded_h)
			self._scale = 1.

		if(self._hogfeatures):
			self._tmpl_sz[0] = int(self._tmpl_sz[0]) / (2*self.cell_size) * 2*self.cell_size + 2*self.cell_size
			self._tmpl_sz[1] = int(self._tmpl_sz[1]) / (2*self.cell_size) * 2*self.cell_size + 2*self.cell_size
		else:
			self._tmpl_sz[0] = int(self._tmpl_sz[0]) / 2 * 2
			self._tmpl_sz[1] = int(self._tmpl_sz[1]) / 2 * 2

	extracted_roi[2] = int(scale_adjust * self._scale * self._tmpl_sz[0])
	extracted_roi[3] = int(scale_adjust * self._scale * self._tmpl_sz[1])
	extracted_roi[0] = int(cx - extracted_roi[2]/2)
	extracted_roi[1] = int(cy - extracted_roi[3]/2)

	z = subwindow(image, extracted_roi, cv2.BORDER_REPLICATE)
	if(z.shape[1]!=self._tmpl_sz[0] or z.shape[0]!=self._tmpl_sz[1]):
		z = cv2.resize(z, tuple(self._tmpl_sz))

	if(self._hogfeatures):
		mapp = {'sizeX':0, 'sizeY':0, 'numFeatures':0, 'map':0}
		mapp = fhog.getFeatureMaps(z, self.cell_size, mapp)
		mapp = fhog.normalizeAndTruncate(mapp, 0.2)
		mapp = fhog.PCAFeatureMaps(mapp)
		self.size_patch = map(int, [mapp['sizeY'], mapp['sizeX'], mapp['numFeatures']])
		FeaturesMap = mapp['map'].reshape((self.size_patch[0]*self.size_patch[1], self.size_patch[2])).T   # (size_patch[2], size_patch[0]*size_patch[1])
	else:
		if(z.ndim==3 and z.shape[2]==3):
			FeaturesMap = cv2.cvtColor(z, cv2.COLOR_BGR2GRAY)   # z:(size_patch[0], size_patch[1], 3)  FeaturesMap:(size_patch[0], size_patch[1])   #np.int8  #0~255
		elif(z.ndim==2):
			FeaturesMap = z   #(size_patch[0], size_patch[1]) #np.int8  #0~255
		FeaturesMap = FeaturesMap.astype(np.float32) / 255.0 - 0.5
		self.size_patch = [z.shape[0], z.shape[1], 1]

	if(inithann):
		self.createHanningMats()  # createHanningMats need size_patch

	FeaturesMap = self.hann * FeaturesMap
	return FeaturesMap

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions