From 4dea00c8ef19a3a34aecaee413574d085496b31d Mon Sep 17 00:00:00 2001 From: ulisrael Date: Tue, 18 Feb 2025 08:53:16 -0800 Subject: [PATCH 1/7] added results data and plotting nb for paper figures --- paper_figures/eval_results/.DS_Store | Bin 0 -> 6148 bytes paper_figures/eval_results/all_results.txt | 53 + paper_figures/eval_results/cellpose/.DS_Store | Bin 0 -> 6148 bytes .../cellpose/cyto3/Gendarme_BriFi.txt | 22 + .../eval_results/cellpose/cyto3/H_and_E.txt | 51 + .../eval_results/cellpose/cyto3/YeaZ.txt | 17 + .../eval_results/cellpose/cyto3/YeastNet.txt | 15 + .../eval_results/cellpose/cyto3/cellpose.txt | 68 + .../eval_results/cellpose/cyto3/deepbacs.txt | 92 + .../eval_results/cellpose/cyto3/dsb_fixed.txt | 56 + .../cyto3/ep_phase_microscopy_all.txt | 54 + .../eval_results/cellpose/cyto3/omnipose.txt | 168 ++ .../cellpose/cyto3/tissuenet_wholecell.txt | 330 +++ .../cellpose/general/Gendarme_BriFi.txt | 22 + .../eval_results/cellpose/general/H_and_E.txt | 51 + .../cellpose/general/LIVECell_good.txt | 576 ++++++ .../eval_results/cellpose/general/YeaZ.txt | 17 + .../cellpose/general/YeastNet.txt | 15 + .../cellpose/general/cellpose.txt | 68 + .../cellpose/general/deepbacs.txt | 92 + .../cellpose/general/dsb_fixed.txt | 56 + .../general/ep_phase_microscopy_all.txt | 54 + .../cellpose/general/omnipose.txt | 168 ++ .../cellpose/general/tissuenet_wholecell.txt | 330 +++ .../cellpose/individual/Gendarme_BriFi.txt | 22 + .../cellpose/individual/H_and_E.txt | 51 + .../eval_results/cellpose/individual/YeaZ.txt | 17 + .../cellpose/individual/YeastNet.txt | 15 + .../cellpose/individual/cellpose.txt | 68 + .../cellpose/individual/deepbacs.txt | 92 + .../cellpose/individual/dsb_fixed.txt | 56 + .../individual/ep_phase_microscopy_all.txt | 54 + .../cellpose/individual/omnipose.txt | 168 ++ .../individual/tissuenet_wholecell.txt | 330 +++ paper_figures/eval_results/cellsam/.DS_Store | Bin 0 -> 6148 bytes .../cellsam/general/Gendarme_BriFi.txt | 22 + .../eval_results/cellsam/general/H_and_E.txt | 51 + .../eval_results/cellsam/general/YeaZ.txt | 17 + .../eval_results/cellsam/general/YeastNet.txt | 15 + .../eval_results/cellsam/general/cellpose.txt | 68 + .../eval_results/cellsam/general/deepbacs.txt | 92 + .../cellsam/general/dsb_fixed.txt | 56 + .../general/ep_phase_microscopy_all.txt | 54 + .../eval_results/cellsam/general/omnipose.txt | 168 ++ .../cellsam/general/tissuenet_wholecell.txt | 330 +++ .../general_FS_10_FT/LIVECell_good.txt | 576 ++++++ .../cellsam/individual/Gendarme_BriFi.txt | 22 + .../cellsam/individual/H_and_E.txt | 51 + .../eval_results/cellsam/individual/YeaZ.txt | 17 + .../cellsam/individual/YeastNet.txt | 15 + .../cellsam/individual/cellpose.txt | 68 + .../cellsam/individual/deepbacs.txt | 92 + .../cellsam/individual/dsb_fixed.txt | 56 + .../individual/ep_phase_microscopy_all.txt | 54 + .../cellsam/individual/omnipose.txt | 168 ++ .../individual/tissuenet_wholecell.txt | 330 +++ paper_figures/generate_fig1.py | 186 ++ paper_figures/livecell/.DS_Store | Bin 0 -> 6148 bytes .../cellpose/general/LIVECell_good.txt | 576 ++++++ paper_figures/livecell/cellsam/.DS_Store | Bin 0 -> 6148 bytes .../cellsam/general/LIVECell_good.txt | 576 ++++++ .../general_FS_10_FT/LIVECell_good.txt | 576 ++++++ .../metadata_LIVECELLgood_0_orig.csv | 576 ++++++ paper_figures/paper_figures.ipynb | 1770 +++++++++++++++++ 64 files changed, 9830 insertions(+) create mode 100644 paper_figures/eval_results/.DS_Store create mode 100644 paper_figures/eval_results/all_results.txt create mode 100644 paper_figures/eval_results/cellpose/.DS_Store create mode 100644 paper_figures/eval_results/cellpose/cyto3/Gendarme_BriFi.txt create mode 100644 paper_figures/eval_results/cellpose/cyto3/H_and_E.txt create mode 100644 paper_figures/eval_results/cellpose/cyto3/YeaZ.txt create mode 100644 paper_figures/eval_results/cellpose/cyto3/YeastNet.txt create mode 100644 paper_figures/eval_results/cellpose/cyto3/cellpose.txt create mode 100644 paper_figures/eval_results/cellpose/cyto3/deepbacs.txt create mode 100644 paper_figures/eval_results/cellpose/cyto3/dsb_fixed.txt create mode 100644 paper_figures/eval_results/cellpose/cyto3/ep_phase_microscopy_all.txt create mode 100644 paper_figures/eval_results/cellpose/cyto3/omnipose.txt create mode 100644 paper_figures/eval_results/cellpose/cyto3/tissuenet_wholecell.txt create mode 100644 paper_figures/eval_results/cellpose/general/Gendarme_BriFi.txt create mode 100644 paper_figures/eval_results/cellpose/general/H_and_E.txt create mode 100644 paper_figures/eval_results/cellpose/general/LIVECell_good.txt create mode 100644 paper_figures/eval_results/cellpose/general/YeaZ.txt create mode 100644 paper_figures/eval_results/cellpose/general/YeastNet.txt create mode 100644 paper_figures/eval_results/cellpose/general/cellpose.txt create mode 100644 paper_figures/eval_results/cellpose/general/deepbacs.txt create mode 100644 paper_figures/eval_results/cellpose/general/dsb_fixed.txt create mode 100644 paper_figures/eval_results/cellpose/general/ep_phase_microscopy_all.txt create mode 100644 paper_figures/eval_results/cellpose/general/omnipose.txt create mode 100644 paper_figures/eval_results/cellpose/general/tissuenet_wholecell.txt create mode 100644 paper_figures/eval_results/cellpose/individual/Gendarme_BriFi.txt create mode 100644 paper_figures/eval_results/cellpose/individual/H_and_E.txt create mode 100644 paper_figures/eval_results/cellpose/individual/YeaZ.txt create mode 100644 paper_figures/eval_results/cellpose/individual/YeastNet.txt create mode 100644 paper_figures/eval_results/cellpose/individual/cellpose.txt create mode 100644 paper_figures/eval_results/cellpose/individual/deepbacs.txt create mode 100644 paper_figures/eval_results/cellpose/individual/dsb_fixed.txt create mode 100644 paper_figures/eval_results/cellpose/individual/ep_phase_microscopy_all.txt create mode 100644 paper_figures/eval_results/cellpose/individual/omnipose.txt create mode 100644 paper_figures/eval_results/cellpose/individual/tissuenet_wholecell.txt create mode 100644 paper_figures/eval_results/cellsam/.DS_Store create mode 100644 paper_figures/eval_results/cellsam/general/Gendarme_BriFi.txt create mode 100644 paper_figures/eval_results/cellsam/general/H_and_E.txt create mode 100644 paper_figures/eval_results/cellsam/general/YeaZ.txt create mode 100644 paper_figures/eval_results/cellsam/general/YeastNet.txt create mode 100644 paper_figures/eval_results/cellsam/general/cellpose.txt create mode 100644 paper_figures/eval_results/cellsam/general/deepbacs.txt create mode 100644 paper_figures/eval_results/cellsam/general/dsb_fixed.txt create mode 100644 paper_figures/eval_results/cellsam/general/ep_phase_microscopy_all.txt create mode 100644 paper_figures/eval_results/cellsam/general/omnipose.txt create mode 100644 paper_figures/eval_results/cellsam/general/tissuenet_wholecell.txt create mode 100644 paper_figures/eval_results/cellsam/general_FS_10_FT/LIVECell_good.txt create mode 100644 paper_figures/eval_results/cellsam/individual/Gendarme_BriFi.txt create mode 100644 paper_figures/eval_results/cellsam/individual/H_and_E.txt create mode 100644 paper_figures/eval_results/cellsam/individual/YeaZ.txt create mode 100644 paper_figures/eval_results/cellsam/individual/YeastNet.txt create mode 100644 paper_figures/eval_results/cellsam/individual/cellpose.txt create mode 100644 paper_figures/eval_results/cellsam/individual/deepbacs.txt create mode 100644 paper_figures/eval_results/cellsam/individual/dsb_fixed.txt create mode 100644 paper_figures/eval_results/cellsam/individual/ep_phase_microscopy_all.txt create mode 100644 paper_figures/eval_results/cellsam/individual/omnipose.txt create mode 100644 paper_figures/eval_results/cellsam/individual/tissuenet_wholecell.txt create mode 100644 paper_figures/generate_fig1.py create mode 100644 paper_figures/livecell/.DS_Store create mode 100644 paper_figures/livecell/cellpose/general/LIVECell_good.txt create mode 100644 paper_figures/livecell/cellsam/.DS_Store create mode 100644 paper_figures/livecell/cellsam/general/LIVECell_good.txt create mode 100644 paper_figures/livecell/cellsam/general_FS_10_FT/LIVECell_good.txt create mode 100644 paper_figures/metadata_LIVECELLgood_0_orig.csv create mode 100644 paper_figures/paper_figures.ipynb diff --git a/paper_figures/eval_results/.DS_Store b/paper_figures/eval_results/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..60daaffa0271b888460600c8c0b2039e90a66acc GIT binary patch literal 6148 zcmeHKOHRWu5FM9FgtF;^1xsI{HwaZYK{-H4Qb1KAM~c|z25<>Jmte~gI15YOcuYu| zRAPlHG*gYAGoG<0&yn3BBD1{D7esR+ilB^>6Eq{j|g3!flVC_7PpI4=E_Rm=JR>Xr*uh@7B1zn+4k+`0a+$$h81Gt^J`>1-I>O_!*-dU)~a?#xrVpJexY^-?vDoT`d4 zpbRJjhsFRO?~v$JP+Mg{8BhjV2KaoiP{uf5Bj}F~G`<7?PGRes#=my*rs$P+Mg{8R#=`B#(2x|1bB~ z|NS6+QU;WPf5m{ACaYwLR|Ow;=V>nO+;q4Dknr^A{s#%2fJuC2#>RNWFVFUpmB4Y)YW8O*k;l3 zRm0z8fWO@~74%3;vJ`#4>2WyP*euIyo5RW*;%NE&dK!C_KX@#zzV470gwqaHbV)bR zTe_gSyesP5+8SFb9tyWt_0jc+Qha;xDMm{)Hb}F_D@^qri_sokBheD=J+!11Cmd!q zed_aza%&{FjdMmBe(M|N=_ut~Rg?i`KpE&|fDc&6Xy2o@%78MU46GU8^C5vUrh=_U zcXXg}B>->;vlH~Wmf)B~FcoY)VgzD*DA0!*DKU%>hdmL$RIv5v!^ueTVPs_^6^e1I zWB$aslSw^ls|+XuAp=|fam@GsS%3W>2I-SBpbY#g2Fx&ggd}gu=NNFM1KSv4caIJzskTTZ!B?8 literal 0 HcmV?d00001 diff --git a/paper_figures/eval_results/cellpose/cyto3/Gendarme_BriFi.txt b/paper_figures/eval_results/cellpose/cyto3/Gendarme_BriFi.txt new file mode 100644 index 0000000..222e4a9 --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/Gendarme_BriFi.txt @@ -0,0 +1,22 @@ +0.046511628130615046 +0 +0.11764705588741058 +0.08510638131929121 +0 +0 +0 +0 +0.04255319281741335 +0 +0 +0.07407406947495043 +0 +0.05128205409132683 +0 +0 +0.08888888345824361 +0.1702127699036575 +0.1290322626232478 +0.0769230749832809 +0.09523809973209642 +0.1428571334805623 diff --git a/paper_figures/eval_results/cellpose/cyto3/H_and_E.txt b/paper_figures/eval_results/cellpose/cyto3/H_and_E.txt new file mode 100644 index 0000000..0f5edbd --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/H_and_E.txt @@ -0,0 +1,51 @@ +0.4543429855569468 +0 +0 +0.6609687228810326 +0.2277227650143385 +0.6785714411193311 +0.3346613511422967 +0.09900989825271735 +0.6852368422424262 +0.6071428502110445 +0 +0.052631579643925466 +0.09395973089201541 +0.7340659230059277 +0.6111110948552987 +0.7559808284305024 +0.40552995206109044 +0.5 +0.5 +0.6101694799579866 +0.799999985694886 +0.8487804901671044 +0.15231787641868996 +0.5714285896748915 +0.23880598344046525 +0.6944444284795057 +0.877714247150525 +0.7299509613205949 +0.8009101498315424 +0.34558822261844896 +0.7722222384505057 +0.5934066134916399 +0.4757281370848871 +0.5806451506344678 +0.2421340801167143 +0.33684209978481433 +0.27133478445061343 +0 +0.17910448927642375 +0.52864583247121 +0.5766525696670212 +0.13535588754551195 +0.16546762395314343 +0.6212238151328466 +0.8576554814542526 +0.7368421171510655 +0.48598128030788484 +0.3799283360321402 +0.4316546906324707 +0.4977778052617632 +0.47115387352332755 diff --git a/paper_figures/eval_results/cellpose/cyto3/YeaZ.txt b/paper_figures/eval_results/cellpose/cyto3/YeaZ.txt new file mode 100644 index 0000000..f5f20b7 --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/YeaZ.txt @@ -0,0 +1,17 @@ +0.9669210846417645 +0.9927007316799917 +0.9927007316799917 +0.9890909060230637 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.975609787371385 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +0.9836065126855801 +0.9615384543918558 +0.9735449421449519 diff --git a/paper_figures/eval_results/cellpose/cyto3/YeastNet.txt b/paper_figures/eval_results/cellpose/cyto3/YeastNet.txt new file mode 100644 index 0000000..db639e6 --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/YeastNet.txt @@ -0,0 +1,15 @@ +0.8713692982950488 +0.955465529284614 +0.9439999934485159 +0.6956522246164285 +0.5161290279784387 +0.6400000145912174 +0.6206896183181757 +0.5333333458503083 +0.72 +0.7894736728179493 +0.6666666948818838 +0.731707285728433 +0.347826075548261 +0.4000000167638055 +0.47619047619047616 diff --git a/paper_figures/eval_results/cellpose/cyto3/cellpose.txt b/paper_figures/eval_results/cellpose/cyto3/cellpose.txt new file mode 100644 index 0000000..cfe16af --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/cellpose.txt @@ -0,0 +1,68 @@ +0.9879517926933075 +0.9200000077745187 +0.9497206819610139 +0.6562499790895909 +0.9658536666596562 +0.9642857010402379 +0.8507463031646685 +0.9473684078438459 +0.9876543329067662 +1.0 +0.8056426230341819 +0.8739496010359344 +0.8834356088902846 +0.7727272167446921 +0.9821883113739499 +0.9084248828909213 +0.9497206370992176 +0.9726027716211183 +0.8705882570417581 +0.9816849634499418 +0.6985915715017899 +0.9358974407956427 +0.9450549332953966 +0.958904090019358 +0.9481481169505535 +0.9090909627350878 +0.7733333414611231 +0.8674699134546803 +0.9863013781398831 +0.9313725415260596 +0.6609686864021272 +0.9249999630410921 +0.9647887380502814 +0.7576791827429572 +0.7959183337378091 +0.9725489866856418 +0.9333333333333333 +0.9146341662096779 +0.928571396476619 +0.9787234107340849 +0.8143712899297619 +0.8846153717776529 +0.8750000084816877 +0.584415609020637 +0.6897589700664465 +0.08163265744461762 +0.7733333640756291 +0.9230769032188779 +0.8815166026981803 +0.6857142951717362 +0.8810572597902723 +0.9803921377895521 +0.9632353550345428 +0.8999999867876373 +0.701030909832141 +1.0 +0.9503916195484547 +0.18264840727992798 +0.6683416913137589 +0.30555557707155717 +0.5911950112241556 +0.8812261153240968 +0.9545454658752629 +0.8837209535217626 +0.8264462506832166 +0.6448598577439649 +1.0 +0.8172042842701475 diff --git a/paper_figures/eval_results/cellpose/cyto3/deepbacs.txt b/paper_figures/eval_results/cellpose/cyto3/deepbacs.txt new file mode 100644 index 0000000..9237ff5 --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/deepbacs.txt @@ -0,0 +1,92 @@ +0.9740260129414041 +0.9461077964990694 +0.9634145994450019 +0.9828178644154958 +0.9780219385278736 +0.9518072183589474 +0.9740260129414041 +0.966216218297916 +0.9704141953734347 +0.9456522006039554 +0.8983050836240545 +0.982758656232735 +0.9859154861471383 +0.9600000546157373 +0.9411765039998364 +0.9705882370987565 +0.8508771494080262 +0.8767123092093491 +0.8939394131164842 +0.9397590017622741 +0.9361701992255803 +0.8999999867876373 +0.9510489427222387 +0.8989898862860846 +0.9642857010402379 +0.8604651098492643 +0.9230769429377907 +0.8620689892457017 +0.8400000084936619 +0.8387096614387459 +0.9367088551221201 +0.903225770300737 +0.8837209459095077 +0.8717948315477213 +0.8266667194060207 +0.8387096614387459 +0.9367088551221201 +0.8400000084936619 +0.8266667194060207 +0.9230769429377907 +0.8837209459095077 +0.8604651098492643 +0.8620689892457017 +0.903225770300737 +0.8717948315477213 +0.888888866548185 +0.8549618870179944 +0.7792208286818796 +0.9718309332319834 +0.7874015501184232 +0.9052631696757453 +0.9420289552718519 +0.8817204206853241 +0.8372092511103972 +0.9436619593787547 +0.9452054734052066 +0.8999999867628022 +0.9704141953734347 +0.9461077964990694 +0.8387096614387459 +0.9510489427222387 +0.966216218297916 +0.9642857010402379 +0.9859154861471383 +0.8508771494080262 +0.9230769429377907 +0.9397590017622741 +0.8939394131164842 +0.9634145994450019 +0.9740260129414041 +0.8983050836240545 +0.9456522006039554 +0.9518072183589474 +0.9740260129414041 +0.9361701992255803 +0.9411765039998364 +0.8400000084936619 +0.9600000546157373 +0.8620689892457017 +0.8266667194060207 +0.9780219385278736 +0.8717948315477213 +0.982758656232735 +0.8837209459095077 +0.9367088551221201 +0.8989898862860846 +0.8604651098492643 +0.9705882370987565 +0.8999999867876373 +0.9828178644154958 +0.8767123092093491 +0.903225770300737 diff --git a/paper_figures/eval_results/cellpose/cyto3/dsb_fixed.txt b/paper_figures/eval_results/cellpose/cyto3/dsb_fixed.txt new file mode 100644 index 0000000..3c6f8da --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/dsb_fixed.txt @@ -0,0 +1,56 @@ +1.0 +1.0 +0.972973014334853 +1.0 +0.9285714651680356 +0.883720922428016 +0.9795917957735685 +0.75 +1.0 +0.9009008401485741 +0 +1.0 +1.0 +1.0 +0.666666695641146 +0.9692307862606677 +0.8437499717498822 +1.0 +0.8695652024901427 +0.8214284940800427 +1.0 +0.7391303999861705 +0.9473684078438459 +1.0 +0 +0.8965517424560153 +0.9512195213596125 +1.0 +0.8823529769392572 +0.8965517195529584 +0.8163265615788562 +0.7878787560492254 +0.727272720157389 +1.0 +0.8695652054929103 +0.9333333333333333 +0.9565217202011722 +0.7843137112822453 +0.9166666504390764 +0.7789473545025627 +0.9054053921000715 +0.8695652024901427 +1.0 +0.8421053041360878 +1.0 +0.9933774488745317 +0.9325153397760393 +0.9870129579998315 +0.9218750060555702 +1.0 +0.9714285574153976 +0.97600003126801 +0.9915966543143095 +0.9516728063421225 +0.9571788176249703 +0.9725085706363973 diff --git a/paper_figures/eval_results/cellpose/cyto3/ep_phase_microscopy_all.txt b/paper_figures/eval_results/cellpose/cyto3/ep_phase_microscopy_all.txt new file mode 100644 index 0000000..7bedd87 --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/ep_phase_microscopy_all.txt @@ -0,0 +1,54 @@ +0.8571428372796481 +0.9159292190642024 +0.905027928195868 +0.8757894807024295 +0.7503736958679823 +0.8243992759910225 +0.8780487473741132 +0.9183673495834574 +0.9473684342978054 +0.950276255565886 +0.8785046963565499 +0.939226564553999 +0.940170923915128 +0.5135135291810446 +0.4105263009031725 +0.4607046021374887 +0.4689655336694487 +0.9467084759748764 +0.9589041163997226 +0.8888888963292492 +0.7735848940560791 +0.8392857269635089 +0.7906976831839934 +0.7804877846936683 +0.8253968746728658 +0.8539325873873431 +0.949061715906449 +0.853658570645162 +0.888888918484251 +0.8461538677000122 +0.9885057582142078 +0.8299711836253719 +0.8527131750451694 +0.907317069647823 +0.8783068319992771 +0.8917197201130025 +0.9281045919527223 +0.7985480931547803 +0.7764228478116331 +0.5166666282360943 +0.518218669802931 +0.7409470389086235 +0.7612293279317703 +0.7912087647189898 +0.813186818018309 +0.7958477889528964 +0.7814570182869299 +0.8631578496699142 +0.848263172287879 +0.8070175710644688 +0.7942583344277058 +0.8368521498782523 +0.8125000458460743 +0.8111658719483932 diff --git a/paper_figures/eval_results/cellpose/cyto3/omnipose.txt b/paper_figures/eval_results/cellpose/cyto3/omnipose.txt new file mode 100644 index 0000000..8e94570 --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/omnipose.txt @@ -0,0 +1,168 @@ +0.9829545447655633 +0.982758656232735 +0.9411764482450868 +0.9523809821712939 +0.9722222358449736 +0.9322493335315597 +0.9078014459012955 +0.9446253845634633 +0.9613259233476179 +0.9516728796713325 +0.9750889653614053 +0.9750889653614053 +0.9322493335315597 +0.9516728796713325 +0.9860140232140472 +0.9527896818505527 +0.9440488159264427 +0.9588313304065381 +0.9036144887537547 +0.838356226580003 +0.8320611274159652 +0.9297074844089213 +0.9495166156696093 +0.7058823764014817 +0.9805309607557935 +0.8735632604673057 +0.9508196721311475 +0.9818495492027045 +0.8000000727029503 +0.8860759888679405 +0.8470587631722057 +0.9629629973450178 +0.8292682425997585 +0.9895833327059841 +0.859813080875313 +0.8913043768877823 +0.9504950569372717 +1.0 +0.9799999732389854 +0.9523809375135813 +0.9473684078438459 +0.9660574665447916 +1.0 +0.9873417476987109 +0.8717948839938037 +0.9090909268245232 +0.9791044436303273 +0.9530685703858885 +0.9709543127866207 +0.9842105027315377 +0.9953051766897514 +0.9473684508488138 +0.9838337136275671 +0.9655172137386318 +0.9791044696179767 +1.0 +0.9066666884827462 +0.9189189241627856 +0.7457627064473595 +0.9753694259370298 +0.9268292745332644 +0.9814433426700545 +1.0 +0.9375 +0.9315068545733152 +1.0 +1.0 +1.0 +0.9935064997393961 +1.0 +0.9041095773558644 +0.9826989101040529 +0.9272726817077716 +0.9428571158525905 +0.9303904985575231 +0.8771929515475816 +1.0 +0.9589040815371657 +0.8857142933047547 +0.9715762666973193 +0.9739583381139356 +1.0 +0.9925372986437135 +0.818181851227093 +0.7457627064473595 +0.9534050051488876 +0.9915966467368771 +0.9473684078438459 +1.0 +0.9949238116440088 +0.7924528315952071 +0.9909091269999765 +0.8059701382379642 +0.7924528315952071 +0.989690687501897 +0.6666666666666666 +0.9973753527099503 +0.7142857259633596 +0.9645390193483117 +0.9885714582005156 +0.8888889256818805 +1.0 +1.0 +0.6666666666666666 +0.7466666305360362 +0.5 +1.0 +1.0 +0.7671232770295439 +0.9779005151075124 +0.8571428571428571 +0.5 +0.9424460177067204 +0.9491525147072459 +0.7619048288079358 +0.7826087419237086 +0.5 +0.6956521987577011 +0.9473684078438459 +1.0 +0.6666666666666666 +0.9268292745332644 +1.0 +0.857142827452247 +1.0 +1.0 +0.98433420602689 +0.9967637571416201 +1.0 +0.7500000186264513 +0.75 +1.0 +0.7272727755475645 +0.7272727755475645 +0.9166666450591467 +0.8333333449231253 +0.5 +0.6363636278486869 +0.9565217202011722 +0.9136960947139889 +0.7027026867607962 +0.984902932944919 +0.9444444444444444 +0.9573459585950803 +0.9341749328309467 +0.9582576731747361 +1.0 +0.9673366376146111 +0.923076908189161 +1.0 +0.996466413552415 +0.9783549113769872 +0.9316239136017422 +0.919765177338174 +0.94690266433188 +0.9072398473244322 +0.9549795210847307 +0.5999999916553499 +0.47058823890339524 +0.5106382878347994 +0.6285714610565141 +0.6326530612244898 +0.5555555555555556 +0.5882353028899113 +0.9267042673513142 +0.9069767929484175 +0.7185628939594205 +0.9354839017771992 diff --git a/paper_figures/eval_results/cellpose/cyto3/tissuenet_wholecell.txt b/paper_figures/eval_results/cellpose/cyto3/tissuenet_wholecell.txt new file mode 100644 index 0000000..918bc62 --- /dev/null +++ b/paper_figures/eval_results/cellpose/cyto3/tissuenet_wholecell.txt @@ -0,0 +1,330 @@ +0.9339112135292698 +0.8895028027535998 +0.9292035330254745 +0.9442445841393747 +0.9036903349066217 +0.9364739441384394 +0.9044481665610266 +0.9432739650609803 +0.9422911484759585 +0.8935611350638223 +0.909090920978133 +0.9539208187923253 +0.9153269325466342 +0.9283581950048152 +0.8393782449633624 +0.9030302914778812 +0.9486404160018054 +0.7749627180185438 +0.9367310962562034 +0.9472182873464288 +0.7004048515552627 +0.9242424651595893 +0.6842104992208442 +0.7850466949559256 +0.9262759632679257 +0.8123348527655608 +0.930648775445883 +0.9370179913445158 +0.9229050424341791 +0.948471583767948 +0.9360795512428688 +0.8696969266423783 +0.9414448887528013 +0.9488054296778756 +0.8472907092197287 +0.9099804556304067 +0.881287729078489 +0.84518833486934 +0.8421052631578947 +0.8194234240383339 +0.8341384558197551 +0.8099547681010324 +0.8293333469058936 +0.8019559633833118 +0.6138613875783999 +0.8698517126957426 +0.9445983169837102 +0.8690883750489014 +0.9474999673201628 +0.8307086417169058 +0.8489635092723458 +0.7588424021299798 +0.763250828775166 +0.8259860451984223 +0.7675159211226547 +0.8446602428176266 +0.794968550818445 +0.7308641901133973 +0.9266917305319003 +0.9624506264173638 +0.9541484833454729 +0.9041095503243631 +0.8893804738951273 +0.8466522714674128 +0.9119171478725124 +0.8854166777877541 +0.8971962684970285 +0.9180328091746195 +0.7499999612542285 +0.84375 +0.9498910776533105 +0.9057591609319072 +0.8514851216688493 +0.8920187476588479 +0.9651741093870531 +0.8793103518341067 +0.9087301548333634 +0.8990476242152038 +0.8928571714070486 +0.9051383396607314 +0.9186992369827323 +0.82134572766203 +0.8905109757059044 +0.9408194196194247 +0.9261939573030067 +0.9242424203482791 +0.769230775189823 +0.8705882137902915 +0.903225829812899 +0.876506008328287 +0.8558952406316147 +0.9236363212670913 +0.8666667030709417 +0.9150326352661503 +0.8993710683520559 +0.7700000492987712 +0.8858695666793908 +0.8562500030358566 +0.8750000084816877 +0.8893527773775337 +0.8862275589811073 +0.842809342142833 +0.9081500559409352 +0.8319999726733414 +0.9616453873221505 +0.8141025743853506 +0.9450714715050849 +0.9100000039236884 +0.8888889037634857 +0.9530201581520803 +0.46896548610471817 +0.9131033818035938 +0.9389473355625804 +0.835633656233058 +0.8266666801096051 +0.9117647270210931 +0.9052807628986022 +0.8963584719597 +0.8125000090968435 +0.8329897066881768 +0.8512195333480116 +0.8241042584455797 +0.8900255570377831 +0.8978872763598592 +0.8721173740975237 +0.7254901848192188 +0.9266247622179178 +0.8416988754563381 +0.9186256760082091 +0.8203497375275729 +0.8612716435202155 +0.9211196101047441 +0.8738898983046042 +0.9441489138522523 +0.9118774001333855 +0.9315068240146929 +0.8450704848686824 +0.7812971724250536 +0.7808765018201874 +0.7041037092724393 +0.7087958617369887 +0.7504332940661593 +0.7482160705425376 +0.8042813197846446 +0.421296301245882 +0.7953830144814413 +0.8097982451718743 +0.7535911488399051 +0.7188049623409155 +0.7779141839178377 +0.7272727272727273 +0.7739999983161185 +0.8227513463127715 +0.7394136323785088 +0.7525298836411382 +0.834697164485129 +0.8068181965706567 +0.7712417966156485 +0.6956522119285107 +0.7609987735870996 +0.953339402390757 +0.9664031352478246 +0.9624505642618794 +0.9607201104251034 +0.9182389496226872 +0.9461966473956112 +0.9667195385937941 +0.8834951508598926 +0.9074074340860808 +0.8758169538911121 +0.9593869039841131 +0.9536740814843147 +0.9625779274587802 +0.9555555444693994 +0.9411765264480161 +0.9757365647522773 +0.9526626841493191 +0.9531388111741272 +0.9471033263564174 +0.9620689958333648 +0.9717868671124187 +0.945668154786919 +0.9619238599870712 +0.8571428571428571 +0.9598633543596558 +0.89132425680883 +0.9173478988602392 +0.9511450594919597 +0.9152542262787766 +0.9146919304703865 +0.8985507217617297 +0.9434324404272469 +0.9503408146175851 +0.9684639160368057 +0.9750445342951515 +0.9032921780861756 +0.9178469966466308 +0.962663974345452 +0.9654008325763831 +0.9608735003316504 +0.9310345048256174 +0.9725738203997488 +0.8347921455563873 +0.9437052260649721 +0.948325755846107 +0.9099257960334807 +0.8837208894975493 +0.9289883678570545 +0.8927680633445509 +0.9451476649787359 +0.9055943777728166 +0.9394495603579406 +0.9281227673255537 +0.9031265985666296 +0.9270833721644252 +0.5748218342675201 +0.744186115351734 +0.5721434451240806 +0.8958084536526553 +0.8433734786882416 +0.9356984926568879 +0.9084065597990305 +0.8995215288862374 +0.9368191873603383 +0.8968609606821533 +0.8249660930829168 +0.9351969461527176 +0.7037516038524223 +0.9084065378728243 +0.9051281838698185 +0.9138576727769436 +0.9070100486840853 +0.9426229280178643 +0.9015691864046131 +0.8628930378151894 +0.9251908438214252 +0.8956407580266449 +0.6823529062406547 +0.9310344541046597 +0.8628318526119836 +0.8661157082611387 +0.8056206382696195 +0.9042315472581184 +0.8962962668197384 +0.9215687060675024 +0.8621151556328441 +0.910691842417961 +0.8560747818081196 +0.8621908436977055 +0.8871892997227729 +0.8852459016393442 +0.6874999945866875 +0.8695651728449587 +0.8524590332913649 +0.8943089290395445 +0.8928571167063653 +0.9065420941193403 +0.8324176498403493 +0.9050715214564369 +0.9012516794415216 +0.816431314722392 +0.8843710163920386 +0.8735244309137293 +0.8951311250032424 +0.8475120280844811 +0.8178025145056723 +0.8639999468088169 +0.7333333495081481 +0.8960396492444465 +0.9134948069847615 +0.8932462078268937 +0.9010988807832668 +0.7582697396666307 +0.8654088259728524 +0.8854962412327272 +0.8374851668657911 +0.8840048677992841 +0.8187919715205908 +0.9044117763170362 +0.8730723412221465 +0.9121338876612238 +0.8886311573021833 +0.662499934952061 +0.8677839530566671 +0.9040404007126592 +0.9333333163081656 +0.7720587884772149 +0.8865153869657395 +0.9122807223641064 +0.8963963937033891 +0.8877721848774067 +0.878481051015643 +0.9125926375341193 +0.9223140479852413 +0.9005848208622569 +0.9111424370048499 +0.8904299671154461 +0.893481735656546 +0.9041095700902171 +0.9406250597652906 +0.9522240807583194 +0.875305648611036 +0.9431193022254302 +0.9398207768003314 +0.9491525200330793 +0.9234338498605882 +0.9338521279203318 +0.8992248354527987 +0.9067524755387335 +0.9337260818325509 +0.8360128832747883 +0.9054263534307464 +0.9415041860312019 +0.9230769131455937 +0.8062827062791109 +0.9504717099388135 +0.9456342894060298 +0.9405772934355463 +0.9345794017145294 +0.9153045528628404 +0.9026548736811858 +0.9170579373507632 +0.8351351756384127 +0.9411764780367653 +0.9359605553841029 +0.8495575424830186 +0.8493827530094323 +0.9093851319277939 +0.9482517476369978 +0.8783878075664221 diff --git a/paper_figures/eval_results/cellpose/general/Gendarme_BriFi.txt b/paper_figures/eval_results/cellpose/general/Gendarme_BriFi.txt new file mode 100644 index 0000000..07294a0 --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/Gendarme_BriFi.txt @@ -0,0 +1,22 @@ +0.885714324043331 +0.8723404527034312 +0.8947368281680518 +0.805555521288911 +0.8421052776875586 +0.9310345026032112 +0.9250000160992953 +0.9354838381166412 +0.8500000069947806 +0.8292682425997585 +0.8965516852943858 +0.8695652262643965 +0.8285714894260526 +0.885714324043331 +0.9393939182439041 +0.7428571495942456 +0.805194775518147 +0.8450703969575953 +0.8636363916368056 +0.8354430041022582 +0.8732393677446996 +0.9166666991532059 diff --git a/paper_figures/eval_results/cellpose/general/H_and_E.txt b/paper_figures/eval_results/cellpose/general/H_and_E.txt new file mode 100644 index 0000000..ff92cf5 --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/H_and_E.txt @@ -0,0 +1,51 @@ +0.6788155109808621 +0.6551724344732552 +0.6046511377952819 +0.8589341697088299 +0.6666666947260956 +0.8231511547485516 +0.6869565008865616 +0.7169811640650432 +0.854430363120447 +0.17647057864492763 +0.9491525646989397 +0.3214285389906705 +0.853448286659813 +0.8785046848597076 +0.8888889111412899 +0.8481675799770231 +0.9515418413914889 +0.6250000223517431 +0.75 +0.6857142709226022 +0.8571428571428571 +0.8978494481038862 +0.9314079728745903 +0.6 +0.8000000147521499 +0.8571428571428571 +0.9261429966745707 +0.8350515268447386 +0.9342465510463263 +0.800000043925576 +0.9129814751509188 +0.9049429425222493 +0.860759560277169 +0.8582996143425874 +0.825806429440628 +0.7058823133422452 +0.8285714531548839 +0 +0.786549708487373 +0.8506271528313916 +0.8195937589985849 +0.837656108243113 +0.8522039588137896 +0.8784193885874264 +0.8985133158290316 +0.6842105135134281 +0.6575342976766232 +0.8103447655388776 +0.8470588642283153 +0.8969696985706335 +0.8859060276529523 diff --git a/paper_figures/eval_results/cellpose/general/LIVECell_good.txt b/paper_figures/eval_results/cellpose/general/LIVECell_good.txt new file mode 100644 index 0000000..6366012 --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/LIVECell_good.txt @@ -0,0 +1,576 @@ +0.5039370359556233 +0.5107913876478813 +0.8847185107414955 +0.4470588051015798 +0.7674418731085256 +0.016393443351054967 +0.18518519261759642 +0.9504950259259006 +0.2980769182948063 +0.7310344805111004 +0.8787878378723231 +0.3697478849448672 +0.5937500432329769 +0.03984063559671045 +0.24561402924650436 +0.9551451164283733 +0.736842096902253 +0.22775802762335406 +0.8483516980618906 +0.47222222722174034 +0.12374100906273804 +0.6166666682704434 +0.5170067924396493 +0.909370235431299 +0.2739130619224934 +0.2593516257961774 +0.9549549459762826 +0.3085714160729255 +0.11746031847400189 +0 +0.1774744136949837 +0.8732624945628037 +0.7750000115345806 +0.41216216982851844 +0.7972972862170363 +0.4494382135491979 +0.5691699895239949 +0.20051413689152725 +0.1025641055800665 +0.9713024129485887 +0.382916045660579 +0.30420711195328676 +0.84076437351644 +0.30399999717662207 +0.6390977527637831 +0.059596844204609874 +0.2105263139340351 +0.8644461541198358 +0.4606413755028954 +0.34181816028756457 +0.9429657321266053 +0.4444444555279532 +0.16814159320193386 +0.47222221874041503 +0.3100775228420974 +0.8081632749261971 +0.36363635779565595 +0.8398576886015413 +0.8670212875656149 +0.37735849865664134 +0.32820511487549614 +0.20100502387345415 +0.2841530019604455 +0.894308975050743 +0.6622516559146014 +0.8227424654974179 +0.8815166299526602 +0.32727271604677527 +0.36036033057174577 +0.12669684321356722 +0.17441860292773753 +0.9168207194666657 +0.42424241075455665 +0.9407114374727477 +0.8433268568981103 +0.545454580218059 +0.424580987274642 +0.02083333396265879 +0.16521738897715146 +0.9227166184065813 +0.44368600019760873 +0.8716216220834833 +0.8524590015001301 +0.6027397527086086 +0.0992248124368434 +0 +0.11560693484483915 +0.9209302575337758 +0.03088803259295883 +0.9039999563568943 +0.9180327964619899 +0.446808515603103 +0.1935483788694764 +0.1237113413939708 +0.20000000372405885 +0.867841439019606 +0.11336031827461551 +0.6159419887621126 +0.9274192947509569 +0.457831336776684 +0.07681755999537797 +0.03025210083012417 +0.39655170733820616 +0.8981723741533217 +0.682634673387683 +0.17488789844338734 +0.9430894293528135 +0.47552449741115826 +0.6532662698002374 +0.6666667113242289 +0.19480518866339805 +0.9178356782388088 +0.33564015105162687 +0.37785015959369295 +0.8854961719058945 +0.5473684210526316 +0.14960630965853003 +0 +0.20512820419749492 +0.9631449268098603 +0.2180094811893448 +0.7999999701982664 +0.9449541457877922 +0.3200000064487457 +0.6525423496737769 +0.6399999590236299 +0.5319149209234514 +0.9155555703094225 +0.33050845189508005 +0.8864468653904062 +0.884146329131878 +0.31914894491258694 +0.8860759655382916 +0.19905213169923547 +0.10928962088312846 +0.9292542540778725 +0.5736434592706414 +0.5495495173365726 +0.8290155199369251 +0.33333334816826693 +0.03913894648626311 +0.010126582159858632 +0.15094338645880714 +0.9400921758325141 +0.19239374519831184 +0.9084745324981053 +0.944099358886147 +0.36363638598071746 +0.6865671557669241 +0.14388490046745353 +0.1958762831908974 +0.8912386708969119 +0.09164420985578237 +0.38759689397919633 +0.8955223463374817 +0.3209876348378233 +0.540540550926416 +0.10526315217809577 +0.1875 +0.9043824835074733 +0.710526317966095 +0.703448275285742 +0.9739130663466147 +0.4485981368541672 +0.00456273746919709 +0.006191951073721911 +0.2818792005837812 +0.8493150742540253 +0.8092485867920779 +0.8296943654552006 +0.8054298582408902 +0.45217391476167296 +0.48627449278675944 +0.20830188513751455 +0.1785714371015828 +0.95408169033174 +0.220689664994069 +0.6521739346985554 +0.8088530868714642 +0.5866666754327636 +0.5917603261359368 +0.016304349030539907 +0.17241379235839022 +0.9250814372120094 +0.6845637346733474 +0.6728972040100949 +0.7739130534624605 +0.49382720502697275 +0.8372092511103972 +0.03802281515421563 +0.20000000744230242 +0.8912037176324791 +0.6256982988091574 +0.5714285500194374 +0.8776595827763762 +0.5454545602928762 +0.36760121806041157 +0.00715563493599546 +0.20264316963829734 +0.8821138656327481 +0.16326529768712003 +0.9082126015245376 +0.878048775530942 +0.4489795877998634 +0.23706896551724138 +0.006734007040202573 +0.18571429771053904 +0.9220945294277061 +0.19023137547260238 +0.48241201556102487 +0.8253968688416904 +0.3797468716095731 +0.5760517541536873 +0.01967213004902588 +0.23798626313599472 +0.9295352495810678 +0.17021276757324297 +0.8932806913765607 +0.9421965676278283 +0.34234232351052907 +0.22004887764861808 +0.10126581395507814 +0.13846152684348223 +0.8998410428658357 +0.2857142857142857 +0.33093524748711883 +0.8111888260717556 +0.4807692522189682 +0.3892617404721331 +0.02032520441215099 +0.2851711047462816 +0.9516908366863227 +0.6666666369413983 +0.742081445793189 +0.9289099632386073 +0.32989687279052127 +0.6877828069945215 +0.6694915209231286 +0.2362204740550121 +0.9346733738841826 +0.09523809365945073 +0.9138211262271031 +0.29310346673424986 +0.5167464117569205 +0.2766798327137546 +0.31775701196415684 +0.8974359076536499 +0.35448577087866806 +0.7807487092009863 +0.5274725597232872 +0.4921135771893059 +0.647058866763402 +0.22978723576569435 +0.865319850940576 +0.11506849504774988 +0.9265175948856764 +0.520547939026673 +0.627906917534435 +0.08438818299629128 +0.2692307798363573 +0.9267241906009941 +0.4581005513644513 +0.8759124171959171 +0.3333333406919313 +0.1351351355796393 +0.21260997221025799 +0.15384616315163072 +0.9406099405563346 +0.666666652046227 +0.9306930978158943 +0.5714285495329892 +0.6338797931792874 +0.5121951445361824 +0.9307876273958513 +0.45226128705176805 +0.8525641025641025 +0.3428571565053897 +0.46963561858466957 +0.3076923244561134 +0.966921152526954 +0.4791344653867756 +0.8741419224057372 +0.5000000595869291 +0.16462346683084242 +0.6739130032726593 +0.9047618828033145 +0.2583518924281199 +0.8317756989279019 +0.46846845619535926 +0.7698112849031089 +0.22797927537173318 +0.9295238427449857 +0.6624203629776934 +0.8856305012949287 +0.35789474164971463 +0.4023323741587872 +0.16450216974216494 +0.9795918019656142 +0.11678833125215866 +0.8097166413923527 +0.19801980589136933 +0.7703703846984101 +0.08071748695870472 +0.930348300763671 +0.41509435845947673 +0.8545034659750269 +0.4074074074074074 +0.696132554410186 +0.3333333258880509 +0.9351144814427933 +0.011428570849028402 +0.9518072567952912 +0.4520547873079444 +0.21971829853280844 +0.11428571661354556 +0.9490834783698685 +0.31578947789198397 +0.867924557934455 +0.37179486357354163 +0.29518072823743485 +0.19000000937737951 +0.8898776215025107 +0.13202934835035213 +0.8035714523448626 +0.5046729479800398 +0.1875 +0.8436577557834388 +0.6592178217411536 +0.8920863740869741 +0.47169810546170143 +0.37872340074568167 +0.8785529382679732 +0.7826087419237086 +0.8849557504292914 +0.3076923233094308 +0.125 +0.9318681518291978 +0.14163090790834806 +0.8733624615004292 +0.3500000085054887 +0.3043478175791616 +0.8839050256441925 +0.7076922390336478 +0.9004738863314166 +0.3838383744741754 +0.20270270616948122 +0.87787607519542 +0.2376237521626394 +0.9057591753927847 +0.4255319474498533 +0.14285715213737185 +0.9379084909170011 +0.7872340425531915 +0.8977955623142636 +0.3209876348378233 +0.3092783609451686 +0.8590425483935921 +0.32661288639707026 +0.8421052557705202 +0.5185184847130941 +0.5714285269237719 +0.9427083326753617 +0.13698630640812773 +0.9457364409418278 +0.49523811241770643 +0.4555555584340238 +0.9053254289895638 +0.18775509920891847 +0.8780488019874964 +0.4651162630548475 +0.21935484561213378 +0.9190283135625822 +0.694610793074231 +0.8535565528479628 +0.4727272664312718 +0.21256036840613707 +0.9424861017669346 +0.03378378361551304 +0.7988165319051468 +0.4675324831314792 +0.1188118797158376 +0.8998665076645822 +0.26934984686849106 +0.7555555503961567 +0.37113400240796207 +0.34615384615384615 +0.8844719912641028 +0.3606557553808965 +0.910994770202033 +0.2833333368394889 +0.5607476709232401 +0.9084506792996289 +0.2456140291478428 +0.8843283725424534 +0.528925621691122 +0.29256595175930583 +0.8788598198035015 +0.23387096819681952 +0.9283819124735994 +0.42592594391094457 +0.44987774705408196 +0.9293361538316507 +0.06837606911422014 +0.8806818051537864 +0.3636363490122901 +0.25550660388594004 +0.9373882295962213 +0.3001949128575944 +0.9090909268245232 +0.36144579147723765 +0.35204082407190707 +0.9009288003524124 +0.6486486511158482 +0.9208632627960304 +0.582278506243407 +0.07194244677121764 +0.8796433959702332 +0.19883041470675689 +0.8477366775529152 +0.4383561509021917 +0.3100775152850423 +0.8980668099553922 +0.17721519831537388 +0.7938931292075224 +0.3357400855670415 +0.9117043355720522 +0.6324785958412171 +0.8623852976637048 +0.3125 +0.954653937798524 +0.5591398152338828 +0.28125000654351184 +0.9137254945432431 +0.40659341435794066 +0.18181818509890035 +0.9123867643775387 +0.18232043621113278 +0.23209877075847116 +0.9262760005850627 +0.6406249627925286 +0.29310346572326024 +0.8733850102786941 +0.17511520004336584 +0.41600001456876873 +0.9291338486705725 +0.21176470171002806 +0.18779343272376015 +0.8340611544064009 +0.707482921735871 +0.1809744753908657 +0.9444444093934571 +0.05607476873252048 +0.5486725620540078 +0.9124236542585076 +0.29844099547486724 +0.20155038816799647 +0.8882834030622015 +0.18230562687136032 +0.33628317429363047 +0.9038786401857862 +0.25607064329484985 +0.09032258326609971 +0.8696844981880054 +0.09125475196467304 +0.09195402563740415 +0.9167882854847523 +0.7164179573230196 +0.13496932347440033 +0.9103840964950825 +0.2228739041389048 +0.1916932961205607 +0.8516128490400174 +0.19213974565869296 +0.28481013451396525 +0.8813953092750726 +0.7169811631671374 +0.31078610664574374 +0.9503546206044026 +0.7786259541984732 +0.7608695448201447 +0.9347367847850666 +0.2605210405928981 +0.14084508028389253 +0.9352940651813269 +0.4639175226026013 +0.21621621437534047 +0.9097222072093231 +0.6909090634313245 +0.2605364035068657 +0.8865096414440327 +0.7031249933918136 +0.105263160202855 +0.894150374939563 +0.6620689829011032 +0.16608997022295038 +0.8705882763589535 +0.1417721525952808 +0.2707930484392214 +0.30452676414486224 +0.2322580598690137 +0.8023255589629589 +0.21978023167687927 +0.5987260845413094 +0.7777777692796478 +0.08130081564059838 +0.28787877618223007 +0.46286701009270526 +0.2431372501117672 +0.12820511891581698 +0.23529410841341103 +0.758620681595992 +0.24120601124428562 +0.15810276702784132 +0.13793104657555533 +0.36585365286332955 +0.3538461723499688 +0.8535031185683231 +0.23611110760766088 +0.34205230343195275 +0.37254901960784315 +0.4000000067685166 +0.22878228248409468 +0.6538461295612439 +0.19631901226299528 +0.5230768959038028 +0.44444442959662195 +0.11931817657788872 +0.15789474425366615 +0.7830188284415353 +0.303921573430119 +0.5888888944425479 +0.18775508438647448 +0.13375795636454715 +0.16766468566790668 +0.417721515111577 +0.22911694010384925 +0.10975610739597345 +0.21451103883907285 +0.8000000297546388 +0.2896551757379647 +0.5217390876093948 +0.32989690443321734 +0.40268457669085067 +0.1111111120395592 +0.11195928579780486 +0.2528735442633008 +0.2494714545832168 +0.06299213095255704 +0.3206107155684823 +0.15533980399866798 +0.23376624284139744 +0.24731183101696805 +0.2580645005344484 +0.31654677373326223 +0.2539682593182555 +0.17983650685749958 +0.3652173954456072 +0.16574586096912577 +0.1886792456555396 +0.18705035513888582 +0.5909091090974132 +0.17021275296090396 +0.2189781004646502 +0.24649861006337354 +0.3461538378767839 +0.18333333601554222 +0.2682119230876613 +0.4052287443307762 +0.4393939301640522 +0.15602836702359069 +0.259259251824648 +0.18815331822827605 +0.3033707684169892 +0.27561836847256194 +0.48598130527253697 +0.17801046244096172 diff --git a/paper_figures/eval_results/cellpose/general/YeaZ.txt b/paper_figures/eval_results/cellpose/general/YeaZ.txt new file mode 100644 index 0000000..219bcbc --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/YeaZ.txt @@ -0,0 +1,17 @@ +0.969387764504481 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.975609787371385 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +0.9836065126855801 +0.9661836007775985 +0.9789473671398005 diff --git a/paper_figures/eval_results/cellpose/general/YeastNet.txt b/paper_figures/eval_results/cellpose/general/YeastNet.txt new file mode 100644 index 0000000..658c4e1 --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/YeastNet.txt @@ -0,0 +1,15 @@ +0.9523809404709702 +0.9749999419277138 +0.9749999419277138 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +0.8888889256818805 +1.0 diff --git a/paper_figures/eval_results/cellpose/general/cellpose.txt b/paper_figures/eval_results/cellpose/general/cellpose.txt new file mode 100644 index 0000000..676bfae --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/cellpose.txt @@ -0,0 +1,68 @@ +0.9647058292976125 +0.9600000049670538 +0.9418604570393321 +0.7681159159962889 +0.9573459928087237 +0.9824561009813588 +0.8615385051362622 +0.9380530928639315 +0.938271600233359 +0.977777783193706 +0.7873753609306103 +0.8595041339506522 +0.8674699200823431 +0.7438016704209924 +0.9717223910356573 +0.88 +0.910144949095957 +0.9241378852385859 +0.23357664430966008 +0.9384615540363377 +0.5885558574931165 +0.9240506206638626 +0.9450549332953966 +0.9444444444444444 +0.9253731362506604 +0.9285714651680356 +0.9440994282434491 +0.843373436934027 +0.9577465024975371 +0.8934010031751074 +0.6181818309695953 +0.9290322295146564 +0.9318996702239377 +0.6072874435069092 +0.7872340842668916 +0.9600000297718047 +1.0 +0.8915662127124082 +0.928571396476619 +0.9473684078086226 +0.8024690748154165 +0 +0.8923077353777357 +0.5202702836688478 +0.6741214109141859 +0.8611110938198889 +0.7260273827390322 +0.93212673760905 +0.8952380901819235 +0.6731391615425191 +0.8755760992230271 +0.9765625 +0.9446494274234094 +0.9090908793119059 +0.8918919099407108 +0.9411764966652673 +0.8525468877427494 +0 +0.7096773990962534 +0.35761586933955336 +0.6027397171872126 +0.8671874957799446 +0.7755101994720358 +0.7692307976724048 +0.7598252647515673 +0.49230768278505715 +0.9824561009813588 +0.7727272594270626 diff --git a/paper_figures/eval_results/cellpose/general/deepbacs.txt b/paper_figures/eval_results/cellpose/general/deepbacs.txt new file mode 100644 index 0000000..0e55aba --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/deepbacs.txt @@ -0,0 +1,92 @@ +0.9740260129414041 +0.9693251446979344 +0.9818181906455804 +0.9862069228061181 +1.0 +0.9518072183589474 +0.9668874315067015 +0.9589041274628856 +0.9277108487913114 +0.9565217337175924 +0.8281938237978058 +0.9739130663466147 +1.0 +0.9607843052105409 +0.9166666612616091 +0.9353234017527867 +0.8636363261904403 +0.8613138821926315 +0.8636363134890722 +0.9316770075112034 +0.9333333333333333 +0.9044585686523987 +0.913043432933655 +0.885416656901628 +0.9636363793757816 +0.8470587631722057 +0.9423077166271223 +0.9122806903237064 +0.8200000203019244 +0.8253968117285472 +0.949999984314567 +0.8709677264985078 +0.809523813029965 +0.8888888665779674 +0.7247191212222232 +0.8253968117285472 +0.949999984314567 +0.8200000203019244 +0.7247191212222232 +0.9423077166271223 +0.809523813029965 +0.8470587631722057 +0.9122806903237064 +0.8709677264985078 +0.8888888665779674 +0.9425287152820678 +0.9558823199936272 +0.8648648575013619 +0.9931034147498449 +0.8682171137896691 +0.9574468297034008 +0.9859154725218681 +0.8988764365278333 +0.9638554820276906 +0.9793103620365602 +1.0 +0.9397590017622741 +0.9277108487913114 +0.9693251446979344 +0.8253968117285472 +0.913043432933655 +0.9589041274628856 +0.9636363793757816 +1.0 +0.8636363261904403 +0.9423077166271223 +0.9316770075112034 +0.8636363134890722 +0.9818181906455804 +0.9740260129414041 +0.8281938237978058 +0.9565217337175924 +0.9518072183589474 +0.9668874315067015 +0.9333333333333333 +0.9166666612616091 +0.8200000203019244 +0.9607843052105409 +0.9122806903237064 +0.7247191212222232 +1.0 +0.8888888665779674 +0.9739130663466147 +0.809523813029965 +0.949999984314567 +0.885416656901628 +0.8470587631722057 +0.9353234017527867 +0.9044585686523987 +0.9862069228061181 +0.8613138821926315 +0.8709677264985078 diff --git a/paper_figures/eval_results/cellpose/general/dsb_fixed.txt b/paper_figures/eval_results/cellpose/general/dsb_fixed.txt new file mode 100644 index 0000000..ecdb657 --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/dsb_fixed.txt @@ -0,0 +1,56 @@ +1.0 +1.0 +0.972973014334853 +1.0 +0.9285714651680356 +0.7906977424558489 +0.958333312637277 +0.75 +1.0 +0.9107142810409024 +0 +1.0 +1.0 +0.8571428670262803 +0.8333333449231253 +0.9465648686732719 +0.8124999819466691 +1.0 +0.8695652024901427 +0.8214284940800427 +1.0 +0.7391303999861705 +0.9473684078438459 +1.0 +0 +0.8965517424560153 +0.8888888590911084 +0.9333333333333333 +0.9696970013328611 +0.983050803280672 +0.8333333098640041 +0.7647058913959668 +0.6666666524359901 +1.0 +0.8444444946130446 +0.9333333333333333 +0.9565217202011722 +0.8301886358308649 +0.9361702100676937 +0.7659574246782512 +0.9127516581737537 +0.8817204337415362 +1.0 +0.8717948192371177 +1.0 +0.9868421004956118 +0.938271600233359 +0.9736842121361365 +0.9291338633111285 +0.9791666768077346 +0.9714285574153976 +0.9721116124114508 +0.9958159035885548 +0.967032942657428 +0.9696970293000959 +0.9031079067627971 diff --git a/paper_figures/eval_results/cellpose/general/ep_phase_microscopy_all.txt b/paper_figures/eval_results/cellpose/general/ep_phase_microscopy_all.txt new file mode 100644 index 0000000..e23a0a1 --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/ep_phase_microscopy_all.txt @@ -0,0 +1,54 @@ +0.9590164627080362 +0.9862385124271116 +0.9704142477025035 +0.9695652069689471 +0.8763358776550885 +0.8587570841064205 +0.9135802010088933 +0.9452735788358448 +0.9433961942314507 +0.9890109916597645 +0.9308755854741736 +0.9782608907579798 +0.9655172456364687 +0.9507042240276307 +0.8823529096029201 +0.9433962419121896 +0.8695651966392229 +0.9836066000895795 +0.9714285574153976 +0.9249999630410921 +0.8367346924251415 +0.8867924794241273 +0.8536585722630556 +0.9444444444444444 +0.88524587515551 +0.9876543329067662 +0.9567567702267328 +0.8571428571428571 +0.888888918484251 +0.9600000322341928 +1.0 +0.9704141630272658 +0.9921259842519685 +0.98039214256313 +0.9787234431235154 +0.9871794763440602 +0.9933774488745317 +0.9598540526724844 +0.9338677082294943 +0.8326180251366034 +0.8589211742065149 +0.9121338641452773 +0.9461358889205557 +0.9513274729951068 +0.9337016359470874 +0.951388893674144 +0.9671052745106692 +0.9760000229583634 +0.9499072980147658 +0.9268292839724718 +0.8867924845319648 +0.9714285731816429 +0.9292035227931098 +0.9309210677945354 diff --git a/paper_figures/eval_results/cellpose/general/omnipose.txt b/paper_figures/eval_results/cellpose/general/omnipose.txt new file mode 100644 index 0000000..435fc18 --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/omnipose.txt @@ -0,0 +1,168 @@ +0.9537572445632682 +0.9914529791218967 +0.9411764482450868 +0.9635219880038005 +0.9813084276771886 +0.9005525173899556 +0.919708046182519 +0.9415584547103516 +0.9613259233476179 +0.9063670365241155 +0.9822063778384337 +0.9822063778384337 +0.9005525173899556 +0.9063670365241155 +0.9964912635387008 +0.9423630819539129 +0.9457522790601975 +0.9543010420485611 +0.9057750532621126 +0.8869565790020095 +0.8400000085062301 +0.8999999802276809 +0.9401523010431215 +0.666666735630719 +0.9893617194322338 +0.8409091149608032 +0.9354838381166412 +0.9759036460983032 +0.7228915811421399 +0.8888888445192694 +0.7157894248645411 +0.9620252952837547 +0.7529411847956452 +0.9842932225613451 +0.7889908464786409 +0.9148936294966672 +0.9607842833617255 +1.0 +0.9768875196364472 +0.7058823937775779 +0.9333333333333333 +0.9612403360300475 +1.0 +0.9860228753513806 +0.8421052742099332 +0.9090909268245232 +0.978978963986535 +0.9602888053034898 +0.979253073649711 +0.9761273507469566 +0.9906102568885172 +0.9471154021574704 +0.9838337136275671 +0.9195402135132704 +0.9495548937211864 +0.9836066000895795 +0.9230768833666196 +0.9041095773558644 +0.7457627064473595 +0.9600000322341928 +0.8607594538734089 +0.9813277680663653 +0.6250000223517431 +0.9375 +0.9589041163997226 +1.0 +0.7500000186264513 +0.6666666666666666 +0.9803921473276315 +1.0 +0.9090908912125323 +0.9722222103035927 +0.7804878399852606 +0.9166666991532059 +0.9084745115779911 +0.8421052743028075 +0.5714285896748915 +0.9589040815371657 +0.8108108246779249 +0.958974337300514 +0.9689119413221428 +0.8235293746407067 +0.9699248314351416 +0.6341463279130608 +0.7457627064473595 +0.8847583700627482 +0.9830508433469619 +0.5333333498901784 +0.9629629194654726 +0.9924050594898468 +0.7924528315952071 +0.9886363458234815 +0.7692307336795978 +0.7118643784046486 +0.9819121294888867 +0.6666666666666666 +0.9921260306108189 +0.625 +0.9295774945674066 +0.9714285433802424 +0.6666666666666666 +0.7500000186264513 +0.5 +0.6666666666666666 +0.8358208616522755 +0.6666666813838626 +0.6250000223517431 +1.0 +0.8615384846830014 +0.9759704480535588 +0.8571428571428571 +0.6666666666666666 +0.8847583059434337 +0.7777777693679516 +0.7368421177171558 +0.7619047546062341 +0.444444477558136 +0.749999922734721 +0.46153849680748343 +0.799999985694886 +0.6666666666666666 +0.6829268642044072 +0.5 +0.7826086891421098 +0 +0.46153849680748343 +0.9802890845097826 +0.9573770038688529 +0.25 +0.8888889256818805 +0.5714285495329892 +1.0 +0.8333333449231253 +0.9230768983886096 +0.7936507890854593 +0.7142856904438569 +0.3200000167369837 +0.6 +0.6999999836512966 +0.9017013282336359 +0.7058824058772518 +0.9863014021484438 +0.9252336400436969 +0.9501187579997731 +0.9349006022084156 +0.955719541324127 +0.9629629973450178 +0.9467005326751826 +0.9255319381279067 +1.0 +0.9857142649832941 +0.9668874331228751 +0.9396551434899577 +0.9191321164043645 +0.9351432851107477 +0.9082672224856387 +0.9513212996842264 +0.5999999916553499 +0.48484848662731944 +0.4999999454658925 +0.7272727494397434 +0.6270270272687426 +0.4912280871581635 +0.5185185291038039 +0.8879402411851921 +0.8775019640491071 +0.6369426690594385 +0.9104803603321705 diff --git a/paper_figures/eval_results/cellpose/general/tissuenet_wholecell.txt b/paper_figures/eval_results/cellpose/general/tissuenet_wholecell.txt new file mode 100644 index 0000000..b20d5e0 --- /dev/null +++ b/paper_figures/eval_results/cellpose/general/tissuenet_wholecell.txt @@ -0,0 +1,330 @@ +0.927966135442302 +0.8975791184478605 +0.8989169243752152 +0.8928571381244214 +0.8943533898076996 +0.9257950916713313 +0.888695658451896 +0.9187396031518377 +0.9308835980749056 +0.8897536151690328 +0.9125214665193945 +0.908474563649471 +0.8849185616521916 +0.8837208742700541 +0.8317699059241087 +0.8882113916131587 +0.9079365301550182 +0.864628820358694 +0.9416961095001577 +0.9404934631039864 +0.673819762046166 +0.89739664754298 +0.31325302175989556 +0.6430317983275575 +0.9363296249569029 +0.6739526305380694 +0.9473683813425607 +0.9219143423743473 +0.9207383137792786 +0.9500860401724804 +0.9335219381607384 +0.8454545710059691 +0.9425981781480125 +0.9470109287238211 +0.5308642326459355 +0.8922783260198516 +0.7473460797597256 +0.7337808305014377 +0.6553672181121039 +0.7963246269987093 +0.6666666368655948 +0.3976608124531863 +0.6998577610844431 +0.6560846747394115 +0.47133759350120563 +0.9064976301999719 +0.9302201992808327 +0.8718300334805795 +0.9498489140852836 +0.837606847940591 +0.7849265015878029 +0.7462235200902887 +0.4848485006018142 +0.8017242020113361 +0.7959183841549334 +0.8370987149683208 +0.7243367949556064 +0.6558139756811115 +0.7640449297987494 +0.938536593606342 +0.889617540157111 +0.7698112758058288 +0.6748768605882179 +0.7512438506153284 +0.6893616918092996 +0.714285725461585 +0.6439393744671918 +0.7332054046508295 +0.5866666305330076 +0.744710866075591 +0.8423529784871312 +0.7830986334745527 +0.6788321044679859 +0.4691358200557796 +0.7977528278853497 +0.6889632371196388 +0.8240343472810181 +0.787096761895629 +0.7202380708653358 +0.8062360577709515 +0.7678571645246461 +0.6912928812684422 +0.7478991443000977 +0.8639240815752063 +0.8037383314537622 +0.6956521987577011 +0.6833332870193959 +0.6578947480943396 +0.7142856678336282 +0.8093749568569601 +0.7174447203666932 +0.852752892860806 +0.7561837031360475 +0.699619830868492 +0.5409835804090823 +0.49689439631937327 +0.7313916551297686 +0.6181818821330778 +0.7096774012963064 +0.8294930527858154 +0.7599999786025607 +0.786106046720008 +0.8245125509746403 +0.8634223194170475 +0.965403618686697 +0.9320988151381027 +0.9664929324362634 +0.948590350515174 +0.922234343588819 +0.9533332941528506 +0.5974025771729824 +0.9407007533229303 +0.9356846919702733 +0.9443757735727422 +0.8877004637642834 +0.9527806745721537 +0.9326764801118259 +0.958563565963323 +0.8837209599129887 +0.8467742025977728 +0.8651275571767801 +0.8566827753103935 +0.8938271438809363 +0.9522183862467638 +0.918580335329835 +0.8627450763981318 +0.9444444549559956 +0.8669201166244745 +0.9274335974926162 +0.8536209967528732 +0.8885793447773066 +0.9447236228364146 +0.9271758290891711 +0.9607330140124778 +0.9498747019602124 +0.945945949341974 +0.9055943899942878 +0.8408408302571452 +0.7682291778763995 +0.7144385390359208 +0.7485573590498964 +0.7908163593354827 +0.774974744779647 +0.8640483418824095 +0.5569892252335292 +0.8651452714523415 +0.8559439939395515 +0.788273637351197 +0.7486911150367949 +0.7667887542550889 +0.7707735949865989 +0.7648780291423142 +0.8500652209461491 +0.7878788152469212 +0.8064228303145401 +0.8424437400519602 +0.8535714384696824 +0.7692307103428393 +0.6992126547094626 +0.7779083300089711 +0.9672130834430541 +0.9792695577546221 +0.9756097486478384 +0.9657980322351656 +0.9527806513948014 +0.9627560269018942 +0.9738302527959477 +0.9215922701186313 +0.978343978916325 +0.9440994282434491 +0.956587995669459 +0.9601910680781031 +0.9825282097466358 +0.9685185276333308 +0.9656991558428253 +0.9720767423973704 +0.9824218020150726 +0.9607672443578497 +0.9752475350385632 +0.9632164711264977 +0.9773260257626867 +0.9680232479425244 +0.9641434772771389 +0.9387754676045112 +0.9736618901843687 +0.9335727611511534 +0.9747747660710671 +0.9684684828839563 +0.9462365706543187 +0.973348772954291 +0.9592476430629039 +0.9570200330428336 +0.9561068695151822 +0.9766970922746074 +0.9709251632429416 +0.9528688557890065 +0.968275879728761 +0.9629629583783624 +0.966101688641964 +0.9801084998656325 +0.9723460708137824 +0.9757127922192784 +0.8998519377328121 +0.9569093432073088 +0.9313880100959587 +0.9038909329758155 +0.904046227911595 +0.9271888848871576 +0.8901355676114527 +0.9451627005172843 +0.884940821762655 +0.808903352561981 +0.7385541701796304 +0.6991453238796438 +0.733590726169586 +0.47457624409102683 +0.677376145860474 +0.5753424868208051 +0.914765898856426 +0.9212410757102226 +0.8850325452651359 +0.898159464274248 +0.9278106234030822 +0.9570815725927457 +0.8646288041108569 +0.8567492360354944 +0.8542963484954664 +0.9196538773529364 +0.9104294967699464 +0.9183673164902392 +0.9086479857016041 +0.8964538800644283 +0.9390243763105799 +0.8826815755630593 +0.9209876298933618 +0.9365558700980946 +0.8571428968739571 +0.7435897681077935 +0.8983451561739578 +0.9311475128925699 +0.914100509969069 +0.917808199621099 +0.9295153580923341 +0.9187192193149395 +0.9270216906742146 +0.8496042183062669 +0.9298245299192082 +0.9222222760079581 +0.9284064745165629 +0.8955223969972862 +0.9197861277592349 +0.8196721561747643 +0.915384619387857 +0.8730158944936967 +0.9065744185297291 +0.8608696013168355 +0.8986175567351183 +0.9251700960053754 +0.877679685619772 +0.8720770477745282 +0.9257861840847706 +0.9038701452586837 +0.9179229422062005 +0.9187145482984964 +0.8868217345596222 +0.9413369466582092 +0.9090909387586734 +0.9011406542747109 +0.8942307583443627 +0.8866666532226081 +0.8608137231684765 +0.8544152701357565 +0.9221260510664313 +0.9402984838219046 +0.9259259854963391 +0.9277388858388205 +0.943627492738616 +0.8888888517648876 +0.8327273216189345 +0.9122807418328889 +0.8842974994964057 +0.8888889037380002 +0.9161603967222969 +0.8675136080000285 +0.9156327501428793 +0.8514056494698592 +0.913461483352186 +0.8948069714567952 +0.799235184780884 +0.8849557331422634 +0.8363636544862892 +0.872913942758592 +0.9655172520229091 +0.9771241842025008 +0.9610091825622982 +0.9779005659560612 +0.9470827473134128 +0.9709034745412999 +0.9631578725925024 +0.9692307030090307 +0.9787234029597361 +0.9688249429982625 +0.9855072656604141 +0.9837703254150633 +0.9773071380260697 +0.9773242615173243 +0.954887202557511 +0.9674556038056151 +0.95625 +0.9685714468570709 +0.8895899501714942 +0.9522388439000409 +0.979310391419862 +0.9733332957809189 +0.8888889335487188 +0.9721577441722834 +0.976076590375412 +0.9665551062062488 +0.9577465025267494 +0.9781659053376551 +0.9636048419660813 +0.9596273262991172 +0.9411764892054891 +0.9865470572975413 +0.973365601865128 +0.9437229480837416 +0.8358209675966995 +0.9654087456262423 +0.9782608695652174 +0.8625712972911348 diff --git a/paper_figures/eval_results/cellpose/individual/Gendarme_BriFi.txt b/paper_figures/eval_results/cellpose/individual/Gendarme_BriFi.txt new file mode 100644 index 0000000..345bfcb --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/Gendarme_BriFi.txt @@ -0,0 +1,22 @@ +0.9295774422515248 +0.8999999934011036 +0.9629629973450178 +0.8421052853703263 +0.9000000262260447 +0.9152542703923155 +0.9638554820276906 +0.9841269841269841 +0.9176470840373889 +0.8636364199872557 +0.9438202530700156 +0.9387755050232277 +0.9315068240146929 +0.8888889261130468 +0.9850746124192795 +0.8947368316159334 +0.8947368281680518 +0.9315068240146929 +0.9565217202011722 +0.9647058554916654 +0.8684210670811894 +0.9729729845627648 diff --git a/paper_figures/eval_results/cellpose/individual/H_and_E.txt b/paper_figures/eval_results/cellpose/individual/H_and_E.txt new file mode 100644 index 0000000..2e0feb6 --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/H_and_E.txt @@ -0,0 +1,51 @@ +0.6741071490519042 +0.7111110556787941 +0.574712645318647 +0.8708708432342293 +0.7721519184121134 +0.87066245992279 +0.6942149141874123 +0.7350427495452588 +0.9047618671502101 +0.7843137112822453 +0.9579832429162808 +0.6562499600861746 +0.8521739614648669 +0.9099306629574299 +0.9064747776242285 +0.8571428472749497 +0.9553571345073465 +0.28571429483744576 +0.7407406918142422 +0.8823529294205378 +0.9230768983886096 +0.903225770300737 +0.921428552102607 +0.6 +0.7368421177171558 +0.8518518130992365 +0.9393939950849531 +0.8455008620479781 +0.9491978753953946 +0.8200836862115073 +0.9172713797460446 +0.9138275895754554 +0.7975831039752064 +0.8898304586960004 +0.8375950402775509 +0.4827586164777422 +0.833114318472131 +0.7692307692307693 +0.7847411452411261 +0.8389188661220061 +0.8122786019144093 +0.8130232569039574 +0.8612279043685809 +0.8985936369471079 +0.9158760065729112 +0.8837209132118707 +0.7466666749984495 +0.8000000593605063 +0.8333333214124041 +0.8263473161403164 +0.8101265962460811 diff --git a/paper_figures/eval_results/cellpose/individual/YeaZ.txt b/paper_figures/eval_results/cellpose/individual/YeaZ.txt new file mode 100644 index 0000000..7e54a27 --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/YeaZ.txt @@ -0,0 +1,17 @@ +0.979899502071368 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9855072174571046 +1.0 +0.9942196400111626 +0.9942196400111626 +0.9942196400111626 +0.9942196400111626 +1.0 +0.9918699265156729 +0.9622641532806253 +0.9842932225613451 diff --git a/paper_figures/eval_results/cellpose/individual/YeastNet.txt b/paper_figures/eval_results/cellpose/individual/YeastNet.txt new file mode 100644 index 0000000..55b8c81 --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/YeastNet.txt @@ -0,0 +1,15 @@ +0.9790794956155037 +0.9915966543143095 +0.9874476924308293 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 diff --git a/paper_figures/eval_results/cellpose/individual/cellpose.txt b/paper_figures/eval_results/cellpose/individual/cellpose.txt new file mode 100644 index 0000000..d4dbb3d --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/cellpose.txt @@ -0,0 +1,68 @@ +0.9540229382965414 +0.9600000049670538 +0.9444444444444444 +0.7328244088734943 +0.9320388175733232 +0.928571396476619 +0.8320000125433118 +0.9285714331330085 +1.0 +1.0 +0.7947454706971381 +0.8479999724909945 +0.8711656894895355 +0.7903226166726257 +0.979695474081064 +0.8970588022000177 +0.9147726829171822 +0.9729729845627648 +0.7977527821789627 +0.9740740337532108 +0.6970509364063453 +0.9135802106896119 +0.9247311841812124 +0.9523809821708634 +0.9552239336705768 +0.9285714651680356 +0.9753085974875871 +0.8837209459095077 +0.9863013781398831 +0.9207920951301504 +0.6449703727942304 +0.9113923662108144 +0.9547038514585972 +0.6539924419854342 +0.8686868783889606 +0.9723320063644505 +1.0 +0.9523810179088935 +0.8461538677000122 +0.9684209878511016 +0.8888888367927757 +0.817391306249958 +0.9253731362506604 +0.5534590977658956 +0.7286585991739619 +0.7733333681186946 +0.7916666948004113 +0.877358495670959 +0.8909952113387557 +0.6624204110314573 +0.8878924475526724 +0.9802371272357556 +0.9591078011561032 +0.9292929182801519 +0.8947368316159334 +0.9411764966652673 +0.9319371537068242 +0.31924882467021026 +0.7255369909639475 +0.7903225830723078 +0.6666666809560966 +0.8888889256818805 +0.7083333402360772 +0.8730158463597277 +0.8284518992541813 +0.4199999912828213 +0.7466666855918045 +0.8421052339136446 diff --git a/paper_figures/eval_results/cellpose/individual/deepbacs.txt b/paper_figures/eval_results/cellpose/individual/deepbacs.txt new file mode 100644 index 0000000..52a0767 --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/deepbacs.txt @@ -0,0 +1,92 @@ +0.98039214256313 +0.9939394277383482 +0.9878048861420345 +0.9896193569492476 +0.9662921674060918 +0.9634145994450019 +0.9933774488745317 +0.9862069228061181 +0.9696969417583202 +0.9723756973791291 +0.8841202094206531 +0.9739130663466147 +0.9714285574153976 +0.9504950519882339 +0.9152542109189461 +0.9400000303603239 +0.825112134095986 +0.8571428769745788 +0.9090909210008913 +0.9135802010088933 +0.945054963711538 +0.9125000048867645 +0.9420290065582511 +0.8911916767277889 +0.9724771074850994 +0.8982036218126046 +0.9803921401734446 +0.9122806903237064 +0.838383841968618 +0.8524590095326182 +0.9610389972300095 +0.903225770300737 +0.8965517424560153 +0.8793103588355323 +0.8324022457244808 +0.8524590095326182 +0.9610389972300095 +0.838383841968618 +0.8324022457244808 +0.9803921401734446 +0.8965517424560153 +0.8982036218126046 +0.9122806903237064 +0.903225770300737 +0.8793103588355323 +0.9647058554916654 +0.8854961413688714 +0.8800000537140226 +0.9361701992255803 +0.8281250577804403 +0.9555555610892214 +0.9197080136071328 +0.9523809375135813 +0.9756097501370966 +0.9577464666041295 +0.9577464946384198 +0.9749999633431443 +0.9696969417583202 +0.9939394277383482 +0.8524590095326182 +0.9420290065582511 +0.9862069228061181 +0.9724771074850994 +0.9714285574153976 +0.825112134095986 +0.9803921401734446 +0.9135802010088933 +0.9090909210008913 +0.9878048861420345 +0.98039214256313 +0.8841202094206531 +0.9723756973791291 +0.9634145994450019 +0.9933774488745317 +0.945054963711538 +0.9152542109189461 +0.838383841968618 +0.9504950519882339 +0.9122806903237064 +0.8324022457244808 +0.9662921674060918 +0.8793103588355323 +0.9739130663466147 +0.8965517424560153 +0.9610389972300095 +0.8911916767277889 +0.8982036218126046 +0.9400000303603239 +0.9125000048867645 +0.9896193569492476 +0.8571428769745788 +0.903225770300737 diff --git a/paper_figures/eval_results/cellpose/individual/dsb_fixed.txt b/paper_figures/eval_results/cellpose/individual/dsb_fixed.txt new file mode 100644 index 0000000..6f84321 --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/dsb_fixed.txt @@ -0,0 +1,56 @@ +1.0 +1.0 +1.0 +1.0 +0.91566271389788 +0.9047618643496862 +0.958333312637277 +0.75 +1.0 +0.9009008401485741 +0 +1.0 +1.0 +0.7692307692307693 +0.7272727755475645 +0.9545454658961142 +0.8124999819466691 +0.9615384234479202 +0.8695652024901427 +0.8518518697684395 +1.0 +0.7391303999861705 +0.9473684078438459 +1.0 +0 +0.928571396476619 +0.9512195213596125 +0.9333333333333333 +0.8823529769392572 +0.9655172137057247 +0.8627450993891793 +0.7878787560492254 +0.7428571495942456 +1.0 +0.8636363761847098 +0.9333333333333333 +0.9565217202011722 +0.8148147697675596 +0.958333312637277 +0.7789473545025627 +0.9054053921000715 +0.8913043449185434 +1.0 +0.883116866465453 +1.0 +0.9868421004956118 +0.9268292494701638 +1.0 +0.9302325983509101 +0.9791666768077346 +0.9714285574153976 +0.9721116124114508 +0.9915966543143095 +0.963503662723717 +0.9571788176249703 +0.9464285871569283 diff --git a/paper_figures/eval_results/cellpose/individual/ep_phase_microscopy_all.txt b/paper_figures/eval_results/cellpose/individual/ep_phase_microscopy_all.txt new file mode 100644 index 0000000..1e574ce --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/ep_phase_microscopy_all.txt @@ -0,0 +1,54 @@ +0.9632652520822746 +0.9747126698253433 +0.959537552163541 +0.9782608722138622 +0.8933539065252449 +0.8977273300676291 +0.9440994149459563 +0.9452735788358448 +0.9523809821832747 +0.977777783193706 +0.9308755854741736 +0.9837837814913645 +0.9655172456364687 +0.9574468005649511 +0.8690476384659258 +0.9619565227493488 +0.8613139027401415 +0.986928072603178 +0.9714285574153976 +0.9249999630410921 +0.8645833591158215 +0.870370377976864 +0.8780487474529083 +0.9714285574153976 +0.8429751779955674 +0.9523810179088935 +0.9891304459172136 +0.8607594674126399 +0.8450703969575953 +1.0 +0.9882352884417999 +0.9704141630272658 +0.9763779215134734 +0.9900989806975782 +0.9893616585507018 +0.9806452005022738 +1.0 +0.9544626902058387 +0.9319999928376684 +0.8534483276359941 +0.8577405543813827 +0.9164344983590607 +0.9339622232140248 +0.9578713635063116 +0.9337016359470874 +0.951388893674144 +0.9570956454508681 +0.9734042325221385 +0.9330854664802992 +0.9320652017589938 +0.8952381098222103 +0.9752380539108071 +0.9066666894562277 +0.9407894628480581 diff --git a/paper_figures/eval_results/cellpose/individual/omnipose.txt b/paper_figures/eval_results/cellpose/individual/omnipose.txt new file mode 100644 index 0000000..6745c80 --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/omnipose.txt @@ -0,0 +1,168 @@ +0.9886363663764531 +0.9661017304689016 +0.9600000322341928 +0.9652605152636642 +0.9722222358449736 +0.9095890193312425 +0.913043432933655 +0.9610389328523296 +0.9780219820402687 +0.9338235500577269 +0.9823322050040155 +0.9823322050040155 +0.9095890193312425 +0.9338235500577269 +0.9894737114761454 +0.9467625844026848 +0.9489795655808688 +0.9733333186414191 +0.9129128956939465 +0.8465908994914001 +0.8091602595029465 +0.9540171714977113 +0.9502164172457048 +0.7246377243181431 +0.9787986276711574 +0.8372093088910106 +0.967741935483871 +0.9843478122917022 +0.7640448833537603 +0.8860759888679405 +0.91566271389788 +0.9512195213596125 +0.923076893278201 +0.9793814169474419 +0.9056603624785491 +0.9892473131235603 +0.9607842833617255 +1.0 +0.9762452250443046 +0.9000000262260447 +0.9333333333333333 +0.9610389457359957 +1.0 +0.991060018015995 +0.9230768983886096 +0.9090909268245232 +0.9696969603851122 +0.9710144785226675 +0.979338780608363 +0.9679143944070244 +0.9905660025438587 +0.951923033590277 +0.9907833840785433 +0.9545454091558503 +0.9436201592994291 +0.9967426996430729 +0.9210526095014057 +0.9041095773558644 +0.800000014778011 +0.9902912849237863 +0.9000000262260447 +0.979296113381841 +1.0 +0.9523809047092514 +0.9589041163997226 +1.0 +1.0 +1.0 +0.9570957282645013 +1.0 +0.9473684111254042 +0.9757785746098423 +0.9454545626425097 +0.906666648262622 +0.925170110088908 +0.8666667033464477 +1.0 +0.9444444654164499 +0.8732394270995135 +0.9506492954600212 +0.9791666489140188 +1.0 +0.9811320995397191 +0.7804877846936683 +0.8148148094631074 +0.9642857010402379 +1.0 +1.0 +1.0 +0.9770992217401566 +0.8076923048917795 +0.9852439921077694 +0.818181837977055 +0.839999980640411 +0.9792745732434738 +0.6666666666666666 +0.9973753527099503 +0.625 +0.9361702087071146 +0.9797101336460957 +1.0 +1.0 +1.0 +0.5 +0.8484848653740045 +0.6 +1.0 +1.0 +0.8484848653740045 +0.9842737784688868 +0.8571428571428571 +1.0 +0.9247311952632367 +0.9310345026032112 +0.8571427877617904 +0.9090909268245232 +0.5 +0.8799999893188476 +1.0 +0.799999985694886 +0.6666666666666666 +0.9268292745332644 +1.0 +0.857142827452247 +1.0 +1.0 +0.9776021062697874 +0.9839228513960427 +1.0 +0.8888889256818805 +0.6666666813838626 +1.0 +0.8333333449231253 +0.9230768983886096 +0.8115942376612221 +0.9230768983886096 +0.608695594806657 +0.7619048288079358 +0.7826087419237086 +0.9310987322835984 +0.7567567905926399 +0.9934924303225763 +0.9252336400436969 +0.9550827999489737 +0.9450945120012392 +0.9781021568689697 +1.0 +0.9690210760405861 +0.9490195984937256 +1.0 +0.9857142649832941 +0.9695652393020789 +0.9483487990923539 +0.913385790946057 +0.9427710577315471 +0.9297052225236068 +0.955555516743529 +0.4615384491943048 +0.5641025830552093 +0.5714285566984691 +0.7647058458000792 +0.6666666666666666 +0.6274510146802948 +0.6296295965039164 +0.9461382617523371 +0.9281853215572913 +0.7078651779956029 +0.9547414220629369 diff --git a/paper_figures/eval_results/cellpose/individual/tissuenet_wholecell.txt b/paper_figures/eval_results/cellpose/individual/tissuenet_wholecell.txt new file mode 100644 index 0000000..19309d7 --- /dev/null +++ b/paper_figures/eval_results/cellpose/individual/tissuenet_wholecell.txt @@ -0,0 +1,330 @@ +0.9544008358396866 +0.9056261449304431 +0.9276373446205968 +0.945193167308654 +0.9056939328869213 +0.9267271245284494 +0.9264705522848238 +0.9255664133393247 +0.9580838029236481 +0.8962867474119265 +0.9087837415207166 +0.9589702293067873 +0.8951487033245751 +0.902255582688575 +0.8436317925568662 +0.9114427863942312 +0.9281437287257859 +0.8869309564233544 +0.9547038505827034 +0.9428571320287817 +0.8164793615185756 +0.9205397359484802 +0.8644067471719172 +0.8648648667267049 +0.9420560430807906 +0.8455149286328218 +0.9544950346505676 +0.9299123969056768 +0.9267760068889099 +0.9512403449344256 +0.9311797272743915 +0.8445747910215239 +0.9475262175551192 +0.949832808450305 +0.7264151152399525 +0.8914069896184008 +0.8188679349479975 +0.7403100762723153 +0.7641509272249605 +0.7668096816007312 +0.6890243660452445 +0.7007575681769665 +0.7445997868612351 +0.7404255424493119 +0.46494460095932766 +0.8881954963819308 +0.928571474391583 +0.8833223097304376 +0.9253011779671181 +0.8518173193816659 +0.7768594788763664 +0.7580420117819295 +0.3820224641111461 +0.6259842400888108 +0.6642512108980033 +0.8247914626999548 +0.7686996435192291 +0.6605080193684166 +0.7843478347808575 +0.9173077026760434 +0.8592437110168131 +0.800000073432923 +0.6460807320983741 +0.7386090782063619 +0.7874307272146608 +0.7752809364926698 +0.6804123592337095 +0.640845035718503 +0.5675675566206637 +0.7826087022572576 +0.8635347098460213 +0.7901907298087487 +0.6688963550205017 +0.5217390820846459 +0.7362636862962455 +0.6199999629827397 +0.8690228018831532 +0.802419325808292 +0.8301887234547732 +0.8225469818885128 +0.8068669201965148 +0.7277227875024684 +0.8217053997307455 +0.8707692337171725 +0.7844311789496652 +0.5444444548516049 +0.6666666219744486 +0.6823529325392377 +0.7575757909466976 +0.8172042814929512 +0.6876513014487434 +0.8553769781412176 +0.6666666814559034 +0.6171003514106488 +0.614285690405525 +0.3657587674988033 +0.7147334980312381 +0.7128712773271547 +0.5622775625814079 +0.8640350943628502 +0.8502994066447808 +0.8131488621382535 +0.8406961425965453 +0.8629920811421907 +0.9642660641581126 +0.9287925527845716 +0.9644444688879602 +0.9470198821222224 +0.9188596181365252 +0.9565217933147935 +0.6060605989080482 +0.9533954396588642 +0.9284973746697435 +0.9613947905279623 +0.9056603550536797 +0.949579850911723 +0.9317995022084328 +0.9606741468582972 +0.8833819755058394 +0.8662674034216995 +0.8343126429529143 +0.8553259011003946 +0.9164618985776165 +0.9502572366420351 +0.929460557516508 +0.851485191380333 +0.9527896947423685 +0.9025270555469592 +0.9008695789053387 +0.8670694671355664 +0.8882834439493817 +0.9376558483182379 +0.936395770283953 +0.9749670398583921 +0.947103294670026 +0.945945949341974 +0.8839590314932697 +0.8254932144272521 +0.774193565641854 +0.7299893713611285 +0.7391304824125542 +0.7850467366276351 +0.7715431414483244 +0.8549618331143006 +0.5486339036665502 +0.8568464911230308 +0.8539637902057924 +0.763274312087564 +0.7267951448075162 +0.785454524604837 +0.7583212540133588 +0.7591674637558844 +0.8749999830672291 +0.8012820389576452 +0.7953111239019774 +0.8470209470035552 +0.8606994699734729 +0.7757773500936784 +0.6925465352742631 +0.7735848687506198 +0.968152835269079 +0.9832841873013232 +0.9726562073969104 +0.9715677764124674 +0.9463722548454572 +0.965581434671021 +0.9762658204664602 +0.9247312063393033 +0.977040789878598 +0.9367088551221201 +0.958364905742986 +0.9633757643644286 +0.9804727427830918 +0.9740259891206199 +0.9657894623155553 +0.9668411728601203 +0.9765625448165383 +0.965095988085988 +0.9763975153763129 +0.9612403268909148 +0.9774319044793739 +0.9695210217151399 +0.9760479250336307 +0.9400000227907876 +0.9735720273864177 +0.937893773308063 +0.9747292533566322 +0.9676934707338237 +0.967391303008554 +0.9814385431220107 +0.9574803175072308 +0.9656488657965145 +0.9626794498326776 +0.9787664293838685 +0.9734512743319743 +0.9551020140866944 +0.9764868929740277 +0.9700000159754794 +0.9676870354519087 +0.9771689183041158 +0.9686660688383659 +0.9799366009263493 +0.8910697125753068 +0.9551502995332163 +0.9352687234421688 +0.9002320403605988 +0.9088811775272787 +0.9274047221890493 +0.8934579428036851 +0.9407604408905922 +0.8791946354218282 +0.8461539162138455 +0.8004807731194119 +0.7127704990811079 +0.7388534991420963 +0.4744186246654673 +0.6335878095913069 +0.5866282647622413 +0.918343146339947 +0.919431273175905 +0.8941684378754772 +0.9086480175763336 +0.926190482461175 +0.9572649540723763 +0.8712446624991927 +0.82853221458668 +0.873762389234105 +0.9247841876111159 +0.9135200971242528 +0.9104665543675872 +0.910843415751147 +0.902953606827058 +0.9395160937305118 +0.8682385477519616 +0.9135200605759832 +0.9310873033369359 +0.8746803084738731 +0.7532467817836023 +0.8936170042467929 +0.9413042886816841 +0.9155844493513197 +0.9195402135132704 +0.9414316878591785 +0.9195121622867108 +0.939096235773145 +0.8346456844669592 +0.9308175911394524 +0.9205175985659513 +0.9409038027399037 +0.8864060089803425 +0.919354811560102 +0.8064516272083404 +0.9118773520918921 +0.8799999973200018 +0.9179190690026947 +0.8639309250023138 +0.9054054125223779 +0.9276944372278494 +0.8703241615178215 +0.8943089235830292 +0.9246231424564498 +0.9072682337982362 +0.9233333716079991 +0.9118198915942168 +0.88307691394758 +0.934246577962403 +0.8968253422479108 +0.912547496525933 +0.8633093540070649 +0.9016949347380129 +0.8656716849371356 +0.8561236027163731 +0.9221260510664313 +0.9394313926305893 +0.9185667843290836 +0.9336437646238344 +0.9302325536733724 +0.8859060057637534 +0.8384755256498247 +0.9182243075508681 +0.8760330769667724 +0.9044288857239996 +0.927184476000771 +0.8725314096049661 +0.9084158964775552 +0.8617885841499319 +0.9114832326559184 +0.9043250192317204 +0.8152380502601643 +0.8923076409266125 +0.862295067696816 +0.8824272720427861 +0.9581529606662762 +0.9704917767028113 +0.9594437842105884 +0.9805555488015406 +0.9506848920006332 +0.9738862632917032 +0.969292382217845 +0.9627329277117352 +0.9688012922163158 +0.9661836142173765 +0.9818840540120866 +0.977329994011662 +0.9773071380260697 +0.9761092414848279 +0.9521988460711368 +0.9686098610557029 +0.9717868155914756 +0.9687500076908594 +0.8917197230876531 +0.963964015208659 +0.9722222137078643 +0.971619371240819 +0.9160839383458028 +0.9720280127594253 +0.983922809324206 +0.9667773904090798 +0.9483568013186294 +0.9722627699639766 +0.9566724659178729 +0.9718749436556888 +0.9441489702530308 +0.9850298843241712 +0.9733009236073781 +0.9437229480837416 +0.8387096934050038 +0.9635499203685625 +0.9810810252534489 +0.9009463933981857 diff --git a/paper_figures/eval_results/cellsam/.DS_Store b/paper_figures/eval_results/cellsam/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..24d014507f44a5a13dc52485c69a9e3773fbea24 GIT binary patch literal 6148 zcmeHK!A`?440WIq(~!`P9DC-%b_c0Ug&!#53UoySsapqVJNFOx0qz{Q@D=7WTrpKsC)4Z&5jPRN9`uO&F zw#=*8z-w|pzuE_;!8sMAO4oEj8ElWbzI`c&k0ig=IV|VseUk+i3cPxe0@toJs)CX? zjtfcXG6`*Zz}G5ZXV8MCeCmd^oQ_xdh56UVGs%DHoMFzt`-XY?kHxu~Y%c@6!6B`E zL9@nyF<=b*Fu>!1yNsFhaK%v^(4Y#)^qzEr=0_lTe_9I(=d|2}ggd zeu-i&DBa-Eu@*!R#Qq3)8q632f6Bl& DxIBrC literal 0 HcmV?d00001 diff --git a/paper_figures/eval_results/cellsam/general/Gendarme_BriFi.txt b/paper_figures/eval_results/cellsam/general/Gendarme_BriFi.txt new file mode 100644 index 0000000..313345b --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/Gendarme_BriFi.txt @@ -0,0 +1,22 @@ +0.918918918918919 +0.8971963169358905 +0.8974359466927254 +0.8641975240532764 +0.8923076779237695 +0.9333333120459603 +0.8915662127124082 +1.0 +0.8641975504217169 +0.9090908734020118 +0.9450549797046233 +0.8979592121092932 +0.8717949068564272 +0.873239406870604 +0.9850746124192795 +0.9268293262942617 +0.8999999867628022 +0.9600000322341928 +0.875 +0.9655172030671018 +0.8611111379462584 +0.9230769082149498 diff --git a/paper_figures/eval_results/cellsam/general/H_and_E.txt b/paper_figures/eval_results/cellsam/general/H_and_E.txt new file mode 100644 index 0000000..dba7740 --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/H_and_E.txt @@ -0,0 +1,51 @@ +0.7200000552925051 +0.7623762807643714 +0.5588235354905486 +0.8826815966847948 +0.8242424388015016 +0.8816568455369065 +0.7822580681740009 +0.736842045931453 +0.9043478868373352 +0.9836065126855801 +0.9752065868208578 +0.7532467655600289 +0.9426229155775557 +0.9347825421652671 +0.9361701992255803 +0.9107980802819502 +0.9356223733641449 +0.44444446284094025 +0.7586206564863581 +0.8999999867876373 +0.799999985694886 +0.8487804901671044 +0.8349514732367442 +0.4210526588220679 +0.9000000262260447 +0.8205128167899797 +0.9176201771250743 +0.7871999870238593 +0.9182879450487497 +0.8239999988473689 +0.9050893828488061 +0.9174664021516747 +0.8637602345240311 +0.8503936687424266 +0.8149171657694393 +0.7368421177171558 +0.7459138237831112 +0.625 +0.7908745051403625 +0.8054475258026165 +0.8018018011321411 +0.841405454395813 +0.8411067627444762 +0.8926470944672478 +0.914680086958028 +0.9583333048267635 +0.7608695143449976 +0.8439716152291309 +0.7857142963303259 +0.8926553491244763 +0.8742514978189475 diff --git a/paper_figures/eval_results/cellsam/general/YeaZ.txt b/paper_figures/eval_results/cellsam/general/YeaZ.txt new file mode 100644 index 0000000..6458325 --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/YeaZ.txt @@ -0,0 +1,17 @@ +0.9773299265893329 +0.9927007316799917 +0.9927007316799917 +0.9890909060230637 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9807692564786622 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +0.9918699265156729 +0.9577464823793177 +0.9690721674848215 diff --git a/paper_figures/eval_results/cellsam/general/YeastNet.txt b/paper_figures/eval_results/cellsam/general/YeastNet.txt new file mode 100644 index 0000000..c5d2ec6 --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/YeastNet.txt @@ -0,0 +1,15 @@ +0.9539748744839451 +0.9833332747430077 +0.9833332747430077 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 diff --git a/paper_figures/eval_results/cellsam/general/cellpose.txt b/paper_figures/eval_results/cellsam/general/cellpose.txt new file mode 100644 index 0000000..0a3d704 --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/cellpose.txt @@ -0,0 +1,68 @@ +0.9318181615074275 +0.9200000077745187 +0.9071037540610223 +0.7945204720417637 +0.9433961942314507 +0.9642857010402379 +0.8805969906794154 +0.8620689369410307 +0.9512194984402037 +0.9361701992255803 +0.7727272797395192 +0.8503936980363104 +0.8735632027385296 +0.7999999851552692 +0.8603104282621971 +0.9436619789352522 +0.9510869858123006 +0.9664430088969737 +0.8470588417419419 +0.9620252835163964 +0.6614583426832259 +0.888888941011158 +0.9253731515811059 +0.9736841831451393 +0.9343066024032562 +0.9180327688174535 +0.9575757443726817 +0.8965517424560153 +0.9589041163997226 +0.9333333205794448 +0.6837607490073084 +0.9230768833666196 +0.9507042244690809 +0.8571428571428571 +0.8247422695299278 +0.9842519608764345 +1.0 +0.9058823142850759 +0.9629629194654726 +0.9583333618275295 +0.8192771084337349 +0.8073393907379617 +0.8484848506116309 +0.565916379945171 +0.7595269340123816 +0.8648648741508788 +0.7878788084740308 +0.9506726426477761 +0.8651163098008458 +0.6850152689762885 +0.9244444287088189 +0.9538461211674731 +0.9784172337567909 +0.9411765041058119 +0.9315068545733152 +1.0 +0.8866498713462683 +0.036199095832709714 +0.7826087085674311 +0.9166666666666666 +0.7425149400906832 +0.8913857809650705 +0.7777777696833198 +0.8661417440380962 +0.8079999871796711 +0.663366327956779 +1.0 +0.8484848653740045 diff --git a/paper_figures/eval_results/cellsam/general/deepbacs.txt b/paper_figures/eval_results/cellsam/general/deepbacs.txt new file mode 100644 index 0000000..f3f0fd0 --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/deepbacs.txt @@ -0,0 +1,92 @@ +0.9548387394487305 +0.9590643376447299 +0.9642856966476059 +0.9565217202011722 +0.9726775691944174 +0.9634145994450019 +0.9736841831451393 +0.9591836519262242 +0.9820358994409856 +0.9405405272000059 +0.8034188444872477 +0.9915966467368771 +0.9863013781398831 +0.9803921401734446 +0.9759999794816816 +0.9150943506823128 +0.7899159974548662 +0.899328848389272 +0.9076923107165964 +0.9356725532979784 +0.9148936073225877 +0.9634146612917945 +0.9444444444444444 +0.9090909090909091 +0.9649122742014309 +0.8742515202687852 +0.9615385044379364 +0.9285714102549308 +0.8820513177212932 +0.9491525147072459 +0.9876543329067662 +0.88524587515551 +0.9195402135132704 +0.8983050836240545 +0.7353760510534921 +0.9491525147072459 +0.9876543329067662 +0.8820513177212932 +0.7353760510534921 +0.9615385044379364 +0.9195402135132704 +0.8742515202687852 +0.9285714102549308 +0.88524587515551 +0.8983050836240545 +0.9887640754196211 +0.9496402859644242 +0.8604651098492643 +0.9795917957735685 +0.9064747771161372 +0.967741935483871 +0.9861111035570501 +0.9772727549958172 +0.9647058554916654 +0.9863013781398831 +0.9931973127948297 +0.9638554820276906 +0.9820358994409856 +0.9590643376447299 +0.9491525147072459 +0.9444444444444444 +0.9591836519262242 +0.9649122742014309 +0.9863013781398831 +0.7899159974548662 +0.9615385044379364 +0.9356725532979784 +0.9076923107165964 +0.9642856966476059 +0.9548387394487305 +0.8034188444872477 +0.9405405272000059 +0.9634145994450019 +0.9736841831451393 +0.9148936073225877 +0.9759999794816816 +0.8820513177212932 +0.9803921401734446 +0.9285714102549308 +0.7353760510534921 +0.9726775691944174 +0.8983050836240545 +0.9915966467368771 +0.9195402135132704 +0.9876543329067662 +0.9090909090909091 +0.8742515202687852 +0.9150943506823128 +0.9634146612917945 +0.9565217202011722 +0.899328848389272 +0.88524587515551 diff --git a/paper_figures/eval_results/cellsam/general/dsb_fixed.txt b/paper_figures/eval_results/cellsam/general/dsb_fixed.txt new file mode 100644 index 0000000..936cf36 --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/dsb_fixed.txt @@ -0,0 +1,56 @@ +1.0 +1.0 +0.972973014334853 +0.8717948839938037 +0.8965516966317305 +0.8750000170003334 +0.9615384234479202 +0.8148148094631074 +0.9565217202011722 +0.9026548438840976 +1.0 +1.0 +0.9583333048267635 +0.7692307692307693 +0.7692307336795978 +0.9473684177429473 +0.7878787560492254 +0.9615384234479202 +0.8979591836734694 +0.718749979348933 +0.9361702100676937 +0.851063835723414 +0.8999999602635691 +1.0 +0.4 +0.7272726544773414 +0.8409090573590114 +0.9411765039998364 +0.8648648741168641 +0.9666666379239833 +0.8070175128477193 +0.7428571495942456 +0.7647059178904481 +1.0 +0.7826087419237086 +0.9375 +0.9166666612480627 +0.9508196556929056 +0.9411764482450868 +0.7708333395505407 +0.9127516581737537 +0.8541666579591796 +0.9850746124192795 +0.7848100977829119 +0.9199999871253973 +0.9740260129414041 +0.9397590017622741 +0.9512195503123109 +0.9545454573837711 +0.9898989996293674 +0.972973014334853 +0.9721116124114508 +0.9674796292649304 +0.9264705768844842 +0.9443099385028245 +0.8937728891474911 diff --git a/paper_figures/eval_results/cellsam/general/ep_phase_microscopy_all.txt b/paper_figures/eval_results/cellsam/general/ep_phase_microscopy_all.txt new file mode 100644 index 0000000..a29edf0 --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/ep_phase_microscopy_all.txt @@ -0,0 +1,54 @@ +0.9599999577827448 +0.9642856878206311 +0.9767441477499641 +0.972042984379072 +0.8691729809119536 +0.8300537162019658 +0.9047618922206722 +0.9405940757171924 +0.9444444304306435 +0.9569892446332773 +0.9090908852805772 +0.9784946249657547 +0.9702128007261931 +0.9370629299459644 +0.8888889185189669 +0.9414893192825081 +0.8811189274213714 +0.9740259795890742 +0.9714285574153976 +0.8941176102031596 +0.775510235423101 +0.7924527749203252 +0.8235293947371639 +0.9714285574153976 +0.8617885841499319 +0.9512194984402037 +0.9919570903823177 +0.843373436934027 +0.8611111187486236 +1.0 +0.9545454091558503 +0.976878617653766 +0.9692307342580093 +0.9852216382279975 +0.9738220023382147 +0.9871794763440602 +0.9870129579998315 +0.9288256049773563 +0.9194498608894441 +0.8453607993325187 +0.8479999848295878 +0.9001368201840185 +0.9212963394235985 +0.9385964711757143 +0.8986301538801831 +0.9365351826994818 +0.9741935176030702 +0.9687499461693891 +0.9323582892322421 +0.9285714744198705 +0.8930232188914724 +0.9643526773245884 +0.8898678782930375 +0.9288025645067515 diff --git a/paper_figures/eval_results/cellsam/general/omnipose.txt b/paper_figures/eval_results/cellsam/general/omnipose.txt new file mode 100644 index 0000000..df868ea --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/omnipose.txt @@ -0,0 +1,168 @@ +0.9749303083062718 +0.9666666296809576 +0.9600000322341928 +0.9485570701705649 +0.981481471360806 +0.9538461711489084 +0.9103448406805441 +0.9446253845634633 +0.9508196289704539 +0.9496403252465223 +0.9754385883439312 +0.9754385883439312 +0.9538461711489084 +0.9496403252465223 +0.9757785746098423 +0.8872403867367847 +0.8318965639856265 +0.8722222392425544 +0.8209876315904808 +0.756302572632932 +0.7266186847272674 +0.08221476238337962 +0.18944519941809418 +0.7804878216318824 +0.9587073572905098 +0.829787264609037 +0.9206348857030714 +0.9694323157528444 +0.75 +0.9545454573837711 +0.9411764668675857 +0.9638554655877446 +0.8409091198460359 +0.9896907148197857 +0.761904776565643 +0.9684209878511016 +0.9807692459569526 +0 +0.9516380786122448 +0.6956521441670603 +0.9743589383061987 +0.9509043887163052 +1.0 +0.9746835280479849 +0.8372093155638944 +0.8333333214124041 +0.9642857297382228 +0.9568345910793984 +0.9669421401004185 +0.9684209878511016 +0.9906102568885172 +0.9532710070022872 +0.9747126698253433 +0.9662921674019793 +0.9644969745043641 +0.9870130011298767 +0.886075918718183 +0.9500000094053777 +0.9310345026032112 +0.9903846298517618 +0.9024389971509492 +0.9697601990124359 +1.0 +0.9230769032134116 +0.9589041163997226 +1.0 +0.8999999602635691 +1.0 +0.9776357675556591 +1.0 +0.9367088551221201 +0.9688581067971975 +0.9473684607768315 +0.9444444304306435 +0.9238578870060009 +0.903225770300737 +1.0 +0.9866666570027668 +1.0 +0.963917494539858 +0.9766234208486065 +1.0 +0.9629630363185012 +0.9361701992255803 +1.0 +0.949999984314567 +1.0 +0.9473684078438459 +0.9491525275102464 +0.9773300242739702 +0.9824561009813588 +0.9874285651509727 +1.0 +1.0 +0.9820051346787961 +0.5454545553065526 +0.9973753527099503 +0.7058823133422452 +0.9342104860824803 +0.9550561783729956 +1.0 +0.5454545553065526 +0.5 +1.0 +0.972222184756445 +0.4000000223517415 +1.0 +0 +0.9859154861471383 +0.9343339918609859 +0.5714285495329892 +0.6666666666666666 +0.9681978813812325 +0.967741935483871 +0.4444444586097453 +0.42857142857142855 +0.5 +0.9629629194654726 +1.0 +0.799999985694886 +0.6666666666666666 +1.0 +0.799999985694886 +1.0 +1.0 +0.9523809375135813 +0.9583892258771344 +0.9903536900090534 +0.9523809375135813 +0.5 +0.6666666813838626 +0.75 +0.666666695641146 +0.7272727755475645 +0.6835443098595572 +0.8571428571428571 +0.7272727494397434 +0.608695594806657 +0.6666666964689881 +0.85795997545226 +0.6976743810387911 +0.7533073725726415 +0.9400921758325141 +0.9417249598670694 +0.88434163077943 +0.9239130883564636 +0.9818181884406768 +0.8009479085111985 +0.8952879320030728 +0.9935483425886655 +0.9787234107340849 +0.9610389328523296 +0.9041095989611059 +0.8790786974170196 +0.913946589663955 +0.8993288590604027 +0.9078212910347587 +0.5333333741294026 +0.6 +0.5846154033978095 +0.7222221763724946 +0.5853658866875245 +0.7142857380059295 +0.6101694774561477 +0.13377049602122745 +0.17886178781545284 +0.5542169290882186 +0.26792008821118074 diff --git a/paper_figures/eval_results/cellsam/general/tissuenet_wholecell.txt b/paper_figures/eval_results/cellsam/general/tissuenet_wholecell.txt new file mode 100644 index 0000000..2d8ad2c --- /dev/null +++ b/paper_figures/eval_results/cellsam/general/tissuenet_wholecell.txt @@ -0,0 +1,330 @@ +0.9417989193647162 +0.8890909270050786 +0.9104990861357022 +0.941901388737149 +0.9303135759111908 +0.9313517191374823 +0.9169380866131978 +0.9516380511597528 +0.9612794827815397 +0.8823529411764706 +0.902800713681411 +0.9501976488880834 +0.9108695134455554 +0.9383070122689364 +0.8894600956985743 +0.9097889006297692 +0.9017340750430107 +0.8660084672809741 +0.9509888505192436 +0.9416666534797983 +0.8700565268479848 +0.9379510056238681 +0.880000005415483 +0.9319587856963898 +0.9504587483902809 +0.8914857869330525 +0.9618320364699902 +0.9336735104189392 +0.9218921971140384 +0.9477234445893342 +0.9241672673201019 +0.884393038263484 +0.9535055289657948 +0.9402173868267835 +0.8520179728955002 +0.8916349742528872 +0.8910890870566258 +0.8554216724756836 +0.8660286975999929 +0.8879185163310919 +0.8535826127599907 +0.8577777916741359 +0.8685566989090147 +0.8246445648324253 +0.5157894195774503 +0.8826530450351139 +0.9189189504522091 +0.88702385534189 +0.9304556146016909 +0.8796208987899846 +0.8390151114718484 +0.8097411831271011 +0.7516339993482055 +0.8358862231798247 +0.7726597400972305 +0.8851269770659741 +0.8014888523830472 +0.7534246532001766 +0.9048034951708862 +0.9424184787694039 +0.9159663843697667 +0.891891938775946 +0.8983739880551059 +0.8284518987929841 +0.8811881362123363 +0.8717948839938037 +0.8982036106951236 +0.8994889385965772 +0.7586207329982776 +0.8320801212198593 +0.9353448358264804 +0.9020618006398405 +0.8580441598793085 +0.9196428582979222 +0.9803921401734446 +0.84946231134512 +0.9180952608487959 +0.9154412051941666 +0.8872549253410498 +0.8996139239147747 +0.9169960440922191 +0.8344086217876443 +0.8873483940652691 +0.9039882382508035 +0.9264909693984998 +0.941176507808913 +0.8226949641358571 +0.8842105156732823 +0.8872180769194097 +0.8629147858257065 +0.8230277610478745 +0.9171528644966405 +0.8571428571428571 +0.946708454681008 +0.9014926071755262 +0.7809524434418899 +0.8817204337415362 +0.8622754594483413 +0.8614458222904576 +0.8548386827305211 +0.9431818217719957 +0.8463950136822099 +0.911801196943711 +0.8563049755399782 +0.9472551088935511 +0.9216867664665934 +0.9591241220651092 +0.9220779304715266 +0.9106382989864409 +0.9470199071463897 +0.7619048288079358 +0.9466840139609332 +0.9585921345648682 +0.9338235294117647 +0.8923077221092321 +0.9504132723772255 +0.9232012767058614 +0.9566395756824387 +0.8783976669446177 +0.85018726460502 +0.8538011626508417 +0.8575757794791338 +0.9001174951223537 +0.9677418858169143 +0.935999978095421 +0.9142857235980955 +0.9350104611992203 +0.8710801596086309 +0.9352014480354035 +0.8713450380385709 +0.9030471001864624 +0.9414634334688862 +0.9349736586833293 +0.9460153678052242 +0.9385749384189139 +0.9066666360368922 +0.8866328357242174 +0.8033012607190196 +0.7967667633292823 +0.7509803400242391 +0.7532269727323562 +0.8103975211472677 +0.8036697225971814 +0.8583691275894014 +0.6443873078962024 +0.7414634325869404 +0.826948525114202 +0.7915407734445952 +0.7427625948500114 +0.8062361279218313 +0.8352490227445029 +0.7435209657655419 +0.8592777550289975 +0.794244646274542 +0.8118971488340571 +0.8678678099387898 +0.8675645071071978 +0.7671641737709701 +0.721179596747781 +0.7926167230702571 +0.9562889923484031 +0.9739633800289796 +0.9696395111364216 +0.9617834383064909 +0.9355168809362593 +0.9545454999571654 +0.9632525156483752 +0.9069767625258369 +0.9714994378900738 +0.938271638615693 +0.9507462622942516 +0.9647059092477033 +0.9681908434920128 +0.9622980239116726 +0.9562982179715541 +0.9556314137917657 +0.9705603269246532 +0.9574106216707061 +0.9720534575764318 +0.9696969585211307 +0.9729729398593022 +0.961918226975561 +0.9539667076972402 +0.9320388392972186 +0.9592684854615459 +0.9187278814957445 +0.9672276742496239 +0.960059196484515 +0.9462365706543187 +0.9536723374831947 +0.9512194525910328 +0.9529085529608539 +0.9591642852389012 +0.9677420030171485 +0.9550950107507571 +0.9582504993674441 +0.9643835155857001 +0.9435797476181179 +0.9552239439206808 +0.9572192483403598 +0.9734513230988674 +0.966014428926255 +0.8851651099774057 +0.9473683945653035 +0.9498595973597401 +0.9117951720852234 +0.9000000264906381 +0.9341372623390991 +0.8779546583640944 +0.9430097744259217 +0.8943782051068452 +0.9438202431679968 +0.9171196040701456 +0.9065375247608621 +0.9432878590230476 +0.5318181614510521 +0.7481108488938836 +0.6061801453851093 +0.8713789516660135 +0.896551671411026 +0.8497853902705207 +0.8605769393932783 +0.9239631226421264 +0.9010526896082001 +0.8333333214124041 +0.8488063509655212 +0.7643467845104246 +0.8653158180047372 +0.8616125371831457 +0.8696742625870412 +0.8823529133869958 +0.8406593340374022 +0.8853755039110189 +0.8664849849598982 +0.8793309661175436 +0.8823529252824485 +0.8079800434391015 +0.8048780866881543 +0.8538282798750411 +0.930777406423704 +0.921875 +0.8728070088592592 +0.9121338876612238 +0.9160671423839631 +0.9206963471154731 +0.8283870948245382 +0.9207920753624599 +0.9045936598299622 +0.9288990587300844 +0.8282097771499332 +0.9230769181127001 +0.7878787627540638 +0.8754449172262031 +0.8333332857481391 +0.9181817686529129 +0.8398268797493856 +0.871111094996394 +0.9107612027715839 +0.8447204675325775 +0.8590603984936802 +0.8891566127839295 +0.8897059089527227 +0.9400324059701856 +0.9013035733684914 +0.8403614278391124 +0.8883117517077528 +0.9239543716431228 +0.8807339232233424 +0.8344988273396566 +0.9006622170323425 +0.8176100642685675 +0.8152424911875812 +0.8537735210896722 +0.9243902182678762 +0.9129967956082704 +0.9078340693192968 +0.9047619047619048 +0.9000000264868141 +0.7935368179253072 +0.9041095502095898 +0.8502994246923304 +0.898748559828498 +0.8992974276121425 +0.8632326943243731 +0.8995215478900669 +0.7461538192190783 +0.9069766830583692 +0.9147286993282501 +0.7560521702967681 +0.8193277011801195 +0.8133971116562266 +0.8875153974320515 +0.9576271154798506 +0.9614147830232485 +0.9599999553012473 +0.9710344648944661 +0.9353099283904736 +0.95877860630859 +0.9685039466972829 +0.9604862969132955 +0.96650718352375 +0.9596200113341237 +0.959435645485521 +0.9616810469311842 +0.9627421676460385 +0.9651293417424547 +0.9345794690520572 +0.947214088236023 +0.9447852787825137 +0.9479606314023384 +0.9221183782501601 +0.9588234935808028 +0.9606512667048206 +0.9579287550788189 +0.9162393441445866 +0.9551208197055845 +0.9406249837750345 +0.960912024845192 +0.9626168513540907 +0.9710982275790011 +0.9507640596718452 +0.962962972132559 +0.9307189052159603 +0.9631811739010495 +0.964200418025844 +0.9279999717554561 +0.8693693286564392 +0.9548989411431741 +0.9665327297601862 +0.9121886901889008 diff --git a/paper_figures/eval_results/cellsam/general_FS_10_FT/LIVECell_good.txt b/paper_figures/eval_results/cellsam/general_FS_10_FT/LIVECell_good.txt new file mode 100644 index 0000000..80b9a7e --- /dev/null +++ b/paper_figures/eval_results/cellsam/general_FS_10_FT/LIVECell_good.txt @@ -0,0 +1,576 @@ +0.4902386124035199 +0.6355140200017907 +0.8894601426018308 +0.5322580564248729 +0.7978723262240298 +0.21946902456933215 +0.5270588472612598 +0.932692330364513 +0.41340778887041435 +0.7034884398239096 +0.8137930693970499 +0.6231884495577773 +0.7058823057783206 +0.23193916805317372 +0.6419752981669935 +0.968750001922261 +0.7052631618962595 +0.3281853408236078 +0.9118942184277323 +0.47407411581449543 +0.5609755773720995 +0.7111110535243593 +0.7567567423154744 +0.9520958061345057 +0.46135267234144706 +0.3342857077875375 +0.8455284828310585 +0.45933013595593764 +0.5834738636930117 +0.15151516177750757 +0.6055979878571057 +0.8963367663010646 +0.741176472476256 +0.5265957686483822 +0.7950310499500157 +0.4637681250554339 +0.777385171987809 +0.4048429956224657 +0.35348835268346673 +0.9525862249546521 +0.5013624184588851 +0.41363636069186527 +0.8641975595988096 +0.4805194712628461 +0.7267080615590005 +0.3395853858563659 +0.4857143084934207 +0.9051851799264087 +0.472095182771699 +0.5 +0.891304388394903 +0.5625000129221004 +0.6071428781283493 +0.7368421052631579 +0.34905661986789416 +0.8663238943722888 +0.5297079608558133 +0.7594936363896851 +0.8946015417323603 +0.40000001942005503 +0.6666666815645574 +0.32512317914578953 +0.44360902485947595 +0.9181636581589648 +0.6728110366464499 +0.8473520255698185 +0.7183673427421896 +0.4393063796303417 +0.6682809020042061 +0.15704387529529407 +0.5144927604106174 +0.9238937935649124 +0.563934428508598 +0.8654545375702902 +0.9323017646788803 +0.5576922942041882 +0.7494823955925656 +0.1640942393162725 +0.5114753853955459 +0.9172259375775759 +0.4945382506706484 +0.7964071936214895 +0.8690095791987503 +0.65934069014323 +0.5075757708770007 +0.1954887136086367 +0.4105960335465783 +0.9291100633886727 +0.5288966544795157 +0.8931297825941295 +0.7232143140129783 +0.36956522133572933 +0.6449612581673901 +0.4076433188077053 +0.4578833929292654 +0.868644012776454 +0.4873293709706026 +0.6815286874714855 +0.8614231896345905 +0.42622948756064843 +0.5647236649751253 +0.14003590396229088 +0.7343749850827395 +0.8967254671710029 +0.7015706746708976 +0.421784486309971 +0.9545454375157355 +0.44444442895301695 +0.7777778032437834 +0.8306709102610226 +0.35179150972915335 +0.9367588462508063 +0.46225535444243604 +0.4902912636112501 +0.9308411012681198 +0.5528455415890575 +0.6594724472549602 +0.1256332422881995 +0.534954409135309 +0.9493976189254645 +0.46236561037213236 +0.8312756696605358 +0.8717948943834368 +0.49696965275581084 +0.7067668977964019 +0.7771083907576118 +0.7572815533980582 +0.9290322295146564 +0.45982144683509485 +0.8650518979549526 +0.9134328496476511 +0.38157896171589517 +0.8582996267949337 +0.4166666666666667 +0.3878787891628242 +0.930841162427702 +0.5911330058865171 +0.6165413207919388 +0.805825210210772 +0.40999998038687335 +0.5524861354163386 +0.11241217879700671 +0.4390243939276773 +0.9241071716309994 +0.5245901701830512 +0.8389057948170786 +0.9244713665802842 +0.5467625744571107 +0.7464114726104256 +0.25961540675771655 +0.4451827057696309 +0.9347181650220395 +0.44076430817694295 +0.5555555853533368 +0.7631579170045265 +0.5740740668288878 +0.7676056786074297 +0.227272724560716 +0.34893617762743684 +0.9439071362793624 +0.7047618892370088 +0.6404494371650006 +0.7591240787266503 +0.5255474855582355 +0.3855855707413149 +0.13424657385180236 +0.4015151389097589 +0.9081365184245899 +0.80219781607666 +0.8171206448534916 +0.7947598006089995 +0.6518518518518519 +0.6394558013356838 +0.3850823808097197 +0.3953488271971326 +0.9429280508190734 +0.4705881995104218 +0.7175572917979963 +0.9058116065234506 +0.5742574317931223 +0.7129337305941564 +0.13210040450767074 +0.39320388676985696 +0.9142857273209458 +0.8333332865979648 +0.7744680618645476 +0.738955767855685 +0.3802816864123526 +0.8432431994929369 +0.24118740178266232 +0.423841059602649 +0.883977935431304 +0.5649350856981182 +0.695970691892976 +0.9218750050500079 +0.5309734720305845 +0.7213114119259654 +0.1876629058855333 +0.532951310245055 +0.9383697688127267 +0.45512821372485646 +0.8347826269615458 +0.9278351010474144 +0.4444444285093089 +0.6246574960310576 +0.14814815101827106 +0.4950980681470864 +0.9282178650087934 +0.4560943657205677 +0.5206611202501706 +0.8843105715146106 +0.6666666948818838 +0.7272727198416297 +0.1631321426004763 +0.5310734484317658 +0.8998548487988514 +0.507936512352084 +0.8880597034771978 +0.8967391865868614 +0.5441176725606706 +0.6570048640050743 +0.4511278148337577 +0.41860467799879136 +0.9040247276357738 +0.5671641893352132 +0.3427561817981553 +0.7272726982684181 +0.5405405720531234 +0.71304350151946 +0.1583756300951187 +0.5659777444687784 +0.9339622473065674 +0.6769231046342682 +0.7619047248020336 +0.7868852096498892 +0.6557377204459146 +0.7674418676165496 +0.7489712462327979 +0.5445705074824668 +0.9437652313332447 +0.5408804937560968 +0.9423077166271223 +0.3359999854087837 +0.7242798296556171 +0.4472843495607536 +0.4645161695543194 +0.9397089432659316 +0.47185628016830583 +0.9094138726122291 +0.52100838319854 +0.6774193647544403 +0.7773851383117762 +0.5504586966468602 +0.9005659439616764 +0.5452092037550293 +0.9345793768429932 +0.5840708114925705 +0.669902901925198 +0.15068492688384627 +0.5350553719649435 +0.9291666765390572 +0.5337837765916115 +0.8522337098982521 +0.31578947561049164 +0.6090776262294955 +0.35150456627379734 +0.46551718862789127 +0.9032257958352767 +0.6628571616114396 +0.8950617703719163 +0.645669292668961 +0.6944444397169542 +0.7096774324487017 +0.969411734634377 +0.43914081746123745 +0.8792569998499236 +0.47058822867137967 +0.7138046325595034 +0.4713375746220953 +0.9597989887374908 +0.5083088636390014 +0.9115645663563364 +0.5569619915773762 +0.5099415093722475 +0.8484848443007861 +0.9078947256297426 +0.5 +0.9088811885198355 +0.5100671222904307 +0.7857142910787036 +0.3680981629301485 +0.9313543385625066 +0.7099999582935385 +0.9186046044413867 +0.4715447142074882 +0.6201923344813838 +0.544342517750017 +0.9770114879436697 +0.5141844367661954 +0.8549618573141625 +0.40277777119607494 +0.8661971647288969 +0.37746478863368715 +0.9320388479650852 +0.6122449006961316 +0.9206349596523064 +0.31578946934922864 +0.8253968117285472 +0.5263157587808452 +0.9518518606639019 +0.5228426286843325 +0.8128342457167832 +0.45662103580492963 +0.6654479247085583 +0.40277778503417283 +0.9158512357581298 +0.5251046374390964 +0.7878787901186459 +0.588832507218498 +0.7075663956475562 +0.40718561469010855 +0.8931623677834081 +0.4004259920138416 +0.8908685683604269 +0.5771812067275384 +0.4252491524796589 +0.8953975129348264 +0.6933333104039426 +0.8350168290824819 +0.6153846261134511 +0.6822262216684815 +0.9180327783762685 +0.8032787298717998 +0.687499936726951 +0.43137256124335255 +0.4449877530246318 +0.9336188277047612 +0.53398059532965 +0.8619246939739557 +0.3646408713917742 +0.5699999741406829 +0.9109414200300651 +0.7299270555147264 +0.8275862191333108 +0.47619047362744066 +0.4952380932003296 +0.9018932883440246 +0.40625000722166826 +0.9287599125764248 +0.5285714301083934 +0.40167365473087263 +0.9320694761672539 +0.7715736115113027 +0.9294118024251207 +0.36496349305297093 +0.8659793473871232 +0.8679244611198431 +0.54566209188328 +0.8152866136504701 +0.4603174682581179 +0.7857143177179159 +0.9164556850440411 +0.4684685088423932 +0.9117646485777917 +0.5507246837278382 +0.6613545706955571 +0.8910891260602528 +0.4861660525477084 +0.9028400361715919 +0.6466165761200124 +0.5229357860637549 +0.9446640166607845 +0.6732673391621509 +0.9212121466775439 +0.5090909053777969 +0.4652406637818549 +0.9249999630410921 +0.4668989432583346 +0.8539325819358582 +0.5714285846740482 +0.4701492397477822 +0.9378237927320028 +0.4871354931949539 +0.7685950333182696 +0.44025157645447544 +0.4016064277824029 +0.9116944246802313 +0.48680347682484076 +0.7454545805973761 +0.48618785881274923 +0.8108108127613499 +0.8934009407441658 +0.46547312620525677 +0.9313543561273488 +0.5098039387168833 +0.6023166090663494 +0.9359268231374516 +0.5066666593632198 +0.9289339556363018 +0.5925925822562157 +0.5996131564253078 +0.9294605809128631 +0.44660194511128903 +0.8913963890134169 +0.5608465721522243 +0.4510385805490075 +0.9473683780069542 +0.5401785882786135 +0.7748690684565744 +0.5483871213191073 +0.6032388495664576 +0.9331352094795697 +0.6236559139784946 +0.9263157739184047 +0.5740740668288878 +0.2922077868595598 +0.9230769627690719 +0.4499999888211488 +0.8515624521725289 +0.47567567993820536 +0.6452702263713449 +0.9071129485257827 +0.47252745721261935 +0.7638889116959438 +0.6799387655016528 +0.8910891589735128 +0.6783626163853915 +0.8883928792327449 +0.5810055594609788 +0.9573460246472072 +0.5333332997133052 +0.471264362692454 +0.9265536472495804 +0.5256797162326778 +0.49438200141316796 +0.8863309436434791 +0.5147453242450045 +0.6201232071287464 +0.9222422737648353 +0.6896550961153138 +0.5464480625964802 +0.9016189211128233 +0.429501108955496 +0.8085106413514863 +0.9282443134085205 +0.4305949094375407 +0.5029240044618302 +0.8526971504399958 +0.6785714442368546 +0.45195732060399096 +0.9455782017460207 +0.5504000200406917 +0.8813559162712357 +0.928853789915795 +0.5739348449396053 +0.5576520015548643 +0.8929503513108545 +0.5212619996224125 +0.5123153292302817 +0.886399996996938 +0.5075318925787804 +0.3192771314863003 +0.8630490945368433 +0.5291828618933323 +0.48351647486870336 +0.9090908972019035 +0.708737891103662 +0.3949044587939809 +0.8928087175369351 +0.49117645318867714 +0.5333333537367726 +0.8959834882154417 +0.5851063645402618 +0.43621398321923793 +0.9097065647608326 +0.7976190092745452 +0.5581395469108915 +0.9397590399628423 +0.6335403926167077 +0.9052631882245654 +0.9363449814819045 +0.5155925287576614 +0.5374149610395654 +0.9314285433306189 +0.562318786456516 +0.49350648273207254 +0.8915662931339005 +0.6549707648451994 +0.5248447357409729 +0.8729508299919035 +0.6578947001811226 +0.45454545971775817 +0.9264305674453519 +0.5700483295746827 +0.5891892273373784 +0.9342104801436758 +0.48009950921867933 +0.6191248223121507 +0.4794816666499967 +0.41558440625691284 +0.8087431693989071 +0.4559999934453967 +0.6395348826424844 +0.7878788036494843 +0.43715847096920096 +0.44247787739045563 +0.49511399556952085 +0.5081081167232362 +0.5 +0.3619909434854374 +0.8397790032100385 +0.3237597937545763 +0.526946099364796 +0.3902439069894481 +0.46391753017064036 +0.4566210005925671 +0.8208092761835032 +0.3952569357238935 +0.4482029675456623 +0.6159600932533086 +0.463343098805455 +0.6128133729768057 +0.7757575375399993 +0.4886877556591769 +0.6330275229357798 +0.6714286040972473 +0.412517775959494 +0.5524296670101767 +0.779342720492631 +0.38873238958890105 +0.5454545321428488 +0.4281984551307601 +0.5433715207903418 +0.3252595340367898 +0.41666664503322315 +0.5730769176517906 +0.4316546569016257 +0.5 +0.8549618870179944 +0.5272727081479425 +0.5925925872318688 +0.49579831026171456 +0.5324232193397455 +0.44912279356510804 +0.47361644998103225 +0.4264705828057092 +0.6017391176127531 +0.35835350918763154 +0.5824176029298396 +0.5283950297850659 +0.3964757674699863 +0.45454545454545453 +0.4452554740290678 +0.5601172989475325 +0.35424356060256235 +0.49684211980261955 +0.4787233817728616 +0.41935483771305415 +0.5781818263368862 +0.5844930454271956 +0.8571428571428571 +0.5536159699792037 +0.5052082944782225 +0.49367087979845736 +0.47321428468730264 +0.3194444325419618 +0.46861924383384385 +0.6073298505671079 +0.8676470869575437 +0.4090908942102731 +0.5144508479043671 +0.5714285847546048 +0.543478245726154 +0.3916083675750727 +0.6206896693924807 +0.4946236929417488 diff --git a/paper_figures/eval_results/cellsam/individual/Gendarme_BriFi.txt b/paper_figures/eval_results/cellsam/individual/Gendarme_BriFi.txt new file mode 100644 index 0000000..8b79703 --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/Gendarme_BriFi.txt @@ -0,0 +1,22 @@ +0.810126573930154 +0.8679245347806527 +0.8095237709779635 +0.8571428075004789 +0.8135594016123505 +0.9354838381166412 +0.8604651098492643 +0.878787897268886 +0.8571428571428571 +0.7916666604033863 +0.8666666254222909 +0.8235294075088678 +0.8311688376869893 +0.8648648779033806 +0.9705882370987565 +0.8500000070123109 +0.8048780722611052 +0.8000000297546388 +0.7826087419237086 +0.8735631634990452 +0.7837838453987219 +0.7948717584359885 diff --git a/paper_figures/eval_results/cellsam/individual/H_and_E.txt b/paper_figures/eval_results/cellsam/individual/H_and_E.txt new file mode 100644 index 0000000..a42573a --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/H_and_E.txt @@ -0,0 +1,51 @@ +0.6729411589643297 +0.7106598491280567 +0.6065573482471461 +0.7857143073264994 +0.8023255668709771 +0.8385093264595532 +0.7081711807461958 +0.666666681566843 +0.8313252701620435 +0.8965516716615302 +0.921739115868944 +0.6478873124692683 +0.8717948630525344 +0.8479263043560082 +0.8615384846830014 +0.8712871199292191 +0.8454545499316471 +0.30769232091819027 +0.7692307692307693 +0.7058823774327057 +0.6153846524170856 +0.8447837258869614 +0.8255034130069225 +0.6 +0.5 +0.8305084356955192 +0.8460606083527848 +0.7395832869764346 +0.8500688029878712 +0.7888446002168942 +0.8092307608567569 +0.801724120132584 +0.7453987470459513 +0.7804878048780488 +0.7363703771454799 +0.5116279171047571 +0.7058823919394118 +0.18181818735993585 +0.7309352181399706 +0.7738359606298122 +0.7403726864715262 +0.7690678151353963 +0.7942754939621309 +0.7987519741041286 +0.8005446049702555 +0.8085106288908731 +0.6744186210938229 +0.7692307573161885 +0.7142857381176421 +0.8604650487020782 +0.8108108246779249 diff --git a/paper_figures/eval_results/cellsam/individual/YeaZ.txt b/paper_figures/eval_results/cellsam/individual/YeaZ.txt new file mode 100644 index 0000000..b7cbd4b --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/YeaZ.txt @@ -0,0 +1,17 @@ +0.9696969510781202 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9927007316799917 +0.9714285924655048 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +0.9918699265156729 +0.9719626019212689 +0.9844558964365775 diff --git a/paper_figures/eval_results/cellsam/individual/YeastNet.txt b/paper_figures/eval_results/cellsam/individual/YeastNet.txt new file mode 100644 index 0000000..2c098c4 --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/YeastNet.txt @@ -0,0 +1,15 @@ +0.8917748429208403 +0.931034473934209 +0.9478261142650231 +1.0 +0.9411765039998364 +1.0 +1.0 +1.0 +1.0 +0.967741935483871 +1.0 +1.0 +0.8888889256818805 +0.8888889256818805 +1.0 diff --git a/paper_figures/eval_results/cellsam/individual/cellpose.txt b/paper_figures/eval_results/cellsam/individual/cellpose.txt new file mode 100644 index 0000000..cdda307 --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/cellpose.txt @@ -0,0 +1,68 @@ +0.948571420684657 +0.9215686743557474 +0.9171270894168103 +0.7591240793283228 +0.9333333120459603 +0.9642857010402379 +0.887218029959915 +0.8849557254932272 +0.9876543329067662 +0.9361701992255803 +0.8026100633436943 +0.8730158805847168 +0.8928571905341021 +0.8296296673960587 +0.8373102201086202 +0.8962963289944732 +0.9277777428099198 +0.9729729845627648 +0.8735632215262333 +0.967272720998637 +0.718918959714311 +0.9113923843672336 +0.9145728290241656 +1.0 +0.9411764966652673 +0.9378531364278994 +0.9349112105478646 +0.8372093155638944 +0.9729729845627648 +0.9186602514468439 +0.6814404576011764 +0.94039729642814 +0.93661969097239 +0.8449847760619656 +0.8571427877617904 +0.9534883677317076 +1.0 +0.9277108487913114 +0.9629629194654726 +0.9473684078086226 +0.886363624176513 +0.8363636790669496 +0.8656716181599852 +0.5949367476059549 +0.7906976358717518 +0.7733333681186946 +0.8075709753568696 +0.9259259449585318 +0.8878504716755031 +0.6624204110314573 +0.9327354151461543 +0.9105058633211451 +0.974545423863656 +0.9333333163204177 +0.9859154861471383 +1.0 +0.9514066810191185 +0.7207207607448697 +0.7641509561462944 +0.8593750646263802 +0.837209303973207 +0.8988764584800255 +0.9333333333333333 +0.9242424300715286 +0.8803088522270425 +0.7426160297701128 +1.0 +0.8659793856460224 diff --git a/paper_figures/eval_results/cellsam/individual/deepbacs.txt b/paper_figures/eval_results/cellsam/individual/deepbacs.txt new file mode 100644 index 0000000..e64dcbf --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/deepbacs.txt @@ -0,0 +1,92 @@ +0.9605263092585887 +0.9700598728832975 +0.9638554045603622 +0.9261745169115105 +0.966666662556509 +0.9221557439203114 +0.9466666658271646 +0.9527027402825515 +0.9642856833971224 +0.9333333673889262 +0.7818181613626647 +0.9322033854956253 +0.9565217202011722 +0.9200000181332869 +0.958677658763759 +0.9035533361663167 +0.7592592578179512 +0.8175182836776544 +0.8682170691208507 +0.9024389953933889 +0.9230769181248647 +0.8987341880849996 +0.9436619593787547 +0.8659793948737176 +0.9454545626425097 +0.77300617091998 +0.9200000181332869 +0.9090909269663916 +0.8222222125864366 +0.8000000297692097 +1.0 +0.8524589510751424 +0.809523813029965 +0.8468468956679644 +0.6276922803493503 +0.8000000297692097 +1.0 +0.8222222125864366 +0.6276922803493503 +0.9200000181332869 +0.809523813029965 +0.77300617091998 +0.9090909269663916 +0.8524589510751424 +0.8468468956679644 +0.9772727549958172 +0.9285714102352813 +0.8607594674126399 +0.9861110834075436 +0.8633092944305297 +0.967741935483871 +0.9324323996606374 +0.9438202147862478 +0.9397590017622741 +0.9517241314525765 +0.9659864016932604 +0.9113923662108144 +0.9642856833971224 +0.9700598728832975 +0.8000000297692097 +0.9436619593787547 +0.9527027402825515 +0.9454545626425097 +0.9565217202011722 +0.7592592578179512 +0.9200000181332869 +0.9024389953933889 +0.8682170691208507 +0.9638554045603622 +0.9605263092585887 +0.7818181613626647 +0.9333333673889262 +0.9221557439203114 +0.9466666658271646 +0.9230769181248647 +0.958677658763759 +0.8222222125864366 +0.9200000181332869 +0.9090909269663916 +0.6276922803493503 +0.966666662556509 +0.8468468956679644 +0.9322033854956253 +0.809523813029965 +1.0 +0.8659793948737176 +0.77300617091998 +0.9035533361663167 +0.8987341880849996 +0.9261745169115105 +0.8175182836776544 +0.8524589510751424 diff --git a/paper_figures/eval_results/cellsam/individual/dsb_fixed.txt b/paper_figures/eval_results/cellsam/individual/dsb_fixed.txt new file mode 100644 index 0000000..fc14311 --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/dsb_fixed.txt @@ -0,0 +1,56 @@ +1.0 +1.0 +0.972973014334853 +0.8717948839938037 +0.8636363761847098 +0.893617031206206 +0.9615384234479202 +0.7407407760620117 +0.9565217202011722 +0.9026548438840976 +1.0 +1.0 +0.9387755050232277 +0.7692307692307693 +0.7692307336795978 +0.8840579963343745 +0.818181772205783 +0.98039214256313 +0.9166666504390764 +0.818181772205783 +0.9166666720476415 +0.8333333571337994 +0.8999999602635691 +1.0 +0.28571430396060615 +0.7647059178904481 +0.8045976453145788 +0.823529437221163 +0.8888888963164736 +0.9333333205751003 +0.9259259044682534 +0.7999999708058881 +0.7058824058772518 +1.0 +0.8936169873555658 +0.9375 +0.9565217202011722 +0.9180327964619899 +0.98039214256313 +0.7676768144190704 +0.9419354769309893 +0.893617031206206 +0.9850746124192795 +0.7999999554082774 +0.9387754676045112 +0.9673202944494066 +0.9341317502774253 +0.9250000160992953 +0.9242424408535546 +0.9898989996293674 +0.972973014334853 +0.9721116124114508 +0.9632652521182923 +0.9446494218174408 +0.9230769329924315 +0.7697973774263741 diff --git a/paper_figures/eval_results/cellsam/individual/ep_phase_microscopy_all.txt b/paper_figures/eval_results/cellsam/individual/ep_phase_microscopy_all.txt new file mode 100644 index 0000000..8fdd4b7 --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/ep_phase_microscopy_all.txt @@ -0,0 +1,54 @@ +0.9365079031781458 +0.9598214440811987 +0.9824561009813588 +0.9698275658092412 +0.8690476320741581 +0.852941192902359 +0.9101796309183311 +0.9300000499709976 +0.9266055169635117 +0.9732620144052185 +0.8959276483927721 +0.9729729762842455 +0.957627121281252 +0.9370629299459644 +0.8914286095356228 +0.938666615368382 +0.8714285704546367 +0.974193536150891 +0.9577464666041295 +0.9047618922135586 +0.8041236388682559 +0.8333332856659714 +0.8433735169362325 +0.9714285574153976 +0.88524587515551 +0.9756097501370966 +0.9786096097105618 +0.8499999859841431 +0.8611111187486236 +1.0 +0.966292143138938 +0.9740633274083468 +0.9538461865016261 +0.9852216382279975 +0.9738220023382147 +1.0 +0.9743589383061987 +0.9445438463170035 +0.9194498608894441 +0.8223139945351733 +0.8479999848295878 +0.9026063309320983 +0.9280742670982995 +0.954248316218037 +0.8991825560730681 +0.9381443482290014 +0.9581993839083078 +0.9658792822604751 +0.9230769578458343 +0.9185580854934763 +0.8744186635898236 +0.9640831952023967 +0.8849557361191355 +0.9153094619446731 diff --git a/paper_figures/eval_results/cellsam/individual/omnipose.txt b/paper_figures/eval_results/cellsam/individual/omnipose.txt new file mode 100644 index 0000000..2e92fd2 --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/omnipose.txt @@ -0,0 +1,168 @@ +0.9575070474154995 +1.0 +0.98039214256313 +0.9404308777143551 +0.9813084276771886 +0.9767441789530424 +0.9230769777118433 +0.9407894995088879 +0.9720670322569611 +0.9568345910793984 +0.9788732325756535 +0.9788732325756535 +0.9767441789530424 +0.9568345910793984 +0.9894737114761454 +0.8767123361857885 +0.7951541690375221 +0.8248587870837171 +0.7012986633176495 +0.5916230670003916 +0.6263345416602113 +0.05651491717567709 +0.1549497842516014 +0.7297297860786409 +0.97132617345135 +0.812499986251052 +0.9523809047092514 +0.9589285643313988 +0.8041236778921753 +0.9047619266717164 +0.9555555500136756 +1.0 +0.8913043449185434 +0.9844558964365775 +0.8235294075315837 +0.967741935483871 +0.9807692459569526 +0 +0.9545454999366509 +0.27272727024374593 +0.9473684078438459 +0.9689119840269563 +1.0 +0.9693094866606132 +0.7999999554952004 +0.9090909268245232 +0.9820359266899408 +0.956204380471602 +0.9688149336480032 +0.9762533281112347 +0.9857819678876016 +0.9521530851927397 +0.9650349538066301 +0.9425287015091682 +0.9552239336705768 +0.9902279755807435 +0.8461537920034331 +0.9041095773558644 +0.9491525147072459 +0.9809524104626832 +0.8749999662808021 +0.9726891224799271 +0.9523809375135813 +0.9354838381166412 +0.9729729845627648 +1.0 +0.8695651968846032 +1.0 +0.9902913141433533 +1.0 +0.8888888963292492 +0.9688581067971975 +0.9391304116187992 +0.945945893153259 +0.9383561391521421 +0.9206349493443295 +0.8421052743028075 +0.9866666570027668 +1.0 +0.9506492954600212 +0.9790575897110599 +0.7826086891421098 +0.9887640808415679 +0.9333332992903571 +0.9473684078438459 +0.9309090285311077 +0.9833332929346305 +0.7368421307372454 +1.0 +0.9924050594898468 +0.9642856966476059 +0.9735327735643974 +0.9117646905138158 +0.9642856966476059 +0.9819121294888867 +0.5 +0.9842105706208452 +0.6666666963365339 +0.9655171881634094 +0.9655172030671018 +0.800000044703483 +0.6666666813838626 +0.5 +0 +0.9411765039998364 +0.44444446284094025 +0.8571427877617904 +0 +0.9577464666041295 +0.8937799091472832 +0.33333334823449406 +0.6666666666666666 +0.9754385883439312 +0.9836065126855801 +0.3076922999331236 +0.6363636025853244 +0.799999985694886 +0.9655172137386318 +0.8571427877617904 +0.5 +0 +0.977777783193706 +0.6666666666666666 +0.8979591836734694 +0 +0.7826086891421098 +0.9234972769097247 +0.9806452005022738 +0.7619048288079358 +0.7500000186264513 +0.6666666666666666 +0.25 +0.7272727755475645 +0.7692307336795978 +0.5151515134386826 +0.8571428571428571 +0.6666666374725561 +0.608695594806657 +0.6666666666666666 +0.8242990532808269 +0.6829268282045572 +0.6918652143224632 +0.9230768883589807 +0.9345794017145294 +0.8644221812901711 +0.919117681379497 +1.0 +0.8317073083339545 +0.8932291635412929 +0.9934640499348673 +0.974910341459872 +0.9383259330393016 +0.8873602487449803 +0.8745247060240182 +0.920539797104511 +0.8883877629884416 +0.9021276814917278 +0.6153846524170856 +0.6842105148851093 +0.6551723934990267 +0.7777777607478795 +0.56 +0.6440677801451969 +0.7118643784046486 +0.1556961934063783 +0.20985401703968398 +0.5714285787523928 +0.34928231315556424 diff --git a/paper_figures/eval_results/cellsam/individual/tissuenet_wholecell.txt b/paper_figures/eval_results/cellsam/individual/tissuenet_wholecell.txt new file mode 100644 index 0000000..29290a0 --- /dev/null +++ b/paper_figures/eval_results/cellsam/individual/tissuenet_wholecell.txt @@ -0,0 +1,330 @@ +0.9399367548413793 +0.890942656455767 +0.9173194225896106 +0.951957339233846 +0.9165934547151333 +0.9279661354382102 +0.9042904518838502 +0.9433963074573717 +0.9516539250601681 +0.8940568198191846 +0.9046052518882959 +0.9506369081305118 +0.9193020651879266 +0.9447674433266521 +0.8912052184793502 +0.9039216169297694 +0.9181286155090334 +0.8833818872208624 +0.937608286617409 +0.9410112718912302 +0.8571428769299214 +0.9425625628219303 +0.9075629999681337 +0.9279835726600109 +0.9330854664802992 +0.8972430848152843 +0.9669603274424898 +0.9472345722386619 +0.9266666778148555 +0.9522999006459142 +0.9325763331652891 +0.8914955919629007 +0.9513108743252123 +0.9495225166517777 +0.8177777855263432 +0.9048991318404382 +0.8737474955366337 +0.876267741581407 +0.8599508773204118 +0.8452381487944243 +0.832550865198255 +0.8442438112784787 +0.8463541998393566 +0.8400954572696387 +0.6354166510343585 +0.8862034427296156 +0.9414688299354645 +0.8740359700932623 +0.9055258814192298 +0.8760975966560188 +0.8365384546904189 +0.8186046311821202 +0.7763157652791505 +0.8163265157332261 +0.7576243754062474 +0.8733413545698185 +0.8180677324117203 +0.7345971510174821 +0.9162915939947112 +0.9513618402797639 +0.9306296449675501 +0.8389261778307456 +0.8772636082809709 +0.855319121061866 +0.8936876914723854 +0.8979592092805203 +0.8682634422250086 +0.9109947452162626 +0.690476225337614 +0.8318356758324567 +0.9253731093357034 +0.9015543925360269 +0.8607594674126399 +0.8761062619316725 +0.9803921401734446 +0.8555858092460719 +0.9169811612629147 +0.9100916952927933 +0.8922305891560186 +0.8974855249583024 +0.8992247964387208 +0.8237885736624821 +0.8717047907047464 +0.8995502136632513 +0.9269662885224288 +0.8805969826622442 +0.7692307456512426 +0.764044960421901 +0.8656716366572919 +0.8788320712549904 +0.8154506253348369 +0.9152941145836385 +0.8703703526164717 +0.9274447803732019 +0.8708708667611326 +0.7699530436476241 +0.8749999744672246 +0.847761137997582 +0.8424241884437478 +0.8640973664371797 +0.9111110951373892 +0.8378812453637643 +0.9025000255862639 +0.8541353089713327 +0.9548954724524568 +0.9272727728510763 +0.9556868130497473 +0.9215686743557474 +0.9160305988889804 +0.9409141787144766 +0.7621621188361806 +0.9419525483359646 +0.9510926181874714 +0.9189189154129539 +0.8808289692640322 +0.9401888867379763 +0.9226973001045119 +0.9504131910119151 +0.8748201869953338 +0.8476562563128195 +0.877990425750699 +0.8661417328247324 +0.8957055022973344 +0.9644670502490253 +0.9333333290758761 +0.8543689428668498 +0.9384289181411399 +0.8982455805409097 +0.9438596429192935 +0.8623298298227555 +0.9080622749019858 +0.9300000076786161 +0.9271758290891711 +0.9574193046347309 +0.9439601709756879 +0.9333333078293572 +0.8779660996248777 +0.7774724714635977 +0.7786982072788866 +0.7502527331601357 +0.7498039460134535 +0.8062256144321827 +0.7844990923886538 +0.6711864395146792 +0.625886474770803 +0.7982062480567229 +0.8335588543314045 +0.7743901904364139 +0.707563047395273 +0.7683741238699682 +0.8107382812277308 +0.7604356016893076 +0.8672566371681416 +0.8035450865391919 +0.8197531007689994 +0.8496124081977999 +0.8666666940455062 +0.7751937598080082 +0.743801693900878 +0.805646075887123 +0.9633601776521231 +0.9765625104900576 +0.9741626618619207 +0.9637973083153001 +0.9359503761196889 +0.956761715833781 +0.9609984949923422 +0.9056604021869906 +0.9685534560231958 +0.9325153417288518 +0.9533133032945275 +0.9614476526541218 +0.9738430880281927 +0.9599271153726148 +0.950777202884455 +0.9611733828304515 +0.9778633523593435 +0.9578675977996396 +0.9705159859074571 +0.9618966885322816 +0.9728049764230391 +0.9676512175023668 +0.955664999437438 +0.9215686743557474 +0.9630252129966187 +0.9288255903473218 +0.9722966509699206 +0.9648466887025698 +0.9513512958122843 +0.9656750443584023 +0.9567901407598808 +0.9580615196417533 +0.960690290341463 +0.9742574508197444 +0.9581151738034055 +0.9566094729842488 +0.9711141131059169 +0.9441724096316187 +0.9624687558560514 +0.9729242372669946 +0.9777777940335771 +0.9770833066448035 +0.897205587034288 +0.9619753095905071 +0.9470305198173983 +0.9179416219135086 +0.8956268211874259 +0.9364107603266469 +0.888996129612557 +0.9510869830878369 +0.8978540052921375 +0.9385808014694144 +0.924147537692717 +0.9039039367722741 +0.9201741019073146 +0.5124716965780175 +0.7466339809251072 +0.6318758620831915 +0.8936679212390634 +0.8982456312577437 +0.8684209876095815 +0.8603213712474924 +0.9331769757327013 +0.9381663061541126 +0.8434782725411709 +0.8621151487233591 +0.7945205438353118 +0.8958837637117308 +0.8765431771431493 +0.8851613213036773 +0.8967193008251002 +0.8028369033268455 +0.8716904551323975 +0.8429985337813469 +0.8949320039763601 +0.8925372869218587 +0.8357050535798409 +0.8780488334381955 +0.8958838179770463 +0.935622342471791 +0.914100509969069 +0.9078651256116996 +0.919739702356464 +0.9017199015578452 +0.931506831785969 +0.8095237814983183 +0.9281210765121419 +0.9127272819854909 +0.9263157542878823 +0.8163265037946789 +0.9264305187601991 +0.8571428372796481 +0.9077490670733537 +0.7323944223185325 +0.904487918281576 +0.7930283140955855 +0.859090936210356 +0.9278074643237342 +0.8470290713354854 +0.8481532750382355 +0.8965516874583741 +0.865482297068419 +0.9283387816647143 +0.9084112129929597 +0.8553654601673247 +0.9033112463926969 +0.9122137075689892 +0.8775895189133335 +0.8325358858521829 +0.9283276741686147 +0.8358208497713915 +0.8256659246872907 +0.8853658287001176 +0.9308642139699161 +0.920392566446962 +0.9152148702897448 +0.9154589356258352 +0.9367088221218018 +0.7919707946883249 +0.884526600273763 +0.8523908631449975 +0.9051428375869474 +0.9027611396297733 +0.8550458883027527 +0.9164619506584775 +0.8174603220851389 +0.9052132773138989 +0.9006622127761749 +0.7869481794901694 +0.8354978728637508 +0.8025890659755283 +0.894671629315921 +0.9502133321858938 +0.9596123248286423 +0.9532497234203451 +0.9598892892098024 +0.9320652338997575 +0.952380967282079 +0.9550264751685847 +0.9604862969132955 +0.9726248134152061 +0.9712918613317731 +0.9658887013724382 +0.9614906640549424 +0.9640718263010709 +0.9718150488845146 +0.9416195699518117 +0.9529412206084283 +0.9437500015788693 +0.947218293201528 +0.9000000264899188 +0.9567809458118897 +0.9672130682858037 +0.9642857297361638 +0.9176882585908104 +0.9606481761545496 +0.9467084767705891 +0.9686985835929715 +0.9326923371192163 +0.9724238378414227 +0.9470085224816276 +0.967238701083712 +0.9348958057911029 +0.9700598750889181 +0.9661016823669817 +0.9349593537396319 +0.8591223787778854 +0.9543307037438472 +0.9594594728913941 +0.9037036798318832 diff --git a/paper_figures/generate_fig1.py b/paper_figures/generate_fig1.py new file mode 100644 index 0000000..258b4eb --- /dev/null +++ b/paper_figures/generate_fig1.py @@ -0,0 +1,186 @@ +import matplotlib.pyplot as plt +from pathlib import Path +import numpy as np + +name_map = { + "Gendarme_BriFi": "BriFiSeg", + "cellpose": "Cellpose", + "ep_phase_microscopy_all": "Phase400", + "H_and_E": "H&E", + "tissuenet_wholecell": "TissueNet", + "YeaZ": "YeaZ", + "YeastNet": "YeastNet", + "dsb_fixed": "DSB", + "deepbacs": "DeepBacs", + "omnipose": "OmniPose", +} + + +datasets = [ + 'Gendarme_BriFi', + 'H_and_E', + 'YeaZ', + 'YeastNet', + 'cellpose', + 'deepbacs', + 'dsb_fixed', + 'ep_phase_microscopy_all', + 'omnipose', + 'tissuenet_wholecell', +] + +# colors for the plots +c1 = "#fdbb84" +c2 = "#e34a33" +c3 = '#deebf7' +c4 = '#3182bd' + +# define paths to results +cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam') +cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose') + +cellpose_generalist_path = cellpose_path / 'general' +cellsam_generalist_path = cellsam_path / 'general' + +# read in results for cellpose generalist +cp_generalist_dict = {} +for file in cellpose_generalist_path.glob("*.txt"): + try: + data = np.loadtxt(file) + cp_generalist_dict[file.stem] = data + except Exception as e: + print(f"Error reading {file.name}: {e}") + +# read in results for cellsam generalist +cs_generalist_dict = {} +for file in cellsam_generalist_path.glob("*.txt"): + try: + data = np.loadtxt(file) + cs_generalist_dict[file.stem] = data + except Exception as e: + print(f"Error reading {file.name}: {e}") + + +cp_means = []; cs_means = [] +cp_sems = []; cs_sems = [] + +for ds in datasets: + cp_data = cp_generalist_dict[ds] + cs_data = cs_generalist_dict[ds] + # 1 - mean for the bar + cp_m = 1 - np.mean(cp_data) + cs_m = 1 - np.mean(cs_data) + # standard error of the mean for the error bar + cp_sem = np.std(cp_data, ddof=1) / np.sqrt(len(cp_data)) + cs_sem = np.std(cs_data, ddof=1) / np.sqrt(len(cs_data)) + + cp_means.append(cp_m) + cs_means.append(cs_m) + cp_sems.append(cp_sem) + cs_sems.append(cs_sem) + +# Plot as a bar chart +x = np.arange(len(datasets)) +width = 0.35 # width of each bar + +fig, ax = plt.subplots(figsize=(8, 5)) + +# Plot CP bars slightly left, CS bars slightly right +bars_cp = ax.bar(x - width/2, cp_means, width, + edgecolor='black', linewidth=1, + yerr=cp_sems, capsize=5, label='CellPose', color=c2) +bars_cs = ax.bar(x + width/2, cs_means, width, + edgecolor='black', linewidth=1, + yerr=cs_sems, capsize=5, label='CellSam', color=c4) + +ax.set_xticks(x) +ax.set_xticklabels([name_map[ds] for ds in datasets], rotation=45, ha='right') +ax.set_ylabel('Mean Error (1 - F1)') +# ax.set_title('Generalist Model Comparison of Mean Error') +ax.spines["top"].set_visible(False) +ax.spines["right"].set_visible(False) +ax.legend( + loc='upper center', + bbox_to_anchor=(0.5, 1.15), + ncol=2, + prop={'size': 14}, + frameon=False +) +plt.tight_layout() +fig.savefig("mean_error_dataset_comparison_cp_reg.svg", format="svg", dpi=300) +plt.show() + + +dataset_agg_map = { + "Tissue": ["tissuenet_wholecell"], + "Cell Culture": ["cellpose", "ep_phase_microscopy_all", "Gendarme_BriFi"], + "H&E": ["H_and_E"], + "Bacteria": ["deepbacs", "omnipose"], + "Yeast": ["YeaZ", "YeastNet"], + "Nuclear": ["dsb_fixed"], +} + +group_names = list(dataset_agg_map.keys()) +cp_group_means = [] +cp_group_sems = [] +cs_group_means = [] +cs_group_sems = [] + +for group in group_names: + # Get all datasets that belong to this group + datasets_for_group = dataset_agg_map[group] + + # Gather all F1 arrays and concatenate them + cp_all = np.concatenate([cp_generalist_dict[ds] for ds in datasets_for_group]) + cs_all = np.concatenate([cs_generalist_dict[ds] for ds in datasets_for_group]) + + # Compute (1 - mean(F1)) for the group + cp_mean = 1 - np.mean(cp_all) + cs_mean = 1 - np.mean(cs_all) + cp_group_means.append(cp_mean) + cs_group_means.append(cs_mean) + + # Standard error of the mean (SEM) for the group + cp_sem = np.std(cp_all, ddof=1) / np.sqrt(len(cp_all)) + cs_sem = np.std(cs_all, ddof=1) / np.sqrt(len(cs_all)) + cp_group_sems.append(cp_sem) + cs_group_sems.append(cs_sem) + +# Now plot side‐by‐side bars for the groups +x = np.arange(len(group_names)) +width = 0.35 +plt.rcParams['svg.fonttype'] = 'none' +# plt.rcParams['ps.fonttype'] = 42 +# plt.rcParams['font.family'] = 'Arial' # Set a standard font (adjust as needed) +fig, ax = plt.subplots(figsize=(8,5)) + +bars_cp = ax.bar( + x - width/2, cp_group_means, width, + yerr=cp_group_sems, edgecolor='black', linewidth=1, capsize=5, + label='CellPose', color=c2 +) +bars_cs = ax.bar( + x + width/2, cs_group_means, width, + yerr=cs_group_sems, edgecolor='black', linewidth=1, capsize=5, + label='CellSam', color=c4 +) + +ax.set_xticks(x) +ax.set_xticklabels(group_names, rotation=45, ha='right') +ax.set_ylabel('Mean Error (1 - F1)') +# ax.set_title('Grouped Comparison of Mean Error') +ax.spines["top"].set_visible(False) +ax.spines["right"].set_visible(False) +ax.legend( + loc='upper center', + bbox_to_anchor=(0.5, 1.15), + ncol=2, + prop={'size': 14}, + frameon=False +) +plt.tight_layout() +# save figure as vector +# export to edit in illustrator + +# fig.savefig("mean_error_general_grouped_comparison_cp_reg.svg", format="svg", dpi=300) +plt.show() \ No newline at end of file diff --git a/paper_figures/livecell/.DS_Store b/paper_figures/livecell/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..5404f13ba2ccccc8944a76483fdd93338706104d GIT binary patch literal 6148 zcmeHKOHRW;4E2;s1a;FT%UL2;L|h=P!Uf0$NI!x_qC~3L&vjU^L*f8PoQvnNl{8H& zu|lY_E6>1}JifbZr%hydxG$*12$~d{ga71{WbtDtD@S=-*wA9d!w$*c5jJ(b8 z9~qE`yQVEw`0YKvbyK&J@a+vSp#z_~$@5j!tl}DlkH@#~#c{vQul(AVwCK;g0qC_=`%X*HOwb)J|@P1F<=aw3j?UxEXhpJMq|Jj zFa|mX`1|0YjG1B(jGqn+u>}B5VUB`1_YxfA6*I*kh!u#FP@sf5Z84mL!|v5DQw)L< zPEMN-rzbn@P+UA6`}^olE)%rT7%&Eg3|z?Noa_I?>HdEhWLL(3F>qE4xM^PGOWcyy x*3r#zt@Y3+C=2@q!7c=oSc>7xrT7{e1$NI9V5S%ZVS(5mfk=Z5#=xI4@B?XuPuBnd literal 0 HcmV?d00001 diff --git a/paper_figures/livecell/cellpose/general/LIVECell_good.txt b/paper_figures/livecell/cellpose/general/LIVECell_good.txt new file mode 100644 index 0000000..74de29c --- /dev/null +++ b/paper_figures/livecell/cellpose/general/LIVECell_good.txt @@ -0,0 +1,576 @@ +0.32820514899014247 +0.36885245621761464 +0.8424242390184561 +0 +0.8098160229480414 +0.1513944160517088 +0.12749004370504757 +0.9583333436923289 +0.17297297738111547 +0.7022900598091164 +0.6851851946643517 +0 +0.48809525411639626 +0.24793389364293375 +0.20640568687841754 +0.9171270904580645 +0.5675675867985093 +0.04219409242694457 +0.7893462919911266 +0 +0.042763156663557345 +0.3770491674016779 +0.4545454398216292 +0.8842443766626613 +0.07323943577060701 +0.04833836898021479 +0 +0.03199999926239254 +0.006920415462887257 +0.13875598019532306 +0.17777777461276292 +0.8835202754622048 +0.7692307106783678 +0.3669064488406859 +0.20472442546985797 +0 +0.43902440737004417 +0.03288958560816013 +0.26530612583614976 +0.9262672541672223 +0.08146639767202866 +0.10948905448304108 +0.6563706857364994 +0.0235294128039845 +0.6382978530769811 +0.1130952315294084 +0.26285713940056 +0.8743801687653223 +0.08242950531511378 +0.14977973998786046 +0.7192982698413266 +0.10958904683377446 +0.04155844128289009 +0.46735393757931964 +0.08571428592335813 +0.7994186010091389 +0.05591397513997603 +0.7401574965059476 +0.8023952678921699 +0 +0.06493506633897603 +0.3818182066901029 +0.07619047965955779 +0.9098712996591556 +0.3174603204497479 +0.8320611274159652 +0.619047641504629 +0 +0.2271062409452091 +0.22439024831573867 +0.16993464106600578 +0.8742746299465394 +0.3483870798670302 +0.9487179197401596 +0.8000000296155414 +0 +0.24999997707166452 +0.1522842682480187 +0.14117647459124671 +0.9256595042096603 +0.06341463411230193 +0.7925925991833287 +0.607407377566061 +0 +0.010152283723869598 +0.1420765082105497 +0.16822429954524948 +0.9398374338209237 +0.16666666188476592 +0.8938052637933277 +0.6172839641571045 +0.035714286807164215 +0.05202312021990158 +0.2424242468576458 +0.07905138288442348 +0.8767772167882295 +0.1524663767567837 +0.49392710754361796 +0.7464114385469314 +0.04999999918509275 +0.02398800604079923 +0.05473684349514617 +0.05555555555555555 +0.9060773241054219 +0.6853147418283995 +0.01626016103239043 +0.9001691939982973 +0.2857142789996397 +0.6390532544378699 +0.5512367369451239 +0.14814814597633974 +0.9132231195024003 +0.047210300769787376 +0.14173228995616616 +0.8257261091070874 +0.07142857361432843 +0.027649767587942867 +0.1255230061089668 +0.10285714196424905 +0.9378238381417908 +0.2514285674766619 +0.7922705879807803 +0.6802030184880169 +0.06818181565916548 +0.7747747679002537 +0.4927536053335282 +0.13333333624733817 +0.8883827208894074 +0.20276497520817213 +0.8796680629792394 +0.7817589692617839 +0.08888889164836307 +0.8256880819685473 +0.2577319739245373 +0.2269503600298789 +0.9054325584982673 +0.3035714433725257 +0.378947360968179 +0.389937106918239 +0 +0.012269938310222763 +0.006514657819786356 +0.18834080608213122 +0.936470536452905 +0.03333333489703538 +0.8960573674465361 +0.7526881687035833 +0.05063291326639132 +0.8508286826911363 +0.12612613177537463 +0.14925372630999253 +0.9148265023191011 +0.20329672125535578 +0.24884792952719814 +0.3908046058423417 +0.043478261952293755 +0.5955555827718082 +0.07909604495706893 +0.20952381010769178 +0.8847737015456717 +0.5648855115988564 +0.5960784119293426 +0.11111111754988455 +0.057971016563141756 +0 +0.05538461793657578 +0.19199999944591523 +0.8270893635468837 +0.6410256456811517 +0.8502415553264836 +0.5777777554897167 +0.15789473780524582 +0.35922327660707554 +0.1689895464425193 +0.1379310385757052 +0.9408602449839328 +0.14569536278638354 +0.5959595711792921 +0.8026905938843468 +0 +0.24365481610285056 +0.14117646059027805 +0.10227272355256828 +0.868512076475493 +0.322033894455823 +0.5759162528922954 +0.5172413982309547 +0.11538462036085359 +0.8679245166516406 +0.33198382373263724 +0.29411764018991704 +0.8748451372431789 +0.38596491663267035 +0.3854166599413223 +0.7507507327277692 +0.04545454628580859 +0.254681644630538 +0.18923933045368932 +0.1516587632590876 +0.8626609598575188 +0.05447470834633418 +0.8342245441011911 +0.792000045931923 +0.11940298815344765 +0.08040201056176025 +0.20209060136052687 +0.09389671480022889 +0.8814913759043672 +0.17589576874373988 +0.38418078341475864 +0.8996539918323332 +0.24299064819856855 +0.5942028943820087 +0 +0.14880952324238853 +0.9179810215857757 +0.2887700464848997 +0.8290598345836931 +0.8196721288064384 +0.028985506578156267 +0.09065156405592344 +0.289752654877853 +0.10526315859322877 +0.8948246356905681 +0.27480917650463615 +0.16033755638925792 +0.2931034372907247 +0.22535213911372065 +0.24242424657867284 +0.14718615456146933 +0.19786096439333134 +0.9494949526602335 +0.5675675012874905 +0.6564102490665116 +0.5268817403130903 +0.06896551495127815 +0.6802030232852195 +0.45544555421163335 +0.14400000577153094 +0.9214659733193481 +0.18571428376113996 +0.8422938558039703 +0 +0.5698925072710298 +0.4561403645701949 +0.09230769649588866 +0.8977777612746082 +0.06508875598303276 +0.8460038920705377 +0.113207549270509 +0.20717130085894137 +0.5289256198347108 +0.2530120503298515 +0.8900803967545038 +0.12121211432926254 +0.7647058913959668 +0.03636363587765532 +0.5962733394894963 +0.10891088493879962 +0.08536585318840348 +0.9189188821520938 +0.325 +0.702928866790271 +0.041666665631863845 +0.02977667430654749 +0.032160806056563726 +0.13924049789434406 +0.9282136745963024 +0.5333333708916187 +0.7237354211128304 +0.057142859815658 +0.6415094447402154 +0.10526315127199827 +0.888888866548185 +0.19101124767139074 +0.7340824380748954 +0.033333334283282307 +0.36866360178471314 +0.11594202985012511 +0.9368420329659847 +0.03902438938398864 +0.8396946586441892 +0.09090908739931343 +0.02040816453161968 +0.19672131948263122 +0.9326241657617124 +0.060941828954152774 +0.8456550435390437 +0.2820512760306112 +0.8119657795331625 +0.21518986552929298 +0.892857138099584 +0.6351351112721576 +0.7254901992770438 +0.17647057856758605 +0.20437955813054381 +0.17857142327323774 +0.9240121819376484 +0.1991342059906592 +0.6862745023061994 +0 +0.8582375056343732 +0.19191920287226827 +0.9354005388522457 +0.5137614664224932 +0.7806122020200796 +0 +0.7710843661533441 +0.23931624889548003 +0.911242627478917 +0.16000000467811307 +0.1456953730967271 +0.32989691544784633 +0.05245901773933768 +0.24786326208406548 +0.9367088269900599 +0.07785888734414848 +0.5649717263723534 +0.20202020675190205 +0.15331010608155546 +0.16867470333987572 +0.8588098367944501 +0.10666667230872295 +0.8362720933766588 +0.23076922893883398 +0.09677419047822088 +0.8091603304557452 +0.6013071907624589 +0.7099567448472335 +0.35897438451920544 +0.17230769961971582 +0.8755130632973519 +0.5747126099990562 +0.7046632081044265 +0 +0.11891891769286575 +0.9269406659614317 +0.14726840305864192 +0.673796827579243 +0 +0.2068965635179376 +0.8807853411979999 +0.6538461570981652 +0.5294117329167378 +0 +0.1261261250104439 +0.9253731372075952 +0.2474226880617079 +0.8137535927187179 +0.028985506455603556 +0.11764705965482081 +0.8804159574050289 +0.7185629212513049 +0.8484848653740045 +0.040816327717553974 +0.1038961060826464 +0.8662952575486285 +0.1323155223966239 +0.3520000241199849 +0 +0.23684210222926502 +0.9180327964619899 +0.14814814320562308 +0.6296296262103467 +0.06153846673226557 +0.2797202701976443 +0.8832808053258793 +0.1818182002594208 +0.8922056478664971 +0 +0.24193549685249963 +0.9106028840997434 +0.5611510946401512 +0.8018648368830167 +0.033898305467602 +0.14814815101827106 +0.9371428240754284 +0.16666666666666666 +0.764505120506379 +0 +0.2165605206267162 +0.8959777432105251 +0.057971014747053004 +0.34319526765430897 +0 +0.2727272727272727 +0.8631579294512227 +0.07264957164452088 +0.3253011872842587 +0.05882353289213975 +0.21212121634350112 +0.9016697181119998 +0.18497109769868195 +0.869215345323019 +0.2025316530548212 +0.2064896789851541 +0.870646735664049 +0.2358490626798827 +0.8793103366792525 +0.09374999286956204 +0.2727272612332644 +0.9385964728485121 +0.14953270191210666 +0.8996865164358073 +0.06666666718406808 +0.09589040759000945 +0.9003690166115618 +0.02645502694497391 +0.10000000370628383 +0.0370370390351009 +0.1473684177650592 +0.8393442333292223 +0.5098039154553307 +0.6991870250486858 +0.0769230750590541 +0.09259259316492799 +0.9167974577725471 +0.05161290302645884 +0.6857142612597114 +0.27777778274891946 +0.19607843510543305 +0.8733706339166658 +0.057347672397762006 +0.09090908625863578 +0.13105412859766816 +0.9074890269645655 +0.2826086930731268 +0.7604166707091976 +0.1889763652531863 +0.9624060206195976 +0.16793893436112667 +0.32941175976839043 +0.8803245184161717 +0.3899370949629492 +0.17177914387904816 +0.8988763926069009 +0.05769231271753103 +0.1401273846399087 +0.8923679132325385 +0.615384647126735 +0.08791208508111917 +0.8235294581298861 +0.19999999141859345 +0.24761903266413543 +0.9205835447016506 +0.18543046828681073 +0.28272252597194847 +0.8112543462754949 +0.45614031881413647 +0.08540925744212483 +0.9460431894830204 +0.08759123960464148 +0.08888888195984926 +0.9124999738882669 +0.09014084646766132 +0.1067615705116772 +0.8994413278282315 +0.2574850275544903 +0.2574257512772103 +0.8943661957772271 +0.03418803321050108 +0.17391303913854414 +0.8296943246949376 +0.1428571406289179 +0.1506849286089283 +0.8878788415440516 +0.4035087702757353 +0.20588236738404267 +0.8959276111188756 +0.10774411729916751 +0.21292777335029628 +0.8693642108545829 +0.2680412268070814 +0.18584071174061384 +0.8138101121352403 +0.3664122017524955 +0.08024690737222694 +0.9211008983433451 +0.7307692491462467 +0.31746031714645073 +0.9106753414054733 +0.047393366133096346 +0.21839079602656253 +0.9230769776726152 +0.30000000780913966 +0.15037595217978983 +0.8666666072379023 +0.7833333506884296 +0.15426997600762227 +0.8789237826140389 +0.5494505420742852 +0.07142857308425603 +0.8983799306637973 +0.3191489383072376 +0.23430963712957706 +0.876090692804462 +0.10734463473173175 +0.10000000147052283 +0.03931203758716357 +0.12173912884760583 +0.8104574886615524 +0.08547009331287073 +0.5781249667744383 +0.303030290850759 +0.1016949195322748 +0.14141413731217928 +0.037433153816221 +0.186813178544232 +0.098360656267168 +0.1894737016758435 +0.6092715816856363 +0.24324324869527128 +0.2051282054588522 +0.17283950738649714 +0.2369668317495529 +0.15841583561259237 +0.7945204720417637 +0.19230770017709192 +0.06366047835734955 +0.15384616570420007 +0.12162163069334297 +0.08205128078364857 +0.5692307364019855 +0.15384615639009527 +0.25688072967816267 +0.14999999573143813 +0.055363323300155524 +0.06635071588519707 +0.6961326054730833 +0.2674418636304787 +0.15748032219456237 +0.16080401911120892 +0.27540983472029884 +0.2255638907647923 +0.05365853475496726 +0.2433234598259604 +0.11627907005530061 +0.1976284647232724 +0.5957446995269035 +0.15126049934336144 +0.2748091469413908 +0.13684210050969797 +0.15503875980982304 +0.2297297196553752 +0.04651162916226642 +0.12598425431190985 +0.09252669181243199 +0.13872833117502129 +0.2718446669554091 +0.21800948365480016 +0.20920502120495485 +0.11842105747594676 +0.22377621944939274 +0.0631578921273885 +0.21818182375066567 +0.19580420087593917 +0.16494845977582198 +0.17218542282902685 +0.11285266513295475 +0.16199377742860563 +0.22222223289522985 +0.17674419798130184 +0.15311005327574925 +0.08064515883233606 +0.24390242259085937 +0.22857143335500527 +0.24890828344656873 +0.27826087178349035 +0.242990641855736 +0.20689654207592367 +0.2122905042536995 +0.059999998660292514 +0.23999998168945452 +0.25615764811123015 +0.09230768694680128 +0.2278480979301464 diff --git a/paper_figures/livecell/cellsam/.DS_Store b/paper_figures/livecell/cellsam/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..7adebf0a61057a987aeb823c8b2b5f9f53658aae GIT binary patch literal 6148 zcmeHKK~BR!475w77IDdu-43p6Ys?R}XD3+8xKp zfIPbit?7}Tp?lA-+30pJC;f<~Ez4!yE-{1r_*T7tUJXU94v5-3$=kABZ6=Fm-Tlxl z-B1Oa(=3e_`i5F$}n7P{wO*J|4RQyiW*a4tEUi!AA^fHtBfBkd+-%au>XTTZwR}ApDtjal# yWVN+-IH|P(dIuGexTv^G!621l#7ZeXhbDnP$N*RvMn!la{v(iRaN`X8DFff5?p5&s literal 0 HcmV?d00001 diff --git a/paper_figures/livecell/cellsam/general/LIVECell_good.txt b/paper_figures/livecell/cellsam/general/LIVECell_good.txt new file mode 100644 index 0000000..6366012 --- /dev/null +++ b/paper_figures/livecell/cellsam/general/LIVECell_good.txt @@ -0,0 +1,576 @@ +0.5039370359556233 +0.5107913876478813 +0.8847185107414955 +0.4470588051015798 +0.7674418731085256 +0.016393443351054967 +0.18518519261759642 +0.9504950259259006 +0.2980769182948063 +0.7310344805111004 +0.8787878378723231 +0.3697478849448672 +0.5937500432329769 +0.03984063559671045 +0.24561402924650436 +0.9551451164283733 +0.736842096902253 +0.22775802762335406 +0.8483516980618906 +0.47222222722174034 +0.12374100906273804 +0.6166666682704434 +0.5170067924396493 +0.909370235431299 +0.2739130619224934 +0.2593516257961774 +0.9549549459762826 +0.3085714160729255 +0.11746031847400189 +0 +0.1774744136949837 +0.8732624945628037 +0.7750000115345806 +0.41216216982851844 +0.7972972862170363 +0.4494382135491979 +0.5691699895239949 +0.20051413689152725 +0.1025641055800665 +0.9713024129485887 +0.382916045660579 +0.30420711195328676 +0.84076437351644 +0.30399999717662207 +0.6390977527637831 +0.059596844204609874 +0.2105263139340351 +0.8644461541198358 +0.4606413755028954 +0.34181816028756457 +0.9429657321266053 +0.4444444555279532 +0.16814159320193386 +0.47222221874041503 +0.3100775228420974 +0.8081632749261971 +0.36363635779565595 +0.8398576886015413 +0.8670212875656149 +0.37735849865664134 +0.32820511487549614 +0.20100502387345415 +0.2841530019604455 +0.894308975050743 +0.6622516559146014 +0.8227424654974179 +0.8815166299526602 +0.32727271604677527 +0.36036033057174577 +0.12669684321356722 +0.17441860292773753 +0.9168207194666657 +0.42424241075455665 +0.9407114374727477 +0.8433268568981103 +0.545454580218059 +0.424580987274642 +0.02083333396265879 +0.16521738897715146 +0.9227166184065813 +0.44368600019760873 +0.8716216220834833 +0.8524590015001301 +0.6027397527086086 +0.0992248124368434 +0 +0.11560693484483915 +0.9209302575337758 +0.03088803259295883 +0.9039999563568943 +0.9180327964619899 +0.446808515603103 +0.1935483788694764 +0.1237113413939708 +0.20000000372405885 +0.867841439019606 +0.11336031827461551 +0.6159419887621126 +0.9274192947509569 +0.457831336776684 +0.07681755999537797 +0.03025210083012417 +0.39655170733820616 +0.8981723741533217 +0.682634673387683 +0.17488789844338734 +0.9430894293528135 +0.47552449741115826 +0.6532662698002374 +0.6666667113242289 +0.19480518866339805 +0.9178356782388088 +0.33564015105162687 +0.37785015959369295 +0.8854961719058945 +0.5473684210526316 +0.14960630965853003 +0 +0.20512820419749492 +0.9631449268098603 +0.2180094811893448 +0.7999999701982664 +0.9449541457877922 +0.3200000064487457 +0.6525423496737769 +0.6399999590236299 +0.5319149209234514 +0.9155555703094225 +0.33050845189508005 +0.8864468653904062 +0.884146329131878 +0.31914894491258694 +0.8860759655382916 +0.19905213169923547 +0.10928962088312846 +0.9292542540778725 +0.5736434592706414 +0.5495495173365726 +0.8290155199369251 +0.33333334816826693 +0.03913894648626311 +0.010126582159858632 +0.15094338645880714 +0.9400921758325141 +0.19239374519831184 +0.9084745324981053 +0.944099358886147 +0.36363638598071746 +0.6865671557669241 +0.14388490046745353 +0.1958762831908974 +0.8912386708969119 +0.09164420985578237 +0.38759689397919633 +0.8955223463374817 +0.3209876348378233 +0.540540550926416 +0.10526315217809577 +0.1875 +0.9043824835074733 +0.710526317966095 +0.703448275285742 +0.9739130663466147 +0.4485981368541672 +0.00456273746919709 +0.006191951073721911 +0.2818792005837812 +0.8493150742540253 +0.8092485867920779 +0.8296943654552006 +0.8054298582408902 +0.45217391476167296 +0.48627449278675944 +0.20830188513751455 +0.1785714371015828 +0.95408169033174 +0.220689664994069 +0.6521739346985554 +0.8088530868714642 +0.5866666754327636 +0.5917603261359368 +0.016304349030539907 +0.17241379235839022 +0.9250814372120094 +0.6845637346733474 +0.6728972040100949 +0.7739130534624605 +0.49382720502697275 +0.8372092511103972 +0.03802281515421563 +0.20000000744230242 +0.8912037176324791 +0.6256982988091574 +0.5714285500194374 +0.8776595827763762 +0.5454545602928762 +0.36760121806041157 +0.00715563493599546 +0.20264316963829734 +0.8821138656327481 +0.16326529768712003 +0.9082126015245376 +0.878048775530942 +0.4489795877998634 +0.23706896551724138 +0.006734007040202573 +0.18571429771053904 +0.9220945294277061 +0.19023137547260238 +0.48241201556102487 +0.8253968688416904 +0.3797468716095731 +0.5760517541536873 +0.01967213004902588 +0.23798626313599472 +0.9295352495810678 +0.17021276757324297 +0.8932806913765607 +0.9421965676278283 +0.34234232351052907 +0.22004887764861808 +0.10126581395507814 +0.13846152684348223 +0.8998410428658357 +0.2857142857142857 +0.33093524748711883 +0.8111888260717556 +0.4807692522189682 +0.3892617404721331 +0.02032520441215099 +0.2851711047462816 +0.9516908366863227 +0.6666666369413983 +0.742081445793189 +0.9289099632386073 +0.32989687279052127 +0.6877828069945215 +0.6694915209231286 +0.2362204740550121 +0.9346733738841826 +0.09523809365945073 +0.9138211262271031 +0.29310346673424986 +0.5167464117569205 +0.2766798327137546 +0.31775701196415684 +0.8974359076536499 +0.35448577087866806 +0.7807487092009863 +0.5274725597232872 +0.4921135771893059 +0.647058866763402 +0.22978723576569435 +0.865319850940576 +0.11506849504774988 +0.9265175948856764 +0.520547939026673 +0.627906917534435 +0.08438818299629128 +0.2692307798363573 +0.9267241906009941 +0.4581005513644513 +0.8759124171959171 +0.3333333406919313 +0.1351351355796393 +0.21260997221025799 +0.15384616315163072 +0.9406099405563346 +0.666666652046227 +0.9306930978158943 +0.5714285495329892 +0.6338797931792874 +0.5121951445361824 +0.9307876273958513 +0.45226128705176805 +0.8525641025641025 +0.3428571565053897 +0.46963561858466957 +0.3076923244561134 +0.966921152526954 +0.4791344653867756 +0.8741419224057372 +0.5000000595869291 +0.16462346683084242 +0.6739130032726593 +0.9047618828033145 +0.2583518924281199 +0.8317756989279019 +0.46846845619535926 +0.7698112849031089 +0.22797927537173318 +0.9295238427449857 +0.6624203629776934 +0.8856305012949287 +0.35789474164971463 +0.4023323741587872 +0.16450216974216494 +0.9795918019656142 +0.11678833125215866 +0.8097166413923527 +0.19801980589136933 +0.7703703846984101 +0.08071748695870472 +0.930348300763671 +0.41509435845947673 +0.8545034659750269 +0.4074074074074074 +0.696132554410186 +0.3333333258880509 +0.9351144814427933 +0.011428570849028402 +0.9518072567952912 +0.4520547873079444 +0.21971829853280844 +0.11428571661354556 +0.9490834783698685 +0.31578947789198397 +0.867924557934455 +0.37179486357354163 +0.29518072823743485 +0.19000000937737951 +0.8898776215025107 +0.13202934835035213 +0.8035714523448626 +0.5046729479800398 +0.1875 +0.8436577557834388 +0.6592178217411536 +0.8920863740869741 +0.47169810546170143 +0.37872340074568167 +0.8785529382679732 +0.7826087419237086 +0.8849557504292914 +0.3076923233094308 +0.125 +0.9318681518291978 +0.14163090790834806 +0.8733624615004292 +0.3500000085054887 +0.3043478175791616 +0.8839050256441925 +0.7076922390336478 +0.9004738863314166 +0.3838383744741754 +0.20270270616948122 +0.87787607519542 +0.2376237521626394 +0.9057591753927847 +0.4255319474498533 +0.14285715213737185 +0.9379084909170011 +0.7872340425531915 +0.8977955623142636 +0.3209876348378233 +0.3092783609451686 +0.8590425483935921 +0.32661288639707026 +0.8421052557705202 +0.5185184847130941 +0.5714285269237719 +0.9427083326753617 +0.13698630640812773 +0.9457364409418278 +0.49523811241770643 +0.4555555584340238 +0.9053254289895638 +0.18775509920891847 +0.8780488019874964 +0.4651162630548475 +0.21935484561213378 +0.9190283135625822 +0.694610793074231 +0.8535565528479628 +0.4727272664312718 +0.21256036840613707 +0.9424861017669346 +0.03378378361551304 +0.7988165319051468 +0.4675324831314792 +0.1188118797158376 +0.8998665076645822 +0.26934984686849106 +0.7555555503961567 +0.37113400240796207 +0.34615384615384615 +0.8844719912641028 +0.3606557553808965 +0.910994770202033 +0.2833333368394889 +0.5607476709232401 +0.9084506792996289 +0.2456140291478428 +0.8843283725424534 +0.528925621691122 +0.29256595175930583 +0.8788598198035015 +0.23387096819681952 +0.9283819124735994 +0.42592594391094457 +0.44987774705408196 +0.9293361538316507 +0.06837606911422014 +0.8806818051537864 +0.3636363490122901 +0.25550660388594004 +0.9373882295962213 +0.3001949128575944 +0.9090909268245232 +0.36144579147723765 +0.35204082407190707 +0.9009288003524124 +0.6486486511158482 +0.9208632627960304 +0.582278506243407 +0.07194244677121764 +0.8796433959702332 +0.19883041470675689 +0.8477366775529152 +0.4383561509021917 +0.3100775152850423 +0.8980668099553922 +0.17721519831537388 +0.7938931292075224 +0.3357400855670415 +0.9117043355720522 +0.6324785958412171 +0.8623852976637048 +0.3125 +0.954653937798524 +0.5591398152338828 +0.28125000654351184 +0.9137254945432431 +0.40659341435794066 +0.18181818509890035 +0.9123867643775387 +0.18232043621113278 +0.23209877075847116 +0.9262760005850627 +0.6406249627925286 +0.29310346572326024 +0.8733850102786941 +0.17511520004336584 +0.41600001456876873 +0.9291338486705725 +0.21176470171002806 +0.18779343272376015 +0.8340611544064009 +0.707482921735871 +0.1809744753908657 +0.9444444093934571 +0.05607476873252048 +0.5486725620540078 +0.9124236542585076 +0.29844099547486724 +0.20155038816799647 +0.8882834030622015 +0.18230562687136032 +0.33628317429363047 +0.9038786401857862 +0.25607064329484985 +0.09032258326609971 +0.8696844981880054 +0.09125475196467304 +0.09195402563740415 +0.9167882854847523 +0.7164179573230196 +0.13496932347440033 +0.9103840964950825 +0.2228739041389048 +0.1916932961205607 +0.8516128490400174 +0.19213974565869296 +0.28481013451396525 +0.8813953092750726 +0.7169811631671374 +0.31078610664574374 +0.9503546206044026 +0.7786259541984732 +0.7608695448201447 +0.9347367847850666 +0.2605210405928981 +0.14084508028389253 +0.9352940651813269 +0.4639175226026013 +0.21621621437534047 +0.9097222072093231 +0.6909090634313245 +0.2605364035068657 +0.8865096414440327 +0.7031249933918136 +0.105263160202855 +0.894150374939563 +0.6620689829011032 +0.16608997022295038 +0.8705882763589535 +0.1417721525952808 +0.2707930484392214 +0.30452676414486224 +0.2322580598690137 +0.8023255589629589 +0.21978023167687927 +0.5987260845413094 +0.7777777692796478 +0.08130081564059838 +0.28787877618223007 +0.46286701009270526 +0.2431372501117672 +0.12820511891581698 +0.23529410841341103 +0.758620681595992 +0.24120601124428562 +0.15810276702784132 +0.13793104657555533 +0.36585365286332955 +0.3538461723499688 +0.8535031185683231 +0.23611110760766088 +0.34205230343195275 +0.37254901960784315 +0.4000000067685166 +0.22878228248409468 +0.6538461295612439 +0.19631901226299528 +0.5230768959038028 +0.44444442959662195 +0.11931817657788872 +0.15789474425366615 +0.7830188284415353 +0.303921573430119 +0.5888888944425479 +0.18775508438647448 +0.13375795636454715 +0.16766468566790668 +0.417721515111577 +0.22911694010384925 +0.10975610739597345 +0.21451103883907285 +0.8000000297546388 +0.2896551757379647 +0.5217390876093948 +0.32989690443321734 +0.40268457669085067 +0.1111111120395592 +0.11195928579780486 +0.2528735442633008 +0.2494714545832168 +0.06299213095255704 +0.3206107155684823 +0.15533980399866798 +0.23376624284139744 +0.24731183101696805 +0.2580645005344484 +0.31654677373326223 +0.2539682593182555 +0.17983650685749958 +0.3652173954456072 +0.16574586096912577 +0.1886792456555396 +0.18705035513888582 +0.5909091090974132 +0.17021275296090396 +0.2189781004646502 +0.24649861006337354 +0.3461538378767839 +0.18333333601554222 +0.2682119230876613 +0.4052287443307762 +0.4393939301640522 +0.15602836702359069 +0.259259251824648 +0.18815331822827605 +0.3033707684169892 +0.27561836847256194 +0.48598130527253697 +0.17801046244096172 diff --git a/paper_figures/livecell/cellsam/general_FS_10_FT/LIVECell_good.txt b/paper_figures/livecell/cellsam/general_FS_10_FT/LIVECell_good.txt new file mode 100644 index 0000000..11ed6db --- /dev/null +++ b/paper_figures/livecell/cellsam/general_FS_10_FT/LIVECell_good.txt @@ -0,0 +1,576 @@ +0.4902386124035199 +0.6355140200017907 +0.8894601426018308 +0.5322580564248729 +0.7978723262240298 +0.21946902456933215 +0.5270588472612598 +0.932692330364513 +0.41340778887041435 +0.7034884398239096 +0.8137930693970499 +0.6231884495577773 +0.7058823057783206 +0.23193916805317372 +0.6419752981669935 +0.968750001922261 +0.7052631618962595 +0.3281853408236078 +0.9118942184277323 +0.47407411581449543 +0.5609755773720995 +0.7111110535243593 +0.7567567423154744 +0.9520958061345057 +0.46135267234144706 +0.3342857077875375 +0.8455284828310585 +0.45933013595593764 +0.5834738636930117 +0.15151516177750757 +0.6055979878571057 +0.8963367663010646 +0.741176472476256 +0.5265957686483822 +0.7950310499500157 +0.4637681250554339 +0.777385171987809 +0.4048429956224657 +0.35348835268346673 +0.9525862249546521 +0.5013624184588851 +0.41363636069186527 +0.8641975595988096 +0.4805194712628461 +0.7267080615590005 +0.3395853858563659 +0.4857143084934207 +0.9051851799264087 +0.472095182771699 +0.5 +0.891304388394903 +0.5625000129221004 +0.6071428781283493 +0.7368421052631579 +0.34905661986789416 +0.8663238943722888 +0.5297079608558133 +0.7594936363896851 +0.8946015417323603 +0.40000001942005503 +0.6666666815645574 +0.32512317914578953 +0.44360902485947595 +0.9181636581589648 +0.6728110366464499 +0.8473520255698185 +0.7183673427421896 +0.4393063796303417 +0.6682809020042061 +0.15704387529529407 +0.5144927604106174 +0.9238937935649124 +0.563934428508598 +0.8654545375702902 +0.9323017646788803 +0.5576922942041882 +0.7494823955925656 +0.1640942393162725 +0.5114753853955459 +0.9172259375775759 +0.4945382506706484 +0.7964071936214895 +0.8690095791987503 +0.65934069014323 +0.5075757708770007 +0.1954887136086367 +0.4105960335465783 +0.9291100633886727 +0.5288966544795157 +0.8931297825941295 +0.7232143140129783 +0.36956522133572933 +0.6449612581673901 +0.4076433188077053 +0.4578833929292654 +0.868644012776454 +0.4873293709706026 +0.6815286874714855 +0.8614231896345905 +0.42622948756064843 +0.5647236649751253 +0.14003590396229088 +0.7343749850827395 +0.8967254671710029 +0.7015706746708976 +0.421784486309971 +0.9545454375157355 +0.44444442895301695 +0.7777778032437834 +0.8306709102610226 +0.35179150972915335 +0.9367588462508063 +0.46225535444243604 +0.4902912636112501 +0.9308411012681198 +0.5528455415890575 +0.6594724472549602 +0.1256332422881995 +0.534954409135309 +0.9493976189254645 +0.46236561037213236 +0.8312756696605358 +0.8717948943834368 +0.49696965275581084 +0.7067668977964019 +0.7771083907576118 +0.7572815533980582 +0.9290322295146564 +0.45982144683509485 +0.8650518979549526 +0.9134328496476511 +0.38157896171589517 +0.8582996267949337 +0.4166666666666667 +0.3878787891628242 +0.930841162427702 +0.5911330058865171 +0.6165413207919388 +0.805825210210772 +0.40999998038687335 +0.5524861354163386 +0.11241217879700671 +0.4390243939276773 +0.9241071716309994 +0.5245901701830512 +0.8389057948170786 +0.9244713665802842 +0.5467625744571107 +0.7464114726104256 +0.25961540675771655 +0.4451827057696309 +0.9347181650220395 +0.44076430817694295 +0.5555555853533368 +0.7631579170045265 +0.5740740668288878 +0.7676056786074297 +0.227272724560716 +0.34893617762743684 +0.9439071362793624 +0.7047618892370088 +0.6404494371650006 +0.7591240787266503 +0.5255474855582355 +0.3855855707413149 +0.13424657385180236 +0.4015151389097589 +0.9081365184245899 +0.80219781607666 +0.8171206448534916 +0.7947598006089995 +0.6518518518518519 +0.6394558013356838 +0.38491545212131795 +0.3953488271971326 +0.9429280508190734 +0.4705881995104218 +0.7175572917979963 +0.9058116065234506 +0.5742574317931223 +0.7129337305941564 +0.13210040450767074 +0.39320388676985696 +0.9142857273209458 +0.8333332865979648 +0.7744680618645476 +0.738955767855685 +0.3802816864123526 +0.8432431994929369 +0.24118740178266232 +0.423841059602649 +0.883977935431304 +0.5649350856981182 +0.695970691892976 +0.9218750050500079 +0.5309734720305845 +0.7213114119259654 +0.1876629058855333 +0.532951310245055 +0.9383697688127267 +0.45512821372485646 +0.8347826269615458 +0.9278351010474144 +0.4444444285093089 +0.6246574960310576 +0.14814815101827106 +0.4950980681470864 +0.9282178650087934 +0.4560943657205677 +0.5206611202501706 +0.8843105715146106 +0.6666666948818838 +0.7272727198416297 +0.1631321426004763 +0.5310734484317658 +0.8998548487988514 +0.507936512352084 +0.8880597034771978 +0.8967391865868614 +0.5441176725606706 +0.6570048640050743 +0.4511278148337577 +0.41860467799879136 +0.9040247276357738 +0.5671641893352132 +0.3427561817981553 +0.7272726982684181 +0.5405405720531234 +0.71304350151946 +0.1583756300951187 +0.5659777444687784 +0.9339622473065674 +0.6769231046342682 +0.7619047248020336 +0.7868852096498892 +0.6557377204459146 +0.7674418676165496 +0.7489712462327979 +0.5445705074824668 +0.9437652313332447 +0.5408804937560968 +0.9423077166271223 +0.3359999854087837 +0.7242798296556171 +0.4472843495607536 +0.4645161695543194 +0.9397089432659316 +0.47185628016830583 +0.9094138726122291 +0.52100838319854 +0.6774193647544403 +0.7773851383117762 +0.5504586966468602 +0.9005659439616764 +0.5452092037550293 +0.9345793768429932 +0.5840708114925705 +0.669902901925198 +0.15068492688384627 +0.5350553719649435 +0.9291666765390572 +0.5337837765916115 +0.8522337098982521 +0.31578947561049164 +0.6090776262294955 +0.35150456627379734 +0.46551718862789127 +0.9032257958352767 +0.6628571616114396 +0.8950617703719163 +0.645669292668961 +0.6944444397169542 +0.7096774324487017 +0.969411734634377 +0.43914081746123745 +0.8792569998499236 +0.47058822867137967 +0.7138046325595034 +0.4713375746220953 +0.9597989887374908 +0.5083088636390014 +0.9115645663563364 +0.5569619915773762 +0.5099415093722475 +0.8484848443007861 +0.9078947256297426 +0.5 +0.9088811885198355 +0.5100671222904307 +0.7857142910787036 +0.3680981629301485 +0.9313543385625066 +0.7099999582935385 +0.9186046044413867 +0.4715447142074882 +0.6201923344813838 +0.544342517750017 +0.9770114879436697 +0.5141844367661954 +0.8549618573141625 +0.40277777119607494 +0.8661971647288969 +0.37746478863368715 +0.9320388479650852 +0.6122449006961316 +0.9206349596523064 +0.31578946934922864 +0.8253968117285472 +0.5263157587808452 +0.9518518606639019 +0.5228426286843325 +0.8128342457167832 +0.45662103580492963 +0.6654479247085583 +0.40277778503417283 +0.9158512357581298 +0.5251046374390964 +0.7878787901186459 +0.588832507218498 +0.7075663956475562 +0.40718561469010855 +0.8931623677834081 +0.4004259920138416 +0.8908685683604269 +0.5771812067275384 +0.4252491524796589 +0.8953975129348264 +0.6933333104039426 +0.8350168290824819 +0.6153846261134511 +0.6822262216684815 +0.9180327783762685 +0.8032787298717998 +0.687499936726951 +0.43137256124335255 +0.4449877530246318 +0.9336188277047612 +0.53398059532965 +0.8619246939739557 +0.3646408713917742 +0.5699999741406829 +0.9109414200300651 +0.7299270555147264 +0.8275862191333108 +0.47619047362744066 +0.4952380932003296 +0.9018932883440246 +0.40625000722166826 +0.9287599125764248 +0.5285714301083934 +0.40167365473087263 +0.9320694761672539 +0.7715736115113027 +0.9294118024251207 +0.36496349305297093 +0.8659793473871232 +0.8679244611198431 +0.54566209188328 +0.8152866136504701 +0.4603174682581179 +0.7857143177179159 +0.9164556850440411 +0.4684685088423932 +0.9117646485777917 +0.5507246837278382 +0.6613545706955571 +0.8910891260602528 +0.4861660525477084 +0.9028400361715919 +0.6466165761200124 +0.5229357860637549 +0.9446640166607845 +0.6732673391621509 +0.9212121466775439 +0.5090909053777969 +0.4652406637818549 +0.9249999630410921 +0.4668989432583346 +0.8539325819358582 +0.5714285846740482 +0.4701492397477822 +0.9378237927320028 +0.4871354931949539 +0.7685950333182696 +0.44025157645447544 +0.4016064277824029 +0.9116944246802313 +0.48680347682484076 +0.7454545805973761 +0.48618785881274923 +0.8108108127613499 +0.8934009407441658 +0.46547312620525677 +0.9313543561273488 +0.5098039387168833 +0.6023166090663494 +0.9359268231374516 +0.5066666593632198 +0.9289339556363018 +0.5925925822562157 +0.5996131564253078 +0.9294605809128631 +0.44660194511128903 +0.8913963890134169 +0.5608465721522243 +0.4510385805490075 +0.9473683780069542 +0.5401785882786135 +0.7748690684565744 +0.5483871213191073 +0.6032388495664576 +0.9331352094795697 +0.6236559139784946 +0.9263157739184047 +0.5740740668288878 +0.2922077868595598 +0.9230769627690719 +0.4499999888211488 +0.8515624521725289 +0.47567567993820536 +0.6452702263713449 +0.9071129485257827 +0.47252745721261935 +0.7638889116959438 +0.6799387655016528 +0.8910891589735128 +0.6783626163853915 +0.8883928792327449 +0.5810055594609788 +0.9573460246472072 +0.5333332997133052 +0.471264362692454 +0.9265536472495804 +0.5256797162326778 +0.49438200141316796 +0.8863309436434791 +0.5147453242450045 +0.6201232071287464 +0.9222422737648353 +0.6896550961153138 +0.5464480625964802 +0.9016189211128233 +0.429501108955496 +0.8085106413514863 +0.9282443134085205 +0.4305949094375407 +0.5029240044618302 +0.8526971504399958 +0.6785714442368546 +0.45195732060399096 +0.9455782017460207 +0.5504000200406917 +0.8813559162712357 +0.928853789915795 +0.5739348449396053 +0.5576520015548643 +0.8929503513108545 +0.5212619996224125 +0.5123153292302817 +0.886399996996938 +0.5075318925787804 +0.3192771314863003 +0.8630490945368433 +0.5291828618933323 +0.48351647486870336 +0.9090908972019035 +0.708737891103662 +0.3949044587939809 +0.8928087175369351 +0.49117645318867714 +0.5333333537367726 +0.8959834882154417 +0.5851063645402618 +0.43621398321923793 +0.9097065647608326 +0.7976190092745452 +0.5581395469108915 +0.9397590399628423 +0.6335403926167077 +0.9052631882245654 +0.9363449814819045 +0.5155925287576614 +0.5374149610395654 +0.9314285433306189 +0.562318786456516 +0.49350648273207254 +0.8915662931339005 +0.6549707648451994 +0.5248447357409729 +0.8729508299919035 +0.6578947001811226 +0.45454545971775817 +0.9264305674453519 +0.5700483295746827 +0.5891892273373784 +0.9342104801436758 +0.48009950921867933 +0.6191248223121507 +0.4794816666499967 +0.41558440625691284 +0.8087431693989071 +0.4559999934453967 +0.6395348826424844 +0.7878788036494843 +0.43715847096920096 +0.44247787739045563 +0.49511399556952085 +0.5081081167232362 +0.5 +0.3619909434854374 +0.8397790032100385 +0.3237597937545763 +0.526946099364796 +0.3902439069894481 +0.46391753017064036 +0.4566210005925671 +0.8208092761835032 +0.3952569357238935 +0.4482029675456623 +0.6159600932533086 +0.463343098805455 +0.6128133729768057 +0.7757575375399993 +0.4886877556591769 +0.6330275229357798 +0.6714286040972473 +0.412517775959494 +0.5524296670101767 +0.779342720492631 +0.38873238958890105 +0.5454545321428488 +0.4281984551307601 +0.5433715207903418 +0.3252595340367898 +0.41666664503322315 +0.5730769176517906 +0.4316546569016257 +0.5 +0.8549618870179944 +0.5272727081479425 +0.5925925872318688 +0.49579831026171456 +0.5324232193397455 +0.44912279356510804 +0.47361644998103225 +0.4264705828057092 +0.6017391176127531 +0.35835350918763154 +0.5824176029298396 +0.5283950297850659 +0.3964757674699863 +0.45454545454545453 +0.4452554740290678 +0.5601172989475325 +0.35424356060256235 +0.49684211980261955 +0.4787233817728616 +0.41935483771305415 +0.5781818263368862 +0.5844930454271956 +0.8571428571428571 +0.5536159699792037 +0.5052082944782225 +0.49367087979845736 +0.47321428468730264 +0.3194444325419618 +0.46861924383384385 +0.6073298505671079 +0.8676470869575437 +0.4090908942102731 +0.5144508479043671 +0.5714285847546048 +0.543478245726154 +0.3916083675750727 +0.6206896693924807 +0.4946236929417488 diff --git a/paper_figures/metadata_LIVECELLgood_0_orig.csv b/paper_figures/metadata_LIVECELLgood_0_orig.csv new file mode 100644 index 0000000..4f37260 --- /dev/null +++ b/paper_figures/metadata_LIVECELLgood_0_orig.csv @@ -0,0 +1,576 @@ +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BT474 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SHSY5Y +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +MCF7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +Huh7 +SKOV3 +SkBr3 +A172 +BV2 +SKOV3 +SkBr3 +A172 +BV2 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +SkBr3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +A172 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 +SKOV3 diff --git a/paper_figures/paper_figures.ipynb b/paper_figures/paper_figures.ipynb new file mode 100644 index 0000000..0cdfa13 --- /dev/null +++ b/paper_figures/paper_figures.ipynb @@ -0,0 +1,1770 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Results for Generalist Models" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from pathlib import Path\n", + "import numpy as np\n", + "\n", + "name_map = {\n", + " \"Gendarme_BriFi\": \"BriFiSeg\",\n", + " \"cellpose\": \"Cellpose\",\n", + " \"ep_phase_microscopy_all\": \"Phase400\",\n", + " \"H_and_E\": \"H&E\",\n", + " \"tissuenet_wholecell\": \"TissueNet\",\n", + " \"YeaZ\": \"YeaZ\",\n", + " \"YeastNet\": \"YeastNet\",\n", + " \"dsb_fixed\": \"DSB\",\n", + " \"deepbacs\": \"DeepBacs\",\n", + " \"omnipose\": \"OmniPose\",\n", + "}\n", + "\n", + "\n", + "datasets = [\n", + " 'Gendarme_BriFi',\n", + " 'H_and_E',\n", + " 'YeaZ',\n", + " 'YeastNet',\n", + " 'cellpose',\n", + " 'deepbacs',\n", + " 'dsb_fixed',\n", + " 'ep_phase_microscopy_all',\n", + " 'omnipose',\n", + " 'tissuenet_wholecell',\n", + "]\n", + "\n", + "# colors for the plots\n", + "c1 = \"#fdbb84\"\n", + "c2 = \"#e34a33\"\n", + "c3 = '#deebf7'\n", + "c4 = '#3182bd'" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "## define paths and load results\n", + "\n", + "cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam')\n", + "cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose')\n", + "\n", + "cellpose_generalist_path = cellpose_path / 'general'\n", + "cellsam_generalist_path = cellsam_path / 'general'\n", + "\n", + "\n", + "cp_generalist_dict = {}\n", + "\n", + "for file in cellpose_generalist_path.glob(\"*.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cp_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + "\n", + "cs_generalist_dict = {}\n", + "\n", + "for file in cellsam_generalist_path.glob(\"*.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cs_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhe9JREFUeJzt3XdcVfX/B/DXBZkiaIAMBUFRRFFwz9wzC1du09TUryNX7oUzTE3NNPfMmTPLspLSxDRTw4koLlIBxYXs9f79we8euQIqXODC5fV8PO7Dy+cM3ud4Ofe8z2epRERARERERESkBQNdB0BERERERIUfEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItJaMV0HQESFT2hoKCIjI3UdRqZsbGzg7Oys6zBea9asWZg9ezb++OMPNGvWTClXqVRo2rQpjh07prPYigJ+frXHzzARZYaJBRFlS2hoKDzc3REbH6/rUDJlbmqKoODgXLk5O3fuHL755hv8+eefePDgAVJTU+Ho6IiGDRuiX79+aN26dS5ETPkpNDQU7pU9EB8Xq+tQMmVqZo7ga0G5llwUlM/w5cuXsWjRIhw/fhxhYWEwNTWFra0tqlevjqZNm2LUqFFQqVSZbvvnn3+iadOmAIDvvvsO3bp1y3S9zZs3Y8CAAQCArl27Yu/evZmut2rVKgwfPhwA0L9/f2zevFnLoyMiNSYWRJQtkZGRiI2Px3IvF7hZmOk6HA0h0XEYdeEOIiMjtboxS01Nxfjx47F06VIUK1YMLVq0gI+PD4yMjHDr1i0cPnwY27Ztw5w5czBjxoxcPALKa5GRkYiPi0W5rlNgaluwagbiH4Xi7j4/rT+/QMH6DP/22294//33kZycjFatWqFz584wNTXFzZs3cfz4cRw4cAAjRoxAsWKZ35Js2LABQFptyMaNG7NMLNSKFSuGH374AZGRkbCxscl0f8WKFUNycrL2B0dEGphYEFGOuFmYoZqVua7DyBPTp0/H0qVL4e3tjb1796JChQoay+Pi4rBixQo8fvxYRxGStkxtnWHuWEnXYeSZgvQZHjZsGFJSUnD06FE0b95cY5mI4Ndff4WhoWGm20ZFRWHv3r2oXr067Ozs8Ouvv+K///6Dk5NTlr+vffv2+OGHH7Bt2zaMGTNGY9nFixdx7tw5+Pj44NChQ1ofGxFpYudtIqJ0QkJCsHDhQlhbW+PIkSMZbsgAwMzMDBMmTMDs2bOVssTERCxZsgQ1a9ZE8eLFUaJECbz77rta37x8/PHHUKlUuHXrFhYuXIiKFSvC1NQUrq6umDNnDpKSkjLdbtOmTahXrx4sLCxgYWGBevXqZdnkY9++fWjatClKly4NU1NTODo6olWrVti3b1+GdS9evIiePXvCwcEBxsbGKFeuHD799FMmWQVIQfoMP3z4EDdv3oSnp2eGpAJIq4Vo27Ztls2gdu7cidjYWPTr1w/9+vVDamrqG5suNWzYEJUrV8amTZsyLNu4cSMMDQ3Rv3//HB0PEb0eEwsionQ2b96MlJQUDB06FHZ2dq9d18TEBACQkJCAtm3b4rPPPoOIYNCgQejbty/u3r2Ljh07YsWKFVrHNWbMGHzxxRdo1aoVPv30U5iYmMDX1xe9evXKsO6oUaMwcOBA3L9/H4MGDcKgQYNw//59DBgwAKNHj9ZYd9WqVfjwww9x48YNdO7cGePGjUO7du0QHh6OAwcOaKx76NAh1K1bF4cOHUKzZs0wZswYVKtWDStWrECDBg3w9OlTrY+TtFeQPsNWVlYoVqwYwsLCEBMTk+3tN2zYAENDQ/Tp0wddunSBhYUFNm3aBBF57XYDBgxQaifUEhMTsX37drRt2xaOjo7ZjoWI3oxNoYiI0jl58iQAoEWLFm+9zZw5c3Ds2DHMmDEDs2fPVp6+vnjxAi1atMBnn32GLl26aHUzc/r0aVy4cAFly5YFAMyfPx+tW7fGvn37sG/fPnTt2hVAWkfXr7/+Gh4eHjh16hSsrKwApI3iU79+fSxfvhwffvgh3n33XQDA+vXrYWxsjMDAQJQuXVrjd6avhXj8+DE++ugj2NjY4OTJkyhXrpyybNeuXejVqxdmzpyJr7/+OsfHSLmjIH2GTUxM4OPjg/3796NBgwYYPHgwGjZsiGrVqsHY2Pi12166dAn//PMP2rZtC3t7ewBAly5dsHXrVvz+++9o2bJlltv269cP06ZNw8aNG1GrVi0AwPfff4/IyEgMGjQoW8dARG+PNRZEROmEh4cDgHID/yapqalYtWoVKlSooHFDBgAlSpTAzJkzkZiYiP3792sV1+jRozViMjY2xvz58wFAo2nIli1bAKQlEuqkAgBKlSoFX1/fDOsDgJGREYyMjDL8Tmtra+X91q1bERUVBT8/P42kAgB69uyJmjVrYteuXTk7OMpVBe0zvHbtWnzwwQe4dOkSRo0ahdq1a6NEiRJo1KgRli9fjri4uEy3U3fa7tevn1Kmfq9elhV7e3u899572LlzJ+L/fwS7jRs3wtbWFh988EGOjoOI3ow1FkREWggODsbTp0/h6Oio0V5d7dGjRwCAa9euafV71DUM6TVo0ADFihXDv//+q5Sp36efW0BN3cY9MDBQKevZsycmTpwIT09P9O7dG82bN0fjxo1haWmpse3p06cBAH///Tdu3ryZYd/x8fGIjIzMciQeKrjy+jNsbW2NQ4cO4caNGzhy5AjOnDmD06dP46+//sJff/2FdevW4fjx43jnnXeUbRISErBt2zaUKFECnTt3VsqbN28OJycnHDhwAE+fPkWpUqWy/L0DBw7EoUOHcODAATRp0gS//vorRo8enWkSTUS5g4kFEVE69vb2uHbtGu7fvw93d/c3rv/kyRMAwJUrV3DlypUs18tJ+/L0Mmsrb2hoCGtrazx//lwpi4qKgoGBAWxtbTPdh0qlQlRUlFI2fvx4WFtbY9WqVfjyyy+xePFiFCtWDB06dMDSpUvh6uoK4OVxrly58rVxxsTEMLHQsYL6Ga5YsSIqVqyo/BwYGIi+ffvi8uXLmD17Nr766itl2cGDB/H48WMMGDAAZmYvh7U2MDBAnz59sGDBAuzYsQMjRozI8vd16NABdnZ22LhxI27duoXU1FQMHDhQq2MgotdjUygionQaNWoEAPD393+r9dVP9rt27QoRyfKV2Qg12REREZGhLCUlBY8fP9Zo8mRpaYnU1FTlKXN6Dx8+hIho1EaoVCoMHDgQ//zzDx49eoQDBw6gS5cu+P777/H+++8jJSVF4zgvXbr02uN8tZkU5b+C+hl+lbe3t9In5/fff9dYpm7qtGnTJqhUKo3XggULNNbJSrFixdCvXz/8/vvvWLlyJerWrQtPT89cPQYi0sTEgogonY8//hiGhoZYu3Ztpjfn6SUkJMDDwwOWlpY4e/ZslkO/5oYTJ05kKDt16hSSk5NRo0YNpUz9/tixYxnWV5d5e3tn+jusra3RqVMn7N69Gy1atMDVq1cREhICAKhXr57yO6lgK6if4cxYWFhkKLt79y78/f1hZ2enjGr26svV1RX//vuvRjPAzAwcOBCpqakICwtjbQVRPmBiQUSUjpubGyZOnIjIyEi0b98et2/fzrBOfHw8lixZglmzZqFYsWIYNmwY7t69i/Hjx2d6Y3b58mU8fPhQq7i++uor3Lt3T/k5MTER06ZNA5B2I6mmHp9/9uzZGk2enj9/rrSfTz+G/7FjxzIM3ZmUlKQ0jzE1NQWQNnxniRIlMG3atEyby8TGxir9MEi3CtJnOCYmBvPnz0dkZGSGZcnJyVi0aBEAoHHjxkr5pk2bkJqaiqFDh2L9+vWZviZPngzgzbUWlStXxs8//4wDBw6gT58+2Y6fiLKHfSyIiF4xb948xMfHY+nSpXB3d0eLFi3g6ekJIyMj3L59G0ePHsXjx48xb948AGk38efPn8fy5ctx+PBhNGnSBKVLl8b9+/dx6dIlXLhwAadOncownGt21K9fH15eXujRoweKFy+OH374AcHBwejSpYsy1CwANGnSBJ9++im+/vpreHp6Ks1b9u3bh3v37mHUqFFo0qSJsn6nTp1gaWmJ+vXro1y5ckhKSsJvv/2Gq1ev4sMPP1SaNtna2mLnzp3o1q0bvLy80K5dO1SuXBkJCQm4c+cOjh8/joYNG+LIkSM5PkbKPQXlM5yUlITp06dj1qxZaNCgAby8vGBpaYmIiAj88ssvuHfvHlxdXZURy1JTU5XmT+kT5lf16NEDY8aMwfbt27F48WIlAc5Mu3btshUzEeUcEwsiypGQ6MyHiNSl3IrJwMAAS5YsQe/evbFq1Sr8+eef+PPPP5GamgoHBwe0bdsWAwYMQKtWrQCkjdX/888/Y8OGDdi6dSv27duHhIQE2NnZoUqVKvjf//6HatWqaRXTsmXLsGfPHqxfvx6hoaFwcHDArFmzMGXKlAzrLl++HDVq1MCqVauwdu1aAEDVqlUxZ84cDBgwQGNdPz8/ZaSeH374AcWLF0eFChWwatWqDOP9d+jQAf/++y8WLVqEo0eP4rfffkPx4sVRtmxZDBgwAH379tXqGPNT/KNQXYeQQW7GVFA+w5aWlvjpp5/wyy+/ICAgAHv27MHjx49hbm6OSpUqYfDgwRg9erTST+jo0aMIDQ1F06ZNlYEDMmNlZYUuXbpg+/bt2L9/P3r37p2zE0VEuUolb5q+kogondDQUHi4uyP2/8eGL2jMTU0RFBwMZ2dnXYeSKz7++GNs2bIFt2/fhouLi67DKfRCQ0PhXtkD8XGxug4lU6Zm5gi+FqQ3n18iKlpYY0FE2eLs7Iyg4OBM20wXBDY2Nrwpoyw5Ozsj+FoQP79ERHmAiQURZZuzszNvfqjQ4ueXiChvcFQoIiIiIiLSGvtYEBERERGR1lhjQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNikQkRQVRUFERE16EQERERERUKTCwy8eLFC1hZWeHFixe6DoWIiIiIqFBgYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERForEInFypUr4eLiAlNTU9SrVw9nzpzJct1169bh3XffRalSpVCqVCm0atUqw/off/wxVCqVxqtdu3Z5fRhEREREREWWzhOL3bt3Y9y4cfD19cX58+fh5eWFtm3b4uHDh5muf+zYMfTq1Qt//PEHTp06BScnJ7Rp0wb379/XWK9du3YICwtTXjt37syPwyEiIiIiKpJUIiK6DKBevXqoU6cOVqxYAQBITU2Fk5MTPv30U0yePPmN26ekpKBUqVJYsWIF+vXrByCtxuLZs2c4ePBgjmKKioqClZUVnj9/DktLyxztg/KOOlnMLgcHBzg4OORBRERERERUTJe/PDExEefOncOUKVOUMgMDA7Rq1QqnTp16q33ExsYiKSkJ77zzjkb5sWPHULp0aZQqVQotWrTAvHnzYG1tnek+EhISkJCQoPwcFRWVg6Oh/LJmzRrMnj0729v5+vpi1qxZuR8QEREREek2sYiMjERKSgrs7Ow0yu3s7HDt2rW32sekSZPg6OiIVq1aKWXt2rVDly5d4Orqips3b2Lq1Klo3749Tp06BUNDwwz78PPzy9GNKunG0KFD4ePjo1EWFxeHxo0bAwACAgJgZmaWYTvWVhARERHlHZ0mFtpasGABdu3ahWPHjsHU1FQp79mzp/K+WrVqqF69OipUqIBjx46hZcuWGfYzZcoUjBs3Tvk5KioKTk5OeRs85VhmTZpiYmKU997e3ihevHh+h0VERERUpOm087aNjQ0MDQ0RERGhUR4REQF7e/vXbrt48WIsWLAAv/76K6pXr/7adcuXLw8bGxuEhIRkutzExASWlpYaLyIiIiIiens6TSyMjY1Rq1Yt+Pv7K2Wpqanw9/dHgwYNstxu4cKFmDt3Lo4cOYLatWu/8ffcu3cPjx8/ZlMYIiIiIqI8ovPhZseNG4d169Zhy5YtCAoKwrBhwxATE4MBAwYAAPr166fRufuLL77AjBkzsHHjRri4uCA8PBzh4eGIjo4GAERHR2PChAk4ffo07ty5A39/f3Ts2BFubm5o27atTo6RiIiIiEjf6byPRY8ePfDo0SPMnDkT4eHh8Pb2xpEjR5QO3aGhoTAweJn/rFq1ComJifjwww819qMe8cfQ0BAXL17Eli1b8OzZMzg6OqJNmzaYO3cuTExM8vXYiIiIiIiKCp3PY1EQcR6LwicmJgYWFhYA0mqt2HmbiIiIKH/pvCkUEREREREVfkwsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa8V0HQDRm4SGhiIyMvK168TFxSnvAwMDYWZm9lb7trGxgbOzs1bxERERERGgEhHRdRAFTVRUFKysrPD8+XNYWlrqOpwiLTQ0FB7u7oiNj8+T/ZubmiIoOJjJBREREZGWWGNBBVpkZCRi4+Ox3MsFbhZZ10LEp6Siy+lgAMD++u4wNXxzK7+Q6DiMunAHkZGRTCyIiIiItMTEggoFNwszVLMyz3J5bHKK8r6qpRnMixnmR1hERERE9P/YeZuIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLRWTNcBEBFR7gkLC0NYWFi2t3NwcICDg0MeREREREUFEwsiIj2yZs0azJ49O9vb+fr6YtasWbkfEBERFRlMLIiI9MjQoUPh4+OjURYXF4fGjRsDAAICAmBmZpZhO9ZWEBGRtphYEBHpkcyaNMXExCjvvb29Ubx48fwOi4iIigB23iYiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0ViMRi5cqVcHFxgampKerVq4czZ85kue66devw7rvvolSpUihVqhRatWqVYX0RwcyZM+Hg4AAzMzO0atUKN27cyOvDICIiIiIqsnSeWOzevRvjxo2Dr68vzp8/Dy8vL7Rt2xYPHz7MdP1jx46hV69e+OOPP3Dq1Ck4OTmhTZs2uH//vrLOwoULsXz5cqxevRp///03ihcvjrZt2yI+Pj6/DouIiIiIqEjReWKxZMkSDB48GAMGDECVKlWwevVqmJubY+PGjZmuv337dgwfPhze3t6oXLky1q9fj9TUVPj7+wNIq61YtmwZpk+fjo4dO6J69erYunUrHjx4gIMHD+bjkRERERERFR06TSwSExNx7tw5tGrVSikzMDBAq1atcOrUqbfaR2xsLJKSkvDOO+8AAG7fvo3w8HCNfVpZWaFevXpZ7jMhIQFRUVEaLyIiIiIienvFdPnLIyMjkZKSAjs7O41yOzs7XLt27a32MWnSJDg6OiqJRHh4uLKPV/epXvYqPz8/zJ49O7vhk45ExCfhYUKSRll8Sory/kpULEwNDTNsV9rECHamRnkeHxEREVFRpNPEQlsLFizArl27cOzYMZiamuZ4P1OmTMG4ceOUn6OiouDk5JQbIVIe2B76CEtDwrJc3uX09UzLx7o5YFwlx7wKi4iIiKhI02liYWNjA0NDQ0RERGiUR0REwN7e/rXbLl68GAsWLMDRo0dRvXp1pVy9XUREBBwcHDT26e3tnem+TExMYGJiksOjoPzWx9kWre1KZnu70iasrSAiIiLKKzpNLIyNjVGrVi34+/ujU6dOAKB0xB45cmSW2y1cuBDz58/HL7/8gtq1a2ssc3V1hb29Pfz9/ZVEIioqCn///TeGDRuWV4dC+cjOlE2aiIiIiAoanTeFGjduHPr374/atWujbt26WLZsGWJiYjBgwAAAQL9+/VCmTBn4+fkBAL744gvMnDkTO3bsgIuLi9JvwsLCAhYWFlCpVBgzZgzmzZuHihUrwtXVFTNmzICjo6OSvBARERERUe7SeWLRo0cPPHr0CDNnzkR4eDi8vb1x5MgRpfN1aGgoDAxeDl61atUqJCYm4sMPP9TYj6+vL2bNmgUAmDhxImJiYjBkyBA8e/YMjRs3xpEjR7Tqh0FERERERFlTiYjoOoiCJioqClZWVnj+/DksLS11HU6Rdv78edSqVQs/NfJANSvzXN33peexeO9kEM6dO4eaNWvm6r6JCpKYmBhYWFgAAKKjo1G8eHEdR0RERPpI5xPkERERERFR4cfEgoiIiIiItMbEgoiIiIiItKbzzttEBU1YWBjCwrKegC8rDg4OGnOnEBERERUlTCyIXrFmzRrMnj0729ulH5mMiIiIqKhhYkH0iqFDh8LHx0ejLC4uDo0bNwYABAQEwMzMLMN2rK0gIiKiooyJBdErMmvSFBMTo7z39vbmcJ1EREREr2DnbSIiIiIi0hoTCyIiIiIi0hoTCyIiIiIi0hoTCyIiIiIi0ho7bxMRFVKhoaGIjIx843pxcXHK+8DAwExHNcuMjY0NnJ2dcxwfEREVLUwsiIgKodDQUHi4uyM2Pj5b26mHTX4b5qamCAoOZnJBRERvhYkFEVEhFBkZidj4eCz3coGbxetrIOJTUtHldDAAYH99d5gavrkVbEh0HEZduIPIyEgmFkRE9FaYWBARFWJuFmaoZmX+2nVik1OU91UtzWBezDCvwyIioiKInbeJiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhr2R5uNjU1FcePH8eJEydw9+5dxMbGwtbWFjVq1ECrVq3g5OSUF3ESEREREVEB9tY1FnFxcZg3bx6cnJzw3nvv4eeff8azZ89gaGiIkJAQ+Pr6wtXVFe+99x5Onz6dlzETEREREVEB89Y1FpUqVUKDBg2wbt06tG7dGkZGRhnWuXv3Lnbs2IGePXti2rRpGDx4cK4GS0REREREBdNbJxa//vorPDw8XrtOuXLlMGXKFIwfPx6hoaFaB0dERERERIXDWycWb0oq0jMyMkKFChVyFBBRfgsKCnrjOnFxccr7wMBAmJmZvXEbGxsbODs7axUbERERUWGR7c7brxMTE4Nz586hSZMmublbojzxMCEJUBmgb9++2dqucePGb7WeqZk5gq8FMbkgIqICJSwsDGFhYdnezsHBAQ4ODnkQEemLXE0sQkJC0Lx5c6SkpOTmbonyRFRSMiCpKNd1CkxtX3/zn5qUgBsbxgAAKg5aBgMjk9euH/8oFHf3+SEyMpKJBRERFShr1qzB7Nmzs72dr68vZs2alfsBkd7I1cSCqDAytXWGuWOl166TkviyKZSZgxsMjd/cFIqIiKggGjp0KHx8fDTK4uLilBr5gICATJv8sraC3iRbicU777zz2uWsqSAiIiIq2DJr0hQTE6O89/b2RvHixfM7LNID2UosEhISMGzYMFSrVi3T5Xfv3s1R1RoRERERERVu2UosvL294eTkhP79+2e6/MKFC0wsiIiIiIiKoLeeeRsAOnTogGfPnmW5/J133kG/fv20jYmIiIiIiAqZbNVYTJ069bXLnZycsGnTJq0CIiIiIqLCi8PZFl0cFYqIiIiIcg2Hsy26spVYNGnSBIcOHULJkiUBAIcOHULr1q3fahZiIiIiItJ/HM626MpWYhEQEIDExETl5759+yIwMBDly5fP9cCIiIiIqPDhcLZFV7Y6b79KRHIrDiIiIiIiKsS0SiyIiIiIiIiAHHTe/uWXX2BlZQUASE1Nhb+/Py5fvqyxzqvt6oiIiIiISL9lO7F4dXK8oUOHavysUqmQkpKiXVRERERERFSoZCuxSE1Nzas4iIiIiIioEGMfCyIiIiIi0hoTCyIiIiIi0hpn3iYiIiLSY6GhoYiMjHztOnFxccr7wMDAt5782MbGBs7OzlrFR/qDiQURkR6JiE/Cw4QkjbL4dANqXImKhamhYYbtSpsYwc7UKM/jI6L8FRoaCg93d8TGx7/1NuoZst+GuakpgoKDmVwQACYWRER6ZXvoIywNCctyeZfT1zMtH+vmgHGVHPMqLCLSkcjISMTGx2O5lwvcLLKuhYhPSUWX08EAgP313WFq+ObW8iHRcRh14Q4iIyOZWBCAXEgshg8fjjlz5sDGxiY34iHSuaQXj5H04rFGWUpSgvI+NiwEhkYmGbYzKmENoxLWeR4f0ev0cbZFa7uS2d6utAlrK4j0mZuFGapZmWe5PDb5Zc1mVUszmBfLWLNJ9CZaJxbbtm3D+PHjmViQ3oj850eEH9ua5fKQDWMyLbdv1g8OLfpnuowov9iZskkTERHphtaJhYjkRhxEBYZNnfdhVblBtrdjbQUREREVZexjQfQKNmkiIiIiyj6tE4sXL17kRhxERERERFSIcYI8IiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGjtvExEREVGOBQUFvXGduLg45X1gYCDMzLKerE/NxsaGE+8VMjpPLFauXIlFixYhPDwcXl5e+Prrr1G3bt1M171y5QpmzpyJc+fO4e7du1i6dCnGjBmjsc6sWbMwe/ZsjTJ3d3dcu3Ytrw6BiIiIqMh5mJAEqAzQt2/fbG3XuHHjt1rP1MwcwdeCmFwUIrmaWNy8eRODBw/G77///lbr7969G+PGjcPq1atRr149LFu2DG3btkVwcDBKly6dYf3Y2FiUL18e3bp1w9ixY7Pcb9WqVXH06FHl52LFdJ4/EREREemVqKRkQFJRrusUmNq+/uY/NSkBN/5/gtmKg5bBwMjktevHPwrF3X1+iIyMZGJRiOTqHXd0dDSOHz/+1usvWbIEgwcPxoABAwAAq1evxuHDh7Fx40ZMnjw5w/p16tRBnTp1ACDT5WrFihWDvb19NqMnIiIiouwytXWGuWOl166TkviyKZSZgxsMjd/cFIoKn2wlFsuXL3/t8vv377/1vhITE3Hu3DlMmTJFKTMwMECrVq1w6tSp7ISVwY0bN+Do6AhTU1M0aNAAfn5+r812ExISkJCQoPwcFRWl1e8nItJHYWFhCAsLy/Z2Dg4OcHBwyIOIiIioIMlWYjFmzBg4ODjA2Ng40+WJiYlvva/IyEikpKTAzs5Oo9zOzk6r/hD16tXD5s2b4e7ujrCwMMyePRvvvvsuLl++jBIlSmS6jZ+fX4Z+GUREpGnNmjU5ulb6+vpi1qxZuR8QEREVKNlKLMqVK4cvvvgC3bt3z3R5YGAgatWqlSuB5VT79u2V99WrV0e9evVQrlw5fPfddxg0aFCm20yZMgXjxo1Tfo6KioKTk1Oex0pEVJgMHToUPj4+GmVxcXFKR8yAgIBMR3phbQVRwRIRn5TW8Tqd+JQU5f2VqFiYGhpm2K60iRHsTI3yPD4qvLKVWNSqVQvnzp3LMrFQqVQQkbfal42NDQwNDREREaFRHhERkav9I0qWLIlKlSohJCQky3VMTExgYvL6TkREREVdZk2aYmJilPfe3t4oXrx4fodFRNm0PfQRloZk3ayxy+nrmZaPdXPAuEqOeRUW6YFsJRZz5sxBbGxslsurVKmC27dvv9W+jI2NUatWLfj7+6NTp04AgNTUVPj7+2PkyJHZCeu1oqOjcfPmTXz00Ue5tk8iIiKiwqqPsy1a25XM9nalTVhbQa+XrcSiSpUqr11uZGSEcuXKvfX+xo0bh/79+6N27dqoW7culi1bhpiYGGWUqH79+qFMmTLw8/MDkNaH4+rVq8r7+/fvIzAwEBYWFnBzcwMAjB8/Hh988AHKlSuHBw8ewNfXF4aGhujVq1d2DpWIiIhIL9mZskkT5Q2dTvDQo0cPPHr0CDNnzkR4eDi8vb1x5MgRpUN3aGgoDAwMlPUfPHiAGjVqKD8vXrwYixcvRtOmTXHs2DEAwL1799CrVy88fvwYtra2aNy4MU6fPg1bW9t8PTYiIiIioqLkrROLdu3aYdasWahfv/5r13vx4gW++eYbWFhYYMSIEW/c78iRI7Ns+qROFtRcXFze2Idj165db/ydRERERESUu946sejWrRu6du0KKysrfPDBB6hdu7YyV8TTp09x9epVBAQE4KeffkKHDh2waNGivIybiIiIiIgKkLdOLAYNGoS+fftiz5492L17N9auXYvnz58DSBsNqkqVKmjbti3++ecfeHh45FnARRknpyIiIiKigipbfSxMTEzQt29f9O3bFwDw/PlzxMXFwdraGkZG7ASU1zg5FREREREVVFp13raysoKVlVVuxUJvwMmpiIiIiHIPW4PkLp2OCkXZw8mpiIiIiHIPW4PkLiYWRERERFQksTVI7mJiQUREpMfY1IMoa2wNkruynVikpKTg5MmTqF69OkqWLJkHIREREVFuYVMPIsov2U4sDA0N0aZNGwQFBTGxICIiKuDY1IOI8kuOmkJ5enri1q1bcHV1ze14iIiIKBexqQflt6QXj5H04rFGWUpSgvI+NiwEhkYmGbYzKmENoxLWeR4f5Z0cJRbz5s3D+PHjMXfuXNSqVSvDBcnS0jJXgiMiIiKiwiXynx8RfmxrlstDNozJtNy+WT84tOifR1FRfshRYvHee+8BAHx8fKBSqZRyEYFKpUJKSkruREdEREREhYpNnfdhVblBtrdjbUXhl6PE4o8//sjtOIiIiIhIDxTUJk2hoaGIjIx843pxcXHK+8DAwEz7IL3KxsYGzs7OWsWnD3KUWDRt2jS34yAiIiIiyhOhoaHwcHdHbHx8trZTD3LwJuampggKDi7yyUWO57F49uwZNmzYgKCgIABA1apVMXDgQFhZWeVacEREpFvqa3xWcvJkD+DTPSLKX5GRkYiNj8dyLxe4Wbz+OhWfkooup4MBAPvru8PU0OC164dEx2HUhTuIjIws8te1HCUWZ8+eRdu2bWFmZoa6desCAJYsWYL58+fj119/Rc2aNXM1yKIoL6vrAH6pE9HrPUxIAlQG6Nu371tv87ZP9gDA1MwcwdeCeB0ionzlZmGGalbmr10nNvllX+GqlmYwL2aY12HpjRwlFmPHjoWPjw/WrVuHYsXSdpGcnIxPPvkEY8aMwZ9//pmrQRY1eV1dB7DKjoheLyopGZBUlOs6Baa2WV8nUpMScOP/R3ipOGgZDDIZQvJV8Y9CcXefH5/uERHpmRzXWKRPKgCgWLFimDhxImrXrp1rwRVVeVldB7DKjojenqmtM8wdK2W5PCXxZa2pmYMbDI3frtaUiIj0T44SC0tLS4SGhqJy5coa5f/99x9KlCiRK4ERq+uIiIiIqPB48+PtTPTo0QODBg3C7t278d9//+G///7Drl278Mknn6BXr165HSMRERERERVwOaqxWLx4MVQqFfr164fk5GQAgJGREYYNG4YFCxbkaoBERERERHkhIj4pbbCKdOLTTfR8JSoWpoYZW4OUNjGCnalRnsdX2GQ7sUhJScHp06cxa9Ys+Pn54ebNmwCAChUqwNz89c12iIiIiIgKiu2hj7A0JCzL5V1OX8+0fKybA8ZVcsyrsAqtbCcWhoaGaNOmDYKCguDq6opq1arlRVxERERERHmqj7MtWtuVzPZ2pU1YW5GZHDWF8vT0xK1bt+Dq6prb8RARERER5Qs7UzZpyk056rw9b948jB8/Hj/++CPCwsIQFRWl8SIiIiIioqIlRzUW7733HgDAx8cHKpVKKRcRqFQqpKTr9EJERERERPovR4nFH3/8kdtxEBERERFRIZbtxCIpKQlz5szB6tWrUbFixbyIiYiIiIiICpls97EwMjLCxYsX8yIWIiIiIiIqpHLUFKpv377YsGEDJ8PLZ5zEhYiIiIgKqhwlFsnJydi4cSOOHj2KWrVqoXjx4hrLlyxZkivBkSZO4kJEREREBVWOEovLly+jZs2aAIDr1zVvZtOPEkW5i5O4EBEREVFBxVGhChFO4kJERAVJWFgYwsKyrknPioODAxwcHPIgIiLSpRwlFq/z8OFDlC5dOrd3S0RERAXMmjVrMHv27Gxv5+vri1mzZuV+QESkU9lKLMzNzXH37l3Y2toCADp06ID169crTx0iIiLg6OjICfKIiIiKgKFDh8LHx0ejLC4uDo0bNwYABAQEwMzMLMN2rK0g0k/ZSizi4+MhIsrPf/75J+Li4jTWSb+ciIiI9FdmTZpiYmKU997e3hkGeCEi/ZXrTaHYeZuISD8lvXiMpBePNcpSkhKU97FhITA0MsmwnVEJaxiVsM7z+IiISLdyPbEgIiL9FPnPjwg/tjXL5SEbxmRabt+sHxxa9M+jqIiIqKDIVmKhUqk0aiRe/ZmIiPSXTZ33YVW5Qba3Y20FEVHRkK3EQkRQqVIlJZmIjo5GjRo1YGBgoCwnIiL9xCZNRET0OtlKLDZt2pRXcRAREVEuCA0NRWRk5GvXST/wSmBgYKYjN2XGxsYGzs7OWsVHRPorW4lF//5sI0tERFRQhYaGwsPdHbHx8W+9jXpo2LdhbmqKoOBgJhdElCl23iYiItITkZGRiI2Px3IvF7hZZF0LEZ+Sii6ngwEA++u7w9TQ4I37DomOw6gLdxAZGcnEgogyxcSCiIhIz7hZmKGalXmWy2OTX05kW9XSDObFDPMjLCLSc29+REFERERERPQGTCyIiIiIiEhrTCyIiIiIiEhrOepjkZKSgs2bN8Pf3x8PHz5EamqqxvLff/89V4IjIiIiIiqMwsLCEBYWlu3tHBwc4ODgkAcR5b0cJRajR4/G5s2b0aFDB3h6enL2bSIiIiKidNasWYPZs2dneztfX1/MmjUr9wPKBzlKLHbt2oXvvvsO7733Xm7HQ0RERERU6A0dOhQ+Pj4aZXFxccrcMQEBAZlOTllYayuAHCYWxsbGcHNzy+1YiIiIiIj0QmZNmmJiYpT33t7eKF68eH6HladylFh89tln+Oqrr7BixQo2gyIiIipCgoKCXrs8Li5OeR8YGJjpE9nM2NjYcOI9okIuR4lFQEAA/vjjD/z888+oWrUqjIyMNJbv378/V4IjIiKiguFhQhKgMkDfvn3feht1k4+3YWpmjuBrQUwuqNB6U9IN6H/inaPEomTJkujcuXNux0JEREQFVFRSMiCpKNd1Ckxts77BSU1KwI0NYwAAFQctg4GRyRv3Hf8oFHf3+SEyMrJQ3DwRpZeTpBvQz8Q7R4nFpk2bcjsOIiIiKgRMbZ1h7lgpy+UpiS+fyJo5uMHQ+O2eyBIVVm+bdAP6n3jnKLEgIiIiIqKX3pR0A/qfeOd45u29e/eie/fuqF+/PmrWrKnxyo6VK1fCxcUFpqamqFevHs6cOZPluleuXEHXrl3h4uIClUqFZcuWab1PIiIiIiLSXo4Si+XLl2PAgAGws7PDv//+i7p168La2hq3bt1C+/bt33o/u3fvxrhx4+Dr64vz58/Dy8sLbdu2xcOHDzNdPzY2FuXLl8eCBQtgb2+fK/skIiIiIsptSS8eI/bBdc1XWIiyPDYsJOPyB9eR9OKxDqPWTo6aQn3zzTdYu3YtevXqhc2bN2PixIkoX748Zs6ciSdPnrz1fpYsWYLBgwdjwIABAIDVq1fj8OHD2LhxIyZPnpxh/Tp16qBOnToAkOnynOyTiIiIiCi3Rf7zI8KPbc1yecj/97V4lX2zfnBo0T+PospbOUosQkND0bBhQwCAmZkZXrx4AQD46KOPUL9+faxYseKN+0hMTMS5c+cwZcoUpczAwACtWrXCqVOnchJWjveZkJCAhIQE5eeoqKgc/X4iIiIiIgCwqfM+rCo3yPZ2RiWs8yCa/JGjxMLe3h5PnjxBuXLl4OzsjNOnT8PLywu3b9+GiLzVPiIjI5GSkgI7OzuNcjs7O1y7di0nYeV4n35+fpg9e3aOficRERER0auMSlgX6iQhJ3LUx6JFixY4dOgQAGDAgAEYO3YsWrdujR49ehTK+S2mTJmC58+fK6///vtP1yERERERERUqOaqxWLt2LVJTUwEAI0aMgLW1Nf766y/4+Phg6NChb7UPGxsbGBoaIiIiQqM8IiIiy47ZebVPExMTmJi8eRxhIiIiIiLKXI4SCwMDAxgYvKzs6NmzJ3r27JmtfRgbG6NWrVrw9/dHp06dAACpqanw9/fHyJEjcxJWnuyzqAgLC0NYWFi2t3NwcICDg0MeREREREREhUmOJ8g7ceIE1qxZg5s3b2Lv3r0oU6YMvv32W7i6ur71FOXjxo1D//79Ubt2bdStWxfLli1DTEyMMqJTv379UKZMGfj5+QFI65x99epV5f39+/cRGBgICwsLuLm5vdU+KXNr1qzJUT8TX19fzJo1K/cDIiIiIqJCJUeJxb59+/DRRx+hT58++Pfff5URlZ4/f47PP/8cP/3001vtp0ePHnj06BFmzpyJ8PBweHt748iRI0rn69DQUI2akQcPHqBGjRrKz4sXL8bixYvRtGlTHDt27K32SZkbOnQofHx8NMri4uKUJDEgIABmZhlnh2RtBREREREBOUws5s2bh9WrV6Nfv37YtWuXUt6oUSPMmzcvW/saOXJkls2U1MmCmouLy1uNOvW6fVLmMmvSFBMTo7z39vZG8eLF8zssIiIiIiokcpRYBAcHo0mTJhnKrays8OzZM21jIiIi0hr7jhER5a8cz2MREhICFxcXjfKAgACUL18+N+IiIiLSCvuOERHlrxwlFoMHD8bo0aOxceNGqFQqPHjwAKdOncL48eMxY8aM3I6RiIgo29h3jIgof+UosZg8eTJSU1PRsmVLxMbGokmTJjAxMcH48ePx6aef5naMRERE2ca+Y3kv6cVjJL14rFGWkpSgvI8NC4GhUcZ5oorijMRERUGOEguVSoVp06ZhwoQJCAkJQXR0NKpUqQILC4vcjo+IiIgKqMh/fkT4sa1ZLg/ZMCbTcvtm/eDQon8eRUVEupLjeSyAtAnpqlSpkluxEBERUSFiU+d9WFVukO3tWFtBpJ+ylVgMHDjwrdbbuHFjjoIhIiKiwoNNmogovWwlFps3b0a5cuVQo0aNt5pPggq2oKCg1y6Pi4tT3gcGBmbayTEzNjY2cHZ21io2IiLKHRHxSXiYkKRRFp+Sory/EhULU0PDDNuVNjGCnalRnsdHRPojW4nFsGHDsHPnTty+fRsDBgxA37598c477+RVbJRHHiYkASoD9O3b9623UY+i8jZMzcwRfC2IyQURUQGwPfQRloZkPZ9Hl9PXMy0f6+aAcZUc8yosItJD2UosVq5ciSVLlmD//v3YuHEjpkyZgg4dOmDQoEFo06YNVCpVXsVJuSgqKRmQVJTrOgWmtlnf/KcmJeDG/3e8qzhoGQwyGdnjVfGPQnF3nx8iIyOZWBBRvgkNDUVkZOQb18tJTWxhr4Xt42yL1nYls71daRPWVhBR9mS787aJiQl69eqFXr164e7du9i8eTOGDx+O5ORkXLlyhSNDFSKmts4wd6yU5fKUxJdfwGYObjA0frumUERE+Sk0NBQe7u6IjY/P1nZvWxNrbmqKoODgQptc2JmySRMR5Q+tRoUyMDCASqWCiCAlXXtNIiKi/BIZGYnY+Hgs93KBm8XrH4DEp6Siy+lgAMD++u4wNTR47foh0XEYdeEOa2GJiN5CthOLhIQEpSlUQEAA3n//faxYsQLt2rWDgcHrL9BERER5xc3CDNWszF+7Tmzyy4dgVS3NYF4sY6dlIiLKmWwlFsOHD8euXbvg5OSEgQMHYufOnbCxscmr2IiIiIiIqJDIVmKxevVqODs7o3z58jh+/DiOHz+e6Xr79+/PleCIiIiIiKhwyFZi0a9fP478REREREREGWR7gjwiIiIiIqJXaTUqFBEREREBYWFhCAvLeiLCrDg4OMDBwSEPIiLKf0wsiIhIL0XEJ+FhQpJGWXy6odGvRMXC1DDjqFClTTjvA2XfmjVrMHv27Gxv5+vri1mzZuV+QEQ6wMSCAABJLx4j6cVjjbKUpATlfWxYCAwzmXnbqIQ1jEpY53l8RETZtT30EZaGZP0Eucvp65mWj3VzwLhKjnkVFumpoUOHwsfHR6MsLi5OmYgxICAg05neWVtB+oSJBQEAIv/5EeHHtma5PGTDmEzL7Zv1g0OL/nkUFRFRzvVxtkVru5LZ3q60CWsrKPsya9IUExOjvPf29kbx4sXzOyyifMXEggAANnXeh1XlBtnejrUVRFRQ2ZmySRMRUX5iYkEA2KSJiIiIiLRjoOsAiIiIiIio8GNiQUREREREWmNTKCIiomzinAVERBkxsSAiIsomzllARJQREwsiIqJs4pwFRVtoaCgiIyPfuF5cXJzyPjAwMNPPRGZsbGzg7Oyc4/iIdIWJBRERUTZxzoKiKzQ0FO6VPRAfF5ut7dRJ59swNTNH8LUgJhdU6DCxICIiInpLkZGRiI+LRbmuU2Bq+/ob/9SkBNz4/wlmKw5aBgMjkzfuP/5RKO7u80NkZCQTCyp0mFgQERERZZOprTPMHSu9dp2UxJdNocwc3GBo/HZNoYgKKw43S0REREREWmNiQUREREREWmNTKCIiojcICgp64zocAajg4/wjRHmLiQUREVEWHiYkASoD9O3bN1vbcQSggonzjxDlLSYWREREWYhKSgYklSMA6QnOP0KUt5hYEBERvQFHANIPeTn/SNKLx0h68VijLCUpQXkfGxYCw0ySTaMS1jAqYZ2j30lU0DCxICIiItJS5D8/IvzY1iyXh/x/bdar7Jv1g0OL/nkUFVH+YmJBREREpCWbOu/DqnKDbG/H2grSJ0wsiIiIiLTEJk1EnMeCiIiIiIhyAWssiIiIsokddQu+0NBQREZGvnG97M4/8jZzmhAVVUwsiIiIsokddQu20NBQeLi7IzY+PlvbZWf+ESLKiIkFERFRNrGjbsEWGRmJ2Ph4LPdygZvF62sg4lNS0eV0MABgf313mBq+vpX4Hw+fYdGN7M/eTVQUMLEgIiLKJjZpKhzcLMxQzcr8tevEJqco76tamsG8mOFr1w+JjnvtcqKijJ23iYiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIaxwVioiIiIqEiPgkPExI0iiLT3k5KtSVqFiYGmYcFaq0iRHsTI3yPD6iwo6JBRERERUJ20MfYWlI1nNQdDl9PdPysW4OGFfJMa/CItIbTCyIiIioSOjjbIvWdiWzvV1pE9ZWEL0NJhZERERUJNiZskkTUV5i520iIiIiItIaEwsiIiIiItJagUgsVq5cCRcXF5iamqJevXo4c+bMa9ffs2cPKleuDFNTU1SrVg0//fSTxvKPP/4YKpVK49WuXbu8PAQiIiIioiJN54nF7t27MW7cOPj6+uL8+fPw8vJC27Zt8fDhw0zX/+uvv9CrVy8MGjQI//77Lzp16oROnTrh8uXLGuu1a9cOYWFhymvnzp35cThEREREREWSzhOLJUuWYPDgwRgwYACqVKmC1atXw9zcHBs3bsx0/a+++grt2rXDhAkT4OHhgblz56JmzZpYsWKFxnomJiawt7dXXqVKlcqPwyEiIiIiKpJ0mlgkJibi3LlzaNWqlVJmYGCAVq1a4dSpU5luc+rUKY31AaBt27YZ1j927BhKly4Nd3d3DBs2DI8fP84yjoSEBERFRWm8iIiIiIjo7ek0sYiMjERKSgrs7Ow0yu3s7BAeHp7pNuHh4W9cv127dti6dSv8/f3xxRdf4Pjx42jfvj1S0s2umZ6fnx+srKyUl5OTk5ZHRkRERERUtOjlPBY9e/ZU3lerVg3Vq1dHhQoVcOzYMbRs2TLD+lOmTMG4ceOUn6OiophcEBERERFlg05rLGxsbGBoaIiIiAiN8oiICNjb22e6jb29fbbWB4Dy5cvDxsYGISEhmS43MTGBpaWlxouIiIiIiN6eThMLY2Nj1KpVC/7+/kpZamoq/P390aBBg0y3adCggcb6APDbb79luT4A3Lt3D48fP4aDg0PuBE5ERERERBp0PirUuHHjsG7dOmzZsgVBQUEYNmwYYmJiMGDAAABAv379MGXKFGX90aNH48iRI/jyyy9x7do1zJo1C2fPnsXIkSMBANHR0ZgwYQJOnz6NO3fuwN/fHx07doSbmxvatm2rk2MkIiIiItJ3Ou9j0aNHDzx69AgzZ85EeHg4vL29ceTIEaWDdmhoKAwMXuY/DRs2xI4dOzB9+nRMnToVFStWxMGDB+Hp6QkAMDQ0xMWLF7FlyxY8e/YMjo6OaNOmDebOnQsTExOdHCMRERERkb7TeWIBACNHjlRqHF517NixDGXdunVDt27dMl3fzMwMv/zyS26GR0REREREb6DzplBERERERFT4MbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtFdN1AEREuSEsLAxhYWHZ3s7BwQEODg55EBEREVHRwsSCiPTCmjVrMHv27Gxv5+vri1mzZuV+QEREREUMEwsi0gtDhw6Fj4+PRllcXBwaN24MAAgICICZmVmG7VhbQURElDuYWBCRXsisSVNMTIzy3tvbG8WLF8/vsIiIiIoMdt4mIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtcbhZIip0QkNDERkZ+cb14uLilPeBgYGZzmPxKhsbGzg7O2sVHxERUVHExIKICpXQ0FB4uLsjNj4+W9upJ8p7E3NTUwQFBzO5ICIiyiYmFkSFWFhYGMLCwrK9XWaTyeXnvrURGRmJ2Ph4LPdygZvF62sg4lNS0eV0MABgf313mBq+vvVnSHQcRl24g8jISCYWRERE2cTEgqgQW7NmDWbPnp3t7Xx9fTFr1iyd7Ts3uFmYoZqV+WvXiU1OUd5XtTSDeTHDvA6LiIioyGJiQVSIDR06FD4+PhplcXFxSrOfgICATPsVvE2NQl7um4iIiPQPEwuiQiyzZkcxMTHKe29vbxQvXrzA7ZuIiIj0DxMLokIiL0dCAoCEhASYmJjkyb450hIREZH+Y2JBVAjk9UhIAACVASCpebJvUzNzBF8LYnJBRESkx5hYEBUCeTkSEgD88fAZFt0IQ7muU2Bqm/XNf2pSAm5sGAMAqDhoGQyMXl/DAQDxj0Jxd59foR5pqaCOkEVERFSQMLEgKkReHQkpIj4JDxOSXllLsnj/UmkTI9iZGik/h0SnNXEytXWGuWOlLH9/SuLLplBmDm4wNH67plCFXUEfIYuIiKggYGJBVIhtD32EpSFZP0nvcvp6puVj3RwwrpLja/ed9OIxkl481ihLSUpQ3seGhcAwkxoLoxLWMCph/dp9FzYcIYuIiOjNmFgQFWJ9nG3R2q5ktrcrbWL0xnUi//kR4ce2Zrk85P+bRL3Kvlk/OLTon+2YtJVZ7U18yst5LK5ExcLUMOM8Fq/W3mSGI2QRERG9GRMLokLMzvTNN8U5ZVPnfVhVbpDt7XRVW5GbtTdBQUFv/H05GSGLo2MREZE+Y2JBRJkqbE2acqP25mFCEqAyQN++fbO1j7cdIYujYxERkT5jYkFEeiE3am+ikpIBSX3j6FhA9kfI0ofRsYiIiF6HiQUR0SveNDoWUHRHyCIiIsrKmwe4zwcrV66Ei4sLTE1NUa9ePZw5c+a16+/ZsweVK1eGqakpqlWrhp9++kljuYhg5syZcHBwgJmZGVq1aoUbN27k5SEQkR5LevEYsQ+ua77CQpTlsWEhGZc/uJ5hVC0iIiJ9pvMai927d2PcuHFYvXo16tWrh2XLlqFt27YIDg5G6dKlM6z/119/oVevXvDz88P777+PHTt2oFOnTjh//jw8PT0BAAsXLsTy5cuxZcsWuLq6YsaMGWjbti2uXr0KU1PT/D5EIirkCtsIWURERLqg88RiyZIlGDx4MAYMGAAAWL16NQ4fPoyNGzdi8uTJGdb/6quv0K5dO0yYMAEAMHfuXPz2229YsWIFVq9eDRHBsmXLMH36dHTs2BEAsHXrVtjZ2eHgwYPo2bNn/h0cEemFwjZCFhERkS7oNLFITEzEuXPnMGXKFKXMwMAArVq1wqlTpzLd5tSpUxg3bpxGWdu2bXHw4EEAwO3btxEeHo5WrVopy62srFCvXj2cOnUq08QiISEBCQkvJ/56/vw5ACAqKirHx6aN6OhoAMCl5zGITU55w9rZF/IirW147IMbGu3Ec0NC5D0AaceQG+cvL88Fz8NLPBdpcvs8pDy+h/jHacdfmM4DwM+EWl6eB4DnQo3n4SWeizQ8Dy/l9rnIqRIlSkClUr1+JdGh+/fvCwD566+/NMonTJggdevWzXQbIyMj2bFjh0bZypUrpXTp0iIicvLkSQEgDx480FinW7du0r1790z36evrKwD44osvvvjiiy+++OKLr0xez58/f+O9vc6bQhUEU6ZM0agFSU1NxZMnT2Btbf3mzKwQioqKgpOTE/777z9YWlrqOhyd4Xl4ieciDc/DSzwXaXgeXuK5SMPz8BLPRZqich5KlCjxxnV0mljY2NjA0NAQERERGuURERGwt7fPdBt7e/vXrq/+NyIiAg4ODhrreHt7Z7pPExMTmJhojkFfsmTJ7BxKoWRpaanXfwBvi+fhJZ6LNDwPL/FcpOF5eInnIg3Pw0s8F2l4HnQ83KyxsTFq1aoFf39/pSw1NRX+/v5o0CDzjpINGjTQWB8AfvvtN2V9V1dX2Nvba6wTFRWFv//+O8t9EhERERGRdnTeFGrcuHHo378/ateujbp162LZsmWIiYlRRonq168fypQpAz8/PwDA6NGj0bRpU3z55Zfo0KEDdu3ahbNnz2Lt2rUAAJVKhTFjxmDevHmoWLGiMtyso6MjOnXqpKvDJCIiIiLSazpPLHr06IFHjx5h5syZCA8Ph7e3N44cOQI7OzsAQGhoKAwMXlasNGzYEDt27MD06dMxdepUVKxYEQcPHlTmsACAiRMnIiYmBkOGDMGzZ8/QuHFjHDlyhHNY/D8TExP4+vpmaP5V1PA8vMRzkYbn4SWeizQ8Dy/xXKTheXiJ5yINz8NLKhERXQdBRERERESFm077WBARERERkX5gYkFERERERFpjYkFERERERFpjYkGkx9iFioiIiPILEwsiPXX79m3s2bMHABMMIiIiynscFYr0lohApVLpOgyduHr1KmrWrAlXV1cEBQXpOpwCIyEhgcMBEr2iKF8riV6VmpqqMc0BADx8+BClS5fWUUSFC2ssSK9cvHgRM2fOBIAi+0UZGBiIOnXqwM3NDUZGRkhISNB1SDoTGhqK/fv3AwB2796NadOmIT4+XsdRFQxF+ZlSUT729BITEwGk3UgVZa9+Hor6+SjqDAwMcOPGDXzzzTcAgD179mDw4MEIDw/XcWSFAxMLPVUUvzgvXLiA+vXr6zoMnbpw4QIaNmyIGTNmYOfOnbh58yZCQ0N1HZZOxMfHY86cOfDz88P48ePRq1cvVK1atchOlPnqzZI68S5q14rU1FTl2AMDA/Hw4UMdR6Qb165dw5AhQ9CqVSvMmjULwcHBug5JJ9Sfh+joaMTExCA6OjrD0+qipqhdE16VkpKC77//HiNHjsSgQYPQo0cPdOnSBfb29roOrVAo2n89eiD9zcKyZcvg6+sLIO2moShdHNQ31GPHjsWcOXN0HY5OBAYGolGjRhgzZgwmT54MEYGhoWGRfUJvamqKSZMmwdTUFEuWLMHw4cMxYMAAAEXviWT6qv1NmzZh4sSJ6NevH44ePVqkrhPpz8P06dMxevRoHD9+vMj9jVy4cAENGjSAoaEhHBwc8PPPP2PXrl0AitZNpfrzcOnSJbRs2RKNGzeGm5sbFixYgEuXLuk6PJ1QN4sLCAjAnDlzMGrUKOzbt0/XYeUrQ0NDjBw5Eh9++CE2bdqE3r17o3///gCK3ndHTjCxKMTSf0n+/fffuHDhAubOnatU3xWV5OLSpUto2LAhxo8fj/nz5yvlmzdvVjov67uQkBA0atQIn376KT7//HMAgIuLC6ytrXH//n0ARfOCaGdnh+LFi6N27dq4cuUKdu7cCSCtqrsonQ/1dWLixImYOXMmHj9+jFKlSqFNmzZYvnx5kWkulz6pWLt2LaZMmYI2bdoUqVqsixcvolGjRhgxYgQ2bNiAb7/9Fo0aNUJQUBDi4+MRGRmp6xDzjYGBAe7evYvmzZujbt26mDlzJkaMGIFNmzZhxowZ+O2333QdYr5TqVTYv38/OnbsiAsXLiAlJQXdunXDZ599hufPn+s6vHxjaGiId955B++//z5++OEHLFmyBEDaZyYlJUXH0RVwQoXepEmTpF69etKrVy9xdXUVExMTWbBggbI8NTVVh9HlrcjISKlSpYpUr15do3z+/PlSsmRJOX36tI4iy18//vijrFmzRqMsLi5OypYtK998842IaH4Ojh8/Lo8ePcrXGPPLq5/3pKQkuXLlinTv3l0aNWokO3bs0Fj+4sWL/AxPZ3766SdxcnKSs2fPiojIyZMnRaVSyfbt25V19PlaoXb+/HmpWLGinDhxQkREnj17JkFBQbJ+/XrleqGv5+HBgweiUqlkwIABGuUjRowQDw8PcXd3l0qVKsnGjRt1FGH+Uf8fb9iwQerXr6+x7PDhw9K2bVtp3bq1HD9+XBfh6cyNGzfE1dVVVq1aJSIi0dHRYmZmJhMnTtRxZHkvs7/7mJgYmTVrllhYWMiXX36psezWrVv5FVqhwsSikNu3b5+UKFFCAgICJDk5WW7evCnTpk2TEiVKyMKFC5X19PWLMjw8XMaPHy/VqlWT2bNni4jIokWLxNraWn755ZdMt0lJScnPEHUiOTlZUlNTpVatWuLn56exbPLkyeLm5iZhYWE6ii7vqD/np0+flnXr1omvr68EBweLiMjVq1elR48e0qRJE+VmeubMmTJhwgRJSkrSWcz5ZevWrdK5c2cREdm9e7dYWFgoNw9Pnz6VO3fu6DK8PPPq33twcLBUqVJFfvjhBzl79qwMGzZMKlWqJJUqVRJTU1P5/fffdRRp3nv+/Lk0bNhQKleuLJcuXRIRkS+++ELMzMxk7dq1smbNGhkwYICoVKosr5/6ZvPmzVKuXDm5d++eRvnRo0elefPmMnDgQImMjNRRdPnv33//lUaNGomIyM2bN6VMmTIyZMgQZbn6eqpv1N8df/zxh3z++efy0UcfyS+//CLh4eGSkJAgs2fPFktLS1m8eLGIiMyaNUu6dOlSZB5MZQcTi0Ju0aJFUrt2bY2y+/fvy4gRI0SlUilPq/XZgwcPxNfXV6pUqSJNmzYVGxsb+eOPPzKsd+DAgXyPLT+kv3F69SaqY8eOMnDgQOXnmTNnipmZmZw5cybf4stve/fuFVtbW2nTpo00a9ZMI8k+f/68fPTRR+Lq6iqNGjUSU1NTvTwXmSXPa9eulQYNGsju3bvF0tJS49qwdetW6datmzx9+jQfo8x76c/DmTNn5O7du/Lw4UNp2bKl1KlTR4yNjWX48OGyf/9++e+//6Ru3bqycuVKHUacNxISEpT3L168kObNm0ulSpVk9OjRYmtrq5FEXL16Vezs7GTmzJm6CDXf/fbbb2JtbS3ff/+9iKQ9lFHbtWuXmJmZycmTJ3UVXr4LCAgQFxcXOX78uLi6usqQIUOUc3Ly5Elp166d3j6pVz+oHTx4sHTu3Fm8vLyka9euEh0dLREREbJgwQJRqVRSq1YtsbCwUGp/SRMTi0Ju7969UqZMGQkMDNQo9/f3FyMjIzE3N89QfacvUlNTlacM9+/fF19fX3F0dJTevXsr66gviDNnzhSVSiW3b9/WRah5Qn3scXFxGjcOIi9vqD766CNp3769iIjMmDFDTE1N9fpiePHiRXF0dJRNmzaJSNoNlUqlknnz5inrXL9+XbZs2SKTJk2Sa9eu6SjSvJP+Zvro0aNy4cIFERG5du2aNGnSRIyMjDRqM2NiYsTHx0cGDhyoVzWb6Y9l8uTJUrduXVm/fr2IpJ2Ln376SY4fP66cr+TkZKldu7Zs2LBBJ/HmlRs3bsiIESPk6NGjSs3cixcvpEOHDqJSqWT16tUi8vJzExUVJXXq1FFqs/SF+viSkpIkPj5eY9nAgQPlnXfekYsXL4qIZnJRvXp1mT59ev4Fmo/UfyOXLl2Ss2fPSmJiokRHR0vnzp2lePHi0r17d431J0+eLE2bNpWHDx/qItw8dePGDXF3d5d169aJSFoTSVNTU5k6daqyTnJysgQEBMjSpUslJCREV6EWeEwsComsmu9cv35datasKaNGjZLr168r5RcvXpS+ffvKnDlzpFq1avLvv//mU6R568GDB3Lx4sUMXwwiImFhYeLr6yseHh7i6+urlE+fPl3Mzc316oZa/YXw888/S4cOHaRhw4bSs2dPuXfvnsYN1eeffy5dunSRGTNmiImJiV6dg8z4+/tLixYtREQkKChInJ2d5ZNPPlGW62Pzr/RevZmuUKGC7Ny5U6KiokQkrdmLh4eHfPLJJ3LmzBn5+eefpV27dlK9enXlplOfkgsRkXnz5omNjY38/vvv8uzZswzL4+Li5O7du9K+fXupVauWxk1lYXfhwgVxdnaWDz/8UDZv3qyx7NmzZ9KmTRspX768xoOp6dOni7Ozs149hFF/f165ckV69eolDRo0kP/973/KOUlOTpY2bdpI6dKlNfrlJSYmSsOGDfWyFkv9d75//35xdHSUpUuXKs3BNm/eLFWrVpWePXvKmTNn5NSpUzJ+/HixsrJSkq/CSv1ZePVhXGBgoFSrVk2SkpLk+vXr4uTkJIMHD1aWnzlzhs2e3hITi0IgfVKxcuVKGTVqlLRr10727t0rMTExsnfvXqlUqZIMGDBA9u7dKxcvXpR27drJgAED5J9//pESJUroRTOgixcvipubm8yaNUtu3ryplK9atUqpxr579674+vpK5cqV5YsvvpDPP/9cb5/SHzx4UEqUKCFjx46VPXv2SIUKFaRly5Zy8uRJ5TPz7bffikqlkuLFi+vdObh27ZosW7ZMYmJilLKNGzeKl5eXPHz4UFxcXGTIkCHKuTh8+LAMGzYs05tLfTNnzhyxs7OTY8eOSVxcnMayZcuWSePGjaVYsWJSr149+eCDDyQxMVFERK9uqlNTU+XBgwdSv3592bZtW4ZlImnX1iVLlkibNm2kUaNGenUerl+/Lvb29jJp0qQMnwG16OhoadKkibi4uMjNmzdl9uzZYmpqKufOncvnaPNecHCwlCxZUvr16ydTp06V5s2bS9WqVZWbx6ioKOnYsaNYWFjIzJkz5euvv5bPPvtMSpYsqfHQTp/8/PPPYmFhId98802G6+KmTZukRYsWYmhoKNWrV5c6depkaBlRWN2+fVvGjBmj8Tk/fvy41K5dW+7cuSMuLi7yySefKN8dp0+flhEjRujt5yC3MbEoRCZOnCi2trYyd+5c+eSTT8TV1VUGDRokImltpD/44AMxMTGRihUrSo0aNSQxMVHi4+OlevXq8tNPP+k4eu3cunVL7OzsZMqUKRmeOvfr10+sra2V9uH379+XOXPmiJWVlRgYGOjdDbVI2k1DtWrVZPny5SKS9vTRyclJLCwsxMPDQ0kuAgICxNPTU4KCgnQcce7buHGjqFQq+eKLLyQ2NlZE0kYJq1OnjhQrVkz521DfRE6YMEHatm0rT5480VnM+SE8PFzq1KkjW7ZsEZG0Wr6//vpLxo4dK2vXrlXWu3Dhgjx+/Fg5P/rYgT08PFzKli0re/fuFRHN2pj4+Hh59uyZhIaGytatW5VkQl/Ow2effSbdu3fXSJKePHkily9fll9//VWuXLkiIiKxsbHSokULUalUYm5urpdJhUhast2pUyfl5ydPnsiqVavE2dlZ+vbtq5TPnTtXmjdvLlWqVJGWLVvqTW3/q+Lj46VLly4yatQoEUlLMoODg2Xu3LmyevVq5Zp67tw5efDggV5dNw8cOCClS5eWoUOHKk1FRUSqVq0qKpVKPv30U431J0yYII0bN9bLJmB5gYlFIfH7779LhQoVlJtkf39/KVasmHz77bfKOvHx8RIUFCRXrlxRvkA/++wzKV++vNy/f18nceeWZcuWSY0aNTJdFh0dLR06dJDdu3crZffu3ZMFCxbo7QgWgYGBMn/+fElISJD79+9L+fLlZeTIkfL8+XNxdXWV5s2bK8Np6tMXwqtWr14tKpVK/Pz8JDY2VhITE2XJkiXi4eEhw4YNk7i4OLl06ZJMmTJFSpYsqYyEo88ePnwo9erVky+++EL2798vvXv3lgYNGkjNmjWlYsWKSpvh9DfZ+jpSWlhYmDg4OMj8+fNFRLMm4syZM/L5559r1HjpQ02FSNr/7QcffCBjxoxRyg4cOCB9+vQRS0tLMTU1FW9vb9m5c6eIpD2YGDhwoN48kc7MwIEDMwwrGx0dLZs3bxY3NzeZMmWKUv78+XOJjY3V66YvycnJ0q1bN/nf//4nZ86ckeHDh0vr1q3FyclJatSoIT169MjQXKgwe7WJ5549e6Ry5cryySefyPnz50UkrXO6u7u7tGzZUq5cuSL+/v4yfvx4sbS0LPRNwPITE4sCSl0lr3bo0CHlorhr1y4pUaKEMqpLVFSUHD9+XHnCIJI2ZFrv3r3F1tZW+aMpzDZs2CDW1tayceNGiYiIkGvXrsmFCxfk/PnzcuTIEWnSpImMGzdObty4IWfOnJGkpCS9vVkSSftSUNdCfPzxx9KzZ0/lBsnHx0dUKpXUrl07074o+iD9DeDKlStFpVIpN4/Pnj2TefPmibu7u5ibm4unp6d4enrqxd/Bq7L6jA8fPlyqV68uxYoVk4kTJ8rvv/8uqamp0r17d5kwYUI+R5n3Xve3vnjxYjEwMFBuokXSHsK0bdtWevfurXd9StTGjx8vJUuWlP3798uYMWOkTJkyMmjQIPnxxx/l8uXL0q5dO43rhj5dL9P/n6proLZv3y61a9eWU6dOaaz75MkTmTp1qjRs2FBCQ0NFRL/Oxev4+fmJh4eHmJqaSvfu3WXXrl0SHx8v06dPl44dO+o6vFzxuocFO3bskMqVK8ugQYPk8uXLIpL20LZatWpib28v7u7u0rBhQ72ttcorxXQ9QR9ldPz4cdy4cQONGzdG5cqVAQAxMTEwMjLCb7/9hiFDhsDPzw/Dhg0DAPj7++O3335DxYoVYWZmBgCoUqUKHBwccPz4cXh4eOjsWLRx584dlCpVClZWVqhVqxYGDhyIadOmwc/PD8WLF8fTp09hYmICMzMzhISE4MSJEzhy5AgiIyNx+fJl2Nra6voQtCb/P3O6SqXCvXv3oFKpEB0dDXd3d1SuXBkigtDQULRs2RLm5uYAgAoVKuDs2bN45513YGJiosvwc9X169exYsUKdO/eHQ4ODqhQoQJEBMOHD0dKSgpGjx6NlJQUzJgxAxMnTsTIkSNx7NgxuLm5wcbGBnZ2dro+hFyVmpqqzCT9008/4cmTJ0hISEDfvn2xcuVK3LhxAwkJCfD09FS2efjwISpWrKirkPNE+vOwbt06BAcHIzIyEkOGDIG3tzeGDBmCBw8eoHfv3vjxxx9hYGCA0NBQPH78GD/88ANUKhVEBCqVSsdHop3Y2FjExsbi4sWLcHd3R69evfDixQuMGTMGxYoVw9KlS9GwYUOUKVMGAODp6Ynff/8dhoaGAF7OSl7YqT8PT548wTvvvINixdJuc2rUqIGYmBisW7cOZcqUgZOTEwCgVKlS6N+/P/z8/HDx4kU4OTnpzblQU3++AwMD8d9//+HRo0fo0aMHJk+ejM6dO+Phw4d49913lXP39OlTGBoaIj4+HiYmJoX6b8PQ0BBXrlzBpEmT0KNHDzg5OaFZs2YAgF69eqFYsWKYPn06RATjxo1DixYtcPHiRZw9exZ2dnawsLBAqVKldHsQhY0usxrKaPPmzeLs7CyjR4/WGF8/JiZG3NzcRKVSydatW5XyuLg4ee+996Rv374aHRLT/1sYJSYmSvPmzcXe3l6jKc+0adOUEZ/U7cNfvHghkyZNEh8fH7lw4YLy1Kmwe/z4sfL+wIED4uXlJZ6enmJnZycTJ05URvCoX7++NG3aVA4cOCBjxowRa2trefDgga7CzhNRUVFSu3ZtUalU4uzsLDVq1JDOnTvLihUrlD43e/fuFZVKJQsXLlRGQSoKPvvsMyldurTUqFFDzM3NpXbt2rJr1y7lSd2zZ8/k8uXL0r59e2XUE300adIksbW1lREjRkizZs3E29tbFi1aJNHR0SKSNkZ9165dpVevXjJx4kTlPOjD+QgODpZ+/fpJ5cqVxcTERN555x3p3bu3Unv76vwkqampMnjwYBk4cKBeNXdRCwoKEkNDQ/nss880yn/99VcxMjKSwYMHazSTffr0qdSuXVuvJ0fcs2ePvPPOO1K9enUpUaKEVKxYUdatW6fR3OvmzZsyadIksbS01Jtmo4mJidKsWTNRqVTi6ekpJUqUkDZt2sjHH38sgYGBkpCQIL/88otUq1ZNhg8frrd9jPITE4sCZOvWrWJmZibbtm2TiIiIDMuPHDkiZcuWlfbt24u/v79899130qZNG/H09NTLoSIvXbokderUEQ8PDyW5mDJlitStW1f5WT2XxaBBgzTmKijsHj16JGXKlJGgoCD5/fffxdzcXFavXi3h4eGyfv16UalUGiNhubm5ScWKFaVSpUp62eQnJiZG1q9fL7Vq1ZJq1apJQECAdOvWTapVqyalSpWSFi1ayMaNG6VHjx5iYWEhixYt0uv20Wrbt28XOzs7+ffffyU6OlqePXsmPj4+0rhxYzl48KCIiGzbtk3effddadu2rV6NepTe+vXrxcXFRfns//rrr6JSqaRKlSoyf/58ZcSbV2+i9eE8XLhwQRwcHJThU4OCgmTChAni5uYm7u7u8tdff2msHxcXJ1OnThU7Ozu5evWqjqLOW7t27ZJSpUqJnZ2d0jlZ7fDhw1KqVCnp3LmzrFu3Ti5duiTjx48XOzs7vXko9ep9QGBgoNja2srmzZslMjJSkpKSpF+/flKnTh1Zv369JCcny4kTJ6Rdu3bi5eWld31trly5It7e3lKjRg05cuSIzJ49Wxo1aiQuLi5ib28vn3/+uTRr1kwqVqwovXr10svBTvITE4sC4s6dO1K3bt0MY43Hx8dLcHCw3LhxQ0TS+k7UqFFDnJ2dpU6dOtK9e3e9u1lIX/MSFBQkDRs2lBo1asjTp0/lxIkTUrNmTfnss8/k7t27cunSJZk6dapYW1vr1cXg1q1bUrZsWblw4YJMmzZN+XK8efOmVKxYUWN8bZG0pzK3b9/Wy47a6s9DYmKibNu2TcqUKaNxs/Dtt9+Kr6+vuLq6SoMGDUSlUmWo6dJXc+fOlWbNmklSUpLycOHp06fSpEkTadu2rbLe77//rjFBmD5JSEiQFStWyKJFi0QkrWaiZMmSsnLlShk0aJBYW1vL559/LpGRkTqONPdduHBBzM3NZcqUKRn+X3fv3i01atSQunXrKjMlL1++XD766CMpU6aMXj6AUNu/f79y02xra6vRiV0kreN+t27dxMHBQdzd3cXd3V0vzkdWrRT27Nkj7u7uEh4erqyTmpoqffr0EU9PT+Uewt/fX/777798izc/qL8/rl69Kg4ODtK9e3dldKcLFy7I2rVrpXPnzlKzZk1RqVRSunRpvavxz29MLAqIGzduiJubm0ZV7KZNm6RPnz5iamoqpUqVkhkzZijLbt26JU+ePNGroSLTj7WevvP6Z599JiqVSurUqSPPnj2TBQsWiIeHh6hUKvHw8NCrCQDTq1WrlsyZM0eaN28uS5Yskfj4eClTpowMGTJE+X//6quv5OjRozqONG9EREQoXwD79u2TvXv3SnJysmzbtk3s7e01hogUSRtqNjg4WPz8/PT2Saya+iHCpEmTpHbt2kq5+m/or7/+EjMzswwjmRTm5pFqDx48kMePH2vU6t6+fVvCw8Plzp07Uq1aNVmyZImIpD2weeedd8TFxUU2btyoq5DzRGhoqNjY2Ei3bt2UstTUVI3vgrVr14qlpaWsXbtW7t27JzNnzpT//e9/ejtanlpYWJh06dJFwsPD5auvvhJra2uZPn26jB49WhmiOzo6Wh48eCDXr1/XaHZaWKn/tm/fvi2LFi2SGTNmKPO3HDhwQOzt7eX58+ciIspAL8+fPxczMzNlOGZ9d+XKFXFwcJAWLVpoPHhKSEiQmJgY2bVrl15NDKkrTCx0aMWKFcr78+fPS9myZWX58uVy6dIl6devn9SoUUP69+8vW7ZskaVLl0qxYsVkx44dGfajDzcL9+7dk27dumVo4/rFF1+ItbW1rF+/Xnn69vTpUwkPD5d9+/bJhQsXMm02Vpip/z+7du0qs2fPll27dknLli3Fzs5Ohg8frjHefp8+fWTixIkZRhEr7KKiosTa2lomTJigNP1Sf0nGxMTItm3bxNHRUSO50IfkOitZ/Y2fO3dODAwMxM/PT6Pc399fqlatqndPH7dt2yb16tWT8uXLy/vvv68Mqax29OhRcXd3V2ov//rrL+nbt68sXLhQb2p01W7fvi116tQRHx+fDOchfVOYJk2aKMlHdHS0xuiB+io8PFwqVKggFy5ckLi4OPn222/F3NxcVCqV3L17V0T063qhvj4EBgaKg4ODNG7cWEqWLCmOjo4yZcoUiYqKEkdHR2VuH7W7d++Kh4eH/Pnnn7oIO8+oP/83btyQEydOyPnz55VaiCtXrkiZMmWkdevWyr2DPtxDFSRMLHRk69at0rVrV40bwgkTJkjJkiXFzs5OKleuLD/++KPyxPb+/ftSsWJFjWREn9y8eVMaNGgg7733ngQEBIhI2lB477zzjvz2228iklaV6eXlJTVr1tSLJ0zp3bx5U1asWCFBQUFKO99vv/1WWrduLYcOHRIvLy/x8vJSnjQmJCTI1KlTxdnZWW9nAz1y5IgYGxuLoaGhfP311xrL0icXAwYM0FGE+SP9TeKBAwdk2bJlsn//fuWz8OWXX4qxsbFMmzZNgoOD5fr169KhQwdp3ry5Xn1hrl69WoyNjWXVqlWydOlSad26tQwfPlxjnUOHDombm5ts2rRJgoOD5YMPPpD//e9/ynJ9Sy6uX78u7dq1k7Zt22okF+k/M82aNZNevXrpIjydUB97x44dlZrs7t27S8mSJaVUqVIyadIkHUaX+9THe/HiRTEzM5OZM2dKTEyM3L17V/73v/9J6dKl5cSJE7J3716xtLSUAQMGyP379+XOnTvi6+srZcuW1asHEOrzsW/fPilXrpxUr15dqlSpIq1atdK4lyhbtqy89957evdgsiBgYqEjV65cUZ6YHDlyRCk/e/ZspjNF37t3T+rUqaPXVZbqL8mOHTvK4MGDxdbWVn755ReNdYKCgsTV1VXq16+vNzdNiYmJ0r17d3F2dhZXV1extLSUdu3aSYUKFaRs2bLy5MkT2b9/v3h7e0uVKlWkY8eO0r59e72Zo+RVqampkpKSImFhYaJSqUSlUsnUqVMzfAHExMTIjh07xNjYWOPmUZ+kv0H87LPPpFSpUlK5cmXx8PAQR0dHOXbsmIiIrFu3TkqVKiWOjo7i5uYm9evXVx5a6MPfycaNG8XY2FgOHTqklM2YMUP69OkjV69elX/++UdE0v6WunTpIs7OzuLo6Ci1a9dWzoM+DWyRXvrkQv1QRiTt//2///6T9u3bK3339PUcZGbw4MGycuVK6d+/vzg4OMjx48eV2s9p06bpOrxcFR4eLuXLl5eGDRtqlJ8/f16KFy8uP//8s4iIHDx4UBwdHcXBwUHc3NzE2dlZL0dBOnnypFhZWSkPYrdt2yYGBgayePFiZZ2rV6+KqampdOnSRS+ukQUJEwsd+Prrr6Vjx47y9OlTOXnypNjb22t0Rn31qdqTJ0+kQ4cO8u677+rdE7dXBQcHS+vWrcXMzEzjIpD+Dz84OFjpjKgv1JNUXb9+Xb7//nv5+uuvpVu3blK5cmXp3LmzREdHy4ULF+Tzzz+XPn36yMKFC/WypkJ94xMeHq78+8MPP4hKpZJx48ZlSC5SU1Nlz549etlmPP3f+smTJ+Xdd9+Vv//+W+Lj4+XixYsyePBgMTY2Vp5U379/X/7880/566+/9Kqj9r///qv8/6fXsmVLcXJyEicnJzEzM5OxY8eKSFpt3okTJ+T333/XaDaoz7KquZg0aZJ4eXnp1RPp9NTXi0uXLslvv/0m33//vXKsixcvFpVKJW5ubsrN89OnT2XDhg16c71QN2u7e/eudO/eXZo0aaLRquGff/6R4sWLi7+/v1L2/PlzOXz4sPzxxx/KkOX6Qv158PPzk549e4pIWl8kFxcXGTZsmLKe+vvl2rVrevk9qmtMLPLZ2rVrRaVSKTUP4eHhMm/ePKlataqMHz9eY91Hjx7Jtm3bpH379lKzZk29G/0pKyEhIdKmTRtp3769xpekPj9VyOpJ4oEDB6R+/frSoUMHefTo0WvXLezUx3Xo0CFp1aqV7NixQ/nMf/fdd6JSqWTChAlKcrFgwQLZv3+/zuLNK6/WWG7fvl26d+8uPj4+GjfIERER0rdvX2nYsKHSZDI9fbpO9O7dW2xsbOSHH34QEZFu3bpJpUqV5J9//pGzZ8/K0qVLRaVSZdoHTZ/Ow+ukTy7Onz8vX3zxhVhYWOjd0KGv2rdvn9jZ2UnTpk3F0dFRWrVqJTt37pSoqCjp1atXhr8nffkeWbp0qYwaNUq5Jty8eVMGDRok9erVk2+//VYiIiLE0dFRRo8erWxTVP4WZs+eLRMnTpSwsLAMA5789NNP8s033ygP8yj3MbHIR6tXrxYjI6MMzZmSkpJkwYIFUqVKFY3kYtOmTdKwYUMZMmSIXk3m9Dayqt4vKtJPcrhr1y5p2rSp1KtXT0ku9NX+/fvF1NRUvvzySwkJCdFYtmPHDjEyMpIPP/xQevbsKSYmJnrXFGzBggXi6ekpP/74o1I2fPhwsba2FmdnZ6VvkfpLcseOHVKmTBm5c+eOTuLNa+lvhPr27SslS5aU+vXrS/Xq1TWewt++fVucnJxk/vz5ugizwLh+/bq8//77Urp0aTEyMsq0Wa0+OXPmjNjY2MiaNWtEJG1YZZVKJQsWLBAR/UkiMrNs2TKNPnciabX5gwYNklq1aom5ubmMHDlSRF42L9Vn6k75ImlJV+nSpcXR0VFGjBihlCcnJ8vAgQNl+PDhGqNQUu5iYpFP/P39NSY1U3v//fflhx9+kCdPnoifn59UqVJFJkyYoCy/ceOGchNRVJ42qKm/JOvXry+nTp3SdTj5Tv3/npqaKlu2bJH27dtrXDz1za1bt8TDw0O5SUhOTpb4+Hjx9/dX5iDYv3+/dO3aVbp06SIXLlzQZbh54siRI9K5c2dp0aKFRn+CefPmSZkyZWTMmDEaY6yfP39eXF1d9W645fS1cunfDxkyRFQqlaxatUqjPCIiQqpXr55hHqCi6Nq1a+Lj4yOXL1/WdSh5bvXq1cp8LSEhIVK+fHkZMmSIslyfr5dqf/31l3zyySdKreX169flk08+EVdXV41BL/T5/uHq1atSvXp1WbhwoVLWtWtXMTU1lStXrkhcXJxER0fL5MmTxd7eXq/mvCqImFjkg6SkJDlw4IAyRKJa165dxd3dXW7evCkiaU2fFixYINWqVZOBAwdq7EPfnzZkJSgoSD788MMi8QWRmfTJRVRUlI6jyVvqyf9OnDghycnJ8sUXX0jDhg3F2tpaHBwclCfUsbGxEh8fr+Noc1f6dtF//PGHdOrUSZo1a6bMni0iMnnyZPHy8pK+ffvK2bNn5cyZM9K2bVupW7euXl0f0h/Lo0ePMvSr6dOnj1hZWcmePXuUddu3by/169fX65un7NC34aezsmTJEhk2bJjExsYqTV7Un4nDhw/LV199JS9evNBxlHlLfc8wbNgw5QHMjRs3ZNCgQVK/fn355ptvdBxh3lMfb506dWTp0qUikta3omHDhlKqVCmpXr26NGvWTBwdHfWulrsgYmKRhzp06KA8NUpISJDDhw+Lu7u7tG/fXrp27Sre3t5Kcw/1DWRkZKRMmzZN+vTpo7dt6bNLXc1bVBWVz8GtW7ekTZs2Ur9+fXFwcBAfHx+ZO3euBAUFiZubm0ydOlXXIeaJw4cPi729vcYY81klF9OmTZNSpUqJpaWldOrUST755BMlydKn5EIk7Vhr164tJUuWlIEDB8qmTZuUZb169ZKSJUvKvn37pH379lKxYsUi0wetqFJfB+/cuaN85n/88UdRqVRSokQJGT9+vMbfwJAhQ6R3794SHR2tk3jzS0pKiixcuFAaNGggQ4YMUZKL4OBgGTJkiFSuXFnWrVun4yhzV2bfiTdv3pSRI0eKt7e3xoOadevWyeLFi+Xbb7/V2yajBQ0Tizxy69YtGT9+vMZNcWxsrPzwww/K1PGvTtSj/mN59uyZ8l7fbhaIRF5+1uPi4jRqH/744w9ZsmSJfPnll8rIHSIibdu2lVWrVuV7nPnh+fPn8vXXX0uNGjU05uRIn1wcOHBAKZ8zZ45UrVpVZsyYoZwjfUi+01/rVqxYIXZ2drJhwwZZvny5vP/++1KzZk1ZtGiRsk6/fv1EpVKJp6enklQUlT5oRY36evH9999LvXr1ZPny5cr/9bRp08TY2Fh+/PFHSUpKkoiICJk8ebLY2trK1atXdRl2rks/8duNGzeUPhYpKSni5+eXIbm4evWqfPrpp3o5m/Tff/8tu3bt0igLCQmRTz/9VDw9PYtETU1BxcQiH3z55ZfK6EYxMTHy/fffi4eHh9I2VCTzL8Si8qSaihb15/rnn3+WDh06SMOGDaV79+4SFhaWYd3o6GiZMWOG2Nvby40bN/I71DynPhcvXryQ5cuXi5eX11slFxMmTJCaNWvKzJkzNfpc6IOzZ8/KxIkT5dtvv1XKQkJCZPz48VKnTh1lkiuRtA6sTCqKhgMHDoiJiYksX75c41rw33//ycCBA0WlUknlypWldu3a4urqqrdNXvbu3SsODg5Srlw58fDwkA0bNohIWk2dOrkYNmyY0udC35rFpaamyvPnz+XDDz+UGjVqyJ49ezSWqyfbLVeunHz55Zc6irJoY2KRB9J/wd2+fVt8fHykVKlScubMGRF5WXPh7u4ubdq0UdZl7QQVFQcPHpQSJUrI2LFjZc+ePVKhQgVp0aKFnDx5Uvk72Lt3rwwcOFBv28W+Wiv5/PlzWb58uVSvXj1DctG5c2dp2bKl7Ny5UymfMWOGuLq6yvz58/Xi2pGamirnzp1TJkVcuXKlxvKbN2+Kh4dHpjcLTCr024MHD6R27dpKZ+SEhAR59uyZHDx4UEJDQ0VE5OjRo7Ju3To5dOiQ3s3bob5WRERESLly5WT9+vVy8OBBmTRpkhgYGChNf5KTk2XhwoXi4eEhY8aMkZSUFL15QKk+DvXcHWfOnJFevXrJu+++K7t379ZYd9y4ceLi4iKtW7dWRtKj/MPEIg/NmTNH1q9fr/wBlC5dWv7++28ReZlcVKlSRWrUqKHjSInyz/Xr16VatWqyfPlyEUlr+ufk5CQWFhbi4eEhf/31l4iIHD9+XObPn6+XExi9mgio24HHxMTIypUrpVq1ahrJxbFjx6RJkyYycuRIjZvouXPnFurJItMPTqC2detWUalU0r179wy1MV27dpVevXrpzc0SvZ2wsDCpUKGC7N+/X5KTk2XWrFnSsGFDsbKy0nhop8+OHj0qCxYs0Jgo8unTpzJ79mxRqVQaycXSpUv1qvlT+jko+vfvrzQBO3v2rDIx4HfffaesP378ePnyyy+VJmGUv5hY5KL0Nwv79+8XKysrZUjMK1euSLdu3TIkF3v27JFevXrpxRNHorcRGBgo8+fPl4SEBLl//76UL19eRo4cKc+fPxdXV1dp1qyZ0nRQH59Ep/9bX7x4sfTq1Uvc3d1l0aJFcvXqVUlKSpKvv/5avLy8NEaHO3/+vF7NqJ3+PMTGxkpiYqJStmbNGlGpVDJlyhTlifSLFy+kRo0aGsNxU9Hw9OlT+eijj6R8+fJibW0tHTt2lC+//FJevHghdevW1RhiVh/FxcXJiBEjRKVSSdOmTTWWqZMLIyMjjT5I+mbfvn1iaWkpEydOlCtXrijl//zzj/Tq1UuqVKkiPXr0kIEDB0qpUqXYUVuHmFjkge3bt8uyZctk8eLFGuWXL1+Wbt26iZ2dnZJcpO+4yuSCioLk5GRlHPGPP/5YevbsqcyC6uPjIyqVSurWrav3ExhNnjxZ7OzsZMmSJbJmzRopWbKkdOnSRaKjoyUqKkrp0N25c2eN7fThOpH+GJYuXSqdOnWSNm3ayKBBg5TaG3VyUaNGDRk0aJB07NhRvLy89KKjOmVN/XQ6KipKnj59qpRfv35dtm/fLmvWrJFnz54p5V27dpXPP/88v8PMd0FBQfLZZ5+JSqWSffv2aSx7+vSpTJo0SUqWLClPnjzRi2tEepcuXRI7O7sMo1upazQfPHggS5YskUaNGkmnTp30co6jwoSJRS5ISEhQboxevHghDg4OolKpNGZ8VLty5Yr07NlTVCqVRtZNpG9SU1OVm4T//vtP7t27J9euXdNY3qJFC43ZkseOHSvnzp3Tq2r8V6WkpMiZM2ekUqVKysSP//zzjxgaGsqWLVuU9WJiYsTPz0/69eundzcKapMmTRJbW1tZvny5rF+/XmxtbaVu3brKA5ctW7aISqWSRo0aafQv0bcOqZRGfb344YcfpEmTJuLh4SEtW7aUgICADHPXPHr0SKZPny42NjYa1xV9oD4PT58+1Uiubt++Lf/73/+kRIkSsn//fo1tnj17Jo8ePcrPMPONv7+/1KtXT+Li4uTJkyeybt06adWqlTg5Ocn//vc/ZXS81NRUpQ8G6Q4TCy3t3btXunTpIjVq1JA5c+aISNrELA0aNJCKFStmesELDAyU6dOnc7x10lvpO8wdOHBAvLy8xNPTU+zs7GTixIly7949ERGpX7++NG3aVA4cOCBjxowRa2trvRvlSCTtb/7gwYMSEBAgImkdD+vUqSMiIrt37xYLCwtleMQXL17Ir7/+KiJpyYW+Dj19+fJlqVatmhw/flxE0oYStbS0zNBpe+PGjaJSqcTX11d5gEP669ChQ1KiRAmZNm2anDx5UurXry+1atWS7du3K7WYP/74o/Tr10+cnZ31cmAHkbTrZrVq1aRmzZry0UcfKcn0nTt3ZMSIEWJpaakxUpw+UV/z1LWTp0+fFpVKJaNHjxZPT0/x8fGR8ePHy5IlS6R06dJy9OhRXYZLr2BioYXVq1eLpaWljB07VsaMGSMGBgbKWPv//fefeHh4SO3atV87QgWTC9I3jx49kjJlykhQUJD8/vvvYm5uLqtXr5bw8HBZv369qFQq+f7770VE5O7du+Lm5iYVK1aUSpUq6eVNwrZt28Tb21t8fHxkypQpIiJy4sQJKVOmjKxbt06srKw0bqaPHj0qnTt3VpqLiejn0NPHjh0TZ2dnEUlLKiwsLGT16tUikpZcbdy4Ubk+rlu3ToyMjGT8+PEaT3BJv9y+fVtq166tzJ784sULKVeunDg6OkqFChVk586dkpKSIleuXJFVq1YpE8zqmwsXLoi9vb3MmDFDFixYIE5OTtKoUSPlocudO3dk1KhRolKp5IcfftBxtLkr/XDkH3/8sfIQaseOHfLee+/JxIkTNeYnqVOnjsYkoqR7TCxySP1Fl/6JQa9evWT58uXKePyhoaFSo0YNqVOnjt4Nf0eUlVu3bknZsmXlwoULMm3aNBk1apSIpA0XWrFiRRk8eLDG+omJiXL79m158uSJLsLNU1u2bBEzMzPZuXNnhhviXr16iUqlktmzZytl8fHx8v7770vXrl31qoYifWKkfn/r1i1p166dLFy4UCwsLGTNmjXKOn///bd069ZNzp07p5R9/fXXUrJkSb1t7kFpDxqWLl0qT548kQcPHkiFChWUJsVeXl7i7e0tmzZtkqSkJL1KttM3GxVJ608xa9Ys5efbt29LxYoVpUGDBsr9xc2bN2XChAl61wxMJK0liJWVlYwbN07jYdOrNZZTpkyRcuXKKQM8UMHAxCIH/vjjjww3BCJpF75q1apJiRIlpGHDhrJt2zYJDQ2V6tWri6urq0REROgoYqL8VatWLZkzZ440b95clixZIvHx8VKmTBkZMmSI8gX61Vdf6XUV9uXLl6Vq1aoZOhyqj//48ePSpk0bcXV1lS1btsiyZcukTZs2UrVqVaXZgz4kF68eg7oN9PPnz6VJkyaiUqk0bqJiY2Olffv20qVLlwzbsrZCv6WkpCj9q0aOHCkffvihPH/+XEREBg4cKKamptK0aVOlTF+orwnHjh2TxYsXy/vvvy9Dhw7VSDZu374tbm5u8u6778r9+/dFRD9Gh4uKitL4+eLFi2Jraytr167VKH/06JFyvDt37pSPPvpISpcurZe13IWdASjbypQpg8aNG+PcuXM4e/YsAKBr166IiYnB9OnT8d133+H58+eYP38+VCoVDh06hPr168Pa2lrHkRPlrdTUVACAi4sLRARDhw7F4cOHUa5cOXTs2BHffPMNVCoVkpOTcebMGfz6669ISkrScdR54/79+4iNjUWTJk0gIkq5SqUCADRp0gSff/453nvvPUyZMgUHDx6Ek5MTAgMDYWRkhOTkZBgYFO5LdGpqqnIMX375JXr37o0aNWpg8eLFePr0Kb777js4ODjgzz//xOzZs7Fu3Tp06NAB9+7dw65du2BgYIDU1FTl/FlZWenycCiXpKSkICUlBQBw69Yt3L59G7dv34aBgQFcXFwAAOHh4bCzs0Px4sUBpP3ff//999i+fTssLS11FXqeUKlUOHLkCJo3b44DBw7g1KlT+Pnnn/H3339rXFOPHj2KK1euYMCAAUhJSUGxYsV0HLl2li1bhgkTJiA5OVk5ztu3b8PNzQ2DBw/GkydPsGXLFrRr1w7e3t7w9fXFgwcPULx4caSmpuLYsWOoUaOGjo+CMtBxYlNoXb9+Xdq1aycdOnSQRo0aSc2aNTVGslHPIPtq2z/2qSB9c/PmTVmxYoUEBQUpVdLffvuttG7dWg4dOiReXl7i5eWlTGqUkJAgU6dOFWdnZ72c/E7t888/FxsbG+Xn9E8f1deBq1evyqVLlzJcF/ThSWR6mQ2t26lTJxFJu5b27dtXPD09pVWrVjJo0CDl+PXtPBR1X375pcZ34p49e6RMmTLi4uIinp6eygzKSUlJ0rVrV6lZs6YsW7ZMRowYIVZWVnrX5EV9TQgPD5dBgwbJhg0bJD4+XsLCwsTd3V1q1aol58+f17h23L17V27cuKGrkHOF+nq3fPlypQ+FuqP2iRMnRKVSyaRJk6R27dri4+Mjo0ePli+++EJMTEyUkfQ4+lPBxcRCC9evX5dWrVqJlZWVMutjSkqKpKamyrlz56RKlSrKRF9E+igxMVG6d+8uzs7O4urqKpaWltKuXTupUKGClC1bVp48eSL79+8Xb29vqVKlinTs2FHat28vtra2el+F/d1334mZmZn88ssvWa4zceJEGTx4sMYNtD61HRdJG0r3TUPrpqSkSGxsrMaQokwq9Mvjx4+lR48eUrx4cTly5IgkJSVJ2bJlZe3atbJnzx4ZO3asGBgYyMaNG0UkbTb6d999V2rXri3e3t7y77//6vYA8sjp06elcePGUqdOHTl58qRSHh0dLZUqVZKaNWvKv//+qzfXBXXzxps3b8rcuXNFROSvv/6Sjz76SOmLunbtWmnQoIGMGzdOLl68qGxbp06d115PqWBgYqGlkJAQadu2rbRv317+/PNPpfz999+XZs2a6UUbaaLXUXeou379unz//ffy9ddfS7du3aRy5crSuXNniY6OlgsXLsjnn38uffr0kYULF+p1TYXazZs3xcrKSrp27Sp3795VytU3CM+fP5euXbvK8uXLdRVivjh9+rTUrl1bRDIfWve3335TJsVT05ebKNLsY3Pv3j0ZMWKElCpVShYvXiyfffaZsuzx48cydepUUalUSr+kxMREiYyM1Is+FerzoE6g7969KykpKfLixQtp1qyZqFSqDNeC6OhoqVKliri6uurFpG/qcxAYGCgqlUqZw2jZsmXi5eUlgwYNUjqnv3pNmDJliri6uio1HFRwMbHIBepmUe+9956cOHFCunTpIpUqVdKrDphEWcnqJvDAgQNSv3596dChgzKST1G7Ydy5c6eYmJhI7969NWpo7t+/L+3bt5dGjRrp1ZP5sLAwuXjxonz77bdy6dIlefLkiVy9elUcHBxkzZo1WQ6tq24mR/pF/d0XGhoqe/bske+++0527dol06dPl+LFi0vTpk011n/8+LFMmzZNjIyMMsxnUpipz8PVq1elS5cu4unpKcWKFRNPT09ZvHixxMTESOvWraVWrVpy+PBhjXuGFy9eSO3ateXWrVu6Cj9XqI/pypUrYmZmJr6+vhrLV6xYIQ0bNpT+/fsrndNF0oai7tevX5Go5dYXTCxyyfXr16VDhw5iZGQk7u7uSlKhTzcNRG9D/QWSkpIiu3btkqZNm0q9evWK5DChycnJytDUZcuWlXbt2kmbNm2kXr16UqdOHeU6oQ99r/bt2yfvvfee2Nvbi6WlpZiZmYmPj4/8/fffMnbs2AyjP+nr0LqURv1/euHCBSlfvrxUrlxZjI2NpVq1ajJ79myZPn26GBgYyOHDhzW2e/LkiYwZM0ZKliwpz549K/QPI9TxX7x4UaysrGTEiBGyfv162b9/v3Ts2FEMDAzk448/lvv370vLli2lbt26GZKLwn4O1Mdy6dIlsbGxEQ8PD2WZetJDkbQ+F40aNZKPP/5YqbnYvn279O7dW65cuZK/QVOOMbHIRUFBQfLpp5+y4yEVeeovwtTUVNmyZYu0b99eozlQUfPvv//Kp59+Km3atJFBgwbJihUrlGRCH64Ta9euVZq3HD16VJ4+fSpz5syRypUri7u7u3z++efSu3dvcXFx0euhdSlN+qTC3NxcJk6cKPfv35cffvhBWrVqJXXq1JFff/1VBg4cKJaWlvLTTz9pbP/kyRN5+PChLkLPEw8fPpQaNWrI5MmTM5SvWLFCjI2NZeTIkZKYmCjNmjWTJk2ayIEDBwp9QiGi2fzJ3NxcmjVrJo6Ojsr8RiIvO26LvEwuPvnkEwkPDxeRjPNXUMHGxCKP6MPNApE20icXr45VTmn0oaZi7dq1YmxsLPv27cuwbNeuXVKrVi1p0qSJ7Ny5U4YPHy5OTk7SvHlzjv6k50JDQ8XGxka6deumUb569WopUaKEhISEyH///SeDBw+WkiVLypEjR3QUad47f/68eHp6aowAp77hfvbsmcybN0+MjY0lICBAHj9+LFWqVJF27dpl6GdQWP3zzz9iZGQks2bNkuTkZFmzZo3Y2NhkmVysWLFCqlSpIsOHD9eLa2RRU7gHQS7ACvv40kTaUqlUEBGoVCqUKFFC1+HonPpcpGdoaKijaHLHsWPHMHToUMyaNQtdunRR5ptQj7Hfo0cPREREYObMmTA2NsbKlSsxa9Ys2NraKvtITk7m9VIPpaSkwNXVFQkJCQgICEDjxo0BAOXLl4exsTHi4uJQoUIFTJo0CYaGhmjfvj1+/fVXtGrVSseR574LFy4gJCQEnp6eANKuBer5XaysrNC7d28sWrQIf/75Jxo1aoSAgAA8f/5cmcOjsIuNjcWwYcPg6+sLAOjRowcAYNq0aQCAr776CsbGxkhMTISxsTFGjBgBIyMjtGnTptBfI4uiwj37EhEVaK/eSBdl+ngu1JOFnj9/HidOnIBKpYJKpUKxYsWUCa9GjRoFJycnHD16FABQsmRJZXsRYVKhp1xcXLB9+3YkJiZi7ty5CAoKQnR0NPr06YNBgwYpN9kVKlTA2LFjlc+JPnJzcwMA7Nu3D0DGa4GrqyvKly+Phw8fAgBKlSqlTBSoD5o0aYKvvvoKQNrfvJWVFXr27In58+djx44dGD16NADA2NgYCQkJAIAhQ4bo1TkoSphYEBFRjlSsWBEbNmxAQkIC5s+fj4CAAGWZ+uYpKioK8fHxcHBwAAAYGRllWIf0U8WKFbF8+XIYGhpi2LBhcHZ2Rp8+ffDFF18AgDL7dqVKlbBo0SK4u7vrMtw84+LiAktLS2zduhV3795VytXJ99OnT2FmZoZatWrpKsR8o/6bt7S01Eguxo0bBwAwMTHRZXiUC5hYEBFRjqlvHlUqFebNm4eTJ09qLL916xbKli2L+vXrA4DSXIqKhooVK+Krr76CoaEhLC0t0blzZ2WZujkQoJlw6puyZcti1apVOHLkCGbMmIErV64AeHn8S5YswYMHD/Duu+/qMsx8p04u/Pz8sGzZMkyZMkXXIVEuUAmv8kREpKUbN25g1KhREBFMmzYN7777LpKTk9GxY0cYGBjg+++/17iRpKIlJCQEn376KUQEM2bMQKNGjXQdUr5KSUnB+vXrMXLkSFSoUAGNGjWCg4MDbt++jZ9//hn+/v6oUaOGrsPUiefPn+PgwYNo0KABKlWqpOtwSEtMLIiIKFeokwsDAwNMnToVS5YswbVr1xAYGAgjIyOkpqYyuSjCbty4gXHjxiEyMhJLly5VarGKkr///hsLFy5EcHAwSpYsCS8vL3z66aeoXLmyrkPTqcwGt6DCiYkFERHlmhs3bmDs2LH49ddfUb58eVy6dAlGRkYc/YkAANeuXcOMGTPw5ZdfwtnZWdfh6ERKSgoMDAygUqmYbJPeYWJBRES56tq1a/jmm2+wZMkSFCtWjEkFaVAPK1pUpX86zyf1pG+YWBARUZ5hUkFEVHQwsSAiIiIiIq2xYR8REREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWnt/wBrzmr9EMTDGAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Cellpose vs CellSAM - Generalist Models by Dataset\n", + "\"\"\"\n", + "\n", + "cp_means = []; cs_means = []\n", + "cp_sems = []; cs_sems = []\n", + "\n", + "for ds in datasets:\n", + " cp_data = cp_generalist_dict[ds]\n", + " cs_data = cs_generalist_dict[ds]\n", + " # 1 - mean for the bar\n", + " cp_m = 1 - np.mean(cp_data)\n", + " cs_m = 1 - np.mean(cs_data)\n", + " # standard error of the mean for the error bar\n", + " cp_sem = np.std(cp_data, ddof=1) / np.sqrt(len(cp_data))\n", + " cs_sem = np.std(cs_data, ddof=1) / np.sqrt(len(cs_data))\n", + "\n", + " cp_means.append(cp_m)\n", + " cs_means.append(cs_m)\n", + " cp_sems.append(cp_sem)\n", + " cs_sems.append(cs_sem)\n", + "\n", + "# Plot as a bar chart\n", + "x = np.arange(len(datasets))\n", + "width = 0.35 # width of each bar\n", + "\n", + "fig, ax = plt.subplots(figsize=(8, 5))\n", + "\n", + "# Plot CP bars slightly left, CS bars slightly right\n", + "bars_cp = ax.bar(x - width/2, cp_means, width, \n", + " edgecolor='black', linewidth=1,\n", + " yerr=cp_sems, capsize=5, label='Cellpose', color=c2)\n", + "bars_cs = ax.bar(x + width/2, cs_means, width, \n", + " edgecolor='black', linewidth=1,\n", + " yerr=cs_sems, capsize=5, label='CellSAM', color=c4)\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels([name_map[ds] for ds in datasets], rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_dataset_comparison_cp_reg.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYrNJREFUeJzt3Xt8zvX/x/HntWEHbGHY5jTM+bA5m5RDTiFEB75JSZIoh1BzGiGKnFI5RDqRCqWTDhipSQhhljlNbGNy3tH2/v3htysXI9u1uTZ73G+369a1z+f9+ez16bPrcj2v9/vz/liMMUYAAAAAkEVOji4AAAAAQN5GqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsUsDRBQDIe6KiohQXF+foMjLk5eWl8uXLO7qM/zRhwgRNnDhRGzZsUMuWLa3LLRaLWrRoodDQUIfVdifjb9d+/O0CyAihAkCmREVFqUa1aopPTHR0KRlyd3VVeEREtn042759u95++21t2rRJJ06cUFpamnx9fdWsWTP16dNHbdu2zZbfczPpH+Ku5u7ursqVK6t79+4aOXKkChcunON15HVRUVGqVr2GEhPiHV1Khlzd3BWxP/yO+tuVpD179mj69OnauHGjoqOj5erqqpIlS6pu3bpq0aKFXnjhBVkslttSC4CcQ6gAkClxcXGKT0zU3AA/+Rdxc3Q5NiIvJuiFXUcUFxdn9weztLQ0jRgxQrNmzVKBAgXUunVrdenSRQULFtShQ4f0zTff6KOPPtIrr7yicePGZdMR3FyPHj1Uu3ZtSVJ0dLTWrFmjiRMn6quvvlJYWJgKFSp0W+rIq+Li4pSYEK8KPYLlWjJ39QgknorS0ZVT77i/3R9//FGdO3fW5cuX1aZNGz344INydXXVwYMHtXHjRq1evVqDBg1SgQJ8HAHyOl7FALLEv4ib6ni6O7qMHDN27FjNmjVLgYGB+vzzz1W5cmWb9QkJCZo3b55Onz5922p66KGH1LNnT+vPM2bMUOPGjbVjxw4tW7ZMTz755G2rJS9zLVle7r5VHV1GjslNf7sDBw5UamqqfvrpJ7Vq1cpmnTFGP/zwg5ydnXO8DgA5jwu1AeAakZGRev3111WiRAmtXbv2ug9lkuTm5qaRI0faDEtKTk7WzJkzVb9+fRUuXFhFixbVPffcozVr1uRInUWLFrUGid9//926/OjRo+rXr5/KlCmjQoUKqWzZsurXr5+ioqKu20d0dLSGDBmiKlWqyM3NTXfddZdq1KihZ599VufOnbNpe7uPD5mXm/52T548qYMHD6p27drXBQrpyjUY7du3txn6lJycrDfffFPt27dXuXLl5OLiolKlSql79+76448/rtvH0qVLZbFYtHTpUn311Vdq0qSJ3N3dVaZMGY0bN05paWmSpPfff18BAQFyc3NT+fLlNX369CwfF4CMESoA4BpLly5VamqqBgwYoNKlS9+0rYuLiyQpKSlJ7du314svvihjjPr166fevXvr6NGj6tq1q+bNm5ejNad/MPvrr7/UqFEjLVmyRA0aNNCLL76oevXqacmSJWrYsKH++usv6zbx8fG6++679eabb6py5cp6/vnn9eSTT6pq1ar68MMPderUKWtbRx8fbk1u+tv19PRUgQIFFB0drUuXLt3SNv/884+GDh2qpKQkdezYUcOGDVPLli317bffqlmzZjbh+WqrV6/WI488okqVKunZZ59VkSJFNHnyZI0fP17Tp0/XCy+8oICAAD3zzDNKS0vTqFGj9MEHH2TpuABkjOFPAHCNX375RZLUunXrW97mlVdeUWhoqMaNG6eJEydaP+RfuHBBrVu31osvvqju3bvL19c32+q8ePGi9YNR48aNJUnPPvusTp06pQULFuiZZ56xtn377bc1aNAgDRw4UOvWrZMkrVu3TocPH9bQoUM1a9as6/ZdsGBBhx4fMi83/e26uLioS5cuWrVqlYKCgtS/f381a9ZMderUueH1P8WKFVNUVJTKlCljs3zv3r1q2rSpRo8erR9//PG67b777jv98ssvatSokSRp4sSJ8vf316xZs+Th4aE//vhDlSpVkiSNGDFC/v7+mjFjhvr06ZOpYwJwY/RUAMA1YmJiJElly5a9pfZpaWl65513VLlyZZsPZdKVIUrjx49XcnKyVq1aZVddn3/+uSZMmKAJEyZo4MCBqlatmvbt26eGDRuqZ8+eioqK0oYNG1SzZk3179/fZttnn31W1atX1/r163Xs2DGbdW5u119wX6RIEes32bfr+GC/3Pa3u3DhQj3wwAP6888/9cILL6hhw4YqWrSo7r77bs2dO1cJCQk27V1cXK4LFJJUq1YttWrVSps2bVJKSsp163v37m0NFOm1d+7cWfHx8Ro4cKA1UEhSuXLl1Lx5c+3bt0+XL1/O0nEBuB49FQBgp4iICJ05c0a+vr7XTf0qyTqMaP/+/Xb9npUrV2rlypWS/p1S9plnntGIESNUqFAh7dy5U5LUokWL66bodHJy0r333qv9+/dr586dKleunO699175+Pho2rRp2rVrlzp37qwWLVqoRo0aNtvfruPD7ZfT57ZEiRJas2aNDhw4oLVr12rr1q3asmWLfv31V/36669atGiRNm7cqOLFi1u32blzp15//XVt3rxZMTEx14WIuLg4+fj42CwLDAy87nent7nRutTUVMXGxmYYYgBkHqECAK7h7e2t/fv36/jx46pWrdp/tv/nn38kXRmisXfv3hu2u9Vx5TeyfPlym9mfrnX+/HlJuuFY+vQPWentPD09tWXLFo0fP15fffWVvv32W0lXvsl9+eWX9dxzz0m6fccH++XWv90qVaqoSpUq1p937typ3r17a8+ePZo4caLmzJkjSfr111+tQ7fatWunKlWqqEiRIrJYLPriiy+0a9cuJSUlXbd/Dw+P65alT1N7s3UZ9XoAyBqGPwHANe6++25Jsl578F/SP7T06NFDxpgbPt57770cq/nqOmJjYzNcnz405uoPWeXLl9fSpUt16tQp/fHHH3rttdeUlpamQYMGafny5TbtHX18+G955W83MDBQb775piRp/fr11uVTpkxRUlKSfvrpJ61Zs0ZvvPGGJk6cqAkTJsjb2ztbawCQvQgVAHCNJ598Us7Ozlq4cKHNDEgZSUpKUo0aNeTh4aFt27Y59JvP9GEemzZtkjHGZp0xRps2bbJpdzUnJycFBgZq1KhR1jCRPp1objk+/Le89LdbpEiR65YdPHhQxYsXV/PmzW2Wx8fHa8eOHberNABZQKgAgGv4+/tr1KhRiouL0/3336/Dhw9f1yYxMVEzZ87UhAkTVKBAAQ0cOFBHjx7ViBEjMvxwtmfPHp08eTJH6y5fvrxatWqlvXv3asmSJTbrFi5cqPDwcLVu3VrlypWTdGXIS0a9GunLXF1dJSnXHB/+W27627106ZKmTJmiuLi469ZdvnzZeq+IqwNEhQoVdObMGZuhWKmpqRoxYsR/hiQAjsU1FQCQgcmTJysxMVGzZs1StWrV1Lp1a9WuXVsFCxbU4cOH9dNPP+n06dOaPHmypCtTWO7YsUNz587VN998o3vvvVelSpXS8ePH9eeff2rXrl0KCwtTqVKlcrTud955R82bN1f//v311VdfqWbNmtq7d6/WrFmjkiVL6p133rG2/fHHHzVy5Ejdfffdqlq1qkqUKKFDhw5pzZo1cnV11aBBg6xtc8vx4b/llr/dlJQUjR07VhMmTFBQUJACAgLk4eGh2NhYff/99/r7779VsWJFhYSEWLd5/vnn9cMPP6h58+Z65JFH5OrqqtDQUB0/flwtW7ZUaGhodv6vApCNCBUAsiTyYsJ/N7rNsrMmJycnzZw5U//73//0zjvvaNOmTdq0aZPS0tLk4+Oj9u3bq2/fvmrTpo2kK1Nhfvfdd1q8eLE++OADrVy5UklJSSpdurRq1qypZ599VnXq1Mm2+m6kWrVq2rZtmyZOnKi1a9fqm2++UcmSJdW3b1+FhISoQoUK1rbt27fXkSNHtGnTJq1atUoXL15UmTJl9Oijj2rUqFGqWbOmtW1uOb7skHjq+juLO1p21pRb/nY9PDz07bff6vvvv9fmzZv12Wef6fTp03J3d1fVqlXVv39/DRkyRJ6entZtOnfurM8//1yvvvqqPvroI7m7u6t169ZavXq1XnnllWz7fwQg+1nMtQNvAeAmoqKiVKNaNcUnJjq6lAy5u7oqPCJC5cuXd3QpyGWioqJUrXoNJSbEO7qUDLm6uStifzh/uwDyJEIFgEyLiorKcJx0buDl5cWHMtwQf7sAkDMIFQAAAADswuxPAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6EiA8YYnT9/XsYYR5cCAAAA5HqEigxcuHBBnp6eunDhgqNLAQAAAHI9QgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdskVoeKtt96Sn5+fXF1d1aRJE23duvWGbRctWqR77rlHxYoVU7FixdSmTZvr2j/55JOyWCw2jw4dOuT0YQAAAAD5ksNDxYoVKzR8+HCFhIRox44dCggIUPv27XXy5MkM24eGhqpXr17asGGDwsLCVK5cObVr107Hjx+3adehQwdFR0dbH8uXL78dhwMAAADkOxZjjHFkAU2aNFGjRo00b948SVJaWprKlSun559/Xi+//PJ/bp+amqpixYpp3rx56tOnj6QrPRVnz57VF198kaWazp8/L09PT507d04eHh5Z2geA/Cv9y4zM8vHxkY+PTw5UBABAzirgyF+enJys7du3Kzg42LrMyclJbdq0UVhY2C3tIz4+XikpKSpevLjN8tDQUJUqVUrFihVT69atNXnyZJUoUSJb6weAjCxYsEATJ07M9HYhISGaMGFC9hcEAEAOc2ioiIuLU2pqqkqXLm2zvHTp0tq/f/8t7eOll16Sr6+v2rRpY13WoUMHde/eXRUrVtTBgwc1evRo3X///QoLC5Ozs/N1+0hKSlJSUpL15/Pnz2fxiABAGjBggLp06WKzLCEhQc2bN5ckbd68WW5ubtdtRy8FACCvcmiosNe0adP0ySefKDQ0VK6urtblPXv2tD6vU6eO6tatq8qVKys0NFT33XffdfuZOnVqlr5VBICMZDSM6dKlS9bngYGBKly48O0uCwCAHOPQC7W9vLzk7Oys2NhYm+WxsbHy9va+6bYzZszQtGnT9MMPP6hu3bo3bVupUiV5eXkpMjIyw/XBwcE6d+6c9XHs2LHMHQgAAACQjzk0VBQqVEgNGjTQunXrrMvS0tK0bt06BQUF3XC7119/XZMmTdLatWvVsGHD//w9f//9t06fPn3DoQUuLi7y8PCweQAAAAC4NQ6fUnb48OFatGiR3n//fYWHh2vgwIG6dOmS+vbtK0nq06ePzYXcr732msaNG6clS5bIz89PMTExiomJ0cWLFyVJFy9e1MiRI7VlyxYdOXJE69atU9euXeXv76/27ds75BgBAACAO5nDr6l49NFHderUKY0fP14xMTEKDAzU2rVrrRdvR0VFycnp3+zzzjvvKDk5WQ899JDNftJnTXF2dtbu3bv1/vvv6+zZs/L19VW7du00adIkubi43NZjAwAAAPIDh9+nIjfiPhUAstulS5dUpEgRSVd6VLlQGwBwJ3H48CcAAAAAeRuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsEsBRxcAALlZVFSU4uLi7N5PQkKC9fnOnTvl5uZm9z69vLxUvnx5u/cDAIC9LMYY4+gicpvz58/L09NT586dk4eHh6PLAeAgUVFRqlGtmuITEx1dSobcXV0VHhFBsAAAOBw9FQBwA3FxcYpPTNTcAD/5F7GvZyExNU3dt0RIklY1rSZXZ/tGn0ZeTNALu44oLi6OUAEAcDhCBQD8B/8ibqrj6W7XPuIvp1qf1/Jwk3sBZ3vLAgAg1+BCbQAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsEuuCBVvvfWW/Pz85OrqqiZNmmjr1q03bLto0SLdc889KlasmIoVK6Y2bdpc194Yo/Hjx8vHx0dubm5q06aNDhw4kNOHAQAAAORLDg8VK1as0PDhwxUSEqIdO3YoICBA7du318mTJzNsHxoaql69emnDhg0KCwtTuXLl1K5dOx0/ftza5vXXX9fcuXM1f/58/fbbbypcuLDat2+vxMTE23VYAAAAQL7h8FAxc+ZM9e/fX3379lXNmjU1f/58ubu7a8mSJRm2//jjj/Xcc88pMDBQ1atX17vvvqu0tDStW7dO0pVeitmzZ2vs2LHq2rWr6tatqw8++EAnTpzQF198cRuPDAAAAMgfHBoqkpOTtX37drVp08a6zMnJSW3atFFYWNgt7SM+Pl4pKSkqXry4JOnw4cOKiYmx2aenp6eaNGlyw30mJSXp/PnzNg8AAAAAt6aAI395XFycUlNTVbp0aZvlpUuX1v79+29pHy+99JJ8fX2tISImJsa6j2v3mb7uWlOnTtXEiRMzWz4AZCg2MUUnk1JsliWmplqf7z0fL1dn5+u2K+VSUKVdC+Z4fQAAZDeHhgp7TZs2TZ988olCQ0Pl6uqa5f0EBwdr+PDh1p/Pnz+vcuXKZUeJAPKhj6NOaVZk9A3Xd9/yV4bLh/n7aHhV35wqCwCAHOPQUOHl5SVnZ2fFxsbaLI+NjZW3t/dNt50xY4amTZumn376SXXr1rUuT98uNjZWPj4+NvsMDAzMcF8uLi5ycXHJ4lEAgK3HypdU29J3ZXq7Ui70UgAA8iaHhopChQqpQYMGWrdunbp16yZJ1ouuBw8efMPtXn/9dU2ZMkXff/+9GjZsaLOuYsWK8vb21rp166wh4vz58/rtt980cODAnDoUALAq7cowJgBA/uLw4U/Dhw/XE088oYYNG6px48aaPXu2Ll26pL59+0qS+vTpozJlymjq1KmSpNdee03jx4/XsmXL5OfnZ71OokiRIipSpIgsFouGDh2qyZMnq0qVKqpYsaLGjRsnX19fa3ABAAAAkH0cHioeffRRnTp1SuPHj1dMTIwCAwO1du1a64XWUVFRcnL6d5Kqd955R8nJyXrooYds9hMSEqIJEyZIkkaNGqVLly7pmWee0dmzZ9W8eXOtXbvWrusuAAAAAGTMYowxji4itzl//rw8PT117tw5eXh4OLocAA6yY8cONWjQQN/eXUN1PN0dXY6NP8/Fq+Mv4dq+fbvq16/v6HIAAPmcw29+BwAAACBvI1QAAAAAsAuhAgAAAIBdHH6hNgDg9omOjlZ09I1vzHcjPj4+Nvf+AQDgaoQKAMhHFixYoIkTJ2Z6u6tn2AMA4FqECgDIRwYMGKAuXbrYLEtISFDz5s0lSZs3b5abm9t129FLAQC4GUIFAOQjGQ1junTpkvV5YGCgChcufLvLAgDkcVyoDQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCmR2g7S0NG3cuFE///yzjh49qvj4eJUsWVL16tVTmzZtVK5cuZyoEwAAAEAudcs9FQkJCZo8ebLKlSunjh076rvvvtPZs2fl7OysyMhIhYSEqGLFiurYsaO2bNmSkzUDAAAAyEVuuaeiatWqCgoK0qJFi9S2bVsVLFjwujZHjx7VsmXL1LNnT40ZM0b9+/fP1mIBAAAA5D63HCp++OEH1ahR46ZtKlSooODgYI0YMUJRUVF2FwcAAAAg97vl4U//FSiuVrBgQVWuXDlLBQEAAADIW7J19qdLly5p06ZN2blLAAAAALlcpmd/upnIyEi1atVKqamp2blbAMANhIeH272PhIQE6/OdO3fKzc3N7n1KkpeXl8qXL58t+wIA5G7ZGioAALfHyaQUyeKk3r17Z+t+mzdvnm37cnVzV8T+cIIFAOQDmQoVxYsXv+l6eigA4PY4n3JZMmmq0CNYriXt+9CelpKkA4uHSpKq9Jstp4IudteXeCpKR1dOVVxcHKECAPKBTIWKpKQkDRw4UHXq1Mlw/dGjRzVx4sRsKQwA8N9cS5aXu29Vu/aRmvzv8Cc3H385F8qe4U8AgPwjU6EiMDBQ5cqV0xNPPJHh+l27dhEqAAAAgHwmU7M/derUSWfPnr3h+uLFi6tPnz721gQAAAAgD8lUT8Xo0aNvur5cuXJ677337CoIAAAAQN6SrfepAAAAAJD/ZCpU3HvvvTbDn9asWWMzvzkAAACA/CdToWLz5s1KTk62/ty7d29FR0dne1EAAAAA8g67hj8ZY7KrDgAAAAB5FNdUAAAAALBLpmZ/kqTvv/9enp6ekqS0tDStW7dOe/bssWnTpUuX7KkOAAAAQK6X6VBx7Y3vBgwYYPOzxWJRamqqfVUBAAAAyDMyFSrS0tJyqg4AAAAAeRTXVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC72B0qnnvuOcXFxWVHLQAAAADyoEzfp+JaH330kUaMGCEvL6/sqAcAkINSLpxWyoXTNstSU5Ksz+OjI+Vc0OW67QoWLaGCRUvkeH0AgLzJ7lBhjMmOOgAAt0Hc718rJvSDG66PXDw0w+XeLfvIp/UTGa4DAMDuUAEAyDu8GnWWZ/WgTG9HLwUA4GbsDhUXLlzIjjoAALcBw5gAADmB2Z8AAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALCLw0PFW2+9JT8/P7m6uqpJkybaunXrDdvu3btXPXr0kJ+fnywWi2bPnn1dmwkTJshisdg8qlevnoNHAAAAAORv2RoqDh48qNatW99y+xUrVmj48OEKCQnRjh07FBAQoPbt2+vkyZMZto+Pj1elSpU0bdo0eXt733C/tWrVUnR0tPWxefPmTB8LAAAAgFuTraHi4sWL2rhx4y23nzlzpvr376++ffuqZs2amj9/vtzd3bVkyZIM2zdq1EjTp09Xz5495eJy/R1f0xUoUEDe3t7WB3f7BgAAAHJOpu5TMXfu3JuuP378+C3vKzk5Wdu3b1dwcLB1mZOTk9q0aaOwsLDMlHWdAwcOyNfXV66urgoKCtLUqVNVvnx5u/YJAAAAIGOZChVDhw6Vj4+PChUqlOH65OTkW95XXFycUlNTVbp0aZvlpUuX1v79+zNTlo0mTZpo6dKlqlatmqKjozVx4kTdc8892rNnj4oWLZrhNklJSUpKSrL+fP78+Sz/fgAAACC/yVSoqFChgl577TU98sgjGa7fuXOnGjRokC2FZdX9999vfV63bl01adJEFSpU0Keffqp+/fpluM3UqVM1ceLE21UiAAAAcEfJ1DUVDRo00Pbt22+43mKxyBhzS/vy8vKSs7OzYmNjbZbHxsbe9CLszLrrrrtUtWpVRUZG3rBNcHCwzp07Z30cO3Ys234/AAAAcKfLVKh45ZVX9PDDD99wfc2aNXX48OFb2lehQoXUoEEDrVu3zrosLS1N69atU1BQUGbKuqmLFy/q4MGD8vHxuWEbFxcXeXh42DwAAAAA3JpMDX+qWbPmTdcXLFhQFSpUuOX9DR8+XE888YQaNmyoxo0ba/bs2bp06ZL69u0rSerTp4/KlCmjqVOnSrpyzca+ffusz48fP66dO3eqSJEi8vf3lySNGDFCDzzwgCpUqKATJ04oJCREzs7O6tWrV2YOFQAAAMAtylSoyG6PPvqoTp06pfHjxysmJkaBgYFau3at9eLtqKgoOTn925ly4sQJ1atXz/rzjBkzNGPGDLVo0UKhoaGSpL///lu9evXS6dOnVbJkSTVv3lxbtmxRyZIlb+uxAQAAAPnFLYeKDh06aMKECWratOlN2124cEFvv/22ihQpokGDBv3nfgcPHqzBgwdnuC49KKTz8/P7z2s2Pvnkk//8nUBulX7Dxszy8fG56RA/AACAnHTLoeLhhx9Wjx495OnpqQceeEANGza03gvizJkz2rdvnzZv3qxvv/1WnTp10vTp03OybuCOtGDBgizNRBYSEqIJEyZkf0FAPkXAB4DMueVQ0a9fP/Xu3VufffaZVqxYoYULF+rcuXOSrsz6VLNmTbVv316///67atSokWMFA3eyAQMGqEuXLjbLEhIS1Lx5c0nS5s2b5ebmdt12fIgBshcBHwAyJ1PXVLi4uKh3797q3bu3JOncuXNKSEhQiRIlVLBgwRwpEMhPMvqW89KlS9bngYGBKly48O0uC8h3CPgAkDl2Xajt6ekpT0/P7KoFdqK7HgCyBwEfADLHobM/IXvRXQ8AAABHIFTcQeiuBwAAgCMQKu4gdNcDAIA7BcO685ZMh4rU1FT98ssvqlu3ru66664cKAkAAAD5HcO685ZMhwpnZ2e1a9dO4eHhhAoAAADkCIZ15y1ZGv5Uu3ZtHTp0SBUrVszuegAAAACGdecxTlnZaPLkyRoxYoS+/vprRUdH6/z58zYPAAAAAPlHlnoqOnbsKEnq0qWLLBaLdbkxRhaLRampqdlTHQAAAIBcL0uhYsOGDdldB64RFRWluLg4u/eTkJBgfb5z584Mxx5mhZeXl8qXL58t+wKAnMT7KQDkvCyFihYtWmR3HbhKVFSUalSrpvjExGzdb/qFTdnB3dVV4RER/EMIIFe7E99PmWYTQG6U5ftUnD17VosXL1Z4eLgkqVatWnrqqafk6emZbcXlV3FxcYpPTNTcAD/5F7Hvm7DE1DR13xIhSVrVtJpcnbN0GY2NyIsJemHXEcXFxREqAORqd+L7KdNsAsiNshQqtm3bpvbt28vNzU2NGzeWJM2cOVNTpkzRDz/8oPr162drkfmVfxE31fF0t2sf8Zf/vb6lloeb3As421sWAOQ5d9L7KdNsAsiNshQqhg0bpi5dumjRokUqUODKLi5fvqynn35aQ4cO1aZNm7K1SCCvyo6x3IzjBnA1ptkEkBtluafi6kAhSQUKFNCoUaPUsGHDbCsOyMtyYiw318UAAIDcKEuhwsPDQ1FRUapevbrN8mPHjqlo0aLZUhiQ12XXWO7cMo4bAADgRrIUKh599FH169dPM2bMULNmzSRJv/zyi0aOHKlevXpla4FAXmfvWO7cMo4bAADgRrIUKmbMmCGLxaI+ffro8uXLkqSCBQtq4MCBmjZtWrYWiFsXm5iik0kpNssSr7oR4d7z8XJ1vv4DaSmXgirtWjDH6wMAAMCdKdOhIjU1VVu2bNGECRM0depUHTx4UJJUuXJlubvbN7MG7PNx1CnNirzx3OXdt/yV4fJh/j4aXtU3p8oCAADAHS7TocLZ2Vnt2rVTeHi4KlasqDp16uREXciCx8qXVNvSd2V6u1Iu9FIAAAAg67I0/Kl27do6dOiQKlasmN31wA6lXRnGBAAAgNsvS6Fi8uTJGjFihCZNmqQGDRpcNx+2h4dHthQHAIAjcI0aAGROlkJFx44dJUldunSRxWKxLjfGyGKxKPWqN14AAPIarlEDgMzJUqjYsGFDdtcBAECuwTVqAJA5mQ4VKSkpeuWVVzR//nxVqVIlJ2oCAMChbvc1auHh4XZtn5CQYH2+c+dOubll/YabV/Py8uIGmQBuSaZDRcGCBbV79+6cqAUAgHzlZFKKZHFS7969s22fzZs3z7Z9ubq5K2J/OMECwH/K0vCn3r17a/HixdzoDgAAO5xPuSyZNFXoESzXkln/4J6WkqQDi4dKkqr0my2ngi5215Z4KkpHV05VXFwcoQLAf8pSqLh8+bKWLFmin376KcPZn2bOnJktxQEAkB+4liwvd9+qWd4+Nfnf4U9uPv5yLpQ9w58A4FZlKVTs2bNH9evXlyT99ZftDBhXzwYFAAAA3Imio6MVHX3jWeJuxMfHRz4+PjlQkWMx+xMAAACQSQsWLNDEiRMzvV1ISIgmTJiQ/QU5WJZCxc2cPHlSpUqVyu7dAgAAALnGgAED1KVLF5tlCQkJ1skSNm/enOFMbHdiL4WUyVDh7u6uo0ePqmTJkpKkTp066d1337X+z4mNjZWvry83vwOyiLv4AgCQN2Q0jOnSpUvW54GBgdddd3wny1SoSExMlDHG+vOmTZts5saWZLMeQOZwF18AAJAXZfvwJy7UBrKOu/gCAIC8KNtDBYCsu9138QUAAMgOTplpbLFYbHoirv0ZAAAAQP6TqZ4KY4yqVq1qDRIXL15UvXr15OTkZF0PAAAAXC0qKkpxcXF27+fqa3l37tyZ4exKWeHl5cWd4+2UqVDx3nvv5VQdAAAAuANFRUWpRrVqik9MzNb9pk/dmh3cXV0VHhFBsLBDpkLFE088kVN1AMgDuHso4HgpF04r5cJpm2WpKUnW5/HRkXIu6HLddgWLllDBoiVyvD7gWnFxcYpPTNTcAD/5F7GvZyExNU3dt0RIklY1rSZX50yN5M9Q5MUEvbDriOLi4ggVduBCbQC3jLuHAo4X9/vXign94IbrIxcPzXC5d8s+8mnNl4NwHP8ibqrj6W7XPuIv/3vvploebnIvcP29m+AYhAoAt4y7hwKO59WoszyrB2V6O3opAOQkQgWAW8bdQwHHYxgTgNzI/oFoAAAAAPI1eipw23CRLwAAwJ0pS6EiNTVVS5cu1bp163Ty5EmlpaXZrF+/fn22FIc7Cxf5AgAA3JmyFCqGDBmipUuXqlOnTqpduzZ31cYt4SJfAACAO1OWQsUnn3yiTz/9VB07dszuenAH4yJfAACAO1OWQkWhQoXk7++f3bUAAAAADhEeHm73PhISEqzPd+7cmeEIjKzw8vLK9Tfmy1KoePHFFzVnzhzNmzePoU/5GC8+AACQ151MSpEsTurdu3e27jd9eHd2cHVzV8T+8Fz92SZLoWLz5s3asGGDvvvuO9WqVUsFCxa0Wb9q1apsKQ65Ey++OwfBEACQ351PuSyZNFXoESzXkvb9u5OWkqQD/39X+yr9ZsupoIvd9SWeitLRlVMVFxeXq/9dzFKouOuuu/Tggw9mdy3II3jx5X0EQwAAbLmWLC9336p27SM1+d8v2tx8/OVcKHu+aMsLshQq3nvvveyuA3kQL768i2AIAACyk8NvfvfWW29p+vTpiomJUUBAgN588001btw4w7Z79+7V+PHjtX37dh09elSzZs3S0KFD7donkJ8RDAEAQHbIcqj4/PPP9emnnyoqKkrJyck263bs2HFL+1ixYoWGDx+u+fPnq0mTJpo9e7bat2+viIgIlSpV6rr28fHxqlSpkh5++GENGzYsW/aJ2yflwmmlXDhtsyw1Jcn6PD46Us4ZfMtdsGgJFSxaIsfrAwAAQNZkKVTMnTtXY8aM0ZNPPqkvv/xSffv21cGDB/X7779r0KBBt7yfmTNnqn///urbt68kaf78+frmm2+0ZMkSvfzyy9e1b9SokRo1aiRJGa7Pyj5x+8T9/rViQj+44frI/x9Ccy3vln3k0/qJHKoKAAAA9spSqHj77be1cOFC9erVS0uXLtWoUaNUqVIljR8/Xv/8888t7SM5OVnbt29XcHCwdZmTk5PatGmjsLCwrJSV5X0mJSUpKenfb8zPnz+fpd+Pm/Nq1Fme1YMyvR29FAAAALlblkJFVFSUmjVrJklyc3PThQsXJEmPP/64mjZtqnnz5v3nPuLi4pSamqrSpUvbLC9durT279+flbKyvM+pU6dq4sSJWfqduHUMYwIAALgzOWVlI29vb2uPRPny5bVlyxZJ0uHDh2WMyb7qbpPg4GCdO3fO+jh27JijSwIAAADyjCz1VLRu3Vpr1qxRvXr11LdvXw0bNkyff/65tm3bpu7du9/SPry8vOTs7KzY2Fib5bGxsfL29s5KWVnep4uLi1xc7J8GEwAAAMiPstRTsXDhQo0ZM0aSNGjQIC1ZskQ1atTQK6+8onfeeeeW9lGoUCE1aNBA69atsy5LS0vTunXrFBSU+XH3ObVPAAAAADeXpZ4KJycnOTn9m0d69uypnj17Zno/w4cP1xNPPKGGDRuqcePGmj17ti5dumSdualPnz4qU6aMpk6dKunKhdj79u2zPj9+/Lh27typIkWKyN/f/5b2CQAAACB7Zfk+FT///LMWLFiggwcP6vPPP1eZMmX04YcfqmLFimrevPkt7ePRRx/VqVOnNH78eMXExCgwMFBr1661XmgdFRVlE15OnDihevXqWX+eMWOGZsyYoRYtWig0NPSW9gkg67jXCAAAyEiWQsXKlSv1+OOP67HHHtMff/xhnY713LlzevXVV/Xtt9/e8r4GDx6swYMHZ7guPSik8/Pzu6ULwW+2TwBZx71GAABARrIUKiZPnqz58+erT58++uSTT6zL7777bk2ePDnbigOQu3CvEQAAkJEshYqIiAjde++91y339PTU2bNn7a0JQC7FMCYAAJCRLIUKb29vRUZGys/Pz2b55s2bValSpeyoCwAAAMi1uM7QVpZCRf/+/TVkyBAtWbJEFotFJ06cUFhYmEaMGKFx48Zld40AAABArsJ1hrayFCpefvllpaWl6b777lN8fLzuvfdeubi4aMSIEXr++eezu0YAAAAgV+E6Q1tZChUWi0VjxozRyJEjFRkZqYsXL6pmzZoqUqRIdtcHAAAA5Dp36jCmrMryfSqkK3ewrlmzZnbVAgAAACAPylSoeOqpp26p3ZIlS7JUDAAAACBJsYkpOpmUYrMsMTXV+nzv+Xi5Ojtft10pl4Iq7Vowx+uDrUyFiqVLl6pChQqqV6/eLd2EDgAAAMiKj6NOaVZk9A3Xd9/yV4bLh/n7aHhV35wqCzeQqVAxcOBALV++XIcPH1bfvn3Vu3dvFS9ePKdqAwAAQD71WPmSalv6rkxvV8qFXgpHyFSoeOuttzRz5kytWrVKS5YsUXBwsDp16qR+/fqpXbt2slgsOVUnAAAA8pHSrgxjykucMruBi4uLevXqpR9//FH79u1TrVq19Nxzz8nPz08XL17MiRoBAAAA5GKZDhU2Gzs5yWKxyBij1KsunAEAAACQf2Q6VCQlJWn58uVq27atqlatqj///FPz5s1TVFQU96kAAAAA8qFMXVPx3HPP6ZNPPlG5cuX01FNPafny5fLy8sqp2gAAAADkAZkKFfPnz1f58uVVqVIlbdy4URs3bsyw3apVq7KlOAAAAAC5X6ZCRZ8+fZjhCQAAAICNTN/8DgAAAACuZtfsTwAAAABAqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANglV4SKt956S35+fnJ1dVWTJk20devWm7b/7LPPVL16dbm6uqpOnTr69ttvbdY/+eSTslgsNo8OHTrk5CEAAAAA+ZbDQ8WKFSs0fPhwhYSEaMeOHQoICFD79u118uTJDNv/+uuv6tWrl/r166c//vhD3bp1U7du3bRnzx6bdh06dFB0dLT1sXz58ttxOAAAAEC+4/BQMXPmTPXv3199+/ZVzZo1NX/+fLm7u2vJkiUZtp8zZ446dOigkSNHqkaNGpo0aZLq16+vefPm2bRzcXGRt7e39VGsWLHbcTgAAABAvuPQUJGcnKzt27erTZs21mVOTk5q06aNwsLCMtwmLCzMpr0ktW/f/rr2oaGhKlWqlKpVq6aBAwfq9OnT2X8AAAAAAFTAkb88Li5OqampKl26tM3y0qVLa//+/RluExMTk2H7mJgY688dOnRQ9+7dVbFiRR08eFCjR4/W/fffr7CwMDk7O1+3z6SkJCUlJVl/Pn/+vD2HBQAAAOQrDg0VOaVnz57W53Xq1FHdunVVuXJlhYaG6r777ruu/dSpUzVx4sTbWSIAAABwx3Do8CcvLy85OzsrNjbWZnlsbKy8vb0z3Mbb2ztT7SWpUqVK8vLyUmRkZIbrg4ODde7cOevj2LFjmTwSAAAAIP9yaKgoVKiQGjRooHXr1lmXpaWlad26dQoKCspwm6CgIJv2kvTjjz/esL0k/f333zp9+rR8fHwyXO/i4iIPDw+bBwAAAIBb4/DZn4YPH65Fixbp/fffV3h4uAYOHKhLly6pb9++kqQ+ffooODjY2n7IkCFau3at3njjDe3fv18TJkzQtm3bNHjwYEnSxYsXNXLkSG3ZskVHjhzRunXr1LVrV/n7+6t9+/YOOUYAAADgTubwayoeffRRnTp1SuPHj1dMTIwCAwO1du1a68XYUVFRcnL6N/s0a9ZMy5Yt09ixYzV69GhVqVJFX3zxhWrXri1JcnZ21u7du/X+++/r7Nmz8vX1Vbt27TRp0iS5uLg45BgBAACAO5nDQ4UkDR482NrTcK3Q0NDrlj388MN6+OGHM2zv5uam77//PjvLAwAAAHATDh/+BAAAACBvI1QAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYJcCji4AAAAgu0VHRys6OjrT2/n4+MjHxycHKgLubIQKAABwx1mwYIEmTpyY6e1CQkI0YcKE7C8IuMMRKgAAwB1nwIAB6tKli82yhIQENW/eXJK0efNmubm5XbcdvRRA1hAqAADAHSejYUyXLl2yPg8MDFThwoVvd1nAHYsLtQEAAADYhVABAAAAwC4MfwIAALlaVFSU4uLi7N5PQkKC9fnOnTszvKYiK7y8vFS+fPls2ReQVxEqAABArhUVFaUa1aopPjExW/ebfsF2dnB3dVV4RATBAvkaoQIAAORacXFxik9M1NwAP/kXsa9nITE1Td23REiSVjWtJldn+0eBR15M0Au7jiguLi5ToYL7aOBOQ6gAAAC5nn8RN9XxdLdrH/GXU63Pa3m4yb2As71lZRn30cCdhlABAABwm3EfDdxpCBUAAOCOE5uYopNJKTbLElP/7anYez5ers7X91SUcimo0q4FM/37wsPDM19kFmR22BQXkeN2IVQAAIA7zsdRpzQr8sYfvrtv+SvD5cP8fTS8qu8t/56TSSmSxUm9e/fOdI03k10Xkru6uStifzjBAjmOUAEAAO44j5Uvqbal78r0dqVcMtdLcT7lsmTSVKFHsFxL2vfBPS0lSQcWD5UkVek3W04FXezaX+KpKB1dOTXTF5EDWUGoAAAAd5zSrlkbxpRVriXLy9236i23T7lwWikXTtssMzd4frWCRUuoYNESmS8QyGGECgAAgNss7vevFRP6wQ3XR/5/j8W1vFv2kU/rJ3KoKiDrCBUAAAC3mVejzvKsHpTp7eilQG5FqAAAALjNGMaEO439t5LMBm+99Zb8/Pzk6uqqJk2aaOvWrTdt/9lnn6l69epydXVVnTp19O2339qsN8Zo/Pjx8vHxkZubm9q0aaMDBw7k5CEAAAAA+ZbDQ8WKFSs0fPhwhYSEaMeOHQoICFD79u118uTJDNv/+uuv6tWrl/r166c//vhD3bp1U7du3bRnzx5rm9dff11z587V/Pnz9dtvv6lw4cJq3769EhMTb9dhAQAAAPmGw0PFzJkz1b9/f/Xt21c1a9bU/Pnz5e7uriVLlmTYfs6cOerQoYNGjhypGjVqaNKkSapfv77mzZsn6UovxezZszV27Fh17dpVdevW1QcffKATJ07oiy++uI1HBgAAAOQPDr2mIjk5Wdu3b1dwcLB1mZOTk9q0aaOwsLAMtwkLC9Pw4cNtlrVv394aGA4fPqyYmBi1adPGut7T01NNmjRRWFiYevbsed0+k5KSlJSUZP353LlzkqTz589n+djscfHiRUnSn+cuKf5y6n+0vv0iLyRIkuJPHFBqcoKDq7leUtzfkq78f3TUOUz//VLuPI+cw1vDOcw6zuGtyc3nkXN4aziH/41zaJ/cch6LFi0qi8Vy4wbGgY4fP24kmV9//dVm+ciRI03jxo0z3KZgwYJm2bJlNsveeustU6pUKWOMMb/88ouRZE6cOGHT5uGHHzaPPPJIhvsMCQkxujIlNA8ePHjw4MGDBw8ePK55nDt37qaf65n9SVJwcLBN70daWpr++ecflShR4uaJLJ86f/68ypUrp2PHjsnDw8PR5SALOId5H+fwzsB5zPs4h3kf5/DWFC1a9KbrHRoqvLy85OzsrNjYWJvlsbGx8vb2znAbb2/vm7ZP/29sbKx8fHxs2gQGBma4TxcXF7m4uNgsu+uuuzJzKPmSh4cHL748jnOY93EO7wycx7yPc5j3cQ7t49ALtQsVKqQGDRpo3bp11mVpaWlat26dgoIyviFMUFCQTXtJ+vHHH63tK1asKG9vb5s258+f12+//XbDfQIAAADIOocPfxo+fLieeOIJNWzYUI0bN9bs2bN16dIl9e3bV5LUp08flSlTRlOnTpUkDRkyRC1atNAbb7yhTp066ZNPPtG2bdu0cOFCSZLFYtHQoUM1efJkValSRRUrVtS4cePk6+urbt26OeowAQAAgDuWw0PFo48+qlOnTmn8+PGKiYlRYGCg1q5dq9KlS0uSoqKi5OT0b4dKs2bNtGzZMo0dO1ajR49WlSpV9MUXX6h27drWNqNGjdKlS5f0zDPP6OzZs2revLnWrl0rV1fX2358dyIXFxeFhIRcN2QMeQfnMO/jHN4ZOI95H+cw7+McZg+LMcY4uggAAAAAeZfDb34HAAAAIG8jVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBXCHuXpCNyZ3y9s4f8Dtd/LkSZ06dUqStHr1ai1btszBFcEe6e+jqampDq7kzkeogPUFFxkZqV9++UU7d+5UTEyMg6tCZmX0xmmxWBxVDrJo9+7dGj9+vCTOH3C7XbhwQTVr1tT06dO1ePFi9ejRw9ElwU4Wi0Xfffed5s+fr+TkZEeXc0dz+M3v4FjGGFksFq1atUrDhw+Xp6enLl++LF9fX7388su67777HF0ibkH6efzxxx+1dOlSnT17Vt7e3po0aZK8vb1tbiCJ3GvXrl0KCgrSiBEjHF0Kskn6axN5Q9GiRfXxxx+rS5cuSk1N1dy5c/W///3P0WXBDr///rseffRRLViwgH8Lcxj/d/M5i8WiX3/9VU899ZRGjhypXbt2afTo0Vq/fr127tzp6PJwiywWi7788ks9+OCDKlWqlHr16qWffvpJXbp00bFjxxxdHm7Brl271KxZMw0bNkyvvPKKo8tBFqX3GMbHxystLU1paWkOrgi3yhijtLQ0BQQEKCUlRWlpaYqOjtbJkycdXRqyaO/evdq9e7cGDRqkXr16ESpyGP9387H0f/w2bdqk+++/X4MGDdKxY8c0duxYDRgwQC+++KIk8YaayxljdOrUKb366quaMGGCZs2apY4dO8oYoyZNmqhChQo2bZH7/Pnnn2rWrJlGjBihKVOmWJcvXbpUn332mQMrQ2ak90p899136tu3r5o0aaKxY8dqy5Ytji4N/yH93J06dUre3t6Kjo7WmjVrNHXqVL322mv8O5jHGGN06dIlNW3aVP3791d0dLQkycnJiX8HcxChIh9L75JPTk5W+fLlFRMTo6CgILVr105vvfWWJOm7777TypUrlZCQ4MhSkYH0N0aLxSIXFxddvHhRTz/9tE6cOKE6dero/vvvt57Hb775xtoWucvp06fVs2dP+fv7a+LEidblr776qoYNG6by5cs7sDpkRnqPYY8ePVS1alV169ZNe/bs0XPPPafQ0FBHl4cbSA8UX331lXr37q3ly5erePHi6ty5s1asWKFZs2ZpxowZ1mDx+uuv65NPPnFw1bgZi8WiwoULa8eOHSpbtqx+++037d6927oOOcQgXzp69Kj1+axZs0ypUqWMr6+vGTRokHX55cuXzVNPPWWee+45k5CQ4Igy8R9WrVplJk+ebJKTk01gYKCZMWOGqVixohkwYIBJTk42xhgTFRVlWrZsab777jsHV4uMxMTEmBEjRpg6deqYiRMnGmOMmT59uilRooT5/vvvM9wmNTX1dpaIG7h48aLNz3v27DG1atUyixYtMsYYc/r0aVOyZElTpUoVU6tWLbNhwwYHVIlbsWrVKuPq6mreeOMNExkZabNu2bJlpmDBguahhx4yPXv2NC4uLmbHjh0OqhQ3kpaWluHyiIgIc9ddd5lOnTpdd26RvQgV+dC+fftM3bp1zeuvv25d1qNHD+Pq6mr27t1rEhISzMWLF83LL79svL29TXh4uAOrxY3s2rXL+Pj4mPnz55vExETz4osvmmLFipn27dvbtAsODjb16tUzx44dc1Cl+C8nTpwwISEhpmbNmqZFixbGy8srww+gq1evvu21IWMhISGma9euNgEvPDzc9O3b11y4cMEcPXrU+Pv7m2effdZs2LDBVK1a1dSpU+eGQRGOc+jQIVOjRg2zYMECY8yVL9QSExPNunXrTFxcnDHmSujo0aOH6d69u9m1a5cjy0UG0gPFr7/+ahYsWGBCQkJMVFSUuXTpkjHmyuceT09P07lzZ3Pw4EFHlnpHsxjD4LL8JjIyUtOmTdPu3bv1v//9T0OHDtWxY8fUs2dPhYeHq1y5cipevLj++usvff3116pXr56jS8Y1IiIitGzZMp0/f16zZs2SJO3Zs0fDhg1TfHy8OnfurPLly2vz5s1avny5Nm7cqICAAAdXjWuZq4awnThxQgsXLtSiRYvUsmVLffzxx5KuTBHs7OyskJAQTZo0SYcOHZKfn58Dq4Z05TWYkpKi2rVrKyUlRQULFpQkxcTEyNvbW0899ZSSkpK0ePFiubq66sEHH9Qvv/yiqlWr6vvvv5e7uzvDMHKJQ4cOqUOHDlqyZImCgoL0xhtv6Msvv1RERIQKFSqkrVu3qmzZskpISJCTk5NcXFwcXTKuYv5/+Nrq1av19NNPKzAwUDExMUpOTtbYsWPVuXNnlShRQuHh4br33ntVs2ZNvf/++7yP5gTHZhrcDhl1CR48eNAMHjzYBAYGmnnz5lmXL1q0yMyYMcN8+OGH5siRI7ezTNyC1NRUc/LkSdOkSRNz1113mccee8xm/bZt28ywYcNMxYoVTYMGDcwDDzxgdu/e7aBqkZETJ06Y3bt3m8TExOvWRUdHm5CQEFOjRg0TEhJiXT527Fjj7u5utm3bdhsrxY1c/Z4aGhpqWrZsaWJiYqzL4uPjTYMGDcyUKVOMMcakpKSYp59+2rz55pvm5MmTt71e3NyhQ4dMu3btTNOmTY2Pj4/p0qWLmTRpkgkPDzf+/v5m9OjRji4R/+Hnn3823t7e5r333jPGGHPu3DljsVhMtWrVzIIFC8w///xjjDHmzz//NBUqVDBRUVEOrPbORU9FPrF161YdPnxYjz76qHXZwYMHNWfOHG3YsEHPPfecBg4c6MAKcTPmmrnuv/32W02YMEH//POP5s+frzZt2ti0T0hIkLOzs9LS0uTq6nq7y8UN/Pnnn+revbt69+6txx9/XJUqVZIkzZ8/X76+vurSpYuioqK0ZMkSrVixQn379lVqaqpeeeUVbd68WQ0aNHDwEUD69/V45MgRpaSkqGnTpmrSpIk++OADeXl5KTk5WU8++aROnjypQYMGacuWLfrss8/0888/q0yZMo4uP19LP3eJiYnWSS4kKTQ0VH/88YeMMXrsscdUunRpSVKHDh3UrVs3Pfvss44sGzdx+fJlLVq0SEeOHNFrr72mgwcPqm3bturQoYPOnj2rb7/9VjNmzFDXrl1VsmRJJScnq1ChQo4u+87kyESDnJeWlmbOnTtnHnroIVOvXj3z2Wef2aw/ePCgCQoKMhUqVDBvvPGGg6rErQgLCzMDBgwwly9fNsYY88MPP5jGjRubhx56yGzatMnaLiUlxVEl4iYOHTpkSpcubYKDg010dLTNuj59+pgSJUqYM2fOGGOMOX78uHnllVeMp6encXJyoociF1q9erWpXbu2CQ8PN+Hh4aZs2bKmXbt25tSpU8YYY9asWWPat29vfH19TY0aNcz27dsdXDHSe5i+++4706lTJ9OsWTPzyCOPXPd6NObKRfjjxo0z3t7e5sCBA7e7VGTSrl27zN69e83FixdNixYtTL9+/Ywxxly4cMEUK1bMlC1b1rz33nsmNTX1hhd0w36EijtU+osmPj7eGGPM1q1bTa9evcw999xjVqxYYdN2+PDhxs/Pz7Rt29acPn36tteK/5aammpeffVVU716dTN48GBrsPj6669N06ZNzUMPPWR+/vlnB1eJm5k9e7apV69ehusuXrxoOnXqZPPa/Pvvv820adNMRETE7SoR/yH9ffXvv/827dq1M/Pnz7eu27dvnylbtqxp06aNNRyeOnXKHDp0iCFPucgXX3xhihYtaoYNG2Y+++wzU7lyZdO6dWvzyy+/WC+6//zzz81TTz1lfH19meUpF7o6FFw7E96OHTtM7dq1zS+//GKMufK6fOihh8yTTz7JzE+3AfepuAOZq27ANHDgQP31119q1KiRXnzxRfn4+Oitt96yuaGWk5OTnn/+eevc3Mh9nJycNHjwYD311FPasmWLnn/+eaWmpqpTp04aO3asYmJiNHnyZIWFhTm6VNxA0aJFFRUVpffee08nT55URESEdu/erT/++EObN2/WhQsX9NtvvykyMlK///67SpcurZEjR6pq1aqOLh3/z2KxaNOmTXr11Vfl7Oysjh07SpLS0tJUo0YN/fDDD9q/f7969uypU6dOycvLSxUrVlTJkiUdXDkk6cCBAxo3bpymTJmimTNnqm3btkpOTtbWrVv19NNP67fffpMklSxZUpUrV1ZoaCgTleQy6Z9vfvzxRz311FPq0KGDgoODFRERIUk6f/68Tp8+rTNnzujs2bP69NNPZYzR/PnzVblyZQdXnw84ONQgh6xcudJ4eHiYUaNGmb1791qX//7776ZXr16mZs2a5tFHHzVPPfWUKVasGBdl51LXTn134cIFM3XqVNOoUSMzaNAg67c0q1atMm3btjV///23I8rEDRw+fNicPXvWGGPMzp07zciRI42Pj4+pUqWKCQwMNBUqVDBVq1Y1AQEBpnDhwsZisZiaNWuaUqVK8e12LvXBBx8YFxcX4+bmZkJDQ63L01+L4eHhxs3NzXTv3p37ieQyO3fuNFOmTDFJSUnm+PHjplKlSmbw4MHm3LlzpmLFiqZly5bWHl+GkeZeX3zxhSlSpIgZNGiQWbhwoSlevLhp1aqV9f5bbdu2NSVKlDDVqlUzxYsXZ+jhbUSouAP9+eefpnTp0tYbMKU7ceKE9b8zZ840d999t+nWrRtzbucy6V27ERERpl69emb8+PE268+ePWvGjh1rfHx8zKhRo6xDoa69ERccKzk52bRq1cp4e3tbZx4xxpgxY8ZYZ3Y6ffq0SUtLMxcuXDAvvfSS6dKli9m1axczk+RyK1euNKVKlTJ9+vQx+/fvty6/+rX7119/Oao83MDly5et91168sknTc+ePa33MejSpYuxWCymcePG3Ow1F4uJiTENGjQws2bNMsZceZ8tVaqUGTp0qE2If++998z777/PkKfbjOFPd6CTJ0/Kz89PvXv31pkzZ/Tuu++qbdu2atKkiQYOHCgnJycNGzZMP//8s5YtW6a6des6uuR8LS0tTZKUkpIi6coQi0OHDqlSpUpq0qSJ1q1bp1dffdXa3tPTU8OHD5eLi4sWLlyoESNGSJLc3d1vf/G4oYIFC2ru3LkqV66c7r77bp05c0bSlfP93Xff6cyZM9bhhoULF1ZcXJwaN26sunXrqly5co4sHf/P/P/kiOHh4dq4caO+/vprpaWlqXv37po9e7bWrVunt956SwcOHJB05bVrjFHVqlVVpUoVR5aer5krX5hKkv7++28dP35cERERcnZ2VvXq1WWMUVRUlOrUqWN936xcubK2bdumFStWMGNeLjFv3jz9+OOPSk1NtS5LnwXxqaee0tGjR+Xn56euXbtq1qxZcnJy0vr16yVJTz75pPr06cOQp9vNoZEG2SL927GkpCRjjDFbtmwxFovFDBkyxNSuXdt06dLFjBgxwsycOdOUKlXK/PTTT44sFxmIiIgwAwcONKmpqebTTz81zs7O5vjx4yY2NtYMGTLENGnSxEyePNna/tSpU6ZXr15mypQpfKudC6W/JlNTU014eLhp1qyZqVevnjlz5oz5+eefTf369c2LL75ojh49av78808zevRoU6JECe5en4ukn8OVK1caf39/U6tWLRMQEGD8/PysQ0o//vhjU6ZMGTN06FDOXS5x9WQjq1evNgEBAaZ27dqmdOnSZtSoUdYhok2bNjUtWrQwq1evNkOHDjUlSpSw9uYjdwgICDC+vr4mNDTU2iMfHR1tKlSoYN59913j7+9vnnnmGetQtb/++st06NDBbNy40ZFl52uEijzu6inynnzySesb5rJly0zHjh3NqFGjzL59+6ztGzVqZL744guH1Irrpb9Rbt682VgsFtO6dWvj7Oxsli5dam1z8uRJM2TIENO4cWPzwgsvmL1795qXX37ZtG7d2sTFxTmqdGTg6mETycnJ1ucvvviisVgsplGjRubs2bNm2rRppkaNGsZisZgaNWqYOnXqmD/++MMBFeNmNm/ebDw8PKxDSbdu3WosFouZPXu2tc3HH39sXF1dzUsvvWRzznH7nTp1ypQpU8aEh4eb9evXG3d3dzN//nwTExNj3n33XWOxWMyXX35pjDHm6NGjxt/f31SpUsVUrVqVWZ5ykatnd2rdurUpX7682bBhg/WL0xEjRhh3d3fToUMHm+1Gjx5t6tevz7WFDkSouAN8/vnnxtPT0wwfPtzmjTF9rGi64OBg7iSZiyxcuNC8++675sKFC8YYYyZOnGgsFotp3ry5OX/+vE3bU6dOmVdffdX4+/sbX19fU7FiRS4+y2X+/vtv8/DDD5v169fbLH/ttddMiRIlzLvvvmvq1atnGjdubM6cOWNiYmLMypUrza5du0xsbKyDqsbNvPPOO+bpp582xly5z0j58uXNwIEDrevTP/x88sknXEORCxw6dMiULVvW7Nq1y4wZM8a88MILxpgrE15UqVLF9O/f36Z9cnKyOXz4sM01T8gdrr5Q/p577rEGC2OuTBvbuXNnU6dOHbNw4UKzbNkyM3jwYOPh4WF27tzpoIphDKEiz7n2w+bu3btNyZIlzcKFC22Wnzp1yvqiXL58uXn88cdNqVKl+DYmF2nTpo2pXr26+eijj0xycrJ58803TXBwsClUqJB5/PHHzbFjx4wx/35wSUxMNLGxsWbTpk0Z3qwJjpV+I8mOHTuazZs3G2OMmTp1qilevLj58ccfjTFX5kwPCAgw9evX554wucTNZmgaNGiQ6dGjh4mNjTXlypUzzzzzjPX1+PHHH5sJEybcrjJxixo0aGBeeeUV06pVKzNz5kyTmJhoypQpY3Pu5syZwzDgXCz9PKXfSNIYY+69915TtmxZ69CmsLAwM2TIEFOiRAlTv359c//995vdu3c7pF78i1CRh8yaNcsMGDDApKSkWP8h/PLLL01QUJAx5spY0qVLl5r27dubMmXKmNGjR5vjx4+bNWvWmMcee8xmGBQc5+qu3YcfftjUqlXLrFixwjp0IjQ01Bosjh8/bm0bFhZ222tF5qSP6e3atavp37+/KVmypPn+++9t2oSHh5uKFSuapk2bMuVoLnH8+HHz+++/G2OM+eijj6yzc61du9bcd999pkSJEtYei/Q78j7//POmX79+zLqWS6S/lnr06GEmTpxoPvnkE3PfffeZ0qVLm+eee8461DQlJcU89thjZtSoUQxXy4WuHtL9yCOPWL+QMcaYFi1a2AQLY4yJi4szSUlJ143MgGMQKvKA9DfDuXPnWscKpo8t/Pnnn43FYjEvvfSSadiwoenSpYsZMmSIee2114yLi4v1g2j6nbWRO1zdtdutWzdTs2ZN8+GHH1qHQm3cuNEUKlTI9OnTx2zZssW88sorpkiRIiY2NtYmlCD3iYiIMG3btjVubm5mxowZ1uVXB4iIiAhz6NAhR5SHq6SlpZmEhATTqFEj07VrVzNt2jRjsVjMggULjDFXwkaHDh1MhQoVzMqVK40xVz7EjB492pQqVYovahzs4MGDZt68eSY8PNw6rPfDDz80bdu2NWvWrDEBAQEmICDAelf6pKQkM3r0aFO+fHmGq+Viq1atMm5ubmbq1Klmy5YtNuvSg0VoaKj1c5Axhn8XcwlCRS6X/kHk4MGDZtKkScYYY3799Veb4TELFy40QUFBZvjw4Tbdf40aNbruW1I4XkZdu926dTO1a9e2CRY///yzKVWqlAkICDDe3t5m27ZtDqkXmRcZGWnatWtn7r//fuvNtIy5+VAbOE5kZKQpV66csVgs1l6Kq9c1a9bM1K5d25QrV860atXKlCtXjqGkDpacnGweeeQRU758eVOxYkXj4eFhOnToYCpXrmzKli1r/vnnH7Nq1SoTGBhoatasabp27Wruv/9+U7JkSc5dLhYVFWVq1KhhvQ9FuqsDxH333WcKFy5s896K3MFizP9P5oxcJy0tTU5OTtq1a5fq1aunyZMna/To0ZozZ47ee+89NWzYUJMnT5a3t7cuXbqkwoULW7cdPXq0PvnkE/38888qU6aMA48CGfn99981ZcoUvfDCC2rdurUk6cEHH1RkZKReeukldevWTUWKFNGhQ4cUExOjChUqcB7zmAMHDuiFF16QMUbjxo3T3Xff7eiScA3z//cziI+PV82aNZWcnKxWrVpp6NChatKkibVdTEyM9u3bp19++UUBAQEKCAhQhQoVHFg5JCk+Pl7u7u46cOCAwsPDFRUVpU2bNunPP/9UjRo19OGHH+rgwYP65ptvtHfvXgUEBKhbt27cQyQX27Fjhx588EF99dVX1ntoGWNksViUmpoqZ2dnSVKnTp00e/ZszmVu48hEgxtL/0Zz7969xs3N7bpvz+bNm2eaNWtmnnjiCZtx919++aXp06cP38bkcl988YVp2LChefjhh01oaKh1eXqPxccff2ztsUDe9ddff5nOnTubpk2bck1MLpPeY7h3716TlJRkkpOTzZ49e4y/v7/p0aMH5ysPuNGQl9WrV5umTZuaTp06WXuEGR6TO117Xn7//Xfr8KZr2/z000+MvsjluKN2LpTeQ7Fnzx61aNFCfn5+mjBhgiQpMTFRkjRo0CD17NlTkZGRGjNmjGJiYiRJFy9e1OXLlxUaGqp69eo56hDwH7p27aqQkBCdPHlSc+bM0caNGyVJq1evVvXq1TVq1Ch99913Dq4S9qpSpYqmT5+usmXLytfX19Hl4P+Z///mc/Xq1Wrfvr2Cg4OVlJSkWrVqadmyZdq1a5dmzpypsLAwSVd6fidNmuTgqnGt9Lsrp0tLS5MkdenSRUOHDtXFixfVuXNnxcXFXdcWuYPFYtHmzZu1c+dOSVKFChXk7Oys+fPn6+zZs9Y2kvT111/r008/VUJCgvWO6chlHJ1qYCu9h2Lnzp3G3d3dtGzZ0vj6+lrn2zbGdmzh3Llzzd13322efvppExMTY4y5/v4UcKyrvxG99sLOL7/80rRq1cp07drV/PLLL9blvXv3NgcPHrytdSLnXP2aRe7w/fffG1dXV7N48WJz+PBhY8y/r9Vt27aZWrVqmaZNm5p27doZd3d3ei7yiPRzmJaWZt5//31z//33m6NHjzq4KtzI2bNnzQMPPGB8fX2t917asGGDcXV1NQ899JBZs2aN2bx5sxk6dKjx9PQ0e/bscXDFuBmuqciFtm3bpmbNmmnMmDEaO3asFi9erDFjxuh///uf5syZI0lKTk5WoUKFJElvvfWW3n77bbVs2VJz5861jjmEY6T3NF2+fFkFChTQ5cuX9c8//6hdu3aqW7euRo8ererVq1vbf/HFF3r66ad1zz336Pnnn7deYwEgZ1y+fFkDBgxQkSJFNGfOHGvPxeXLl+Xs7CyLxaLdu3drxYoVOn/+vAYOHKiaNWs6umzcovTzaYzRxYsXVbRoUUeXhGuknyNJ2rx5s2bPnq0///xTy5cvV/369fX777+rX79+unjxoiwWi+666y4tXrxYgYGBji0cN0WoyIU2bdqklStXWgPEuXPntGLFipsGi4ULF6pdu3by8/NzVNnQv4Hi4MGDev/993X69Gn17t1bQUFBevvtt/X+++8rMDBQQ4cOVY0aNazbtWvXTrt27dL999+vt99+W25ubnTXAzkkOTlZjRs3VqtWrTRr1ixJth9yzp8/Lw8PD12+fFlOTk5ycmKkcF5z9fmEY6X/uyhJKSkpKliwoBITE+Xq6mptExYWptdee03h4eFatmyZGjRooDNnzujs2bNKTk5WqVKlVKxYMUcdAm4R75S50L333msNDsYYeXp6qmfPnpoyZYqWLVumIUOGSJIKFSqkpKQkSdIzzzxDoHCw9DfOP//8U61bt9bp06dVtmxZ1a9fX5L03HPPqX///tq2bZvmzJmj/fv3S7ryrWnlypX14osvasqUKXJ3d+cfQyCbpX9/ZoyRk5OTAgICFBsbq7i4OEmyfrO9b98+vfzyy/rnn39UoEABAkUexXto7uHk5KSjR4/KGKOCBQvq119/Vdu2bXX48GFrm6CgIL300kvy8/NT7969tXfvXhUrVkwVK1ZUtWrVCBR5RAFHF4CbS39j9PDwUM+ePSVJY8aMkbOzs2bOnCkXFxdHloerpPdQtGvXTk888YSmTZtmXZc+FOrpp5+WdKVnKTg4WK1bt9axY8f0448/KiwsTCVLlnRU+cAd6dpvrC0WiwoUKKCgoCC9+OKLCgoKUs+ePVWyZElZLBZ9+umn2rRpk/ULGwD2SUpKUs+ePRUdHa0jR44oNTVV8fHxevrpp7V48WLrF6JBQUH63//+p759+6pNmzb6/vvvrdPKIm8gVOQh6cHCyclJzzzzjFxcXDR16lRHlwX9O9/94sWLdffdd+vll1+2WV+gQAFrT8bTTz+t4sWLa/ny5XrjjTdUsmRJffbZZwQKIJulB4pNmzbpyy+/1OXLl1W9enUNHDhQzz77rI4fP65JkyZp/fr18vDwUGJiotauXauNGzfKx8fH0eUDd4RChQpp+vTpGjhwoIKCghQWFqY333xTL7/8sp544gktXbpUFStWlCRVq1bNOpT76ntvIW/gmoo86Ny5c/riiy8UFBSkqlWrOrocXOWee+5RtWrV9O677163Lj1UpI8lTUxM1MWLF+Xs7EzXLpBDVq9erb59++qBBx7Q5cuXtWfPHjVu3FiLFy+WJH3wwQfas2ePtm3bpjp16mjAgAFclA3Y4eprKK5etnXrVvXp00clSpRQWFiYNm/erDFjxig1NdUaLF555RUdP35cs2bN4gL7PIhQkUdxEVrukpaWpoSEBDVt2lTdunXTpEmTrEOerhUSEqIHH3yQWSyAHLZt2zY9/PDDevnllzVgwADt379f9957r86dO6eOHTtq9erV1rbp9zjgGgog69IDRUxMjI4cOaKmTZta16WkpOiPP/5Qr169VLJkSW3ZskVbtmzRmDFjtGHDBjVs2FD79u1TWFiY6tSp48CjQFbx7plHEShyFycnJxUuXFiNGzfW0qVLFRkZqQIFCliHRaU7fPiwNm/erMuXLzuwWuDOkh4IjDHW55IUHh6udu3aacCAAYqKilLHjh3VuXNnvf3221q7dq31GidJzPIEZAMnJycdO3ZMtWvXVrNmzdSqVSuNHj1a69evV0JCgho3bqxPPvlEiYmJatSokZo2baoffvhBCxcuVL9+/bRr1y4CRR7GOyiQjTp06KDLly9r3LhxOnjwoCwWi00A/OCDD5SUlMRMXUA2Sf9m9K+//tILL7yghx56SDNmzJAkPf7443r66aeVmpqqAQMG6J577tGSJUvUtWtXlStXTkuWLFHv3r0dfATAnSUtLU3lypVT1apVdfHiRZ04cUKdOnVSixYt1KdPHx0+fFhjxozRuXPn1KZNG+u1hgMGDFDlypUdXT7sQKgAMim95+Hqb0TTPfzww+rTp49++OEHDRgwQD///LPOnDmj3377TYMGDdLs2bP19ttvy8vL63aXDdxx0gPFrl271Lx5c/39999ycXHR6NGj9dprr0mSGjVqpL///lvHjh3TU089JenKt6lNmjTRBx98oEmTJjnyEIA7ToUKFfTZZ5+pZs2aKlOmjAYOHKiIiAi99NJLOnTokN544w09+eSTcnV11fr169W9e3dJEqPx8z5mfwIyYenSpfrjjz80c+ZMOTs721yQlv78tddek4eHh1asWKGWLVuqWLFiKlWqlIoWLaqNGzcyRR6QDdJfb7t371ZQUJCGDRumKVOmKC0tTV5eXoqJibFOiuDq6qqkpCR9/vnnCgwM1PTp0xUREaGZM2cy6xqQA/z9/TV16lQNGTJE48aN05QpU9SzZ0/17NlTZ8+e1VdffaX9+/erQIECGj9+vCSGdd8JuFAbuAVpaWlKSUnRiBEjFBYWpg4dOmjixInXBYvU1FQ5OztLkg4ePKjw8HBFR0erTp06qly5Mh9ggGx07Ngx1a9fX61atdKnn35qXd6zZ09FREQoMTFRfn5+6t69uy5duqTp06fL2dlZycnJ+u6771SvXj0HVg/c+Q4cOKDnn39ekhQcHKwWLVrYrL/RhCbImwgVwC04fvy4ypQpozNnzmjGjBlat26dWrdurUmTJt2wxwJAzjpy5IgeeeQR+fj4aNSoUbr77rs1bdo0TZo0ScHBwfLx8dGMGTPk4uKiN998U15eXjpw4IDq1auncuXKObp8IF84cOCAXnjhBRljNH78eDVr1szRJSGHECqA//D5559r5MiR+vjjj9WsWTOdPXtW06ZNU2ho6A2DBYDbI/0DS6FChVSqVCmtWbNGH374odq1aydJOnr0qCpWrKgFCxaof//+Dq4WyJ8OHDig4cOHKy4uTrNmzbKZahZ3Dj4BAf/Bw8NDderU0dChQxUWFqa77rpLL7/8slq2bKn169dr3LhxSk1NlZOTU4YXbwPIOVWqVNGcOXOUkJCgjz/+WKNGjVK7du1kjFFKSooKFCigOnXqWG8wyfdowO1XpUoVTZ8+XWXLlpWvr6+jy0EOoacCuAUbN27UnDlzdOTIEc2bN8/aY/Haa69pw4YNatWqlSZNmqQCBQrYXFcB4PY4ePCgnnvuOTk7Oys4OFj33HOPJGn8+PH66KOPtHHjRoY8AQ6WnJysQoUKOboM5BBCBXATV9+5fMOGDZo7d66OHj2aYbBo06aNJkyYwEVngINcPXZ76tSp+vHHHxUSEqJff/2Vi7IBIIcRKoBM2Lhxo2bOnKljx47ZBIsZM2bos88+02OPPWadHg/A7Zc+dnvr1q06c+aMwsLC1KBBA0eXBQB3PEIFkIH0Hort27dbb5zVq1cvlShRQlu3btWrr76qqKgoa7A4c+aM3nzzTfXp04e7ZQMOFhERoVGjRunVV19VrVq1HF0OAOQLhArgBlauXKmBAweqXr16ioyMlKenp/r166dBgwYpNDRUc+fO1fHjxzV9+nTde++9NkOlADhWSkqKChYs6OgyACDfYPYnIAM7duzQoEGD9Prrr+v777/X+vXrtXPnTsXHx0uSWrZsqeHDh6tw4cIaP368EhMTHVwxgKsRKADg9qKnAvnatb0L6T9/9tlneuedd7R+/XpFRETo/vvv13333adFixZJkk6ePKlSpUpp8+bN8vPzU9myZR11CAAAAA5HTwXyrbS0NFksFp06dUrbtm3T9u3brQHj+PHj8vDwUGpqqtq2bau2bdtqwYIFkqQ1a9ZowYIFSkpKUvPmzQkUAAAg32PuS+RL6Xe/3rdvn5555hkVLVpU7u7u+vTTT+Xs7KwOHTpo0qRJcnNz08CBAzVnzhzrtuvWrVNUVJSSkpLk4uLiwKMAAADIHQgVyHeMMXJyctLevXvVvHlzPffccxowYIDKli0rJycnGWNUqVIljRo1Sm+++aa1J+Lw4cNatGiRPvroI/3888/y8PBw8JEAAADkDlxTgXzpn3/+UdeuXVW/fn2bXoirr7E4dOiQ3nvvPc2aNUvFihVTsWLFlJycrOXLl3MjLQAAgKsQKpAv7du3T126dNGSJUvUvHlzOTnZXl6UHi5SUlJ0+PBhhYWFqWLFivL395evr6+DqgYAAMidGP6EfGnnzp06evSo7rnnHlksFus1FuksFovi4+O1Z88eNW7cWFWrVnVgtQAAALkbsz8hX/Lz81OBAgW0atUqSbqup0KSlixZorFjxyo5Ofl2lwcAAJCnECqQL1WoUEEeHh764IMPdPToUevyq0cDHjlyRA0aNOAmWgAAAP+BUIF8qUyZMnrnnXf0/fffa9y4cdq3b5+kf4c9jR49Wp9//rn69u1rc3M8AAAAXI8LtZFvpaWladGiRRo8eLD8/f0VFBQkV1dXHT9+XFu2bNHatWuZ5QkAAOAWECqQ723dulXTp09XZGSkihYtqmbNmqlfv36qUqWKo0sDAADIEwgVgKTU1FQ5Ozs7ugwAAIA8iWsqANnO/kTOBgAAyBx6KgAAAADYhZ4KAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXf4Pw+rHMd54OCwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Cellpose vs CellSAM - Generalist Models by Data Type\n", + "\"\"\"\n", + "\n", + "dataset_agg_map = {\n", + " \"Tissue\": [\"tissuenet_wholecell\"],\n", + " \"Cell Culture\": [\"cellpose\", \"ep_phase_microscopy_all\", \"Gendarme_BriFi\"],\n", + " \"H&E\": [\"H_and_E\"],\n", + " \"Bacteria\": [\"deepbacs\", \"omnipose\"],\n", + " \"Yeast\": [\"YeaZ\", \"YeastNet\"],\n", + " \"Nuclear\": [\"dsb_fixed\"],\n", + "}\n", + "\n", + "group_names = list(dataset_agg_map.keys())\n", + "cp_group_means = []\n", + "cp_group_sems = []\n", + "cs_group_means = []\n", + "cs_group_sems = []\n", + "\n", + "for group in group_names:\n", + " # Get all datasets that belong to this group\n", + " datasets_for_group = dataset_agg_map[group]\n", + " \n", + " # Gather all F1 arrays and concatenate them\n", + " cp_all = np.concatenate([cp_generalist_dict[ds] for ds in datasets_for_group])\n", + " cs_all = np.concatenate([cs_generalist_dict[ds] for ds in datasets_for_group])\n", + " \n", + " # Compute (1 - mean(F1)) for the group\n", + " cp_mean = 1 - np.mean(cp_all)\n", + " cs_mean = 1 - np.mean(cs_all)\n", + " cp_group_means.append(cp_mean)\n", + " cs_group_means.append(cs_mean)\n", + " \n", + " # Standard error of the mean (SEM) for the group\n", + " cp_sem = np.std(cp_all, ddof=1) / np.sqrt(len(cp_all))\n", + " cs_sem = np.std(cs_all, ddof=1) / np.sqrt(len(cs_all))\n", + " cp_group_sems.append(cp_sem)\n", + " cs_group_sems.append(cs_sem)\n", + "\n", + "# Now plot side‐by‐side bars for the groups\n", + "x = np.arange(len(group_names))\n", + "width = 0.35\n", + "plt.rcParams['svg.fonttype'] = 'none' \n", + "fig, ax = plt.subplots(figsize=(8,5))\n", + "\n", + "bars_cp = ax.bar(\n", + " x - width/2, cp_group_means, width,\n", + " yerr=cp_group_sems, edgecolor='black', linewidth=1, capsize=5, \n", + " label='Cellpose', color=c2\n", + ")\n", + "bars_cs = ax.bar(\n", + " x + width/2, cs_group_means, width,\n", + " yerr=cs_group_sems, edgecolor='black', linewidth=1, capsize=5, \n", + " label='CellSAM', color=c4\n", + ")\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels(group_names, rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_general_grouped_comparison_cp_reg.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHfCAYAAADNxk7yAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAe+FJREFUeJzt3XdYU+ffBvA77CEgslFUFHGiuGddRXFVrWjVaq1I1aLWQdW6ce+6rXvWXUfVX+uoKNaBeytSceFgK7JX8rx/+JKSgq2QkMO4P9eVy3AW34SY5D7PODIhhAAREREREZEadKQugIiIiIiIij4GCyIiIiIiUhuDBRERERERqY3BgoiIiIiI1MZgQUREREREamOwICIiIiIitTFYEBERERGR2hgsiIiIiIhIbQwWRERERESkNgYLIiIiIiJSG4MFERERERGpjcGCiIiIiIjUxmBBRERERERqY7AgIiIiIiK1MVgQEREREZHaGCyIiIiIiEhtDBZERERERKQ2PakLIKKiJywsDDExMVKXkStra2uUL19e6jL+1fTp0zFjxgycOXMGrVu3Vi6XyWRo1aoVAgMDJautJODrV318DRNRbhgsiChPwsLCUL1qVSSnpkpdSq5MjIwQHBKikS9n169fx08//YQ///wTr1+/hkKhgKOjI5o1a4YBAwagXbt2GqiYtCksLAxVq1VHakqy1KXkysjYBCEPgzUWLgrLa/jevXtYtGgRzp49i/DwcBgZGcHGxga1a9dGq1atMHLkSMhkslz3/fPPP9GqVSsAwL59+9CrV69ct9u6dSu8vb0BAF5eXti/f3+u261ZswbDhg0DAHz99dfYunWrmo+OiLIwWBBRnsTExCA5NRUr6lSESyljqctREZqYgpG3nyEmJkatL2YKhQJjx47F0qVLoaenh7Zt26Jr167Q19fHkydP8Ntvv2HHjh2YOXMmpk6dqsFHQAUtJiYGqSnJqOA1EUY2hatlIDU6DM8PzFP79QsUrtfwH3/8gS5duiAzMxMeHh74/PPPYWRkhMePH+Ps2bM4dOgQhg8fDj293L+SbNq0CcD71pDNmzd/MFhk0dPTw9GjRxETEwNra+tcj6enp4fMzEz1HxwRqWCwIKJ8cSllDDcLE6nLKBBTpkzB0qVL4e7ujv3796Ny5coq61NSUrBq1SrExsZKVCGpy8imPEwcXaUuo8AUptewr68v5HI5Tp06hTZt2qisE0Lg5MmT0NXVzXXf+Ph47N+/H7Vr14adnR1OnjyJFy9ewMnJ6YO/r2PHjjh69Ch27NiB0aNHq6y7c+cOrl+/jq5du+LIkSNqPzYiUsXB20RE2YSGhmLhwoWwsrLC8ePHc3whAwBjY2OMGzcOM2bMUC5LT0/HkiVLUK9ePZiamsLMzAyffPKJ2l9eBg4cCJlMhidPnmDhwoWoUqUKjIyM4OzsjJkzZyIjIyPX/bZs2YLGjRujVKlSKFWqFBo3bvzBLh8HDhxAq1atYGtrCyMjIzg6OsLDwwMHDhzIse2dO3fQp08fODg4wMDAABUqVMB3333HkFWIFKbXcFRUFB4/foxatWrlCBXA+1YIT0/PD3aD2r17N5KTkzFgwAAMGDAACoXiP7suNWvWDNWqVcOWLVtyrNu8eTN0dXXx9ddf5+vxENG/Y7AgIspm69atkMvlGDp0KOzs7P51W0NDQwBAWloaPD098f3330MIAR8fH/Tv3x/Pnz9Ht27dsGrVKrXrGj16NBYsWAAPDw989913MDQ0hL+/P/r27Ztj25EjR2LQoEF49eoVfHx84OPjg1evXsHb2xujRo1S2XbNmjXo2bMnHj16hM8//xx+fn7o0KEDIiIicOjQIZVtjxw5gkaNGuHIkSNo3bo1Ro8eDTc3N6xatQpNmzbF27dv1X6cpL7C9Bq2sLCAnp4ewsPDkZSUlOf9N23aBF1dXfTr1w89evRAqVKlsGXLFggh/nU/b29vZetElvT0dOzcuROenp5wdHTMcy1E9N/YFYqIKJsLFy4AANq2bfvR+8ycOROBgYGYOnUqZsyYoTz7mpCQgLZt2+L7779Hjx491Poyc+nSJdy+fRvlypUDAMyZMwft2rXDgQMHcODAAXh5eQF4P9B15cqVqF69OoKCgmBhYQHg/Sw+TZo0wYoVK9CzZ0988sknAICNGzfCwMAAt27dgq2trcrvzN4KERsbi6+++grW1ta4cOECKlSooFy3Z88e9O3bF9OmTcPKlSvz/RhJMwrTa9jQ0BBdu3bFwYMH0bRpUwwePBjNmjWDm5sbDAwM/nXfu3fv4urVq/D09IS9vT0AoEePHti+fTtOnz6NTz/99IP7DhgwAJMnT8bmzZtRv359AMDhw4cRExMDHx+fPD0GIvp4bLEgIsomIiICAJRf4P+LQqHAmjVrULlyZZUvZABgZmaGadOmIT09HQcPHlSrrlGjRqnUZGBggDlz5gCASteQbdu2AXgfJLJCBQBYWlrC398/x/YAoK+vD319/Ry/08rKSnl/+/btiI+Px7x581RCBQD06dMH9erVw549e/L34EijCttreP369fjss89w9+5djBw5Eg0aNICZmRmaN2+OFStWICUlJdf9sgZtDxgwQLks637Wug+xt7dHp06dsHv3bqT+/wx2mzdvho2NDT777LN8PQ4i+m9ssSAiUkNISAjevn0LR0dHlf7qWaKjowEADx8+VOv3ZLUwZNe0aVPo6enh5s2bymVZ97NfWyBLVh/3W7duKZf16dMH48ePR61atfDll1+iTZs2aNGiBczNzVX2vXTpEgDg8uXLePz4cY5jp6amIiYm5oMz8VDhVdCvYSsrKxw5cgSPHj3C8ePHceXKFVy6dAkXL17ExYsXsWHDBpw9exZlypRR7pOWloYdO3bAzMwMn3/+uXJ5mzZt4OTkhEOHDuHt27ewtLT84O8dNGgQjhw5gkOHDqFly5Y4efIkRo0alWuIJiLNYLAgIsrG3t4eDx8+xKtXr1C1atX/3P7NmzcAgPv37+P+/fsf3C4//cuzy62vvK6uLqysrPDu3Tvlsvj4eOjo6MDGxibXY8hkMsTHxyuXjR07FlZWVlizZg1+/PFHLF68GHp6eujcuTOWLl0KZ2dnAH8/ztWrV/9rnUlJSQwWEiusr+EqVaqgSpUqyp9v3bqF/v374969e5gxYwaWL1+uXPfrr78iNjYW3t7eMDb+e1prHR0d9OvXD/Pnz8euXbswfPjwD/6+zp07w87ODps3b8aTJ0+gUCgwaNAgtR4DEf07doUiIsqmefPmAICAgICP2j7rzL6XlxeEEB+85TZDTV5ERkbmWCaXyxEbG6vS5cnc3BwKhUJ5ljm7qKgoCCFUWiNkMhkGDRqEq1evIjo6GocOHUKPHj1w+PBhdOnSBXK5XOVx3r17918f5z+7SZH2FdbX8D+5u7srx+ScPn1aZV1WV6ctW7ZAJpOp3ObPn6+yzYfo6elhwIABOH36NFavXo1GjRqhVq1aGn0MRKSKwYKIKJuBAwdCV1cX69evz/XLeXZpaWmoXr06zM3Nce3atQ9O/aoJ586dy7EsKCgImZmZqFu3rnJZ1v3AwMAc22ctc3d3z/V3WFlZoXv37ti7dy/atm2LBw8eIDQ0FADQuHFj5e+kwq2wvoZzU6pUqRzLnj9/joCAANjZ2SlnNfvnzdnZGTdv3lTpBpibQYMGQaFQIDw8nK0VRFrAYEFElI2LiwvGjx+PmJgYdOzYEU+fPs2xTWpqKpYsWYLp06dDT08Pvr6+eP78OcaOHZvrF7N79+4hKipKrbqWL1+Oly9fKn9OT0/H5MmTAbz/Ipkla37+GTNmqHR5evfunbL/fPY5/AMDA3NM3ZmRkaHsHmNkZATg/fSdZmZmmDx5cq7dZZKTk5XjMEhahek1nJSUhDlz5iAmJibHuszMTCxatAgA0KJFC+XyLVu2QKFQYOjQodi4cWOutwkTJgD471aLatWq4dixYzh06BD69euX5/qJKG84xoKI6B9mz56N1NRULF26FFWrVkXbtm1Rq1Yt6Ovr4+nTpzh16hRiY2Mxe/ZsAO+/xN+4cQMrVqzAb7/9hpYtW8LW1havXr3C3bt3cfv2bQQFBeWYzjUvmjRpgjp16qB3794wNTXF0aNHERISgh49eiinmgWAli1b4rvvvsPKlStRq1YtZfeWAwcO4OXLlxg5ciRatmyp3L579+4wNzdHkyZNUKFCBWRkZOCPP/7AgwcP0LNnT2XXJhsbG+zevRu9evVCnTp10KFDB1SrVg1paWl49uwZzp49i2bNmuH48eP5foykOYXlNZyRkYEpU6Zg+vTpaNq0KerUqQNzc3NERkbixIkTePnyJZydnZUzlikUCmX3p+yB+Z969+6N0aNHY+fOnVi8eLEyAOemQ4cOeaqZiPKPwYKI8iU0MfcpIqWkqZp0dHSwZMkSfPnll1izZg3+/PNP/Pnnn1AoFHBwcICnpye8vb3h4eEB4P1c/ceOHcOmTZuwfft2HDhwAGlpabCzs0ONGjXw7bffws3NTa2ali1bhl9++QUbN25EWFgYHBwcMH36dEycODHHtitWrEDdunWxZs0arF+/HgBQs2ZNzJw5E97e3irbzps3TzlTz9GjR2FqaorKlStjzZo1Oeb779y5M27evIlFixbh1KlT+OOPP2Bqaopy5crB29sb/fv3V+sxalNqdJjUJeSgyZoKy2vY3Nwcv//+O06cOIHz58/jl19+QWxsLExMTODq6orBgwdj1KhRynFCp06dQlhYGFq1aqWcOCA3FhYW6NGjB3bu3ImDBw/iyy+/zN8TRUQaJRP/dflKIqJswsLCUL1qVST//9zwhY2JkRGCQ0JQvnx5qUvRiIEDB2Lbtm14+vQpKlasKHU5RV5YWBiqVquO1JRkqUvJlZGxCUIeBheb1y8RlSxssSCiPClfvjyCQ0Jy7TNdGFhbW/NLGX1Q+fLlEfIwmK9fIqICwGBBRHlWvnx5fvmhIouvXyKigsFZoYiIiIiISG0cY0FERERERGpjiwUREREREamNwYKIiIiIiNTGYEFERERERGpjsCAiIiIiIrUxWBARERERkdoYLIiIiIiISG0MFkREREREpDYGCyIiIiIiUhuDRS6EEIiPjwevHUhERERE9HEYLHKRkJAACwsLJCQkSF0KERERUZGSkJCAwMBAfo8qgRgsiIiIiEhjEhMTcfbsWSQmJkpdCmkZgwUREREREamNwYKIiIiINKZ06dLo2bMnSpcuLXUppGV6UhdARERERMWHsbExatasKXUZJAG2WBARERGRxiQmJiIoKIhjLEogBgsiIiIi0piEhAScPHmSs0KVQAwWRERERESkNgYLIiIiIiJSG4MFERERERGpjcGCiIiIiDTG0NAQrq6uMDQ0lLoU0jKZEEJIXURhEx8fDwsLC7x79w7m5uZSl0NEREREVOgVihaL1atXo2LFijAyMkLjxo1x5cqVD267YcMGfPLJJ7C0tISlpSU8PDxybD9w4EDIZDKVW4cOHQr6YRARERGVeHK5HElJSZDL5VKXQlomebDYu3cv/Pz84O/vjxs3bqBOnTrw9PREVFRUrtsHBgaib9++OHPmDIKCguDk5IT27dvj1atXKtt16NAB4eHhytvu3bu18XCIiIiISrSoqCgsXrz4g9/lqPiS/MrbS5YsweDBg+Ht7Q0AWLt2LX777Tds3rwZEyZMyLH9zp07VX7euHEjDhw4gICAAAwYMEC53NDQEPb29gVbPBEVuKyTA3nl4OAABweHAqiIiIiIciNpsEhPT8f169cxceJE5TIdHR14eHggKCjoo46RnJyMjIwMlClTRmV5YGAgbG1tYWlpibZt22L27NmwsrLK9RhpaWlIS0tT/hwfH5+PR0NEBWHdunWYMWNGnvfz9/fH9OnTNV8QERER5UrSYBETEwO5XA47OzuV5XZ2dnj48OFHHeOHH36Ao6MjPDw8lMs6dOiAHj16wNnZGY8fP8akSZPQsWNHBAUFQVdXN8cx5s2bl68vLkRU8IYOHYquXbuqLEtJSUGLFi0AAOfPn4exsXGO/dhaQUREpF2Sd4VSx/z587Fnzx4EBgbCyMhIubxPnz7K+25ubqhduzYqV66MwMBAfPrppzmOM3HiRPj5+Sl/jo+Ph5OTU8EWT0QfJbcuTUlJScr77u7uMDU11XZZRERE9A+SBgtra2vo6uoiMjJSZXlkZOR/jo9YvHgx5s+fj1OnTqF27dr/um2lSpVgbW2N0NDQXIOFoaEh51omIiIi0gA7OztMmDAB+vr6UpdCWibprFAGBgaoX78+AgIClMsUCgUCAgLQtGnTD+63cOFCzJo1C8ePH0eDBg3+8/e8fPkSsbGx7BpBREREVMB0dHRgaGgIHR3JJx8lLZP8L+7n54cNGzZg27ZtCA4Ohq+vL5KSkpSzRA0YMEBlcPeCBQswdepUbN68GRUrVkRERAQiIiKQmJgIAEhMTMS4ceNw6dIlPHv2DAEBAejWrRtcXFzg6ekpyWMkIiIiKiliY2OxY8cOxMbGSl0KaZnkYyx69+6N6OhoTJs2DREREXB3d8fx48eVA7rDwsJUEu+aNWuQnp6Onj17qhwnawYYXV1d3LlzB9u2bUNcXBwcHR3Rvn17zJo1i92diIiIiApYeno6Hj9+jPT0dKlLIS2TCSGE1EUUNvHx8bCwsMC7d+9gbm4udTlE9A9JSUkoVaoUgPetlBy8TURUeISHh2P9+vUYMmQIu6GXMJJ3hSIiIiIioqKPwYKIiIiIiNTGYEFEREREGmNubo6OHTuyO3kJJPngbSIiIiIqPkxNTdGoUSOpyyAJsMWCiIiIiDQmJSUFd+7cQUpKitSlkJYxWBARERGRxsTFxeHQoUOIi4uTuhTSMgYLIiIiIiJSG4MFERERERGpjcGCiIiIiIjUxmBBRERERBqjr6+PcuXKQV9fX+pSSMtkQgghdRGFTXx8PCwsLPDu3TvOwUxUCCUlJaFUqVIAgMTERJiamkpcEREREbHFgoiIiIiI1MZgQUREREQaEx4ejhkzZiA8PFzqUkjLGCyIiIiIiEhtDBZERERERKQ2BgsiIiIiIlIbgwUREREREamN083mgtPNEhVunG6WiKjwyszMRHx8PMzNzaGnpyd1OaRF/GsTERERkcbo6emhTJkyUpdBEmBXKCIiIiLSmLdv3+LgwYN4+/at1KWQljFYEBEREZHGpKam4u7du0hNTZW6FNIydoUiIsmEhYUhJiYmz/ulpKQo79+6dQvGxsb5rsHa2hrly5fP9/5ERET0HoMFEUkiLCwM1atWRbKaZ7RatGih1v4mRkYIDglhuCAiIlITgwURSSImJgbJqalYUaciXErlrcUhVa5Aj0shAICDTarCSDd/vTpDE1Mw8vYzxMTEMFgQERGpicGCiCTlUsoYbhYmedonOVOuvF/T3BgmerqaLouIiPKpVKlSaNWqlXJacCo5GCyIiIiISGPMzMzQunVrqcsgCXBWKCIiIiLSmLS0NISGhiItLU3qUkjLGCyIiIiISGPevHmDnTt34s2bN1KXQlrGYEFERERERGpjsCAiIiIiIrUxWBARERERkdoYLIiIiIhIY3R1dWFpaQldXU4FXtJwulkiIiIi0hhbW1uMHDlS6jJIAmyxICIiIiIitTFYEBEREZHGREZGYtGiRYiMjJS6FNIyBgsiIiIi0hiFQoHk5GQoFAqpSyEtY7AgIiIiIiK1MVgQEREREZHaGCyIiIiIiEhtDBZEREREpDFWVlYYNGgQrKyspC6FtIzXsSAiIiIijTEwMICTk5PUZZAE2GJBRERERBoTHx+PEydOID4+XupSSMsYLIiIiIhIY5KSknDp0iUkJSVJXQppGYMFERERERGpjcGCiIiIiIjUxmBBRERERERqY7AgIiIiIo0xMTFBgwYNYGJiInUppGWcbpaIiIiINMbCwgKdO3eWugySQKFosVi9ejUqVqwIIyMjNG7cGFeuXPngths2bMAnn3wCS0tLWFpawsPDI8f2QghMmzYNDg4OMDY2hoeHBx49elTQD4OIiIioxMvIyEB4eDgyMjKkLoW0TPJgsXfvXvj5+cHf3x83btxAnTp14OnpiaioqFy3DwwMRN++fXHmzBkEBQXByckJ7du3x6tXr5TbLFy4ECtWrMDatWtx+fJlmJqawtPTE6mpqdp6WEREREQlUkxMDNavX4+YmBipSyEtkzxYLFmyBIMHD4a3tzdq1KiBtWvXwsTEBJs3b851+507d2LYsGFwd3dHtWrVsHHjRigUCgQEBAB431qxbNkyTJkyBd26dUPt2rWxfft2vH79Gr/++qsWHxkRERERUckhabBIT0/H9evX4eHhoVymo6MDDw8PBAUFfdQxkpOTkZGRgTJlygAAnj59ioiICJVjWlhYoHHjxh88ZlpaGuLj41VuRERERET08SQdvB0TEwO5XA47OzuV5XZ2dnj48OFHHeOHH36Ao6OjMkhEREQoj/HPY2at+6d58+ZhxowZeS2fiLQgMjUDUWmq/XRT5XLl/fvxyTDS1c2xn62hPuyM9Au8PiIiInqvSM8KNX/+fOzZsweBgYEwMjLK93EmTpwIPz8/5c/x8fFwcnLSRIlEpKadYdFYGhr+wfU9Lv2V6/IxLg7wc3UsqLKIiOgDZDIZDAwMIJPJpC6FtEzSYGFtbQ1dXV1ERkaqLI+MjIS9vf2/7rt48WLMnz8fp06dQu3atZXLs/aLjIyEg4ODyjHd3d1zPZahoSEMDQ3z+SiIqCD1K2+Ddnal87yfrSFbK4iIpGBvb4+JEydKXQZJQNJgYWBggPr16yMgIADdu3cHAOVA7BEjRnxwv4ULF2LOnDk4ceIEGjRooLLO2dkZ9vb2CAgIUAaJ+Ph4XL58Gb6+vgX1UIiogNgZsUsTERFRUSD5rFB+fn7YsGEDtm3bhuDgYPj6+iIpKQne3t4AgAEDBqik3gULFmDq1KnYvHkzKlasiIiICERERCAxMRHA++a30aNHY/bs2Thy5Aju3r2LAQMGwNHRURleiIiIiKhgREdH46effkJ0dLTUpZCWST7Gonfv3oiOjsa0adMQEREBd3d3HD9+XDn4OiwsDDo6f+efNWvWID09HT179lQ5jr+/P6ZPnw4AGD9+PJKSkjBkyBDExcWhRYsWOH78uFrjMIiIiIjov2VmZiI6OhqZmZlSl0JaJnmwAIARI0Z8sOtTYGCgys/Pnj37z+PJZDLMnDkTM2fO1EB1RERERET0XyTvCkVEREREREUfgwUREREREamtUHSFIiIqzMLDwxEe/uFraXyIg4ODyrTXREQlgaWlJfr06QNLS0upSyEtY7AgIvoP69atw4wZM/K8X/ZJJYiISgojIyNUrVpV6jJIAgwWRET/YejQoejatavKspSUFLRo0QIAcP78eRgbG+fYj60VRFQSJSYm4ubNm6hbty5KlSoldTmkRQwWRET/IbcuTUlJScr77u7uMDU11XZZRESFUkJCAk6fPg0XFxcGixKGg7eJiIiIiEhtDBZERERERKQ2BgsiIiIiIlIbgwURERERaYyRkRFq1KgBIyMjqUshLePgbSIiIiLSGEtLS/Tq1UvqMkgCeQ4WCoUCZ8+exblz5/D8+XMkJyfDxsYGdevWhYeHB5ycnAqiTiIiIiIqAuRyOZKSkmBqagpdXV2pyyEt+uiuUCkpKZg9ezacnJzQqVMnHDt2DHFxcdDV1UVoaCj8/f3h7OyMTp064dKlSwVZMxEREREVUlFRUVi6dCmioqKkLoW07KNbLFxdXdG0aVNs2LAB7dq1g76+fo5tnj9/jl27dqFPnz6YPHkyBg8erNFiiYiIiIiocProYHHy5ElUr179X7epUKECJk6ciLFjxyIsLEzt4oiIiIiIqGj46K5Q/xUqstPX10flypXzVRARERERERU9Gp1uNikpCX/++acmD0lEREREREWARqebDQ0NRZs2bSCXyzV5WCIiIiIqIuzt7TF58mTOCFUC8ToWRERERKQxMpkMenr8ilkS5emvXqZMmX9dz5YKIiIiopItNjYWR48exWeffQYrKyupyyEtylOwSEtLg6+vL9zc3HJd//z5c8yYMUMjhRERERFR0ZOeno7nz58jPT1d6lJIy/IULNzd3eHk5ISvv/461/W3b99msCAiIiIiKoHyFCw6d+6MuLi4D64vU6YMBgwYoG5NRERaFRwcnOd9UlJSlPdv3boFY2PjfP1ua2trlC9fPl/7EhERFSZ5ChaTJk361/VOTk7YsmWLWgUREWlLVFoGINNB//791TpOixYt8r2vkbEJQh4GM1wQEVGRxyH7RFRixWdkAkKBCl4TYWSTty/2iow0PNo0GgBQxWcZdPQN8/z7U6PD8PzAPMTExDBYEFGxYWFhgc8++wwWFhZSl0Jalqdg0bJlSxw5cgSlS5cGABw5cgTt2rXLdxcAIqLCwMimPEwcXfO0jzz9765Qxg4u0DXg+yAREQCYmJigXr16UpdBEsjTlbfPnz+vMsK/f//+CA8P13hRRERERFQ0JScn48aNG0hOTpa6FNKyPAWLfxJCaKoOIiIiIioG3r17h6NHj+Ldu3dSl0JaplawICIiIiIiAvIxePvEiRPKwTgKhQIBAQG4d++eyjZdu3bVTHVERERERFQk5DlY/PPieEOHDlX5WSaTQS6Xq1cVEREREREVKXkKFgqFoqDqICIiIqJiwMDAABUqVICBgYHUpZCW8ToWRERERKQxVlZWGDhwoNRlkAQ4eJuIiIiINEYIgczMTM4eWgIxWBARERGRxkRERGDOnDmIiIiQuhTSMgYLIiIiIiJSG4MFERERERGpTe1gMWzYMMTExGiiFiIiIiIiKqLUDhY7duxAfHy8JmohIiIiIqIiSu3pZjnin4iIiIiy2NraYsyYMTA1NZW6FNIyXseCiIiIiDRGV1cX5ubmUpdBElA7WCQkJGiiDiKiQisjIRYZCbEqy+QZacr7yeGh0NU3zLGfvpkV9M2sCrw+IqLC5O3btzh16hQ8PDxgaWkpdTmkRWyxICL6DzFX/4eIwO0fXB+6aXSuy+1bD4BD268LqCoiosIpNTUVDx48QIsWLaQuhbSMwYKI6D9YN+wCi2pN87wfWyuIiKgkYbAgIvoP7NJERET033iBPCIiIiIiUhuDBRERERFpjJmZGdq2bQszMzOpSyEt02iwePz4Mdq2bavJQxIRERFREVKqVCl88sknKFWqlNSlkJZpNFgkJibi7Nmzedpn9erVqFixIoyMjNC4cWNcuXLlg9vev38fXl5eqFixImQyGZYtW5Zjm+nTp0Mmk6ncqlWrlteHQkRERET5kJqaipCQEKSmpkpdCmlZngZvr1ix4l/Xv3r1Kk+/fO/evfDz88PatWvRuHFjLFu2DJ6enggJCYGtrW2O7ZOTk1GpUiX06tULY8aM+eBxa9asiVOnTil/1tPjGHUiIiIibXj79i327NmDIUOGwMHBQepySIvy9I179OjRcHBwgIGBQa7r09PT8/TLlyxZgsGDB8Pb2xsAsHbtWvz222/YvHkzJkyYkGP7hg0bomHDhgCQ6/osenp6sLe3z1MtRERERESUf3nqClWhQgUsXboUT58+zfX222+/ffSx0tPTcf36dXh4ePxdjI4OPDw8EBQUlJeycnj06BEcHR1RqVIl9OvXD2FhYWodj4iIiIiI/l2egkX9+vVx/fr1D66XyWQQQnzUsWJiYiCXy2FnZ6ey3M7ODhEREXkpS0Xjxo2xdetWHD9+HGvWrMHTp0/xySefICEh4YP7pKWlIT4+XuVGREREREQfL09doWbOnInk5OQPrq9RowaePn2qdlHq6Nixo/J+7dq10bhxY1SoUAH79u2Dj49PrvvMmzcPM2bM0FaJRERERMWWnp4ebGxsOMa1BMpTi0WNGjXQoEGDD67X19dHhQoVPupY1tbW0NXVRWRkpMryyMhIjY6PKF26NFxdXREaGvrBbSZOnIh3794pby9evNDY7yciIiIqSWxsbDBs2DDY2NhIXQppmWQXyDMwMED9+vUREBCgXKZQKBAQEICmTZtq7PckJibi8ePH/zorgaGhIczNzVVuRERERET08T46WHTo0AGXLl36z+0SEhKwYMECrF69+j+39fPzw4YNG7Bt2zYEBwfD19cXSUlJylmiBgwYgIkTJyq3T09Px61bt3Dr1i2kp6fj1atXuHXrlkprxNixY3H27Fk8e/YMFy9exOeffw5dXV307dv3Yx8qEREREeVTREQE5s2bp9aYWSqaPrrzW69eveDl5QULCwt89tlnaNCgARwdHWFkZIS3b9/iwYMHOH/+PH7//Xd07twZixYt+s9j9u7dG9HR0Zg2bRoiIiLg7u6O48ePKwd0h4WFQUfn7+zz+vVr1K1bV/nz4sWLsXjxYrRq1QqBgYEAgJcvX6Jv376IjY2FjY0NWrRogUuXLrE5joiIiEgLhBBIT0//6Al9qPj46GDh4+OD/v3745dffsHevXuxfv16vHv3DsD72aBq1KgBT09PXL16FdWrV//oAkaMGIERI0bkui4rLGSpWLHif75I9+zZ89G/myivwsPDER4enuf9HBwceJEgKjL4OiciovzI03B9Q0ND9O/fH/379wcAvHv3DikpKbCysoK+vn6BFEhUmKxbty5fM4j5+/tj+vTpmi+IqADwdU5ERPmh1jxgFhYWsLCw0FQtRIXe0KFD0bVrV5VlKSkpaNGiBQDg/PnzMDY2zrEfz+JSUcLXORER5QcnGC7i2GVBu3J73pKSkpT33d3dYWpqqu2yiDSKr3MiUoe1tTWGDBkCa2trqUshLWOwKOLYZYGIiIgKE319fZ68LKEYLIo4dlkgIiKiwuTdu3c4f/48WrRowS7zJUyeg4VcLseFCxdQu3ZtlC5dugBKorxglwUiIqK8Y1figpOcnIxr166hXr16DBYlTJ6Dha6uLtq3b4/g4GAGCyIiIiqS2JW46AgLC0NMTIxkv9/a2hrly5eX7PcXJfnqClWrVi08efIEzs7Omq6HiIiIqMCxK3HREBYWhupVqyI5NVWyGkyMjBAcEsJw8RHyFSxmz56NsWPHYtasWahfv36Orjbm5uYaKY6IiIioILArcdEQExOD5NRUrKhTES6lcga9ghaamIKRt58hJiaGweIj5CtYdOrUCQDQtWtXyGQy5XIhBGQyGeRyuWaqIyIiIqIixdTUFE2aNNFoMHMpZQw3CxONHY8KRr6CxZkzZzRdB/2DOv0JU1JSlPdv3bqVa1Pux2CfQqLiJ7/vLXxfIaKPZW5uDk9PT6nLIAnkK1i0atVK03VQNprsT5jVVzQ/2KeQqHjR1HuLNt5XOGMPUdGVnp6OyMhI2NnZwcDAQOpySIvyfR2LuLg4bNq0CcHBwQCAmjVrYtCgQZxWTAPU7U+YKlegx6UQAMDBJlVhpKuT52OwTyFR8aPOe4u231c4Yw9R0RUbG4vNmzdjyJAhDPolTL6CxbVr1+Dp6QljY2M0atQIALBkyRLMmTMHJ0+eRL169TRaZEmV3/6EyZl/j3GpaW4MEz1dTZZFREVcft5btP2+whl7iIiKnnwFizFjxqBr167YsGED9PTeHyIzMxPffPMNRo8ejT///FOjRRJpg9R9zwH2PyfKwhl7iIiKnny3WGQPFQCgp6eH8ePHo0GDBhorjkhbCkPfc4DjWoiIiKjoylewMDc3R1hYGKpVq6ay/MWLFzAzM9NIYUTaJHXfc4DjWoiIqHjQ0dGBiYkJdHTy93lIRVe+gkXv3r3h4+ODxYsXo1mzZgCACxcuYNy4cejbt69GCyTSpqLQ95yIiKgws7Ozw7hx46QugySQr2CxePFiyGQyDBgwAJmZmQAAfX19+Pr6Yv78+RotkP5dZGoGotIyVJalZrtA4f34ZBjp5vyia2uoDzsj/QKvj4iIiIhKhjwHC7lcjkuXLmH69OmYN28eHj9+DACoXLkyTEx4RURt2xkWjaWhH57rvcelv3JdPsbFAX6ujgVVFhEREZVQUVFR2LNnD/r06QNbW1upy9GIrMsrSKWoTO6S52Chq6uL9u3bIzg4GM7OznBzcyuIuugj9Stvg3Z2pfO8n60hWyuIiIhI8+RyOd6+fQt5th4URVVUWgYg00H//v0lrcPI2AQhD4MLfbjIV1eoWrVq4cmTJ3B2dtZ0PZRHdkbs0kREmsUulkRE78VnZAJCgQpeE2FkI82X+tToMDw/MK9ITO6Sr2Axe/ZsjB07FrNmzUL9+vVzzCVubm6ukeKIiEj72MWSiEiVkU15mDi6Sl1GoZevYNGpUycAQNeuXSGTyZTLhRCQyWTFoumLiKikYhdLIiLKj3wFizNnzmi6DiIiKiQKuotlfgdBauoq90VlECRRUVWmTBn069cPZcqUkboU0rI8B4uMjAzMnDkTa9euRZUqVQqiJiIiKoY0OQhSnavcF5VBkERFlaGhIVxcXKQugySQ52Chr6+PO3fuFEQtRERUjKk7CFKRkYZHm0YDAKr4LIOOvmGej1GUBkESFVUJCQm4fv066tevDzMzM6nLIS3KV1eo/v37Y9OmTbwYHhER5Vl+B0HK0//uCmXs4AJdg/x1hSKigpWYmIizZ8+iatWqDBYlTL6CRWZmJjZv3oxTp07lOivUkiVLNFIcERERUXEUHh6O8PAPz772IQ4ODnBwcCiAiojUl69gce/ePdSrVw8A8NdfqtMOZp8lioiIiIhyWrduHWbMmJHn/fz9/TF9+nTNF0SkAZwViigPeOEwIiLShKFDh6Jr164qy1JSUpQTE5w/fz7Xmc/YWkGFWb6Cxb+JioqCra2tpg9LVCjwwmFERKQJuXVpSkpKUt53d3fP0dW8qDAyMoKbmxuMjIykLoW0LE/BwsTEBM+fP4eNjQ0AoHPnzti4caPyP0ZkZCQcHR15gTwqtnjhMCIion9naWmJHj16SF0GSSBPwSI1NRVCCOXPf/75p8oFiwCorCcqbgr6wmFERERFXWZmJuLj42Fubg49PY13jqFCTEfTB+TgbSIiIqKSKzo6GitXrkR0dLTUpZCWMUYSERFRsRIWFoaYmJg875e9F8atW7dyHTz9MaytrXkBRiqR8hQsZDKZSovEP38mooLHuc+JiD4sLCwM1atWRXJqqlrHyZqdKT9MjIwQHBLCcEElTp6ChRACrq6uyjCRmJiIunXrQkdHR7meiAoW5z6nkiAjIRYZCbEqy+QZacr7yeGh0NU3zLGfvpkV9M2sCrw+KrxiYmKQnJqKFXUqwqVU3locUuUK9LgUAgA42KQqjHTz3mM8NDEFI28/Q0xMDIMFlTh5ChZbtmwpqDqI6CNx7nMqCWKu/g8Rgds/uD500+hcl9u3HgCHtl8XUFVUlLiUMoabhUme9knO/HtWy5rmxjDRy3ldIiL6sDwFi6+/5ps1kdSK89znRFmsG3aBRbWmed6PrRVE0nNwcIC/v7/UZZAEOHibiIgKHXZpIiIqehgsSC0cSExERETZxcTE4PDhw+jWrRusra2lLoe0iMGC1MKBxERERJRdRkYGXr58iYyMDKlLIS1jsCC1cCAxEREREQEMFqQmDiQmIiLKKTg4OM/7aOoCfQAv0kfSyFewkMvl2Lp1KwICAhAVFQWFQqGy/vTp0xopjqQn5Rsj3xSJiKioiUrLAGQ66N+/v1rHUecCfQBgZGyCkIfB/BwlrcpXsBg1ahS2bt2Kzp07o1atWrz6djFUGN4Y+aZIRERFTXxGJiAUqOA1EUY2efv8UmSk4dH/X6Olis8y6ORyEciPkRodhucH5kl2kb7SpUvj888/R+nSpbX+u0la+QoWe/bswb59+9CpUydN10OFhNRvjFK/KUqJrUREREWfkU15mDi65mkfefrf7+XGDi7QNch/VygpGRsbo3bt2lKXQRLIV7AwMDCAi4uLRgpYvXo1Fi1ahIiICNSpUwcrV65Eo0aNct32/v37mDZtGq5fv47nz59j6dKlGD16tFrHpH9Xkt8YtY2tREREVBwkJSXh/v37qFmzJsdZljD5Chbff/89li9fjlWrVqnVDWrv3r3w8/PD2rVr0bhxYyxbtgyenp4ICQmBra1tju2Tk5NRqVIl9OrVC2PGjNHIMYkKC7YSERFRcRAfH49jx47BycmJwaKEyVewOH/+PM6cOYNjx46hZs2a0NfXV1l/8ODBjzrOkiVLMHjwYHh7ewMA1q5di99++w2bN2/GhAkTcmzfsGFDNGzYEAByXZ+fY5J6MhJikZEQq7JMnpGmvJ8cHgrdXL7k8qq6H8ZWIiIiIiqK8hUssgblqCM9PR3Xr1/HxIkTlct0dHTg4eGBoKCgQnNM+ncxV/+HiMDtH1wf+v9n0f/JvvUAOLT9uoCqIiIiIiJty1ew2LJli9q/OCYmBnK5HHZ2dirL7ezs8PDhQ60eMy0tDWlpf59lj4+Pz9fvL4msG3aBRbWmed6PrRVERERExQsvkAdg3rx5mDFjhtRlFEns0kRERETZGRgYoHLlyjAwMJC6FNKyfAeL/fv3Y9++fQgLC0N6errKuhs3bvzn/tbW1tDV1UVkZKTK8sjISNjb2+erpvwec+LEifDz81P+HB8fDycnp3zVQERERFSSWVlZqT3DIRVNOvnZacWKFfD29oadnR1u3ryJRo0awcrKCk+ePEHHjh0/6hgGBgaoX78+AgIClMsUCgUCAgLQtGneu9aoc0xDQ0OYm5ur3IiIiIgo7xQKBdLS0qBQKKQuhbQsX8Hip59+wvr167Fy5UoYGBhg/Pjx+OOPPzBy5Ei8e/fuo4/j5+eHDRs2YNu2bQgODoavry+SkpKUMzoNGDBAZSB2eno6bt26hVu3biE9PR2vXr3CrVu3EBoa+tHHJCIiIqKCExkZifnz5+foQULFX766QoWFhaFZs2YA3l9dMSEhAQDw1VdfoUmTJli1atVHHad3796Ijo7GtGnTEBERAXd3dxw/flw5+DosLAw6On9nn9evX6Nu3brKnxcvXozFixejVatWCAwM/KhjEhV1nOKXiIiICqN8BQt7e3u8efMGFSpUQPny5XHp0iXUqVMHT58+hRAiT8caMWIERowYkeu6rLCQpWLFih91/H87JlFRxyl+iYiIqDDKV7Bo27Ytjhw5grp168Lb2xtjxozB/v37ce3aNfTo0UPTNRJRNpzil4iIiAqjfAWL9evXKwfkDB8+HFZWVrh48SK6du2KoUOHarRAIlLFLk1ERERUGOUrWOjo6KiMfejTpw/69OmjsaKIiIiIirPiPF7O1tYWY8eOhZGRkdSlkJbl+zoW586dw7p16/D48WPs378fZcuWxc8//wxnZ2e0aNFCkzUSERERFSvFebycrq4uTE1NpS6DJJCvYHHgwAF89dVX6NevH27evIm0tPcJ+927d5g7dy5+//13jRZJREREVJwU5/Fyb968wYkTJ+Dp6YkyZcpIXQ5pUb6CxezZs7F27VoMGDAAe/bsUS5v3rw5Zs+erbHiiIiIiIqjotClKb/S0tLw119/oXXr1lKXQlqWr2AREhKCli1b5lhuYWGBuLg4dWsiIiIiKlCRqRmISstQWZYqlyvv349PhpGubo79bA31YWekX+D1ERVF+b6ORWhoKCpWrKiy/Pz586hUqZIm6iIiIiIqMDvDorE0NPyD63tc+ivX5WNcHODn6lhQZREVafkKFoMHD8aoUaOwefNmyGQyvH79GkFBQRg7diymTp2q6RqJiIiINKpfeRu0syud5/1sDdlaQfQh+QoWEyZMgEKhwKeffork5GS0bNkShoaGGDt2LL777jtN10hERESkUXZG7NJUUMzMzNC+fXuYmZlJXQppWb6ChUwmw+TJkzFu3DiEhoYiMTERNWrUQKlSpTRdHxEREREVIaVKlULTpnmf8YqKvnxfxwIADAwMUKNGDU3VQkRERERFXEpKCp48eYJKlSrB2NhY6nJIi/IULAYNGvRR223evDlfxRARERFR0RYXF4f9+/djyJAhDBYlTJ6CxdatW1GhQgXUrVsXQoiCqomIiIiIiIqYPAULX19f7N69G0+fPoW3tzf69+/PKyoSERERERF08rLx6tWrER4ejvHjx+Po0aNwcnLCF198gRMnTrAFg4iIiIioBMtTsAAAQ0ND9O3bF3/88QcePHiAmjVrYtiwYahYsSISExMLokYiIiIiKiL09PRgb28PPT215giiIkitv7iOjg5kMhmEEJDL5ZqqiYiIiIiKKBsbGwwdOlTqMkgCeW6xSEtLw+7du9GuXTu4urri7t27WLVqFcLCwngdCyIiIiKiEipPLRbDhg3Dnj174OTkhEGDBmH37t2wtrYuqNqIiIiIqIgJDw/Hpk2b4OPjAwcHB6nLIS3KU7BYu3Ytypcvj0qVKuHs2bM4e/ZsrtsdPHhQI8URERERUdHDLvIlU56CxYABAyCTyQqqFiIiIiIiKqLyfIE8IiIiIiKif8rz4G0iIiIiIqJ/4gTDRERERKQx1tbW8PX1haWlpdSlkJYxWBARERGRxujr68PW1lbqMkgC7ApFRERERBoTFxeHI0eOIC4uTupSSMsYLIiIiIhIY1JSUnDz5k2kpKRIXQppGYMFERERERGpjcGCiIiIiIjUxmBBRERERERqY7AgIiIiIo0xNTVF8+bNYWpqKnUppGWcbpaIiIiINMbc3BweHh5Sl0ESYIsFEREREWlMWloanj17hrS0NKlLIS1jsCAiIiIijXnz5g22bduGN2/eSF0KaRmDBRERERERqY3BgoiIiIiI1MZgQUREREREamOwICIiIiKN0dHRgZmZGXR0+DWzpOF0s0RERESkMXZ2dvDz85O6DJIAoyQREREREamNwYKIiIiINCYyMhJLlixBZGSk1KWQljFYEBEREZHGKBQKJCQkQKFQSF0KaRmDBRERERERqY3BgoiIiIiI1MZgQUREREREamOwICIiIiKNKVOmDL7++muUKVNG6lJIy3gdCyIiIiLSGENDQ1SsWFHqMkgCbLEgIiIiIo2Jj4/HqVOnEB8fL3UppGWFIlisXr0aFStWhJGRERo3bowrV6786/a//PILqlWrBiMjI7i5ueH3339XWT9w4EDIZDKVW4cOHQryIRARERERgKSkJFy4cAFJSUlSl0JaJnmw2Lt3L/z8/ODv748bN26gTp068PT0RFRUVK7bX7x4EX379oWPjw9u3ryJ7t27o3v37rh3757Kdh06dEB4eLjytnv3bm08HCIiIiKiEknyYLFkyRIMHjwY3t7eqFGjBtauXQsTExNs3rw51+2XL1+ODh06YNy4cahevTpmzZqFevXqYdWqVSrbGRoawt7eXnmztLTUxsMhIiIiIiqRJA0W6enpuH79Ojw8PJTLdHR04OHhgaCgoFz3CQoKUtkeADw9PXNsHxgYCFtbW1StWhW+vr6IjY39YB1paWmIj49XuRERERER0ceTNFjExMRALpfDzs5OZbmdnR0iIiJy3SciIuI/t+/QoQO2b9+OgIAALFiwAGfPnkXHjh0hl8tzPea8efNgYWGhvDk5Oan5yIiIiIhKJmNjY9StWxfGxsZSl0JaViynm+3Tp4/yvpubG2rXro3KlSsjMDAQn376aY7tJ06cCD8/P+XP8fHxDBdERERE+VC6dGl07dpV6jJIApK2WFhbW0NXVxeRkZEqyyMjI2Fvb5/rPvb29nnaHgAqVaoEa2trhIaG5rre0NAQ5ubmKjciIiIiyruMjAxERUUhIyND6lJIyyQNFgYGBqhfvz4CAgKUyxQKBQICAtC0adNc92natKnK9gDwxx9/fHB7AHj58iViY2Ph4OCgmcKJiIiIKFcxMTFYs2YNYmJipC6FtEzyWaH8/PywYcMGbNu2DcHBwfD19UVSUhK8vb0BAAMGDMDEiROV248aNQrHjx/Hjz/+iIcPH2L69Om4du0aRowYAQBITEzEuHHjcOnSJTx79gwBAQHo1q0bXFxc4OnpKcljJCIiIiIq7iQfY9G7d29ER0dj2rRpiIiIgLu7O44fP64coB0WFgYdnb/zT7NmzbBr1y5MmTIFkyZNQpUqVfDrr7+iVq1aAABdXV3cuXMH27ZtQ1xcHBwdHdG+fXvMmjULhoaGkjxGIiIiIqLiTvJgAQAjRoxQtjj8U2BgYI5lvXr1Qq9evXLd3tjYGCdOnNBkeURERERE9B8k7wpFRERERMWLrq6u1CWQBApFiwURERERFQ8ODg6YMmWK1GWQBNhiQUREREREamOwICIiIiKNiY6Oxrp16xAdHS11KaRlDBZEREREpDGZmZmIiIhAZmam1KWQljFYEBERERGR2hgsiIiIiIhIbQwWRERERESkNgYLIiIiItKY0qVLo2fPnihdurTUpZCW8ToWRERERKQxxsbGqFmzptRlkATYYkFEREREGpOYmIigoCAkJiZKXQppGYMFEREREWlMQkICTp48iYSEBKlLIS1jsCAiIiIiIrUxWBARERERkdoYLIiIiIiISG0MFkRERESkMYaGhnB1dYWhoaHUpZCWcbpZIiIiItKYMmXKoG/fvlKXQRJgiwURERERaYxcLkdSUhLkcrnUpZCWMVgQERERkcZERUVh8eLFiIqKkroU0jIGCyIiIiIiUhuDBRERERERqY3BgoiIiIiI1MZgQUREREREauN0s0RERESkMXZ2dpgwYQL09fWlLoW0jMGCiIiIiDRGR0eHF8crodgVioiIiIg0JjY2Fjt27EBsbKzUpZCWMVgQERERkcakp6fj8ePHSE9Pl7oU0jIGCyIiIiIiUhuDBRERERERqY3BgoiIiIiI1MZgQUREREQaY25ujo4dO8Lc3FzqUkjLON0sEREREWmMqakpGjVqJHUZJAG2WBARERGRxqSkpODOnTtISUmRuhTSMrZYEBERSSw8PBzh4eF53s/BwQEODg4FUBFR/sXFxeHQoUMYMmQIjI2NpS6HtIjBgoiISGLr1q3DjBkz8ryfv78/pk+frvmCiIjygcGCiIhIYkOHDkXXrl1VlqWkpKBFixYAgPPnz+d65petFURUmDBYEBERSSy3Lk1JSUnK++7u7jA1NdV2WUREecJgQUREVIDCwsIQExOT5/2yD3y9detWvvuqW1tbo3z58vnalyg/9PX1Ua5cOejr60tdCmkZgwUREVEBCQsLQ/WqVZGcmqrWcbK6ROWHiZERgkNCGC5Ia6ytreHj4yN1GSQBBgsiIqICEhMTg+TUVKyoUxEupfLW4pAqV6DHpRAAwMEmVWGkm/cZ4kMTUzDy9jPExMQwWBBRgWOwICIiKmAupYzhZmGSp32SM+XK+zXNjWGip6vpslRwylvSlPDwcKxfvx5Dhgzha6OEYbAgIiIiTnlLRGpjsCAiIpJYZGoGotIyVJalyv9usbgfnwwj3ZwtFraG+rAz+u8BssHBwf+5TdOmTbFjxw6VZWlpacq+8ps2bYKhoWGO/aytrXHjxo1/PTYHkBOVDAwWREREEtsZFo2loR/uhtTj0l+5Lh/j4gA/V8cP7heVlgHIdNC/f3+1a1RnMK6RsQlCHgYzXBAVcwwWREREEutX3gbt7ErneT9bw39vrYjPyASEAhW8JsLIJu9f6hUZaXi0aTQAoIrPMujo52yx+C+p0WF4fmAeB5ATlQAMFkRERBKzM/q4Lk35ZWRTHiaOrv+6TUZCLDISYlWWiQ/cz07fzAr6ZlbqFUjFio2NDb777juYm5tLXQppGYMFERERIebq/xARuP2D60P/v+Xin+xbD4BD268LqCoqivT09FCmTBmpyyAJMFgQERERrBt2gUW1pnnej60V9E9v377FmTNn0KZNG1haWkpdDmlR3q+2UwBWr16NihUrwsjICI0bN8aVK1f+dftffvkF1apVg5GREdzc3PD777+rrBdCYNq0aXBwcICxsTE8PDzw6NGjgnwIRERERZq+mRVMHF3zfGOwoH9KTU3F3bt3karmFeep6JE8WOzduxd+fn7w9/fHjRs3UKdOHXh6eiIqKirX7S9evIi+ffvCx8cHN2/eRPfu3dG9e3fcu3dPuc3ChQuxYsUKrF27FpcvX4apqSk8PT35AiciIiIiKiCSB4slS5Zg8ODB8Pb2Ro0aNbB27VqYmJhg8+bNuW6/fPlydOjQAePGjUP16tUxa9Ys1KtXD6tWrQLwvrVi2bJlmDJlCrp164batWtj+/bteP36NX799VctPjIiIiIiopJD0jEW6enpuH79OiZOnKhcpqOjAw8PDwQFBeW6T1BQEPz8/FSWeXp6KkPD06dPERERAQ8PD+V6CwsLNG7cGEFBQejTp0+OY6alpSEtLU3587t37wAA8fHx+X5s6khMTAQA3H2XhORM+X9sXTBCE1IAAMmvH0GenqL1358W8xLA++dCG38HPud8zvmcFzypn2+Az7kU+Jxrn7af839KSEhAamoqEhISYGpqqtax+PeU/u+ZxczMDDKZ7N83EhJ69eqVACAuXryosnzcuHGiUaNGue6jr68vdu3apbJs9erVwtbWVgghxIULFwQA8fr1a5VtevXqJb744otcj+nv7y/wfiY93njjjTfeeOONN9544+0ft3fv3v3nd3vOCgVg4sSJKq0gCoUCb968gZWV1X8ns2IqPj4eTk5OePHiBeeh1hI+59rH51y7+HxrH59z7eNzXrzw7/k3MzOz/9xG0mBhbW0NXV1dREZGqiyPjIyEvb19rvvY29v/6/ZZ/0ZGRsLBwUFlG3d391yPaWhoCEND1auJli5dOi8PpdgyNzcv8f+RtI3PufbxOdcuPt/ax+dc+/icFy/8e34cSQdvGxgYoH79+ggICFAuUygUCAgIQNOmuc+l3bRpU5XtAeCPP/5Qbu/s7Ax7e3uVbeLj43H58uUPHpOIiIiIiNQjeVcoPz8/fP3112jQoAEaNWqEZcuWISkpCd7e3gCAAQMGoGzZspg3bx4AYNSoUWjVqhV+/PFHdO7cGXv27MG1a9ewfv16AIBMJsPo0aMxe/ZsVKlSBc7Ozpg6dSocHR3RvXt3qR4mEREREVGxJnmw6N27N6KjozFt2jRERETA3d0dx48fh52dHQAgLCwMOjp/N6w0a9YMu3btwpQpUzBp0iRUqVIFv/76K2rVqqXcZvz48UhKSsKQIUMQFxeHFi1a4Pjx4zAyMtL64yuqDA0N4e/vn6OLGBUcPufax+dcu/h8ax+fc+3jc1688O+ZNzIhhJC6CCIiIiIiKtokv0AeEREREREVfQwWRERERESkNgYLIiIiIiJSG4MFERERERGpjcGCiIiIiIjUxmBBVMCyT7zGSdi0i883ERGR9jBYEBWQrC+1crlcuUwmk0lVTolx584dTJs2DQCfbyp+oqKiEB0dDQA4dOgQdu3aJXFFJUtu7+tUtCgUCqlLKNYYLEqIrDfD0NBQXLhwAbdu3UJERITEVRVfQgjIZDL88ccf+Prrr9G5c2f4+Pjg9evXfFMrQLdv30aTJk2kLqNEYytRwUlISECNGjWwaNEibNq0CV5eXlKXVOLIZDIcO3YMa9euRXp6utTlUB4pFArlRZf37duHVatWYerUqXj16hX/nhrCYFECZH3JPXjwIDw8PDBs2DD069cPX331FQICAqQur1iSyWQ4fPgwPv/8c9ja2qJv3744deoUunbtihcvXkhdXrF0+/ZtNGvWDGPGjMHMmTOlLqfEyAoSycnJUCgUDM4FyMzMDDt37sTy5csxdOhQrFixAl9++aXUZZUoV69eRe/evVGmTBnlF1QqOrL+ZuPHj8f333+PM2fO4OTJk2jUqBF++eUXtkRpAP9XlAAymQwXL17EoEGDMG7cONy+fRuTJk3C6dOncevWLanLK3aEEIiOjsbcuXMxffp0LF26FJ06dYIQAo0bN0aFChVUtiX13b17F82aNcPYsWMxZ84c5fKtW7fil19+kbCy4i3rpMWxY8fg7e2Nxo0bY8qUKbh06ZLUpRU7QggoFArUqVMHGRkZUCgUCA8PR1RUlNSllRj379/HnTt3MHz4cPTt25fBoojavXs3du7cid9//x0HDhzAwoULER4eDgsLC+jq6kpdXpHH/xXFXNYX1z///BMdO3bE8OHD8eLFC0yZMgVDhw7F999/DwD8cNKArOdaJpPB0NAQiYmJ+Oabb/D69Wu4ubmhY8eOWL16NQDgt99+U25L6omNjUWfPn3g4uKCGTNmKJfPnTsXY8aMQfny5SWsrnjLapnz8vKCq6srunfvjnv37mHYsGEIDAyUurxiIyvARUdHw97eHuHh4Thy5AjmzZuHBQsW8P27gAkhkJSUhCZNmmDw4MEIDw8H8P7sN08OFT3h4eHo0KED3NzcsGvXLnTt2hWrV69Gly5dkJSUhDdv3khdYpHGYFHMZX1xTU9PR/ny5REREYGmTZuiffv2yi+5x44dw4EDB5CSkiJlqUWeTCbDoUOHMGfOHBgbG8PAwACbNm1CixYt8Nlnn2HVqlUAgBcvXmDx4sU4fvy4xBUXD5mZmcoWoawuUIsXL8aSJUuwd+9eNG7cOMc+7K6TP0lJSSo/379/H5MnT8aKFSswa9Ys+Pr64vLly0hMTMSIESMYLjQgK1QcPXoU/fv3x+7du1GmTBl06dIFe/fuxdKlS7F48WJluFi4cCH27NkjcdXFi0wmg6mpKW7cuIFy5crh8uXLuHPnjnIdFV65vdeHhoYiNTUVly5dwrfffov58+fD19cXALBx40asXLmSXaLUIajYev78ufL+0qVLha2trXB0dBTDhw9XLs/MzBSDBg0Sw4YNEykpKVKUWWzcvn1bODg4iLVr14rU1FTx/fffC0tLS+Hp6amy3cSJE0XdunXFixcvJKq0+Hn9+rXw9/cXNWrUEK1atRLW1tbizJkzObY7dOiQ1msrLvz9/UW3bt2EXC5XLgsODhbe3t4iISFBPH/+XLi4uIhvv/1WnDlzRri6ugo3Nzdx4sQJCasuHg4ePCiMjIzEjz/+KEJDQ1XW7dq1S+jr64uePXuKPn36CENDQ3Hjxg2JKi0+FApFrstDQkJE6dKlRefOnXP8Lajwun79uoiLixNCCHH58mVRuXJlIZPJxMaNG5XbJCUlic6dO4vvvvtOqjKLBQaLYurBgweidu3aYuHChcplXl5ewsjISNy/f1+kpKSIxMREMWHCBGFvby+Cg4MlrLboe/jwoZg2bZoYPXq0ctndu3eFh4eHaNasmZg7d67YsWOH+Pbbb4WFhYW4deuWhNUWHwqFQvkF4NWrV8Lf3184OjqKL7/8UrlNZmamEEKIadOmCZlMJp4+fSpFqUXew4cPxd27d4UQQqSnpyuXh4eHCyGE8Pb2Fl9++aXyBEX37t2FjY2NaN68uUhMTPzgFzX6d0+ePBHVq1cX69atE0K8fz2npqaKgIAAERMTI4R4Hzy8vLxEjx49xO3bt6Ust1jIeq1evHhRrFu3Tvj7+4uwsDCRlJQkhHj/+WphYSG6dOkiHj9+LGWp9AHZT4CcPXtWyGQysX79epGYmCji4uLE2LFjRdWqVcW8efNEXFycuHLliujYsaNwd3cXGRkZQogPh0v6dwwWxdSjR4+Ej4+PaNiwoVi6dKkQQoiwsDDRrFkzYWlpKWrXri1at24tHB0deXZLDXK5XERFRYnGjRuL0qVLi379+qmsv3btmhgzZoxwdnYW9evXF5999pm4c+eORNUWD69fvxZ37twRqampOdaFh4cLf39/Ub16deHv769cPmXKFGFiYiKuXbumxUqLj+wfsIGBgaJ169YiIiJCuSw5OVnUr19fzJkzRwghREZGhvjmm2/EypUrRVRUlNbrLU4eP34sqlSpIs6dOycyMzPFggULRLNmzYSVlZVwcHBQtnwmJyfn+n+C8ibrtX7w4EFRpkwZ0bZtW1GjRg3h4uIitm7dqgxzDx48ENbW1qJly5Y8WVHIZH+/WrFihdi4caPQ0dER1tbW4qeffhJCvO/RMX78eOHo6CjMzc1F7dq1hYeHh/KkSdYJKco7BotiIrdk/fjxYzFixAjh7u4uVq1apVy+YcMGsXjxYvHzzz+LZ8+eabPMYuOfz/dvv/0mGjZsKCpXriz++OOPHNsnJyeLtLQ0djdT0507d4SLi4uYPn26ypnCNWvWiMOHDwsh3n9g+Pv7i2rVqokFCxaIuXPnCiMjI4YKNWS93p8+fSr++usvUaZMGdGxY0cRHR0thBAiLS1N9O3bV3z66afi4MGDYvz48cLZ2Vm8fPlSyrKLhSdPnoj27duLJk2aCAcHB9G1a1cxa9YsERwcLFxcXMSkSZOkLrHYOXfunLC3txdbtmwRQgjx7t07IZPJRNWqVcW6devEmzdvhBDvW6UrVKggwsLCJKyWPsTf319YWlqKAwcOiO3btwsfHx+hp6cnVq9eLYR43/IaExMjTp48KR4+fKhs5chqsaD8YbAoRi5fviz27Nmjsiw0NFR89913olatWsqkTpoRFBQkhg4dqjyzcfLkSdGoUSPRs2dP8eeffyq345uUZjx58kTY2dmJiRMnKrvfZBkwYICwsrISb9++FUK87xY1c+ZMYWFhIXR0dBgqNODQoUOiVq1aIjg4WAQHB4ty5cqJ9u3bK8PFkSNHhKenp3B0dBTVq1cX169fl7jioicrwKWkpKi0Ppw5c0YsWbJE/PjjjyotRZ6enmLNmjVar7M4y8jIED/99JMYP368EOL9Z6izs7Pw9fUVffv2FRYWFmLDhg3Klri0tDQpy6UPePv2rahTp45Yvny5yvJx48YJfX19sXbtWuXnRXbZu1BR/jBYFAMKhUK8e/dO9OzZU9StW1f88ssvKusfP34smjZtKipUqCB+/PFHiaosXuRyuZg7d66oVq2aGDFihDJc/O9//xNNmjQRPXv2FOfOnZO4yuJl2bJlom7durmuS0xMFJ07dxZ79+5VLnv58qWYP3++CAkJ0VaJxU7WF92XL1+K9u3bi7Vr1yrXPXjwQJQrV054eHgoP6Cjo6PFkydP2P0pH7Ke62PHjonOnTuLZs2aiS+++CJHiBbi/et96tSpwt7eXjx69EjbpRZ7t2/fFvfv3xeJiYmiVatWwsfHRwghREJCgrC0tBTlypUTW7ZsEXK5nP3wCyGFQiFiYmJEhQoVlK1O2QPgp59+KmxsbMTGjRt54q8AcLrZIkz8//zZqampMDc3x/jx41GtWjWsWLEC+/btU25XqVIlNG3aFDKZDMePH+cczRqgo6ODESNGYNCgQbh06RK+++47yOVydO7cGVOmTEFERARmz56NoKAgqUstNszMzBAWFoYtW7YgKioKISEhuHPnDm7evInz588jISEBly9fRmhoKK5evQo7OzuMGzcOrq6uUpdeZMlkMvz555+YO3cudHV10alTJwDvp3CsXr06Tp48iYcPH6JPnz6Ijo6GtbU1nJ2dYWNjI3HlRU/WNUG++OILuLq6YsyYMbh+/Tr69euHixcvKqfNPHDgAEaOHIlNmzbh999/h4uLi8SVF20i23Uosp7j2rVro0aNGvjrr78QGxuLQYMGAXg/Vfinn34KDw8PfPLJJ9DR0eF0s4XAP6eUlclksLKyQr169bBs2TIkJyfDwMAAmZmZEEKgcuXKKFu2LIYPH678jBa8HonmSJtrKL+yzpL8/vvv4uuvv1aelb127Zr44osvRMuWLcW+ffuU248dO1b8+OOPyoFnlD//nAEkISFBzJs3TzRs2FAMHz5c2Yx68OBB0a5dO/YxV9PTp0+VUwTeunVLjBs3Tjg4OIgqVaoId3d3UaFCBeHq6irq1KkjTE1NhUwmEzVq1BC2trY8a64h27dvF4aGhsLY2FgEBgYql2e91oODg4WxsbHo0aMHuxGo4a+//hJubm5ixYoVQggh4uLihJOTkyhVqpSoXr26uHjxohDi/Qw3c+bMEX/99ZeU5RYLWZ+jJ0+eFN7e3qJdu3ZiwoQJ4uHDh0KI9xMVODg4iP/973/i7du3Yvr06cLLy4uD5AuR7O85N2/eFHfu3FGOgbly5YqoX7++6NSpk/JvJpfLhZeXl7h586bw8vISjRo1YquFhjFYFGEHDhwQ5ubmYvz48eL+/fvK5VevXhV9+/YVNWrUEL179xaDBg0SlpaWHKidT1kfPiEhIaJu3bpi2rRpKuvj4uLElClThIODgxg/fryyW1RiYqLWay1O0tPTRZs2bYS9vb3yg0IIISZPnqyc8Sk2NlYoFAqRkJAgfvjhB9G1a1dx+/ZtDqbUsAMHDghbW1sxYMAA5ZcuIVT/b/CLrnpu3bol5syZI9LS0sSrV69EpUqVxIgRI8S7d++Es7OzaN26tbJ7Jb8Iac6vv/4qSpUqJYYPHy7Wr18vypQpI9q0aaO8DlS7du2ElZWVqFq1qihTpgzHDhVSY8eOFc7OzsLQ0FB4eXmJI0eOCCGEOHz4sKhbt65wcHAQXl5eonbt2qJq1aoiMzNT+Pv7i+bNm0tcefHDYFFE3b17V9jZ2YkNGzaoLH/9+rXy3yVLlojmzZuL7t27c27zPMg6A5J9rv7Hjx+LjIwM8e2334rmzZsrp9XM8ubNG1GxYkVRunRp5bUs2PdWfXfv3hUNGzYU1atXV4aLiRMnikaNGil/zrqWhY+Pj5g9e7aU5RZ5Wa/ZBw8eiMDAQHH06FHl/4ddu3aJsmXLiu+++04lRPB1rhmZmZnK6wkNHDhQ9OnTR3ndhK5duwqZTCYaNWrEmeU0KCIiQtSvX185JXt6erqwtbUVo0ePVjkTvmXLFrFt2zZeEK8Qyf6+8/vvvwtXV1cREBAgDh06JDw9PUWrVq2U401fvXolJk6cKL799lsxfvx45XiLgQMHil69eonU1FS+j2kQg0URFRAQIBo3bixSUlLEmzdvxIYNG4SHh4dwcnIS3377rXLmEIVCIZKTkyWutugJCQkRvr6+Qi6Xi3379gldXV3x6tUrERkZKUaNGiUaN26s8iU2Ojpa9O3bV8yZM4dnyzUg601eLpeL4OBg0axZM1G3bl3x9u1bce7cOVGvXj3x/fffi+fPn4u7d++KSZMmCSsrK17oUQ1Zz/mBAweEi4uLqFmzpqhTp46oWLGiskV0586domzZsmL06NF8rvMp+0UdX7x4IV6+fJmjFaht27YqJy/GjBkjrl+/zuslqGHlypXi5MmTKtcniIyMFPXr1xfv3r0Tz549E46OjmLw4MHK9QEBAVKUSnlw7NgxMWzYMJWLAT948EB4eXmJli1bip07d+bYJzY2VowaNUqUKVNGpbcHaQaDRRGR9UGUlbQvXbokZDKZGDVqlKhVq5bo2rWrGDt2rFiyZImwtbUVp06dkrLcIivrQ+f8+fNCJpOJtm3bCl1dXbF161blNlFRUWLUqFGiUaNGYuTIkeL+/ftiwoQJom3bthzDoqbsZ2Oztxh9//33QiaTiYYNG4q4uDgxf/58Ub16dSGTyUT16tWFm5ubuHnzpgQVFy/nz58X5ubmypbQK1euCJlMJpYtW6bcZufOncLIyEj88MMPKn8j+m+xsbHK+4cOHRJ16tQRtWrVEnZ2dmL8+PHKMVlNmjQRrVq1EocOHRKjR48WVlZWytZoyp86deoIR0dHERgYqHyfDw8PFxUqVBAbN24ULi4uYsiQIcpuZn/99Zfo0KGDOHv2rJRl07948eKFcHNzE8bGxmLEiBEq67LCxaeffqoyJXNYWJiYO3euaNCgAT8zCgiDRRGQfRrCgQMHKj98du3aJTp16iTGjx8vHjx4oNy+YcOG4tdff5Wk1qJs/fr1YuPGjSIhIUEIIcSMGTOETCYTLVq0EPHx8SrbRkdHi7lz5woXFxfh6OgonJ2d2fdWTS9fvhS9evUSp0+fVlm+YMECYWVlJTZu3Cjq1q0rGjVqJN6+fSsiIiLEgQMHxO3bt0VkZKREVRcva9asEd98840Q4v11Q8qXLy98fX2V67Pei/bs2cMxFXkUHR0typYtK4KDg8Xp06eFiYmJWLt2rYiIiBAbN24UMplM5SKPLi4uokqVKsLV1VXcuHFD4uqLruxdXNq2bSvKly8vzpw5ozxJN3bsWGFiYiI6dOigst+kSZNEvXr1OAFHIZL1t8z+N7148aJo2bKlcHd3F7///rvK9sHBwaJ169Y5QseTJ0+U198hzWOwKCL2798vLCwshJ+fn8qHTFYf3CwTJ07klUDzycPDQ1SrVk3s2LFDpKeni5UrV4qJEycKAwMD8dVXX4kXL14IIf5+U0tNTRWRkZHizz//zHWuecqbrOutdOrUSZw/f14IIcS8efNEmTJllFczf/DggahTp46oV6+eytlf+nj/NnPT8OHDhZeXl4iMjBROTk5iyJAhytf7zp07xfTp07VVZrHz5MkTUa5cOXH79m0xefJkMXLkSCHE+9d9lSpVVLrgCPG+xe7p06cqExdQ/mQf7P7JJ58ow4UQQty4cUN06dJFuLm5ifXr14tdu3aJESNGCHNzc3Hr1i2JKqZ/yv6+9erVK/Hq1StlN+8rV66IFi1aiK5du4oTJ06o7Pfs2TPlvpy1TjsYLAqhf54dv3PnjrCxsRHr169XWR4dHa18w9y9e7f46quvhK2tLc9u5VH2sx+9evUSNWvWFHv37lV28wgMDFSGi1evXim3DQoK0nqtxV1W94Nu3bqJwYMHCxsbmxwfFMHBwcLZ2Vk0adKEHxT59OrVK3H16lUhhBA7duxQzrJ1/Phx8emnnworKytly0XWRcC+++474ePjw9nO1FC/fn0xc+ZM0aZNG7FkyRKRmpoqypYtqxLgli9fzq6sGpT1vGY/Q92yZUtRrlw5ZTenoKAgMWrUKGFlZSXq1asnOnbsKO7cuSNJvZRT9s/omTNnivr164vq1asLV1dX8b///U8I8f5v+Mknn4iuXbuKkydP5jgGPyu0h8GikFm6dKkYOnSoyMjIUP5HOHz4sGjatKkQ4n0f3a1btwpPT09RtmxZMWnSJPHq1Stx5MgR0a9fP5UuUfTxsp/R6t69u6hRo4b4+eefld2izp49KwwMDMSAAQPEpUuXxMyZM0WpUqVEZGQkZ5PQsJCQENGuXTthbGwsFi9erFye/YMhJCREPHnyRIryijSFQiFSUlJEw4YNRbdu3cT8+fOFTCYT69atE0K8DxwdOnQQFSpUEAcOHBBCCBETEyMmTZokbG1t+f6ST1mvXS8vLzFjxgyxZ88e8emnnwo7OzsxbNgwZZ//jIwM0a9fPzF+/HiOX9GA7N2Iv/jiC2XLpxBCtGrVSiVcCPH+tZ6WlpajJwAVDtOnTxc2Njbi0KFDIjw8XDRt2lSUL19eeX2pCxcuiNatW4vmzZuLy5cvS1xtycVgUUhkfbCsWLFC2aczqw/ouXPnhEwmEz/88INo0KCB6Nq1qxg1apRYsGCBMDQ0VJ455+xP+ZPbGa3u3buLWrVqqYSLc+fOCVtbW1GnTh1hb28vrl27Jkm9JUFoaKho37696Nixo3LufiF41klTQkNDhZOTk5DJZMrWiuzrmjVrJmrVqiWcnJxEmzZthJOTE1tC8+jx48di1apVIjg4WNk19eeffxbt2rUTR44cEXXq1BF16tRRXtw0LS1NTJo0SZQvX57jVzTo4MGDwtjYWMybN09cunRJZV1WuAgMDFR+3grBKZQLG4VCIWJjY0XLli3F/v37hRBCHD16VJQuXVo5MDvrs+HUqVPKGR1JGgwWhUDWf4DHjx+LWbNmCSHeD0jK3q9//fr1omnTpsLPz0+libZhw4Y5uopQ3l25ckV069ZNZXrB3MLF48ePxYULFzigTwuyukV5enoqx1yQehQKhZDL5SIhIUE4OTkJOzs70adPnxxfuMLDw0VAQICYOXOmOHz4MC+umUfp6eniiy++EOXLlxfOzs7C3NxcdOjQQVSuXFmUK1dOvHnzRhw8eFC4u7uLGjVqiG7duomOHTsKGxsbBjgNCgsLE9WrV1depyJL9hDx6aefClNTU5UTGCQtLy+vHCc8nj59Kuzt7UVMTIw4deqUKFWqlDJUJCYmilmzZom4uDiVfRgupMFgIbGsF/6tW7eETCZTzl2+bNkyUadOHeHj46McGPzPvs0TJ04Uzs7O/JKrAb/++qto0KCB6NWrlwgMDFQuzwoXO3fuVIYL0p6//vpLdOnSRTRp0oRjWtSUdRb2/v37Ii0tTaSnp4t79+4JFxcX4eXlxedXw7K60/z111/i8OHDYuXKlaJXr16iWrVq4vPPPxeJiYni9u3bYu7cuaJfv35i4cKFbKnQsOvXr4vy5curXCA26/9B9utZdOrUic99ITJ37lyhq6ur0hVWCCE+++wz4eXlJUxNTcXGjRuVy589eyaaNWum7L7JFidpMVhIKCtU3L9/XxgbG+dI6KtWrRLNmjUTX3/9tcqg4cOHD4sBAwbw7JaGHT16VLRq1Up8/vnnKuGiZ8+eomzZsmLfvn0SVldyBQcHi549e4rnz59LXUqRlfVBe/DgQVGuXDnh5+enDMpXrlwRLi4uolevXuLixYtCiPcnLWbOnClZvcXBh77cHDp0SDRp0kR07txZ2f2SX4Q045/P49WrV5Vdnf65zalTp9jaX8g8efJE+fdZuXKlkMlkYtGiRSIzM1PI5XIxb948YW9vL7744gvlPklJSaJTp07Cw8NDJSySdBgsJJIVKu7evSusra1F9erVleuyXyRsxYoVonnz5mLgwIHKloudO3eKL7/8kleMzKfsZ27/ORj18OHDok2bNqJbt27iwoULyuX9+/dXDhAj7cvedYHy58SJE8LIyEhs2rRJeQXnrP8L165dEzVr1hRNmjQR7du3FyYmJmzB0LDsU17u2bNHtGrVSjRu3Jjz6WvYuXPnlBc+i4qKEhUqVBB9+vQRb9++Vdlu9OjRwsfHRyQnJzPYFQLDhw8X5cqVEzdv3lT+PVasWCFkMpnyqtrx8fFi0KBBws3NTbRp00YMHjxYNGvWTNSuXVs52QHDhfQYLCSQvfuTiYmJaN26tXB0dFTOay6E6heprHDxzTffiIiICCFEzutX0IdlPd9ZMz9lZGSIyMhIUadOHfHVV1+J4OBgle0PHTokrKysRPfu3VXGXBAVVRkZGWLQoEHK95isD+6MjAzl/du3b4tJkyaJESNG8KRFAcl+ga9t27aJjh07siVOg+Li4sRnn30mHB0dlRcsPXPmjDAyMhI9e/YUR44cEefPnxejR48WFhYW4t69exJXTFni4+OFq6uraNCggbhx40aOcDF//nwhhBDv3r0TO3bsEF9++aXw8fERM2fOVPlsJ+kxWEjk6tWrQl9fX0yfPl1kZmaKdevWCWtr6w+Gi1WrVokaNWqoTE1I/y0rVISGhoqpU6eKYcOGKbt7rF69WjRq1EgMGTIkR8tFu3bthK2trfj6669FUlISz2hRkZaWlibq1KkjRo8erVyW/TX97t07IYRQmeaaCkb2cPHPaxZR/mR/LZ87d054eXkJV1dXZbi4cuWKcHNzE87OzqJSpUqiXr16ylYNkl5WIEhMTBRVqlQR9erV+9dwkRt+Lyo89ECSSE5Ohq+vL/z9/QEAvXv3BgBMnjwZALB8+XIYGBggPT0dBgYGGD58OPT19dG+fXvo6upKVndRolAooKOjg7t376JLly7o0qULypUrh3r16gEAhg0bBgMDA6xZswbLly/H6NGjUa1aNWRmZqJy5crw8PBAv379YGJiIvEjIco7IQRkMhmEENDR0UGdOnUQGRmJmJgYWFtbK9cFBwdj1apVmD17NsqUKSN12cVe1vMuk8lgZmYmdTlFTtb7OgBkZGRAX18faWlpMDIyAgC0aNECurq6WLBgAfr27Ytdu3ahYcOGOHv2LOLi4pCeng5bW1tYWlpK+TAoGz09PWRmZsLU1BQ3btxAvXr18M0332Djxo1wd3fHd999BwAYM2YM9PT0MHr06Bzfg/i9qBCRNteQEH+fbXn37l2uLRepqalSlVbkhYaGCnt7e/HDDz+oLM/eZLphwwbRsGFD0b17d7FixQoxbtw4UblyZREVFaXtconUlv2MeHZr1qwRJiYmYsWKFSqvbX9/f1GzZk3x+vVrrdZJlF/Pnj1Tvr4vXLggWrRokeOCmRcvXhTt27cX1apVY5enQupDraMJCQnCxcUlR8tF1oDuXbt2abNMyiOZEEJIHW7ob/Hx8dizZw8mT56Mr776CkuWLJG6pCJJvO/mhylTpuCvv/7Cxo0bUbp0aZVtsp/5OnjwIHbv3o2rV6/CxsYG69evR926dSWonCj/xP+fCf/zzz9x+PBhZGZmolq1avD19QUATJ06FevWrUPz5s1hbm6O1NRUHD9+HGfPnoW7u7u0xRN9hLS0NLRu3Rrh4eF49uwZzp07h9GjR6N06dLYtGkTKlasqNx227Zt8Pb2hp2dHU6cOIHatWtLVzipyP75++DBAyQlJcHFxQUWFhbQ0dFBYmIi6tatC3Nzc2XLhUwmw/79+9G9e3fo6bHDTWHFYFEIxcfHY9++fRgyZAh++OEHzJs3T+qSiqxPPvkEVatWxcaNG3Osy3pjS01NhZGREVJTU5GYmAhdXV02k1ORdejQIXh7e+Ozzz5DZmYm7t27h0aNGmHTpk0AgO3bt+PevXu4du0a3NzcMHToUNSoUUPiqok+jhACFy5cgK+vL0qVKoWgoCBcvHgREyZMgEwmw9atW+Hs7AwAuHTpEqZPn46KFSti3LhxqFy5ssTVE/D3CRDg/cmOnTt3IiMjAxkZGZg9ezY6duyIsmXLIjExEfXq1UPp0qWxatUqNGrUSHmMzMxMhovCSrK2EvpXcXFxYuvWrSIkJETqUookuVwuEhMTRa1atcSUKVOEEB+eMWLatGkcyEfFwtWrV0XFihXF2rVrhRDvrwFiY2MjDAwMRPfu3VW2lcvlHKhNhV5ur1G5XC6CgoJElSpVRJMmTYQQ7wdtt2zZUjRv3lw8evRIZGZmimnTpgkfHx8Oki+kZs2aJRwdHcWxY8eEEEL06NFDODo6innz5ikv/JuQkCDMzMyEt7e3lKVSHuhIHWwodxYWFhgwYABcXV2lLqVI0tHRgampKRo1aoStW7ciNDQUenp6yi5SWZ4+fYrz588jMzNTwmqJ8kahUAB4f+Yv6z4ABAcHo3379hg6dCjCwsLQqVMndOnSBT/99BOOHz+Ob775Rrmtjo6OsisCUWGU1aocERGBS5cuKZfr6Oigfv362LFjB6KiotCkSRO0aNECCxYsgKGhIVxdXdG0aVP8+OOPGDVqFAfJF0LBwcE4ffo01qxZgw4dOuD3339HQEAAatWqhTlz5mD79u148eIFSpUqhcjISGzYsEHqkukjsSsUFWu//PILRo4cidatW2P27Nk5msJnzJiBP/74A7/++iusra0lqpLo42V92frrr7+wcuVKvHr1Cs2aNcPYsWMBAFevXkW9evXQpUsX2NraYtu2bYiJiUGzZs0QGhqKL7/8Ejt27JD4URB9nBcvXqBu3bp48+YNWrVqhaZNm8LDwwMNGjSAubk5rl69isGDB0NfXx9Xr16FXC7Hli1bIJfL4eHhwe5PhVRkZCTOnDmDzz//HFevXkWvXr0wbdo0+Pr6onv37rhx4wa++uorjBw5EnZ2dgAAuVzO2Z+KAHZQoyJP/H9/zeyDwbL06tUL165dw8aNGxEdHQ1/f3/UqlULf/31F7Zv345du3bh7NmzDBVUJGS9xm/fvo127dqhefPmMDIywqRJkyCXy/HDDz+gYcOGeP78OV68eIEJEyYAeH+Gt3Hjxpg2bRqaN28u8aMg+ngKhQJOTk6wtrZGYmIiXr9+jc6dO6NatWpwc3NDly5dMHnyZEyePBkeHh74448/VFrmSFpZvQT++dlsZ2eHdu3awdDQEFu3bkXnzp2Vfzc7OzsYGxvj0aNHsLW1Ve7DUFE0MFhQkbZ161bcvHkTS5Ysga6urkq4yLq/YMECmJubY+/evWjdujUsLS1ha2sLMzMznD17ljOFUJGQ9Xq+c+cOmjZtijFjxmDOnDlQKBSwtrZGRESEciICIyMjpKWlYf/+/XB3d8eiRYsQEhKCJUuWwMbGRuqHQvTRKlSogF9++QXjx4+HQqGAr68vZs6ciYsXL2LVqlX48ccfce/ePVSuXBmnT59Gjx49cOjQIZUBwiQdmUym/DscOXIEGRkZMDExQceOHWFlZYWMjAxER0ejbNmyym6dcXFx2LZtGxo3bqxy3RcqGtgViookhUKBjIwMjB07FkFBQejQoQNmzJiRI1xkbzp9/PgxgoODER4eDjc3N1SuXJlfsqhIefHiBerVq4c2bdpg3759yuV9+vRBSEgIUlNTUbFiRfTo0QNJSUlYtGgRdHV1kZ6ejmPHjnEKZSqyQkJCMGrUKCgUCsyZMwcNGzYE8P5L6NGjR/Hw4UMcO3YMmzZt4uu8EPjqq69gbW2NpUuXAnh/cbvt27fDwsIC6enp6NGjB1asWAEA8PPzw/bt29GuXTuEhoYiKSkJd+/ezfF5TkUDgwUVSa9evULZsmXx9u1bLF68GAEBAWjbti1mzZr1wZYLoqLu2bNn+OKLL+Dg4IDx48ejefPmmD9/PmbNmoWJEyfCwcEBixcvhqGhIVauXAlra2s8evQIdevWhZOTk9TlE6nl0aNHyqswT5w4Ea1atVJZzylIC4fExEQsWbIEy5Ytw6hRo+Dn5wdPT0+sW7cORkZGCAoKwrBhw/DFF19g8+bNAIAffvgB0dHR0NPTw08//QQ9PT2OqSiiGCyoyNm/fz/GjRuHnTt3olmzZoiLi8P8+fMRGBj4wXBBVFw8evQII0eOhIGBAWxtbXHkyBH8/PPPaN++PQDg+fPncHZ2xrp16zB48GCJqyXSrKzXvxAC06ZNQ7NmzaQuiXLx9u1bbNmyBbNmzUK7du1QqlQprFu3Dvr6+khNTcWvv/6Kb775Br169cKWLVsAqPYwYEgsuviti4occ3NzuLm5YfTo0QgKCkLp0qUxYcIEtG7dGqdPn8bUqVMhl8uho6OjMhUnUXFQpUoVLF++HCkpKdi5cyfGjx+P9u3bQwiBjIwM6Onpwc3NTXmRR547ouKkSpUqWLFiBfT19fH999+rTENL0gsLC8OjR4+QnJyMYcOGwd/fHxcuXMCDBw+gr68PADAyMsLnn3+OTZs24eDBg+jRowcA1cHZDBVFF4MFFTnt27fH999/j3LlymH48OG4ePGiMly0adMGp0+fxpQpU5CZmQkdHR3I5XKpSybSKFdXV6xZswaffPIJAgICcO7cOchkMujr62PdunVISEhA48aNAYCDHqnYqVKlChYtWoRy5crB0dFR6nLo/+3btw+DBw/G999/j4CAABgZGaF///4YN24cbty4galTpyq3NTQ0RPfu3bFs2TLEx8fzJGAxwq5QVKRknx3izJkzWLFiBZ4/f45Vq1Ypu0UtWLAAZ86cgYeHB6ZPn84zH1RsZe8WMm/ePPzxxx/w9/fHxYsXOYCVir309HQYGBhIXQYB2LJlC0aPHo1ly5ahbt26cHd3V67L6hY1c+ZMjBo1CjNmzFCuy8jIULZksPty8cBgQUXa2bNnsWTJErx48UIlXCxevBi//PIL+vXrh2nTpkldJlGBefToEfz8/HDlyhW8ffsWQUFBqF+/vtRlEVEJce7cOfTu3RsLFizAV199pVyePSi8efMG27Ztw6xZszBq1Cj4+/tLVS4VMJ7KpSIhq6Xi+vXrePnyJV68eIG+ffuiVatWMDY2xty5czFixAhluPj+++9hYGCAAQMGSF06UYGqUqUKFi9ejPHjx2Pu3LmoWbOm1CURUQmQ9bl87do1uLu7o3Pnziq9CrK3PpQpUwY+Pj4AoOzKnPUzFS9ssaAi48CBA/D19UXdunURGhoKCwsL+Pj4YPjw4QgMDMSKFSvw6tUrLFq0CC1btuRFdahEyd6lgIhIW7p164akpCScOnUqx7qsz+GnT59CV1cXlpaW+P333+Hl5cVuysUUO7NRkXDjxg0MHz4cCxcuxIkTJ3D69GncunULycnJAIDWrVvDz88PpqammDZtGlJTUyWumEi7GCqISNsUCgVKlSqFlJQU5c/Zz1fLZDKkp6dj0aJFOHfuHMzMzNC7d2/o6ekhMzNTqrKpADFYUKHyzwa0rJ8fP36MGjVqYODAgQgJCUGbNm3g4+ODcePGAQCioqLQokULzJw5Ezt27ICRkRFbK4iIiAqQjo4OPv/8cwQFBWHLli3Q0dGBTCZTmY0xJiYGL168QJkyZVT2ZYtF8cRgQYWGQqGATCZDdHQ0rl27huvXryvDwatXr2Bubg65XI527dqhXbt2WLduHQDgyJEjWLduHdLS0tCiRQuUK1dOyodBRERUYjRq1AhdunTB8OHDsX37dgB/X5Pi7du3+Pbbb5GWlqa8iCcVb4yLVChkzR7x4MEDDBkyBGZmZjAxMcG+ffugq6uLDh06YNasWTA2Noavry+WL1+u3DcgIABhYWFIS0uDoaGhhI+CiIioZClfvjzGjx+PtLQ0DBw4EAEBAahbty7evn2LgIAAJCYm4urVq9DV1eWUsiUAgwVJTggBHR0d3L9/Hy1atMCwYcMwdOhQlCtXDjo6OhBCoFKlShg/fjxWrlypbJF4+vQpNmzYgB07duDcuXMwNzeX+JEQEREVPx+aDCVreYsWLbB48WIcO3YM69evx6lTp1C9enU0atQICxcuVI6pYPen4o+zQlGh8ObNG3Tr1g316tVTaY3I/mb25MkTbNmyBUuXLoWlpSUsLS2Rnp6O3bt382JgREREBSB7K0N4eDgcHBxU1v8zdMTHxyMlJQVlypRRTiohl8uV3aOoeGOwoELhwYMH6Nq1KzZv3owWLVrkaCrNeuPKyMjA06dPERQUBGdnZ7i4uMDR0VGiqomIiIqv7KFi5syZuHjxIhYuXIhatWrl2qUpt5YNTv1esrBNigqFW7du4fnz5/jkk08gk8ly9MOUyWRITk7GvXv30KhRI7i6ukpYLRERUfGX9Tk8YcIEbN++HYsXL4a1tfUHT/7lFiAYKkoWjqChQqFixYrQ09PDwYMHASDXMyGbN2/GlClTkJ6eru3yiIiISqSzZ89i586d2L9/P7788kvY2dkhJiYGly5dQlhYGACGB/obgwUVChUqVIC5uTm2b9+O58+fK5dn76n37Nkz1K9fnxcCIyIi0pK4uDhYWlqiXr16uHbtGqZNm4ZmzZqhS5cuGD16NEJCQqQukQoRBgsqFMqWLYs1a9bgxIkTmDp1Kh48eADg7y5QkyZNwv79++Ht7c0zI0RERAVAoVDkWFajRg3cu3cPHTp0QPv27REREYEZM2Zgx44dOHv2LMLDwyWolAorjrGgQqN79+5Yvnw5RowYgatXr6Jp06YwMjLCq1evcOnSJRw/fpxjK4iIiApA9rGNDx8+hKmpKXR0dFClShVcv34d+/fvx8iRI9GmTRtYWloiLS0NlSpVQmpqqsSVU2HCWaGo0Lly5QoWLVqE0NBQmJmZoVmzZvDx8UGVKlWkLo2IiKhYmzBhAnbu3KkcjD1t2jT4+Pgo16enpyMlJQV9+vTB27dvceHCBU4lS0oMFlQocc5rIiKigpX1FTCri/GxY8fg7e2NzZs3Q6FQ4OrVq5g1axZmzJiBqVOnIi0tDWvXrsW+ffuQmZmJ8+fPQ19fn5/ZpMSuUFQoZZ8VinNgExERaV72z9Zdu3bh+vXrGDVqFDp16gQA6NKlC5ycnDBkyBA0aNAAHTt2RKNGjZCcnIxx48bxitqUA1ssiIiIiEqQdu3aYeDAgejXrx8AICQkBD4+Prhx4wa+//57zJo1C5mZmdDR0YGOjg769euHhIQEHDhwQGVmRrZU0D9xVigiIiKiEuLt27fo2bMnevXqpVxWtWpV+Pn5oV69eti8eTNCQ0Ohp6en7CplbW2NzMzMHNO9M1TQP7HFgoiIiKgEWrRoEVJTUzF16lQAwP/+9z8sXLgQKSkp2LNnDypXroz09HS0a9cOTk5O2LFjh8QVU2HHTnFEREREJUD2rkvPnj3Du3fvsGTJEpiZmWH06NHo0qULMjMzMX/+fLi7u6NWrVqoUqUK3rx5g1OnTgHguEf6dwwWRERERCVAVqj44YcfYGxsjH79+sHY2BjTpk2DQqGAn58funfvDj09PSxduhTPnz/HuHHjsH37dgDgQG36T3x1EBERERVj2VsZLl68iF27duHgwYOoXr06Bg8eDLlcjunTpwMA/Pz80KVLF6SlpWHTpk1YtmwZGjVqhHLlyqnM2EiUGwYLIiIiomIsK1QsX74cb968Qd++fdGwYUMAgK2tLYYOHQoAmDlzJnR0dDB69Gh4eXlBX18fP/30Ezp16oSjR4+iQoUKkj0GKhoYLIiIiIiKoX+OhwgMDMThw4fh6emJ9PR0GBgYAADs7OwwdOhQ6OjowM/PD/b29ujTpw+6du2K9PR07Ny5U6qHQEUMZ4UiIiIiKsZiY2NhZWUFhUKB7777Dps3b8Yvv/yCLl26qGwXHh6O48eP46uvvlIZS5GYmIhSpUppu2wqghgsiIiIiIqpZcuW4dSpU1i4cCFq1KgBAOjfvz9+++03HDhwAG3bts11v8zMTOjq6nIGKMoTjsIhIiIiKqbq1q2L8+fPY968eQgODgYA7NixA506dULPnj1x5syZXPfT09NjqKA8Y7AgIiIiKgYUCoXKz0IItGrVCseOHcPx48cxa9YsZbjYuXMnOnfujE8//RTXr1+Xolwqhjh4m4iIiKgYyJoO9o8//oCbmxvs7e0hhEDTpk1x+PBh5QXwZs6ciWrVquHnn3+Gi4sL6tSpI3HlVFxwjAURERFRMSCEwOPHj+Hq6gpfX1/4+/vD1tZWOTvU+fPn0aZNG3h7e8PX1xd169ZV7suL35Em8BVEREREVERlhYasf11cXLB//3706dMHOjo6mDp1KmxtbQEA9erVQ5UqVbBx40aULVtWJVgwVJAm8FVEREREVAQpFApl96eYmBjo6enBwMAAPXr0wN69e+Hl5QUAmDx5Muzt7SGXy9G5c2esWbMGLVq0kLJ0KqbYFYqIiIioiMl+8bv58+fjt99+Q1JSEvT19bFu3Tq4u7vj6NGj+OKLL9ClSxfUrFkTly9fRlxcHC5evAiZTMbuT6RxDBZERERERdTUqVOxdu1arF69Gs7OzvD29kZiYiIuXrwIR0dHnD59GgsXLkRCQgKsra2xf/9+6Ovr57gqN5EmMKYSERERFQFZXZ+yQkFERAQCAgKwfft2dOzYEUePHsWrV68wd+5cODo6Qi6Xo23btqhfvz6MjIxgYGDAlgoqULyOBREREVEREBERAeB9NygAePv2LUJCQtCyZUucOHECX375JebNmwdfX18kJSVhyZIlSEhIgIWFBQwNDZWDvBkqqKAwWBAREREVcrdu3UK5cuVw4MAB5YDtKlWqoHnz5hg/fjx69uyJpUuX4ttvvwUAvHz5EqdOncLly5dVjsPuT1SQGCyIiIiICjkHBwcMGTIEX375JQ4fPgzg/bUnHB0dsWXLFvTr1w/ffPMNACA5ORl+fn6QyWRo27atlGVTCcPB20RERERFQGRkJObOnYuVK1fiwIED+Pzzz/H27Vv07t0bMTExcHV1hbOzMy5cuIC4uDhcv34d+vr6KtPSEhUkvsqIiIiICqGXL18iNjZW+bOdnR0mTpyI4cOHw8vLC/v374elpSV2796NL774AklJSXj8+DGaNWuGGzduQF9fH5mZmQwVpDVssSAiIiIqZA4cOIBvvvkGjo6OGDx4MOzs7NC3b18AQHp6OsaNG4eVK1di79696NWrV66tEnK5HLq6ulKUTyUUpwUgIiIiKkTS09Nx+vRpZGZmIiYmBocOHcKzZ88wd+5cuLq6YtiwYejevTvMzMzQp08flC5dGu3atctxbQqGCtI2tlgQERERFTKRkZGYN28enj59ipo1a2LMmDE4dOgQjh8/jtu3byM1NRUuLi64ePEi5HI5rl69ivr160tdNpVwDBZEREREhdDr168xd+5cXL58GQMHDsTw4cMBAA8fPkRERAS2bt2Khw8fIjY2FsHBwbw+BUmOwYKIiIiokAoPD8fcuXNx5coVdOvWDZMmTVKuy+r6lPUvr6hNUuM0AURERESFlIODAyZPnoxGjRrhyJEjWLBggXKdXC4H8P6idwqFgqGCJMcWCyIiIqJCLiIiAnPnzsX169fRpk0bzJ49W+qSiHJgiwURERFRIWdvb49JkyahcuXKiIqKAs8LU2HEFgsiIiKiIuLNmzcoXbo0dHR0ckwvSyQ1BgsiIiKiIia3C+IRSY3BgoiIiIiI1MaoS0REREREamOwICIiIiIitTFYEBERERGR2hgsiIiIiIhIbQwWRERERESkNgYLIiIiIiJSG4MFERERERGpjcGCiIiIiIjUxmBBRERERERqY7AgIiIiIiK1/R+ymtBqOrFfkAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Cellpose vs CellSAM - Generalist Models by Data Type + Neurips Challenge\n", + "\"\"\"\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "dataset_agg_map = {\n", + " \"Tissue\": [\"tissuenet_wholecell\"],\n", + " \"Cell Culture\": [\"cellpose\", \"ep_phase_microscopy_all\", \"Gendarme_BriFi\"],\n", + " \"H&E\": [\"H_and_E\"],\n", + " \"Bacteria\": [\"deepbacs\", \"omnipose\"],\n", + " \"Yeast\": [\"YeaZ\", \"YeastNet\"],\n", + " \"Nuclear\": [\"dsb_fixed\"],\n", + "}\n", + "\n", + "group_names = list(dataset_agg_map.keys())\n", + "cp_group_means = []\n", + "cp_group_sems = []\n", + "cs_group_means = []\n", + "cs_group_sems = []\n", + "\n", + "for group in group_names:\n", + " # Get all datasets that belong to this group\n", + " datasets_for_group = dataset_agg_map[group]\n", + " \n", + " # Gather all F1 arrays and concatenate them\n", + " cp_all = np.concatenate([cp_generalist_dict[ds] for ds in datasets_for_group])\n", + " cs_all = np.concatenate([cs_generalist_dict[ds] for ds in datasets_for_group])\n", + " \n", + " # Compute (1 - mean(F1)) for the group\n", + " cp_mean = 1 - np.mean(cp_all)\n", + " cs_mean = 1 - np.mean(cs_all)\n", + " cp_group_means.append(cp_mean)\n", + " cs_group_means.append(cs_mean)\n", + " \n", + " # Standard error of the mean (SEM) for the group\n", + " cp_sem = np.std(cp_all, ddof=1) / np.sqrt(len(cp_all))\n", + " cs_sem = np.std(cs_all, ddof=1) / np.sqrt(len(cs_all))\n", + " cp_group_sems.append(cp_sem)\n", + " cs_group_sems.append(cs_sem)\n", + "\n", + "# Existing group names\n", + "group_names = list(dataset_agg_map.keys())\n", + "group_names.append(\"Neurips Challenge\")\n", + "\n", + "# neurips challenge results\n", + "cp_new_val = 1 - 0.8612 \n", + "cs_new_val = 1 - 0.8723 \n", + "\n", + "cp_group_means.append(cp_new_val)\n", + "cs_group_means.append(cs_new_val)\n", + "# Since there's no variability reported, just pass 0 or None\n", + "cp_group_sems.append(0)\n", + "cs_group_sems.append(0)\n", + "\n", + "# Plotting\n", + "x = np.arange(len(group_names)) # Now has len() = old groups + 1\n", + "width = 0.35\n", + "fig, ax = plt.subplots(figsize=(8,5))\n", + "\n", + "bars_cp = ax.bar(\n", + " x[:-1] - width/2, cp_group_means[:-1], width,\n", + " yerr=cp_group_sems[:-1], edgecolor='black', linewidth=1, capsize=5, \n", + " label='Cellpose', color=c2\n", + ")\n", + "bars_cs = ax.bar(\n", + " x[:-1] + width/2, cs_group_means[:-1], width,\n", + " yerr=cs_group_sems[:-1], edgecolor='black', linewidth=1, capsize=5, \n", + " label='CellSAM', color=c4\n", + ")\n", + "\n", + "\n", + "# Now create the last bar group closer to the existing ones\n", + "offset = 0.25 \n", + "separator_x = x[-1] - .3 \n", + "last_index = x[-1] + offset\n", + "\n", + "bars_cp_new = ax.bar(\n", + " last_index - width/2, cp_group_means[-1], width,\n", + " yerr=cp_group_sems[-1], edgecolor='black', linewidth=1, \n", + " color=c2\n", + ")\n", + "bars_cs_new = ax.bar(\n", + " last_index + width/2, cs_group_means[-1], width,\n", + " yerr=cs_group_sems[-1], edgecolor='black', linewidth=1, \n", + " color=c4\n", + ")\n", + "\n", + "# Then move the dotted line accordingly\n", + "ax.axvline(separator_x, color='gray', linestyle='--', linewidth=1)\n", + "xtick_positions = np.concatenate((x[:-1], [last_index]))\n", + "ax.set_xticks(xtick_positions)\n", + "ax.set_xticklabels(group_names, rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_general_grouped_comparison_cp_reg.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Results for Individual Models" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from pathlib import Path\n", + "import numpy as np\n", + "\n", + "name_map = {\n", + " \"Gendarme_BriFi\": \"BriFiSeg\",\n", + " \"cellpose\": \"Cellpose\",\n", + " \"ep_phase_microscopy_all\": \"Phase400\",\n", + " \"H_and_E\": \"H&E\",\n", + " \"tissuenet_wholecell\": \"TissueNet\",\n", + " \"YeaZ\": \"YeaZ\",\n", + " \"YeastNet\": \"YeastNet\",\n", + " \"dsb_fixed\": \"DSB\",\n", + " \"deepbacs\": \"DeepBacs\",\n", + " \"omnipose\": \"OmniPose\",\n", + "}\n", + "\n", + "\n", + "datasets = [\n", + " 'Gendarme_BriFi',\n", + " 'H_and_E',\n", + " 'YeaZ',\n", + " 'YeastNet',\n", + " 'cellpose',\n", + " 'deepbacs',\n", + " 'dsb_fixed',\n", + " 'ep_phase_microscopy_all',\n", + " 'omnipose',\n", + " 'tissuenet_wholecell',\n", + "]\n", + "\n", + "\n", + "# colors for the plots\n", + "c1 = \"#fdbb84\"\n", + "c2 = \"#e34a33\"\n", + "c3 = '#deebf7'\n", + "c4 = '#3182bd'" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam')\n", + "cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose')\n", + "\n", + "cellpose_individual_path = cellpose_path / 'individual'\n", + "\n", + "# load results from txt files\n", + "cp_individual_dict = {}\n", + "for file in cellpose_individual_path.glob(\"*.txt\"): # Selects only .txt files\n", + " try:\n", + " data = np.loadtxt(file) # Load as NumPy array\n", + " cp_individual_dict[file.stem] = data # Store in dictionary with filename (without extension)\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + "\n", + "cellsam_individual_path = cellsam_path / 'individual'\n", + "\n", + "cs_individual_dict = {}\n", + "for file in cellsam_individual_path.glob(\"*.txt\"): # Selects only .txt files\n", + " try:\n", + " data = np.loadtxt(file) # Load as NumPy array\n", + " cs_individual_dict[file.stem] = data # Store in dictionary with filename (without extension)\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhL1JREFUeJzt3XdYFGfXBvB7QaoKFpSiICiIGBSwt9hrTLDFbjRq1NeSWGKJsSCW2EuMxl5jjTWaYhJJNJJojBqsiGIjKqBrQ3o73x98O7ICKiywsNy/69rLZeaZ4cy4zM6Zp6lEREBERERERKQDI30HQEREREREhR8TCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0lkxfQdARIVPWFgY1Gq1vsPIlI2NDZycnPQdxivNmDED/v7++P3339G8eXNluUqlQrNmzXDs2DG9xVYU8POrO36GiSgzTCyIKFvCwsLg4e6O2Ph4fYeSKUtzcwSHhOTKzdnZs2fx9ddf448//sD9+/eRmpoKBwcHNGrUCP3790ebNm1yIWLKT2FhYXCv5oH4uFh9h5IpcwtLhFwNzrXkoqB8hi9duoSFCxfi+PHjCA8Ph7m5OcqVK4eaNWuiWbNm+OSTT6BSqTLd9o8//kCzZs0AAN9++y26d++eabnNmzdj4MCBAIBu3bph7969mZZbtWoVRowYAQAYMGAANm/erOPREZEGEwsiyha1Wo3Y+Hgs93KGawkLfYejJTQ6Dp+cvw21Wq3TjVlqairGjx+PpUuXolixYmjZsiV8fX1hYmKCmzdv4ocffsC2bdswc+ZMTJs2LRePgPKaWq1GfFwsKnWbDPNyBatmIP5hGO7sm6vz5xcoWJ/hX3/9Fe+++y6Sk5PRunVrdOnSBebm5rhx4waOHz+OAwcOYOTIkShWLPNbkg0bNgBIqw3ZuHFjlomFRrFixXD48GGo1WrY2Nhkur9ixYohOTlZ94MjIi1MLIgoR1xLWKCGtaW+w8gTU6dOxdKlS+Ht7Y29e/eiSpUqWuvj4uKwYsUKPHr0SE8Rkq7MyznB0qGqvsPIMwXpMzx8+HCkpKTg6NGjaNGihdY6EcEvv/wCY2PjTLeNiorC3r17UbNmTdja2uKXX37Bf//9B0dHxyx/X4cOHXD48GFs27YNY8aM0Vp34cIFnD17Fr6+vjh06JDOx0ZE2th5m4gondDQUCxYsABly5bFkSNHMtyQAYCFhQUmTJgAf39/ZVliYiKWLFmCWrVqoXjx4ihZsiTefvttnW9ePvzwQ6hUKty8eRMLFiyAm5sbzM3N4eLigpkzZyIpKSnT7TZt2oT69eujRIkSKFGiBOrXr59lk499+/ahWbNmKF++PMzNzeHg4IDWrVtj3759GcpeuHABvXr1gr29PUxNTVGpUiV8/PHHTLIKkIL0GX7w4AFu3LgBT0/PDEkFkFYL0a5duyybQe3cuROxsbHo378/+vfvj9TU1Nc2XWrUqBGqVauGTZs2ZVi3ceNGGBsbY8CAATk6HiJ6NSYWRETpbN68GSkpKRg2bBhsbW1fWdbMzAwAkJCQgHbt2uHTTz+FiGDw4MHo168f7ty5g06dOmHFihU6xzVmzBjMnz8frVu3xscffwwzMzP4+fmhd+/eGcp+8sknGDRoEO7du4fBgwdj8ODBuHfvHgYOHIjRo0drlV21ahXef/99XL9+HV26dMG4cePQvn17RERE4MCBA1plDx06hHr16uHQoUNo3rw5xowZgxo1amDFihVo2LAhnjx5ovNxku4K0mfY2toaxYoVQ3h4OGJiYrK9/YYNG2BsbIy+ffuia9euKFGiBDZt2gQReeV2AwcOVGonNBITE7F9+3a0a9cODg4O2Y6FiF6PTaGIiNL5888/AQAtW7Z8421mzpyJY8eOYdq0afD391eevj5//hwtW7bEp59+iq5du+p0M3Pq1CmcP38eFStWBADMmTMHbdq0wb59+7Bv3z5069YNQFpH16+++goeHh44efIkrK2tAaSN4tOgQQMsX74c77//Pt5++20AwPr162FqaoqgoCCUL19e63emr4V49OgRPvjgA9jY2ODPP/9EpUqVlHW7du1C7969MX36dHz11Vc5PkbKHQXpM2xmZgZfX1/s378fDRs2xJAhQ9CoUSPUqFEDpqamr9z24sWL+Oeff9CuXTvY2dkBALp27YqtW7fit99+Q6tWrbLctn///pgyZQo2btyI2rVrAwC+++47qNVqDB48OFvHQERvjjUWRETpREREAIByA/86qampWLVqFapUqaJ1QwYAJUuWxPTp05GYmIj9+/frFNfo0aO1YjI1NcWcOXMAQKtpyJYtWwCkJRKapAIASpcuDT8/vwzlAcDExAQmJiYZfmfZsmWV91u3bkVUVBTmzp2rlVQAQK9evVCrVi3s2rUrZwdHuaqgfYbXrl2L9957DxcvXsQnn3yCOnXqoGTJkmjcuDGWL1+OuLi4TLfTdNru37+/skzzXrMuK3Z2dnjnnXewc+dOxP//CHYbN25EuXLl8N577+XoOIjo9VhjQUSkg5CQEDx58gQODg5a7dU1Hj58CAC4evWqTr9HU8OQXsOGDVGsWDH8+++/yjLN+/RzC2ho2rgHBQUpy3r16oWJEyfC09MTffr0QYsWLdCkSRNYWVlpbXvq1CkAwN9//40bN25k2Hd8fDzUanWWI/FQwZXXn+GyZcvi0KFDuH79Oo4cOYLTp0/j1KlT+Ouvv/DXX39h3bp1OH78OMqUKaNsk5CQgG3btqFkyZLo0qWLsrxFixZwdHTEgQMH8OTJE5QuXTrL3zto0CAcOnQIBw4cQNOmTfHLL79g9OjRmSbRRJQ7mFgQEaVjZ2eHq1ev4t69e3B3d39t+cePHwMALl++jMuXL2dZLifty9PLrK28sbExypYti2fPninLoqKiYGRkhHLlymW6D5VKhaioKGXZ+PHjUbZsWaxatQqLFy/GokWLUKxYMXTs2BFLly6Fi4sLgBfHuXLlylfGGRMTw8RCzwrqZ9jNzQ1ubm7Kz0FBQejXrx8uXboEf39/fPnll8q6gwcP4tGjRxg4cCAsLF4Ma21kZIS+ffti3rx52LFjB0aOHJnl7+vYsSNsbW2xceNG3Lx5E6mpqRg0aJBOx0BEr8amUERE6TRu3BgAEBAQ8EblNU/2u3XrBhHJ8pXZCDXZERkZmWFZSkoKHj16pNXkycrKCqmpqcpT5vQePHgAEdGqjVCpVBg0aBD++ecfPHz4EAcOHEDXrl3x3Xff4d1330VKSorWcV68ePGVx/lyMynKfwX1M/wyb29vpU/Ob7/9prVO09Rp06ZNUKlUWq958+ZplclKsWLF0L9/f/z2229YuXIl6tWrB09Pz1w9BiLSxsSCiCidDz/8EMbGxli7dm2mN+fpJSQkwMPDA1ZWVjhz5kyWQ7/mhhMnTmRYdvLkSSQnJ8PHx0dZpnl/7NixDOU1y7y9vTP9HWXLlkXnzp2xe/dutGzZEleuXEFoaCgAoH79+srvpIKtoH6GM1OiRIkMy+7cuYOAgADY2toqo5q9/HJxccG///6r1QwwM4MGDUJqairCw8NZW0GUD5hYEBGl4+rqiokTJ0KtVqNDhw64detWhjLx8fFYsmQJZsyYgWLFimH48OG4c+cOxo8fn+mN2aVLl/DgwQOd4vryyy9x9+5d5efExERMmTIFQNqNpIZmfH5/f3+tJk/Pnj1T2s+nH8P/2LFjGYbuTEpKUprHmJubA0gbvrNkyZKYMmVKps1lYmNjlX4YpF8F6TMcExODOXPmQK1WZ1iXnJyMhQsXAgCaNGmiLN+0aRNSU1MxbNgwrF+/PtPXZ599BuD1tRbVqlXDTz/9hAMHDqBv377Zjp+Isod9LIiIXjJ79mzEx8dj6dKlcHd3R8uWLeHp6QkTExPcunULR48exaNHjzB79mwAaTfx586dw/Lly/HDDz+gadOmKF++PO7du4eLFy/i/PnzOHnyZIbhXLOjQYMG8PLyQs+ePVG8eHEcPnwYISEh6Nq1qzLULAA0bdoUH3/8Mb766it4enoqzVv27duHu3fv4pNPPkHTpk2V8p07d4aVlRUaNGiASpUqISkpCb/++iuuXLmC999/X2naVK5cOezcuRPdu3eHl5cX2rdvj2rVqiEhIQG3b9/G8ePH0ahRIxw5ciTHx0i5p6B8hpOSkjB16lTMmDEDDRs2hJeXF6ysrBAZGYmff/4Zd+/ehYuLizJiWWpqqtL8KX3C/LKePXtizJgx2L59OxYtWqQkwJlp3759tmImopxjYkFEORIanfkQkfqUWzEZGRlhyZIl6NOnD1atWoU//vgDf/zxB1JTU2Fvb4927dph4MCBaN26NYC0sfp/+uknbNiwAVu3bsW+ffuQkJAAW1tbVK9eHf/73/9Qo0YNnWJatmwZ9uzZg/Xr1yMsLAz29vaYMWMGJk+enKHs8uXL4ePjg1WrVmHt2rUAgLfeegszZ87EwIEDtcrOnTtXGann8OHDKF68OKpUqYJVq1ZlGO+/Y8eO+Pfff7Fw4UIcPXoUv/76K4oXL46KFSti4MCB6Nevn07HmJ/iH4bpO4QMcjOmgvIZtrKywo8//oiff/4ZgYGB2LNnDx49egRLS0tUrVoVQ4YMwejRo5V+QkePHkVYWBiaNWumDByQGWtra3Tt2hXbt2/H/v370adPn5ydKCLKVSp53fSVRETphIWFwcPdHbH/PzZ8QWNpbo7gkBA4OTnpO5Rc8eGHH2LLli24desWnJ2d9R1OoRcWFgb3ah6Ij4vVdyiZMrewRMjVYIP5/BJR0cIaCyLKFicnJwSHhGTaZrogsLGx4U0ZZcnJyQkhV4P5+SUiygNMLIgo25ycnHjzQ4UWP79ERHmDo0IREREREZHO2MeCiIiIiIh0xhoLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGROLTIgIoqKiICL6DoWIiIiIqFBgYpGJ58+fw9raGs+fP9d3KEREREREhQITCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0lkxfQdAVNCEh4cjPDw829vZ29vD3t4+DyIiIiIiKviYWBC9ZM2aNfD398/2dn5+fpgxY0buB0RERERUCKhERPQdREETFRUFa2trPHv2DFZWVvoOh/JZZjUWcXFxaNKkCQAgMDAQFhYWGbZjjQUREREVZUwsMsHEgl4WExODEiVKAACio6NRvHhxPUdEREREVLCw8zYREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemsmL4DINKnsLAwqNXq15aLi4tT3gcFBcHCwuK129jY2MDJyUmn+IiIiIgKC5WIiL6DKGiioqJgbW2NZ8+ewcrKSt/hUB4JCwuDezUPxMfF5sn+zS0sEXI1mMkFERERFQmssaAiS61WIz4uFpW6TYZ5uVff/KcmJeD6hjEAALfBy2BkYvbK8vEPw3Bn31yo1WomFkRERFQkMLGgIs+8nBMsHaq+skxK4oumUBb2rjA2fX1TKCIiIqKihJ23iYiIiIhIZwUisVi5ciWcnZ1hbm6O+vXr4/Tp01mWXbduHd5++22ULl0apUuXRuvWrTOU//DDD6FSqbRe7du3z+vDICIiIiIqsvSeWOzevRvjxo2Dn58fzp07By8vL7Rr1w4PHjzItPyxY8fQu3dv/P777zh58iQcHR3Rtm1b3Lt3T6tc+/btER4errx27tyZH4dDRERERFQk6T2xWLJkCYYMGYKBAweievXqWL16NSwtLbFx48ZMy2/fvh0jRoyAt7c3qlWrhvXr1yM1NRUBAQFa5czMzGBnZ6e8SpcunR+HQ0RERERUJOk1sUhMTMTZs2fRunVrZZmRkRFat26NkydPvtE+YmNjkZSUhDJlymgtP3bsGMqXLw93d3cMHz4cjx49ynIfCQkJiIqK0noREREREdGb02tioVarkZKSAltbW63ltra2iIiIeKN9TJo0CQ4ODlrJSfv27bF161YEBARg/vz5OH78ODp06ICUlJRM9zF37lxYW1srL0dHx5wfFBERERFREVSoh5udN28edu3ahWPHjsHc3FxZ3qtXL+V9jRo1ULNmTVSpUgXHjh1Dq1atMuxn8uTJGDdunPJzVFQUkwsiIiIiomzQa42FjY0NjI2NERkZqbU8MjISdnZ2r9x20aJFmDdvHn755RfUrFnzlWUrV64MGxsbhIaGZrrezMwMVlZWWi8iIiIiInpzek0sTE1NUbt2ba2O15qO2A0bNsxyuwULFmDWrFk4cuQI6tSp89rfc/fuXTx69Aj29va5EjcREREREWnT+6hQ48aNw7p167BlyxYEBwdj+PDhiImJwcCBAwEA/fv3x+TJk5Xy8+fPx7Rp07Bx40Y4OzsjIiICERERiI6OBgBER0djwoQJOHXqFG7fvo2AgAB06tQJrq6uaNeunV6OkYiIiIjI0Om9j0XPnj3x8OFDTJ8+HREREfD29saRI0eUDt1hYWEwMnqR/6xatQqJiYl4//33tfbj5+eHGTNmwNjYGBcuXMCWLVvw9OlTODg4oG3btpg1axbMzMzy9diIiIiIiIoKvScWADBq1CiMGjUq03XHjh3T+vn27duv3JeFhQV+/vnnXIqMiIiIiIjehN6bQhERERERUeHHxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHRWICbIIypIkp4/QtLzR1rLUpISlPex4aEwNsk4i7tJybIwKVk2z+MjIiIiKoiYWBC9RP3P94g4tjXL9aEbxmS63K55f9i3HJBHUREREREVbEwsiF5iU/ddWFdrmO3tWFtBRERERRkTC6KXsEkTERERUfax8zYREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemsmL4DIMqu8PBwhIeHZ3s7e3t72Nvb50FERERERMTEggqdNWvWwN/fP9vb+fn5YcaMGbkfEBERESn4ALDoYmJBhc6wYcPg6+urtSwuLg5NmjQBAAQGBsLCwiLDdrxYERER5T0+ACy6mFhQoZPZE42YmBjlvbe3N4oXL57fYRERERH4ALAoY2JBRERERLmGDwCLrgIxKtTKlSvh7OwMc3Nz1K9fH6dPn86y7Lp16/D222+jdOnSKF26NFq3bp2hvIhg+vTpsLe3h4WFBVq3bo3r16/n9WEQERERERVZek8sdu/ejXHjxsHPzw/nzp2Dl5cX2rVrhwcPHmRa/tixY+jduzd+//13nDx5Eo6Ojmjbti3u3bunlFmwYAGWL1+O1atX4++//0bx4sXRrl07xMfH59dhEREREREVKXpPLJYsWYIhQ4Zg4MCBqF69OlavXg1LS0ts3Lgx0/Lbt2/HiBEj4O3tjWrVqmH9+vVITU1FQEAAgLTaimXLlmHq1Kno1KkTatasia1bt+L+/fs4ePBgPh4ZEREREVHRodfEIjExEWfPnkXr1q2VZUZGRmjdujVOnjz5RvuIjY1FUlISypQpAwC4desWIiIitPZpbW2N+vXrZ7nPhIQEREVFab2IiIiIiOjN6TWxUKvVSElJga2trdZyW1tbREREvNE+Jk2aBAcHByWR0GyXnX3OnTsX1tbWysvR0TG7h0JEREREVKTpvSmULubNm4ddu3bhwIEDMDc3z/F+Jk+ejGfPnimv//77LxejJCIiIiIyfHodbtbGxgbGxsaIjIzUWh4ZGQk7O7tXbrto0SLMmzcPR48eRc2aNZXlmu0iIyO1hjqLjIyEt7d3pvsyMzODmZlZDo+CiIiIiIj0WmNhamqK2rVrKx2vASgdsRs2bJjldgsWLMCsWbNw5MgR1KlTR2udi4sL7OzstPYZFRWFv//++5X7JCIiIiKinMt2jUVqaiqOHz+OEydO4M6dO4iNjUW5cuXg4+OD1q1bZ7t/wrhx4zBgwADUqVMH9erVw7JlyxATE4OBAwcCAPr3748KFSpg7ty5AID58+dj+vTp2LFjB5ydnZV+EyVKlECJEiWgUqkwZswYzJ49G25ubnBxccG0adPg4OCAzp07Z/dwiYiIiIjoDbxxYhEXF4fFixdj1apVePz4Mby9veHg4AALCwuEhobi4MGDGDJkCNq2bYvp06ejQYMGb7Tfnj174uHDh5g+fToiIiLg7e2NI0eOKJ2vw8LCYGT0omJl1apVSExMxPvvv6+1Hz8/P8yYMQMAMHHiRMTExGDo0KF4+vQpmjRpgiNHjujUD4OIiIiIiLL2xolF1apV0bBhQ6xbtw5t2rSBiYlJhjJ37tzBjh070KtXL0yZMgVDhgx5o32PGjUKo0aNynTdsWPHtH6+ffv2a/enUqkwc+ZMzJw5841+PxERERER6eaNE4tffvkFHh4eryxTqVIlTJ48GePHj0dYWJjOwRERERERUeHwxp23X5dUpGdiYoIqVarkKCAiIiIiIip8cnVUqJiYGPzxxx+5uUsiIiIiIioEcjWxCA0NRYsWLXJzl0REREREVAgU6pm3iYiIiIioYMjWPBZlypR55fqUlBSdgiHKTFhYGNRq9SvLxMXFKe+DgoJgYWHx2v0GBwfrHBsRERERpclWYpGQkIDhw4ejRo0ama6/c+cO/P39cyUwIiAtqfBwd0dsfPwbb9OkSZM8jIiIiIiIMpOtxMLb2xuOjo4YMGBApuvPnz/PxIJylVqtRmx8PJZ7OcO1RNa1EPEpqeh6KgQAsL+BO8yNX9/K7/cHT7HweniuxUpERERUlGUrsejYsSOePn2a5foyZcqgf//+usZElIFrCQvUsLbMcn1s8otmeG9ZWcCymPFr9xkaHffaMkRERJS1N2muDOSsybKNjQ2cnJx0io/yV7YSi88///yV6x0dHbFp0yadAiIiIiKigi8sLAzu1TwQHxebre3etMmyuYUlQq4GM7koRLKVWBARERERAWnNlePjYlGp22SYl3v1zX9qUgKubxgDAHAbvAxGJmavLB//MAx39s2FWq1mYlGIZCuxaNq0KQ4dOoRSpUoBAA4dOoQ2bdq8UXUWERERERke83JOsHSo+soyKYkvmkJZ2LvC2JT3joYoW/NYBAYGIjExUfm5X79+CA9n51ciIiIioqJOpwnyRCS34iAiIiIiokKMM28TEREREZHOst15++eff4a1tTUAIDU1FQEBAbh06ZJWGV9f39yJjoiIiIiICoVsJxYvT443bNgwrZ9VKhVSUlJARERERERFR7YSi9TU1LyKg4iIiIiICjH2sSAiIiIiIp0xsSAiIiIiIp0xsSAiIiIiIp0xsSAiIiIiIp0xsSAiIiIiIp3pnFiMGDECarU6N2IhIiIiIqJCSufEYtu2bYiKisqNWIiIiIiIqJDSObEQkdyIg4iIiIiICjH2sSAiIiIiIp1la+btzDx//jw34iB6Y5HxSXiQkKS1LD4lRXl/OSoW5sbGGbYrb2YCW3OTPI+PiIiIqCjSObEgym/bwx5iaWh4luu7nrqW6fKxrvYYV9Uhr8IiIiIiKtKYWFCh09epHNrYlsr2duXNWFtBRERElFeYWFChY2vOJk1EREREBQ0TCwIAhIeHIzw86+ZFWbG3t4e9vX0eRERERESFUdLzR0h6/khrWUpSgvI+NjwUxiZmGbYzKVkWJiXL5nl8lHeYWBAAYM2aNfD398/2dn5+fpgxY0buB0RERESFkvqf7xFxbGuW60M3jMl0uV3z/rBvOSCPoqL8kKuJxY0bNzBkyBD89ttvublbygfDhg2Dr6+v1rK4uDg0adIEABAYGAgLC4sM27G2goiIiNKzqfsurKs1zPZ2rK0o/HI1sYiOjsbx48dzc5eUTzJr0hQTE6O89/b2RvHixfM7LCIiIipk2KSp6MpWYrF8+fJXrr93755OwRARERERUeGUrcRizJgxsLe3h6mpaabrExMTcyUoIiIiIiIqXLKVWFSqVAnz589Hjx49Ml0fFBSE2rVr50pgRERERERUeBhlp3Dt2rVx9uzZLNerVCqIiM5BERERERFR4ZKtGouZM2ciNjY2y/XVq1fHrVu3dA6KiIiIiIgKl2wlFtWrV3/lehMTE1SqVEmngIiIiIiIqPDhBHlERAYkPDwc4eHh2d4usyGniYiIsuONE4v27dtjxowZaNCgwSvLPX/+HF9//TVKlCiBkSNH6hwgERG9uTVr1sDf3z/b2/n5+WHGjBm5HxARERUZb5xYdO/eHd26dYO1tTXee+891KlTBw4ODjA3N8eTJ09w5coVBAYG4scff0THjh2xcOHCvIybiIgyMWzYMPj6+moti4uLQ5MmTQAAgYGBsLCwyLAdayuIiEhXb5xYDB48GP369cOePXuwe/durF27Fs+ePQOQNhpU9erV0a5dO/zzzz/w8PDIs4Apd4SFhUGtVr+yTFxcnPI+KCgo05uRzNjY2MDJyUmn+IgoZzJr0hQTE6O89/b2RvHixfM7LCIiKgKy1cfCzMwM/fr1Q79+/QAAz549Q1xcHMqWLQsTE5M8CZByX1hYGNyreSA+LusRvl6medr5JswtLBFyNZjJBREREVERolPnbWtra1hbW+dWLJRP1Go14uNiUanbZJiXy/rmPzUpAdc3jAEAuA1eBiMTs9fuO/5hGO7smwu1Ws3EgoiIiKgI4ahQRZh5OSdYOlTNcn1K4oumUBb2rjA2fbOmUERERERU9GRr5m0iIiIiIqLMMLEgIiIiIiKdZTuxSElJwR9//IGnT5/mSgArV66Es7MzzM3NUb9+fZw+fTrLspcvX0a3bt3g7OwMlUqFZcuWZSgzY8YMqFQqrVe1atVyJVYiIiIiIspcthMLY2NjtG3bFk+ePNH5l+/evRvjxo2Dn58fzp07By8vL7Rr1w4PHjzItHxsbCwqV66MefPmwc7OLsv9vvXWW8rss+Hh4QgMDNQ5ViIiIiIiylqOmkJ5enri5s2bOv/yJUuWYMiQIRg4cCCqV6+O1atXw9LSEhs3bsy0fN26dbFw4UL06tULZmZZj1BUrFgx2NnZKS8bGxudYyUiIiIioqzlKLGYPXs2xo8fj++//x7h4eGIiorSer2JxMREnD17Fq1bt34RjJERWrdujZMnT+YkLMX169fh4OCAypUro2/fvggLC3tl+YSEhBwdAxERERERpcnRcLPvvPMOAMDX1xcqlUpZLiJQqVRISUl57T7UajVSUlJga2urtdzW1hZXr17NSVgAgPr162Pz5s1wd3dHeHg4/P398fbbb+PSpUsoWbJkptvMnTsX/v7+Of6dRERERERFXY4Si99//z2348g1HTp0UN7XrFkT9evXR6VKlfDtt99i8ODBmW4zefJkjBs3Tvk5KioKjo6OeR4rEREREZGhyFFi0axZM51/sY2NDYyNjREZGam1PDIy8pUds7OrVKlSqFq1KkJDQ7MsY2Zm9so+G0VB0vNHSHr+SGtZSlKC8j42PBTGmcy8bVKyLExKls3z+IiIiIioYMvxzNtPnz7Fhg0bEBwcDCBtJKZBgwbB2tr6jbY3NTVF7dq1ERAQgM6dOwMAUlNTERAQgFGjRuU0rAyio6Nx48YNfPDBB7m2T0Ok/ud7RBzbmuX60A1jMl1u17w/7FsOyKOoiIiIiKiwyFFicebMGbRr1w4WFhaoV68egLQRnubMmYNffvkFtWrVeqP9jBs3DgMGDECdOnVQr149LFu2DDExMRg4cCAAoH///qhQoQLmzp0LIK3D95UrV5T39+7dQ1BQEEqUKAFXV1cAwPjx4/Hee++hUqVKuH//Pvz8/GBsbIzevXvn5FCLDJu678K6WsNsb8faCiIiIiICcphYjB07Fr6+vli3bh2KFUvbRXJyMj766COMGTMGf/zxxxvtp2fPnnj48CGmT5+OiIgIeHt748iRI0qH7rCwMBgZvRi46v79+/Dx8VF+XrRoERYtWoRmzZrh2LFjAIC7d++id+/eePToEcqVK4cmTZrg1KlTKFeuXE4OtchgkyYiIiIi0kWOayzSJxVA2twREydORJ06dbK1r1GjRmXZ9EmTLGg4OztDRF65v127dmXr9xMRFVZhYWFQq9WvLRcXF6e8DwoKgoWFxRvt38bGBk5OTjmOj4iIipYcJRZWVlYICwtDtWrVtJb/999/WQ7pSkREuScsLAwe7u6IjY/P1nZNmjR547KW5uYIDglhckFERG8kR4lFz549MXjwYCxatAiNGjUCAPz555+YMGEC+zIQEeUDtVqN2Ph4LPdyhmuJV9dAxKekouupEADA/gbuMDd+/dyoodFx+OT8bajVaiYWRET0RnKUWCxatAgqlQr9+/dHcnIyAMDExATDhw/HvHnzcjVAIiLKmmsJC9SwtnxlmdjkF5OWvmVlActixnkdFhERFUHZTixSUlJw6tQpzJgxA3PnzsWNGzcAAFWqVIGl5au/3IiIiIiIyDBlO7EwNjZG27ZtERwcDBcXF9SoUSMv4iIiIiIiokLk9Q1tM+Hp6YmbN2/mdixERERERFRI5SixmD17NsaPH4/vv/8e4eHhiIqK0noREREREVHRkqPO2++88w4AwNfXFyqVSlkuIlCpVEhJSclqUyIiIspH4eHhCA8Pz/Z29vb2sLe3z4OIiMhQ5Six+P3333M7DiIiIsoDa9asgb+/f7a38/Pzw4wZM3I/ICIyWNlOLJKSkjBz5kysXr0abm5ueRETERER5ZJhw4bB19dXa1lcXJwyWWJgYGCms7GztoKIsivbiYWJiQkuXLiQF7EQERFRLsusSVNMTIzy3tvbG8WLF8/vsIjIAOWoKVS/fv2wYcMGToZHRERERIUW+yDlrhwlFsnJydi4cSOOHj2K2rVrZ3jSsWTJklwJjoiIiIgor7APUu7KUWJx6dIl1KpVCwBw7do1rXXpR4kiIiIiIiqo2Acpd3FUKCIiIiIqktgHKXflaIK8V3nw4EFu75KIiIiIiAq4bCUWlpaWePjwofJzx44dtTq8REZGsmqIiIiIiKgIylZiER8fDxFRfv7jjz8QFxenVSb9eiIiIiIiKhpyvSkUO28TERERERU9Oeq8TUREBVNkfBIeJCRpLYtPSVHeX46KhbmxcYbtypuZwNbcJM/jIyLSl7CwMKjV6teWS98aJygoKNNRoV5mY2MDJycnneIzBNlKLFQqlVaNxMs/ExGRfm0Pe4iloVlP9tT11LVMl491tce4qg55FRYRkV6FhYXBw90dsfHx2dpOM+zs61iamyM4JKTIJxfZSixEBFWrVlWSiejoaPj4+MDIyEhZT0RE+tPXqRza2JbK9nblzVhbQUSGS61WIzY+Hsu9nOFa4tU1EPEpqeh6KgQAsL+BO8yNX91zIDQ6Dp+cvw21Ws3EIjuFN23alFdxEBFRLrA1Z5MmIqKsuJawQA1ry1eWiU1+0Xz0LSsLWBbL2HyUMpetxGLAgAF5FQcRERERERVi7LxNRERvJDw8XGvuojeV2cy2ZBj4mSCi9JhYEBHRG1mzZg38/f2zvZ2fnx9mzJiR+wGR3vEzQUTpMbEgIqI3MmzYMPj6+moti4uLU0ZNCQwMzHRYRj6ZNlz8TFBhxyG6cxcTCyIieiOZNV+JiYlR3nt7e6N48eL5HRbpET8TVNhxiO7cxcSCiIiIiIokDtGdu3KUWKSkpGDz5s0ICAjAgwcPkJqaqrX+t99+y5XgiIiIiIjyCofozl05SixGjx6NzZs3o2PHjvD09OTs20RERERERVyOEotdu3bh22+/xTvvvJPb8RARERERUSH06jnKs2BqagpXV9fcjoWIiIiIiAqpHNVYfPrpp/jyyy+xYsUKNoMiIqIihxPDERFllKPEIjAwEL///jt++uknvPXWWzAx0e70sn///lwJjoiIqCDixHBERBnlKLEoVaoUunTpktuxEBERFQqcGI6IKKMcJRabNm3K7TiIiIgKDU4MR0SUESfIIyKiLAUHB79yfVxcnPI+KCgo06f0mbGxsYGTk5NOsRERUcGS48Ri7969+PbbbxEWFobExEStdefOndM5MCIi0p8HCUmAygj9+vV74200zYDehLmFJUKuBjO5yANhYWFQq9WvLMOEkIjyQo4Si+XLl2PKlCn48MMP8d1332HgwIG4ceMG/vnnH4wcOTK3YyQionwWlZQMSCoqdZsM83JZ30imJiXg+oYxAAC3wctgZGL22n3HPwzDnX1zoVareZOay8LCwuDh7o7Y+Pg33iY7CaGluTmCQ0L4/0ZEmcpRYvH1119j7dq16N27NzZv3oyJEyeicuXKmD59Oh4/fpzbMRIRkZ6Yl3OCpUPVLNenJL548m1h7wpj0zd78k15Q61WIzY+Hsu9nOFaIuv/i/iUVHQ9FQIA2N/AHebGr5/WKjQ6Dp+cv82EkIiylKPEIiwsDI0aNQIAWFhY4Pnz5wCADz74AA0aNMCKFStyL0IiIiLKFtcSFqhhbZnl+tjkFOX9W1YWsCxmnB9hERUpRXG+mxwlFnZ2dnj8+DEqVaoEJycnnDp1Cl5eXrh16xZEJLdjJCIiIiIqVIrifDc5SixatmyJQ4cOwcfHBwMHDsTYsWOxd+9enDlzBl27ds3tGImIiKiA4EhhRG+mKM53k6PEYu3atUhNTQUAjBw5EmXLlsVff/0FX19fDBs2LFcDJCIi0qc3GWUJMPwbao4URpQ9RXG+mxwlFkZGRjAyetHRq1evXujVq1euBUVERFQQhIWFwb2aB+LjYrO1nSHeUHOkMCJ6nRzPY3HixAmsWbMGN27cwN69e1GhQgV88803cHFxydYFlYiIqKBSq9WIj4t97c00UHRuqDlSGFHmXtdMEDD8ms0cJRb79u3DBx98gL59++Lff/9FQkICAODZs2f44osv8OOPP+ZqkERERPr0uptpgDfUREVVTpoJAoZZs5mjxGL27NlYvXo1+vfvj127dinLGzdujNmzZ+dacEREREREBdmbNhMEDL9mM0eJRUhICJo2bZphubW1NZ4+faprTEREREREhQprNoHXT7WZCTs7O4SGhmZYHhgYiMqVK2drXytXroSzszPMzc1Rv359nD59Osuyly9fRrdu3eDs7AyVSoVly5bpvE8iInozSc8fIfb+Ne1X+Ivvgtjw0Izr719D0vNHeoyaiEg/iuI1M0c1FkOGDMHo0aOxceNGqFQq3L9/HydPnsT48eMxbdq0N97P7t27MW7cOKxevRr169fHsmXL0K5dO4SEhKB8+fIZysfGxqJy5cro3r07xo4dmyv7JCKiN6P+53tEHNua5frQ/6/ef5ld8/6wbzkgj6IiIiqYiuI1M0eJxWeffYbU1FS0atUKsbGxaNq0KczMzDB+/Hh8/PHHb7yfJUuWYMiQIRg4cCAAYPXq1fjhhx+wceNGfPbZZxnK161bF3Xr1lViyI19EhHRm7Gp+y6sqzXM9nYmJcvmQTRElFPh4eEIDw/P9naZzctAWSuK18wcJRYqlQpTpkzBhAkTEBoaiujoaFSvXh0lSpR4430kJibi7NmzmDx5srLMyMgIrVu3xsmTJ3MSVo73mZCQoIxsBQBRUVE5+v1ERIbMpGTZQv2FR0Rp1qxZA39//2xv5+fnhxkzZuR+QAaqKF4zczyPBQCYmpqievXqOdpWrVYjJSUFtra2WsttbW1x9erVfN3n3Llzc/QHRkRERVPS80cZ2kGnJL14QBUbHgrjTEZ7KYo3GlTwDBs2DL6+vlrL4uLilOFPAwMDM51fgbUV9DrZSiwGDRr0RuU2btyYo2D0ZfLkyRg3bpzyc1RUFBwdHfUYERERFWRFse00GY7MmjTFxMQo7729vVG8ePH8DosMQLYSi82bN6NSpUrw8fGBiOj0i21sbGBsbIzIyEit5ZGRkbCzs8vXfZqZmcHM7PXjCBMREQFFs+00EdHrZCuxGD58OHbu3Ilbt25h4MCB6NevH8qUKZOjX2xqaoratWsjICAAnTt3BgCkpqYiICAAo0aNKjD7JCIiehmbNBERZZSteSxWrlyJ8PBwTJw4EYcPH4ajoyN69OiBn3/+OUc1GOPGjcO6deuwZcsWBAcHY/jw4YiJiVFGdOrfv79WR+zExEQEBQUhKCgIiYmJuHfvHoKCgrTm1HjdPomIiIiIKPdlu/O2mZkZevfujd69e+POnTvYvHkzRowYgeTkZFy+fDlbI0P17NkTDx8+xPTp0xEREQFvb28cOXJE6XwdFhYGI6MXuc/9+/fh4+Oj/Lxo0SIsWrQIzZo1w7Fjx95on0RERERElPt0GhXKyMgIKpUKIoKUlJQc7WPUqFFZNlPSJAsazs7Ob1Qz8qp9EhERERFR7stWUyggbc6HnTt3ok2bNqhatSouXryIFStWICwsLFu1FUREREREZDiyVWMxYsQI7Nq1C46Ojhg0aBB27twJGxubvIqNiIiICjDO50FE6WUrsVi9ejWcnJxQuXJlHD9+HMePH8+03P79+3MlOCIiIiq4OJ9H4RAWFga1Wv3KMnFxccr7oKCgTCfIe1lwcLDOsZFhyVZi0b9/f6hUqryKhYiIiAoRzudR8IWFhcHD3R2x8fFvvI1mBm6i7Mr2BHlEREREAJs0FQZqtRqx8fFY7uUM1xJZ10LEp6Si66kQAMD+Bu4wN359N9zfHzzFwuvhuRYrFX46jQpFRERERAWfawkL1LC2zHJ9bPKL0T3fsrKAZTHj1+4zNDrutWWoaMn2qFBEREREREQvY2JBREREREQ6Y1MoIiIiAxYZn4QHCUlay+LTTWp7OSoW5sYZm72UNzOBrblJnsdHRIaDiQUREZEB2x72EEtDs+5g2/XUtUyXj3W1x7iqDnkVFhEZICYWREREBqyvUzm0sS2V7e3Km7G2goiyh4kFERGRAbM1Z5MmIsofTCwKkfDwcISHZ3+8aHt7e9jb2+dBREREREREaZhYFCJr1qyBv79/trfz8/PDjBkzcj8gIiIiKnTYoZ/yChOLQmTYsGHw9fXVWhYXF4cmTZoAAAIDA2FhkXFWTdZWEBERkQY79FNeYWJRiGTWpCkmJkZ57+3tjeLFi+d3WERERFSIsEM/5RUmFkREREQ6Kkz9INmhn/IKEwsiIiIiHbEfJBETCyIiMlCF6QkyFX7sB0nExIKIiAwUnyBTfmI/SCImFkREZKD4BJmIKH8xsSAiIoPEJ8hERPnLSN8BEBERERFR4ccaiwIqLCwMarX6teXi4uKU90FBQZlW678sODhYp9iIiIiIiF7GxKIACgsLg4e7O2Lj47O1nabdMBEREeWdvHz4BwA2NjZwcnLKcXxE+sLEogBSq9WIjY/Hci9nuJZ49UUoPiUVXU+FAAD2N3CHufHrW7f9/uApFl7P/hCMREQFVV7d6LGGl14WFhYG92oeiI+LzdZ22Xn4Z25hiZCrwUwuqNBhYlGAuZawQA1ry1eWiU1OUd6/ZWUBy2LGr91vaHTca8sQERUWrOWl/KRWqxEfF4tK3SbDvNyrb/xTkxJwfcMYAIDb4GUwMjF77f7jH4bhzr65UKvVTCyo0GFiQUREhVpe1vKyhpeyYl7OCZYOVV9ZJiXxxYM8C3tXGJu+WVMoosKKiQURERmEvKjlZQ0vEdGb43CzRERERESkMyYWRERERESkMzaFIiIigxQZn4QHCUlay+JTXjSFuhwVC3PjjE2hypuZwNbcJM/jo/wXHh6O8PDs95nJbBZ3IsqIiQURERmk7WEPsTQ065vIrqeuZbp8rKs9xlV1yKuwSI/WrFkDf3//bG/n5+eHGTNmvLJM0vNHSHr+SGtZSlKC8j42PBTGmYwKZVKyLExKls12TEQFEROLQoRP34iI3lxfp3JoY1sq29uVN+P10lANGzYMvr6+Wsvi4uKUoYcDAwMzndvkTWor1P98j4hjW7NcH/r/w86+zK55f9i3HPDa/RMVBkwsChE+fSMienO25nyoQtoya9IUExOjvPf29kbx4sVztG+buu/CulrDbG/H2goyJEwsChE+fSMiIiqY2KSJiIlFocKnb0RERERUUHG4WSIiIiIi0hkTCyIiIiIi0hmbQhEREZHBCQsLg1qtfm25uLg45X1QUFCmo0KlFxwcrHNsRIaKiQUREREZlLCwMHi4uyM2Pj5b22mGnSWinGFiQURERAZFrVYjNj4ey72c4Vri1TUQ8Smp6HoqBACwv4E7zI1f3Ur89wdPsfB69mfvJioKmFgQERGRQXItYYEa1pavLBOb/GKi2besLGBZLONEs+mFRse9cj1RUcbO20REREREpDMmFkREREREpDMmFkREREREpDMmFkREREREpDN23iYiIqIiITI+CQ8SkrSWxae86Lx9OSoW5sYZO2+XNzOBrblJnsdHVNgxsSAiIqIiYXvYQywNzXqo2K6nrmW6fKyrPcZVdcirsIgMBhMLIiIiKhL6OpVDG9tS2d6uvBlrK4jeRIHoY7Fy5Uo4OzvD3Nwc9evXx+nTp19Zfs+ePahWrRrMzc1Ro0YN/Pjjj1rrP/zwQ6hUKq1X+/bt8/IQiIiIqICzNTdBDWvLbL/YDIrozeg9sdi9ezfGjRsHPz8/nDt3Dl5eXmjXrh0ePHiQafm//voLvXv3xuDBg/Hvv/+ic+fO6Ny5My5duqRVrn379ggPD1deO3fuzI/DISIiIiIqkvSeWCxZsgRDhgzBwIEDUb16daxevRqWlpbYuHFjpuW//PJLtG/fHhMmTICHhwdmzZqFWrVqYcWKFVrlzMzMYGdnp7xKly6dH4dDRERERFQk6TWxSExMxNmzZ9G6dWtlmZGREVq3bo2TJ09mus3Jkye1ygNAu3btMpQ/duwYypcvD3d3dwwfPhyPHj3KMo6EhARERUVpvYiIiIiI6M3pNbFQq9VISUmBra2t1nJbW1tERERkuk1ERMRry7dv3x5bt25FQEAA5s+fj+PHj6NDhw5ISTekXHpz586FtbW18nJ0dNTxyIiIiIiIihaDHBWqV69eyvsaNWqgZs2aqFKlCo4dO4ZWrVplKD958mSMGzdO+TkqKorJBRERERFRNug1sbCxsYGxsTEiIyO1lkdGRsLOzi7Tbezs7LJVHgAqV64MGxsbhIaGZppYmJmZwczMLAdHQERFgWYQiOyyt7eHvb19HkRERERU8Og1sTA1NUXt2rUREBCAzp07AwBSU1MREBCAUaNGZbpNw4YNERAQgDFjxijLfv31VzRs2DDL33P37l08evSIX/BElCNr1qyBv79/trfz8/PDjBkzcj8gIiKiAkjvTaHGjRuHAQMGoE6dOqhXrx6WLVuGmJgYDBw4EADQv39/VKhQAXPnzgUAjB49Gs2aNcPixYvRsWNH7Nq1C2fOnMHatWsBANHR0fD390e3bt1gZ2eHGzduYOLEiXB1dUW7du30dpxEVHgNGzYMvr6+Wsvi4uLQpEkTAEBgYCAsLCwybMeHGUREVJToPbHo2bMnHj58iOnTpyMiIgLe3t44cuSI0kE7LCwMRkYv+pg3atQIO3bswNSpU/H555/Dzc0NBw8ehKenJwDA2NgYFy5cwJYtW/D06VM4ODigbdu2mDVrFps7EVGOZNakKSYmRnnv7e2N4sWL53dYREREBYreEwsAGDVqVJZNn44dO5ZhWffu3dG9e/dMy1tYWODnn3/OzfCIiIiIiOg19D5BHhERERERFX5MLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGcFYuZtIqKCIiwsDGq1+rXl4uLilPdBQUGwsLB47TY2NjZwcnLSKT4iIqKCiokFEdH/CwsLg3s1D8THxWZruyZNmrxROXMLS4RcDWZyQUREBomJBRHR/1Or1YiPi0WlbpNhXu7VN/+pSQm4vmEMAMBt8DIYmZi9snz8wzDc2TcXarWaiQURERkkJhZERC8xL+cES4eqryyTkviiKZSFvSuMTV/fFIqIiMiQsfM2ERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHprJi+AyAiKuiSnj9C0vNHWstSkhKU97HhoTA2McuwnUnJsjApWTbP4yMiIioImFgQEb2G+p/vEXFsa5brQzeMyXS5XfP+sG85II+iIiIiKliYWBARvYZN3XdhXa1htrdjbQURERUlTCyIiF6DTZqIiIhej523iYiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ8X0HQAR5Vx4eDjCw8OzvZ29vT3s7e31tm8iIiIyPEwsiAqxNWvWwN/fP9vb+fn5YcaMGXrbNxERERkeJhZEhURYWBjUarXWsoYNG2Lbtm1ayxISEjB48GAAwIYNG2BmZpZhXzY2Njh37lyGZU5OTsrPw4YNg6+vr1aZuLg4NGnSBAAQGBgICwuLDPtmbQUREVHRxMSCqBAICwuDh7s7YuPjs7WdJsF4E+ZmZti7b5/OiUFmTaheTlqIiIjI8DCxICoE1Go1YuPjsdzLGa4lMtYSpBefkoqup0IAAPsbuMPc+PVjNJx+/Bwzrt7Hu++++8YxaWou3oS5hSVCrgYzuSAiIjJgTCyIChHXEhaoYW2p/BwZn4QHCUkvlZIs3r9Q3swEtuYmys+h0XGApKJSt8kwL5f1zX9qUgKubxgDAHAbvAxGJhmbWb0s/mEY7uybC7VazcSCiIjIgDGxICrEtoc9xNLQrEdu6nrqWqbLx7raY1xVhwzLzcs5wdKhKgAg6fkjJD1/pLX+9SkLYFKyLExKln1l3ERERGR4mFgQFWJ9ncqhjW2pbG9X3szktWXU/3yPiGNbs1wf+v81Fy+za94f9i0HZDsmIiIiKtyYWBAVYrbm2k2acpNN3XdhXa1htrdjbQUREVHRxMSCiDJV2Jo0cUI/IiIi/WJiQUQGgRP6ERER6VeBSCxWrlyJhQsXIiIiAl5eXvjqq69Qr169LMvv2bMH06ZNw+3bt+Hm5ob58+fjnXfeUdaLCPz8/LBu3To8ffoUjRs3xqpVq+Dm5pYfh0NEeSyvJgsMDg7Oo4iJiIgMn94Ti927d2PcuHFYvXo16tevj2XLlqFdu3YICQlB+fLlM5T/66+/0Lt3b8ydOxfvvvsuduzYgc6dO+PcuXPw9PQEACxYsADLly/Hli1b4OLigmnTpqFdu3a4cuUKzM3N8/sQiSgX5cdkgURERJR9ek8slixZgiFDhmDgwIEAgNWrV+OHH37Axo0b8dlnn2Uo/+WXX6J9+/aYMGECAGDWrFn49ddfsWLFCqxevRoigmXLlmHq1Kno1KkTAGDr1q2wtbXFwYMH0atXr/w7OCLKdVlNFvg4MQmPE5O1yiakCiZcvAMAWFijEsyMVBn2V8a0GMqYpnWA//3BUyy8nv1+GkRERKTnxCIxMRFnz57F5MmTlWVGRkZo3bo1Tp48mek2J0+exLhx47SWtWvXDgcPHgQA3Lp1CxEREWjdurWy3traGvXr18fJkyczTSwSEhKQkJCg/Pzs2TMAQFRUVI6PTRfR0dEAgIvPYhCbnJLr+w99HgcAiL1/HSmJcbm67wT1XQBpx5Ab5y8vzwXPwwuF8VzEpaRqnYvv7j/GnnuPs9xOk2C8rHuFMuhZ0SYt1pRUAIXrPPAzUXivEwDPhQbPwws8F2l4Hl7I7XORUyVLloRKlfEBnRbRo3v37gkA+euvv7SWT5gwQerVq5fpNiYmJrJjxw6tZStXrpTy5cuLiMiff/4pAOT+/ftaZbp37y49evTIdJ9+fn6CtPm++OKLL7744osvvvjii6+XXs+ePXvtvb3em0IVBJMnT9aqBUlNTcXjx49RtmzZ12dmhVBUVBQcHR3x33//wcrKSt/h6A3Pwws8F2l4Hl7guUjD8/ACz0UanocXeC7SFJXzULJkydeW0WtiYWNjA2NjY0RGRmotj4yMhJ2dXabb2NnZvbK85t/IyEitsekjIyPh7e2d6T7NzMwyjBZTqlSp7BxKoWRlZWXQfwBviufhBZ6LNDwPL/BcpOF5eIHnIg3Pwws8F2l4HgAjff5yU1NT1K5dGwEBAcqy1NRUBAQEoGHDzGf8bdiwoVZ5APj111+V8i4uLrCzs9MqExUVhb///jvLfRIRERERkW703hRq3LhxGDBgAOrUqYN69eph2bJliImJUUaJ6t+/PypUqIC5c+cCAEaPHo1mzZph8eLF6NixI3bt2oUzZ85g7dq1AACVSoUxY8Zg9uzZcHNzU4abdXBwQOfOnfV1mEREREREBk3viUXPnj3x8OFDTJ8+HREREfD29saRI0dga2sLIG3MeiOjFxUrjRo1wo4dOzB16lR8/vnncHNzw8GDB5U5LABg4sSJiImJwdChQ/H06VM0adIER44c4RwW/8/MzAx+fn6ZThZWlPA8vMBzkYbn4QWeizQ8Dy/wXKTheXiB5yINz8MLKhERfQdBRERERESFm177WBARERERkWFgYkFERERERDpjYkFERERERDpjYkFkwNiFioiIiPILEwsiA3Xr1i3s2bMHABMMIiIiynscFYoMlohApVLpOwy9uHLlCmrVqgUXFxcEBwfrO5wCIyEhgcMBEr2kKF8riV6WmpqqNc0BADx48ADly5fXU0SFC2ssyKBcuHAB06dPB4Ai+0UZFBSEunXrwtXVFSYmJkhISNB3SHoTFhaG/fv3AwB2796NKVOmID4+Xs9RFQxF+ZlSUT729BITEwGk3UgVZS9/Hor6+SjqjIyMcP36dXz99dcAgD179mDIkCGIiIjQc2SFAxMLA1UUvzjPnz+PBg0a6DsMvTp//jwaNWqEadOmYefOnbhx4wbCwsL0HZZexMfHY+bMmZg7dy7Gjx+P3r1746233iqyE2W+fLOkSbyL2rUiNTVVOfagoCA8ePBAzxHpx9WrVzF06FC0bt0aM2bMQEhIiL5D0gvN5yE6OhoxMTGIjo7O8LS6qClq14SXpaSk4LvvvsOoUaMwePBg9OzZE127doWdnZ2+QysUivZfjwFIf7OwbNky+Pn5AUi7aShKFwfNDfXYsWMxc+ZMfYejF0FBQWjcuDHGjBmDzz77DCICY2PjIvuE3tzcHJMmTYK5uTmWLFmCESNGYODAgQCK3hPJ9FX7mzZtwsSJE9G/f38cPXq0SF0n0p+HqVOnYvTo0Th+/HiR+xs5f/48GjZsCGNjY9jb2+Onn37Crl27ABStm0rN5+HixYto1aoVmjRpAldXV8ybNw8XL17Ud3h6oWkWFxgYiJkzZ+KTTz7Bvn379B1WvjI2NsaoUaPw/vvvY9OmTejTpw8GDBgAoOh9d+QEE4tCLP2X5N9//43z589j1qxZSvVdUUkuLl68iEaNGmH8+PGYM2eOsnzz5s1K52VDFxoaisaNG+Pjjz/GF198AQBwdnZG2bJlce/ePQBF84Joa2uL4sWLo06dOrh8+TJ27twJIK2quyidD811YuLEiZg+fToePXqE0qVLo23btli+fHmRaS6XPqlYu3YtJk+ejLZt2xapWqwLFy6gcePGGDlyJDZs2IBvvvkGjRs3RnBwMOLj46FWq/UdYr4xMjLCnTt30KJFC9SrVw/Tp0/HyJEjsWnTJkybNg2//vqrvkPMdyqVCvv370enTp1w/vx5pKSkoHv37vj000/x7NkzfYeXb4yNjVGmTBm8++67OHz4MJYsWQIg7TOTkpKi5+gKOKFCb9KkSVK/fn3p3bu3uLi4iJmZmcybN09Zn5qaqsfo8pZarZbq1atLzZo1tZbPmTNHSpUqJadOndJTZPnr+++/lzVr1mgti4uLk4oVK8rXX38tItqfg+PHj8vDhw/zNcb88vLnPSkpSS5fviw9evSQxo0by44dO7TWP3/+PD/D05sff/xRHB0d5cyZMyIi8ueff4pKpZLt27crZQz5WqFx7tw5cXNzkxMnToiIyNOnTyU4OFjWr1+vXC8M9Tzcv39fVCqVDBw4UGv5yJEjxcPDQ9zd3aVq1aqyceNGPUWYfzT/xxs2bJAGDRporfvhhx+kXbt20qZNGzl+/Lg+wtOb69evi4uLi6xatUpERKKjo8XCwkImTpyo58jyXmZ/9zExMTJjxgwpUaKELF68WGvdzZs38yu0QoWJRSG3b98+KVmypAQGBkpycrLcuHFDpkyZIiVLlpQFCxYo5Qz1izIiIkLGjx8vNWrUEH9/fxERWbhwoZQtW1Z+/vnnTLdJSUnJzxD1Ijk5WVJTU6V27doyd+5crXWfffaZuLq6Snh4uJ6iyzuaz/mpU6dk3bp14ufnJyEhISIicuXKFenZs6c0bdpUuZmePn26TJgwQZKSkvQWc37ZunWrdOnSRUREdu/eLSVKlFBuHp48eSK3b9/WZ3h55uW/95CQEKlevbocPnxYzpw5I8OHD5eqVatK1apVxdzcXH777Tc9RZr3nj17Jo0aNZJq1arJxYsXRURk/vz5YmFhIWvXrpU1a9bIwIEDRaVSZXn9NDSbN2+WSpUqyd27d7WWHz16VFq0aCGDBg0StVqtp+jy37///iuNGzcWEZEbN25IhQoVZOjQocp6zfXU0Gi+O37//Xf54osv5IMPPpCff/5ZIiIiJCEhQfz9/cXKykoWLVokIiIzZsyQrl27FpkHU9nBxKKQW7hwodSpU0dr2b1792TkyJGiUqmUp9WG7P79++Ln5yfVq1eXZs2aiY2Njfz+++8Zyh04cCDfY8sP6W+cXr6J6tSpkwwaNEj5efr06WJhYSGnT5/Ot/jy2969e6VcuXLStm1bad68uVaSfe7cOfnggw/ExcVFGjduLObm5gZ5LjJLnteuXSsNGzaU3bt3i5WVlda1YevWrdK9e3d58uRJPkaZ99Kfh9OnT8udO3fkwYMH0qpVK6lbt66YmprKiBEjZP/+/fLff/9JvXr1ZOXKlXqMOG8kJCQo758/fy4tWrSQqlWryujRo6VcuXJaScSVK1fE1tZWpk+fro9Q892vv/4qZcuWle+++05E0h7KaOzatUssLCzkzz//1Fd4+S4wMFCcnZ3l+PHj4uLiIkOHDlXOyZ9//int27c32Cf1mge1Q4YMkS5duoiXl5d069ZNoqOjJTIyUubNmycqlUpq164tJUqUUGp/SRsTi0Ju7969UqFCBQkKCtJaHhAQICYmJmJpaZmh+s5QpKamKk8Z7t27J35+fuLg4CB9+vRRymguiNOnTxeVSiW3bt3SR6h5QnPscXFxWjcOIi9uqD744APp0KGDiIhMmzZNzM3NDfpieOHCBXFwcJBNmzaJSNoNlUqlktmzZytlrl27Jlu2bJFJkybJ1atX9RRp3kl/M3306FE5f/68iIhcvXpVmjZtKiYmJlq1mTExMeLr6yuDBg0yqJrN9Mfy2WefSb169WT9+vUiknYufvzxRzl+/LhyvpKTk6VOnTqyYcMGvcSbV65fvy4jR46Uo0ePKjVzz58/l44dO4pKpZLVq1eLyIvPTVRUlNStW1epzTIUmuNLSkqS+Ph4rXWDBg2SMmXKyIULF0REO7moWbOmTJ06Nf8CzUeav5GLFy/KmTNnJDExUaKjo6VLly5SvHhx6dGjh1b5zz77TJo1ayYPHjzQR7h56vr16+Lu7i7r1q0TkbQmkubm5vL5558rZZKTkyUwMFCWLl0qoaGh+gq1wGNiUUhk1Xzn2rVrUqtWLfnkk0/k2rVryvILFy5Iv379ZObMmVKjRg35999/8ynSvHX//n25cOFChi8GEZHw8HDx8/MTDw8P8fPzU5ZPnTpVLC0tDeqGWvOF8NNPP0nHjh2lUaNG0qtXL7l7967WDdUXX3whXbt2lWnTpomZmZlBnYPMBAQESMuWLUVEJDg4WJycnOSjjz5S1hti86/0Xr6ZrlKliuzcuVOioqJEJK3Zi4eHh3z00Udy+vRp+emnn6R9+/ZSs2ZN5abTkJILEZHZs2eLjY2N/Pbbb/L06dMM6+Pi4uTOnTvSoUMHqV27ttZNZWF3/vx5cXJykvfff182b96ste7p06fStm1bqVy5staDqalTp4qTk5NBPYTRfH9evnxZevfuLQ0bNpT//e9/yjlJTk6Wtm3bSvny5bX65SUmJkqjRo0MshZL83e+f/9+cXBwkKVLlyrNwTZv3ixvvfWW9OrVS06fPi0nT56U8ePHi7W1tZJ8FVaaz8LLD+OCgoKkRo0akpSUJNeuXRNHR0cZMmSIsv706dNs9vSGmFgUAumTipUrV8onn3wi7du3l71790pMTIzs3btXqlatKgMHDpS9e/fKhQsXpH379jJw4ED5559/pGTJkgbRDOjChQvi6uoqM2bMkBs3bijLV61apVRj37lzR/z8/KRatWoyf/58+eKLLwz2Kf3BgwelZMmSMnbsWNmzZ49UqVJFWrVqJX/++afymfnmm29EpVJJ8eLFDe4cXL16VZYtWyYxMTHKso0bN4qXl5c8ePBAnJ2dZejQocq5+OGHH2T48OGZ3lwampkzZ4qtra0cO3ZM4uLitNYtW7ZMmjRpIsWKFZP69evLe++9J4mJiSIiBnVTnZqaKvfv35cGDRrItm3bMqwTSbu2LlmyRNq2bSuNGzc2qPNw7do1sbOzk0mTJmX4DGhER0dL06ZNxdnZWW7cuCH+/v5ibm4uZ8+ezedo815ISIiUKlVK+vfvL59//rm0aNFC3nrrLeXmMSoqSjp16iQlSpSQ6dOny1dffSWffvqplCpVSuuhnSH56aefpESJEvL1119nuC5u2rRJWrZsKcbGxlKzZk2pW7duhpYRhdWtW7dkzJgxWp/z48ePS506deT27dvi7OwsH330kfLdcerUKRk5cqTBfg5yGxOLQmTixIlSrlw5mTVrlnz00Ufi4uIigwcPFpG0NtLvvfeemJmZiZubm/j4+EhiYqLEx8dLzZo15ccff9Rz9Lq5efOm2NrayuTJkzM8de7fv7+ULVtWaR9+7949mTlzplhbW4uRkZHB3VCLpN001KhRQ5YvXy4iaU8fHR0dpUSJEuLh4aEkF4GBgeLp6SnBwcF6jjj3bdy4UVQqlcyfP19iY2NFJG2UsLp160qxYsWUvw3NTeSECROkXbt28vjxY73FnB8iIiKkbt26smXLFhFJq+X766+/ZOzYsbJ27Vql3Pnz5+XRo0fK+THEDuwRERFSsWJF2bt3r4ho18bEx8fL06dPJSwsTLZu3aokE4ZyHj799FPp0aOHVpL0+PFjuXTpkvzyyy9y+fJlERGJjY2Vli1bikqlEktLS4NMKkTSku3OnTsrPz9+/FhWrVolTk5O0q9fP2X5rFmzpEWLFlK9enVp1aqVwdT2vyw+Pl66du0qn3zyiYikJZkhISEya9YsWb16tXJNPXv2rNy/f9+grpsHDhyQ8uXLy7Bhw5SmoiIib731lqhUKvn444+1yk+YMEGaNGlikE3A8gITi0Lit99+kypVqig3yQEBAVKsWDH55ptvlDLx8fESHBwsly9fVr5AP/30U6lcubLcu3dPL3HnlmXLlomPj0+m66Kjo6Vjx46ye/duZdndu3dl3rx5BjuCRVBQkMyZM0cSEhLk3r17UrlyZRk1apQ8e/ZMXFxcpEWLFspwmob0hfCy1atXi0qlkrlz50psbKwkJibKkiVLxMPDQ4YPHy5xcXFy8eJFmTx5spQqVUoZCceQPXjwQOrXry/z58+X/fv3S58+faRhw4ZSq1YtcXNzU9oMp7/JNtSR0sLDw8Xe3l7mzJkjIto1EadPn5YvvvhCq8bLEGoqRNL+b9977z0ZM2aMsuzAgQPSt29fsbKyEnNzc/H29padO3eKSNqDiUGDBhnME+nMDBo0KMOwstHR0bJ582ZxdXWVyZMnK8ufPXsmsbGxBt30JTk5Wbp37y7/+9//5PTp0zJixAhp06aNODo6io+Pj/Ts2TNDc6HC7OUmnnv27JFq1arJRx99JOfOnRORtM7p7u7u0qpVK7l8+bIEBATI+PHjxcrKqtA3ActPTCwKKE2VvMahQ4eUi+KuXbukZMmSyqguUVFRcvz4ceUJg0jakGl9+vSRcuXKKX80hdmGDRukbNmysnHjRomMjJSrV6/K+fPn5dy5c3LkyBFp2rSpjBs3Tq5fvy6nT5+WpKQkg71ZEkn7UtDUQnz44YfSq1cv5QbJ19dXVCqV1KlTJ9O+KIYg/Q3gypUrRaVSKTePT58+ldmzZ4u7u7tYWlqKp6eneHp6GsTfwcuy+oyPGDFCatasKcWKFZOJEyfKb7/9JqmpqdKjRw+ZMGFCPkeZ9171t75o0SIxMjJSbqJF0h7CtGvXTvr06WNwfUo0xo8fL6VKlZL9+/fLmDFjpEKFCjJ48GD5/vvv5dKlS9K+fXut64YhXS/T/59qaqC2b98uderUkZMnT2qVffz4sXz++efSqFEjCQsLExHDOhevMnfuXPHw8BBzc3Pp0aOH7Nq1S+Lj42Xq1KnSqVMnfYeXK171sGDHjh1SrVo1GTx4sFy6dElE0h7a1qhRQ+zs7MTd3V0aNWpksLVWeaWYvifoo4yOHz+O69evo0mTJqhWrRoAICYmBiYmJvj1118xdOhQzJ07F8OHDwcABAQE4Ndff4WbmxssLCwAANWrV4e9vT2OHz8ODw8PvR2LLm7fvo3SpUvD2toatWvXxqBBgzBlyhTMnTsXxYsXx5MnT2BmZgYLCwuEhobixIkTOHLkCNRqNS5duoRy5crp+xB0Jv8/c7pKpcLdu3ehUqkQHR0Nd3d3VKtWDSKCsLAwtGrVCpaWlgCAKlWq4MyZMyhTpgzMzMz0GX6uunbtGlasWIEePXrA3t4eVapUgYhgxIgRSElJwejRo5GSkoJp06Zh4sSJGDVqFI4dOwZXV1fY2NjA1tZW34eQq1JTU5WZpH/88Uc8fvwYCQkJ6NevH1auXInr168jISEBnp6eyjYPHjyAm5ubvkLOE+nPw7p16xASEgK1Wo2hQ4fC29sbQ4cOxf3799GnTx98//33MDIyQlhYGB49eoTDhw9DpVJBRKBSqfR8JLqJjY1FbGwsLly4AHd3d/Tu3RvPnz/HmDFjUKxYMSxduhSNGjVChQoVAACenp747bffYGxsDODFrOSFnebz8PjxY5QpUwbFiqXd5vj4+CAmJgbr1q1DhQoV4OjoCAAoXbo0BgwYgLlz5+LChQtwdHQ0mHOhofl8BwUF4b///sPDhw/Rs2dPfPbZZ+jSpQsePHiAt99+Wzl3T548gbGxMeLj42FmZlao/zaMjY1x+fJlTJo0CT179oSjoyOaN28OAOjduzeKFSuGqVOnQkQwbtw4tGzZEhcuXMCZM2dga2uLEiVKoHTp0vo9iMJGn1kNZbR582ZxcnKS0aNHa42vHxMTI66urqJSqWTr1q3K8ri4OHnnnXekX79+Wh0S0/9bGCUmJkqLFi3Ezs5OqynPlClTlBGfNO3Dnz9/LpMmTRJfX185f/688tSpsHv06JHy/sCBA+Ll5SWenp5ia2srEydOVEbwaNCggTRr1kwOHDggY8aMkbJly8r9+/f1FXaeiIqKkjp16ohKpRInJyfx8fGRLl26yIoVK5Q+N3v37hWVSiULFixQRkEqCj799FMpX768+Pj4iKWlpdSpU0d27dqlPKl7+vSpXLp0STp06KCMemKIJk2aJOXKlZORI0dK8+bNxdvbWxYuXCjR0dEikjZGfbdu3aR3794yceJE5TwYwvkICQmR/v37S7Vq1cTMzEzKlCkjffr0UWpvX56fJDU1VYYMGSKDBg0yqOYuGsHBwWJsbCyffvqp1vJffvlFTExMZMiQIVrNZJ88eSJ16tQx6MkR9+zZI2XKlJGaNWtKyZIlxc3NTdatW6fV3OvGjRsyadIksbKyMphmo4mJidK8eXNRqVTi6ekpJUuWlLZt28qHH34oQUFBkpCQID///LPUqFFDRowYYbB9jPITE4sCZOvWrWJhYSHbtm2TyMjIDOuPHDkiFStWlA4dOkhAQIB8++230rZtW/H09DTIoSIvXrwodevWFQ8PDyW5mDx5stSrV0/5WTOXxeDBg7XmKijsHj58KBUqVJDg4GD57bffxNLSUlavXi0RERGyfv16UalUWiNhubq6ipubm1StWtUgm/zExMTI+vXrpXbt2lKjRg0JDAyU7t27S40aNaR06dLSsmVL2bhxo/Ts2VNKlCghCxcuNOj20Rrbt28XW1tb+ffffyU6OlqePn0qvr6+0qRJEzl48KCIiGzbtk3efvttadeunUGNepTe+vXrxdnZWfns//LLL6JSqaR69eoyZ84cZcSbl2+iDeE8nD9/Xuzt7ZXhU4ODg2XChAni6uoq7u7u8tdff2mVj4uLk88//1xsbW3lypUreoo6b+3atUtKly4ttra2SudkjR9++EFKly4tXbp0kXXr1snFixdl/PjxYmtrazAPpV6+DwgKCpJy5crJ5s2bRa1WS1JSkvTv31/q1q0r69evl+TkZDlx4oS0b99evLy8DK6vzeXLl8Xb21t8fHzkyJEj4u/vL40bNxZnZ2exs7OTL774Qpo3by5ubm7Su3dvgxzsJD8xsSggbt++LfXq1csw1nh8fLyEhITI9evXRSSt74SPj484OTlJ3bp1pUePHgZ3s5C+5iU4OFgaNWokPj4+8uTJEzlx4oTUqlVLPv30U7lz545cvHhRPv/8cylbtqxBXQxu3rwpFStWlPPnz8uUKVOUL8cbN26Im5ub1vjaImlPZW7dumWQHbU1n4fExETZtm2bVKhQQetm4ZtvvhE/Pz9xcXGRhg0bikqlylDTZahmzZolzZs3l6SkJOXhwpMnT6Rp06bSrl07pdxvv/2mNUGYIUlISJAVK1bIwoULRSStZqJUqVKycuVKGTx4sJQtW1a++OILUavVeo40950/f14sLS1l8uTJGf5fd+/eLT4+PlKvXj1lpuTly5fLBx98IBUqVDDIBxAa+/fvV26ay5Urp9WJXSSt43737t3F3t5e3N3dxd3d3SDOR1atFPbs2SPu7u4SERGhlElNTZW+ffuKp6encg8REBAg//33X77Fmx803x9XrlwRe3t76dGjhzK60/nz52Xt2rXSpUsXqVWrlqhUKilfvrzB1fjnNyYWBcT169fF1dVVqyp206ZN0rdvXzE3N5fSpUvLtGnTlHU3b96Ux48fG9RQkenHWk/fef3TTz8VlUoldevWladPn8q8efPEw8NDVCqVeHh4GNQEgOnVrl1bZs6cKS1atJAlS5ZIfHy8VKhQQYYOHar8v3/55Zdy9OhRPUeaNyIjI5UvgH379snevXslOTlZtm3bJnZ2dlpDRIqkDTUbEhIic+fONdgnsRqahwiTJk2SOnXqKMs1f0N//fWXWFhYZBjJpDA3j9S4f/++PHr0SKtW99atWxIRESG3b9+WGjVqyJIlS0Qk7YFNmTJlxNnZWTZu3KivkPNEWFiY2NjYSPfu3ZVlqampWt8Fa9euFSsrK1m7dq3cvXtXpk+fLv/73/8MdrQ8jfDwcOnatatERETIl19+KWXLlpWpU6fK6NGjlSG6o6Oj5f79+3Lt2jWtZqeFleZv+9atW7Jw4UKZNm2aMn/LgQMHxM7OTp49eyYiogz08uzZM7GwsFCGYzZ0ly9fFnt7e2nZsqXWg6eEhASJiYmRXbt2GdTEkPrCxEKPVqxYobw/d+6cVKxYUZYvXy4XL16U/v37i4+PjwwYMEC2bNkiS5culWLFismOHTsy7McQbhbu3r0r3bt3z9DGdf78+VK2bFlZv3698vTtyZMnEhERIfv27ZPz589n2mysMNP8f3br1k38/f1l165d0qpVK7G1tZURI0Zojbfft29fmThxYoZRxAq7qKgoKVu2rEyYMEFp+qX5koyJiZFt27aJg4ODVnJhCMl1VrL6Gz979qwYGRnJ3LlztZYHBATIW2+9ZXBPH7dt2yb169eXypUry7vvvqsMqaxx9OhRcXd3V2ov//rrL+nXr58sWLDAYGp0NW7duiV169YVX1/fDOchfVOYpk2bKslHdHS01uiBhioiIkKqVKki58+fl7i4OPnmm2/E0tJSVCqV3LlzR0QM63qhuT4EBQWJvb29NGnSREqVKiUODg4yefJkiYqKEgcHB2VuH407d+6Ih4eH/PHHH/oIO89oPv/Xr1+XEydOyLlz55RaiMuXL0uFChWkTZs2yr2DIdxDFSRMLPRk69at0q1bN60bwgkTJkipUqXE1tZWqlWrJt9//73yxPbevXvi5uamlYwYkhs3bkjDhg3lnXfekcDAQBFJGwqvTJky8uuvv4pIWlWml5eX1KpVyyCeMKV348YNWbFihQQHByvtfL/55htp06aNHDp0SLy8vMTLy0t50piQkCCff/65ODk5GexsoEeOHBFTU1MxNjaWr776Smtd+uRi4MCBeoowf6S/STxw4IAsW7ZM9u/fr3wWFi9eLKampjJlyhQJCQmRa9euSceOHaVFixYG9YW5evVqMTU1lVWrVsnSpUulTZs2MmLECK0yhw4dEldXV9m0aZOEhITIe++9J//73/+U9YaWXFy7dk3at28v7dq100ou0n9mmjdvLr1799ZHeHqhOfZOnTopNdk9evSQUqVKSenSpWXSpEl6jC73aY73woULYmFhIdOnT5eYmBi5c+eO/O9//5Py5cvLiRMnZO/evWJlZSUDBw6Ue/fuye3bt8XPz08qVqxoUA8gNOdj3759UqlSJalZs6ZUr15dWrdurXUvUbFiRXnnnXcM7sFkQcDEQk8uX76sPDE5cuSIsvzMmTOZzhR99+5dqVu3rkFXWWq+JDt16iRDhgyRcuXKyc8//6xVJjg4WFxcXKRBgwYGc9OUmJgoPXr0ECcnJ3FxcRErKytp3769VKlSRSpWrCiPHz+W/fv3i7e3t1SvXl06deokHTp0MJg5Sl6WmpoqKSkpEh4eLiqVSlQqlXz++ecZvgBiYmJkx44dYmpqqnXzaEjS3yB++umnUrp0aalWrZp4eHiIg4ODHDt2TERE1q1bJ6VLlxYHBwdxdXWVBg0aKA8tDOHvZOPGjWJqaiqHDh1Slk2bNk369u0rV65ckX/++UdE0v6WunbtKk5OTuLg4CB16tRRzoMhDWyRXvrkQvNQRiTt//2///6TDh06KH33DPUcZGbIkCGycuVKGTBggNjb28vx48eV2s8pU6boO7xcFRERIZUrV5ZGjRppLT937pwUL15cfvrpJxEROXjwoDg4OIi9vb24urqKk5OTQY6C9Oeff4q1tbXyIHbbtm1iZGQkixYtUspcuXJFzM3NpWvXrgZxjSxImFjowVdffSWdOnWSJ0+eyJ9//il2dnZanVFffqr2+PFj6dixo7z99tsG98TtZSEhIdKmTRuxsLDQugik/8MPCQlROiMaCs0kVdeuXZPvvvtOvvrqK+nevbtUq1ZNunTpItHR0XL+/Hn54osvpG/fvrJgwQKDrKnQ3PhEREQo/x4+fFhUKpWMGzcuQ3KRmpoqe/bsMcg24+n/1v/88095++235e+//5b4+Hi5cOGCDBkyRExNTZUn1ffu3ZM//vhD/vrrL4PqqP3vv/8q///ptWrVShwdHcXR0VEsLCxk7NixIpJWm3fixAn57bfftJoNGrKsai4mTZokXl5eBvVEOj3N9eLixYvy66+/ynfffacc66JFi0SlUomrq6ty8/zkyRPZsGGDwVwvNM3a7ty5Iz169JCmTZtqtWr4559/pHjx4hIQEKAse/bsmfzwww/y+++/K0OWGwrN52Hu3LnSq1cvEUnri+Ts7CzDhw9Xymm+X65evWqQ36P6xsQin61du1ZUKpVS8xARESGzZ8+Wt956S8aPH69V9uHDh7Jt2zbp0KGD1KpVy+BGf8pKaGiotG3bVjp06KD1JWnITxWyepJ44MABadCggXTs2FEePnz4yrKFnea4Dh06JK1bt5YdO3Yon/lvv/1WVCqVTJgwQUku5s2bJ/v379dbvHnl5RrL7du3S48ePcTX11frBjkyMlL69esnjRo1UppMpmdI14k+ffqIjY2NHD58WEREunfvLlWrVpV//vlHzpw5I0uXLhWVSpVpHzRDOg+vkj65OHfunMyfP19KlChhcEOHvmzfvn1ia2srzZo1EwcHB2ndurXs3LlToqKipHfv3hn+ngzle2Tp0qXyySefKNeEGzduyODBg6V+/fryzTffSGRkpDg4OMjo0aOVbYrK34K/v79MnDhRwsPDMwx48uOPP8rXX3+tPMyj3MfEIh+tXr1aTExMMjRnSkpKknnz5kn16tW1kotNmzZJo0aNZOjQoQY1mdObyKp6v6hIP8nhrl27pFmzZlK/fn0luTBU+/fvF3Nzc1m8eLGEhoZqrduxY4eYmJjI+++/L7169RIzMzODawo2b9488fT0lO+//15ZNmLECClbtqw4OTkpfYs0X5I7duyQChUqyO3bt/USb15LfyPUr18/KVWqlDRo0EBq1qyp9RT+1q1b4ujoKHPmzNFHmAXGtWvX5N1335Xy5cuLiYlJps1qDcnp06fFxsZG1qxZIyJpwyqrVCqZN2+eiBhOEpGZZcuWafW5E0mrzR88eLDUrl1bLC0tZdSoUSLyonmpIdN0yhdJS7rKly8vDg4OMnLkSGV5cnKyDBo0SEaMGKE1CiXlLiYW+SQgIEBrUjONd999Vw4fPiyPHz+WuXPnSvXq1WXChAnK+uvXrys3EUXlaYOG5kuyQYMGcvLkSX2Hk+80/++pqamyZcsW6dChg9bF09DcvHlTPDw8lJuE5ORkiY+Pl4CAAGUOgv3790u3bt2ka9eucv78eX2GmyeOHDkiXbp0kZYtW2r1J5g9e7ZUqFBBxowZozXG+rlz58TFxcXghltOXyuX/v3QoUNFpVLJqlWrtJZHRkZKzZo1M8wDVBRdvXpVfH195dKlS/oOJc+tXr1ama8lNDRUKleuLEOHDlXWG/L1UuOvv/6Sjz76SKm1vHbtmnz00Ufi4uKiNeiFId8/XLlyRWrWrCkLFixQlnXr1k3Mzc3l8uXLEhcXJ9HR0fLZZ5+JnZ2dQc15VRAxscgHSUlJcuDAAWWIRI1u3bqJu7u73LhxQ0TSmj7NmzdPatSoIYMGDdLah6E/bchKcHCwvP/++0XiCyIz6ZOLqKgoPUeTtzST/504cUKSk5Nl/vz50qhRIylbtqzY29srT6hjY2MlPj5ez9HmrvTton///Xfp3LmzNG/eXJk9W0Tks88+Ey8vL+nXr5+cOXNGTp8+Le3atZN69eoZ1PUh/bE8fPgwQ7+avn37irW1tezZs0cp26FDB2nQoIFB3zxlh6ENP52VJUuWyPDhwyU2NlZp8qL5TPzwww/y5ZdfyvPnz/UcZd7S3DMMHz5ceQBz/fp1GTx4sDRo0EC+/vprPUeY9zTHW7duXVm6dKmIpPWtaNSokZQuXVpq1qwpzZs3FwcHB4Or5S6ImFjkoY4dOypPjRISEuSHH34Qd3d36dChg3Tr1k28vb2V5h6aG0i1Wi1TpkyRvn37Gmxb+uzSVPMWVUXlc3Dz5k1p27atNGjQQOzt7cXX11dmzZolwcHB4urqKp9//rm+Q8wTP/zwg9jZ2WmNMZ9VcjFlyhQpXbq0WFlZSefOneWjjz5SkixDSi5E0o61Tp06UqpUKRk0aJBs2rRJWde7d28pVaqU7Nu3Tzp06CBubm5Fpg9aUaW5Dt6+fVv5zH///feiUqmkZMmSMn78eK2/gaFDh0qfPn0kOjpaL/Hml5SUFFmwYIE0bNhQhg4dqiQXISEhMnToUKlWrZqsW7dOz1Hmrsy+E2/cuCGjRo0Sb29vrQc169atk0WLFsk333xjsE1GCxomFnnk5s2bMn78eK2b4tjYWDl8+LAydfzLE/Vo/liePn2qvDe0mwUikRef9bi4OK3ah99//12WLFkiixcvVkbuEBFp166drFq1Kt/jzA/Pnj2Tr776Snx8fLTm5EifXBw4cEBZPnPmTHnrrbdk2rRpyjkyhOQ7/bVuxYoVYmtrKxs2bJDly5fLu+++K7Vq1ZKFCxcqZfr37y8qlUo8PT2VpKKo9EErajTXi++++07q168vy5cvV/6vp0yZIqampvL9999LUlKSREZGymeffSblypWTK1eu6DPsXJd+4rfr168rfSxSUlJk7ty5GZKLK1euyMcff2yQs0n//fffsmvXLq1loaGh8vHHH4unp2eRqKkpqJhY5IPFixcroxvFxMTId999Jx4eHkrbUJHMvxCLypNqKlo0n+uffvpJOnbsKI0aNZIePXpIeHh4hrLR0dEybdo0sbOzk+vXr+d3qHlOcy6eP38uy5cvFy8vrzdKLiZMmCC1atWS6dOna/W5MARnzpyRiRMnyjfffKMsCw0NlfHjx0vdunWVSa5E0jqwMqkoGg4cOCBmZmayfPlyrWvBf//9J4MGDRKVSiXVqlWTOnXqiIuLi8E2edm7d6/Y29tLpUqVxMPDQzZs2CAiaTV1muRi+PDhSp8LQ2sWl5qaKs+ePZP3339ffHx8ZM+ePVrrNZPtVqpUSRYvXqynKIs2JhZ5IP0X3K1bt8TX11dKly4tp0+fFpEXNRfu7u7Stm1bpSxrJ6ioOHjwoJQsWVLGjh0re/bskSpVqkjLli3lzz//VP4O9u7dK4MGDTLYdrEv10o+e/ZMli9fLjVr1syQXHTp0kVatWolO3fuVJZPmzZNXFxcZM6cOQZx7UhNTZWzZ88qkyKuXLlSa/2NGzfEw8Mj05sFJhWG7f79+1KnTh2lM3JCQoI8ffpUDh48KGFhYSIicvToUVm3bp0cOnTI4Obt0FwrIiMjpVKlSrJ+/Xo5ePCgTJo0SYyMjJSmP8nJybJgwQLx8PCQMWPGSEpKisE8oNQch2bujtOnT0vv3r3l7bfflt27d2uVHTdunDg7O0ubNm2UkfQo/zCxyEMzZ86U9evXK38A5cuXl7///ltEXiQX1atXFx8fHz1HSpR/rl27JjVq1JDly5eLSFrTP0dHRylRooR4eHjIX3/9JSIix48flzlz5hjkBEYvJwKaduAxMTGycuVKqVGjhlZycezYMWnatKmMGjVK6yZ61qxZhXqyyPSDE2hs3bpVVCqV9OjRI0NtTLdu3aR3794Gc7NEbyY8PFyqVKki+/fvl+TkZJkxY4Y0atRIrK2ttR7aGbKjR4/KvHnztCaKfPLkifj7+4tKpdJKLpYuXWpQzZ/Sz0ExYMAApQnYmTNnlIkBv/32W6X8+PHjZfHixUqTMMpfTCxyUfqbhf3794u1tbUyJObly5ele/fuGZKLPXv2SO/evQ3iiSPRmwgKCpI5c+ZIQkKC3Lt3TypXriyjRo2SZ8+eiYuLizRv3lxpOmiIT6LT/60vWrRIevfuLe7u7rJw4UK5cuWKJCUlyVdffSVeXl5ao8OdO3fOoGbUTn8eYmNjJTExUVm2Zs0aUalUMnnyZOWJ9PPnz8XHx0drOG4qGp48eSIffPCBVK5cWcqWLSudOnWSxYsXy/Pnz6VevXpaQ8waori4OBk5cqSoVCpp1qyZ1jpNcmFiYqLVB8nQ7Nu3T6ysrGTixIly+fJlZfk///wjvXv3lurVq0vPnj1l0KBBUrp0aXbU1iMmFnlg+/btsmzZMlm0aJHW8kuXLkn37t3F1tZWSS7Sd1xlckFFQXJysjKO+Icffii9evVSZkH19fUVlUol9erVM/gJjD777DOxtbWVJUuWyJo1a6RUqVLStWtXiY6OlqioKKVDd5cuXbS2M4TrRPpjWLp0qXTu3Fnatm0rgwcPVmpvNMmFj4+PDB48WDp16iReXl4G0VGdsqZ5Oh0VFSVPnjxRll+7dk22b98ua9askadPnyrLu3XrJl988UV+h5nvgoOD5dNPPxWVSiX79u3TWvfkyROZNGmSlCpVSh4/fmwQ14j0Ll68KLa2thlGt9LUaN6/f1+WLFkijRs3ls6dOxvkHEeFCROLXJCQkKDcGD1//lzs7e1FpVJpzfiocfnyZenVq5eoVCqtrJvI0KSmpio3Cf/995/cvXtXrl69qrW+ZcuWWrMljx07Vs6ePWtQ1fgvS0lJkdOnT0vVqlWViR//+ecfMTY2li1btijlYmJiZO7cudK/f3+Du1HQmDRpkpQrV06WL18u69evl3Llykm9evWUBy5btmwRlUoljRs31upfYmgdUimN5npx+PBhadq0qXh4eEirVq0kMDAww9w1Dx8+lKlTp4qNjY3WdcUQaM7DkydPtJKrW7duyf/+9z8pWbKk7N+/X2ubp0+fysOHD/MzzHwTEBAg9evXl7i4OHn8+LGsW7dOWrduLY6OjvK///1PGR0vNTVV6YNB+sPEQkd79+6Vrl27io+Pj8ycOVNE0iZmadiwobi5uWV6wQsKCpKpU6dyvHUyWOk7zB04cEC8vLzE09NTbG1tZeLEiXL37l0REWnQoIE0a9ZMDhw4IGPGjJGyZcsa3ChHIml/8wcPHpTAwEARSet4WLduXRER2b17t5QoUUIZHvH58+fyyy+/iEhacmGoQ09funRJatSoIcePHxeRtKFEraysMnTa3rhxo6hUKvHz81Me4JDhOnTokJQsWVKmTJkif/75pzRo0EBq164t27dvV2oxv//+e+nfv784OTkZ5MAOImnXzRo1akitWrXkgw8+UJLp27dvy8iRI8XKykprpDhDornmaWonT506JSqVSkaPHi2enp7i6+sr48ePlyVLlkj58uXl6NGj+gyXXsLEQgerV68WKysrGTt2rIwZM0aMjIyUsfb/++8/8fDwkDp16rxyhAomF2RoHj58KBUqVJDg4GD57bffxNLSUlavXi0RERGyfv16UalU8t1334mIyJ07d8TV1VXc3NykatWqBnmTsG3bNvH29hZfX1+ZPHmyiIicOHFCKlSoIOvWrRNra2utm+mjR49Kly5dlOZiIoY59PSxY8fEyclJRNKSihIlSsjq1atFJC252rhxo3J9XLdunZiYmMj48eO1nuCSYbl165bUqVNHmT35+fPnUqlSJXFwcJAqVarIzp07JSUlRS5fviyrVq1SJpg1NOfPnxc7OzuZNm2azJs3TxwdHaVx48bKQ5fbt2/LJ598IiqVSg4fPqznaHNX+uHIP/zwQ+Uh1I4dO+Sdd96RiRMnas1PUrduXa1JREn/mFjkkOaLLv0Tg969e8vy5cuV8fjDwsLEx8dH6tata3DD3xFl5ebNm1KxYkU5f/68TJkyRT755BMRSRsu1M3NTYYMGaJVPjExUW7duiWPHz/WR7h5asuWLWJhYSE7d+7McEPcu3dvUalU4u/vryyLj4+Xd999V7p162ZQNRTpEyPN+5s3b0r79u1lwYIFUqJECVmzZo1S5u+//5bu3bvL2bNnlWVfffWVlCpVymCbe1Dag4alS5fK48eP5f79+1KlShWlSbGXl5d4e3vLpk2bJCkpyaCS7fTNRkXS+lPMmDFD+fnWrVvi5uYmDRs2VO4vbty4IRMmTDC4ZmAiaS1BrK2tZdy4cVoPm16usZw8ebJUqlRJGeCBCgYmFjnw+++/Z7ghEEm78NWoUUNKliwpjRo1km3btklYWJjUrFlTXFxcJDIyUk8RE+Wv2rVry8yZM6VFixayZMkSiY+PlwoVKsjQoUOVL9Avv/zSoKuwL126JG+99VaGDoea4z9+/Li0bdtWXFxcZMuWLbJs2TJp27atvPXWW0qzB0NILl4+Bk0b6GfPnknTpk1FpVJp3UTFxsZKhw4dpGvXrhm2ZW2FYUtJSVH6V40aNUref/99efbsmYiIDBo0SMzNzaVZs2bKMkOhuSYcO3ZMFi1aJO+++64MGzZMK9m4deuWuLq6yttvvy337t0TEcMYHS4qKkrr5wsXLki5cuVk7dq1WssfPnyoHO/OnTvlgw8+kPLlyxtkLXdhZwTKtgoVKqBJkyY4e/Yszpw5AwDo1q0bYmJiMHXqVHz77bd49uwZ5syZA5VKhUOHDqFBgwYoW7asniMnylupqakAAGdnZ4gIhg0bhh9++AGVKlVCp06d8PXXX0OlUiE5ORmnT5/GL7/8gqSkJD1HnTfu3buH2NhYNG3aFCKiLFepVACApk2b4osvvsA777yDyZMn4+DBg3B0dERQUBBMTEyQnJwMI6PCfYlOTU1VjmHx4sXo06cPfHx8sGjRIjx58gTffvst7O3t8ccff8Df3x/r1q1Dx44dcffuXezatQtGRkZITU1Vzp+1tbU+D4dySUpKClJSUgAAN2/exK1bt3Dr1i0YGRnB2dkZABAREQFbW1sUL14cQNr//XfffYft27fDyspKX6HnCZVKhSNHjqBFixY4cOAATp48iZ9++gl///231jX16NGjuHz5MgYOHIiUlBQUK1ZMz5HrZtmyZZgwYQKSk5OV47x16xZcXV0xZMgQPH78GFu2bEH79u3h7e0NPz8/3L9/H8WLF0dqaiqOHTsGHx8fPR8FZaDnxKbQunbtmrRv3146duwojRs3llq1ammNZKOZQfbltn/sU0GG5saNG7JixQoJDg5WqqS/+eYbadOmjRw6dEi8vLzEy8tLmdQoISFBPv/8c3FycjLIye80vvjiC7GxsVF+Tv/0UXMduHLlily8eDHDdcEQnkSml9nQup07dxaRtGtpv379xNPTU1q3bi2DBw9Wjt/QzkNRt3jxYq3vxD179kiFChXE2dlZPD09lRmUk5KSpFu3blKrVi1ZtmyZjBw5UqytrQ2uyYvmmhARESGDBw+WDRs2SHx8vISHh4u7u7vUrl1bzp07p3XtuHPnjly/fl1fIecKzfVu+fLlSh8KTUftEydOiEqlkkmTJkmdOnXE19dXRo8eLfPnzxczMzNlJD2O/lRwMbHQwbVr16R169ZibW2tzPqYkpIiqampcvbsWalevboy0ReRIUpMTJQePXqIk5OTuLi4iJWVlbRv316qVKkiFStWlMePH8v+/fvF29tbqlevLp06dZIOHTpIuXLlDL4K+9tvvxULCwv5+eefsywzceJEGTJkiNYNtCG1HRdJG0r3dUPrpqSkSGxsrNaQokwqDMujR4+kZ8+eUrx4cTly5IgkJSVJxYoVZe3atbJnzx4ZO3asGBkZycaNG0UkbTb6t99+W+rUqSPe3t7y77//6vcA8sipU6ekSZMmUrduXfnzzz+V5dHR0VK1alWpVauW/PvvvwZzXdA0b7xx44bMmjVLRET++usv+eCDD5S+qGvXrpWGDRvKuHHj5MKFC8q2devWfeX1lAoGJhY6Cg0NlXbt2kmHDh3kjz/+UJa/++670rx5c4NoI030KpoOddeuXZPvvvtOvvrqK+nevbtUq1ZNunTpItHR0XL+/Hn54osvpG/fvrJgwQKDrqnQuHHjhlhbW0u3bt3kzp07ynLNDcKzZ8+kW7dusnz5cn2FmC9OnTolderUEZHMh9b99ddflUnxNAzlJoq0+9jcvXtXRo4cKaVLl5ZFixbJp59+qqx79OiRfP7556JSqZR+SYmJiaJWqw2iT4XmPGgS6Dt37khKSoo8f/5cmjdvLiqVKsO1IDo6WqpXry4uLi4GMemb5hwEBQWJSqVS5jBatmyZeHl5yeDBg5XO6S9fEyZPniwuLi5KDQcVXEwscoGmWdQ777wjJ06ckK5du0rVqlUNqgMmUVayugk8cOCANGjQQDp27KiM5FPUbhh37twpZmZm0qdPH60amnv37kmHDh2kcePGBvVkPjw8XC5cuCDffPONXLx4UR4/fixXrlwRe3t7WbNmTZZD62qayZFh0Xz3hYWFyZ49e+Tbb7+VXbt2ydSpU6V48eLSrFkzrfKPHj2SKVOmiImJSYb5TAozzXm4cuWKdO3aVTw9PaVYsWLi6ekpixYtkpiYGGnTpo3Url1bfvjhB617hufPn0udOnXk5s2b+go/V2iO6fLly2JhYSF+fn5a61esWCGNGjWSAQMGKJ3TRdKGou7fv3+RqOU2FEwscsm1a9ekY8eOYmJiIu7u7kpSYUg3DURvQvMFkpKSIrt27ZJmzZpJ/fr1i+QwocnJycrQ1BUrVpT27dtL27ZtpX79+lK3bl3lOmEIfa/27dsn77zzjtjZ2YmVlZVYWFiIr6+v/P333zJ27NgMoz8Z6tC6lEbzf3r+/HmpXLmyVKtWTUxNTaVGjRri7+8vU6dOFSMjI/nhhx+0tnv8+LGMGTNGSpUqJU+fPi30DyM08V+4cEGsra1l5MiRsn79etm/f7906tRJjIyM5MMPP5R79+5Jq1atpF69ehmSi8J+DjTHcvHiRbGxsREPDw9lnWbSQ5G0PheNGzeWDz/8UKm52L59u/Tp00cuX76cv0FTjjGxyEXBwcHy8ccfs+MhFXmaL8LU1FTZsmWLdOjQQas5UFHz77//yscffyxt27aVwYMHy4oVK5RkwhCuE2vXrlWatxw9elSePHkiM2fOlGrVqom7u7t88cUX0qdPH3F2djbooXUpTfqkwtLSUiZOnCj37t2Tw4cPS+vWraVu3bryyy+/yKBBg8TKykp+/PFHre0fP34sDx480EfoeeLBgwfi4+Mjn332WYblK1asEFNTUxk1apQkJiZK8+bNpWnTpnLgwIFCn1CIaDd/srS0lObNm4uDg4Myv5HIi47bIi+Si48++kgiIiJEJOP8FVSwMbHII4Zws0Cki/TJxctjlVMaQ6ipWLt2rZiamsq+ffsyrNu1a5fUrl1bmjZtKjt37pQRI0aIo6OjtGjRgqM/GbiwsDCxsbGR7t27ay1fvXq1lCxZUkJDQ+W///6TIUOGSKlSpeTIkSN6ijTvnTt3Tjw9PbVGgNPccD99+lRmz54tpqamEhgYKI8ePZLq1atL+/btM/QzKKz++ecfMTExkRkzZkhycrKsWbNGbGxsskwuVqxYIdWrV5cRI0YYxDWyqCncgyAXYIV9fGkiXalUKogIVCoVSpYsqe9w9E5zLtIzNjbWUzS549ixYxg2bBhmzJiBrl27KvNNaMbY79mzJyIjIzF9+nSYmppi5cqVmDFjBsqVK6fsIzk5mddLA5SSkgIXFxckJCQgMDAQTZo0AQBUrlwZpqamiIuLQ5UqVTBp0iQYGxujQ4cO+OWXX9C6dWs9R577zp8/j9DQUHh6egJIuxZo5nextrZGnz59sHDhQvzxxx9o3LgxAgMD8ezZM2UOj8IuNjYWw4cPh5+fHwCgZ8+eAIApU6YAAL788kuYmpoiMTERpqamGDlyJExMTNC2bdtCf40sigr37EtEVKC9fCNdlBniudBMFnru3DmcOHECKpUKKpUKxYoVUya8+uSTT+Do6IijR48CAEqVKqVsLyJMKgyUs7Mztm/fjsTERMyaNQvBwcGIjo5G3759MXjwYOUmu0qVKhg7dqzyOTFErq6uAIB9+/YByHgtcHFxQeXKlfHgwQMAQOnSpZWJAg1B06ZN8eWXXwJI+5u3trZGr169MGfOHOzYsQOjR48GAJiamiIhIQEAMHToUIM6B0UJEwsiIsoRNzc3bNiwAQkJCZgzZw4CAwOVdZqbp6ioKMTHx8Pe3h4AYGJikqEMGSY3NzcsX74cxsbGGD58OJycnNC3b1/Mnz8fAJTZt6tWrYqFCxfC3d1dn+HmGWdnZ1hZWWHr1q24c+eOslyTfD958gQWFhaoXbu2vkLMN5q/eSsrK63kYty4cQAAMzMzfYZHuYCJBRER5Zjm5lGlUmH27Nn4888/tdbfvHkTFStWRIMGDQBAaS5FRYObmxu+/PJLGBsbw8rKCl26dFHWaZoDAdoJp6GpWLEiVq1ahSNHjmDatGm4fPkygBfHv2TJEty/fx9vv/22PsPMd5rkYu7cuVi2bBkmT56s75AoF6iEV3kiItLR9evX8cknn0BEMGXKFLz99ttITk5Gp06dYGRkhO+++07rRpKKltDQUHz88ccQEUybNg2NGzfWd0j5KiUlBevXr8eoUaNQpUoVNG7cGPb29rh16xZ++uknBAQEwMfHR99h6sWzZ89w8OBBNGzYEFWrVtV3OKQjJhZERJQrNMmFkZERPv/8cyxZsgRXr15FUFAQTExMkJqayuSiCLt+/TrGjRsHtVqNpUuXKrVYRcnff/+NBQsWICQkBKVKlYKXlxc+/vhjVKtWTd+h6VVmg1tQ4cTEgoiIcs3169cxduxY/PLLL6hcuTIuXrwIExMTjv5EAICrV69i2rRpWLx4MZycnPQdjl6kpKTAyMgIKpWKyTYZHCYWRESUq65evYqvv/4aS5YsQbFixZhUkBbNsKJFVfqn83xST4aGiQUREeUZJhVEREUHEwsiIiIiItIZG/YREREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHO/g/2An2zoA+pnwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Cellpose vs CellSAM - Individual Models by Dataset\n", + "\"\"\"\n", + "\n", + "cp_means = []; cs_means = []\n", + "cp_sems = []; cs_sems = []\n", + "\n", + "for ds in datasets:\n", + " cp_data = cp_individual_dict[ds]\n", + " cs_data = cs_individual_dict[ds]\n", + " # 1 - mean for the bar\n", + " cp_m = 1 - np.mean(cp_data)\n", + " cs_m = 1 - np.mean(cs_data)\n", + " # standard error of the mean for the error bar\n", + " cp_sem = np.std(cp_data, ddof=1) / np.sqrt(len(cp_data))\n", + " cs_sem = np.std(cs_data, ddof=1) / np.sqrt(len(cs_data))\n", + "\n", + " cp_means.append(cp_m)\n", + " cs_means.append(cs_m)\n", + " cp_sems.append(cp_sem)\n", + " cs_sems.append(cs_sem)\n", + "\n", + "# Plot as a bar chart\n", + "x = np.arange(len(datasets))\n", + "width = 0.35 # width of each bar\n", + "\n", + "fig, ax = plt.subplots(figsize=(8, 5))\n", + "\n", + "# Plot CP bars slightly left, CS bars slightly right\n", + "bars_cp = ax.bar(x - width/2, cp_means, width,\n", + " edgecolor='black', linewidth=1,\n", + " yerr=cp_sems, capsize=5, label='Cellpose', color=c2)\n", + "bars_cs = ax.bar(x + width/2, cs_means, width, \n", + " edgecolor='black', linewidth=1,\n", + " yerr=cs_sems, capsize=5, label='CellSAM', color=c4)\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels([name_map[ds] for ds in datasets], rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_general_grouped_comparison_cp_reg.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZlZJREFUeJzt3Xt8zvX/x/HntWEHbMmwzTlnYUNhUqI5pRAdKK3mkK9DkaQcRwiRUymHHPLNKaHUt6gwrCYh51nmNIcNE4Ydbe/fH367soxs1+ba7HG/3a5b1z6f9+ez16drm+t5vQ8fizHGCAAAAACyyMHeBQAAAADI2wgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0K2LsAAHlPZGSkYmJi7F1Ghjw8PFSuXDl7l3Fbo0aN0ujRo7Vx40Y9/vjj1u0Wi0VNmzZVcHCw3WrLD/j5tR0/wwD+iVABIFMiIyNVo1o1xSUk2LuUDLk6OyssPDxb3pjt2LFDn3zyiTZv3qzTp08rNTVV3t7eaty4sQICAtSiRYtsqBh3U2RkpKpVr6GE+Dh7l5IhZxdXhR8My7ZgkVt+hvft26dJkyZp06ZNioqKkrOzs0qUKKE6deqoadOmeuONN2SxWDI8dvPmzWratKkk6csvv9Rzzz2XYbuFCxcqMDBQktSpUyd99dVXGbb79NNP1adPH0nSK6+8ooULF9p4dQAkQgWATIqJiVFcQoJm+FRQ5SIu9i4nnYgr8Xpj9zHFxMTY9KYsNTVVgwYN0tSpU1WgQAE1b95c7dq1U8GCBXXkyBH973//0xdffKH33ntPI0aMyMYrQE6LiYlRQnycyncaIucSuatHIOFcpI6vHG/zz6+Uu36Gf/rpJz311FO6du2a/P399cwzz8jZ2VmHDx/Wpk2btHr1avXt21cFCmT8lmTevHmSrveCzJ8//5ahIk2BAgX07bffKiYmRh4eHhmer0CBArp27ZrtFwfAilABIEsqF3FRbXdXe5eRI4YPH66pU6fK19dXX331lSpVqpRuf3x8vD7++GOdP3/eThXCVs4lysnVu6q9y8gxuelnuHfv3kpJSdHPP/+sZs2apdtnjNGPP/4oR0fHDI+NjY3VV199pTp16qhUqVL68ccfdeLECZUtW/aW369Nmzb69ttv9cUXX2jAgAHp9u3Zs0c7duxQu3bttGbNGpuvDcDfmKgNADeIiIjQBx98oOLFi2vt2rU3vRmTJBcXF7399tsaPXq0dVtSUpKmTJmievXqqXDhwipatKgeffRRm9+4vPrqq7JYLDpy5Ig++OADValSRc7OzqpYsaLee+89JScnZ3jcggUL1LBhQxUpUkRFihRRw4YNbznMY+XKlWratKlKliwpZ2dneXt7y9/fXytXrryp7Z49e9S5c2d5eXmpUKFCKl++vF5//XUCVi6Sm36Gz549q8OHD6tWrVo3BQrpeu9Dq1atbjn0aenSpYqLi1NAQIACAgKUmpr6r8OVGjdurOrVq2vBggU37Zs/f74cHR31yiuvZOl6ANwaoQIAbrBw4UKlpKSoV69eKlWq1G3bOjk5SZISExPVqlUrvfXWWzLGqHv37uratauOHz+u9u3b6+OPP7a5rgEDBmjixIny9/fX66+/LicnJwUFBalLly43tX3jjTfUrVs3nTp1St27d1f37t116tQpBQYGqn///unafvrpp3r22Wd16NAhPfPMMxo4cKBat26t6OhorV69Ol3bNWvWqEGDBlqzZo0ef/xxDRgwQLVr19bHH38sPz8/XbhwwebrhO1y08+wu7u7ChQooKioKF29ejXTx8+bN0+Ojo566aWX1LFjRxUpUkQLFiyQMea2xwUGBlp7JdIkJSVp8eLFatWqlby9vTNdC4DbY/gTANzgl19+kSQ1b978jo957733FBwcrBEjRmj06NHWT10vX76s5s2b66233lLHjh1teiOzdetW7d69W2XKlJEkjRs3Ti1atNDKlSu1cuVKderUSdL1Sa0fffSRatSoodDQULm7u0u6vlpPo0aNNGPGDD377LN69NFHJUmfffaZChUqpF27dqlkyZLpvueNvQ/nz5/Xyy+/LA8PD/3yyy8qX768dd+yZcvUpUsXjRw5Uh999FGWrxHZIzf9DDs5Oaldu3ZatWqV/Pz81LNnTzVu3Fi1a9dWoUKFbnvs3r179fvvv6tVq1by9PSUJHXs2FGLFi3Shg0b9MQTT9zy2ICAAA0bNkzz589X/fr1JUnffPONYmJi1L1790xdA4A7Q08FANwgOjpakqxv3v9NamqqPv30U1WqVCndmzFJKlq0qEaOHKmkpCStWrXKprr69++frqZChQpp3LhxkpRuOMjnn38u6XqISAsUklSsWDEFBQXd1F6SChYsqIIFC970PYsXL259vmjRIsXGxmr8+PHpAoUkde7cWfXq1dOyZcuydnHIVrntZ3jOnDl6+umntXfvXr3xxht66KGHVLRoUT3yyCOaMWOG4uPjMzwubYJ2QECAdVva87R9t+Lp6aknn3xSS5cuVcL/r1Q3f/58lShRQk8//XSWrgPA7dFTAQA2CA8P14ULF+Tt7Z1ufHqac+fOSZIOHjxo0/dJ61m4kZ+fnwoUKKA//vjDui3t+Y33DkiTNqZ9165d1m2dO3fW4MGDVatWLb344otq1qyZmjRpIjc3t3THbt26VZL022+/6fDhwzedOyEhQTExMbdccQe5V07/DBcvXlxr1qzRoUOHtHbtWm3btk1bt27Vr7/+ql9//VVz587Vpk2bdP/991uPSUxM1BdffKGiRYvqmWeesW5v1qyZypYtq9WrV+vChQsqVqzYLb9vt27dtGbNGq1evVqPPfaYfvzxR/Xv3z/DAA3AdoQKALiBp6enDh48qFOnTqlatWr/2v6vv/6SJO3fv1/79++/ZbusjCe/UUZj4x0dHVW8eHFdunTJui02NlYODg4qUaJEhuewWCyKjY21bhs0aJCKFy+uTz/9VB9++KEmT56sAgUKqG3btpo6daoqVqwo6e/rnDlz5m3rvHr1KqHCznLrz3CVKlVUpUoV69e7du1S165dtW/fPo0ePVrTp0+37vv66691/vx5BQYGysXl76WrHRwc9NJLL2nChAlasmSJ+vbte8vv17ZtW5UqVUrz58/XkSNHlJqaqm7dutl0DQBujeFPAHCDRx55RJK0fv36O2qf9ol+p06dZIy55SOjlWgy48yZMzdtS0lJ0fnz59MNc3Jzc1Nqaqr10+UbnT17VsaYdL0QFotF3bp10++//65z585p9erV6tixo7755hs99dRTSklJSXede/fuve11/nNoFO6+3Poz/E++vr7WOTgbNmxIty9teNOCBQtksVjSPSZMmJCuza0UKFBAAQEB2rBhg2bOnKkGDRqoVq1a2XoNAP5GqACAG7z66qtydHTUnDlzMnxjfqPExETVqFFDbm5u2r59+y2Xd80OW7ZsuWlbaGiorl27prp161q3pT0PDg6+qX3aNl9f3wy/R/HixdWhQwctX75czZs314EDBxQRESFJatiwofV7InfLrT/DGSlSpMhN244fP67169erVKlS1tXL/vmoWLGi/vjjj3RD/zLSrVs3paamKioqil4KIIcRKgDgBpUrV9bgwYMVExOjNm3a6OjRoze1SUhI0JQpUzRq1CgVKFBAvXv31vHjxzVo0KAM35Tt27dPZ8+etamu6dOn6+TJk9avk5KSNGzYMEnX30SmSVt/f/To0emGOV26dMk6Xv7GNfqDg4NvWp4zOTnZOiTG2dlZ0vUlOosWLaphw4ZlOEQmLi7OOu8C9pWbfoavXr2qcePGKSYm5qZ9165d06RJkyRJTZo0sW5fsGCBUlNT1atXL3322WcZPt59911J/95bUb16df3www9avXq1XnrppUzXD+DOMacCAP5h7NixSkhI0NSpU1WtWjU1b95ctWrVUsGCBXX06FH9/PPPOn/+vMaOHSvp+hv4nTt3asaMGfrf//6nxx57TCVLltSpU6e0d+9e7d69W6GhoTct2ZoZjRo1ko+Pj1544QUVLlxY3377rcLDw9WxY0frcrKS9Nhjj+n111/XRx99pFq1almHtKxcuVInT57UG2+8occee8zavkOHDnJzc1OjRo1Uvnx5JScn66efftKBAwf07LPPWoczlShRQkuXLtVzzz0nHx8ftW7dWtWrV1diYqKOHTumTZs2qXHjxlq7dm2WrxHZJ7f8DCcnJ2v48OEaNWqU/Pz85OPjIzc3N505c0br1q3TyZMnVbFiRevKZKmpqdYhTzeG5X964YUXNGDAAC1evFiTJ0+2ht+MtG7dOlM1A8gaQgWALIm4kvEykPaUXTU5ODhoypQpevHFF/Xpp59q8+bN2rx5s1JTU+Xl5aVWrVopMDBQ/v7+kq6vxf/DDz9o3rx5WrRokVauXKnExESVKlVKNWvW1H/+8x/Vrl3bppqmTZumFStW6LPPPlNkZKS8vLw0atQoDRky5Ka2M2bMUN26dfXpp59qzpw5kqQHH3xQ7733ngIDA9O1HT9+vHVFnm+//VaFCxdWpUqV9Omnn960nn/btm31xx9/aNKkSfr555/1008/qXDhwipTpowCAwPVtWtXm67xbko4F2nvEm6SnTXllp9hNzc3ff/991q3bp1CQkK0YsUKnT9/Xq6urqpatap69uyp/v37W+cF/fzzz4qMjFTTpk2tiwRkxN3dXR07dtTixYu1atUqvfjii1n7HwUg21jMv92WEgBuEBkZqRrVqinu/9d+z21cnZ0VFh6ucuXK2buUbPHqq6/q888/19GjR1WhQgV7l5PnRUZGqlr1GkqIj7N3KRlydnFV+MGwe+bnF0D+QU8FgEwpV66cwsLDMxwjnRt4eHjwhgy3VK5cOYUfDOPnFwCyGaECQKaVK1eONz7Is/j5BYDsx+pPAAAAAGzCnAoAAAAANqGnAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQkQFjjGJjY2WMsXcpAAAAQK5HqMjA5cuX5e7ursuXL9u7FAAAACDXI1QAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2KSAvQsAANw9UVFRioqKyvRxXl5e8vLyyoGKAAD3AkIFAOQjs2fP1ujRozN9XFBQkEaNGpX9BQEA7gkWY4yxdxG5TWxsrNzd3XXp0iW5ubnZuxwAyDYZ9VTEx8erSZMmkqSQkBC5uLjcdBw9FQCA2yFUZIBQASA/uXr1qooUKSJJunLligoXLmznigAAeQ0TtQEAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANilg7wIAAFkTGRmpmJgYm88THx9vfb5r1y65uLjYfE5J8vDwULly5bLlXACA3M1ijDH2LiK3iY2Nlbu7uy5duiQ3Nzd7lwMAN4mMjFS16jWUEB9n71JuydnFVeEHwwgWAJAP0FMBAHlQTEyMEuLjVL7TEDmXsO1Ne2pyog7NGyBJqtJ9mhwKOtlcX8K5SB1fOV4xMTGECgDIBwgVAJCHOZcoJ1fvqjadIyXp7+FPLl6V5Vgoe4Y/AQDyj1wxUXvmzJmqUKGCnJ2d1bBhQ23btu2WbefOnatHH31UxYoVU7FixeTv739T+1dffVUWiyXdo3Xr1jl9GQAAAEC+ZPdQsXz5cg0cOFBBQUHauXOnfHx81KpVK509ezbD9sHBwerSpYs2btyo0NBQlS1bVi1bttSpU6fStWvdurWioqKsj6VLl96NywEAAADyHbuHiilTpqhnz54KDAxUzZo1NWvWLLm6umr+/PkZtl+8eLH69OkjX19fVa9eXZ999plSU1O1fv36dO2cnJzk6elpfRQrVuxuXA4AAACQ79g1VCQlJWnHjh3y9/e3bnNwcJC/v79CQ0Pv6BxxcXFKTk7W/fffn257cHCwSpYsqWrVqql37946f/58ttYOAAAA4Dq7TtSOiYlRSkqKSpUqlW57qVKldPDgwTs6xzvvvCNvb+90waR169bq2LGjKlasqMOHD2vo0KFq06aNQkND5ejoeNM5EhMTlZiYaP06NjY2i1cEAAAA5D95evWnCRMmaNmyZQoODpazs7N1e+fOna3Pa9eurTp16qhSpUoKDg7WE088cdN5xo8fr9GjR9+VmgEAAIB7jV2HP3l4eMjR0VFnzpxJt/3MmTPy9PS87bGTJ0/WhAkT9OOPP6pOnTq3bfvAAw/Iw8NDERERGe4fMmSILl26ZH2cOHEicxcCAAAA5GN2DRWFChVS/fr1002yTpt07efnd8vjPvjgA40ZM0Zr167VQw899K/f5+TJkzp//ry8vLwy3O/k5CQ3N7d0DwAAAAB3xu6rPw0cOFBz587V559/rrCwMPXu3VtXr15VYGCgJCkgIEBDhgyxtp84caJGjBih+fPnq0KFCoqOjlZ0dLSuXLkiSbpy5Yrefvttbd26VceOHdP69evVvn17Va5cWa1atbLLNQIAAAD3MrvPqXjhhRd07tw5jRw5UtHR0fL19dXatWutk7cjIyPl4PB39vn000+VlJSkZ599Nt15goKCNGrUKDk6OmrPnj36/PPPdfHiRXl7e6tly5YaM2aMnJyc7uq1AQAAAPmB3UOFJPXr10/9+vXLcF9wcHC6r48dO3bbc7m4uGjdunXZVBkAAACAf2P34U8AAAAA8jZCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGySK25+BwC4O5Ivn1fy5fPptqUkJ1qfx0VFyLGg003HFSxaXAWLFs/x+gAAeROhAgDykZjfv1N08KJb7o+YNyDD7Z6PB8ir+Ss5VBUAIK8jVABAPuLx8FNyr+6X6ePopQAA3A6hAgDyEYYxAQByAhO1AQAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbFLB3AQBwr4mKilJUVFSmj/Py8pKXl1cOVAQAQM4iVABANps9e7ZGjx6d6eOCgoI0atSo7C8IAIAcRqgAgGzWq1cvtWvXLt22+Ph4NWnSRJIUEhIiFxeXm46jlwIAkFcRKgAgm2U0jOnq1avW576+vipcuPDdLgsAgBzDRG0AAAAANskVoWLmzJmqUKGCnJ2d1bBhQ23btu2WbefOnatHH31UxYoVU7FixeTv739Te2OMRo4cKS8vL7m4uMjf31+HDh3K6csAAAAA8iW7h4rly5dr4MCBCgoK0s6dO+Xj46NWrVrp7NmzGbYPDg5Wly5dtHHjRoWGhqps2bJq2bKlTp06ZW3zwQcfaMaMGZo1a5Z+++03FS5cWK1atVJCQsLduiwAAAAg37B7qJgyZYp69uypwMBA1axZU7NmzZKrq6vmz5+fYfvFixerT58+8vX1VfXq1fXZZ58pNTVV69evl3S9l2LatGkaPny42rdvrzp16mjRokU6ffq0vv7667t4ZQAAAED+YNdQkZSUpB07dsjf39+6zcHBQf7+/goNDb2jc8TFxSk5OVn333+/JOno0aOKjo5Od053d3c1bNjwjs8JAAAA4M7ZdfWnmJgYpaSkqFSpUum2lypVSgcPHryjc7zzzjvy9va2hojo6GjrOf55zrR9/5SYmKjExETr17GxsXd8DQAAAEB+Z/fhT7aYMGGCli1bptWrV8vZ2TnL5xk/frzc3d2tj7Jly2ZjlQAAAMC9za6hwsPDQ46Ojjpz5ky67WfOnJGnp+dtj508ebImTJigH3/8UXXq1LFuTzsuM+ccMmSILl26ZH2cOHEiK5cDAAAA5EuZHv6UmpqqTZs2acuWLTp+/Lji4uJUokQJ1a1bV/7+/pn6lL9QoUKqX7++1q9frw4dOljPv379evXr1++Wx33wwQcaN26c1q1bp4ceeijdvooVK8rT01Pr16+Xr6+vpOvDmX777Tf17t07w/M5OTnJycnpjusGAAAA8Lc77qmIj4/X2LFjVbZsWT355JP64YcfdPHiRTk6OioiIkJBQUGqWLGinnzySW3duvWOCxg4cKDmzp2rzz//XGFhYerdu7euXr2qwMBASVJAQICGDBlibT9x4kSNGDFC8+fPV4UKFRQdHa3o6GhduXJFkmSxWDRgwACNHTtWa9as0d69exUQECBvb29rcAEAAACQfe64p6Jq1ary8/PT3Llz1aJFCxUsWPCmNsePH9eSJUvUuXNnDRs2TD179vzX877wwgs6d+6cRo4cqejoaPn6+mrt2rXWidaRkZFycPg7+3z66adKSkrSs88+m+48QUFBGjVqlCRp8ODBunr1ql577TVdvHhRTZo00dq1a22adwEAAAAgYxZjjLmThmFhYapRo8YdnTQ5OVmRkZGqVKmSTcXZS2xsrNzd3XXp0iW5ubnZuxwA94CrV6+qSJEikqQrV66ocOHCNp1v586dql+/vqr951O5elfNjhKzVdzpPxU+q7d27NihevXq2bscAEAOu+PhT3caKCSpYMGCeTZQAAAAAMicbF396erVq9q8eXN2nhIAAABALpetoSIiIkLNmjXLzlMCAAAAyOXy9M3vAAAAANhfpu5Tcf/99992f0pKik3FAAAAAMh7MhUqEhMT1bt3b9WuXTvD/cePH9fo0aOzpTAAyA0iIyMVExNj83ni4+Otz3ft2iUXFxebzhcWFmZrSQAAZJtMhQpfX1+VLVtWr7zySob7d+/eTagAcM+IjIxUjWrVFJeQkK3nbdKkSbaeDwAAe8tUqGjbtq0uXrx4y/3333+/AgICbK0JAHKFmJgYxSUkaIZPBVUuYlvPQkJKqjpuDZckrWpUTc6Otk1p23j2oiYdirLpHAAAZJdMhYqhQ4fedn/ZsmW1YMECmwoCgNymchEX1XZ3tekccdf+nnP2oJuLXAs42nS+iCvx/94IAIC7hNWfAAAAANgkU6HiscceSzf8ac2aNekmHwIAAADIfzIVKkJCQpSUlGT9umvXroqKYkwvAAAAkJ/ZNPzJGJNddQAAAADIo5hTAQAAAMAmmVr9SZLWrVsnd3d3SVJqaqrWr1+vffv2pWvTrl277KkOAAAAQK6X6VDxzxvf9erVK93XFotFKSkpAgAAAJA/ZCpUpKam5lQdAAAAAPIo5lQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAm9gcKvr06aOYmJjsqAUAAABAHmRzqPjiiy8UGxubHbUAAAAAyINsDhXGmOyoAwAAAEAexZwKAAAAADbJ1B21M3L58uXsqAMA7hlnEpJ1NjE53baElBTr8/2xcXJ2dLzpuJJOBVXKuWCO14e8LSoqSlFRUZk+zsvLS15eXjlQEQBkQ6gAAKS3OPKcpkbc+k1fx61/Zrj9zcpeGljVO6fKwj1i9uzZGj16dKaPCwoK0qhRo7K/IAAQoQIAst1L5UqoRan7Mn1cSSd6KfDvevXqpXbt2qXbFh8fryZNmkiSQkJC5OLictNx9FIAyEmECgDIZqWcGcaEnJPRMKarV69an/v6+qpw4cJ3uywA+RwTtQEAAADYhFABAAAAwCbZGioOHz6s5s2bZ+cpAQAAAORy2Roqrly5ok2bNmXnKQEAAADkcpmaqD1jxozb7j916pRNxQAAAADIezIVKgYMGCAvLy8VKlQow/1JSUnZUhQAAACAvCNToaJ8+fKaOHGinn/++Qz379q1S/Xr18+WwgAAAADkDZmaU1G/fn3t2LHjlvstFouMMTYXBQAAACDvyFRPxXvvvae4uLhb7q9Zs6aOHj1qc1EAAAAA8o5MhYqaNWvedn/BggVVvnx5mwoCAAAAkLdw8zsAAAAANrnjnorWrVtr1KhRatSo0W3bXb58WZ988omKFCmivn372lwgAAD3ssjISMXExNh0jvj4eOvzXbt2ycXFxdayJEkeHh4qV65ctpwLwL3tjkPFc889p06dOsnd3V1PP/20HnroIXl7e8vZ2VkXLlzQgQMHFBISou+//15t27bVpEmTcrJuAADyvMjISFWrXkMJ8beer5hZTZo0ybZzObu4KvxgGMECwL+641DRvXt3de3aVStWrNDy5cs1Z84cXbp0SdL1VZ9q1qypVq1a6ffff1eNGjVyrGAAAO4VMTExSoiPU/lOQ+RcIutv3FOTE3Vo3gBJUpXu0+RQ0Mnm2hLORer4yvGKiYkhVAD4V5maqO3k5KSuXbuqa9eukqRLly4pPj5exYsXV8GCBXOkQAAA7nXOJcrJ1btqlo9PSfp7+JOLV2U5Fsqe4U8AcKcyFSr+yd3dXe7u7tlVCwAAAIA8iNWfAAAAANiEUAEAAADAJoQKAAAAADbJdKhISUnR5s2bdfHixWwpYObMmapQoYKcnZ3VsGFDbdu27ZZt9+/fr06dOqlChQqyWCyaNm3aTW1GjRoli8WS7lG9evVsqRUAAADAzTIdKhwdHdWyZUtduHDB5m++fPlyDRw4UEFBQdq5c6d8fHzUqlUrnT17NsP2cXFxeuCBBzRhwgR5enre8rwPPvigoqKirI+QkBCbawUAAACQsSwNf6pVq5aOHDli8zefMmWKevbsqcDAQNWsWVOzZs2Sq6ur5s+fn2H7hx9+WJMmTVLnzp3l5HTrNbgLFCggT09P68PDw8PmWgEAAABkLEuhYuzYsRo0aJC+++47RUVFKTY2Nt3jTiQlJWnHjh3y9/f/uxgHB/n7+ys0NDQrZVkdOnRI3t7eeuCBB/TSSy8pMjLytu0TExOzdA0AAAAAsnifiieffFKS1K5dO1ksFut2Y4wsFotSUlL+9RwxMTFKSUlRqVKl0m0vVaqUDh48mJWyJEkNGzbUwoULVa1aNUVFRWn06NF69NFHtW/fPhUtWjTDY8aPH6/Ro0dn+XsCAAAA+VmWQsXGjRuzu45s06ZNG+vzOnXqqGHDhipfvry+/PJLde/ePcNjhgwZooEDB1q/jo2NVdmyZXO8VgAAAOBekKVQ0bRpU5u/sYeHhxwdHXXmzJl028+cOXPbSdiZdd9996lq1aqKiIi4ZRsnJ6fbztEAAAAAcGtZvk/FxYsX9eGHH6pHjx7q0aOHpk6dqkuXLt3x8YUKFVL9+vW1fv1667bU1FStX79efn5+WS3rJleuXNHhw4fl5eWVbecEAAAA8Lcs9VRs375drVq1kouLixo0aCDp+kpO48aN048//qh69erd0XkGDhyoV155RQ899JAaNGigadOm6erVqwoMDJQkBQQEqHTp0ho/fryk65O7Dxw4YH1+6tQp7dq1S0WKFFHlypUlSYMGDdLTTz+t8uXL6/Tp0woKCpKjo6O6dOmSlUsFACBXSb58XsmXz6fblpKcaH0eFxUhx4I3974XLFpcBYsWz/H6AORPWQoVb775ptq1a6e5c+eqQIHrp7h27Zp69OihAQMGaPPmzXd0nhdeeEHnzp3TyJEjFR0dLV9fX61du9Y6eTsyMlIODn93ppw+fVp169a1fj158mRNnjxZTZs2VXBwsCTp5MmT6tKli86fP68SJUqoSZMm2rp1q0qUKJGVSwUAIFeJ+f07RQcvuuX+iHkDMtzu+XiAvJq/kkNVAcjvstxTcWOgkK7fG2Lw4MF66KGHMnWufv36qV+/fhnuSwsKaSpUqCBjzG3Pt2zZskx9fwAA8hKPh5+Se/XMDxOmlwJATspSqHBzc1NkZKSqV6+ebvuJEyduuWwrAACwHcOYAORGWZqo/cILL6h79+5avny5Tpw4oRMnTmjZsmXq0aMHcxcAAACAfCZLPRWTJ0+WxWJRQECArl27JkkqWLCgevfurQkTJmRrgQAAAAByt0yHipSUFG3dulWjRo3S+PHjdfjwYUlSpUqV5Orqmu0FAgAAAMjdMh0qHB0d1bJlS4WFhalixYqqXbt2TtQFAAAAII/I0pyKWrVq6ciRI9ldCwAAAIA8KEuhYuzYsRo0aJC+++47RUVFKTY2Nt0DAAAAQP6RpYnaTz75pCSpXbt2slgs1u3GGFksFqWkpGRPdQAAAMiXoqKiFBUVlenjvLy85OXllQMV4XayFCo2btyY3XUAAAAAVrNnz9bo0aMzfVxQUJBGjRqV/QXhtjIdKpKTk/Xee+9p1qxZqlKlSk7UBAAAgHyuV69eateuXbpt8fHxatKkiSQpJCRELi4uNx1HL4V9ZDpUFCxYUHv27MmJWgAAAABJGQ9junr1qvW5r6+vChcufLfLwi1kafhT165dNW/ePG50l8sw9hAAAAD2kKVQce3aNc2fP18///yz6tevf1NKnDJlSrYUh8xh7CEAAADsIUuhYt++fapXr54k6c8//0y378bVoHB3MfYQAAAA9sDqT/cQxh4CAADAHrJ087vbOXv2bHafEgAAAEAulqlQ4erqqnPnzlm/btu2bbqJwWfOnGEoDQAAAJDPZCpUJCQkyBhj/Xrz5s2Kj49P1+bG/QAAAADufVmaU3E7TNTOHpGRkYqJibH5PDeGvl27dmU4UTsrPDw8VK5cuWw5FwAAAPK2bA8VsF1kZKRqVKumuISEbD1v2ipQ2cHV2Vlh4eEECwAAAGQuVFgslnQ9Ef/8GtkjJiZGcQkJmuFTQZWL2NazkJCSqo5bwyVJqxpVk7Oj7XPzI67E643dxxQTE0OoAAAAQOZChTFGVatWtQaJK1euqG7dunJwcLDuR/apXMRFtd1dbTpH3LUU6/MH3VzkWsDR1rIAAACAdDIVKhYsWJBTdQAAAADIozIVKl555ZWcqgMAAABAHsVEbQAAACCToqKi0t2v7U55eXndk/d1I1QAAAAAmTR79myNHj0608cFBQVp1KhR2V+QnREq7iFnEpJ1NjE53baElL8nau+PjZOz480TtUs6FVQp54I5Xh8AAMC9olevXmrXrl26bfHx8dYl/ENCQjK8P9i92EshESruKYsjz2lqxK274Tpu/TPD7W9W9tLAqt45VRYAAMA9J6NhTFevXrU+9/X1VeHChe92WXZDqLiHvFSuhFqUui/Tx5V0opcCAAAAWZelUJGSkqKFCxdq/fr1Onv2rFJTU9Pt37BhQ7YUh8wp5cwwJgAAANx9WQoV/fv318KFC9W2bVvVqlWLu2oDAAAA+ViWQsWyZcv05Zdf6sknn8zuegAAAADkMQ5ZOahQoUKqXLlydtcCAAAAIA/KUqh46623NH36dBljsrseAAAAAHlMloY/hYSEaOPGjfrhhx/04IMPqmDB9JODV61alS3FAQAAAMj9shQq7rvvPj3zzDPZXQsAAACAPChLoWLBggXZXQcAAACAPCpLcyoAAAAAIE2W76j91Vdf6csvv1RkZKSSkpLS7du5c6fNhQH5UVRUlKKiojJ9nJeXl7y8vHKgovRye30AgNwpMjJSMTExNp8nPj7e+nzXrl1ycXGx+ZyS5OHhoXLlymXLufKrLIWKGTNmaNiwYXr11Vf1zTffKDAwUIcPH9bvv/+uvn37ZneNQL4xe/ZsjR49OtPHBQUFadSoUdlf0D/k9voAALlPZGSkalSrpriEhGw9b5MmTbLtXK7OzgoLDydY2CBLoeKTTz7RnDlz1KVLFy1cuFCDBw/WAw88oJEjR+qvv/7K7hpxj+BT7n/Xq1cvtWvXLt22+Ph46x/OkJCQDD+VuVv/f3J7fQCA3CcmJkZxCQma4VNBlYvY1rOQkJKqjlvDJUmrGlWTs6PtI/kjrsTrjd3HFBMTQ6iwQZZCRWRkpBo3bixJcnFx0eXLlyVJL7/8sho1aqSPP/44+yrEPYNPuf9dRgHq6tWr1ue+vr4qXLjw3S7LKrfXBwDIvSoXcVFtd1ebzhF3LcX6/EE3F7kWcLS1LGSTLIUKT09P/fXXXypfvrzKlSunrVu3ysfHR0ePHuWGeLglPuUGAAC5VVhYmM3nyM9zPrIUKpo3b641a9aobt26CgwM1JtvvqmvvvpK27dvV8eOHbO7Rtwj+JQbAADkNmcTkyWLg7p27Zqt583OOR/OLq4KPxiWq4NFlkLFnDlzlJqaKknq27evihcvrl9//VXt2rVTr169srVAAAAAIKfEJl+TTKrKdxoi5xK2vWlPTU7UoXkDJElVuk+TQ0Enm+tLOBep4yvH5/o5H1kKFQ4ODnJw+HtiTOfOndW5c+dsKwp5A92EeRvL+wEA8DfnEuXk6l3VpnOkJP39b6KLV2U5FsqefxPzgizfp2LLli2aPXu2Dh8+rK+++kqlS5fWf//7X1WsWDFbu3uQ+9BNmPdFRkaqWvUaSoiPy9bz8hoCAJA/ZSlUrFy5Ui+//LJeeukl/fHHH0pMTJQkXbp0Se+//76+//77bC0SuQvdhHlfTEyMEuLjeA0BAEC2yFKoGDt2rGbNmqWAgAAtW7bMuv2RRx7R2LFjM3WumTNnatKkSYqOjpaPj48++ugjNWjQIMO2+/fv18iRI7Vjxw4dP35cU6dO1YABA2w6J7KObsK8j9cQAABkhyyFivDwcD322GM3bXd3d9fFixfv+DzLly/XwIEDNWvWLDVs2FDTpk1Tq1atFB4erpIlS97UPi4uTg888ICee+45vfnmm9lyTtw9yZfPK/ny+XTbUpITrc/joiLkmMGn3AWLFlfBosVzvL6ckB3zFnJizkJ2zIcBAABIk+X7VERERKhChQrptoeEhOiBBx644/NMmTJFPXv2VGBgoCRp1qxZ+t///qf58+fr3Xffvan9ww8/rIcffliSMtyflXPi7on5/TtFBy+65f6I/x9C80+ejwfIq/krOVRVzomMjFSNatUUl5CQbedkvhIAAMiNshQqevbsqf79+2v+/PmyWCw6ffq0QkNDNWjQII0YMeKOzpGUlKQdO3ZoyJAh1m0ODg7y9/dXaGhoVsrKkXMi+3g8/JTcq/tl+ri82ksRExOjuIQEzfCpoMpFst67kJCSqo5bwyVJqxpVk7Ojw78c8e82nr2oSYeibD4PAACAlMVQ8e677yo1NVVPPPGE4uLi9Nhjj8nJyUmDBg3S66+/fkfniImJUUpKikqVKpVue6lSpXTw4MGslJXlcyYmJlonm0tSbGxslr4/bi8vD2OyReUiLqrt7prl4+OupVifP+jmItcCjjbXFHEl/t8bAQAA3KEshQqLxaJhw4bp7bffVkREhK5cuaKaNWuqSJEi2V3fXTF+/HiNHj3a3mUAuV5+nBcDAAD+XZbvUyFJhQoVUs2aNbN0rIeHhxwdHXXmzJl028+cOSNPT8+7es4hQ4Zo4MCB1q9jY2NVtmzZLNUA3Mvy27wYAABwZzIVKrp163ZH7ebPn/+vbQoVKqT69etr/fr16tChgyQpNTVV69evV79+/TJTls3ndHJykpOT7WvrA/e6/DYvBgAA3JlMhYqFCxeqfPnyqlu3rowxNn/zgQMH6pVXXtFDDz2kBg0aaNq0abp69ap15aaAgACVLl1a48ePl3R9IvaBAwesz0+dOqVdu3apSJEiqly58h2dE0DWMYwJAABkJFOhonfv3lq6dKmOHj2qwMBAde3aVffff3+Wv/kLL7ygc+fOaeTIkYqOjpavr6/Wrl1rnWgdGRkpB4e/V7o5ffq06tata/168uTJmjx5spo2barg4OA7OicAAACA7JWptSlnzpypqKgoDR48WN9++63Kli2r559/XuvWrctyz0W/fv10/PhxJSYm6rffflPDhg2t+4KDg7Vw4ULr1xUqVJAx5qZHWqC4k3MCAAAAyF6Znqjt5OSkLl26qEuXLjp+/LgWLlyoPn366Nq1a9q/f3+eXQEKyA3OJCTrbGJyum0JKX8vKbs/Nk7OjjcvKVvSqaBKORfM8foAAAAyYtPqTw4ODrJYLDLGKOWGNz4AsmZx5DlNjbj1Tek6bv0zw+1vVvbSwKreOVUWAAD4B5ZZTy/ToSIxMVGrVq3S/PnzFRISoqeeekoff/yxWrdunW7+A4DMe6lcCbUodV+mjyvpRC8FAAB3E8usp5epUNGnTx8tW7ZMZcuWVbdu3bR06VJ5eHjkVG1AvlPKmWFMQG4QFRWlqKhb9xreipeXl7y8vHKgIgC5Dcusp5epUDFr1iyVK1dODzzwgDZt2qRNmzZl2G7VqlXZUhwAAPYwe/ZsjR49OtPHBQUFadSoUdlfEIBc514dxpRVmQoVAQEBslgsOVULAAC5Qq9evdSuXbt02+Lj49WkSRNJUkhIiFxcXG46jl4KAPlVpm9+BwDAvS6jYUxXr161Pvf19VXhwoXvdlkAkGsxsxoAAACATQgVAAAAAGxi030qAAAAgJzADWHzFkIFAOCeFhkZqZiYGJvPEx8fb32+a9euDCdqZ1ZYWJjN5wDuVdwQNm8hVAAA7lmRkZGqUa2a4hISsvW8aatAAcg53BA2byFUAADuWTExMYpLSNAMnwqqXMS2noWElFR13BouSVrVqJqcHW2flrjx7EVNOpT5m+wB+QE3hM1bCBUAgHte5SIuqu3uatM54q79PZb7QTcXuRa4eSx3ZkVcif/3RgCQB7D6EwAAAACbECoAAAAA2IRQAQAAAMAmzKkAAOAfWB8fADKHUAEAwD+wPj4AZA6hAgCAf2B9fADIHEIFAAD/wPr4AJA5TNQGAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmuSJUzJw5UxUqVJCzs7MaNmyobdu23bb9ihUrVL16dTk7O6t27dr6/vvv0+1/9dVXZbFY0j1at26dk5cAAAAA5Ft2DxXLly/XwIEDFRQUpJ07d8rHx0etWrXS2bNnM2z/66+/qkuXLurevbv++OMPdejQQR06dNC+ffvStWvdurWioqKsj6VLl96NywEAAADyHbuHiilTpqhnz54KDAxUzZo1NWvWLLm6umr+/PkZtp8+fbpat26tt99+WzVq1NCYMWNUr149ffzxx+naOTk5ydPT0/ooVqzY3bgcAAAAIN+xa6hISkrSjh075O/vb93m4OAgf39/hYaGZnhMaGhouvaS1KpVq5vaBwcHq2TJkqpWrZp69+6t8+fP37KOxMRExcbGpnsAAAAAuDN2DRUxMTFKSUlRqVKl0m0vVaqUoqOjMzwmOjr6X9u3bt1aixYt0vr16zVx4kRt2rRJbdq0UUpKSobnHD9+vNzd3a2PsmXL2nhlAAAAQP5RwN4F5ITOnTtbn9euXVt16tRRpUqVFBwcrCeeeOKm9kOGDNHAgQOtX8fGxhIsAAAAgDtk154KDw8POTo66syZM+m2nzlzRp6enhke4+npman2kvTAAw/Iw8NDERERGe53cnKSm5tbugcAAACAO2PXUFGoUCHVr19f69evt25LTU3V+vXr5efnl+Exfn5+6dpL0k8//XTL9pJ08uRJnT9/Xl5eXtlTOAAAAAAru6/+NHDgQM2dO1eff/65wsLC1Lt3b129elWBgYGSpICAAA0ZMsTavn///lq7dq0+/PBDHTx4UKNGjdL27dvVr18/SdKVK1f09ttva+vWrTp27JjWr1+v9u3bq3LlymrVqpVdrhEAAAC4l9l9TsULL7ygc+fOaeTIkYqOjpavr6/Wrl1rnYwdGRkpB4e/s0/jxo21ZMkSDR8+XEOHDlWVKlX09ddfq1atWpIkR0dH7dmzR59//rkuXrwob29vtWzZUmPGjJGTk5NdrhEAAAC4l9k9VEhSv379rD0N/xQcHHzTtueee07PPfdchu1dXFy0bt267CwPAAAAwG3YffgTAAAAgLyNUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2KWDvAgAAAPKbqKgoRUVFZfo4Ly8veXl55UBFgG0IFQAAAHfZ7NmzNXr06EwfFxQUpFGjRmV/QYCNCBUAAAB3Wa9evdSuXbt02+Lj49WkSRNJUkhIiFxcXG46jl4K5FaECgAAgLsso2FMV69etT739fVV4cKF73ZZQJYxURsAAACATQgVAAAAAGxCqAAAAABgE+ZUAAAA2CAyMlIxMTE2nyc+Pt76fNeuXRlO1M4sDw8PlStXzubzAP+GUAEAAJBFkZGRqla9hhLi47L1vGmrQNnK2cVV4QfDCBbIcYQKAACALIqJiVFCfJzKdxoi5xK2vXFPTU7UoXkDJElVuk+TQ0Enm86XcC5Sx1eOV0xMDKECOY5QAQAAYCPnEuXk6l3VpnOkJP09/MnFq7IcC9k+/Am4W5ioDQAAAMAmhAoAAAAANiFUAAAAALAJcyoAAADusuTL55V8+Xy6bSnJidbncVERcsxgonbBosVVsGjxHK8PyCxCBQAAwF0W8/t3ig5edMv9Ef+/CtQ/eT4eIK/mr+RQVUDWESoAAADuMo+Hn5J7db9MH0cvBXIrQgUAAMBdxjAm3GuYqA0AAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBOWlAUAAPecqKgoRUVFZfo4Ly8veXl55UBFwL2NUAEAAHK1yMhIxcTEZOqY2bNna86cOZn+Xq+99pp69ep1x+3DwsIy/T2AexGhAgAA5FqRkZGqUa2a4hIS7sr3mzNnTpbCCJDfESoAAECuFRMTo7iEBM3wqaDKRVzu+Li/kpL1V9K1dNsSU43e3ntckjSpdnk5OVhuOu7+QgV0f6GCd/x9Np69qEmHMj/MCrjXECoAAECuV7mIi2q7u95x+yl/ntbUiFu/2U8LF//0ZmUvDazqfcffJ+JK/B23Be5lhAoAAHDPealcCbUodV+mjyvpdOe9FAD+liuWlJ05c6YqVKggZ2dnNWzYUNu2bbtt+xUrVqh69epydnZW7dq19f3336fbb4zRyJEj5eXlJRcXF/n7++vQoUM5eQkAACAXKeVcULXdXTP9KOVMqACywu6hYvny5Ro4cKCCgoK0c+dO+fj4qFWrVjp79myG7X/99Vd16dJF3bt31x9//KEOHTqoQ4cO2rdvn7XNBx98oBkzZmjWrFn67bffVLhwYbVq1UoJd2mSFwAAAJCf2D1UTJkyRT179lRgYKBq1qypWbNmydXVVfPnz8+w/fTp09W6dWu9/fbbqlGjhsaMGaN69erp448/lnS9l2LatGkaPny42rdvrzp16mjRokU6ffq0vv7667t4ZQAAAED+YNc5FUlJSdqxY4eGDBli3ebg4CB/f3+FhoZmeExoaKgGDhyYblurVq2sgeHo0aOKjo6Wv7+/db+7u7saNmyo0NBQde7c+aZzJiYmKjEx0fr1pUuXJEmxsbFZvjZbXLlyRZK099JVxV1LsUsNtxNx+fqktLjTh5SSlPsmqCXGnJR0/f+jvV7DtO8v5c7XkdfwzvAaZh2v4Z3Jza8jr+Gd4TX8d7yGtsktr2PRokVlsdy8YpqVsaNTp04ZSebXX39Nt/3tt982DRo0yPCYggULmiVLlqTbNnPmTFOyZEljjDG//PKLkWROnz6drs1zzz1nnn/++QzPGRQUZCTx4MGDBw8ePHjw4MEjg8elS5du+76e1Z8kDRkyJF3vR2pqqv766y8VL1789oksn4qNjVXZsmV14sQJubm52bscZAGvYd7Ha3hv4HXM+3gN8z5ewztTtGjR2+63a6jw8PCQo6Ojzpw5k277mTNn5OnpmeExnp6et22f9t8zZ87Iy8srXRtfX98Mz+nk5CQnJ6d02+67777MXEq+5Obmxi9fHsdrmPfxGt4beB3zPl7DvI/X0DZ2nahdqFAh1a9fX+vXr7duS01N1fr16+Xn55fhMX5+funaS9JPP/1kbV+xYkV5enqmaxMbG6vffvvtlucEAAAAkHV2H/40cOBAvfLKK3rooYfUoEEDTZs2TVevXlVgYKAkKSAgQKVLl9b48eMlSf3791fTpk314Ycfqm3btlq2bJm2b9+uOXPmSJIsFosGDBigsWPHqkqVKqpYsaJGjBghb29vdejQwV6XCQAAANyz7B4qXnjhBZ07d04jR45UdHS0fH19tXbtWpUqVUqSFBkZKQeHvztUGjdurCVLlmj48OEaOnSoqlSpoq+//lq1atWythk8eLCuXr2q1157TRcvXlSTJk20du1aOTs73/Xruxc5OTkpKCjopiFjyDt4DfM+XsN7A69j3sdrmPfxGmYPizHG2LsIAAAAAHmX3W9+BwAAACBvI1QAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgVwj7lxQTcWd8vbeP2Au+/s2bM6d+6cJGn16tVasmSJnSuCLdL+jqakpNi5knsfoQLWX7iIiAj98ssv2rVrl6Kjo+1cFTIroz+cFovFXuUgi/bs2aORI0dK4vUD7rbLly+rZs2amjRpkubNm6dOnTrZuyTYyGKx6IcfftCsWbOUlJRk73LuaXa/+R3syxgji8WiVatWaeDAgXJ3d9e1a9fk7e2td999V0888YS9S8QdSHsdf/rpJy1cuFAXL16Up6enxowZI09Pz3Q3kETutXv3bvn5+WnQoEH2LgXZJO13E3lD0aJFtXjxYrVr104pKSmaMWOGXnzxRXuXBRv8/vvveuGFFzR79mz+Lcxh/N/N5ywWi3799Vd169ZNb7/9tnbv3q2hQ4dqw4YN2rVrl73Lwx2yWCz65ptv9Mwzz6hkyZLq0qWLfv75Z7Vr104nTpywd3m4A7t371bjxo315ptv6r333rN3OciitB7DuLg4paamKjU11c4V4U4ZY5SamiofHx8lJycrNTVVUVFROnv2rL1LQxbt379fe/bsUd++fdWlSxdCRQ7j/24+lvaP3+bNm9WmTRv17dtXJ06c0PDhw9WrVy+99dZbksQf1FzOGKNz587p/fff16hRozR16lQ9+eSTMsaoYcOGKl++fLq2yH327t2rxo0ba9CgQRo3bpx1+8KFC7VixQo7VobMSOuV+OGHHxQYGKiGDRtq+PDh2rp1q71Lw79Ie+3OnTsnT09PRUVFac2aNRo/frwmTpzIv4N5jDFGV69eVaNGjdSzZ09FRUVJkhwcHPh3MAcRKvKxtC75pKQklStXTtHR0fLz81PLli01c+ZMSdIPP/yglStXKj4+3p6lIgNpfxgtFoucnJx05coV9ejRQ6dPn1bt2rXVpk0b6+v4v//9z9oWucv58+fVuXNnVa5cWaNHj7Zuf//99/Xmm2+qXLlydqwOmZHWY9ipUydVrVpVHTp00L59+9SnTx8FBwfbuzzcQlqg+Pbbb9W1a1ctXbpU999/v5566iktX75cU6dO1eTJk63B4oMPPtCyZcvsXDVux2KxqHDhwtq5c6fKlCmj3377TXv27LHuQw4xyJeOHz9ufT516lRTsmRJ4+3tbfr27Wvdfu3aNdOtWzfTp08fEx8fb48y8S9WrVplxo4da5KSkoyvr6+ZPHmyqVixounVq5dJSkoyxhgTGRlpHn/8cfPDDz/YuVpkJDo62gwaNMjUrl3bjB492hhjzKRJk0zx4sXNunXrMjwmJSXlbpaIW7hy5Uq6r/ft22cefPBBM3fuXGOMMefPnzclSpQwVapUMQ8++KDZuHGjHarEnVi1apVxdnY2H374oYmIiEi3b8mSJaZgwYLm2WefNZ07dzZOTk5m586ddqoUt5Kamprh9vDwcHPfffeZtm3b3vTaInsRKvKhAwcOmDp16pgPPvjAuq1Tp07G2dnZ7N+/38THx5srV66Yd99913h6epqwsDA7Votb2b17t/Hy8jKzZs0yCQkJ5q233jLFihUzrVq1StduyJAhpm7duubEiRN2qhT/5vTp0yYoKMjUrFnTNG3a1Hh4eGT4BnT16tV3vTZkLCgoyLRv3z5dwAsLCzOBgYHm8uXL5vjx46Zy5crmP//5j9m4caOpWrWqqV279i2DIuznyJEjpkaNGmb27NnGmOsfqCUkJJj169ebmJgYY8z10NGpUyfTsWNHs3v3bnuWiwykBYpff/3VzJ492wQFBZnIyEhz9epVY8z19z3u7u7mqaeeMocPH7Znqfc0izEMLstvIiIiNGHCBO3Zs0cvvviiBgwYoBMnTqhz584KCwtT2bJldf/99+vPP//Ud999p7p169q7ZPxDeHi4lixZotjYWE2dOlWStG/fPr355puKi4vTU089pXLlyikkJERLly7Vpk2b5OPjY+eq8U/mhiFsp0+f1pw5czR37lw9/vjjWrx4saTrSwQ7OjoqKChIY8aM0ZEjR1ShQgU7Vg3p+u9gcnKyatWqpeTkZBUsWFCSFB0dLU9PT3Xr1k2JiYmaN2+enJ2d9cwzz+iXX35R1apVtW7dOrm6ujIMI5c4cuSIWrdurfnz58vPz08ffvihvvnmG4WHh6tQoULatm2bypQpo/j4eDk4OMjJycneJeMG5v+Hr61evVo9evSQr6+voqOjlZSUpOHDh+upp55S8eLFFRYWpscee0w1a9bU559/zt/RnGDfTIO7IaMuwcOHD5t+/foZX19f8/HHH1u3z50710yePNn897//NceOHbubZeIOpKSkmLNnz5qGDRua++67z7z00kvp9m/fvt28+eabpmLFiqZ+/frm6aefNnv27LFTtcjI6dOnzZ49e0xCQsJN+6KiokxQUJCpUaOGCQoKsm4fPny4cXV1Ndu3b7+LleJWbvybGhwcbB5//HETHR1t3RYXF2fq169vxo0bZ4wxJjk52fTo0cN89NFH5uzZs3e9XtzekSNHTMuWLU2jRo2Ml5eXadeunRkzZowJCwszlStXNkOHDrV3ifgXW7ZsMZ6enmbBggXGGGMuXbpkLBaLqVatmpk9e7b566+/jDHG7N2715QvX95ERkbasdp7Fz0V+cS2bdt09OhRvfDCC9Zthw8f1vTp07Vx40b16dNHvXv3tmOFuB3zj7Xuv//+e40aNUp//fWXZs2aJX9//3Tt4+Pj5ejoqNTUVDk7O9/tcnELe/fuVceOHdW1a1e9/PLLeuCBByRJs2bNkre3t9q1a6fIyEjNnz9fy5cvV2BgoFJSUvTee+8pJCRE9evXt/MVQPr79/HYsWNKTk5Wo0aN1LBhQy1atEgeHh5KSkrSq6++qrNnz6pv377aunWrVqxYoS1btqh06dL2Lj9fS3vtEhISrItcSFJwcLD++OMPGWP00ksvqVSpUpKk1q1bq0OHDvrPf/5jz7JxG9euXdPcuXN17NgxTZw4UYcPH1aLFi3UunVrXbx4Ud9//70mT56s9u3bq0SJEkpKSlKhQoXsXfa9yZ6JBjkvNTXVXLp0yTz77LOmbt26ZsWKFen2Hz582Pj5+Zny5cubDz/80E5V4k6EhoaaXr16mWvXrhljjPnxxx9NgwYNzLPPPms2b95sbZecnGyvEnEbR44cMaVKlTJDhgwxUVFR6fYFBASY4sWLmwsXLhhjjDl16pR57733jLu7u3FwcKCHIhdavXq1qVWrlgkLCzNhYWGmTJkypmXLlubcuXPGGGPWrFljWrVqZby9vU2NGjXMjh077Fwx0nqYfvjhB9O2bVvTuHFj8/zzz9/0+2jM9Un4I0aMMJ6enubQoUN3u1Rk0u7du83+/fvNlStXTNOmTU337t2NMcZcvnzZFCtWzJQpU8YsWLDApKSk3HJCN2xHqLhHpf3SxMXFGWOM2bZtm+nSpYt59NFHzfLly9O1HThwoKlQoYJp0aKFOX/+/F2vFf8uJSXFvP/++6Z69eqmX79+1mDx3XffmUaNGplnn33WbNmyxc5V4namTZtm6tatm+G+K1eumLZt26b73Tx58qSZMGGCCQ8Pv1sl4l+k/V09efKkadmypZk1a5Z134EDB0yZMmWMv7+/NRyeO3fOHDlyhCFPucjXX39tihYtat58802zYsUKU6lSJdO8eXPzyy+/WCfdf/XVV6Zbt27G29ubVZ5yoRtDwT9Xwtu5c6epVauW+eWXX4wx138vn332WfPqq6+y8tNdwH0q7kHmhhsw9e7dW3/++acefvhhvfXWW/Ly8tLMmTPT3VDLwcFBr7/+unVtbuQ+Dg4O6tevn7p166atW7fq9ddfV0pKitq2bavhw4crOjpaY8eOVWhoqL1LxS0ULVpUkZGRWrBggc6ePavw8HDt2bNHf/zxh0JCQnT58mX99ttvioiI0O+//65SpUrp7bffVtWqVe1dOv6fxWLR5s2b9f7778vR0VFPPvmkJCk1NVU1atTQjz/+qIMHD6pz5846d+6cPDw8VLFiRZUoUcLOlUOSDh06pBEjRmjcuHGaMmWKWrRooaSkJG3btk09evTQb7/9JkkqUaKEKlWqpODgYBYqyWXS3t/89NNP6tatm1q3bq0hQ4YoPDxckhQbG6vz58/rwoULunjxor788ksZYzRr1ixVqlTJztXnA3YONcghK1euNG5ubmbw4MFm//791u2///676dKli6lZs6Z54YUXTLdu3UyxYsWYlJ1L/XPpu8uXL5vx48ebhx9+2PTt29f6Kc2qVatMixYtzMmTJ+1RJm7h6NGj5uLFi8YYY3bt2mXefvtt4+XlZapUqWJ8fX1N+fLlTdWqVY2Pj48pXLiwsVgspmbNmqZkyZJ8up1LLVq0yDg5ORkXFxcTHBxs3Z72uxgWFmZcXFxMx44duZ9ILrNr1y4zbtw4k5iYaE6dOmUeeOAB069fP3Pp0iVTsWJF8/jjj1t7fBlGmnt9/fXXpkiRIqZv375mzpw55v777zfNmjWz3n+rRYsWpnjx4qZatWrm/vvvZ+jhXUSouAft3bvXlCpVynoDpjSnT5+2/nfKlCnmkUceMR06dGDN7VwmrWs3PDzc1K1b14wcOTLd/osXL5rhw4cbLy8vM3jwYOtQqH/eiAv2lZSUZJo1a2Y8PT2tK48YY8ywYcOsKzudP3/epKammsuXL5t33nnHtGvXzuzevZuVSXK5lStXmpIlS5qAgABz8OBB6/Ybf3f//PNPe5WHW7h27Zr1vkuvvvqq6dy5s/U+Bu3atTMWi8U0aNCAm73mYtHR0aZ+/fpm6tSpxpjrf2dLlixpBgwYkC7EL1iwwHz++ecMebrLGP50Dzp79qwqVKigrl276sKFC/rss8/UokULNWzYUL1795aDg4PefPNNbdmyRUuWLFGdOnXsXXK+lpqaKklKTk6WdH2IxZEjR/TAAw+oYcOGWr9+vd5//31re3d3dw0cOFBOTk6aM2eOBg0aJElydXW9+8XjlgoWLKgZM2aobNmyeuSRR3ThwgVJ11/vH374QRcuXLAONyxcuLBiYmLUoEED1alTR2XLlrVn6fh/5v8XRwwLC9OmTZv03XffKTU1VR07dtS0adO0fv16zZw5U4cOHZJ0/XfXGKOqVauqSpUq9iw9XzPXPzCVJJ08eVKnTp1SeHi4HB0dVb16dRljFBkZqdq1a1v/blaqVEnbt2/X8uXLWTEvl/j444/1008/KSUlxbotbRXEbt266fjx46pQoYLat2+vqVOnysHBQRs2bJAkvfrqqwoICGDI091m10iDbJH26VhiYqIxxpitW7cai8Vi+vfvb2rVqmXatWtnBg0aZKZMmWJKlixpfv75Z3uWiwyEh4eb3r17m5SUFPPll18aR0dHc+rUKXPmzBnTv39/07BhQzN27Fhr+3PnzpkuXbqYcePG8al2LpT2O5mSkmLCwsJM48aNTd26dc2FCxfMli1bTL169cxbb71ljh8/bvbu3WuGDh1qihcvzt3rc5G013DlypWmcuXK5sEHHzQ+Pj6mQoUK1iGlixcvNqVLlzYDBgzgtcslblxsZPXq1cbHx8fUqlXLlCpVygwePNg6RLRRo0amadOmZvXq1WbAgAGmePHi1t585A4+Pj7G29vbBAcHW3vko6KiTPny5c1nn31mKleubF577TXrULU///zTtG7d2mzatMmeZedrhIo87sYl8l599VXrH8wlS5aYJ5980gwePNgcOHDA2v7hhx82X3/9tV1qxc3S/lCGhIQYi8VimjdvbhwdHc3ChQutbc6ePWv69+9vGjRoYN544w2zf/9+8+6775rmzZubmJgYe5WODNw4bCIpKcn6/K233jIWi8U8/PDD5uLFi2bChAmmRo0axmKxmBo1apjatWubP/74ww4V43ZCQkKMm5ubdSjptm3bjMViMdOmTbO2Wbx4sXF2djbvvPNOutccd9+5c+dM6dKlTVhYmNmwYYNxdXU1s2bNMtHR0eazzz4zFovFfPPNN8YYY44fP24qV65sqlSpYqpWrcoqT7nIjas7NW/e3JQrV85s3LjR+sHpoEGDjKurq2ndunW644YOHWrq1avH3EI7IlTcA7766ivj7u5uBg4cmO4PY9pY0TRDhgzhTpK5yJw5c8xnn31mLl++bIwxZvTo0cZisZgmTZqY2NjYdG3PnTtn3n//fVO5cmXj7e1tKlasyOSzXObkyZPmueeeMxs2bEi3feLEiaZ48eLms88+M3Xr1jUNGjQwFy5cMNHR0WblypVm9+7d5syZM3aqGrfz6aefmh49ehhjrt9npFy5cqZ3797W/WlvfpYtW8YcilzgyJEjpkyZMmb37t1m2LBh5o033jDGXF/wokqVKqZnz57p2iclJZmjR4+mm/OE3OHGifKPPvqoNVgYc33Z2KeeesrUrl3bzJkzxyxZssT069fPuLm5mV27dtmpYhhDqMhz/vlmc8+ePaZEiRJmzpw56bafO3fO+ku5dOlS8/LLL5uSJUvyaUwu4u/vb6pXr26++OILk5SUZD766CMzZMgQU6hQIfPyyy+bEydOGGP+fuOSkJBgzpw5YzZv3pzhzZpgX2k3knzyySdNSEiIMcaY8ePHm/vvv9/89NNPxpjra6b7+PiYevXqcU+YXOJ2KzT17dvXdOrUyZw5c8aULVvWvPbaa9bfx8WLF5tRo0bdrTJxh+rXr2/ee+8906xZMzNlyhSTkJBgSpcune61mz59OsOAc7G01yntRpLGGPPYY4+ZMmXKWIc2hYaGmv79+5vixYubevXqmTZt2pg9e/bYpV78jVCRh0ydOtX06tXLJCcnW/8h/Oabb4yfn58x5vpY0oULF5pWrVqZ0qVLm6FDh5pTp06ZNWvWmJdeeindMCjYz41du88995x58MEHzfLly61DJ4KDg63B4tSpU9a2oaGhd71WZE7amN727dubnj17mhIlSph169alaxMWFmYqVqxoGjVqxJKjucSpU6fM77//bowx5osvvrCuzrV27VrzxBNPmOLFi1t7LNLuyPv666+b7t27s+paLpH2u9SpUyczevRos2zZMvPEE0+YUqVKmT59+liHmiYnJ5uXXnrJDB48mOFqudCNQ7qff/556wcyxhjTtGnTdMHCGGNiYmJMYmLiTSMzYB+Eijwg7Y/hjBkzrGMF08YWbtmyxVgsFvPOO++Yhx56yLRr187079/fTJw40Tg5OVnfiKbdWRu5w41dux06dDA1a9Y0//3vf61DoTZt2mQKFSpkAgICzNatW817771nihQpYs6cOZMulCD3CQ8PNy1atDAuLi5m8uTJ1u03Bojw8HBz5MgRe5SHG6Smppr4+Hjz8MMPm/bt25sJEyYYi8ViZs+ebYy5HjZat25typcvb1auXGmMuf4mZujQoaZkyZJ8UGNnhw8fNh9//LEJCwuzDuv973//a1q0aGHWrFljfHx8jI+Pj/Wu9ImJiWbo0KGmXLlyDFfLxVatWmVcXFzM+PHjzdatW9PtSwsWwcHB1vdBxhj+XcwlCBW5XNobkcOHD5sxY8YYY4z59ddf0w2PmTNnjvHz8zMDBw5M1/338MMP3/QpKewvo67dDh06mFq1aqULFlu2bDElS5Y0Pj4+xtPT02zfvt0u9SLzIiIiTMuWLU2bNm2sN9My5vZDbWA/ERERpmzZssZisVh7KW7c17hxY1OrVi1TtmxZ06xZM1O2bFmGktpZUlKSef755025cuVMxYoVjZubm2ndurWpVKmSKVOmjPnrr7/MqlWrjK+vr6lZs6Zp3769adOmjSlRogSvXS4WGRlpatSoYb0PRZobA8QTTzxhChcunO5vK3IHizH/v5gzcp3U1FQ5ODho9+7dqlu3rsaOHauhQ4dq+vTpWrBggR566CGNHTtWnp6eunr1qgoXLmw9dujQoVq2bJm2bNmi0qVL2/EqkJHff/9d48aN0xtvvKHmzZtLkp555hlFRETonXfeUYcOHVSkSBEdOXJE0dHRKl++PK9jHnPo0CG98cYbMsZoxIgReuSRR+xdEv7B/P/9DOLi4lSzZk0lJSWpWbNmGjBggBo2bGhtFx0drQMHDuiXX36Rj4+PfHx8VL58eTtWDkmKi4uTq6urDh06pLCwMEVGRmrz5s3au3evatSoof/+9786fPiw/ve//2n//v3y8fFRhw4duIdILrZz504988wz+vbbb6330DLGyGKxKCUlRY6OjpKktm3batq0abyWuY09Ew1uLe0Tzf379xsXF5ebPj37+OOPTePGjc0rr7ySbtz9N998YwICAvg0Jpf7+uuvzUMPPWSee+45ExwcbN2e1mOxePFia48F8q4///zTPPXUU6ZRo0bMicll0noM9+/fbxITE01SUpLZt2+fqVy5sunUqROvVx5wqyEvq1evNo0aNTJt27a19ggzPCZ3+ufr8vvvv1uHN/2zzc8//8zoi1yOO2rnQmk9FPv27VPTpk1VoUIFjRo1SpKUkJAgSerbt686d+6siIgIDRs2TNHR0ZKkK1eu6Nq1awoODlbdunXtdQn4F+3bt1dQUJDOnj2r6dOna9OmTZKk1atXq3r16ho8eLB++OEHO1cJW1WpUkWTJk1SmTJl5O3tbe9y8P/M/3/yuXr1arVq1UpDhgxRYmKiHnzwQS1ZskS7d+/WlClTFBoaKul6z++YMWPsXDX+Ke3uymlSU1MlSe3atdOAAQN05coVPfXUU4qJibmpLXIHi8WikJAQ7dq1S5JUvnx5OTo6atasWbp48aK1jSR99913+vLLLxUfH2+9YzpyGXunGqSX1kOxa9cu4+rqah5//HHj7e1tXW/bmPRjC2fMmGEeeeQR06NHDxMdHW2Mufn+FLCvGz8R/efEzm+++cY0a9bMtG/f3vzyyy/W7V27djWHDx++q3Ui59z4O4vcYd26dcbZ2dnMmzfPHD161Bjz9+/q9u3bzYMPPmgaNWpkWrZsaVxdXem5yCPSXsPU1FTz+eefmzZt2pjjx4/buSrcysWLF83TTz9tvL29rfde2rhxo3F2djbPPvusWbNmjQkJCTEDBgww7u7uZt++fXauGLfDnIpcaPv27WrcuLGGDRum4cOHa968eRo2bJhefPFFTZ8+XZKUlJSkQoUKSZJmzpypTz75RI8//rhmzJhhHXMI+0jrabp27ZoKFCiga9eu6a+//lLLli1Vp04dDR06VNWrV7e2//rrr9WjRw89+uijev31161zLADkjGvXrqlXr14qUqSIpk+fbu25uHbtmhwdHWWxWLRnzx4tX75csbGx6t27t2rWrGnvsnGH0l5PY4yuXLmiokWL2rsk/EPaayRJISEhmjZtmvbu3aulS5eqXr16+v3339W9e3dduXJFFotF9913n+bNmydfX1/7Fo7bIlTkQps3b9bKlSutAeLSpUtavnz5bYPFnDlz1LJlS1WoUMFeZUN/B4rDhw/r888/1/nz59W1a1f5+fnpk08+0eeffy5fX18NGDBANWrUsB7XsmVL7d69W23atNEnn3wiFxcXuuuBHJKUlKQGDRqoWbNmmjp1qqT0b3JiY2Pl5uama9euycHBQQ4OjBTOa258PWFfaf8uSlJycrIKFiyohIQEOTs7W9uEhoZq4sSJCgsL05IlS1S/fn1duHBBFy9eVFJSkkqWLKlixYrZ6xJwh/hLmQs99thj1uBgjJG7u7s6d+6scePGacmSJerfv78kqVChQkpMTJQkvfbaawQKO0v7w7l37141b95c58+fV5kyZVSvXj1JUp8+fdSzZ09t375d06dP18GDByVd/9S0UqVKeuuttzRu3Di5urryjyGQzdI+PzPGyMHBQT4+Pjpz5oxiYmIkyfrJ9oEDB/Tuu+/qr7/+UoECBQgUeRR/Q3MPBwcHHT9+XMYYFSxYUL/++qtatGiho0ePWtv4+fnpnXfeUYUKFdS1a1ft379fxYoVU8WKFVWtWjUCRR5RwN4F4PbS/jC6ubmpc+fOkqRhw4bJ0dFRU6ZMkZOTkz3Lww3SeihatmypV155RRMmTLDuSxsK1aNHD0nXe5aGDBmi5s2b68SJE/rpp58UGhqqEiVK2Kt84J70z0+sLRaLChQoID8/P7311lvy8/NT586dVaJECVksFn355ZfavHmz9QMbALZJTExU586dFRUVpWPHjiklJUVxcXHq0aOH5s2bZ/1A1M/PTy+++KICAwPl7++vdevWWZeVRd5AqMhD0oKFg4ODXnvtNTk5OWn8+PH2Lgv6e737efPm6ZFHHtG7776bbn+BAgWsPRk9evTQ/fffr6VLl+rDDz9UiRIltGLFCgIFkM3SAsXmzZv1zTff6Nq1a6pevbp69+6t//znPzp16pTGjBmjDRs2yM3NTQkJCVq7dq02bdokLy8ve5cP3BMKFSqkSZMmqXfv3vLz81NoaKg++ugjvfvuu3rllVe0cOFCVaxYUZJUrVo161DuG++9hbyBORV50KVLl/T111/Lz89PVatWtXc5uMGjjz6qatWq6bPPPrtpX1qoSBtLmpCQoCtXrsjR0ZGuXSCHrF69WoGBgXr66ad17do17du3Tw0aNNC8efMkSYsWLdK+ffu0fft21a5dW7169WJSNmCDG+dQ3Lht27ZtCggIUPHixRUaGqqQkBANGzZMKSkp1mDx3nvv6dSpU5o6dSoT7PMgQkUexSS03CU1NVXx8fFq1KiROnTooDFjxliHPP1TUFCQnnnmGVaxAHLY9u3b9dxzz+ndd99Vr169dPDgQT322GO6dOmSnnzySa1evdraNu0eB8yhALIuLVBER0fr2LFjatSokXVfcnKy/vjjD3Xp0kUlSpTQ1q1btXXrVg0bNkwbN27UQw89pAMHDig0NFS1a9e241Ugq/jrmUcRKHIXBwcHFS5cWA0aNNDChQsVERGhAgUKWIdFpTl69KhCQkJ07do1O1YL3FvSAoExxvpcksLCwtSyZUv16tVLkZGRevLJJ/XUU0/pk08+0dq1a61znCSxyhOQDRwcHHTixAnVqlVLjRs3VrNmzTR06FBt2LBB8fHxatCggZYtW6aEhAQ9/PDDatSokX788UfNmTNH3bt31+7duwkUeRh/QYFs1Lp1a127dk0jRozQ4cOHZbFY0gXARYsWKTExkZW6gGyS9snon3/+qTfeeEPPPvusJk+eLEl6+eWX1aNHD6WkpKhXr1569NFHNX/+fLVv315ly5bV/Pnz1bVrVztfAXBvSU1NVdmyZVW1alVduXJFp0+fVtu2bdW0aVMFBATo6NGjGjZsmC5duiR/f3/rXMNevXqpUqVK9i4fNiBUAJmU1vNw4yeiaZ577jkFBAToxx9/VK9evbRlyxZduHBBv/32m/r27atp06bpk08+kYeHx90uG7jnpAWK3bt3q0mTJjp58qScnJw0dOhQTZw4UZL08MMP6+TJkzpx4oS6desm6fqnqQ0bNtSiRYs0ZswYe14CcM8pX768VqxYoZo1a6p06dLq3bu3wsPD9c477+jIkSP68MMP9eqrr8rZ2VkbNmxQx44dJUmMxs/7WP0JyISFCxfqjz/+0JQpU+To6JhuQlra84kTJ8rNzU3Lly/X448/rmLFiqlkyZIqWrSoNm3axBJ5QDZI+33bs2eP/Pz89Oabb2rcuHFKTU2Vh4eHoqOjrYsiODs7KzExUV999ZV8fX01adIkhYeHa8qUKay6BuSAypUra/z48erfv79GjBihcePGqXPnzurcubMuXryob7/9VgcPHlSBAgU0cuRISQzrvhcwURu4A6mpqUpOTtagQYMUGhqq1q1ba/To0TcFi5SUFDk6OkqSDh8+rLCwMEVFRal27dqqVKkSb2CAbHTixAnVq1dPzZo105dffmnd3rlzZ4WHhyshIUEVKlRQx44ddfXqVU2aNEmOjo5KSkrSDz/8oLp169qxeuDed+jQIb3++uuSpCFDhqhp06bp9t9qQRPkTYQK4A6cOnVKpUuX1oULFzR58mStX79ezZs315gxY27ZYwEgZx07dkzPP/+8vLy8NHjwYD3yyCOaMGGCxowZoyFDhsjLy0uTJ0+Wk5OTPvroI3l4eOjQoUOqW7euypYta+/ygXzh0KFDeuONN2SM0ciRI9W4cWN7l4QcQqgA/sVXX32lt99+W4sXL1bjxo118eJFTZgwQcHBwbcMFgDujrQ3LIUKFVLJkiW1Zs0a/fe//1XLli0lScePH1fFihU1e/Zs9ezZ087VAvnToUOHNHDgQMXExGjq1KnplprFvYN3QMC/cHNzU+3atTVgwACFhobqvvvu07vvvqvHH39cGzZs0IgRI5SSkiIHB4cMJ28DyDlVqlTR9OnTFR8fr8WLF2vw4MFq2bKljDFKTk5WgQIFVLt2besNJvkcDbj7qlSpokmTJqlMmTLy9va2dznIIfRUAHdg06ZNmj59uo4dO6aPP/7Y2mMxceJEbdy4Uc2aNdOYMWNUoECBdPMqANwdhw8fVp8+feTo6KghQ4bo0UcflSSNHDlSX3zxhTZt2sSQJ8DOkpKSVKhQIXuXgRxCqABu48Y7l2/cuFEzZszQ8ePHMwwW/v7+GjVqFJPOADu5cez2+PHj9dNPPykoKEi//vork7IBIIcRKoBM2LRpk6ZMmaITJ06kCxaTJ0/WihUr9NJLL1mXxwNw96WN3d62bZsuXLig0NBQ1a9f395lAcA9j1ABZCCth2LHjh3WG2d16dJFxYsX17Zt2/T+++8rMjLSGiwuXLigjz76SAEBAdwtG7Cz8PBwDR48WO+//74efPBBe5cDAPkCoQK4hZUrV6p3796qW7euIiIi5O7uru7du6tv374KDg7WjBkzdOrUKU2aNEmPPfZYuqFSAOwrOTlZBQsWtHcZAJBvsPoTkIGdO3eqb9+++uCDD7Ru3Tpt2LBBu3btUlxcnCTp8ccf18CBA1W4cGGNHDlSCQkJdq4YwI0IFABwd9FTgXztn70LaV+vWLFCn376qTZs2KDw8HC1adNGTzzxhObOnStJOnv2rEqWLKmQkBBVqFBBZcqUsdclAAAA2B09Fci3UlNTZbFYdO7cOW3fvl07duywBoxTp07Jzc1NKSkpatGihVq0aKHZs2dLktasWaPZs2crMTFRTZo0IVAAAIB8j7UvkS+l3f36wIEDeu2111S0aFG5urrqyy+/lKOjo1q3bq0xY8bIxcVFvXv31vTp063Hrl+/XpGRkUpMTJSTk5MdrwIAACB3IFQg3zHGyMHBQfv371eTJk3Up08f9erVS2XKlJGDg4OMMXrggQc0ePBgffTRR9aeiKNHj2ru3Ln64osvtGXLFrm5udn5SgAAAHIH5lQgX/rrr7/Uvn171atXL10vxI1zLI4cOaIFCxZo6tSpKlasmIoVK6akpCQtXbqUG2kBAADcgFCBfOnAgQNq166d5s+fryZNmsjBIf30orRwkZycrKNHjyo0NFQVK1ZU5cqV5e3tbaeqAQAAcieGPyFf2rVrl44fP65HH31UFovFOscijcViUVxcnPbt26cGDRqoatWqdqwWAAAgd2P1J+RLFSpUUIECBbRq1SpJuqmnQpLmz5+v4cOHKykp6W6XBwAAkKcQKpAvlS9fXm5ublq0aJGOHz9u3X7jaMBjx46pfv363EQLAADgXxAqkC+VLl1an376qdatW6cRI0bowIEDkv4e9jR06FB99dVXCgwMTHdzPAAAANyMidrIt1JTUzV37lz169dPlStXlp+fn5ydnXXq1Clt3bpVa9euZZUnAACAO0CoQL63bds2TZo0SRERESpatKgaN26s7t27q0qVKvYuDQAAIE8gVACSUlJS5OjoaO8yAAAA8iTmVABKv/oTORsAACBz6KkAAAAAYBN6KgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADb5P+TQYbDhdBWUAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Cellpose vs CellSAM - Individual Models by Data Type\n", + "\"\"\"\n", + "# Your mapping from group -> list of dataset keys:\n", + "dataset_agg_map = {\n", + " \"Tissue\": [\"tissuenet_wholecell\"],\n", + " \"Cell Culture\": [\"cellpose\", \"ep_phase_microscopy_all\", \"Gendarme_BriFi\"],\n", + " \"H&E\": [\"H_and_E\"],\n", + " \"Bacteria\": [\"deepbacs\", \"omnipose\"],\n", + " \"Yeast\": [\"YeaZ\", \"YeastNet\"],\n", + " \"Nuclear\": [\"dsb_fixed\"],\n", + "}\n", + "\n", + "\n", + "group_names = list(dataset_agg_map.keys())\n", + "\n", + "cp_group_means = []\n", + "cp_group_sems = []\n", + "cs_group_means = []\n", + "cs_group_sems = []\n", + "\n", + "for group in group_names:\n", + " # Get all datasets that belong to this group\n", + " datasets_for_group = dataset_agg_map[group]\n", + " \n", + " # Gather all F1 arrays and concatenate them\n", + " cp_all = np.concatenate([cp_individual_dict[ds] for ds in datasets_for_group])\n", + " cs_all = np.concatenate([cs_individual_dict[ds] for ds in datasets_for_group])\n", + " \n", + " # Compute (1 - mean(F1)) for the group\n", + " cp_mean = 1 - np.mean(cp_all)\n", + " cs_mean = 1 - np.mean(cs_all)\n", + " cp_group_means.append(cp_mean)\n", + " cs_group_means.append(cs_mean)\n", + " \n", + " # Standard error of the mean (SEM) for the group\n", + " cp_sem = np.std(cp_all, ddof=1) / np.sqrt(len(cp_all))\n", + " cs_sem = np.std(cs_all, ddof=1) / np.sqrt(len(cs_all))\n", + " cp_group_sems.append(cp_sem)\n", + " cs_group_sems.append(cs_sem)\n", + "\n", + "# Now plot side‐by‐side bars for the groups\n", + "x = np.arange(len(group_names))\n", + "width = 0.35\n", + "\n", + "fig, ax = plt.subplots(figsize=(8,5))\n", + "\n", + "bars_cp = ax.bar(\n", + " x - width/2, cp_group_means, width,\n", + " edgecolor='black', linewidth=1,\n", + " yerr=cp_group_sems, capsize=5, \n", + " label='Cellpose', color=c2\n", + ")\n", + "bars_cs = ax.bar(\n", + " x + width/2, cs_group_means, width,\n", + " edgecolor='black', linewidth=1,\n", + " yerr=cs_group_sems, capsize=5, \n", + " label='CellSAM', color=c4\n", + ")\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels(group_names, rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "# ax.set_title('Grouped Comparison of Mean Error')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_general_grouped_comparison_cp_reg.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### CellSAM Generalist vs Specialist" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from pathlib import Path\n", + "import numpy as np\n", + "\n", + "\n", + "name_map = {\n", + " \"Gendarme_BriFi\": \"BriFiSeg\",\n", + " \"cellpose\": \"Cellpose\",\n", + " \"ep_phase_microscopy_all\": \"Phase400\",\n", + " \"H_and_E\": \"H&E\",\n", + " \"tissuenet_wholecell\": \"TissueNet\",\n", + " \"YeaZ\": \"YeaZ\",\n", + " \"YeastNet\": \"YeastNet\",\n", + " \"dsb_fixed\": \"DSB\",\n", + " \"deepbacs\": \"DeepBacs\",\n", + " \"omnipose\": \"OmniPose\",\n", + "}\n", + "\n", + "\n", + "datasets = [\n", + " 'Gendarme_BriFi',\n", + " 'H_and_E',\n", + " 'YeaZ',\n", + " 'YeastNet',\n", + " 'cellpose',\n", + " 'deepbacs',\n", + " 'dsb_fixed',\n", + " 'ep_phase_microscopy_all',\n", + " 'omnipose',\n", + " 'tissuenet_wholecell',\n", + "]\n", + " \n", + "c1 = \"#fdbb84\"\n", + "c2 = \"#e34a33\"\n", + "c3 = '#deebf7'\n", + "c4 = '#3182bd'\n", + "\n", + "cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam')\n", + "cellsam_generalist_path = cellsam_path / 'general'\n", + "cellsam_individual_path = cellsam_path / 'individual'\n", + "\n", + "\n", + "cellsam_generalist_dict = {}\n", + "for file in cellsam_generalist_path.glob(\"*.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cellsam_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + "\n", + "\n", + "cellsam_specific_dict = {}\n", + "for file in cellsam_individual_path.glob(\"*.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cellsam_specific_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiN1JREFUeJzs3XdYFGfXBvB7QaoKFqQpKAoKBgUUe1diiQm2WDBGY38tiSU2bNixxxhN7C2JvcWSmEQSjC32LvZCVECxIR3hfH/w7cgKKrDAynL/rovLZeaZ4cy4OztnnqYSEQEREREREZEWDHQdABERERER5X9MLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGuFdB0AEeW90NBQREZG6jqMDFlZWcHR0VHXYejMF198gbVr1+L27dsoV65ctvYRHByMJk2aICAgAJMmTVKWN27cGAcOHICI5Eyw+QDf6wVXRu/3N302iChnMLEgKmBCQ0Ph5uaG2NhYXYeSIXNzc4SEhGh9wxUTE4Nvv/0WW7duxbVr15CUlIRSpUrByckJ9evXR58+fVChQoUcilr/5ccbstDQUFRydUN83Pv5Xjc1M8fVK9q/19XOnj2LJUuW4J9//sG9e/cQHx+PEiVKoEqVKmjZsiW6d++OUqVK5cjfKqgKYnJOlBVMLIgKmMjISMTGxmL+D6vg7OKq63A03Lh+BcMH9EJkZKRWN1svXrxA/fr1cf78eTg7O6Nbt24oWbIkIiMjcfz4ccycORMVKlR4LxOLwMBAjBkzBqVLl87xfa9bt+69TShzQ2RkJOLjYlG2gz9MS71fNQPxj0Jxd1ug1u91AEhJScGoUaMwb948GBoaomHDhmjevDkKFy6Mhw8f4ujRoxgxYgQCAgJw9erVXHlv5Rc1a9ZESEgIrKysdB0KkV5iYkFUQDm7uMLdw0vXYeSKBQsW4Pz58+jTpw+WLVsGlUqlsf727dtISEjQUXRvZ2dnBzs7u1zZd0FtdmNayhHm9hV1HUauGTduHObNm4dq1aph06ZNcHZ2Tlfm9OnTGD16NOLi4nQQ4fvD3Nwcrq7v1wMVIn3CzttEpHeOHj0KABg0aFC6pAIAnJycNG4uypUrh3LlyuHZs2fo378/bG1tYWpqCi8vL2zYsCHDvyEiWLVqFerVqwcLCwuYm5vD29sbq1atemP51atXo0GDBihWrBjMzc3h4uKC/v37IzQ0VCn3xRdfQKVS4c6dO8qyxMREfPfdd2jRogUcHBxgYmICa2trtG/fHmfOnMn0eWncuHG685GSkoIVK1agZs2aKFGiBMzMzFCmTBl88sknCA4OBgBMmjQJTZo0AQBMnjwZKpVK+UkbJ+W9a9euYc6cOShVqhT27duXYVIBANWqVcOff/6Zrt/O+fPn0aVLF9jZ2cHY2Bhly5bFl19+icePH2uUu3PnDlQqFb744gvcuHED7dq1Q/HixVG4cGH4+Pjg3LlzGf7dhw8fYtiwYXB2doaJiQmsrKzQoUMHXLx4MV3ZtJ/DwYMHw8HBAYUKFcKaNWsAAKdOncLgwYPh7u4OS0tLmJmZoUqVKpg5cyaSkpIydb6Cg4OhUqnSNee7fv06evbsCScnJ5iYmKBEiRLw8PDA0KFDlWZPKpUKBw4cUF6rf7744otM/W2igoA1FkSkd0qWLAkg9abL09MzU9skJibCx8cH0dHR+PzzzxETE4PNmzeja9euiIyMxJdffqmUFRF89tln2LBhA1xcXNC1a1cYGxvjzz//RO/evXH58mXMnTtXKZ+SkoLOnTtj69atKF26NPz8/GBhYYE7d+5g8+bNaNWq1VtrE548eYKhQ4eiQYMG+Oijj1C8eHHcunULu3btwm+//YZ//vkHNWrUyNa58vf3x+zZs1GhQgV07doVRYsWxf3793Ho0CHs378fjRs3RuPGjXHnzh2sXbsWjRo1QuPGjZXtixUrlq2/Szlj7dq1SE5ORv/+/TPVf6JQoVdf+7t27UKnTp1gYGCANm3awMHBAZcvX8aiRYvw+++/49ixYyhevLjG9nfu3EHt2rXxwQcfoFevXrh58yZ++eUXNGnSBCEhIbCxsVHK3rx5E40bN8a9e/fQvHlztG3bFg8fPsS2bdvw+++/IygoCLVq1dLYf0JCApo2bYro6Gj4+vqiUKFCyj6XL1+O3bt3o2HDhvjoo48QGxuL4OBg+Pv748SJE9i2bVu2zuGDBw9Qs2ZNxMTEoHXr1ujcuTNiYmJw/fp1fP/995g7dy4KFSqEgIAArFmzBnfv3kVAQICyfWavMUQFARMLItI7HTt2xE8//YQ+ffrg+PHjaN68OapXr64kHBkJCwuDi4sLjhw5AmNjYwDA2LFj4eXlhZEjR6J9+/ZK2/QVK1Zgw4YN6NmzJ5YuXQojIyMAqcnJp59+innz5sHPzw/Vq1cHAHz//ffYunUrmjVrht27d8PMzEz5u3Fxce9snlK8eHGEhoamaxt/6dIl1K5dG2PHjsWff/6Z9RP1/8dib2+P8+fPw9zcXGPdkydPAEBJJNauXYvGjRvnm87bBYG6dk5do5RZjx8/xueffw4rKyscPnwYZcuWVdZt3LgRfn5+mDhxIr777juN7Q4cOICZM2di9OjRyrIJEyZg2rRpWL16NcaMGaMs7969O8LCwrBv3z60aNFCWT5+/Hh4e3ujb9++OH/+vMb+w8PD4eHhgcOHD2t8ToDUz+PixYthaGioLBMR9OnTB6tWrcLhw4dRr169LJ0HANi2bRuePXuGBQsWYMiQIRrrnjx5oiRjkyZNQnBwMO7evcvPANEbsCkUEekdX19fzJs3DyKCefPmoUWLFrCysoKzszMGDx6M69evZ7jdjBkzlKQCAMqUKYMhQ4YgISEBGzduVJYvWrQIhQsXxuLFi5WkAgCMjY0xffp0ANBoQvX999/D0NAQP/zwQ7qbJTMzM5QoUeKtx2NiYpJhh9sPPvgATZo0wT///JPppiAZMTY21rhZU3tXXKR74eHhAAB7e/t064KDgzFp0iSNH3XztnXr1iEqKgqBgYEaSQUAdOnSBdWqVdN4z6s5OTlh5MiRGst69+4NADhx4oSy7MyZMzhy5Ah69OihkVQAQMWKFdG3b19cuHAhwyZRs2fPTvc5AVL7CL3+PlWpVBg0aBAAYP/+/em2yYqM/iY/A0RZwxoLItJLw4cPR9++fbFv3z4cOXIEJ0+exLFjx7B48WKsXLkSmzZtgq+vr1K+UKFCqFOnTrr9NGjQAACUvgyxsbG4cOEC7O3tMWvWrHTl1Tf4V65cAQBER0cjJCQEzs7OcHFxyfbxnD17FrNnz8ahQ4cQHh6eLpGIjIzMVqfvLl264Pvvv4e7uzu6dOmCJk2aoE6dOhneZFH+EhwcjMmTJ6db3rhxY/z7778AgGPHjuHmzZvpysTHxyMyMhKRkZEaIyh5enrCwEDzmWSZMmUAAM+ePVOWqfcfERGR4dN99efjypUrcHd3V5abmpqiSpUqGR5PYmIiFi1ahI0bN+LKlSuIjo7WGPb1wYMHGW73Lp988gn8/f0xaNAgBAUFoWXLlmjUqBHKly+frf0RFWRMLIhIbxUtWhQdO3ZEx44dAQDPnz/H2LFj8f3336N37964f/++UkNhZWWV7oYJgNK++/nz5wCAp0+fQkRw//79DG/a1GJiYjS202aIzyNHjqBp06YAgObNm8PFxQVFihSBSqXCzp07ce7cuWyPcvXtt9/CyckJq1evxrRp0zBt2jSYmpqiU6dOmDdvHoflfM/Z2NggJCQEDx48SDfakbqWAnjVvElN3cxt8eLFb91/TEyMxnvAwsIiXRl1U6Hk5OR0+9+7dy/27t371v2nZW1tneGACwDw6aefYvfu3ahYsSI6d+4Ma2trGBkZ4dmzZ/j222+z/RkoV64c/v33X0yaNAm//vorNm/eDABwdXXFlClTlOsHEb0bEwsiKjAsLS2xaNEi7N27F3fv3sWFCxeUfhCRkZFISUlJl1xEREQo2wKvbqyqV6+OkydPZupvAsD9+/ezHff06dORkJCAgwcPon79+hrr/v333zeOyJMZhQoVwogRIzBixAg8ePAABw4cwOrVq7Fu3TqEh4fj999/z/a+KffVrVsXwcHB+Pvvv5XkMzPU7+MLFy5o1BjkFPX+v/vuOwwePDjT270pqThx4gR2796NFi1aYO/evRpNov799198++23WsXr7u6OrVu3IikpCadOncJvv/2GhQsXonPnzrC3t89W3w2igoh9LIioQFGpVChcuHC65S9fvlQ6wqZ18OBBAICXV+qcH0WLFoWbmxtCQkI0mn68SZEiRVC5cmXcvn37jX073uXmzZsoUaJEuqQiNjYWp0+fztY+M2Jvbw8/Pz9l2NL9+/crHcvVN3Jpn0qT7vXo0QMGBgZYtmwZIiMjM72dejSmjN7zOSGn969urtW6det0/SzUn9GcYGRkhNq1a2Py5MlYuHAhRAR79uxR1vNzQPR2TCyISO8sXbpUoyNpWjt37kRISAiKFSuW7knt2LFjkZiYqPx+7949fPvttzAxMUGXLl2U5V999RViY2PRt2/fdE05gNQJ+NLO7zBo0CAkJydj4MCB6UaAio+PV5qNvEnZsmXx9OlTXLp0SVmWnJyMESNG4NGjR2/d9m0SEhJw5MiRdMtjYmIQHR0NIyMjpQZH3Yn1v//+y/bfo5xXsWJFjBo1Cg8fPkSrVq1w48aNDMu9ngT37NkTRYsWxbhx4zTeV2qxsbFKP4nsqFmzJmrVqoUNGzZg06ZN6danpKQoc0JkhrqD+aFDhzSWX7p0CYGBgdmOE0idHyMqKirdcnVtpampqbKMnwOit2NTKCLSO7/99hv+97//wdnZGfXq1YO9vT1iYmJw5swZHDx4EAYGBvj+++9hYmKibGNnZ4eYmBhUrVoVn3zyiTKPxePHj7Fw4UKNPhL9+/fHv//+i7Vr1+Lw4cPw8fGBvb09IiIicOXKFRw7dgzr169XJiMbMGAADhw4gM2bN8PFxQW+vr6wsLBAaGgofv/9d6xcuRJt27Z94/F8+eWX+OOPP1C/fn106tQJpqamCA4Oxv3799G4cWNlpJ+siouLQ7169VCxYkVUr14djo6OiI6Oxp49exAeHo4RI0Yo58jV1RX29vbYuHEjTExMUKZMGahUKnz55ZdKcy/SjenTpyMxMRHz58+Hq6srGjZsCA8PD5ibm+Phw4c4f/48jh8/jiJFiihzLpQqVQobNmxAx44d4eHhgZYtW8LV1RUJCQm4c+cODhw4gLp162Lfvn3ZjmvDhg1o0qQJunTpggULFqBatWowMzNDaGgojh49ikePHiE+Pj5T+6pZsyZq1qyJzZs3IywsDLVr10ZoaCh27dqF1q1bY+vWrdmO88cff8TSpUvRsGFDVKhQARYWFrh8+TJ+/fVXlChRAj179lTKNm3aFFu3bkWHDh3QqlUrmJqawsPDA5988km2/z6RPmFiQVRA3bh+RdchpJNTMc2aNQv16tXDn3/+iX/++QdhYWEAUjtQ9+jRA19++aXSt0JNPcHdmDFj8OOPP+LZs2dwdXXFd999p9HpFUhtTrVmzRp89NFHWL58Ofbs2YPo6GhYW1vDxcUFc+fOhY+Pj0b5jRs3onnz5lixYgXWrVsHEUHp0qXRqVOndLG87uOPP8bWrVsxY8YM/PTTTzA3N0fTpk2xY8cOTJkyJdvnqXDhwpg1axaCgoJw8OBBPHz4EMWLF0elSpUQGBioUUtjaGiI7du3Y/To0diwYQNevHgBAOjWrdt7n1jEPwp9d6E8lpMxGRgYYN68eejWrRuWLFmCf/75BydOnEBCQgJKlCiBDz74AHPmzEH37t1hbW2tbNe6dWucOXMGc+bMwf79+/Hnn3+icOHCKFOmDHr27Ilu3bppFZeTkxPOnDmD+fPnY+fOnVi9ejUMDQ1hZ2eHhg0b4tNPP830vgwNDbFnzx6MGTMG+/btw4kTJ5TPWqtWrbRKLPz8/BAfH4/Dhw/j+PHjSEhIQJkyZTBgwACMHDlSY/LKvn374s6dO9i4cSNmzZqFly9fokePHkwsiP6fStKO1UZEei80NBRubm6IjY3VdSgZMjc3R0hIyFtnos5p6pqFtM2XKP8LDQ1FJVc3xMe9n+91UzNzXL2St+91IqLcxMSCqAAKDQ3NUkfPvGRlZZXnN1pMLPQX3+tERHmHiQURFXhMLIiIiLTHUaGIiIiIiEhrrLEgIiIiIiKtscaCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsQiAyKCqKgoiIiuQyEiIiIiyheYWGTgxYsXsLS0xIsXL3QdChERERFRvsDEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItFZI1wEQZVVYWBjCwsKyvJ2dnR3s7OxyISIiIiIiYmJB+c7SpUsxefLkLG8XEBCASZMm5XxARERERASViIiug3jfREVFwdLSEs+fP4eFhYWuw6HXZFRjERcXh/r16wMADh06BDMzs3TbscaCiIiIKPcwscgAE4v8JyYmBkWKFAEAREdHo3DhwjqOiIiIiKhgYedtIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSWiFdB0D0LqGhoYiMjHxrmbi4OOX12bNnYWZmlql9W1lZwdHRUav4iIiIiAhQiYjoOoj3TVRUFCwtLfH8+XNYWFjoOpwCLTQ0FG5uboiNjc2V/ZubmyMkJITJBREREZGWWGNB77XIyEjExsZi/g+r4Ozi+sZy8XFx6PRJMwDA5t1BMM1EjcWN61cwfEAvREZGMrEgIiIi0hITC8oXnF1c4e7h9cb1sTExyuvKVTxgXrhwXoRFRERERP+PnbeJiIiIiEhr70VisXjxYpQrVw6mpqaoVasWjh8//sayy5cvR4MGDVC8eHEUL14cPj4+6cp/8cUXUKlUGj8tW7bM7cMgIiIiIiqwdJ5YbNq0CcOHD0dAQABOnz4NDw8PtGjRAg8fPsywfHBwMPz8/PD333/j6NGjcHBwQPPmzXH//n2Nci1btkRYWJjys2HDhrw4HCIiIiKiAknnicX8+fPRt29f9OzZE5UrV8aSJUtgbm6OVatWZVj+559/xsCBA+Hp6QlXV1esWLECKSkpCAoK0ihnYmICW1tb5ad48eJ5cThERERERAWSThOLxMREnDp1Cj4+PsoyAwMD+Pj44OjRo5naR2xsLJKSklCiRAmN5cHBwbC2tkalSpUwYMAAPH78+I37SEhIQFRUlMYPERERERFlnk4Ti8jISCQnJ8PGxkZjuY2NDcLDwzO1j9GjR8Pe3l4jOWnZsiXWrVuHoKAgzJo1CwcOHECrVq2QnJyc4T4CAwNhaWmp/Dg4OGT/oIiIiIiICqB8PdzszJkzsXHjRgQHB8PU1FRZ3qVLF+V1lSpVULVqVVSoUAHBwcFo1qxZuv34+/tj+PDhyu9RUVFMLoiIiIiIskCnNRZWVlYwNDRERESExvKIiAjY2tq+ddu5c+di5syZ+OOPP1C1atW3li1fvjysrKxw48aNDNebmJjAwsJC44eIiIiIiDJPp4mFsbExqlevrtHxWt0Ru06dOm/cbvbs2Zg6dSr27dsHb2/vd/6de/fu4fHjx7Czs8uRuImIiIiISJPOR4UaPnw4li9fjrVr1yIkJAQDBgxATEwMevbsCQDo3r07/P39lfKzZs3ChAkTsGrVKpQrVw7h4eEIDw9HdHQ0ACA6OhojR47Ev//+izt37iAoKAht2rSBs7MzWrRooZNjJCIiIiLSdzrvY9G5c2c8evQIEydORHh4ODw9PbFv3z6lQ3doaCgMDF7lPz/88AMSExPx6aefauwnICAAkyZNgqGhIc6fP4+1a9fi2bNnsLe3R/PmzTF16lSYmJjk6bERERERERUUOk8sAGDw4MEYPHhwhuuCg4M1fr9z585b92VmZobff/89hyIjIiIiIqLM0HlTKCIiIiIiyv+YWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdbeiwnyiLLiYXgYHkaEayyLj49TXl++eA6mpmbptrO2sYW1rV2ux0dERERUEDGxoHxn/bqVWDhn+hvXd/q4WYbLvxo5DkNHjc+tsIiIiIgKNCYWlO907d4bPi1aZ3k7axvbXIiGiIiIiAAmFpQPWdvasUkTERER0XuGnbeJiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrhXQdABERERHlnbCwMISFhWV5Ozs7O9jZ2eVCRKQvmFgQERERFSBLly7F5MmTs7xdQEAAJk2alPMBkd5gYkFERERUgPTv3x++vr4ay+Li4lC/fn0AwKFDh2BmZpZuO9ZW0LswsSAiIiIqQDJq0hQTE6O89vT0ROHChfM6LNID70Xn7cWLF6NcuXIwNTVFrVq1cPz48TeWXb58ORo0aIDixYujePHi8PHxSVdeRDBx4kTY2dnBzMwMPj4+uH79em4fBhERERFRgaXzxGLTpk0YPnw4AgICcPr0aXh4eKBFixZ4+PBhhuWDg4Ph5+eHv//+G0ePHoWDgwOaN2+O+/fvK2Vmz56NhQsXYsmSJTh27BgKFy6MFi1aID4+Pq8Oi4iIiIioQNF5YjF//nz07dsXPXv2ROXKlbFkyRKYm5tj1apVGZb/+eefMXDgQHh6esLV1RUrVqxASkoKgoKCAKTWVixYsADjx49HmzZtULVqVaxbtw4PHjzAzp078/DIiIiIiIgKDp0mFomJiTh16hR8fHyUZQYGBvDx8cHRo0cztY/Y2FgkJSWhRIkSAIDbt28jPDxcY5+WlpaoVavWG/eZkJCAqKgojR8iIiIiIso8nSYWkZGRSE5Oho2NjcZyGxsbhIeHZ2ofo0ePhr29vZJIqLfLyj4DAwNhaWmp/Dg4OGT1UIiIiIiICjSdN4XSxsyZM7Fx40bs2LEDpqam2d6Pv78/nj9/rvz8999/ORglEREREZH+0+lws1ZWVjA0NERERITG8oiICNja2r5127lz52LmzJnYv38/qlatqixXbxcREaExlFpERAQ8PT0z3JeJiQlMTEyyeRRERERERKTTGgtjY2NUr15d6XgNQOmIXadOnTduN3v2bEydOhX79u2Dt7e3xjonJyfY2tpq7DMqKgrHjh176z6JiIiIiCj7slxjkZKSggMHDuDgwYO4e/cuYmNjUapUKXh5ecHHxyfL/ROGDx+OHj16wNvbGzVr1sSCBQsQExODnj17AgC6d++O0qVLIzAwEAAwa9YsTJw4EevXr0e5cuWUfhNFihRBkSJFoFKpMHToUEybNg0uLi5wcnLChAkTYG9vj7Zt22b1cImIiIiIKBMynVjExcVh3rx5+OGHH/DkyRN4enrC3t4eZmZmuHHjBnbu3Im+ffuiefPmmDhxImrXrp2p/Xbu3BmPHj3CxIkTER4eDk9PT+zbt0/pfB0aGgoDg1cVKz/88AMSExPx6aefauwnICAAkyZNAgCMGjUKMTEx6NevH549e4b69etj3759WvXDICIiIiKiN1OJiGSmoIODA+rUqYMvvvgCH374IYyMjNKVuXv3LtavX4+lS5di3Lhx6Nu3b44HnBeioqJgaWmJ58+fw8LCQtfhFGinT59G9erVsWv/Ebh7eOXovi+eOwNfn7o4deoUqlWrlqP7JiIiyk9iYmJQpEgRAEB0dDQKFy6s44goP8p0jcUff/wBNze3t5YpW7Ys/P39MWLECISGhmodHBERERER5Q+Z7rz9rqQiLSMjI1SoUCFbARERERERUf6To8PNxsTE4NSpU2jYsGFO7pYoT4WFhSEsLCzL29nZ2WkMcUxERERUkORoYnHjxg00adIEycnJOblbojy1dOlSTJ48OcvbpR1AgIiIiKig0ekEeUTvo/79+8PX11djWVxcHOrXrw8AOHToEMzMzNJtx9oKIiIiKsiylFiUKFHiretZU0H6IKMmTTExMcprT09PjpZBRERE9JosJRYJCQkYMGAAqlSpkuH6u3fvZqsJCRERERER5W9ZSiw8PT3h4OCAHj16ZLj+3LlzTCyIiIiIiAqgLCUWrVu3xrNnz964vkSJEujevbu2MRERERFRDgkNDUVkZORby8TFxSmvz549m2FfwoxYWVnB0dFRq/hIf2QpsRg7duxb1zs4OGD16tVaBUREREREOSM0NBRubm6IjY3N9DbqwUoyw9zcHCEhIUwuCABHhSIiIiLSW5GRkYiNjcX8H1bB2cX1jeXi4+LQ6ZNmAIDNu4NgmokaixvXr2D4gF6IjIxkYkEAsphYNGzYELt27UKxYsUAALt27cKHH36Y6eoyIiIiIsp7zi6ucPfweuP62DSjH1au4gFzjn5I2WCQlcKHDh1CYmKi8nu3bt2yNUMxERERERHplywlFq8TkZyKg4iIiIiI8jGtEgsiIiIiIiIgG523f//9d1haWgIAUlJSEBQUhIsXL2qU8fX1zZnoiIiIiIgoX8hyYvH65Hj9+/fX+F2lUiE5OVm7qIiIiIiIKF/JUmKRkpKSW3EQEREREVE+xj4WRERERESkNSYWRERERESkNSYWRERERESkNSYWRERERESktSyPCkWkb0JCQt5ZJi4uTnl99uxZmJmZvXMbKysrODo6ahUbERERUX6hdWIxcOBATJkyBVZWVjkRD1GeeRQRDqgM0K1btyxtV79+/UyVMzUzx9UrIUwuiIiIqEDQOrH46aefMGLECCYWlO9ERT0HJAVlO/jDtNTbb/5TkhJwfeVQAIBL7wUwMDJ5a/n4R6G4uy0QkZGRTCyIiIioQNA6sRCRnIiDSGdMSznC3L7iW8skJ75qCmVm5wxD43c3hSIiIiIqSNh5m4iIiIiItKZ1jcWLFy9yIg4iIiIiIsrHWGNBRERERERa43CzRERERJRjwsLCEBYWluXt7OzsYGdnlwsRUV5hYkFEREREOWbp0qWYPHlylrcLCAjApEmTcj4gyjNMLPIRPgEgIiIibT0MD8PDiHCNZfHxr0Y/vHzxHExN049+aG1jC2vbd99P9O/fH76+vhrL4uLilHmgDh06lOFEs7xXyf+YWOQjfAJARERE2lq/biUWzpn+xvWdPm6W4fKvRo7D0FHj37n/jB5oxsTEKK89PT1RuHDhTEZL+UmOJhY3b95E37598ddff+Xkbun/8QkAERERaatr997wadE6y9tZ29jmQjSkT3I0sYiOjsaBAwdycpeUBp8AEBERkbasbe0y1aSJKKuylFgsXLjwrevv37+vVTBERERERJQ/ZSmxGDp0KOzs7GBsbJzh+sTExBwJioiIiIiI8pcsJRZly5bFrFmz0KlTpwzXnz17FtWrV8+RwIiIiIiIKP/I0szb1atXx6lTp964XqVSQUS0DoqIiIiIiPKXLNVYTJkyBbGxsW9cX7lyZdy+fVvroIiIiIiIKH/JUmJRuXLlt643MjJC2bJltQqIiIiIiIjynyw1hSIiIiIiIspIpmssWrZsiUmTJqF27dpvLffixQt8//33KFKkCAYNGqR1gER5LenFYyS9eKyxLDkpQXkdG3YDhkYm6bYzKloSRkVL5np8RERERO+jTCcWHTt2RIcOHWBpaYlPPvkE3t7esLe3h6mpKZ4+fYrLly/j0KFD+PXXX9G6dWvMmTMnN+MmyjWRJ/YgPHjdG9ffWDk0w+W2jbvDrmmPXIqKiIiI6P2W6cSid+/e6NatG7Zs2YJNmzZh2bJleP78OYDU0aAqV66MFi1a4MSJE3Bzc8u1gAuK0NBQREZGvrNcXFyc8vrs2bMwMzPL1P6trKzg6OiY7fj0mVWNj2HpWifL27G2goiIiAqyLHXeNjExQbdu3dCtWzcAwPPnzxEXF4eSJUvCyMgoVwIsiEJDQ+Hm5vbWEbgyUr9+/UyXNTc3R0hICJOLDLBJExEREVHWZSmxeJ2lpSUsLS1zKhb6f5GRkYiNjcX8H1bB2cX1rWXj4+LQ6ZNmAIDNu4NgmokaixvXr2D4gF6IjIxkYkFEREREOUKrxIJyl7OLK9w9vN5aJjYmRnlduYoHzAsXzu2wiIiIiIjS4XCzRERERESkNdZYEBEREVG2hYSEvLNMdgab4UAz+U+WE4vk5GQcPnwYVatWRbFixbQOYPHixZgzZw7Cw8Ph4eGB7777DjVr1syw7KVLlzBx4kScOnUKd+/exTfffIOhQ4dqlJk0aRImT56ssaxSpUq4cuWK1rESERERUapHEeGAykAZ1CezMjvYjKmZOa5e4UAz+UmWEwtDQ0M0b94cISEhWicWmzZtwvDhw7FkyRLUqlULCxYsQIsWLXD16lVYW1unKx8bG4vy5cujY8eOGDZs2Bv3+8EHH2D//v3K74UKsWKGiIiIKCdFRT0HJAVlO/jDtNTbb/5TkhJw/f/ngXLpvQAGGUw0m1b8o1Dc3RbIgWbymWzdcbu7u+PWrVtwcnLS6o/Pnz8fffv2Rc+ePQEAS5Yswd69e7Fq1SqMGTMmXfkaNWqgRo0aAJDherVChQrB1tZWq9iIiIiI6N1MSznC3L7iW8skJ75qCmVm5wxD48zNu0X5S7YSi2nTpmHEiBGYOnUqqlevjsKvjURkYWHxzn0kJibi1KlT8Pf3V5YZGBjAx8cHR48ezU5YiuvXryuzgtepUweBgYFvzXYTEhKQkJCg/B4VFaXV3yci0kdhYWEICwvL8nZ2dnaws7PLhYiIiOh9kq3E4qOPPgIA+Pr6QqVSKctFBCqVCsnJye/cR2RkJJKTk2FjY6Ox3MbGRqv+ELVq1cKaNWtQqVIlhIWFYfLkyWjQoAEuXryIokWLZrhNYGBgun4ZRESkaenSpdm6VgYEBGDSpEk5HxAREb1XspVY/P333zkdR45p1aqV8rpq1aqoVasWypYti82bN6N3794ZbuPv74/hw4crv0dFRcHBwSHXYyUiyk/69+8PX19fjWVxcXFKR8xDhw5lONILayuIiAqGbCUWjRo10voPW1lZwdDQEBERERrLIyIicrR/RLFixVCxYkXcuHHjjWVMTExgYvL2TkTvg4fhYXgYEa6xLD7+VZvFyxfPwdQ0/Ze6tY0trG35xU5E2smoSVNMmkk6PT090zWNJSKigiPbwyU9e/YMK1euVMYu/uCDD9CrVy9YWlpmantjY2NUr14dQUFBaNu2LQAgJSUFQUFBGDx4cHbDSic6Oho3b97E559/nmP71JX161Zi4Zzpb1zf6eNmGS7/auQ4DB01PrfCIiIiIiLKXmJx8uRJtGjRAmZmZsqcE/Pnz8f06dPxxx9/oFq1apnaz/Dhw9GjRw94e3ujZs2aWLBgAWJiYpRRorp3747SpUsjMDAQQGqH78uXLyuv79+/j7Nnz6JIkSJwdnYGAIwYMQKffPIJypYtiwcPHiAgIACGhobw8/PLzqG+V7p27w2fFq2zvJ21DUfIIiIiIqLcla3EYtiwYfD19cXy5cuVOSJevnyJPn36YOjQofjnn38ytZ/OnTvj0aNHmDhxIsLDw+Hp6Yl9+/YpHbpDQ0NhYGCglH/w4AG8vLyU3+fOnYu5c+eiUaNGCA4OBgDcu3cPfn5+ePz4MUqVKoX69evj33//RalSpbJzqO8Va1s7NmkiIiIiovdStmss0iYVQOrcEaNGjYK3t3eW9jV48OA3Nn1SJwtq5cqVg4i8dX8bN27M0t8nIiIiIiLtGby7SHoWFhYIDQ1Nt/y///5745CuRERERESkv7KVWHTu3Bm9e/fGpk2b8N9//+G///7Dxo0b0adPH73oy0BERERERFmTraZQc+fOhUqlQvfu3fHy5UsAgJGREQYMGICZM2fmaIBERERERPT+y3JikZycjH///ReTJk1CYGAgbt68CQCoUKECzM3NczxAIiIiIiJ6/2U5sTA0NETz5s0REhICJycnVKlSJTfiIiIiIiKifCRbfSzc3d1x69atnI6FiIiIiIjyqWwlFtOmTcOIESOwZ88ehIWFISoqSuOHiIiIiIgKlmx13v7oo48AAL6+vlCpVMpyEYFKpUJycnLOREdERERERPlCthKLv//+O6fjICIiIiI9kPTiMZJePNZYlpyUoLyODbsBQyOTdNsZFS0Jo6Ilcz0+yj1ZTiySkpIwZcoULFmyBC4uLrkRExERERHlU5En9iA8eN0b199YOTTD5baNu8OuaY9cioryQpYTCyMjI5w/fz43YiEiIiKifM6qxsewdK2T5e1YW5H/ZaspVLdu3bBy5UpOhkdEREREGtikqeDKVmLx8uVLrFq1Cvv370f16tVRuHBhjfXz58/PkeCIiEh3QkNDERkZ+dYycXFxyuuzZ8/CzMwsU/u2srKCo6OjVvEREdH7JVuJxcWLF1GtWjUAwLVr1zTWpR0lioiI8qfQ0FBUcnVDfFxsprepX79+psuampnj6pUQJhdERHqEo0IREVE6kZGRiI+LRdkO/jAt9eab/5SkBFz//46YLr0XwCCDkV5eF/8oFHe3BSIyMpKJBRGRHslWYvE2Dx8+hLW1dU7vloiIdMC0lCPM7Su+cX1y4qumUGZ2zjA0zlxTKCIi0j9Zmnnb3Nwcjx49Un5v3bo1wsLClN8jIiJgZ2eXc9EREREREVG+kKXEIj4+HiKi/P7PP/9odNwDoLGeiIiIiIgKhiwlFpnBzttERERERAVPjicWRERERERU8GQpsVCpVBo1Eq//TkREREREBVOWRoUSEVSsWFFJJqKjo+Hl5QUDAwNlPRERERERFTxZSixWr16dW3EQEREREVE+lqXEokePHrkVBxERERER5WM5PkEeERHpTlhYmMb8QpllZ2fHeYj0FN8TRJRXmFgQEemRpUuXYvLkyVneLiAgAJMmTcr5gEjn+J4gorzCxIKISI/0798fvr6+Gsvi4uJQv359AMChQ4dgZmaWbjs+mdZffE8QUV5hYkFEpEcyar4SExOjvPb09EThwoXzOizSIb4niCivMLEgIiKibGH/DSJKK1uJRXJyMtasWYOgoCA8fPgQKSkpGuv/+uuvHAmOiIiI3l/sv0FEaWUrsRgyZAjWrFmD1q1bw93dnbNvExERFUDsv0FEaWUrsdi4cSM2b96Mjz76KKfjISIionyC/TeIKK1sJRbGxsZwdnbO6ViIiOg9lvTiMZJePNZYlpyUoLyODbsBQyOTdNsZFS0Jo6Ilcz0+IiLSrWwlFl9//TW+/fZbLFq0iM2giIgKiMgTexAevO6N62+sHJrhctvG3WHXtEcuRfVm7FhMRJS3spVYHDp0CH///Td+++03fPDBBzAyMtJYv3379hwJjoiI3h9WNT6GpWudLG+nq9oKdiwmIspb2UosihUrhnbt2uV0LERE9B7Lb02a2LGYiChvZSuxWL16dU7HQURElKPYsZiIKG9xgjwionwqNDQUkZGR7ywXFxenvD579myGT+lfFxISolVsRERU8GQ7sdi6dSs2b96M0NBQJCYmaqw7ffq01oEREdGbhYaGws3NDbGxsVnaTt0MiIiIKKdlK7FYuHAhxo0bhy+++AK//PILevbsiZs3b+LEiRMYNGhQTsdIRESviYyMRGxsLOb/sArOLq5vLRsfF4dOnzQDAGzeHQTTTNRYBAf9jvmBWe/4TEREBVe2Eovvv/8ey5Ytg5+fH9asWYNRo0ahfPnymDhxIp48eZLTMRIR0Rs4u7jC3cPrrWVi0/QrqFzFA+aZ6Fdw8/pVrWMjIqKCJVuJRWhoKOrWrQsAMDMzw4sXLwAAn3/+OWrXro1FixblXIRERERERLmA893krGwlFra2tnjy5AnKli0LR0dH/Pvvv/Dw8MDt27chIjkdIxERERFRjsvN+W4KYtKSrcSiadOm2LVrF7y8vNCzZ08MGzYMW7duxcmTJ9G+ffucjpGIiIgyKTOjhWVnpDAAsLKygqOjo1bxEb1PcnO+m4I4SWe2Eotly5YhJSUFADBo0CCULFkSR44cga+vL/r375+jARIREb1Lbg69m59uprMzWlhWRgozNzdHSEhIvjkfRO+Sm/PdFMRJOrOVWBgYGMDAwED5vUuXLujSpUuOBUVERJRZuT30bn66mc7saGHZGSnsxvUrGD6gFw4ePAg3N7c3lmNtCFGqgjhJZ7bnsTh48CCWLl2KmzdvYuvWrShdujR+/PFHODk5cZx0IiLKM7k59K76ZjoyMjJf3fS+a7Sw7IwU9igiHFAZoFu3bpmOIyv3A6Zm5rh6JX8kcJQ/5WbNZkJCAkxMTHJl30D+SbyzlVhs27YNn3/+OT777DOcOXMGCQkJAIDnz59jxowZ+PXXX3M0SCIionfJraF3KVVU1HNAUlC2gz9MS735BiclKQHXVw4FALj0XgADo3ffbMU/CsXdbYH5LoGj/CPXJxVVGQCSkjv7Rv5JvLOVWEybNg1LlixB9+7dsXHjRmV5vXr1MG3atBwLjoiIiN4vpqUcYW5f8Y3rkxNfPZE1s3OGoXHmnsgS5abcrNlUTyj6rqQb0P/EO1uJxdWrV9GwYcN0yy0tLfHs2TNtYyIiIiIiynG5UbOpnlD0XUk3oP+Jd7bnsbhx4wbKlSunsfzQoUMoX758lva1ePFizJkzB+Hh4fDw8MB3332HmjVrZlj20qVLmDhxIk6dOoW7d+/im2++wdChQ7XaJxGRPnkYHoaHEeEay+LjX32RXb54Dqam6b/IrG1sYW2bf0ciISLKDl4zc1a2Eou+fftiyJAhWLVqFVQqFR48eICjR49ixIgRmDBhQqb3s2nTJgwfPhxLlixBrVq1sGDBArRo0QJXr16FtbV1uvKxsbEoX748OnbsiGHDhuXIPomI9Mn6dSuxcM70N67v9HGzDJd/NXIcho4an1thERG9l3Lzmpn04jGSXjzWWJaclKC8jg27AcMMmkIZFS0Jo6Il37rv91W2EosxY8YgJSUFzZo1Q2xsLBo2bAgTExOMGDECX375Zab3M3/+fPTt2xc9e/YEACxZsgR79+7FqlWrMGbMmHTla9SogRo1aigx5MQ+iYj0SdfuveHTonWWt7O2sc2FaIiI3m+5ec2MPLEH4cHr3rj+xv/3tXidbePusGvaI8sxvQ+ylVioVCqMGzcOI0eOxI0bNxAdHY3KlSujSJEimd5HYmIiTp06BX9/f2WZgYEBfHx8cPTo0eyEle19JiQkKCNbAUBUVFS2/j4Rka5Z29qxep6IKJNy85ppVeNjWLrWyfJ2+bW2AtBiHgsAMDY2RuXKlbO1bWRkJJKTk2FjY6Ox3MbGBleuXMnTfQYGBmZrynUiInp/se00EelSfm7SlF1ZSix69eqVqXKrVq3KVjC64u/vj+HDhyu/R0VFwcHBQYcRERGRttjfhIgob2UpsVizZg3Kli0LLy8viIhWf9jKygqGhoaIiIjQWB4REQFb2+y19c3uPk1MTDI1WyIREeUf7G9CRJS3spRYDBgwABs2bMDt27fRs2dPdOvWDSVKlMjWHzY2Nkb16tURFBSEtm3bAgBSUlIQFBSEwYMHvzf7LCjCwsIQFhaW5e3s7OxgZ8cmA0T0/mF/EyKivJWlxGLx4sWYP38+tm/fjlWrVsHf3x+tW7dG79690bx5c6hUqiz98eHDh6NHjx7w9vZGzZo1sWDBAsTExCgjOnXv3h2lS5dGYGAggNTO2ZcvX1Ze379/H2fPnkWRIkXg7OycqX1SxpYuXZqtfiYBAQGYNGlSzgdERERERPlKljtvm5iYwM/PD35+frh79y7WrFmDgQMH4uXLl7h06VKWRobq3LkzHj16hIkTJyI8PByenp7Yt2+f0vk6NDQUBgYGSvkHDx7Ay+vVbIlz587F3Llz0ahRIwQHB2dqn5Sx/v37w9fXV2NZXFwc6tevDyB18kOzDKa0Z20FEREREQFajgplYGAAlUoFEUFycnK29jF48OA3NlNSJwtq5cqVy1TfjrftkzKWUZOmmDRT2nt6eqLwO6a0JyIiIqKCy+DdRTQlJCRgw4YN+PDDD1GxYkVcuHABixYtQmhoaJZqK4iIiIiISH9kqcZi4MCB2LhxIxwcHNCrVy9s2LABVlZWuRUbERERaYnzeRBRXslSYrFkyRI4OjqifPnyOHDgAA4cOJBhue3bt+dIcERERKSd3JzPI+nFYyS9eKyxLDkpQXkdG3YDhkbph3MviBOHERUEWUosunfvnuWRn4iIiEh3cnM+j8gTexAevO6N62+sHJrhctvG3WHXtEeWYyKi91uWJ8gjIiKi/CM35/OwqvExLF3rZHk71lYQ6SetRoUiIiKigotNmogoLSYWBVhISMhb18fFvercd/bs2QznsciIlZUVHB0dtYqNiIiIiPIXJhYF0KOIcEBlgG7dumV6G/VEeZlhamaOq1dCmFwQERERFSBMLAqgqKjngKSgbAd/mJZ6881/SlICrv9/xzuX3gtgkMHIHq+LfxSKu9sCERkZycSCiIiIqABhYlGAmZZyhLl9xTeuT0581RTKzM4ZhsaZawpFRERERAVPlmfeJiIiIiIieh0TCyIiIiIi0hoTCyIiIiIi0hoTCyIiIiIi0ho7bxMRERFpKSwsDGFhYVnezs7ODnZ2uTMzOlFeY2JBREREpKWlS5di8uTJWd4uICAAkyZNyvmAiHSAiQUBAJJePEbSi8cay5KTEpTXsWE3YJjBPBZGRUvCqGjJXI+PiIhIW7lZq9C/f3/4+vpqLIuLi1MmmD106BDMzNIP287aCtInTCwIABB5Yg/Cg9e9cf2N/58o73W2jbvDrmmPXIqKiIgo5+RmrUJGyUdMTIzy2tPTE4ULF87y3ybKT5hYEADAqsbHsHStk+XtWFtBRET5BWsViHIXEwsCwCZNRESk/1irQJS7ONwsERERERFpjYkFERERERFpjU2hiIiIsohzFhARpcfEgoiIKIs4Z0HBFhoaisjIyHeWi4uLU16fPXs2w47hGbGysoKjo2O24yPSFSYWREREWcTRhd5/uXXzHxYWhg6fdkRCfNxby71O/d7IDFMzc1y9EsLkgvIdJhZERERZxNGF3m+hoaFwc3NDbGxslrbLys1/2Q7+MC319hv/lKQEXP//eaBcei+AQQYTzb4u/lEo7m4LRGRkJBMLyneYWBAREZFeiYyMRGxsLOb/sArOLq5vLRsfF4dOnzQDAGzeHQTTd9RYBAf9jvmBk2FayhHm9hXfWjY58VWthpmdMwyNM9cUiii/YmJBREREesnZxRXuHl5vLRObpqapchUPmL+jpunm9as5EhuRPuJws0REREREpDXWWBAREb1DSEjIO8twBCAiKuiYWBAREb3Bo4hwQGWAbt26ZWk7jgBERAUREwsiIqI3iIp6DkgKRwAiIsoEJhZERETvwBGA9MPD8DA8jAjXWBafZj6KyxfPwdQ0/f+btY0trG3fPgdJ0ovHSHrxWGNZclKC8jo27AYMM0g2jYqWhFHRkpmKn+h9x8SCiIiICoT161Zi4Zzpb1zf6eNmGS7/auQ4DB01/q37jjyxB+HB6964/sb/12a9zrZxd9g17fHWfRPlF0wsiIiIqEDo2r03fFq0zvJ21ja27yxjVeNjWLrWyfK+WVtB+oSJBRERERUI1rZ272zSlF1s0kTEeSyIiIiIiCgHsMaCiIgoi9hRl4goPSYWREREWcSOukRE6TGxICIiyiJ21CUiSo+JBRERURaxSRMRUXrsvE1ERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFp7LxKLxYsXo1y5cjA1NUWtWrVw/Pjxt5bfsmULXF1dYWpqiipVquDXX3/VWP/FF19ApVJp/LRs2TI3D4GIiIiIqEDTeWKxadMmDB8+HAEBATh9+jQ8PDzQokULPHz4MMPyR44cgZ+fH3r37o0zZ86gbdu2aNu2LS5evKhRrmXLlggLC1N+NmzYkBeHQ0RERERUIOk8sZg/fz769u2Lnj17onLlyliyZAnMzc2xatWqDMt/++23aNmyJUaOHAk3NzdMnToV1apVw6JFizTKmZiYwNbWVvkpXrx4XhwOEREREVGBpNPEIjExEadOnYKPj4+yzMDAAD4+Pjh69GiG2xw9elSjPAC0aNEiXfng4GBYW1ujUqVKGDBgAB4/fvzGOBISEhAVFaXxQ0REREREmafTxCIyMhLJycmwsbHRWG5jY4Pw8PAMtwkPD39n+ZYtW2LdunUICgrCrFmzcODAAbRq1QrJyckZ7jMwMBCWlpbKj4ODg5ZHRkRERERUsBTSdQC5oUuXLsrrKlWqoGrVqqhQoQKCg4PRrFmzdOX9/f0xfPhw5feoqCgmF0REREREWaDTxMLKygqGhoaIiIjQWB4REQFbW9sMt7G1tc1SeQAoX748rKyscOPGjQwTCxMTE5iYmGTjCIjofaEeqCGr7OzsYGdnlwsRERERFSw6TSyMjY1RvXp1BAUFoW3btgCAlJQUBAUFYfDgwRluU6dOHQQFBWHo0KHKsj///BN16tR549+5d+8eHj9+zJsHIj22dOlSTJ48OcvbBQQEYNKkSTkfEBERUQGj86ZQw4cPR48ePeDt7Y2aNWtiwYIFiImJQc+ePQEA3bt3R+nSpREYGAgAGDJkCBo1aoR58+ahdevW2LhxI06ePIlly5YBAKKjozF58mR06NABtra2uHnzJkaNGgVnZ2e0aNFCZ8dJRLmrf//+8PX11VgWFxeH+vXrAwAOHToEMzOzdNvxgQMREVHO0Hli0blzZzx69AgTJ05EeHg4PD09sW/fPqWDdmhoKAwMXvUxr1u3LtavX4/x48dj7NixcHFxwc6dO+Hu7g4AMDQ0xPnz57F27Vo8e/YM9vb2aN68OaZOncrmTkR6LKMmTTExMcprT09PFC5cOK/DIiIiKjB0nlgAwODBg9/Y9Ck4ODjdso4dO6Jjx44ZljczM8Pvv/+ek+EREREREdE76HyCPCIiIiIiyv+YWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdbei5m3iYiyIjQ0FJGRke8sFxcXp7w+e/YszMzM3rmNlZUVHB0dtYqPiIioIGJiQUT5SmhoKNzc3BAbG5ul7erXr5+pcubm5ggJCWFyQURElEVMLIgoX4mMjERsbCzm/7AKzi6uby0bHxeHTp80AwBs3h0E03fUWNy4fgXDB/RCZGQkEwsiIqIsYmJBRPmSs4sr3D283lomNiZGeV25igfMCxfO7bCIiIgKLHbeJiIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirRXSdQBERDnhYXgYHkaEayyLj49TXl++eA6mpmbptrO2sYW1rV2ux0dERKTvmFgQkV5Yv24lFs6Z/sb1nT5uluHyr0aOw9BR43MrLCIiogKDiQUR6YWu3XvDp0XrLG9nbWObC9EQEREVPEwsiEgvWNvasUkTERGRDrHzNhERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaa2QrgMgovdTWFgYwsLCsrydnZ0d7OzsciEiIiIiep8xsSCiDC1duhSTJ0/O8nYBAQGYNGlSzgdERERE7zUmFkT5WG7WKvTv3x++vr4ay+Li4lC/fn0AwKFDh2BmZpbhvomIiKjgYWJBlI/lZq1CRslHTEyM8trT0xOFCxfO8t8mIiIi/cTEgigfy8lahdDQUERGRr7178XFxSmvz549m+G+M2JlZQVHR8dMlSUiIqL8iYkFUT6RmRv/zHq9CVVYWBg6fNoRCfFxb9lKkzp5yQxTM3NcvRLC5IKIiEiPMbEgygdCQ0Ph5uaG2NjYLG2XlZt/ACjbwR+mpd5885+SlIDrK4cCAFx6L4CBkck79xn/KBR3twUiMjIy3yYWHCGLiIjo3ZhYEOUDkZGRiI2NxfwfVsHZxfWtZePj4tDpk2YAgM27g2CaieZKwUG/Y37gZJiWcoS5fUUAQNKLx0h68VijnLzhdVpGRUvCqGjJd/7N/IQjZBEREb0bEwuifMTZxRXuHl7K7w/Dw/AwIlyzkOoNr9OwtrGFte2rJ+k3r19NVybyxB6EB697Yyw3/r/m4nW2jbvDrmmPN26XH3GELCIiondjYkGUj61ftxIL50x/4/pOHzfLcPlXI8dh6Kjxb923VY2PYelaJ8sx6VttBcARsoiIiDKDiQVRPta1e2/4tGid5e2sbWzfWUYfmzRlVkhIyDvLZGeELI6ORURE+oyJBVE+Zm1rp9GkibTzKCIcUBmgW7duWdous53kOToWERHpMyYWRET/LyrqOSAp7xwdC8j6CFn6MDoWERHR2xjoOgAAWLx4McqVKwdTU1PUqlULx48ff2v5LVu2wNXVFaampqhSpQp+/fVXjfUigokTJ8LOzg5mZmbw8fHB9evXc/MQiEiPqEfHetuPmZ2zUt7Mzvmd5d+VqBAREeV3Ok8sNm3ahOHDhyMgIACnT5+Gh4cHWrRogYcPH2ZY/siRI/Dz80Pv3r1x5swZtG3bFm3btsXFixeVMrNnz8bChQuxZMkSHDt2DIULF0aLFi0QHx+fV4dFRHok6cVjxD64pvkTdkNZHxt2I/36B9fSDddLRESkz3TeFGr+/Pno27cvevbsCQBYsmQJ9u7di1WrVmHMmDHpyn/77bdo2bIlRo4cCQCYOnUq/vzzTyxatAhLliyBiGDBggUYP3482rRpAwBYt24dbGxssHPnTnTp0iXvDo6I9AKH3iUiIno3nSYWiYmJOHXqFPz9/ZVlBgYG8PHxwdGjRzPc5ujRoxg+fLjGshYtWmDnzp0AgNu3byM8PBw+Pj7KektLS9SqVQtHjx7NMLFISEhAQkKC8vvz588BAFFRUdk+Nm1ER0cDAC6eP4PYNENa5pQb/z9nQeyD60hOjHtH6axJiLwHIPUYcuL85ea54Hl4heci1ZvOg5lNeTj4Dn/TZm9UyMwCL+6cA5C/zgPA94Rabp4HgOdCjefhFZ6LVDwPr+T0uciuokWLQqV6wwRZaqJD9+/fFwBy5MgRjeUjR46UmjVrZriNkZGRrF+/XmPZ4sWLxdraWkREDh8+LADkwYMHGmU6duwonTp1ynCfAQEBgtSJhPnDH/7whz/84Q9/+MMf/rz28/z583fe2+u8KdT7wN/fX6MWJCUlBU+ePEHJkiXfnZnlQ1FRUXBwcMB///0HCwsLXYejMzwPr/BcpOJ5eIXnIhXPwys8F6l4Hl7huUhVUM5D0aJF31lGp4mFlZUVDA0NERERobE8IiICtrYZT+Bla2v71vLqfyMiIjRmyo2IiICnp2eG+zQxMYGJieZQkcWKFcvKoeRLFhYWev0ByCyeh1d4LlLxPLzCc5GK5+EVnotUPA+v8Fyk4nnQ8ahQxsbGqF69OoKCgpRlKSkpCAoKQp06dTLcpk6dOhrlAeDPP/9Uyjs5OcHW1lajTFRUFI4dO/bGfRIRERERkXZ03hRq+PDh6NGjB7y9vVGzZk0sWLAAMTExyihR3bt3R+nSpREYGAgAGDJkCBo1aoR58+ahdevW2LhxI06ePIlly5YBAFQqFYYOHYpp06bBxcUFTk5OmDBhAuzt7dG2bVtdHSYRERERkV7TeWLRuXNnPHr0CBMnTkR4eDg8PT2xb98+2NjYAABCQ0NhYPCqYqVu3bpYv349xo8fj7Fjx8LFxQU7d+6Eu7u7UmbUqFGIiYlBv3798OzZM9SvXx/79u2Dqalpnh/f+8jExAQBAQHpmn8VNDwPr/BcpOJ5eIXnIhXPwys8F6l4Hl7huUjF8/CKSkRE10EQEREREVH+pvOZt4mIiIiIKP9jYkFERERERFpjYkFERERERFpjYkGkx9iFioiIiPIKEwsiPXX79m1s2bIFABMMIiIiyn0cFYr0lohApVLpOgyduHz5MqpVqwYnJyeEhIToOpz3RkJCAocDJHpNQb5WEr0uJSVFY5oDAHj48CGsra11FFH+whoL0ivnz5/HxIkTAaDAflGePXsWNWrUgLOzM4yMjJCQkKDrkHQmNDQU27dvBwBs2rQJ48aNQ3x8vI6jej8U5GdKBfnY00pMTASQeiNVkL3+fijo56OgMzAwwPXr1/H9998DALZs2YK+ffsiPDxcx5HlD0ws9FRB/OI8d+4cateureswdOrcuXOoW7cuJkyYgA0bNuDmzZsIDQ3VdVg6ER8fjylTpiAwMBAjRoyAn58fPvjggwI7UebrN0vqxLugXStSUlKUYz979iwePnyo44h048qVK+jXrx98fHwwadIkXL16Vdch6YT6/RAdHY2YmBhER0ene1pd0BS0a8LrkpOT8csvv2Dw4MHo3bs3OnfujPbt28PW1lbXoeULBfvTowfS3iwsWLAAAQEBAFJvGgrSxUF9Qz1s2DBMmTJF1+HoxNmzZ1GvXj0MHToUY8aMgYjA0NCwwD6hNzU1xejRo2Fqaor58+dj4MCB6NmzJ4CC90QybdX+6tWrMWrUKHTv3h379+8vUNeJtOdh/PjxGDJkCA4cOFDgPiPnzp1DnTp1YGhoCDs7O/z222/YuHEjgIJ1U6l+P1y4cAHNmjVD/fr14ezsjJkzZ+LChQu6Dk8n1M3iDh06hClTpuCrr77Ctm3bdB1WnjI0NMTgwYPx6aefYvXq1ejatSt69OgBoOB9d2QHE4t8LO2X5LFjx3Du3DlMnTpVqb4rKMnFhQsXULduXYwYMQLTp09Xlq9Zs0bpvKzvbty4gXr16uHLL7/EjBkzAADlypVDyZIlcf/+fQAF84JoY2ODwoULw9vbG5cuXcKGDRsApFZ1F6Tzob5OjBo1ChMnTsTjx49RvHhxNG/eHAsXLiwwzeXSJhXLli2Dv78/mjdvXqBqsc6fP4969eph0KBBWLlyJX788UfUq1cPISEhiI+PR2RkpK5DzDMGBga4e/cumjRpgpo1a2LixIkYNGgQVq9ejQkTJuDPP//UdYh5TqVSYfv27WjTpg3OnTuH5ORkdOzYEV9//TWeP3+u6/DyjKGhIUqUKIGPP/4Yu3fvxvz58wGkvmeSk5N1HN17TijfGz16tNSqVUv8/PzEyclJTExMZObMmcr6lJQUHUaXuyIjI6Vy5cpStWpVjeXTp0+XYsWKyb///qujyPLWnj17ZOnSpRrL4uLipEyZMvL999+LiOb74MCBA/Lo0aM8jTGvvP5+T0pKkkuXLkmnTp2kXr16sn79eo31L168yMvwdObXX38VBwcHOXnypIiIHD58WFQqlfz8889KGX2+VqidPn1aXFxc5ODBgyIi8uzZMwkJCZEVK1Yo1wt9PQ8PHjwQlUolPXv21Fg+aNAgcXNzk0qVKknFihVl1apVOoow76j/j1euXCm1a9fWWLd3715p0aKFfPjhh3LgwAFdhKcz169fFycnJ/nhhx9ERCQ6OlrMzMxk1KhROo4s92X0uY+JiZFJkyZJkSJFZN68eRrrbt26lVeh5StMLPK5bdu2SdGiReXQoUPy8uVLuXnzpowbN06KFi0qs2fPVsrp6xdleHi4jBgxQqpUqSKTJ08WEZE5c+ZIyZIl5ffff89wm+Tk5LwMUSdevnwpKSkpUr16dQkMDNRYN2bMGHF2dpawsDAdRZd71O/zf//9V5YvXy4BAQFy9epVERG5fPmydO7cWRo2bKjcTE+cOFFGjhwpSUlJOos5r6xbt07atWsnIiKbNm2SIkWKKDcPT58+lTt37ugyvFzz+uf96tWrUrlyZdm9e7ecPHlSBgwYIBUrVpSKFSuKqamp/PXXXzqKNPc9f/5c6tatK66urnLhwgUREZk1a5aYmZnJsmXLZOnSpdKzZ09RqVRvvH7qmzVr1kjZsmXl3r17Gsv3798vTZo0kV69eklkZKSOost7Z86ckXr16omIyM2bN6V06dLSr18/Zb36eqpv1N8df//9t8yYMUM+//xz+f333yU8PFwSEhJk8uTJYmFhIXPnzhURkUmTJkn79u0LzIOprGBikc/NmTNHvL29NZbdv39fBg0aJCqVSnlarc8ePHggAQEBUrlyZWnUqJFYWVnJ33//na7cjh078jy2vJD2xun1m6g2bdpIr169lN8nTpwoZmZmcvz48TyLL69t3bpVSpUqJc2bN5fGjRtrJNmnT5+Wzz//XJycnKRevXpiamqql+cio+R52bJlUqdOHdm0aZNYWFhoXBvWrVsnHTt2lKdPn+ZhlLkv7Xk4fvy43L17Vx4+fCjNmjWTGjVqiLGxsQwcOFC2b98u//33n9SsWVMWL16sw4hzR0JCgvL6xYsX0qRJE6lYsaIMGTJESpUqpZFEXL58WWxsbGTixIm6CDXP/fnnn1KyZEn55ZdfRCT1oYzaxo0bxczMTA4fPqyr8PLcoUOHpFy5cnLgwAFxcnKSfv36Kefk8OHD0rJlS719Uq9+UNu3b19p166deHh4SIcOHSQ6OloiIiJk5syZolKppHr16lKkSBGl9pc0MbHI57Zu3SqlS5eWs2fPaiwPCgoSIyMjMTc3T1d9py9SUlKUpwz379+XgIAAsbe3l65duypl1BfEiRMnikqlktu3b+si1FyhPva4uDiNGweRVzdUn3/+ubRq1UpERCZMmCCmpqZ6fTE8f/682Nvby+rVq0Uk9YZKpVLJtGnTlDLXrl2TtWvXyujRo+XKlSs6ijT3pL2Z3r9/v5w7d05ERK5cuSINGzYUIyMjjdrMmJgY8fX1lV69eulVzWbaYxkzZozUrFlTVqxYISKp5+LXX3+VAwcOKOfr5cuX4u3tLStXrtRJvLnl+vXrMmjQINm/f79SM/fixQtp3bq1qFQqWbJkiYi8et9ERUVJjRo1lNosfaE+vqSkJImPj9dY16tXLylRooScP39eRDSTi6pVq8r48ePzLtA8pP6MXLhwQU6ePCmJiYkSHR0t7dq1k8KFC0unTp00yo8ZM0YaNWokDx8+1EW4uer69etSqVIlWb58uYikNpE0NTWVsWPHKmVevnwphw4dkm+++UZu3Lihq1Dfe0ws8ok3Nd+5du2aVKtWTb766iu5du2asvz8+fPSrVs3mTJlilSpUkXOnDmTR5HmrgcPHsj58+fTfTGIiISFhUlAQIC4ublJQECAsnz8+PFibm6uVzfU6i+E3377TVq3bi1169aVLl26yL179zRuqGbMmCHt27eXCRMmiImJiV6dg4wEBQVJ06ZNRUQkJCREHB0dpU+fPsp6fWz+ldbrN9MVKlSQDRs2SFRUlIikNntxc3OTPn36yPHjx+W3336Tli1bStWqVZWbTn1KLkREpk2bJlZWVvLXX3/Js2fP0q2Pi4uTu3fvSqtWraR69eoaN5X53blz58TR0VE+/fRTWbNmjca6Z8+eSfPmzaV8+fIaD6bGjx8vjo6OevUQRv39eenSJfHz85M6derI//73P+WcvHz5Upo3by7W1tYa/fISExOlbt26elmLpf6cb9++Xezt7eWbb75RmoOtWbNGPvjgA+nSpYscP35cjh49KiNGjBBLS0sl+cqv1O+F1x/GnT17VqpUqSJJSUly7do1cXBwkL59+yrrjx8/zmZPmcTEIh9Im1QsXrxYvvrqK2nZsqVs3bpVYmJiZOvWrVKxYkXp2bOnbN26Vc6fPy8tW7aUnj17yokTJ6Ro0aJ60Qzo/Pnz4uzsLJMmTZKbN28qy3/44QelGvvu3bsSEBAgrq6uMmvWLJkxY4bePqXfuXOnFC1aVIYNGyZbtmyRChUqSLNmzeTw4cPKe+bHH38UlUolhQsX1rtzcOXKFVmwYIHExMQoy1atWiUeHh7y8OFDKVeunPTr1085F3v37pUBAwZkeHOpb6ZMmSI2NjYSHBwscXFxGusWLFgg9evXl0KFCkmtWrXkk08+kcTERBERvbqpTklJkQcPHkjt2rXlp59+SrdOJPXaOn/+fGnevLnUq1dPr87DtWvXxNbWVkaPHp3uPaAWHR0tDRs2lHLlysnNmzdl8uTJYmpqKqdOncrjaHPf1atXpVixYtK9e3cZO3asNGnSRD744APl5jEqKkratGkjRYoUkYkTJ8p3330nX3/9tRQrVkzjoZ0++e2336RIkSLy/fffp7surl69Wpo2bSqGhoZStWpVqVGjRrqWEfnV7du3ZejQoRrv8wMHDoi3t7fcuXNHypUrJ3369FG+O/79918ZNGiQ3r4PchoTi3xk1KhRUqpUKZk6dar06dNHnJycpHfv3iKS2kb6k08+ERMTE3FxcREvLy9JTEyU+Ph4qVq1qvz66686jl47t27dEhsbG/H390/31Ll79+5SsmRJpX34/fv3ZcqUKWJpaSkGBgZ6d0MtknrTUKVKFVm4cKGIpD59dHBwkCJFioibm5uSXBw6dEjc3d0lJCRExxHnvFWrVolKpZJZs2ZJbGysiKSOElajRg0pVKiQ8tlQ30SOHDlSWrRoIU+ePNFZzHkhPDxcatSoIWvXrhWR1Fq+I0eOyLBhw2TZsmVKuXPnzsnjx4+V86OPHdjDw8OlTJkysnXrVhHRrI2Jj4+XZ8+eSWhoqKxbt05JJvTlPHz99dfSqVMnjSTpyZMncvHiRfnjjz/k0qVLIiISGxsrTZs2FZVKJebm5nqZVIikJttt27ZVfn/y5In88MMP4ujoKN26dVOWT506VZo0aSKVK1eWZs2a6U1t/+vi4+Olffv28tVXX4lIapJ59epVmTp1qixZskS5pp46dUoePHigV9fNHTt2iLW1tfTv319pKioi8sEHH4hKpZIvv/xSo/zIkSOlfv36etkELDcwscgn/vrrL6lQoYJykxwUFCSFChWSH3/8USkTHx8vISEhcunSJeUL9Ouvv5by5cvL/fv3dRJ3TlmwYIF4eXlluC46Olpat24tmzZtUpbdu3dPZs6cqbcjWJw9e1amT58uCQkJcv/+fSlfvrwMHjxYnj9/Lk5OTtKkSRNlOE19+kJ43ZIlS0SlUklgYKDExsZKYmKizJ8/X9zc3GTAgAESFxcnFy5cEH9/fylWrJgyEo4+e/jwodSqVUtmzZol27dvl65du0qdOnWkWrVq4uLiorQZTnuTra8jpYWFhYmdnZ1Mnz5dRDRrIo4fPy4zZszQqPHSh5oKkdT/208++USGDh2qLNuxY4d89tlnYmFhIaampuLp6SkbNmwQkdQHE7169dKbJ9IZ6dWrV7phZaOjo2XNmjXi7Ows/v7+yvLnz59LbGysXjd9efnypXTs2FH+97//yfHjx2XgwIHy4YcfioODg3h5eUnnzp3TNRfKz15v4rllyxZxdXWVPn36yOnTp0UktXN6pUqVpFmzZnLp0iUJCgqSESNGiIWFRb5vApaXmFi8p9RV8mq7du1SLoobN26UokWLKqO6REVFyYEDB5QnDCKpQ6Z17dpVSpUqpXxo8rOVK1dKyZIlZdWqVRIRESFXrlyRc+fOyenTp2Xfvn3SsGFDGT58uFy/fl2OHz8uSUlJenuzJJL6paCuhfjiiy+kS5cuyg2Sr6+vqFQq8fb2zrAvij5IewO4ePFiUalUys3js2fPZNq0aVKpUiUxNzcXd3d3cXd314vPweve9B4fOHCgVK1aVQoVKiSjRo2Sv/76S1JSUqRTp04ycuTIPI4y973tsz537lwxMDBQbqJFUh/CtGjRQrp27ap3fUrURowYIcWKFZPt27fL0KFDpXTp0tK7d2/Zs2ePXLx4UVq2bKlx3dCn62Xa/1N1DdTPP/8s3t7ecvToUY2yT548kbFjx0rdunUlNDRURPTrXLxNYGCguLm5iampqXTq1Ek2btwo8fHxMn78eGnTpo2uw8sRb3tYsH79enF1dZXevXvLxYsXRST1oW2VKlXE1tZWKlWqJHXr1tXbWqvcUkjXE/RRegcOHMD169dRv359uLq6AgBiYmJgZGSEP//8E/369UNgYCAGDBgAAAgKCsKff/4JFxcXmJmZAQAqV64MOzs7HDhwAG5ubjo7Fm3cuXMHxYsXh6WlJapXr45evXph3LhxCAwMROHChfH06VOYmJjAzMwMN27cwMGDB7Fv3z5ERkbi4sWLKFWqlK4PQWvy/zOnq1Qq3Lt3DyqVCtHR0ahUqRJcXV0hIggNDUWzZs1gbm4OAKhQoQJOnjyJEiVKwMTERJfh56hr165h0aJF6NSpE+zs7FChQgWICAYOHIjk5GQMGTIEycnJmDBhAkaNGoXBgwcjODgYzs7OsLKygo2Nja4PIUelpKQoM0n/+uuvePLkCRISEtCtWzcsXrwY169fR0JCAtzd3ZVtHj58CBcXF12FnCvSnofly5fj6tWriIyMRL9+/eDp6Yl+/frhwYMH6Nq1K/bs2QMDAwOEhobi8ePH2L17N1QqFUQEKpVKx0eindjYWMTGxuL8+fOoVKkS/Pz88OLFCwwdOhSFChXCN998g7p166J06dIAAHd3d/z1118wNDQE8GpW8vxO/X548uQJSpQogUKFUm9zvLy8EBMTg+XLl6N06dJwcHAAABQvXhw9evRAYGAgzp8/DwcHB705F2rq9/fZs2fx33//4dGjR+jcuTPGjBmDdu3a4eHDh2jQoIFy7p4+fQpDQ0PEx8fDxMQkX382DA0NcenSJYwePRqdO3eGg4MDGjduDADw8/NDoUKFMH78eIgIhg8fjqZNm+L8+fM4efIkbGxsUKRIERQvXly3B5Hf6DKrofTWrFkjjo6OMmTIEI3x9WNiYsTZ2VlUKpWsW7dOWR4XFycfffSRdOvWTaNDYtp/86PExERp0qSJ2NraajTlGTdunDLik7p9+IsXL2T06NHi6+sr586dU5465XePHz9WXu/YsUM8PDzE3d1dbGxsZNSoUcoIHrVr15ZGjRrJjh07ZOjQoVKyZEl58OCBrsLOFVFRUeLt7S0qlUocHR3Fy8tL2rVrJ4sWLVL63GzdulVUKpXMnj1bGQWpIPj666/F2tpavLy8xNzcXLy9vWXjxo3Kk7pnz57JxYsXpVWrVsqoJ/po9OjRUqpUKRk0aJA0btxYPD09Zc6cORIdHS0iqWPUd+jQQfz8/GTUqFHKedCH83H16lXp3r27uLq6iomJiZQoUUK6du2q1N6+Pj9JSkqK9O3bV3r16qVXzV3UQkJCxNDQUL7++muN5X/88YcYGRlJ3759NZrJPn36VLy9vfV6csQtW7ZIiRIlpGrVqlK0aFFxcXGR5cuXazT3unnzpowePVosLCz0ptloYmKiNG7cWFQqlbi7u0vRokWlefPm8sUXX8jZs2clISFBfv/9d6lSpYoMHDhQb/sY5SUmFu+RdevWiZmZmfz0008SERGRbv2+ffukTJky0qpVKwkKCpLNmzdL8+bNxd3dXS+Hirxw4YLUqFFD3NzclOTC399fatasqfyunsuid+/eGnMV5HePHj2S0qVLS0hIiPz1119ibm4uS5YskfDwcFmxYoWoVCqNkbCcnZ3FxcVFKlasqJdNfmJiYmTFihVSvXp1qVKlihw6dEg6duwoVapUkeLFi0vTpk1l1apV0rlzZylSpIjMmTNHr9tHq/38889iY2MjZ86ckejoaHn27Jn4+vpK/fr1ZefOnSIi8tNPP0mDBg2kRYsWejXqUVorVqyQcuXKKe/9P/74Q1QqlVSuXFmmT5+ujHjz+k20PpyHc+fOiZ2dnTJ8akhIiIwcOVKcnZ2lUqVKcuTIEY3ycXFxMnbsWLGxsZHLly/rKOrctXHjRilevLjY2NgonZPV9u7dK8WLF5d27drJ8uXL5cKFCzJixAixsbHRm4dSr98HnD17VkqVKiVr1qyRyMhISUpKku7du0uNGjVkxYoV8vLlSzl48KC0bNlSPDw89K6vzaVLl8TT01O8vLxk3759MnnyZKlXr56UK1dObG1tZcaMGdK4cWNxcXERPz8/vRzsJC8xsXhP3LlzR2rWrJlurPH4+Hi5evWqXL9+XURS+054eXmJo6Oj1KhRQzp16qR3Nwtpa15CQkKkbt264uXlJU+fPpWDBw9KtWrV5Ouvv5a7d+/KhQsXZOzYsVKyZEm9uhjcunVLypQpI+fOnZNx48YpX443b94UFxcXjfG1RVKfyty+fVsvO2qr3w+JiYny008/SenSpTVuFn788UcJCAgQJycnqVOnjqhUqnQ1Xfpq6tSp0rhxY0lKSlIeLjx9+lQaNmwoLVq0UMr99ddfGhOE6ZOEhARZtGiRzJkzR0RSayaKFSsmixcvlt69e0vJkiVlxowZEhkZqeNIc965c+fE3Nxc/P390/2/btq0Sby8vKRmzZrKTMkLFy6Uzz//XEqXLq2XDyDUtm/frtw0lypVSqMTu0hqx/2OHTuKnZ2dVKpUSSpVqqQX5+NNrRS2bNkilSpVkvDwcKVMSkqKfPbZZ+Lu7q7cQwQFBcl///2XZ/HmBfX3x+XLl8XOzk46deqkjO507tw5WbZsmbRr106qVasmKpVKrK2t9a7GP68xsXhPXL9+XZydnTWqYlevXi2fffaZmJqaSvHixWXChAnKulu3bsmTJ0/0aqjItGOtp+28/vXXX4tKpZIaNWrIs2fPZObMmeLm5iYqlUrc3Nz0agLAtKpXry5TpkyRJk2ayPz58yU+Pl5Kly4t/fr1U/7fv/32W9m/f7+OI80dERERyhfAtm3bZOvWrfLy5Uv56aefxNbWVmOISJHUoWavXr0qgYGBevskVk39EGH06NHi7e2tLFd/ho4cOSJmZmbpRjLJz80j1R48eCCPHz/WqNW9ffu2hIeHy507d6RKlSoyf/58EUl9YFOiRAkpV66crFq1Slch54rQ0FCxsrKSjh07KstSUlI0vguWLVsmFhYWsmzZMrl3755MnDhR/ve//+ntaHlqYWFh0r59ewkPD5dvv/1WSpYsKePHj5chQ4YoQ3RHR0fLgwcP5Nq1axrNTvMr9Wf79u3bMmfOHJkwYYIyf8uOHTvE1tZWnj9/LiKiDPTy/PlzMTMzU4Zj1neXLl0SOzs7adq0qcaDp4SEBImJiZGNGzfq1cSQusLEQocWLVqkvD59+rSUKVNGFi5cKBcuXJDu3buLl5eX9OjRQ9auXSvffPONFCpUSNavX59uP/pws3Dv3j3p2LFjujaus2bNkpIlS8qKFSuUp29Pnz6V8PBw2bZtm5w7dy7DZmP5mfr/s0OHDjJ58mTZuHGjNGvWTGxsbGTgwIEa4+1/9tlnMmrUqHSjiOV3UVFRUrJkSRk5cqTS9Ev9JRkTEyM//fST2NvbayQX+pBcv8mbPuOnTp0SAwMDCQwM1FgeFBQkH3zwgd49ffzpp5+kVq1aUr58efn444+VIZXV9u/fL5UqVVJqL48cOSLdunWT2bNn602Nrtrt27elRo0a4uvrm+48pG0K07BhQyX5iI6O1hg9UF+Fh4dLhQoV5Ny5cxIXFyc//vijmJubi0qlkrt374qIfl0v1NeHs2fPip2dndSvX1+KFSsm9vb24u/vL1FRUWJvb6/M7aN29+5dcXNzk3/++UcXYeca9fv/+vXrcvDgQTl9+rRSC3Hp0iUpXbq0fPjhh8q9gz7cQ71PmFjoyLp166RDhw4aN4QjR46UYsWKiY2Njbi6usqePXuUJ7b3798XFxcXjWREn9y8eVPq1KkjH330kRw6dEhEUofCK1GihPz5558iklqV6eHhIdWqVdOLJ0xp3bx5UxYtWiQhISFKO98ff/xRPvzwQ9m1a5d4eHiIh4eH8qQxISFBxo4dK46Ojno7G+i+ffvE2NhYDA0N5bvvvtNYlza56Nmzp44izBtpbxJ37NghCxYskO3btyvvhXnz5omxsbGMGzdOrl69KteuXZPWrVtLkyZN9OoLc8mSJWJsbCw//PCDfPPNN/Lhhx/KwIEDNcrs2rVLnJ2dZfXq1XL16lX55JNP5H//+5+yXt+Si2vXrknLli2lRYsWGslF2vdM48aNxc/PTxfh6YT62Nu0aaPUZHfq1EmKFSsmxYsXl9GjR+swupynPt7z58+LmZmZTJw4UWJiYuTu3bvyv//9T6ytreXgwYOydetWsbCwkJ49e8r9+/flzp07EhAQIGXKlNGrBxDq87Ft2zYpW7asVK1aVSpXriw+Pj4a9xJlypSRjz76SO8eTL4PmFjoyKVLl5QnJvv27VOWnzx5MsOZou/duyc1atTQ6ypL9ZdkmzZtpG/fvlKqVCn5/fffNcqEhISIk5OT1K5dW29umhITE6VTp07i6OgoTk5OYmFhIS1btpQKFSpImTJl5MmTJ7J9+3bx9PSUypUrS5s2baRVq1Z6M0fJ61JSUiQ5OVnCwsJEpVKJSqWSsWPHpvsCiImJkfXr14uxsbHGzaM+SXuD+PXXX0vx4sXF1dVV3NzcxN7eXoKDg0VEZPny5VK8eHGxt7cXZ2dnqV27tvLQQh8+J6tWrRJjY2PZtWuXsmzChAny2WefyeXLl+XEiRMikvpZat++vTg6Ooq9vb14e3sr50GfBrZIK21yoX4oI5L6//7ff/9Jq1atlL57+noOMtK3b19ZvHix9OjRQ+zs7OTAgQNK7ee4ceN0HV6OCg8Pl/Lly0vdunU1lp8+fVoKFy4sv/32m4iI7Ny5U+zt7cXOzk6cnZ3F0dFRL0dBOnz4sFhaWioPYn/66ScxMDCQuXPnKmUuX74spqam0r59e724Rr5PmFjowHfffSdt2rSRp0+fyuHDh8XW1lajM+rrT9WePHkirVu3lgYNGujdE7fXXb16VT788EMxMzPTuAik/eBfvXpV6YyoL9STVF27dk1++eUX+e6776Rjx47i6uoq7dq1k+joaDl37pzMmDFDPvvsM5k9e7Ze1lSob3zCw8OVf3fv3i0qlUqGDx+eLrlISUmRLVu26GWb8bSf9cOHD0uDBg3k2LFjEh8fL+fPn5e+ffuKsbGx8qT6/v378s8//8iRI0f0qqP2mTNnlP//tJo1ayYODg7i4OAgZmZmMmzYMBFJrc07ePCg/PXXXxrNBvXZm2ouRo8eLR4eHnr1RDot9fXiwoUL8ueff8ovv/yiHOvcuXNFpVKJs7OzcvP89OlTWblypd5cL9TN2u7evSudOnWShg0barRqOHHihBQuXFiCgoKUZc+fP5e9e/fK33//rQxZri/U74fAwEDp0qWLiKT2RSpXrpwMGDBAKaf+frly5Ypefo/qGhOLPLZs2TJRqVRKzUN4eLhMmzZNPvjgAxkxYoRG2UePHslPP/0krVq1kmrVqund6E9vcuPGDWnevLm0atVK40tSn58qvOlJ4o4dO6R27drSunVrefTo0VvL5nfq49q1a5f4+PjI+vXrlff85s2bRaVSyciRI5XkYubMmbJ9+3adxZtbXq+x/Pnnn6VTp07i6+urcYMcEREh3bp1k7p16ypNJtPSp+tE165dxcrKSnbv3i0iIh07dpSKFSvKiRMn5OTJk/LNN9+ISqXKsA+aPp2Ht0mbXJw+fVpmzZolRYoU0buhQ1+3bds2sbGxkUaNGom9vb34+PjIhg0bJCoqSvz8/NJ9nvTle+Sbb76Rr776Srkm3Lx5U3r37i21atWSH3/8USIiIsTe3l6GDBmibFNQPguTJ0+WUaNGSVhYWLoBT3799Vf5/vvvlYd5lPOYWOShJUuWiJGRUbrmTElJSTJz5kypXLmyRnKxevVqqVu3rvTr10+vJnPKjDdV7xcUaSc53LhxozRq1Ehq1aqlJBf6avv27WJqairz5s2TGzduaKxbv369GBkZyaeffipdunQRExMTvWsKNnPmTHF3d5c9e/YoywYOHCglS5YUR0dHpW+R+kty/fr1Urp0ablz545O4s1taW+EunXrJsWKFZPatWtL1apVNZ7C3759WxwcHGT69Om6CPO9ce3aNfn444/F2tpajIyMMmxWq0+OHz8uVlZWsnTpUhFJHVZZpVLJzJkzRUR/koiMLFiwQKPPnUhqbX7v3r2levXqYm5uLoMHDxaRV81L9Zm6U75IatJlbW0t9vb2MmjQIGX5y5cvpVevXjJw4ECNUSgpZzGxyCNBQUEak5qpffzxx7J792558uSJBAYGSuXKlWXkyJHK+uvXrys3EQXlaYOa+kuydu3acvToUV2Hk+fU/+8pKSmydu1aadWqlcbFU9/cunVL3NzclJuEly9fSnx8vAQFBSlzEGzfvl06dOgg7du3l3Pnzuky3Fyxb98+adeunTRt2lSjP8G0adOkdOnSMnToUI0x1k+fPi1OTk56N9xy2lq5tK/79esnKpVKfvjhB43lERERUrVq1XTzABVEV65cEV9fX7l48aKuQ8l1S5YsUeZruXHjhpQvX1769eunrNfn66XakSNHpE+fPkqt5bVr16RPnz7i5OSkMeiFPt8/XL58WapWrSqzZ89WlnXo0EFMTU3l0qVLEhcXJ9HR0TJmzBixtbXVqzmv3kdMLPJAUlKS7NixQxkiUa1Dhw5SqVIluXnzpoikNn2aOXOmVKlSRXr16qWxD31/2vAmISEh8umnnxaIL4iMpE0uoqKidBxN7lJP/nfw4EF5+fKlzJo1S+rWrSslS5YUOzs75Ql1bGysxMfH6zjanJW2XfTff/8tbdu2lcaNGyuzZ4uIjBkzRjw8PKRbt25y8uRJOX78uLRo0UJq1qypV9eHtMfy6NGjdP1qPvvsM7G0tJQtW7YoZVu1aiW1a9fW65unrNC34affZP78+TJgwACJjY1Vmryo3xN79+6Vb7/9Vl68eKHjKHOX+p5hwIABygOY69evS+/evaV27dry/fff6zjC3Kc+3ho1asg333wjIql9K+rWrSvFixeXqlWrSuPGjcXe3l7varnfR0wsclHr1q2Vp0YJCQmyd+9eqVSpkrRq1Uo6dOggnp6eSnMP9Q1kZGSkjBs3Tj777DO9bUufVepq3oKqoLwPbt26Jc2bN5fatWuLnZ2d+Pr6ytSpUyUkJEScnZ1l7Nixug4xV+zdu1dsbW01xph/U3Ixbtw4KV68uFhYWEjbtm2lT58+SpKlT8mFSOqxent7S7FixaRXr16yevVqZZ2fn58UK1ZMtm3bJq1atRIXF5cC0wetoFJfB+/cuaO85/fs2SMqlUqKFi0qI0aM0PgM9OvXT7p27SrR0dE6iTevJCcny+zZs6VOnTrSr18/Jbm4evWq9OvXT1xdXWX58uU6jjJnZfSdePPmTRk8eLB4enpqPKhZvny5zJ07V3788Ue9bTL6vmFikUtu3bolI0aM0Lgpjo2Nld27dytTx78+UY/6w/Ls2TPltb7dLBCJvHqvx8XFadQ+/P333zJ//nyZN2+eMnKHiEiLFi3khx9+yPM488Lz58/lu+++Ey8vL405OdImFzt27FCWT5kyRT744AOZMGGCco70IflOe61btGiR2NjYyMqVK2XhwoXy8ccfS7Vq1WTOnDlKme7du4tKpRJ3d3clqSgofdAKGvX14pdffpFatWrJwoULlf/rcePGibGxsezZs0eSkpIkIiJCxowZI6VKlZLLly/rMuwcl3bit+vXryt9LJKTkyUwMDBdcnH58mX58ssv9XI26WPHjsnGjRs1lt24cUO+/PJLcXd3LxA1Ne8rJhZ5YN68ecroRjExMfLLL7+Im5ub0jZUJOMvxILypJoKFvX7+rfffpPWrVtL3bp1pVOnThIWFpaubHR0tEyYMEFsbW3l+vXreR1qrlOfixcvXsjChQvFw8MjU8nFyJEjpVq1ajJx4kSNPhf64OTJkzJq1Cj58ccflWU3btyQESNGSI0aNZRJrkRSO7AyqSgYduzYISYmJrJw4UKNa8F///0nvXr1EpVKJa6uruLt7S1OTk562+Rl69atYmdnJ2XLlhU3NzdZuXKliKTW1KmTiwEDBih9LvStWVxKSoo8f/5cPv30U/Hy8pItW7ZorFdPtlu2bFmZN2+ejqIs2JhY5IK0X3C3b98WX19fKV68uBw/flxEXtVcVKpUSZo3b66UZe0EFRQ7d+6UokWLyrBhw2TLli1SoUIFadq0qRw+fFj5HGzdulV69eqlt+1iX6+VfP78uSxcuFCqVq2aLrlo166dNGvWTDZs2KAsnzBhgjg5Ocn06dP14tqRkpIip06dUiZFXLx4scb6mzdvipubW4Y3C0wq9NuDBw/E29tb6YyckJAgz549k507d0poaKiIiOzfv1+WL18uu3bt0rt5O9TXioiICClbtqysWLFCdu7cKaNHjxYDAwOl6c/Lly9l9uzZ4ubmJkOHDpXk5GS9eUCpPg713B3Hjx8XPz8/adCggWzatEmj7PDhw6VcuXLy4YcfKiPpUd5hYpGLpkyZIitWrFA+ANbW1nLs2DEReZVcVK5cWby8vHQcKVHeuXbtmlSpUkUWLlwoIqlN/xwcHKRIkSLi5uYmR44cERGRAwcOyPTp0/VyAqPXEwF1O/CYmBhZvHixVKlSRSO5CA4OloYNG8rgwYM1bqKnTp2aryeLTDs4gdq6detEpVJJp06d0tXGdOjQQfz8/PTmZokyJywsTCpUqCDbt2+Xly9fyqRJk6Ru3bpiaWmp8dBOn+3fv19mzpypMVHk06dPZfLkyaJSqTSSi2+++Uavmj+lnYOiR48eShOwkydPKhMDbt68WSk/YsQImTdvntIkjPIWE4sclPZmYfv27WJpaakMiXnp0iXp2LFjuuRiy5Yt4ufnpxdPHIky4+zZszJ9+nRJSEiQ+/fvS/ny5WXw4MHy/PlzcXJyksaNGytNB/XxSXTaz/rcuXPFz89PKlWqJHPmzJHLly9LUlKSfPfdd+Lh4aExOtzp06f1akbttOchNjZWEhMTlWVLly4VlUol/v7+yhPpFy9eiJeXl8Zw3FQwPH36VD7//HMpX768lCxZUtq0aSPz5s2TFy9eSM2aNTWGmNVHcXFxMmjQIFGpVNKoUSONderkwsjISKMPkr7Ztm2bWFhYyKhRo+TSpUvK8hMnToifn59UrlxZOnfuLL169ZLixYuzo7YOMbHIBT///LMsWLBA5s6dq7H84sWL0rFjR7GxsVGSi7QdV5lcUEHw8uVLZRzxL774Qrp06aLMgurr6ysqlUpq1qyp9xMYjRkzRmxsbGT+/PmydOlSKVasmLRv316io6MlKipK6dDdrl07je304TqR9hi++eYbadu2rTRv3lx69+6t1N6okwsvLy/p3bu3tGnTRjw8PPSiozq9mfrpdFRUlDx9+lRZfu3aNfn5559l6dKl8uzZM2V5hw4dZMaMGXkdZp4LCQmRr7/+WlQqlWzbtk1j3dOnT2X06NFSrFgxefLkiV5cI9K6cOGC2NjYpBvdSl2j+eDBA5k/f77Uq1dP2rZtq5dzHOUnTCxyQEJCgnJj9OLFC7GzsxOVSqUx46PapUuXpEuXLqJSqTSybiJ9k5KSotwk/Pfff3Lv3j25cuWKxvqmTZtqzJY8bNgwOXXqlF5V478uOTlZjh8/LhUrVlQmfjxx4oQYGhrK2rVrlXIxMTESGBgo3bt317sbBbXRo0dLqVKlZOHChbJixQopVaqU1KxZU3ngsnbtWlGpVFKvXj2N/iX61iGVUqmvF7t375aGDRuKm5ubNGvWTA4dOpRu7ppHjx7J+PHjxcrKSuO6og/U5+Hp06caydXt27flf//7nxQtWlS2b9+usc2zZ8/k0aNHeRlmngkKCpJatWpJXFycPHnyRJYvXy4+Pj7i4OAg//vf/5TR8VJSUpQ+GKQ7TCy0tHXrVmnfvr14eXnJlClTRCR1YpY6deqIi4tLhhe8s2fPyvjx4zneOumttB3mduzYIR4eHuLu7i42NjYyatQouXfvnoiI1K5dWxo1aiQ7duyQoUOHSsmSJfVulCOR1M/8zp075dChQyKS2vGwRo0aIiKyadMmKVKkiDI84osXL+SPP/4QkdTkQl+Hnr548aJUqVJFDhw4ICKpQ4laWFik67S9atUqUalUEhAQoDzAIf21a9cuKVq0qIwbN04OHz4stWvXlurVq8vPP/+s1GLu2bNHunfvLo6Ojno5sINI6nWzSpUqUq1aNfn888+VZPrOnTsyaNAgsbCw0BgpTp+or3nq2sl///1XVCqVDBkyRNzd3cXX11dGjBgh8+fPF2tra9m/f78uw6XXMLHQwpIlS8TCwkKGDRsmQ4cOFQMDA2Ws/f/++0/c3NzE29v7rSNUMLkgffPo0SMpXbq0hISEyF9//SXm5uayZMkSCQ8PlxUrVohKpZJffvlFRETu3r0rzs7O4uLiIhUrVtTLm4SffvpJPD09xdfXV/z9/UVE5ODBg1K6dGlZvny5WFpaatxM79+/X9q1a6c0FxPRz6Gng4ODxdHRUURSk4oiRYrIkiVLRCQ1uVq1apVyfVy+fLkYGRnJiBEjNJ7gkn65ffu2eHt7K7Mnv3jxQsqWLSv29vZSoUIF2bBhgyQnJ8ulS5fkhx9+UCaY1Tfnzp0TW1tbmTBhgsycOVMcHBykXr16ykOXO3fuyFdffSUqlUp2796t42hzVtrhyL/44gvlIdT69evlo48+klGjRmnMT1KjRg2NSURJ95hYZJP6iy7tEwM/Pz9ZuHChMh5/aGioeHl5SY0aNfRu+DuiN7l165aUKVNGzp07J+PGjZOvvvpKRFKHC3VxcZG+fftqlE9MTJTbt2/LkydPdBFurlq7dq2YmZnJhg0b0t0Q+/n5iUqlksmTJyvL4uPj5eOPP5YOHTroVQ1F2sRI/frWrVvSsmVLmT17thQpUkSWLl2qlDl27Jh07NhRTp06pSz77rvvpFixYnrb3INSHzR888038uTJE3nw4IFUqFBBaVLs4eEhnp6esnr1aklKStKrZDtts1GR1P4UkyZNUn6/ffu2uLi4SJ06dZT7i5s3b8rIkSP1rhmYSGpLEEtLSxk+fLjGw6bXayz9/f2lbNmyygAP9H5gYpENf//9d7obApHUC1+VKlWkaNGiUrduXfnpp58kNDRUqlatKk5OThIREaGjiInyVvXq1WXKlCnSpEkTmT9/vsTHx0vp0qWlX79+yhfot99+q9dV2BcvXpQPPvggXYdD9fEfOHBAmjdvLk5OTrJ27VpZsGCBNG/eXD744AOl2YM+JBevH4O6DfTz58+lYcOGolKpNG6iYmNjpVWrVtK+fft027K2Qr8lJycr/asGDx4sn376qTx//lxERHr16iWmpqbSqFEjZZm+UF8TgoODZe7cufLxxx9L//79NZKN27dvi7OzszRo0EDu378vIvoxOlxUVJTG7+fPn5dSpUrJsmXLNJY/evRIOd4NGzbI559/LtbW1npZy53fGYCyrHTp0qhfvz5OnTqFkydPAgA6dOiAmJgYjB8/Hps3b8bz588xffp0qFQq7Nq1C7Vr10bJkiV1HDlR7kpJSQEAlCtXDiKC/v37Y+/evShbtizatGmD77//HiqVCi9fvsTx48fxxx9/ICkpScdR54779+8jNjYWDRs2hIgoy1UqFQCgYcOGmDFjBj766CP4+/tj586dcHBwwNmzZ2FkZISXL1/CwCB/X6JTUlKUY5g3bx66du0KLy8vzJ07F0+fPsXmzZthZ2eHf/75B5MnT8by5cvRunVr3Lt3Dxs3boSBgQFSUlKU82dpaanLw6EckpycjOTkZADArVu3cPv2bdy+fRsGBgYoV64cACA8PBw2NjYoXLgwgNT/+19++QU///wzLCwsdBV6rlCpVNi3bx+aNGmCHTt24OjRo/jtt99w7NgxjWvq/v37cenSJfTs2RPJyckoVKiQjiPXzoIFCzBy5Ei8fPlSOc7bt2/D2dkZffv2xZMnT7B27Vq0bNkSnp6eCAgIwIMHD1C4cGGkpKQgODgYXl5eOj4KSkfHiU2+de3aNWnZsqW0bt1a6tWrJ9WqVdMYyUY9g+zrbf/Yp4L0zc2bN2XRokUSEhKiVEn/+OOP8uGHH8quXbvEw8NDPDw8lEmNEhISZOzYseLo6KiXk9+pzZgxQ6ysrJTf0z59VF8HLl++LBcuXEh3XdCHJ5FpZTS0btu2bUUk9VrarVs3cXd3Fx8fH+ndu7dy/Pp2Hgq6efPmaXwnbtmyRUqXLi3lypUTd3d3ZQblpKQk6dChg1SrVk0WLFgggwYNEktLS71r8qK+JoSHh0vv3r1l5cqVEh8fL2FhYVKpUiWpXr26nD59WuPacffuXbl+/bquQs4R6uvdwoULlT4U6o7aBw8eFJVKJaNHjxZvb2/x9fWVIUOGyKxZs8TExEQZSY+jP72/mFho4dq1a+Lj4yOWlpbKrI/JycmSkpIip06dksqVKysTfRHpo8TEROnUqZM4OjqKk5OTWFhYSMuWLaVChQpSpkwZefLkiWzfvl08PT2lcuXK0qZNG2nVqpWUKlVK76uwN2/eLGZmZvL777+/scyoUaOkb9++GjfQ+tR2XCR1KN13Da2bnJwssbGxGkOKMqnQL48fP5bOnTtL4cKFZd++fZKUlCRlypSRZcuWyZYtW2TYsGFiYGAgq1atEpHU2egbNGgg3t7e4unpKWfOnNHtAeSSf//9V+rXry81atSQw4cPK8ujo6OlYsWKUq1aNTlz5ozeXBfUzRtv3rwpU6dOFRGRI0eOyOeff670RV22bJnUqVNHhg8fLufPn1e2rVGjxluvp/R+YGKhpRs3bkiLFi2kVatW8s8//yjLP/74Y2ncuLFetJEmeht1h7pr167JL7/8It9995107NhRXF1dpV27dhIdHS3nzp2TGTNmyGeffSazZ8/W65oKtZs3b4qlpaV06NBB7t69qyxX3yA8f/5cOnToIAsXLtRViHni33//FW9vbxHJeGjdP//8U5kUT01fbqJIs4/NvXv3ZNCgQVK8eHGZO3eufP3118q6x48fy9ixY0WlUin9khITEyUyMlIv+lSoz4M6gb57964kJyfLixcvpHHjxqJSqdJdC6Kjo6Vy5cri5OSkF5O+qc/B2bNnRaVSKXMYLViwQDw8PKR3795K5/TXrwn+/v7i5OSk1HDQ+4uJRQ5QN4v66KOP5ODBg9K+fXupWLGiXnXAJHqTN90E7tixQ2rXri2tW7dWRvIpaDeMGzZsEBMTE+natatGDc39+/elVatWUq9ePb16Mh8WFibnz5+XH3/8US5cuCBPnjyRy5cvi52dnSxduvSNQ+uqm8mRflF/94WGhsqWLVtk8+bNsnHjRhk/frwULlxYGjVqpFH+8ePHMm7cODEyMko3n0l+pj4Ply9flvbt24u7u7sUKlRI3N3dZe7cuRITEyMffvihVK9eXfbu3atxz/DixQvx9vaWW7du6Sr8HKE+pkuXLomZmZkEBARorF+0aJHUrVtXevTooXROF0kdirp79+4FopZbXzCxyCHXrl2T1q1bi5GRkVSqVElJKvTppoEoM9RfIMnJybJx40Zp1KiR1KpVq0AOE/ry5UtlaOoyZcpIy5YtpXnz5lKrVi2pUaOGcp3Qh75X27Ztk48++khsbW3FwsJCzMzMxNfXV44dOybDhg1LN/qTvg6tS6nU/6fnzp2T8uXLi6urqxgbG0uVKlVk8uTJMn78eDEwMJC9e/dqbPfkyRMZOnSoFCtWTJ49e5bvH0ao4z9//rxYWlrKoEGDZMWKFbJ9+3Zp06aNGBgYyBdffCH379+XZs2aSc2aNdMlF/n9HKiP5cKFC2JlZSVubm7KOvWkhyKpfS7q1asnX3zxhVJz8fPPP0vXrl3l0qVLeRs0ZRsTixwUEhIiX375JTseUoGn/iJMSUmRtWvXSqtWrTSaAxU0Z86ckS+//FKaN28uvXv3lkWLFinJhD5cJ5YtW6Y0b9m/f788ffpUpkyZIq6urlKpUiWZMWOGdO3aVcqVK6fXQ+tSqrRJhbm5uYwaNUru378vu3fvFh8fH6lRo4b88ccf0qtXL7GwsJBff/1VY/snT57Iw4cPdRF6rnj48KF4eXnJmDFj0i1ftGiRGBsby+DBgyUxMVEaN24sDRs2lB07duT7hEJEs/mTubm5NG7cWOzt7ZX5jUReddwWeZVc9OnTR8LDw0Uk/fwV9H5jYpFL9OFmgUgbaZOL18cqp1T6UFOxbNkyMTY2lm3btqVbt3HjRqlevbo0bNhQNmzYIAMHDhQHBwdp0qQJR3/Sc6GhoWJlZSUdO3bUWL5kyRIpWrSo3LhxQ/777z/p27evFCtWTPbt26ejSHPf6dOnxd3dXWMEOPUN97Nnz2TatGlibGwshw4dksePH0vlypWlZcuW6foZ5FcnTpwQIyMjmTRpkrx8+VKWLl0qVlZWb0wuFi1aJJUrV5aBAwfqxTWyoMnfgyC/x/L7+NJE2lKpVBARqFQqFC1aVNfh6Jz6XKRlaGioo2hyRnBwMPr3749Jkyahffv2ynwT6jH2O3fujIiICEycOBHGxsZYvHgxJk2ahFKlSin7ePnyJa+Xeig5ORlOTk5ISEjAoUOHUL9+fQBA+fLlYWxsjLi4OFSoUAGjR4+GoaEhWrVqhT/++AM+Pj46jjznnTt3Djdu3IC7uzuA1GuBen4XS0tLdO3aFXPmzME///yDevXq4dChQ3j+/Lkyh0d+FxsbiwEDBiAgIAAA0LlzZwDAuHHjAADffvstjI2NkZiYCGNjYwwaNAhGRkZo3rx5vr9GFkT5e/YlInqvvX4jXZDp47lQTxZ6+vRpHDx4ECqVCiqVCoUKFVImvPrqq6/g4OCA/fv3AwCKFSumbC8iTCr0VLly5fDzzz8jMTERU6dORUhICKKjo/HZZ5+hd+/eyk12hQoVMGzYMOV9oo+cnZ0BANu2bQOQ/lrg5OSE8uXL4+HDhwCA4sWLKxMF6oOGDRvi22+/BZD6mbe0tESXLl0wffp0rF+/HkOGDAEAGBsbIyEhAQDQr18/vToHBQkTCyIiyhYXFxesXLkSCQkJmD59Og4dOqSsU988RUVFIT4+HnZ2dgAAIyOjdGVIP7m4uGDhwoUwNDTEgAED4OjoiM8++wyzZs0CAGX27YoVK2LOnDmoVKmSLsPNNeXKlYOFhQXWrVuHu3fvKsvVyffTp09hZmaG6tWr6yrEPKP+zFtYWGgkF8OHDwcAmJiY6DI8ygFMLIiIKNvUN48qlQrTpk3D4cOHNdbfunULZcqUQe3atQFAaS5FBYOLiwu+/fZbGBoawsLCAu3atVPWqZsDAZoJp74pU6YMfvjhB+zbtw8TJkzApUuXALw6/vnz5+PBgwdo0KCBLsPMc+rkIjAwEAsWLIC/v7+uQ6IcoBJe5YmISEvXr1/HV199BRHBuHHj0KBBA7x8+RJt2rSBgYEBfvnlF40bSSpYbty4gS+//BIiggkTJqBevXq6DilPJScnY8WKFRg8eDAqVKiAevXqwc7ODrdv38Zvv/2GoKAgeHl56TpMnXj+/Dl27tyJOnXqoGLFiroOh7TExIKIiHKEOrkwMDDA2LFjMX/+fFy5cgVnz56FkZERUlJSmFwUYNevX8fw4cMRGRmJb775RqnFKkiOHTuG2bNn4+rVqyhWrBg8PDzw5ZdfwtXVVdeh6VRGg1tQ/sTEgoiIcsz169cxbNgw/F87d2zDIBRDUfSBYA0K9mQEKBmGNWj+MkipIiW1EyEl50zg9lqWj+PIPM85zzPjOPr+RJKktZZlWbKua6ZpunucW1zXlb7v03Wd2ObnCAsAPqq1ln3fs21bhmEQFbx5vhX9V6/beZt6fo2wAOBrRAXA/xAWAABAmcM+AACgTFgAAABlwgIAACgTFgAAQJmwAAAAyoQFAABQJiwAAIAyYQEAAJQJCwAAoExYAAAAZQ+Owt3ekjv/2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "CellSAM Specialist vs Generalist by Dataset\n", + "\"\"\"\n", + "\n", + "cs_general_means = []; cs_specific_means = []\n", + "cs_general_sems = []; cs_specific_sems = []\n", + "\n", + "for ds in datasets:\n", + " cs_general_data = cellsam_generalist_dict[ds]\n", + " cs_specific_data = cellsam_specific_dict[ds]\n", + " \n", + " # Compute (1 - mean(F1)) for the group\n", + " cs_general_mean = 1 - np.mean(cs_general_data)\n", + " cs_specific_mean = 1 - np.mean(cs_specific_data)\n", + " cs_general_means.append(cs_general_mean)\n", + " cs_specific_means.append(cs_specific_mean)\n", + " \n", + " # Standard error of the mean (SEM) for the group\n", + " cs_general_sem = np.std(cs_general_data, ddof=1) / np.sqrt(len(cs_general_data))\n", + " cs_specific_sem = np.std(cs_specific_data, ddof=1) / np.sqrt(len(cs_specific_data))\n", + " cs_general_sems.append(cs_general_sem)\n", + " cs_specific_sems.append(cs_specific_sem)\n", + "\n", + "\n", + "x = np.arange(len(datasets))\n", + "width = 0.35\n", + "plt.rcParams['svg.fonttype'] = 'none' \n", + "\n", + "fig, ax = plt.subplots(figsize=(8, 5))\n", + "\n", + "bars_cs_specific = ax.bar(\n", + " x - width/2, cs_specific_means, width,\n", + " edgecolor='black', linewidth=1,\n", + " yerr=cs_specific_sems, capsize=5, \n", + " label='Specialist', color=c3\n", + ")\n", + "\n", + "bars_cs_general = ax.bar(\n", + " x + width/2, cs_general_means, width,\n", + " edgecolor='black', linewidth=1,\n", + " yerr=cs_general_sems, capsize=5, \n", + " label='Generalist', color=c4\n", + ")\n", + "\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels([name_map[ds] for ds in datasets], rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "# ax.set_title('Generalist Model Comparison of Mean Error')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_dataset_comparison_cellsam_specific_general.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaP9JREFUeJzt3Xt8zvX/x/HntWEHIcxsc84I0RxyTIWWY6GDUCKnfEUlIUNGCDmEIoccK6dI6US1DMvkTBg5z2HD5LQz2/v3h9+uXBltuzbXZo/77XbdXPsc3ntdrl3b9bzeh4/FGGMEAAAAABnk5OgCAAAAAORshAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALnkcXQCAuy88PFxRUVGOLiNVHh4eKl26tKPLcJhXX31VCxcu1LFjx1S2bNkMtREcHKzGjRsrMDBQI0aMsG5v1KiR1q9fL2NM5hSbA/Cznnul9vN+u9cGAPsRKoBcJjw8XJUrV1ZsbKyjS0mVu7u7wsLC7H6zFRMTo6lTp2rFihX666+/dO3aNRUrVkzlypVTw4YN1aNHD5UvXz6Tqr735cQ3Y+Hh4XqwUmXFx2XPn3VXN3cdPGD/z3qKXbt2aebMmdqwYYNOnTql+Ph4FSlSRNWqVVPz5s3VuXNnFStWLFO+V26VG4M5kFaECiCXiYqKUmxsrCZ/Ok++FSo5uhwbhw8dUP/e3RQVFWXXG62rV6+qYcOG2rNnj3x9fdWpUycVLVpUUVFR2rJli8aNG6fy5ctny1AxduxYDR48WCVKlMj0thctWpRtw2RWiIqKUnxcrMo8HyDXYtmrRyD+fLhOrBxr98+6JCUnJ2vQoEGaNGmSnJ2d9fjjj6tp06bKnz+/zp07p9DQUA0YMECBgYE6ePBglvxs5RR16tRRWFiYPDw8HF0KcM8hVAC5lG+FSqrqV8PRZWSJKVOmaM+ePerRo4dmz54ti8Vis//YsWNKSEhwUHV35u3tLW9v7yxpO7cOtXEtVlruPhUdXUaWGTp0qCZNmqSaNWtq2bJl8vX1veWYHTt26N1331VcXJwDKsw+3N3dValS9vowBbhXMFEbwD0nNDRUktSnT59bAoUklStXzuaNRdmyZVW2bFldunRJvXr1kpeXl1xdXVWjRg0tWbIk1e9hjNG8efP06KOPqmDBgnJ3d9cjjzyiefPm3fb4+fPn67HHHtP9998vd3d3VahQQb169VJ4eLj1uFdffVUWi0XHjx+3bktMTNTHH3+sZs2aqVSpUnJxcZGnp6eee+457dy5M83/L40aNbrl/yM5OVmfffaZ6tSpoyJFisjNzU0lS5bUM888o+DgYEnSiBEj1LhxY0nSyJEjZbFYrLeb68Td99dff2nChAkqVqyY1qxZk2qgkKSaNWvql19+uWWezp49e9ShQwd5e3srX758KlOmjN544w1duHDB5rjjx4/LYrHo1Vdf1eHDh/Xss8+qcOHCyp8/v/z9/bV79+5Uv++5c+f09ttvy9fXVy4uLvLw8NDzzz+vvXv33nLsza/Dvn37qlSpUsqTJ48WLFggSdq+fbv69u2rqlWrqlChQnJzc1O1atU0btw4Xbt2LU3/X8HBwbJYLLcM4Tt06JC6du2qcuXKycXFRUWKFJGfn5/69etnHepksVi0fv166/2U26uvvpqm7w3c6+ipAHDPKVq0qKQbb7iqV6+epnMSExPl7++v6OhovfLKK4qJidHy5cv10ksvKSoqSm+88Yb1WGOMXn75ZS1ZskQVKlTQSy+9pHz58umXX35R9+7dtX//fk2cONF6fHJystq3b68VK1aoRIkS6tixowoWLKjjx49r+fLlatGixR17Ef7++2/169dPjz32mFq2bKnChQvr6NGjWr16tX766Sdt2LBBtWvXztD/VUBAgD788EOVL19eL730kgoUKKDTp08rJCREv/76qxo1aqRGjRrp+PHjWrhwoZ544gk1atTIev7999+foe+LzLFw4UIlJSWpV69eaZovkSfPP3/2V69erRdffFFOTk5q06aNSpUqpf379+uTTz7R2rVr9ccff6hw4cI25x8/flz16tXTQw89pG7duunIkSP69ttv1bhxY4WFhal48eLWY48cOaJGjRrp1KlTatq0qdq2batz585p5cqVWrt2rYKCglS3bl2b9hMSEtSkSRNFR0erdevWypMnj7XNOXPm6LvvvtPjjz+uli1bKjY2VsHBwQoICNDWrVu1cuXKDP0fnjlzRnXq1FFMTIxatWql9u3bKyYmRocOHdKMGTM0ceJE5cmTR4GBgVqwYIFOnDihwMBA6/lp/R0D3OsIFQDuOe3atdMXX3yhHj16aMuWLWratKlq1aplDRupiYiIUIUKFbRp0ybly5dPkjRkyBDVqFFDAwcO1HPPPWcdi/7ZZ59pyZIl6tq1q2bNmqW8efNKuhFMXnjhBU2aNEkdO3ZUrVq1JEkzZszQihUr9OSTT+q7776Tm5ub9fvGxcX955CUwoULKzw8/Jax8Pv27VO9evU0ZMgQ/fLLL+n/j/r/x+Lj46M9e/bI3d3dZt/ff/8tSdYQsXDhQjVq1CjHTNTODVJ65VJ6ktLqwoULeuWVV+Th4aHff/9dZcqUse5bunSpOnbsqOHDh+vjjz+2OW/9+vUaN26c3n33Xeu29957T6NHj9b8+fM1ePBg6/bOnTsrIiJCa9asUbNmzazbhw0bpkceeUQ9e/bUnj17bNqPjIyUn5+ffv/9d5vXiXTj9Th9+nQ5Oztbtxlj1KNHD82bN0+///67Hn300XT9P0jSypUrdenSJU2ZMkVvvfWWzb6///7bGsRGjBih4OBgnThxgtcAkAqGPwG457Ru3VqTJk2SMUaTJk1Ss2bN5OHhIV9fX/Xt21eHDh1K9bwPPvjAGigkqWTJknrrrbeUkJCgpUuXWrd/8sknyp8/v6ZPn24NFJKUL18+jRkzRpJshk3NmDFDzs7O+vTTT295o+Tm5qYiRYrc8fG4uLikOrn2oYceUuPGjbVhw4Y0D/9ITb58+WzeqKX4r7rgeJGRkZIkHx+fW/YFBwdrxIgRNreUIW2LFi3SlStXNHbsWJtAIUkdOnRQzZo1bX7mU5QrV04DBw602da9e3dJ0tatW63bdu7cqU2bNqlLly42gUKSKlasqJ49e+rPP/9MdRjUhx9+eMvrRLoxJ+jfP6cWi0V9+vSRJP3666+3nJMeqX1PXgNA2tFTAeCe1L9/f/Xs2VNr1qzRpk2btG3bNv3xxx+aPn265s6dq2XLlql169bW4/PkyaP69evf0s5jjz0mSda5C7Gxsfrzzz/l4+Oj8ePH33J8ypv7AwcOSJKio6MVFhYmX19fVahQIcOPZ9euXfrwww8VEhKiyMjIW0JEVFRUhiZ4d+jQQTNmzFDVqlXVoUMHNW7cWPXr10/1DRZyluDgYI0cOfKW7Y0aNdLmzZslSX/88YeOHDlyyzHx8fGKiopSVFSUzUpJ1atXl5OT7eeRJUuWlCRdunTJui2l/bNnz6b6qX7K6+PAgQOqWrWqdburq6uqVauW6uNJTEzUJ598oqVLl+rAgQOKjo62Wdr1zJkzqZ73X5555hkFBASoT58+CgoKUvPmzfXEE0/ogQceyFB7QG5FqABwzypQoIDatWundu3aSZIuX76sIUOGaMaMGerevbtOnz5t7Znw8PC45c2SJOt47suXL0uSLl68KGOMTp8+neobthQxMTE259mzjOemTZvUpEkTSVLTpk1VoUIF3XfffbJYLPrmm2+0e/fuDK9mNXXqVJUrV07z58/X6NGjNXr0aLm6uurFF1/UpEmTWHozmytevLjCwsJ05syZW1Y1SumdkP4Z0pQiZWjb9OnT79h+TEyMzc9AwYIFbzkmZXhQUlLSLe3/8MMP+uGHH+7Y/s08PT1TXVxBkl544QV99913qlixotq3by9PT0/lzZtXly5d0tSpUzP8Gihbtqw2b96sESNG6Mcff9Ty5cslSZUqVdL7779v/f0B4M4IFQByjUKFCumTTz7RDz/8oBMnTujPP/+0znuIiopScnLyLcHi7Nmz1nOlf95U1apVS9u2bUvT95Sk06dPZ7juMWPGKCEhQRs3blTDhg1t9m3evPm2K++kRZ48eTRgwAANGDBAZ86c0fr16zV//nwtWrRIkZGRWrt2bYbbRtZr0KCBgoODtW7dOmvwTIuUn+M///zTpqcgs6S0//HHH6tv375pPu92gWLr1q367rvv1KxZM/3www82w6A2b96sqVOn2lVv1apVtWLFCl27dk3bt2/XTz/9pGnTpql9+/by8fHJ0FwNILdhTgWAXMVisSh//vy3bL9+/bp10uvNNm7cKEmqUePGNT0KFCigypUrKywszGa4x+3cd999qlKlio4dO3bbuRz/5ciRIypSpMgtgSI2NlY7duzIUJup8fHxUceOHa1Lk/7666/WSeQpb+Ju/jQajtelSxc5OTlp9uzZioqKSvN5KasupfYznxkyu/2UIVqtWrW6ZV5Fyms0M+TNm1f16tXTyJEjNW3aNBlj9P3331v38zoAbo9QAeCeM2vWLJtJozf75ptvFBYWpvvvv/+WT2iHDBmixMRE69enTp3S1KlT5eLiog4dOli3v/nmm4qNjVXPnj1vGb4h3bi43s3Xb+jTp4+SkpL0+uuv37LSU3x8vHWoyO2UKVNGFy9e1L59+6zbkpKSNGDAAJ0/f/6O595JQkKCNm3adMv2mJgYRUdHK2/evNaem5QJqydPnszw90Pmq1ixogYNGqRz586pRYsWOnz4cKrH/TsAd+3aVQUKFNDQoUNtfq5SxMbGWudFZESdOnVUt25dLVmyRMuWLbtlf3JysvWaD2mRMpk8JCTEZvu+ffs0duzYDNcp3bj+xZUrV27ZntJL6erqat3G6wC4PYY/Abjn/PTTT/rf//4nX19fPfroo/Lx8VFMTIx27typjRs3ysnJSTNmzJCLi4v1HG9vb8XExOjhhx/WM888Y71OxYULFzRt2jSbORG9evXS5s2btXDhQv3+++/y9/eXj4+Pzp49qwMHDuiPP/7Q4sWLrRca6927t9avX6/ly5erQoUKat26tQoWLKjw8HCtXbtWc+fOVdu2bW/7eN544w39/PPPatiwoV588UW5uroqODhYp0+fVqNGjawr+qRXXFycHn30UVWsWFG1atVS6dKlFR0dre+//16RkZEaMGCA9f+oUqVK8vHx0dKlS+Xi4qKSJUvKYrHojTfesA7xgmOMGTNGiYmJmjx5sipVqqTHH39cfn5+cnd317lz57Rnzx5t2bJF9913n/WaCsWKFdOSJUvUrl07+fn5qXnz5qpUqZISEhJ0/PhxrV+/Xg0aNNCaNWsyXNeSJUvUuHFjdejQQVOmTFHNmjXl5uam8PBwhYaG6vz584qPj09TW3Xq1FGdOnW0fPlyRUREqF69egoPD9fq1avVqlUrrVixIsN1fv7555o1a5Yef/xxlS9fXgULFtT+/fv1448/qkiRIuratav12CZNmmjFihV6/vnn1aJFC7m6usrPz0/PPPNMhr8/cK8gVAC51OFDBxxdwi0yq6bx48fr0Ucf1S+//KINGzYoIiJC0o3J0l26dNEbb7xhnUuRIuXidYMHD9bnn3+uS5cuqVKlSvr4449tJrhKN4ZQLViwQC1bttScOXP0/fffKzo6Wp6enqpQoYImTpwof39/m+OXLl2qpk2b6rPPPtOiRYtkjFGJEiX04osv3lLLvz399NNasWKFPvjgA33xxRdyd3dXkyZNtGrVKr3//vsZ/n/Knz+/xo8fr6CgIG3cuFHnzp1T4cKF9eCDD2rs2LE2vTPOzs76+uuv9e6772rJkiW6evWqJKlTp07ZPlTEnw//74PussysycnJSZMmTVKnTp00c+ZMbdiwQVu3blVCQoKKFCmihx56SBMmTFDnzp3l6elpPa9Vq1bauXOnJkyYoF9//VW//PKL8ufPr5IlS6pr167q1KmTXXWVK1dOO3fu1OTJk/XNN99o/vz5cnZ2lre3tx5//HG98MILaW7L2dlZ33//vQYPHqw1a9Zo69at1tdaixYt7AoVHTt2VHx8vH7//Xdt2bJFCQkJKlmypHr37q2BAwfaXJiyZ8+eOn78uJYuXarx48fr+vXr6tKlC6ECkGQxN6/HBuCeFx4ersqVKys2NtbRpaTK3d1dYWFhd7zCdGZL6VG4ecgScr7w8HA9WKmy4uOy58+6q5u7Dh64uz/rAJBVCBVALhQeHp6uSZ13k4eHx11/k0WouHfxsw4AdwehAkCuR6gAAMA+rP4EAAAAwC70VAAAAACwCz0VAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoSKVBhjdOXKFRljHF0KAAAAkO0RKlJx9epVFSpUSFevXnV0KQAAAEC2R6gAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsEseRxcAAPeaiIgIRUREpPs8b29veXt7Z0FFAABkLUIFAGSyWbNmaeTIkek+LzAwUCNGjMj8ggAAyGIWY4xxdBHZzZUrV1SoUCFdvnxZBQsWdHQ5AHKY1Hoq4uLi1LBhQ0lSSEiI3NzcbjmPngoAQE5FqEgFoQJAZouJidF9990nSYqOjlb+/PkdXBEAAJmHidoAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALvkcXQBAJCdhYeHKyoqyu524uLirPd37dolNzc3u9v08PBQ6dKl7W4HAAB7WYwxxtFFZDdXrlxRoUKFdPnyZRUsWNDR5QBwkPDwcFWuXFmxsbGOLiVV7u7uCgsLI1gAAByOngoAuI2oqCjFxsZq8qfz5Fuhkl1txcfF6cVnnpQkLf8uSK529lQcPnRA/Xt3U1RUFKECAOBwhAoA+A++FSqpql8Nu9qIjYmx3q9SzU/u+fPbWxYAANlGtpioPX36dJUtW1aurq6qW7eutmzZcttj58yZo8cee0yFCxdW4cKF5e/vf8vxr776qiwWi82tefPmWf0wAAAAgFzJ4aFi2bJl6t+/vwIDA7Vjxw75+fmpWbNmOnfuXKrHBwcHq2PHjlq3bp1CQ0NVqlQpNW3aVKdPn7Y5rnnz5oqIiLDelixZcjceDgAAAJDrODxUTJ48WT179lTXrl1VpUoVzZw5U+7u7po3b16qx3/55Zd6/fXXVb16dVWqVEmfffaZkpOTFRQUZHOci4uLvLy8rLfChQvfjYcDAAAA5DoODRWJiYnavn27/P39rducnJzk7++v0NDQNLURGxura9euqUiRIjbbg4OD5enpqQcffFC9e/fWhQsXMrV2AAAAADc4dKJ2VFSUkpKSVLx4cZvtxYsX14EDB9LUxrvvvisfHx+bYNK8eXM999xzKleunI4cOaIhQ4aoRYsWCg0NlbOz8y1tJCQkKCEhwfr1lStXMviIAAAAgNwnR6/+NG7cOC1dulTBwcFydXW1bu/QoYP1frVq1fTwww+rfPnyCg4O1pNPPnlLO2PHjtXIkSPvSs0AAADAvcahw588PDzk7Oyss2fP2mw/e/asvLy87njuxIkTNW7cOP388896+OGH73jsAw88IA8PDx0+fDjV/QEBAbp8+bL1dvLkyfQ9EAAAACAXc2ioyJcvn2rVqmUzyTpl0nX9+vVve96HH36oUaNGac2aNXrkkUf+8/ucOnVKFy5ckLe3d6r7XVxcVLBgQZsbAAAAgLRx+OpP/fv315w5c7Rw4UKFhYWpd+/eiomJUdeuXSVJnTt3VkBAgPX48ePH67333tO8efNUtmxZRUZGKjIyUtHR0ZKk6OhoDRw4UJs3b9bx48cVFBSkNm3ayNfXV82aNXPIYwQAAADuZQ6fU9G+fXudP39ew4cPV2RkpKpXr641a9ZYJ2+Hh4fLyemf7PPpp58qMTFRL7zwgk07gYGBGjFihJydnbVnzx4tXLhQly5dko+Pj5o2bapRo0bJxcXlrj42AAAAIDdweKiQpL59+6pv376p7gsODrb5+vjx43dsy83NTWvXrs2kygAAAAD8F4cPfwIAAACQsxEqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYJdscfE7ALiXnIuM0LmzkTbb4uPjrPf3790tV1e3W87zLO4lTy/vLK8PAIDMRqgAgEy2eNFcTZsw5rb7X3z6yVS3vzlwqPoNGpZVZQEAkGUIFQCQyV7q3F3+zVql+zzP4l5ZUA0AAFmPUAEAmczTy5thTACAXIWJ2gAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC7ZIlRMnz5dZcuWlaurq+rWrastW7bc9tg5c+boscceU+HChVW4cGH5+/vfcrwxRsOHD5e3t7fc3Nzk7++vQ4cOZfXDAAAAAHIlh4eKZcuWqX///goMDNSOHTvk5+enZs2a6dy5c6keHxwcrI4dO2rdunUKDQ1VqVKl1LRpU50+fdp6zIcffqhp06Zp5syZ+uOPP5Q/f341a9ZM8fHxd+thAQAAALmGw0PF5MmT1bNnT3Xt2lVVqlTRzJkz5e7urnnz5qV6/JdffqnXX39d1atXV6VKlfTZZ58pOTlZQUFBkm70UkyZMkXDhg1TmzZt9PDDD2vRokU6c+aMvvnmm7v4yAAAAIDcwaGhIjExUdu3b5e/v791m5OTk/z9/RUaGpqmNmJjY3Xt2jUVKVJEknTs2DFFRkbatFmoUCHVrVs3zW0CAAAASLs8jvzmUVFRSkpKUvHixW22Fy9eXAcOHEhTG++++658fHysISIyMtLaxr/bTNn3bwkJCUpISLB+feXKlTQ/BgAAACC3c/jwJ3uMGzdOS5cu1apVq+Tq6prhdsaOHatChQpZb6VKlcrEKgEAAIB7m0NDhYeHh5ydnXX27Fmb7WfPnpWXl9cdz504caLGjRunn3/+WQ8//LB1e8p56WkzICBAly9ftt5OnjyZkYcDAAAA5ErpHv6UnJys9evXa+PGjTpx4oRiY2NVrFgx1ahRQ/7+/un6lD9fvnyqVauWgoKC1LZtW2v7QUFB6tu3723P+/DDDzVmzBitXbtWjzzyiM2+cuXKycvLS0FBQapevbqkG8OZ/vjjD/Xu3TvV9lxcXOTi4pLmugEAAAD8I809FXFxcRo9erRKlSqlli1b6qefftKlS5fk7Oysw4cPKzAwUOXKlVPLli21efPmNBfQv39/zZkzRwsXLlRYWJh69+6tmJgYde3aVZLUuXNnBQQEWI8fP3683nvvPc2bN09ly5ZVZGSkIiMjFR0dLUmyWCzq16+fRo8erdWrV+vPP/9U586d5ePjYw0uAAAAADJPmnsqKlasqPr162vOnDl66qmnlDdv3luOOXHihBYvXqwOHTpo6NCh6tmz53+22759e50/f17Dhw9XZGSkqlevrjVr1lgnWoeHh8vJ6Z/s8+mnnyoxMVEvvPCCTTuBgYEaMWKEJGnQoEGKiYnRa6+9pkuXLqlhw4Zas2aNXfMuAAAAAKTOYowxaTkwLCxMlStXTlOj165dU3h4uMqXL29XcY5y5coVFSpUSJcvX1bBggUdXQ4AB9mxY4dq1aql1b9uUlW/Go4ux8be3TvV2r+Btm/frpo1azq6HABALpfm4U9pDRSSlDdv3hwbKAAAAACkT6au/hQTE6MNGzZkZpMAAAAAsrlMDRWHDx9W48aNM7NJAAAAANmcQ6+oDQC4uyIiIhQREZHu87y9veXt7Z0FFQEA7gXpChVFihS54/6kpCS7igEAZK1Zs2Zp5MiR6T7v5hX2AAD4t3SFioSEBPXu3VvVqlVLdf+JEycy9McKAHB39OrVS61bt7bZFhcXp4YNG0qSQkJC5Obmdst59FIAAO4kXaGievXqKlWqlLp06ZLq/t27dxMqACAbS20YU0xMjPV+9erVlT9//rtdFgAgh0vXRO1WrVrp0qVLt91fpEgRde7c2d6aAAAAAOQg6eqpGDJkyB33lypVSvPnz7erIAAAAAA5S6YuKQsAAAAg90lXqHj88cdthj+tXr1acXFxmV0TAAAAgBwkXaEiJCREiYmJ1q87deqUofXOAQAAANw77Br+ZIzJrDoAAAAA5FDMqQAAAABgl3St/iRJa9euVaFChSRJycnJCgoK0t69e22O+feFlQAAAADcu9IdKv594btevXrZfG2xWJSUlGRfVQAAAAByjHSFiuTk5KyqAwAAAEAOxZwKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYJd0Lyn7b6+//rref/99eXh4ZEY9AIB0CAsLs7uNuLg46/1du3bJzc3N7jYlycPDQ6VLl86UtgAA2ZvdoeKLL77QgAEDCBUAcBedPxspWZzUqVOnTG23YcOGmdaWq5u7Dh4II1gAQC5gd6gwxmRGHQCAdLhy5bJkklXm+QC5FrPvTXvytQQdmttPklSh+xQ55XWxu7748+E6sXKsoqKiCBUAkAvYHSoAAI7jWqy03H0q2tVGUuI/w5/cvH3lnC9zhj8BAHIPu0PF1atXM6MOAACyjYiICEVERKT7PG9vb3l7e2dBRQCQvdFTAQDAv8yaNUsjR45M93mBgYEaMWJE5hcEANkcoQIAgH/p1auXWrdubbMtLi7OOpE9JCQk1VWy6KUAkFsRKgAA+JfUhjHFxMRY71evXl358+e/22UBQLbFxe8AAAAA2IVQAQAAAMAumRoqjhw5oiZNmmRmkwAAAACyuUwNFdHR0Vq/fn1mNgkAAAAgm0vXRO1p06bdcf/p06ftKgYAAABAzpOuUNGvXz95e3srX758qe5PTEzMlKIAAAAA5BzpChVlypTR+PHj9eKLL6a6f9euXapVq1amFAYAAAAgZ0jXnIpatWpp+/btt91vsVhkjLG7KAAAAAA5R7p6Kt5//33Fxsbedn+VKlV07Ngxu4sCAAAAkHOkK1RUqVLljvvz5s2rMmXK2FUQAAAAgJyFi98BAAAAsEuaeyqaN2+uESNGqF69enc87urVq5oxY4buu+8+9enTx+4CAQCwR3h4uKKiouxuJy4uznp/165dcnNzs7tNSfLw8FDp0qUzpS0AcJQ0h4p27drp+eefV6FChfTMM8/okUcekY+Pj1xdXXXx4kXt379fISEh+vHHH9WqVStNmDAhK+sGAGTAtasXdO3qBZttSdcSrPdjIw7LOa/LLeflLVBUeQsUzfL6Mlt4eLgqV658x/mAGdGwYcNMa8vd3V1hYWEECwA5WppDRffu3dWpUyd99dVXWrZsmWbPnq3Lly9LurHqU5UqVdSsWTNt3bpVlStXzrKCAQAZF7X1e0UGL7rt/sNz+6W63atRZ3k36ZJFVWWdqKgoxcbGavKn8+RboZJdbcXHxenFZ56UJC3/LkiumdBTcfjQAfXv3U1RUVGECgA5Wromaru4uKhTp07q1KmTJOny5cuKi4tT0aJFlTdv3iwpEACQeTxqP61Cleqn+7yc2EtxM98KlVTVr4ZdbcTGxFjvV6nmJ/f8+e0tCwDuGekKFf9WqFAhFSpUKLNqAQBksZw6jAkAkL2x+hMAAAAAuxAqAAAAANiFUAEAAADALukOFUlJSdqwYYMuXbqUKQVMnz5dZcuWlaurq+rWrastW7bc9th9+/bp+eefV9myZWWxWDRlypRbjhkxYoQsFovNrVIl+1b8AAAAAHB76Q4Vzs7Oatq0qS5evGj3N1+2bJn69++vwMBA7dixQ35+fmrWrJnOnTuX6vGxsbF64IEHNG7cOHl5ed223YceekgRERHWW0hIiN21AgAAAEhdhoY/Va1aVUePHrX7m0+ePFk9e/ZU165dVaVKFc2cOVPu7u6aN29eqsfXrl1bEyZMUIcOHeTicuvFmVLkyZNHXl5e1puHh4fdtQIAAABIXYZCxejRozVgwAB9//33ioiI0JUrV2xuaZGYmKjt27fL39//n2KcnOTv76/Q0NCMlGV16NAh+fj46IEHHtDLL7+s8PDwOx6fkJCQoccAAAAAIIPXqWjZsqUkqXXr1rJYLNbtxhhZLBYlJSX9ZxtRUVFKSkpS8eLFbbYXL15cBw4cyEhZkqS6detqwYIFevDBBxUREaGRI0fqscce0969e1WgQIFUzxk7dqxGjhyZ4e8JAAAA5GYZChXr1q3L7DoyTYsWLaz3H374YdWtW1dlypTR8uXL1b1791TPCQgIUP/+/a1fX7lyRaVKlcryWgEAAIB7QYZCxRNPPGH3N/bw8JCzs7POnj1rs/3s2bN3nISdXvfff78qVqyow4cP3/YYFxeXO87RAAAAAHB7Gb5OxaVLlzRp0iT16NFDPXr00EcffaTLly+n+fx8+fKpVq1aCgoKsm5LTk5WUFCQ6tevn9GybhEdHa0jR47I29s709oEAAAA8I8M9VRs27ZNzZo1k5ubm+rUqSPpxkpOY8aM0c8//6yaNWumqZ3+/furS5cueuSRR1SnTh1NmTJFMTEx6tq1qySpc+fOKlGihMaOHSvpxuTu/fv3W++fPn1au3bt0n333SdfX19J0oABA/TMM8+oTJkyOnPmjAIDA+Xs7KyOHTtm5KECAHKhc5EROnc20mZbfHyc9f7+vbvl6up2y3mexb3k6cWHWABynwyFirffflutW7fWnDlzlCfPjSauX7+uHj16qF+/ftqwYUOa2mnfvr3Onz+v4cOHKzIyUtWrV9eaNWusk7fDw8Pl5PRPZ8qZM2dUo0YN69cTJ07UxIkT9cQTTyg4OFiSdOrUKXXs2FEXLlxQsWLF1LBhQ23evFnFihXLyEMFAORCixfN1bQJY267/8Wnn0x1+5sDh6rfoGFZVRYAZFsZ7qm4OVBIN64NMWjQID3yyCPpaqtv377q27dvqvtSgkKKsmXLyhhzx/aWLl2aru8PAMC/vdS5u/ybtUr3eZ7FM29OIADkJBkKFQULFlR4eLgqVapks/3kyZO3XbYVAICcwtPLm2FMAJAOGZqo3b59e3Xv3l3Lli3TyZMndfLkSS1dulQ9evRg7gIAAACQy2Sop2LixImyWCzq3Lmzrl+/LknKmzevevfurXHjxmVqgQAAAACyt3SHiqSkJG3evFkjRozQ2LFjdeTIEUlS+fLl5e7unukFAgAAAMje0h0qnJ2d1bRpU4WFhalcuXKqVq1aVtQFAAAAIIfI0JyKqlWr6ujRo5ldCwAAAIAcKEOhYvTo0RowYIC+//57RURE6MqVKzY3AAAAALlHhiZqt2zZUpLUunVrWSwW63ZjjCwWi5KSkjKnOgAAAADZXoZCxbp16zK7DgAAAAA5VLpDxbVr1/T+++9r5syZqlChQlbUBAAAACAHSXeoyJs3r/bs2ZMVtQAAgP8QERGhiIiIdJ/n7e0tb2+uEg4ga2Ro+FOnTp00d+5cLnQHAMBdNmvWLI0cOTLd5wUGBmrEiBGZXxAAKIOh4vr165o3b55+/fVX1apVS/nz57fZP3ny5EwpDgAA2OrVq5dat25tsy0uLk4NGzaUJIWEhMjNze2W8+ilAJCVMhQq9u7dq5o1a0qS/vrrL5t9N68GBQAAMldqw5hiYmKs96tXr37Lh30AkNVY/QkAAACAXTJ08bs7OXfuXGY3CQAAACAbS1eocHd31/nz561ft2rVymYFirNnzzJmEwAAAMhl0hUq4uPjZYyxfr1hwwbFxcXZHHPzfgAAAAD3vkwf/sREbQAAACB3yfRQAQAAACB3SVeosFgsNj0R//4aAAAAQO6TriVljTGqWLGiNUhER0erRo0acnJysu4HAAAAkLukK1TMnz8/q+oAAAAAkEOlK1R06dIlq+oAAAAAkENl6IraAAAg84SFhdl1/s3Lu+/atUtubm72liRJ8vDwUOnSpTOlLSC9IiIibK6Hllbe3t5cN80BCBUAADjI+bORksVJnTp1yrQ2GzZsmGltubq56+CBMIIFHGLWrFkaOXJkus8LDAzUiBEjMr8g3BGhAgAAB7ly5bJkklXm+QC5Fsv4G/fkawk6NLefJKlC9ylyyutid23x58N1YuVYRUVFESrgEL169VLr1q1ttsXFxVmDc0hISKq9cvRSOAahAgAAB3MtVlruPhUzfH5S4j/Dn9y8feWcL3OGPwGOlNowppiYGOv96tWrK3/+/He7LNwGoQIAAABIJ+Z82MpQqEhKStKCBQsUFBSkc+fOKTk52Wb/b7/9linFAQAAANkRcz5sZShUvPXWW1qwYIFatWqlqlWrclVtAAAA5CrM+bCVoVCxdOlSLV++XC1btszsegAAAIBsjzkftpwyclK+fPnk6+ub2bUAAAAAyIEyFCreeecdTZ06VcaYzK4HAAAAQA6ToeFPISEhWrdunX766Sc99NBDyps3r83+r7/+OlOKAwAAAJD9ZShU3H///Xr22WczuxYAAAAAOVCGQsX8+fMzuw4AOQBrcgMAgNRw8TsAacaa3IDjXbt6QdeuXrDZlnQtwXo/NuKwnPO63HJe3gJFlbdA0SyvD0DulOFQsWLFCi1fvlzh4eFKTEy02bdjxw67CwNyo+zeE8Ca3IDjRW39XpHBi267//Dcfqlu92rUWd5NumRRVQByuwyFimnTpmno0KF69dVX9e2336pr1646cuSItm7dqj59+mR2jUCukd17AliTG3A8j9pPq1Cl+uk+j14KAFkpQ6FixowZmj17tjp27KgFCxZo0KBBeuCBBzR8+HD9/fffmV0j0ii7f8qN/0ZPAID/wjAmANlRhkJFeHi4GjRoIElyc3PT1atXJUmvvPKK6tWrp08++STzKkSaZfdPuQk9/42eAAAAkBNlKFR4eXnp77//VpkyZVS6dGlt3rxZfn5+OnbsGBfEc6Ds/il3dg89AAAga4SHhysqKsruduLi4qz3d+3aler7mozw8PBQ6dKlM6Wt3CpDoaJJkyZavXq1atSooa5du+rtt9/WihUrtG3bNj333HOZXSPSKLt/yp3dQw8AAMh84eHhqly5smJjYzO13ZT3D5nB3d1dYWFhBAs7ZChUzJ49W8nJyZKkPn36qGjRotq0aZNat26tXr16ZWqBuHdk99ADAAAyX1RUlGJjYzX503nyrVDJrrbi4+L04jNPSpKWfxck10zoqTh86ID69+6mjRs3qnLlyna1lZt7UjIUKpycnOTk5GT9ukOHDurQoUOmFYXs302YkJAgF5db10FPr3v9xZcZz+O9/n8EAMgdfCtUUlW/Gna1EXvTh5FVqvnJPRM+jDx/NlKyOKlTp052t3WzzOxJcXVz18ED2bsnJcPXqdi4caNmzZqlI0eOaMWKFSpRooQ+//xzlStXLlP/E3OjnNBNKIuTZJIzrz3dey++rHge6eoFACBzXblyWTLJKvN8gFyL2fc3Mflagg79/7ViKnSfIqdULkSZXvHnw3Vi5VhFRUVl67/ZGQoVK1eu1CuvvKKXX35ZO3fuVELCjSt5Xr58WR988IF+/PHHTC0yt8nu3YTBQWs1eexIXnz/IbOeR7p6AQDIeq7FSsvdp6JdbSQl/vM30c3bV875MudvYk6QoVAxevRozZw5U507d9bSpUut2x999FGNHj06XW1Nnz5dEyZMUGRkpPz8/PTxxx+rTp06qR67b98+DR8+XNu3b9eJEyf00UcfqV+/fna1mZ1l127CI4cOSuLFl1b2Po909RIsAADI7jIUKg4ePKjHH3/8lu2FChXSpUuX0tzOsmXL1L9/f82cOVN169bVlClT1KxZMx08eFCenp63HB8bG6sHHnhA7dq109tvv50pbd5LzkVG6NzZSJtt8fH/vGnfv3e3XF1vfdPuWdxLnl6ssJSb0NULAAAyU4avU3H48GGVLVvWZntISIgeeOCBNLczefJk9ezZU127dpUkzZw5Uz/88IPmzZunwYMH33J87dq1Vbt2bUlKdX9G2ryXLF40V9MmjLnt/heffjLV7W8OHKp+g4ZlVVlW165e0LWrF2y2JV1LsN6PjTgs51TekHL12KxDbxMAAMgMGQoVPXv21FtvvaV58+bJYrHozJkzCg0N1YABA/Tee++lqY3ExERt375dAQEB1m1OTk7y9/dXaGhoRsrKkjZzkpc6d5d/s1bpPs+zuFcWVHOrqK3fKzJ40W33H/7/T7v/zatRZ3k36ZJFVQEAAMBeGQoVgwcPVnJysp588knFxsbq8ccfl4uLiwYMGKA33ngjTW1ERUUpKSlJxYsXt9levHhxHThwICNlZbjNhIQE62RzSbpy5UqGvr+jeXp5Z+thTB61n1ahSvXTfR69FAAAANlbhkKFxWLR0KFDNXDgQB0+fFjR0dGqUqWK7rvvvsyu764YO3asRo4c6egy7nkMY/pvzIsBAAA5UYavUyFJ+fLlU5UqVTJ0roeHh5ydnXX27Fmb7WfPnpWXV8aG42S0zYCAAPXv39/69ZUrV1SqVKkM1QDYI7vPiwEAAEhNukJFt27d0nTcvHnz/vOYfPnyqVatWgoKClLbtm0lScnJyQoKClLfvn3TU5bdbbq4uGTK1aEBe2X3eTEAAACpSVeoWLBggcqUKaMaNWrIGGP3N+/fv7+6dOmiRx55RHXq1NGUKVMUExNjXbmpc+fOKlGihMaOHSvpxkTs/fv3W++fPn1au3bt0n333SdfX980tQlkZ9l9XgwAAEBq0hUqevfurSVLlujYsWPq2rWrOnXqpCJFimT4m7dv317nz5/X8OHDFRkZqerVq2vNmjXWidbh4eFycnKyHn/mzBnVqPHPRcQmTpyoiRMn6oknnlBwcHCa2gSQcSwLDAAAUpOuUDF9+nRNnjxZX3/9tebNm6eAgAC1atVK3bt3V9OmTWWxWNJdQN++fW87NCklKKQoW7ZsmnpI7tQmgIxjWWAAAJCadE/UdnFxUceOHdWxY0edOHFCCxYs0Ouvv67r169r3759OXYFKAD/jWWBAQBAauxa/cnJyUkWi0XGGCUlJWVWTQCyKYYxAQDuFpZZz1nSHSoSEhKsw59CQkL09NNP65NPPlHz5s1t5j8AAAAAGZXdl1lnnqGtdIWK119/XUuXLlWpUqXUrVs3LVmyRB4eHllVGwAAAHKp7L7MOvMMbaUrVMycOVOlS5fWAw88oPXr12v9+vWpHvf1119nSnEAAADInbL7MuvMM7SVrlDRuXPnDK3wBAAAANxL7tVhTBmV7ovfAQAAAMDNmFkNAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdskWoWL69OkqW7asXF1dVbduXW3ZsuWOx3/11VeqVKmSXF1dVa1aNf344482+1999VVZLBabW/PmzbPyIQAAAAC5lsNDxbJly9S/f38FBgZqx44d8vPzU7NmzXTu3LlUj9+0aZM6duyo7t27a+fOnWrbtq3atm2rvXv32hzXvHlzRUREWG9Lliy5Gw8HAAAAyHUcHiomT56snj17qmvXrqpSpYpmzpwpd3d3zZs3L9Xjp06dqubNm2vgwIGqXLmyRo0apZo1a+qTTz6xOc7FxUVeXl7WW+HChe/GwwEAAAByHYeGisTERG3fvl3+/v7WbU5OTvL391doaGiq54SGhtocL0nNmjW75fjg4GB5enrqwQcfVO/evXXhwoXb1pGQkKArV67Y3AAAAACkjUNDRVRUlJKSklS8eHGb7cWLF1dkZGSq50RGRv7n8c2bN9eiRYsUFBSk8ePHa/369WrRooWSkpJSbXPs2LEqVKiQ9VaqVCk7HxkAAACQe+RxdAFZoUOHDtb71apV08MPP6zy5csrODhYTz755C3HBwQEqH///tavr1y5QrAAAAAA0sihPRUeHh5ydnbW2bNnbbafPXtWXl5eqZ7j5eWVruMl6YEHHpCHh4cOHz6c6n4XFxcVLFjQ5gYAAAAgbRwaKvLly6datWopKCjIui05OVlBQUGqX79+qufUr1/f5nhJ+uWXX257vCSdOnVKFy5ckLe3d+YUDgAAAMDK4as/9e/fX3PmzNHChQsVFham3r17KyYmRl27dpUkde7cWQEBAdbj33rrLa1Zs0aTJk3SgQMHNGLECG3btk19+/aVJEVHR2vgwIHavHmzjh8/rqCgILVp00a+vr5q1qyZQx4jAAAAcC9z+JyK9u3b6/z58xo+fLgiIyNVvXp1rVmzxjoZOzw8XE5O/2SfBg0aaPHixRo2bJiGDBmiChUq6JtvvlHVqlUlSc7OztqzZ48WLlyoS5cuycfHR02bNtWoUaPk4uLikMcIAAAA3MscHiokqW/fvtaehn8LDg6+ZVu7du3Url27VI93c3PT2rVrM7M8AAAAAHfg8OFPAAAAAHI2QgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYJY+jCwAAAMhsERERioiISPd53t7e8vb2zoKKgHsboQIAANxzZs2apZEjR6b7vMDAQI0YMSLzCwLucYQKAABwz+nVq5dat25tsy0uLk4NGzaUJIWEhMjNze2W8+ilADKGUAEAAO45qQ1jiomJsd6vXr268ufPf7fLAu5ZTNQGAAAAYBdCBQAAAAC7ECoAAAAA2IU5FQAAIFsLDw9XVFSU3e3ExcVZ7+/atSvVidoZ4eHhodKlS2dKW0BORagAAADZVnh4uCpXrqzY2NhMbTdlFajM4O7urrCwMIIFcjVCBQAAyLaioqIUGxuryZ/Ok2+FSna1FR8XpxefeVKStPy7ILlmQk/F4UMH1L93N0VFRREqkKsRKgAAQLbnW6GSqvrVsKuN2JuWlK1SzU/uLCkLZBomagMAAACwC6ECAAAAgF0IFQAAAADswpwKAABwzzkXGaFzZyNttsXH/7Ok7P69u+XqeutEbc/iXvL08s7y+oB7DaECAADccxYvmqtpE8bcdv+LTz+Z6vY3Bw5Vv0HDsqos4J5FqAAAAPeclzp3l3+zVuk+z7O4VxZUA9z7CBUAAOCe4+nlzTAm4C5iojYAAAAAuxAqAAAAANiFUAEAAADALsypAAAAuMsiIiIUERGR7vO8vb3l7c1cEWQ/hAoAAIC7bNasWRo5cmS6zwsMDNSIESMyvyDAToQKAACAu6xXr15q3bq1zba4uDg1bNhQkhQSEiI3t1svzkcvBbIrQgUAAICdwsLC7sr3Se+wKQ8PD5UuXToLKwJuIFQAAABk0PmzkZLFSZ06dcrUdlN6LOzl6uaugwfCCBbIcoQKAACADLpy5bJkklXm+QC5Fkv7G/frMZd1Pfayzbbk64k6+e0kSVKpNu/IKU++W87L415IefIXStP3iD8frhMrxyoqKopQgSxHqAAAALCTa7HScvepmObjI35bqMjgRbfdnxIu/s2rUWd5N+mS7vqArEaoAAAAuMs8aj+tQpXqp/u8vAWKZkE1gP0IFQAAAHdZ3gJFCQi4p2SLK2pPnz5dZcuWlaurq+rWrastW7bc8fivvvpKlSpVkqurq6pVq6Yff/zRZr8xRsOHD5e3t7fc3Nzk7++vQ4cOZeVDAAAAAHIth4eKZcuWqX///goMDNSOHTvk5+enZs2a6dy5c6kev2nTJnXs2FHdu3fXzp071bZtW7Vt21Z79+61HvPhhx9q2rRpmjlzpv744w/lz59fzZo1U3x8/N16WAAAAECu4fBQMXnyZPXs2VNdu3ZVlSpVNHPmTLm7u2vevHmpHj916lQ1b95cAwcOVOXKlTVq1CjVrFlTn3zyiaQbvRRTpkzRsGHD1KZNGz388MNatGiRzpw5o2+++eYuPjIAAAAgd3DonIrExERt375dAQEB1m1OTk7y9/dXaGhoqueEhoaqf//+NtuaNWtmDQzHjh1TZGSk/P39rfsLFSqkunXrKjQ0VB06dLilzYSEBCUkJFi/vnz5xhJvV65cyfBjs0d0dLQkae+enYqNiXFIDXdy+NBBSVLsmUNKSoxzcDW3Sog6JenG/6OjnsOU7y9lz+eR5zBteA4zjucwbbLz88hzmDY8h/+N59A+2eV5LFCggCwWy+0PMA50+vRpI8ls2rTJZvvAgQNNnTp1Uj0nb968ZvHixTbbpk+fbjw9PY0xxvz+++9Gkjlz5ozNMe3atTMvvvhiqm0GBgYaSdy4cePGjRs3bty4cUvldvny5Tu+r2f1J0kBAQE2vR/Jycn6+++/VbRo0TsnslzqypUrKlWqlE6ePKmCBQs6uhxkAM9hzsdzeG/gecz5eA5zPp7DtClQoMAd9zs0VHh4eMjZ2Vlnz5612X727Fl5eXmleo6Xl9cdj0/59+zZs/L29rY5pnr16qm26eLiIhcXF5tt999/f3oeSq5UsGBBXnw5HM9hzsdzeG/gecz5eA5zPp5D+zh0ona+fPlUq1YtBQUFWbclJycrKChI9eunfkGY+vXr2xwvSb/88ov1+HLlysnLy8vmmCtXruiPP/64bZsAAAAAMs7hw5/69++vLl266JFHHlGdOnU0ZcoUxcTEqGvXrpKkzp07q0SJEho7dqwk6a233tITTzyhSZMmqVWrVlq6dKm2bdum2bNnS5IsFov69eun0aNHq0KFCipXrpzee+89+fj4qG3bto56mAAAAMA9y+Ghon379jp//ryGDx+uyMhIVa9eXWvWrFHx4sUlSeHh4XJy+qdDpUGDBlq8eLGGDRumIUOGqEKFCvrmm29UtWpV6zGDBg1STEyMXnvtNV26dEkNGzbUmjVr5Orqetcf373IxcVFgYGBtwwZQ87Bc5jz8RzeG3gecz6ew5yP5zBzWIwxxtFFAAAAAMi5HH7xOwAAAAA5G6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECqAe8zNC7qxuFvOxvMH3H3nzp3T+fPnJUmrVq3S4sWLHVwR7JHyezQpKcnBldz7CBWwvuAOHz6s33//Xbt27VJkZKSDq0J6pfaL02KxOKocZNCePXs0fPhwSTx/wN129epVValSRRMmTNDcuXP1/PPPO7ok2Mliseinn37SzJkzlZiY6Ohy7mkOv/gdHMsYI4vFoq+//lr9+/dXoUKFdP36dfn4+Gjw4MF68sknHV0i0iDlefzll1+0YMECXbp0SV5eXho1apS8vLxsLiCJ7Gv37t2qX7++BgwY4OhSkElSXpvIGQoUKKAvv/xSrVu3VlJSkqZNm6aXXnrJ0WXBDlu3blX79u01a9Ys/hZmMf53czmLxaJNmzapW7duGjhwoHbv3q0hQ4bot99+065duxxdHtLIYrHo22+/1bPPPitPT0917NhRv/76q1q3bq2TJ086ujykwe7du9WgQQO9/fbbev/99x1dDjIopccwNjZWycnJSk5OdnBFSCtjjJKTk+Xn56dr164pOTlZEREROnfunKNLQwbt27dPe/bsUZ8+fdSxY0dCRRbjfzcXS/njt2HDBrVo0UJ9+vTRyZMnNWzYMPXq1UvvvPOOJPELNZszxuj8+fP64IMPNGLECH300Udq2bKljDGqW7euypQpY3Mssp8///xTDRo00IABAzRmzBjr9gULFuirr75yYGVIj5ReiZ9++kldu3ZV3bp1NWzYMG3evNnRpeE/pDx358+fl5eXlyIiIrR69WqNHTtW48eP5+9gDmOMUUxMjOrVq6eePXsqIiJCkuTk5MTfwSxEqMjFUrrkExMTVbp0aUVGRqp+/fpq2rSppk+fLkn66aeftHLlSsXFxTmyVKQi5RejxWKRi4uLoqOj1aNHD505c0bVqlVTixYtrM/jDz/8YD0W2cuFCxfUoUMH+fr6auTIkdbtH3zwgd5++22VLl3agdUhPVJ6DJ9//nlVrFhRbdu21d69e/X6668rODjY0eXhNlICxXfffadOnTppyZIlKlKkiJ5++mktW7ZMH330kSZOnGgNFh9++KGWLl3q4KpxJxaLRfnz59eOHTtUsmRJ/fHHH9qzZ491H7KIQa504sQJ6/2PPvrIeHp6Gh8fH9OnTx/r9uvXr5tu3bqZ119/3cTFxTmiTPyHr7/+2owePdokJiaa6tWrm4kTJ5py5cqZXr16mcTERGOMMeHh4aZRo0bmp59+cnC1SE1kZKQZMGCAqVatmhk5cqQxxpgJEyaYokWLmrVr16Z6TlJS0t0sEbcRHR1t8/XevXvNQw89ZObMmWOMMebChQumWLFipkKFCuahhx4y69atc0CVSIuvv/7auLq6mkmTJpnDhw/b7Fu8eLHJmzeveeGFF0yHDh2Mi4uL2bFjh4Mqxe0kJyenuv3gwYPm/vvvN61atbrluUXmIlTkQvv37zcPP/yw+fDDD63bnn/+eePq6mr27dtn4uLiTHR0tBk8eLDx8vIyYWFhDqwWt7N7927j7e1tZs6caeLj480777xjChcubJo1a2ZzXEBAgKlRo4Y5efKkgyrFfzlz5owJDAw0VapUMU888YTx8PBI9Q3oqlWr7nptSF1gYKBp06aNTcALCwszXbt2NVevXjUnTpwwvr6+5n//+59Zt26dqVixoqlWrdptgyIc5+jRo6Zy5cpm1qxZxpgbH6jFx8eboKAgExUVZYy5ETqef/5589xzz5ndu3c7slykIiVQbNq0ycyaNcsEBgaa8PBwExMTY4y58b6nUKFC5umnnzZHjhxxZKn3NIsxDC7LbQ4fPqxx48Zpz549eumll9SvXz+dPHlSHTp0UFhYmEqVKqUiRYror7/+0vfff68aNWo4umT8y8GDB7V48WJduXJFH330kSRp7969evvttxUbG6unn35apUuXVkhIiJYsWaL169fLz8/PwVXj38xNQ9jOnDmj2bNna86cOWrUqJG+/PJLSTeWCHZ2dlZgYKBGjRqlo0ePqmzZsg6sGtKN1+C1a9dUtWpVXbt2TXnz5pUkRUZGysvLS926dVNCQoLmzp0rV1dXPfvss/r9999VsWJFrV27Vu7u7gzDyCaOHj2q5s2ba968eapfv74mTZqkb7/9VgcPHlS+fPm0ZcsWlSxZUnFxcXJycpKLi4ujS8ZNzP8PX1u1apV69Oih6tWrKzIyUomJiRo2bJiefvppFS1aVGFhYXr88cdVpUoVLVy4kN+jWcGxmQZ3Q2pdgkeOHDF9+/Y11atXN5988ol1+5w5c8zEiRPN559/bo4fP343y0QaJCUlmXPnzpm6deua+++/37z88ss2+7dt22befvttU65cOVOrVi3zzDPPmD179jioWqTmzJkzZs+ePSY+Pv6WfRERESYwMNBUrlzZBAYGWrcPGzbMuLu7m23btt3FSnE7N/9ODQ4ONo0aNTKRkZHWbbGxsaZWrVpmzJgxxhhjrl27Znr06GE+/vhjc+7cubteL+7s6NGjpmnTpqZevXrG29vbtG7d2owaNcqEhYUZX19fM2TIEEeXiP+wceNG4+XlZebPn2+MMeby5cvGYrGYBx980MyaNcv8/fffxhhj/vzzT1OmTBkTHh7uwGrvXfRU5BJbtmzRsWPH1L59e+u2I0eOaOrUqVq3bp1ef/119e7d24EV4k7Mv9a6//HHHzVixAj9/fffmjlzpvz9/W2Oj4uLk7Ozs5KTk+Xq6nq3y8Vt/Pnnn3ruuefUqVMnvfLKK3rggQckSTNnzpSPj49at26t8PBwzZs3T8uWLVPXrl2VlJSk999/XyEhIapVq5aDHwGkf16Px48f17Vr11SvXj3VrVtXixYtkoeHhxITE/Xqq6/q3Llz6tOnjzZv3qyvvvpKGzduVIkSJRxdfq6W8tzFx8dbF7mQpODgYO3cuVPGGL388ssqXry4JKl58+Zq27at/ve//zmybNzB9evXNWfOHB0/flzjx4/XkSNH9NRTT6l58+a6dOmSfvzxR02cOFFt2rRRsWLFlJiYqHz58jm67HuTIxMNsl5ycrK5fPmyeeGFF0yNGjXMV199ZbP/yJEjpn79+qZMmTJm0qRJDqoSaREaGmp69eplrl+/bowx5ueffzZ16tQxL7zwgtmwYYP1uGvXrjmqRNzB0aNHTfHixU1AQICJiIiw2de5c2dTtGhRc/HiRWOMMadPnzbvv/++KVSokHFycqKHIhtatWqVqVq1qgkLCzNhYWGmZMmSpmnTpub8+fPGGGNWr15tmjVrZnx8fEzlypXN9u3bHVwxUnqYfvrpJ9OqVSvToEED8+KLL97yejTmxiT89957z3h5eZlDhw7d7VKRTrt37zb79u0z0dHR5oknnjDdu3c3xhhz9epVU7hwYVOyZEkzf/58k5SUdNsJ3bAfoeIelfKiiY2NNcYYs2XLFtOxY0fz2GOPmWXLltkc279/f1O2bFnz1FNPmQsXLtz1WvHfkpKSzAcffGAqVapk+vbtaw0W33//valXr5554YUXzMaNGx1cJe5kypQppkaNGqnui46ONq1atbJ5bZ46dcqMGzfOHDx48G6ViP+Q8nv11KlTpmnTpmbmzJnWffv37zclS5Y0/v7+1nB4/vx5c/ToUYY8ZSPffPONKVCggHn77bfNV199ZcqXL2+aNGlifv/9d+uk+xUrVphu3boZHx8fVnnKhm4OBf9eCW/Hjh2matWq5vfffzfG3HhdvvDCC+bVV19l5ae7gOtU3IPMTRdg6t27t/766y/Vrl1b77zzjry9vTV9+nSbC2o5OTnpjTfesK7NjezHyclJffv2Vbdu3bR582a98cYbSkpKUqtWrTRs2DBFRkZq9OjRCg0NdXSpuI0CBQooPDxc8+fP17lz53Tw4EHt2bNHO3fuVEhIiK5evao//vhDhw8f1tatW1W8eHENHDhQFStWdHTp+H8Wi0UbNmzQBx98IGdnZ7Vs2VKSlJycrMqVK+vnn3/WgQMH1KFDB50/f14eHh4qV66cihUr5uDKIUmHDh3Se++9pzFjxmjy5Ml66qmnlJiYqC1btqhHjx76448/JEnFihVT+fLlFRwczEIl2UzK+5tffvlF3bp1U/PmzRUQEKCDBw9Kkq5cuaILFy7o4sWLunTpkpYvXy5jjGbOnKny5cs7uPpcwMGhBllk5cqVpmDBgmbQoEFm37591u1bt241HTt2NFWqVDHt27c33bp1M4ULF2ZSdjb176Xvrl69asaOHWtq165t+vTpY/2U5uuvvzZPPfWUOXXqlCPKxG0cO3bMXLp0yRhjzK5du8zAgQONt7e3qVChgqlevbopU6aMqVixovHz8zP58+c3FovFVKlSxXh6evLpdja1aNEi4+LiYtzc3ExwcLB1e8prMSwszLi5uZnnnnuO64lkM7t27TJjxowxCQkJ5vTp0+aBBx4wffv2NZcvXzblypUzjRo1svb4Mow0+/rmm2/MfffdZ/r06WNmz55tihQpYho3bmy9/tZTTz1lihYtah588EFTpEgRhh7eRYSKe9Cff/5pihcvbr0AU4ozZ85Y/508ebJ59NFHTdu2bVlzO5tJ6do9ePCgqVGjhhk+fLjN/kuXLplhw4YZb29vM2jQIOtQqH9fiAuOlZiYaBo3bmy8vLysK48YY8zQoUOtKztduHDBJCcnm6tXr5p3333XtG7d2uzevZuVSbK5lStXGk9PT9O5c2dz4MAB6/abX7t//fWXo8rDbVy/ft163aVXX33VdOjQwXodg9atWxuLxWLq1KnDxV6zscjISFOrVi3z0UcfGWNu/J719PQ0/fr1swnx8+fPNwsXLmTI013G8Kd70Llz51S2bFl16tRJFy9e1GeffaannnpKdevWVe/eveXk5KS3335bGzdu1OLFi/Xwww87uuRcLTk5WZJ07do1STeGWBw9elQPPPCA6tatq6CgIH3wwQfW4wsVKqT+/fvLxcVFs2fP1oABAyRJ7u7ud7943FbevHk1bdo0lSpVSo8++qguXrwo6cbz/dNPP+nixYvW4Yb58+dXVFSU6tSpo4cfflilSpVyZOn4f+b/F0cMCwvT+vXr9f333ys5OVnPPfecpkyZoqCgIE2fPl2HDh2SdOO1a4xRxYoVVaFCBUeWnquZGx+YSpJOnTql06dP6+DBg3J2dlalSpVkjFF4eLiqVatm/b1Zvnx5bdu2TcuWLWPFvGzik08+0S+//KKkpCTrtpRVELt166YTJ06obNmyatOmjT766CM5OTnpt99+kyS9+uqr6ty5M0Oe7jaHRhpkipRPxxISEowxxmzevNlYLBbz1ltvmapVq5rWrVubAQMGmMmTJxtPT0/z66+/OrJcpOLgwYOmd+/eJikpySxfvtw4Ozub06dPm7Nnz5q33nrL1K1b14wePdp6/Pnz503Hjh3NmDFj+FQ7G0p5TSYlJZmwsDDToEEDU6NGDXPx4kWzceNGU7NmTfPOO++YEydOmD///NMMGTLEFC1alKvXZyMpz+HKlSuNr6+veeihh4yfn58pW7asdUjpl19+aUqUKGH69evHc5dN3LzYyKpVq4yfn5+pWrWqKV68uBk0aJB1iGi9evXME088YVatWmX69etnihYtau3NR/bg5+dnfHx8THBwsLVHPiIiwpQpU8Z89tlnxtfX17z22mvWoWp//fWXad68uVm/fr0jy87VCBU53M1L5L366qvWX5iLFy82LVu2NIMGDTL79++3Hl+7dm3zzTffOKRW3CrlF2VISIixWCymSZMmxtnZ2SxYsMB6zLlz58xbb71l6tSpY958802zb98+M3jwYNOkSRMTFRXlqNKRipuHTSQmJlrvv/POO8ZisZjatWubS5cumXHjxpnKlSsbi8ViKleubKpVq2Z27tzpgIpxJyEhIaZgwYLWoaRbtmwxFovFTJkyxXrMl19+aVxdXc27775r85zj7jt//rwpUaKECQsLM7/99ptxd3c3M2fONJGRkeazzz4zFovFfPvtt8YYY06cOGF8fX1NhQoVTMWKFVnlKRu5eXWnJk2amNKlS5t169ZZPzgdMGCAcXd3N82bN7c5b8iQIaZmzZrMLXQgQsU9YMWKFaZQoUKmf//+Nr8YU8aKpggICOBKktnI7NmzzWeffWauXr1qjDFm5MiRxmKxmIYNG5orV67YHHv+/HnzwQcfGF9fX+Pj42PKlSvH5LNs5tSpU6Zdu3bmt99+s9k+fvx4U7RoUfPZZ5+ZGjVqmDp16piLFy+ayMhIs3LlSrN7925z9uxZB1WNO/n0009Njx49jDE3rjNSunRp07t3b+v+lDc/S5cuZQ5FNnD06FFTsmRJs3v3bjN06FDz5ptvGmNuLHhRoUIF07NnT5vjExMTzbFjx2zmPCF7uHmi/GOPPWYNFsbcWDb26aefNtWqVTOzZ882ixcvNn379jUFCxY0u3btclDFMIZQkeP8+83mnj17TLFixczs2bNttp8/f976olyyZIl55ZVXjKenJ5/GZCP+/v6mUqVK5osvvjCJiYnm448/NgEBASZfvnzmlVdeMSdPnjTG/PPGJT4+3pw9e9Zs2LAh1Ys1wbFSLiTZsmVLExISYowxZuzYsaZIkSLml19+McbcWDPdz8/P1KxZk2vCZBN3WqGpT58+5vnnnzdnz541pUqVMq+99pr19fjll1+aESNG3K0ykUa1atUy77//vmncuLGZPHmyiY+PNyVKlLB57qZOncow4Gws5XlKuZCkMcY8/vjjpmTJktahTaGhoeatt94yRYsWNTVr1jQtWrQwe/bscUi9+AehIgf56KOPTK9evcy1a9esfwi//fZbU79+fWPMjbGkCxYsMM2aNTMlSpQwQ4YMMadPnzarV682L7/8ss0wKDjOzV277dq1Mw899JBZtmyZdehEcHCwNVicPn3aemxoaOhdrxXpkzKmt02bNqZnz56mWLFiZu3atTbHhIWFmXLlypl69eqx5Gg2cfr0abN161ZjjDFffPGFdXWuNWvWmCeffNIULVrU2mORckXeN954w3Tv3p1V17KJlNfS888/b0aOHGmWLl1qnnzySVO8eHHz+uuvW4eaXrt2zbz88stm0KBBDFfLhm4e0v3iiy9aP5AxxpgnnnjCJlgYY0xUVJRJSEi4ZWQGHINQkQOk/DKcNm2adaxgytjCjRs3GovFYt59913zyCOPmNatW5u33nrLjB8/3ri4uFjfiKZcWRvZw81du23btjVVqlQxn3/+uXUo1Pr1602+fPlM586dzebNm837779v7rvvPnP27FmbUILs5+DBg+app54ybm5uZuLEidbtNweIgwcPmqNHjzqiPNwkOTnZxMXFmdq1a5s2bdqYcePGGYvFYmbNmmWMuRE2mjdvbsqUKWNWrlxpjLnxJmbIkCHG09OTD2oc7MiRI+aTTz4xYWFh1mG9n3/+uXnqqafM6tWrjZ+fn/Hz87NelT4hIcEMGTLElC5dmuFq2djXX39t3NzczNixY83mzZtt9qUEi+DgYOv7IGMMfxezCUJFNpfyRuTIkSNm1KhRxhhjNm3aZDM8Zvbs2aZ+/fqmf//+Nt1/tWvXvuVTUjheal27bdu2NVWrVrUJFhs3bjSenp7Gz8/PeHl5mW3btjmkXqTf4cOHTdOmTU2LFi2sF9My5s5DbeA4hw8fNqVKlTIWi8XaS3HzvgYNGpiqVauaUqVKmcaNG5tSpUoxlNTBEhMTzYsvvmhKly5typUrZwoWLGiaN29uypcvb0qWLGn+/vtv8/XXX5vq1aubKlWqmDZt2pgWLVqYYsWK8dxlY+Hh4aZy5crW61CkuDlAPPnkkyZ//vw2v1uRPViM+f/FnJHtJCcny8nJSbt371aNGjU0evRoDRkyRFOnTtX8+fP1yCOPaPTo0fLy8lJMTIzy589vPXfIkCFaunSpNm7cqBIlSjjwUSA1W7du1ZgxY/Tmm2+qSZMmkqRnn31Whw8f1rvvvqu2bdvqvvvu09GjRxUZGakyZcrwPOYwhw4d0ptvviljjN577z09+uijji4J/2L+/3oGsbGxqlKlihITE9W4cWP169dPdevWtR4XGRmp/fv36/fff5efn5/8/PxUpkwZB1YOSYqNjZW7u7sOHTqksLAwhYeHa8OGDfrzzz9VuXJlff755zpy5Ih++OEH7du3T35+fmrbti3XEMnGduzYoWeffVbfffed9RpaxhhZLBYlJSXJ2dlZktSqVStNmTKF5zK7cWSiwe2lfKK5b98+4+bmdsunZ5988olp0KCB6dKli824+2+//dZ07tyZT2OyuW+++cY88sgjpl27diY4ONi6PaXH4ssvv7T2WCDn+uuvv8zTTz9t6tWrx5yYbCalx3Dfvn0mISHBJCYmmr179xpfX1/z/PPP83zlALcb8rJq1SpTr14906pVK2uPMMNjsqd/Py9bt261Dm/69zG//voroy+yOa6onQ2l9FDs3btXTzzxhMqWLasRI0ZIkuLj4yVJffr0UYcOHXT48GENHTpUkZGRkqTo6Ghdv35dwcHBqlGjhqMeAv5DmzZtFBgYqHPnzmnq1Klav369JGnVqlWqVKmSBg0apJ9++snBVcJeFSpU0IQJE1SyZEn5+Pg4uhz8P/P/n3yuWrVKzZo1U0BAgBISEvTQQw9p8eLF2r17tyZPnqzQ0FBJN3p+R40a5eCq8W8pV1dOkZycLElq3bq1+vXrp+joaD399NOKioq65VhkDxaLRSEhIdq1a5ckqUyZMnJ2dtbMmTN16dIl6zGS9P3332v58uWKi4uzXjEd2YyjUw1spfRQ7Nq1y7i7u5tGjRoZHx8f63rbxtiOLZw2bZp59NFHTY8ePUxkZKQx5tbrU8Cxbv5E9N8TO7/99lvTuHFj06ZNG/P7779bt3fq1MkcOXLkrtaJrHPzaxbZw9q1a42rq6uZO3euOXbsmDHmn9fqtm3bzEMPPWTq1atnmjZtatzd3em5yCFSnsPk5GSzcOFC06JFC3PixAkHV4XbuXTpknnmmWeMj4+P9dpL69atM66uruaFF14wq1evNiEhIaZfv36mUKFCZu/evQ6uGHfCnIpsaNu2bWrQoIGGDh2qYcOGae7cuRo6dKheeuklTZ06VZKUmJiofPnySZKmT5+uGTNmqFGjRpo2bZp1zCEcI6Wn6fr168qTJ4+uX7+uv//+W02bNtXDDz+sIUOGqFKlStbjv/nmG/Xo0UOPPfaY3njjDescCwBZ4/r16+rVq5fuu+8+TZ061dpzcf36dTk7O8tisWjPnj1atmyZrly5ot69e6tKlSqOLhtplPJ8GmMUHR2tAgUKOLok/EvKcyRJISEhmjJliv78808tWbJENWvW1NatW9W9e3dFR0fLYrHo/vvv19y5c1W9enXHFo47IlRkQxs2bNDKlSutAeLy5ctatmzZHYPF7Nmz1bRpU5UtW9ZRZUP/BIojR45o4cKFunDhgjp16qT69etrxowZWrhwoapXr65+/fqpcuXK1vOaNm2q3bt3q0WLFpoxY4bc3NzorgeySGJiourUqaPGjRvro48+kmT7JufKlSsqWLCgrl+/LicnJzk5MVI4p7n5+YRjpfxdlKRr164pb968io+Pl6urq/WY0NBQjR8/XmFhYVq8eLFq1aqlixcv6tKlS0pMTJSnp6cKFy7sqIeANOI3ZTb0+OOPW4ODMUaFChVShw4dNGbMGC1evFhvvfWWJClfvnxKSEiQJL322msECgdL+cX5559/qkmTJrpw4YJKliypmjVrSpJef/119ezZU9u2bdPUqVN14MABSTc+NS1fvrzeeecdjRkzRu7u7vwxBDJZyudnxhg5OTnJz89PZ8+eVVRUlCRZP9nev3+/Bg8erL///lt58uQhUORQ/A7NPpycnHTixAkZY5Q3b15t2rRJTz31lI4dO2Y9pn79+nr33XdVtmxZderUSfv27VPhwoVVrlw5PfjggwSKHCKPowvAnaX8YixYsKA6dOggSRo6dKicnZ01efJkubi4OLI83CSlh6Jp06bq0qWLxo0bZ92XMhSqR48ekm70LAUEBKhJkyY6efKkfvnlF4WGhqpYsWKOKh+4J/37E2uLxaI8efKofv36euedd1S/fn116NBBxYoVk8Vi0fLly7VhwwbrBzYA7JOQkKAOHTooIiJCx48fV1JSkmJjY9WjRw/NnTvX+oFo/fr19dJLL6lr167y9/fX2rVrrcvKImcgVOQgKcHCyclJr732mlxcXDR27FhHlwX9s9793Llz9eijj2rw4ME2+/PkyWPtyejRo4eKFCmiJUuWaNKkSSpWrJi++uorAgWQyVICxYYNG/Ttt9/q+vXrqlSpknr37q3//e9/On36tEaNGqXffvtNBQsWVHx8vNasWaP169fL29vb0eUD94R8+fJpwoQJ6t27t+rXr6/Q0FB9/PHHGjx4sLp06aIFCxaoXLlykqQHH3zQOpT75mtvIWdgTkUOdPnyZX3zzTeqX7++Klas6OhycJPHHntMDz74oD777LNb9qWEipSxpPHx8YqOjpazszNdu0AWWbVqlbp27apnnnlG169f1969e1WnTh3NnTtXkrRo0SLt3btX27ZtU7Vq1dSrVy8mZQN2uHkOxc3btmzZos6dO6to0aIKDQ1VSEiIhg4dqqSkJGuweP/993X69Gl99NFHTLDPgQgVORST0LKX5ORkxcXFqV69emrbtq1GjRplHfL0b4GBgXr22WdZxQLIYtu2bVO7du00ePBg9erVSwcOHNDjjz+uy5cvq2XLllq1apX12JRrHDCHAsi4lEARGRmp48ePq169etZ9165d086dO9WxY0cVK1ZMmzdv1ubNmzV06FCtW7dOjzzyiPbv36/Q0FBVq1bNgY8CGcVvzxyKQJG9ODk5KX/+/KpTp44WLFigw4cPK0+ePNZhUSmOHTumkJAQXb9+3YHVAveWlEBgjLHel6SwsDA1bdpUvXr1Unh4uFq2bKmnn35aM2bM0Jo1a6xznCSxyhOQCZycnHTy5ElVrVpVDRo0UOPGjTVkyBD99ttviouLU506dbR06VLFx8erdu3aqlevnn7++WfNnj1b3bt31+7duwkUORi/QYFM1Lx5c12/fl3vvfeejhw5IovFYhMAFy1apISEBFbqAjJJyiejf/31l95880298MILmjhxoiTplVdeUY8ePZSUlKRevXrpscce07x589SmTRuVKlVK8+bNU6dOnRz8CIB7S3JyskqVKqWKFSsqOjpaZ86cUatWrfTEE0+oc+fOOnbsmIYOHarLly/L39/fOtewV69eKl++vKPLhx0IFUA6pfQ83PyJaIp27dqpc+fO+vnnn9WrVy9t3LhRFy9e1B9//KE+ffpoypQpmjFjhjw8PO522cA9JyVQ7N69Ww0bNtSpU6fk4uKiIUOGaPz48ZKk2rVr69SpUzp58qS6desm6canqXXr1tWiRYs0atQoRz4E4J5TpkwZffXVV6pSpYpKlCih3r176+DBg3r33Xd19OhRTZo0Sa+++qpcXV3122+/6bnnnpMkMRo/52P1JyAdFixYoJ07d2ry5Mlydna2mZCWcn/8+PEqWLCgli1bpkaNGqlw4cLy9PRUgQIFtH79epbIAzJByuttz549ql+/vt5++22NGTNGycnJ8vDwUGRkpHVRBFdXVyUkJGjFihWqXr26JkyYoIMHD2ry5MmsugZkAV9fX40dO1ZvvfWW3nvvPY0ZM0YdOnRQhw4ddOnSJX333Xc6cOCA8uTJo+HDh0tiWPe9gInaQBokJyfr2rVrGjBggEJDQ9W8eXONHDnylmCRlJQkZ2dnSdKRI0cUFhamiIgIVatWTeXLl+cNDJCJTp48qZo1a6px48Zavny5dXuHDh108OBBxcfHq2zZsnruuecUExOjCRMmyNnZWYmJifrpp59Uo0YNB1YP3PsOHTqkN954Q5IUEBCgJ554wmb/7RY0Qc5EqADS4PTp0ypRooQuXryoiRMnKigoSE2aNNGoUaNu22MBIGsdP35cL774ory9vTVo0CA9+uijGjdunEaNGqWAgAB5e3tr4sSJcnFx0ccffywPDw8dOnRINWrUUKlSpRxdPpArHDp0SG+++aaMMRo+fLgaNGjg6JKQRQgVwH9YsWKFBg4cqC+//FINGjTQpUuXNG7cOAUHB982WAC4O1LesOTLl0+enp5avXq1Pv/8czVt2lSSdOLECZUrV06zZs1Sz549HVwtkDsdOnRI/fv3V1RUlD766CObpWZx7+AdEPAfChYsqGrVqqlfv34KDQ3V/fffr8GDB6tRo0b67bff9N577ykpKUlOTk6pTt4GkHUqVKigqVOnKi4uTl9++aUGDRqkpk2byhija9euKU+ePKpWrZr1ApN8jgbcfRUqVNCECRNUsmRJ+fj4OLocZBF6KoA0WL9+vaZOnarjx4/rk08+sfZYjB8/XuvWrVPjxo01atQo5cmTx2ZeBYC748iRI3r99dfl7OysgIAAPfbYY5Kk4cOH64svvtD69esZ8gQ4WGJiovLly+foMpBFCBXAHdx85fJ169Zp2rRpOnHiRKrBwt/fXyNGjGDSGeAgN4/dHjt2rH755RcFBgZq06ZNTMoGgCxGqADSYf369Zo8ebJOnjxpEywmTpyor776Si+//LJ1eTwAd1/K2O0tW7bo4sWLCg0NVa1atRxdFgDc8wgVQCpSeii2b99uvXBWx44dVbRoUW3ZskUffPCBwsPDrcHi4sWL+vjjj9W5c2eulg042MGDBzVo0CB98MEHeuihhxxdDgDkCoQK4DZWrlyp3r17q0aNGjp8+LAKFSqk7t27q0+fPgoODta0adN0+vRpTZgwQY8//rjNUCkAjnXt2jXlzZvX0WUAQK7B6k9AKnbs2KE+ffroww8/1Nq1a/Xbb79p165dio2NlSQ1atRI/fv3V/78+TV8+HDFx8c7uGIANyNQAMDdRU8FcrV/9y6kfP3VV1/p008/1W+//aaDBw+qRYsWevLJJzVnzhxJ0rlz5+Tp6amQkBCVLVtWJUuWdNRDAAAAcDh6KpBrJScny2Kx6Pz589q2bZu2b99uDRinT59WwYIFlZSUpKeeekpPPfWUZs2aJUlavXq1Zs2apYSEBDVs2JBAAQAAcj3WvkSulHL16/379+u1115TgQIF5O7uruXLl8vZ2VnNmzfXqFGj5Obmpt69e2vq1KnWc4OCghQeHq6EhAS5uLg48FEAAABkD4QK5DrGGDk5OWnfvn1q2LChXn/9dfXq1UslS5aUk5OTjDF64IEHNGjQIH388cfWnohjx45pzpw5+uKLL7Rx40YVLFjQwY8EAAAge2BOBXKlv//+W23atFHNmjVteiFunmNx9OhRzZ8/Xx999JEKFy6swoULKzExUUuWLOFCWgAAADchVCBX2r9/v1q3bq158+apYcOGcnKynV6UEi6uXbumY8eOKTQ0VOXKlZOvr698fHwcVDUAAED2xPAn5Eq7du3SiRMn9Nhjj8lisVjnWKSwWCyKjY3V3r17VadOHVWsWNGB1QIAAGRvrP6EXKls2bLKkyePvv76a0m6padCkubNm6dhw4YpMTHxbpcHAACQoxAqkCuVKVNGBQsW1KJFi3TixAnr9ptHAx4/fly1atXiIloAAAD/gVCBXKlEiRL69NNPtXbtWr333nvav3+/pH+GPQ0ZMkQrVqxQ165dbS6OBwAAgFsxURu5VnJysubMmaO+ffvK19dX9evXl6urq06fPq3NmzdrzZo1rPIEAACQBoQK5HpbtmzRhAkTdPjwYRUoUEANGjRQ9+7dVaFCBUeXBgAAkCMQKgBJSUlJcnZ2dnQZAAAAORJzKgDZrv5EzgYAAEgfeioAAAAA2IWeCgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF3+D2pknZ0l7pkXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "CellSAM Specialist vs Generalist by Data Type\n", + "\"\"\"\n", + "\n", + "dataset_agg_map = {\n", + " \"Tissue\": [\"tissuenet_wholecell\"],\n", + " \"Cell Culture\": [\"cellpose\", \"ep_phase_microscopy_all\", \"Gendarme_BriFi\"],\n", + " \"H&E\": [\"H_and_E\"],\n", + " \"Bacteria\": [\"deepbacs\", \"omnipose\"],\n", + " \"Yeast\": [\"YeaZ\", \"YeastNet\"],\n", + " \"Nuclear\": [\"dsb_fixed\"],\n", + "}\n", + "\n", + "group_names = list(dataset_agg_map.keys())\n", + "\n", + "\n", + "cs_specifc_group_means = []\n", + "cs_general_group_means = []\n", + "cs_specifc_group_sems = []\n", + "cs_general_group_sems = []\n", + "\n", + "\n", + "for group in group_names:\n", + " # Get all datasets that belong to this group\n", + " datasets_for_group = dataset_agg_map[group]\n", + " \n", + " # Gather all F1 arrays and concatenate them\n", + " cs_specific_all = np.concatenate([cellsam_specific_dict[ds] for ds in datasets_for_group])\n", + " cs_general_all = np.concatenate([cellsam_generalist_dict[ds] for ds in datasets_for_group])\n", + "\n", + " # Compute (1 - mean(F1)) for the group\n", + " cs_specific_mean = 1 - np.mean(cs_specific_all)\n", + " cs_general_mean = 1 - np.mean(cs_general_all)\n", + " cs_specifc_group_means.append(cs_specific_mean)\n", + " cs_general_group_means.append(cs_general_mean)\n", + "\n", + " # Standard error of the mean (SEM) for the group\n", + " cs_specific_sem = np.std(cs_specific_all, ddof=1) / np.sqrt(len(cs_specific_all))\n", + " cs_general_sem = np.std(cs_general_all, ddof=1) / np.sqrt(len(cs_general_all))\n", + " cs_specifc_group_sems.append(cs_specific_sem)\n", + " cs_general_group_sems.append(cs_general_sem)\n", + "\n", + "x = np.arange(len(group_names))\n", + "width = 0.35\n", + "plt.rcParams['svg.fonttype'] = 'none' \n", + "fig, ax = plt.subplots(figsize=(8, 5))\n", + "\n", + "bars_cs_specific = ax.bar(\n", + " x - width/2, cs_specifc_group_means, width,\n", + " edgecolor='black', linewidth=1,\n", + " yerr=cs_specifc_group_sems, capsize=5, \n", + " label='Specialist', color=c3\n", + ")\n", + "\n", + "bars_cs_general = ax.bar(\n", + " x + width/2, cs_general_group_means, width,\n", + " edgecolor='black', linewidth=1,\n", + " yerr=cs_general_group_sems, capsize=5, \n", + " label='Generalist', color=c4\n", + ")\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels(group_names, rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_grouped_comparison_specific_general.svg\", format=\"svg\", dpi=300)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cellpose Generalist vs Specialist" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from pathlib import Path\n", + "import numpy as np\n", + "\n", + "name_map = {\n", + " \"Gendarme_BriFi\": \"BriFiSeg\",\n", + " \"cellpose\": \"Cellpose\",\n", + " \"ep_phase_microscopy_all\": \"Phase400\",\n", + " \"H_and_E\": \"H&E\",\n", + " \"tissuenet_wholecell\": \"TissueNet\",\n", + " \"YeaZ\": \"YeaZ\",\n", + " \"YeastNet\": \"YeastNet\",\n", + " \"dsb_fixed\": \"DSB\",\n", + " \"deepbacs\": \"DeepBacs\",\n", + " \"omnipose\": \"OmniPose\",\n", + "}\n", + "\n", + "\n", + "datasets = [\n", + " 'Gendarme_BriFi',\n", + " 'H_and_E',\n", + " 'YeaZ',\n", + " 'YeastNet',\n", + " 'cellpose',\n", + " 'deepbacs',\n", + " 'dsb_fixed',\n", + " 'ep_phase_microscopy_all',\n", + " 'omnipose',\n", + " 'tissuenet_wholecell',\n", + "]\n", + "\n", + "c1 = \"#fdbb84\"\n", + "c2 = \"#e34a33\"\n", + "c3 = '#deebf7'\n", + "c4 = '#3182bd'\n", + "\n", + "\n", + "cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose')\n", + "cellpose_generalist_path = cellpose_path / 'general'\n", + "cellpose_individual_path = cellpose_path / 'individual'\n", + "\n", + "\n", + "cellpose_generalist_dict = {}\n", + "for file in cellpose_generalist_path.glob(\"*.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cellpose_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + "\n", + "\n", + "cellpose_specific_dict = {}\n", + "for file in cellpose_individual_path.glob(\"*.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cellpose_specific_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiUdJREFUeJzs3XdYFGfXBvB7QbqCBUFQEBREbIC991gTjBoL1thfWyyxN+y9RxNb7LHEmmI0iSQascRYUKPYy0YFFBvSFc73B9+OrKACCyws9++6uFxmnhnOjLuzc+ZpKhEREBERERER6cBI3wEQEREREVHux8SCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0lk/fARBR9lOr1QgPD9d3GKmytbWFs7OzvsPQm88//xybNm3CnTt34OLikqF9HDlyBI0aNYK/vz+mTp2qLG/YsCGOHj0KEcmcYHMBvtfzrtTe7+/6bBBR5mBiQZTHqNVqeHqWRXR0jL5DSZWlpQWCg6/qfMMVFRWFZcuWYffu3bh+/TpevXqFokWLwtXVFXXr1kXfvn1RunTpTIra8OXGGzK1Wg1PDw9Ex8bqO5RUWZqbI/jatUxLLoKCgrBq1Sr89ddfuH//PmJjY1G4cGFUrFgRLVq0QI8ePVC0aNFM+Vt5VV5MzonSg4kFUR4THh6O6OgYbB73GTyd7fQdjpZg9SP0mLsb4eHhOt1svXz5EnXr1sXFixfh5uaGbt26oUiRIggPD8fp06cxd+5clC5dOkcmFnPmzMG4ceNQvHjxTN/35s2bER0dnen7zanCw8MRHRuL5V4ucMtvoe9wtNyMjMEXF+7q/F4HgMTERIwZMwaLFi2CsbEx6tevj2bNmsHKygqPHj3CyZMnMWrUKPj7++PatWtZ8t7KLapXr47g4GDY2trqOxQig8TEgiiP8nS2Q2V3R32HkSWWLl2Kixcvom/fvlizZg1UKpXW+jt37iAuLk5P0b2fg4MDHBwcsmTfebXZjVt+C1S0sdR3GFlm4sSJWLRoESpXroydO3fCzc0tRZlz585h7NixiInJmTWV2cXS0hJly5bVdxhEBoudt4nI4Jw8eRIAMHjw4BRJBQC4urpq3Vy4uLjAxcUFz58/x4ABA1CsWDGYm5vDx8cH27dvT/VviAjWr1+POnXqwNraGpaWlqhatSrWr1//zvIbNmxAvXr1ULBgQVhaWsLd3R0DBgyAWq1Wyn3++edQqVS4e/eusiw+Ph5fffUVmjdvDicnJ5iZmcHOzg7t2rXD+fPn03xeGjZsmOJ8JCYmYt26dahevToKFy4MCwsLlChRAp988gmOHDkCAJg6dSoaNWoEAJg2bRpUKpXykzxOyn7Xr1/HggULULRoURw6dCjVpAIAKleujN9//z1Fv52LFy+ic+fOcHBwgKmpKUqWLImhQ4fiyZMnWuXu3r0LlUqFzz//HDdv3kTbtm1RqFAhWFlZoWnTprhw4UKqf/fRo0cYMWIE3NzcYGZmBltbW7Rv3x7//vtvirLJP4dDhgyBk5MT8uXLh40bNwIAzp49iyFDhqBChQqwsbGBhYUFKlasiLlz5+LVq1dpOl9HjhyBSqVK0Zzvxo0b6NWrF1xdXWFmZobChQvDy8sLw4cPV5o9qVQqHD16VHmt+fn888/T9LeJ8gLWWBCRwSlSpAiApJsub2/vNG0THx+Ppk2bIjIyEt27d0dUVBS+//57dOnSBeHh4Rg6dKhSVkTQtWtXbN++He7u7ujSpQtMTU3x+++/o0+fPrhy5QoWLlyolE9MTESnTp2we/duFC9eHH5+frC2tsbdu3fx/fffo2XLlu+tTXj69CmGDx+OevXqoVWrVihUqBBu376NH3/8EQcPHsRff/2FatWqZehcjR8/HvPnz0fp0qXRpUsXFChQAA8ePEBgYCAOHz6Mhg0bomHDhrh79y42bdqEBg0aoGHDhsr2BQsWzNDfpcyxadMmJCQkYMCAAWnqP5Ev35uv/R9//BEdO3aEkZER2rRpAycnJ1y5cgUrVqzAr7/+ir///huFChXS2v7u3buoWbMmypcvj969e+PWrVv44Ycf0KhRIwQHB8Pe3l4pe+vWLTRs2BD3799Hs2bN8Omnn+LRo0fYs2cPfv31VwQEBKBGjRpa+4+Li0Pjxo0RGRkJX19f5MuXT9nn2rVr8dNPP6F+/fpo1aoVoqOjceTIEYwfPx7//PMP9uzZk6Fz+PDhQ1SvXh1RUVFo3bo1OnXqhKioKNy4cQNff/01Fi5ciHz58sHf3x8bN27EvXv34O/vr2yf1msMUV7AxIKIDE6HDh2wdetW9O3bF6dPn0azZs1QpUoVJeFITUhICNzd3XHixAmYmpoCACZMmAAfHx+MHj0a7dq1U9qmr1u3Dtu3b0evXr2wevVqmJiYAEhKTj777DMsWrQIfn5+qFKlCgDg66+/xu7du9GkSRP89NNPsLB4094/Jibmg81TChUqBLVanaJt/OXLl1GzZk1MmDABv//+e/pP1P8fi6OjIy5evAhLS+3mQk+fPgUAJZHYtGkTGjZsmGs6b+cFmto5TY1SWj158gTdu3eHra0tjh8/jpIlSyrrduzYAT8/P0yZMgVfffWV1nZHjx7F3LlzMXbsWGXZ5MmTMXPmTGzYsAHjxo1Tlvfo0QMhISE4dOgQmjdvriyfNGkSqlatin79+uHixYta+w8NDYWXlxeOHz+u9TkBkj6PK1euhLGxsbJMRNC3b1+sX78ex48fR506ddJ1HgBgz549eP78OZYuXYphw4ZprXv69KmSjE2dOhVHjhzBvXv3+Bkgegc2hSIig+Pr64tFixZBRLBo0SI0b94ctra2cHNzw5AhQ3Djxo1Ut5s9e7aSVABAiRIlMGzYMMTFxWHHjh3K8hUrVsDKygorV65UkgoAMDU1xaxZswBAqwnV119/DWNjY3zzzTcpbpYsLCxQuHDh9x6PmZlZqh1uy5cvj0aNGuGvv/5Kc1OQ1JiammrdrGl8KC7Sv9DQUACAo2PK/lJHjhzB1KlTtX40zds2b96MiIgIzJkzRyupAIDOnTujcuXKWu95DVdXV4wePVprWZ8+fQAA//zzj7Ls/PnzOHHiBHr27KmVVABAmTJl0K9fP1y6dCnVJlHz589P8TkBkvoIvf0+ValUGDx4MADg8OHDKbZJj9T+Jj8DROnDGgsiMkgjR45Ev379cOjQIZw4cQJnzpzB33//jZUrV+Lbb7/Fzp074evrq5TPly8fatWqlWI/9erVAwClL0N0dDQuXboER0dHzJs3L0V5zQ3+1atXAQCRkZEIDg6Gm5sb3N3dM3w8QUFBmD9/PgIDAxEaGpoikQgPD89Qp+/OnTvj66+/RoUKFdC5c2c0atQItWrVSvUmi3KXI0eOYNq0aSmWN2zYEKdOnQIA/P3337h161aKMrGxsQgPD0d4eLjWCEre3t4wMtJ+JlmiRAkAwPPnz5Vlmv2HhYWl+nRf8/m4evUqKlSooCw3NzdHxYoVUz2e+Ph4rFixAjt27MDVq1cRGRmpNezrw4cPU93uQz755BOMHz8egwcPRkBAAFq0aIEGDRqgVKlSGdofUV7GxIKIDFaBAgXQoUMHdOjQAQDw4sULTJgwAV9//TX69OmDBw8eKDUUtra2KW6YACjtu1+8eAEAePbsGUQEDx48SPWmTSMqKkprO12G+Dxx4gQaN24MAGjWrBnc3d2RP39+qFQq7N+/HxcuXMjwKFfLli2Dq6srNmzYgJkzZ2LmzJkwNzdHx44dsWjRIg7LmcPZ29sjODgYDx8+TDHakaaWAnjTvElD08xt5cqV791/VFSU1nvA2to6RRlNU6GEhIQU+z9w4AAOHDjw3v0nZ2dnl+qACwDw2Wef4aeffkKZMmXQqVMn2NnZwcTEBM+fP8eyZcsy/BlwcXHBqVOnMHXqVPzyyy/4/vvvAQBly5bF9OnTlesHEX0YEwsiyjNsbGywYsUKHDhwAPfu3cOlS5eUfhDh4eFITExMkVyEhYUp2wJvbqyqVKmCM2fOpOlvAsCDBw8yHPesWbMQFxeHY8eOoW7dulrrTp069c4RedIiX758GDVqFEaNGoWHDx/i6NGj2LBhAzZv3ozQ0FD8+uuvGd43Zb3atWvjyJEj+PPPP5XkMy007+NLly5p1RhkFs3+v/rqKwwZMiTN270rqfjnn3/w008/oXnz5jhw4IBWk6hTp05h2bJlOsVboUIF7N69G69evcLZs2dx8OBBLF++HJ06dYKjo2OG+m4Q5UXsY0FEeYpKpYKVlVWK5a9fv1Y6wiZ37NgxAICPjw+ApFoQT09PBAcHazX9eJf8+fOjXLlyuHPnzjv7dnzIrVu3ULhw4RRJRXR0NM6dO5ehfabG0dERfn5+yrClhw8fVjqWa27kkj+VJv3r2bMnjIyMsGbNGoSHh6d5O81oTKm95zNDZu9f01yrdevWKfpZaD6jmcHExAQ1a9bEtGnTsHz5cogIfv75Z2U9PwdE78fEgogMzurVq7U6kia3f/9+BAcHo2DBgime1E6YMAHx8fHK7/fv38eyZctgZmaGzp07K8u/+OILREdHo1+/fimacgBJE/Aln99h8ODBSEhIwKBBg1KMABUbG6s0G3mXkiVL4tmzZ7h8+bKyLCEhAaNGjcLjx4/fu+37xMXF4cSJEymWR0VFITIyEiYmJkoNjqYT63///Zfhv0eZr0yZMhgzZgwePXqEli1b4ubNm6mWezsJ7tWrFwoUKICJEydqva80oqOjlX4SGVG9enXUqFED27dvx86dO1OsT0xMVOaESAtNB/PAwECt5ZcvX8acOXMyHCeQND9GREREiuWa2kpzc3NlGT8HRO/HplBEZHAOHjyI//3vf3Bzc0OdOnXg6OiIqKgonD9/HseOHYORkRG+/vprmJmZKds4ODggKioKlSpVwieffKLMY/HkyRMsX75cq4/EgAEDcOrUKWzatAnHjx9H06ZN4ejoiLCwMFy9ehV///03tm3bpkxGNnDgQBw9ehTff/893N3d4evrC2tra6jVavz666/49ttv8emnn77zeIYOHYrffvsNdevWRceOHWFubo4jR47gwYMHaNiwoTLST3rFxMSgTp06KFOmDKpUqQJnZ2dERkbi559/RmhoKEaNGqWco7Jly8LR0RE7duyAmZkZSpQoAZVKhaFDhyrNvUg/Zs2ahfj4eCxevBhly5ZF/fr14eXlBUtLSzx69AgXL17E6dOnkT9/fmXOhaJFi2L79u3o0KEDvLy80KJFC5QtWxZxcXG4e/cujh49itq1a+PQoUMZjmv79u1o1KgROnfujKVLl6Jy5cqwsLCAWq3GyZMn8fjxY8TGxqZpX9WrV0f16tXx/fffIyQkBDVr1oRarcaPP/6I1q1bY/fu3RmOc8uWLVi9ejXq16+P0qVLw9raGleuXMEvv/yCwoULo1evXkrZxo0bY/fu3Wjfvj1atmwJc3NzeHl54ZNPPsnw3ycyJEwsiPKoYPUjfYeQQmbFNG/ePNSpUwe///47/vrrL4SEhABI6kDds2dPDB06VOlboaGZ4G7cuHHYsmULnj9/jrJly+Krr77S6vQKJDWn2rhxI1q1aoW1a9fi559/RmRkJOzs7ODu7o6FCxeiadOmWuV37NiBZs2aYd26ddi8eTNEBMWLF0fHjh1TxPK2jz/+GLt378bs2bOxdetWWFpaonHjxti3bx+mT5+e4fNkZWWFefPmISAgAMeOHcOjR49QqFAheHh4YM6cOVq1NMbGxti7dy/Gjh2L7du34+XLlwCAbt265fjE4mbk++cJ0YfMjMnIyAiLFi1Ct27dsGrVKvz111/4559/EBcXh8KFC6N8+fJYsGABevToATs7O2W71q1b4/z581iwYAEOHz6M33//HVZWVihRogR69eqFbt266RSXq6srzp8/j8WLF2P//v3YsGEDjI2N4eDggPr16+Ozzz5L876MjY3x888/Y9y4cTh06BD++ecf5bPWsmVLnRILPz8/xMbG4vjx4zh9+jTi4uJQokQJDBw4EKNHj9aavLJfv364e/cuduzYgXnz5uH169fo2bMnEwui/6eS5GO1EZHBU6vV8PQsi+jonHezBQCWlhYIDr763pmoM5umZiF58yXK/dRqNTw9PBCdxqfi2c3S3BzB165l63udiCgrMbEgyoPUanW6OnpmJ1tb22y/0WJiYbj4Xiciyj5MLIgoz2NiQUREpDuOCkVERERERDpjjQUREREREemMNRZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhapEBFERERARPQdChERERFRrsDEIhUvX76EjY0NXr58qe9QiIiIiIhyBSYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESksxyRWKxcuRIuLi4wNzdHjRo1cPr06XeWXbt2LerVq4dChQqhUKFCaNq0aYryn3/+OVQqldZPixYtsvowiIiIiIjyLL0nFjt37sTIkSPh7++Pc+fOwcvLC82bN8ejR49SLX/kyBH4+fnhzz//xMmTJ+Hk5IRmzZrhwYMHWuVatGiBkJAQ5Wf79u3ZcThERERERHmSSkREnwHUqFED1apVw4oVKwAAiYmJcHJywtChQzFu3LgPbp+QkIBChQphxYoV6NGjB4CkGovnz59j//79GYopIiICNjY2ePHiBaytrTO0D8q9NMloejk4OMDBwSELIiIiIiLK+fLp84/Hx8fj7NmzGD9+vLLMyMgITZs2xcmTJ9O0j+joaLx69QqFCxfWWn7kyBHY2dmhUKFCaNy4MWbOnIkiRYqkuo+4uDjExcUpv0dERGTgaMhQrF69GtOmTUv3dv7+/pg6dWrmB0RERESUC+g1sQgPD0dCQgLs7e21ltvb2+Pq1atp2sfYsWPh6OiIpk2bKstatGiBdu3awdXVFbdu3cKECRPQsmVLnDx5EsbGxin2MWfOnAzdSJJhGjBgAHx9fbWWxcTEoG7dugCAwMBAWFhYpNiOtRVERESUl+k1sdDV3LlzsWPHDhw5cgTm5ubK8s6dOyuvK1asiEqVKqF06dI4cuQImjRpkmI/48ePx8iRI5XfIyIi4OTklLXBU46VWpOmqKgo5bW3tzesrKyyOywiIiKiHE2vnbdtbW1hbGyMsLAwreVhYWEoVqzYe7dduHAh5s6di99++w2VKlV6b9lSpUrB1tYWN2/eTHW9mZkZrK2ttX6IiIiIiCjt9JpYmJqaokqVKggICFCWJSYmIiAgALVq1XrndvPnz8eMGTNw6NAhVK1a9YN/5/79+3jy5AmbqhARERERZRG9Dzc7cuRIrF27Fps2bUJwcDAGDhyIqKgo9OrVCwDQo0cPrc7d8+bNw+TJk7F+/Xq4uLggNDQUoaGhiIyMBABERkZi9OjROHXqFO7evYuAgAC0adMGbm5uaN68uV6OkYiIiIjI0Om9j0WnTp3w+PFjTJkyBaGhofD29sahQ4eUDt1qtRpGRm/yn2+++Qbx8fH47LPPtPajGZHH2NgYFy9exKZNm/D8+XM4OjqiWbNmmDFjBszMzLL12IiIiIiI8gq9z2ORE3EeC3pbVFQU8ufPDyCpVoydt4mIiIi06b0pFBERERER5X5MLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGf59B0AkT6p1WqEh4d/sFxMTIzyOigoCBYWFh/cxtbWFs7OzjrFR0RERJRbqERE9B1EThMREQEbGxu8ePEC1tbW+g6HsoharYanhweiY2OzZP+W5uYIvnaNyQURERHlCayxoDwrPDwc0bGxWO7lArf876+BiE1IRLtT1wAAe2t6wNz4/a0Ib0bG4IsLdxEeHs7EgoiIiPIEJhaU57nlt0BFG8v3lol+naC8Lm9tAct8xlkdFhEREVGuws7bRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESks3z6DoCIiHKHkJAQhISEpHs7BwcHODg4ZEFERESUkzCxICKiNFm9ejWmTZuW7u38/f0xderUzA+IiIhyFCYWRESUJgMGDICvr6/WspiYGNStWxcAEBgYCAsLixTbsbaCiChvYGJBRERpklqTpqioKOW1t7c3rKyssjssIiLKIdh5m4iIiIiIdMbEgoiIiIiIdMamUJTrcGQaIiIiopyHiQXlOhyZhoiIiCjnYWJBuQ5HpiEiIiLKeZhYUK7DkWmIiIiIch523iYiIiIiIp0xsSAiIiIiIp3liMRi5cqVcHFxgbm5OWrUqIHTp0+/s+zatWtRr149FCpUCIUKFULTpk1TlBcRTJkyBQ4ODrCwsEDTpk1x48aNrD4MIiIiIqI8S++Jxc6dOzFy5Ej4+/vj3Llz8PLyQvPmzfHo0aNUyx85cgR+fn74888/cfLkSTg5OaFZs2Z48OCBUmb+/PlYvnw5Vq1ahb///htWVlZo3rw5YmNjs+uwiIiIiIjyFL0nFosXL0a/fv3Qq1cvlCtXDqtWrYKlpSXWr1+favnvvvsOgwYNgre3N8qWLYt169YhMTERAQEBAJJqK5YuXYpJkyahTZs2qFSpEjZv3oyHDx9i//792XhkRERERER5h14Ti/j4eJw9exZNmzZVlhkZGaFp06Y4efJkmvYRHR2NV69eoXDhwgCAO3fuIDQ0VGufNjY2qFGjxjv3GRcXh4iICK0fIiIiIiJKO70ONxseHo6EhATY29trLbe3t8fVq1fTtI+xY8fC0dFRSSRCQ0OVfby9T826t82ZMydDE66RYQqLfYVHca+0lsUmJCivL0dEw9zYOMV2dmYmsDc3yfL4iIiIiHKiXD2Pxdy5c7Fjxw4cOXIE5ubmGd7P+PHjMXLkSOX3iIgIODk5ZUaIlAt9p36MJTdD3rm+3anrqS4f4eaAkWUcsyosIiIiohxNr4mFra0tjI2NERYWprU8LCwMxYoVe++2CxcuxNy5c3H48GFUqlRJWa7ZLiwsTGsStbCwMHh7e6e6LzMzM5iZmWXwKMjQdHUuio/sC6Z7Ozsz1lYQERFR3qXXxMLU1BRVqlRBQEAAPv30UwBQOmIPGTLkndvNnz8fs2bNwq+//oqqVatqrXN1dUWxYsUQEBCgJBIRERH4+++/MXDgwKw6FDIg9uZs0kRERESUXnpvCjVy5Ej07NkTVatWRfXq1bF06VJERUWhV69eAIAePXqgePHimDNnDgBg3rx5mDJlCrZt2wYXFxel30T+/PmRP39+qFQqDB8+HDNnzoS7uztcXV0xefJkODo6KskLERERERFlLr0nFp06dcLjx48xZcoUhIaGwtvbG4cOHVI6X6vVahgZvRm86ptvvkF8fDw+++wzrf34+/tj6tSpAIAxY8YgKioK/fv3x/Pnz1G3bl0cOnRIp34YRERERET0bioREX0HkdNERETAxsYGL168gLW1tb7DoTSIiopC/vz5AQCRkZGwsrL64Dbnzp1DlSpV8EsdT1S0sczUeC69iEar48E4e/YsKleunKn7JspJMvLZIyIiw6T3CfKIiIiIiCj3Y2JBREREREQ6Y2JBREREREQ6Y2JBREREREQ6Y2JBREREREQ6Y2JBREREREQ6Y2JBREREREQ60/sEeUQfolarER4e/t4yMTExyuugoCBYWFh8cL/BwcE6x0ZERERESZhYUI6mVqvh6VkW0dExHy78/+rWrZuFERERERFRaphYUI4WHh6O6OgYbB73GTyd7d5ZLibuFeqPWAsA+GtJP1iYmXxw3wdPX8OUjQGZFisRERFRXsbEgnIFT2c7VHZ3fOf6qJh45bV3aQdYWZh+cJ9X1Y8zJTYiIiIiYmJBRETvkFX9mwDA1tYWzs7OOsVHREQ5CxMLIiJKQa1Ww9PDA9GxsWneJj39myzNzRF87RqTCyIiA8LEgoiIUggPD0d0bCyWe7nALf+7ayFiExLR7tQ1AMDemh4wN/7wKOY3I2PwxYW7CA8PZ2JBRGRAmFgQEdE7ueW3QEUby3euj36doLwub20By3zG2REWERHlQJwgj4iIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdJbu4WYTExNx9OhRHDt2DPfu3UN0dDSKFi0KHx8fNG3aFE5OTlkRJxERERER5WBprrGIiYnBzJkz4eTkhFatWuHgwYN4/vw5jI2NcfPmTfj7+8PV1RWtWrXCqVOnsjJmIiIiIiLKYdJcY1GmTBnUqlULa9euxUcffQQTE5MUZe7du4dt27ahc+fOmDhxIvr165epwRIRERERUc6U5sTit99+g6en53vLlCxZEuPHj8eoUaOgVqt1Do6IiIiIiHKHNDeF+lBSkZyJiQlKly6doYCIiIiIiCj3SXfn7feJiorC2bNnUb9+/czcLRERERHlEiEhIQgJCUn3dg4ODnBwcMiCiCi7ZGpicfPmTTRq1AgJCQmZuVsiIiIiyiVWr16NadOmpXs7f39/TJ06NfMDomyTqYkFEREREeVtAwYMgK+vr9aymJgY1K1bFwAQGBgICwuLFNuxtiL3S1diUbhw4feuZ00FERERUd6WWpOmqKgo5bW3tzesrKyyOyzKBulKLOLi4jBw4EBUrFgx1fX37t3LUNUXUXqEPHmJkKcvtZbFxL1SXgfdCoGFWcrhkB0KF4BDkQJZHh8RERFRXpSuxMLb2xtOTk7o2bNnqusvXLjAxIKy3JoDpzF9y5/vXF9/xNpUl0/p3gj+PZpkVVhEREREeVq6EovWrVvj+fPn71xfuHBh9OjRQ9eYiN6rf+vq+KRW2oc/1nAozNoKIiIioqySrsRiwoQJ713v5OSEDRs26BQQ0Yc4FGGTJiIiIqKcJs0T5BEREREREb1LuhKL+vXrazWF+vHHHxETE5PZMRERERERUS6TrsQiMDAQ8fHxyu/dunXL0MyKRERERERkWHRqCiUimRUHERERERHlYuxjQUREREREOkvXqFAA8Ouvv8LGxgYAkJiYiICAAPz7779aZd6exp2IiIiIiAxbuhOLtyfHGzBggNbvKpUKCQkJukVFRERERES5SroSi8TExKyKg4iIiIiIcjH2sSAiIiIiIp0xsSAiIiIiIp2lu48FEREREREAqNVqhIeHf7Bc8gmVg4KCYGFh8cFtbG1t4ezsrFN8lL2YWBARGZCQkJAMTVzq4OAABweH95YJi32FR3GvtJbFJhus43JENMyNjVNsZ2dmAntzk3THREQ5m1qthqeHB6JjY9O1Xd26ddNUztLcHMHXrjG5yEWYWBARGZDVq1dj2rRp6d7O398fU6dOfW+Z79SPseTmu5OWdqeup7p8hJsDRpZxTHdMRJSzhYeHIzo2Fsu9XOCW//01ELEJiWh36hoAYG9ND5gbv781/s3IGHxx4S7Cw8OZWOQiOicWgwYNwvTp02Fra5sZ8RARkQ4GDBiQYi6hmJgY5QlhYGBgqk0QPlRbAQBdnYviI/uC6Y7Jzoy1FUSGzC2/BSraWL63TPTrN7Wb5a0tYJkvZe0m5X46JxZbt27FqFGjmFgQEeUAqTVpioqKUl57e3vDysoqQ/u2N2eTJiIiejedR4USkcyIg4iIiIiIcjEON0tERERERDrTuSnUy5cvMyMOIiIiIiLKxVhjQUREREREOmNiQUREREREOmNiQUREREREOmNiQUREREREOtN7YrFy5Uq4uLjA3NwcNWrUwOnTp99Z9vLly2jfvj1cXFygUqmwdOnSFGWmTp0KlUql9VO2bNksPAIiIiIiIsrUxOLWrVto3Lhxmsvv3LkTI0eOhL+/P86dOwcvLy80b94cjx49SrV8dHQ0SpUqhblz56JYsWLv3G/58uUREhKi/AQGBqb7WIiIiIiIKO0yNbGIjIzE0aNH01x+8eLF6NevH3r16oVy5cph1apVsLS0xPr161MtX61aNSxYsACdO3eGmZnZO/ebL18+FCtWTPnhrOBERERERFkrXfNYLF++/L3rHzx4kOZ9xcfH4+zZsxg/fryyzMjICE2bNsXJkyfTE1YKN27cgKOjI8zNzVGrVi3MmTMHzs7O7ywfFxeHuLg45feIiAid/j4RERERUV6TrsRi+PDhcHBwgKmpaarr4+Pj07yv8PBwJCQkwN7eXmu5vb09rl69mp6wtNSoUQMbN26Eh4cHQkJCMG3aNNSrVw///vsvChQokOo2c+bMwbRp0zL8N4mIiIiI8rp0JRYlS5bEvHnz0LFjx1TXBwUFoUqVKpkSWEa1bNlSeV2pUiXUqFEDJUuWxPfff48+ffqkus348eMxcuRI5feIiAg4OTlleaxEREREhiYs9hUexb3SWhabkKC8vhwRDXNj4xTb2ZmZwN7cJMvjo6yTrsSiSpUqOHv27DsTC5VKBRFJ075sbW1hbGyMsLAwreVhYWHv7ZidXgULFkSZMmVw8+bNd5YxMzN7b58NIiIiIkqb79SPseRmyDvXtzt1PdXlI9wcMLKMY1aFRdkgXYnF9OnTER0d/c715cqVw507d9K0L1NTU1SpUgUBAQH49NNPAQCJiYkICAjAkCFD0hPWe0VGRuLWrVvo3r17pu2TiIiIiFLX1bkoPrIvmO7t7MxYW5HbpSuxKFeu3HvXm5iYoGTJkmne38iRI9GzZ09UrVoV1atXx9KlSxEVFYVevXoBAHr06IHixYtjzpw5AJL6cFy5ckV5/eDBAwQFBSF//vxwc3MDAIwaNQqffPIJSpYsiYcPH8Lf3x/Gxsbw8/NLz6ESERERUQbYm7NJU16VrsQis3Xq1AmPHz/GlClTEBoaCm9vbxw6dEjp0K1Wq2Fk9GZE3IcPH8LHx0f5feHChVi4cCEaNGiAI0eOAADu378PPz8/PHnyBEWLFkXdunVx6tQpFC1aNFuPjYiIiIgoL0lzYtGiRQtMnToVNWvWfG+5ly9f4uuvv0b+/PkxePDgD+53yJAh72z6pEkWNFxcXD7Yh2PHjh0f/JtERERERJS50pxYdOjQAe3bt4eNjQ0++eQTVK1aVZkr4tmzZ7hy5QoCAwPxyy+/oHXr1liwYEFWxk1ElOep1WqEh4d/sFxMTIzyOigoCBYWFh/cJjg4WKfYiIgo70lzYtGnTx9069YNu3btws6dO7FmzRq8ePECQNJoUOXKlUPz5s3xzz//wNPTM8sCpqwREhKCkJB3j+DwLg4ODnBwcMiCiIjofdRqNTw9yyI6OubDhZOpW7duFkVERER5Xbr6WJiZmaFbt27o1q0bAODFixeIiYlBkSJFYGLCTjq52erVqzM0SaC/vz+mTp2a+QER0XuFh4cjOjoGm8d9Bk9nu/eWjYl7hfoj1gIA/lrSDxZpGHnl4OlrmLIxIFNiJSKivEGnzts2NjawsbHJrFhIjwYMGABfX1+tZTExMcrTzcDAwFSbT7C2gki/PJ3tUNn9/eO+R8XEK6+9SzvAysL0g/u9qn6sc2xERHlZXmwNotdRoSjnSO1NHBUVpbz29vaGlZVVdodFRERElCvlxdYgTCyIiIiIiDJZXmwNwsSCiIiIMiQvNvUgSqu82Bok3YlFQkICjh8/jkqVKqFgwYJZEBIRERHlBnmxqQcRvVu6EwtjY2M0a9YMwcHBTCyIiIjysLzY1IOI3i1DTaEqVKiA27dvw9XVNbPjISIiokyUlc2V8mJTDyJ6twwlFjNnzsSoUaMwY8YMVKlSJcVFw9raOlOCIyIiIt2wuRIRZZcMJRatWrUCAPj6+kKlUinLRQQqlQoJCQmZEx0RERHphM2ViCi7ZCix+PPPPzM7DiIiIsoCbK5ElPXUajXCw8M/WC4mJkZ5HRQUlGpSnxpbW1s4OztnOL7skqHEokGDBpkdBxERERFRtsqMPkhqtRqeHh6Ijo1N1z40tYZpYWlujuBr13J8cpHheSyeP3+Ob7/9FsHBwQCA8uXLo3fv3rCxscm04IiIiIiIskpm9EEKDw9HdGwslnu5wC3/+2sgYhMS0e7UNQDA3poeMDc2+uDfuhkZgy8u3EV4eLhhJhZnzpxB8+bNYWFhgerVqwMAFi9ejFmzZuG3335D5cqVMzVIynxpqbIz9Oo6IiIiytsysw+SW34LVLSxfO/fi379ph9yeWsLWOYzzkjYOVaGEosRI0bA19cXa9euRb58Sbt4/fo1+vbti+HDh+Ovv/7K1CApc2Wkys4Qq+uIiIgob2MfpMyV4RqL5EkFAOTLlw9jxoxB1apVMy04yhpprbIz9Oo6IiIiIso8GUosrK2toVarUbZsWa3l//33HwoUKJApgVHW+1CVnaFX1xERERFR5vnwI+hUdOrUCX369MHOnTvx33//4b///sOOHTvQt29f+Pn5ZXaMRERERESUw2WoxmLhwoVQqVTo0aMHXr9+DQAwMTHBwIEDMXfu3EwNkIiIiIgotwmLfYVHca+0lsUmm0T6ckQ0zI1TtgaxMzOBvblJlseXFdKdWCQkJODUqVOYOnUq5syZg1u3bgEASpcuDUvL9/eEJyIiIiLSh6yaxE4z9cLbvlM/xpKb754jo92p66kuH+HmgJFlHD8YZ06U7sTC2NgYzZo1Q3BwMFxdXVGxYsWsiIuIiDIg5MlLhDx9qbUsJtkTs6BbIbAwS/kkzKFwATgUYR85IjJMarUanp5lER0d8+HCyaRnVMy3dXUuio/sC6Z7O7tUrtG5RYaaQlWoUAG3b9+Gq6trZsdDREQ6WHPgNKZv+fOd6+uPWJvq8indG8G/R5OsCouISK/Cw8MRHR2DzeM+g6ez3XvLxsS9Uq6Vfy3pl+rDmOQOnr6GKRsDUiy3N8+9TZoyKkOJxcyZMzFq1CjMmDEDVapUSTG+r7W1daYER0RE6dO/dXV8Ussz3ds5FGZtBREZPk9nO1R2f38zo6iYeOW1d2kHWFmYvrf8VfXjTInNEGQosWjVqhUAwNfXFyqVSlkuIlCpVEhI1jGFiIiyj0MRNmkiIiL9yFBi8eef765mJyIiIiKivCfdicWrV68wffp0rFq1Cu7u7lkRExERERER5TLpniDPxMQEFy9ezIpYiIiIiIgol8pQU6hu3brh22+/5WR4BiQvTuJCRERERJknQ4nF69evsX79ehw+fDjVUaEWL16cKcFR9smLk7gQERFR3sa5fzJXhhKLf//9F5UrVwYAXL+ufcOZfJQoyj3y4iQuRERElLdx7p/MxVGhCEDenMSFiIiI8jbO/ZO5MpRYvM+jR49gZ/f+GQ2JiIiIiPSNc/9krnSNCmVpaYnHj9/MLti6dWuEhLxplx8WFgYHB4fMi46IiIiIiHKFdCUWsbGxEBHl97/++gsxMTFaZZKvJyIiIiKivCHd81h8CDtvExERERHlPZmeWBARERERUd6TrsRCpVJp1Ui8/TsREREREeVN6RoVSkRQpkwZJZmIjIyEj48PjIyMlPVERERERJT3pCux2LBhQ1bFQURERDmcWq1GeHj4e8skH9QlKCgIFhYWadq3ra0tnJ2ddYqPiPQrXYlFz549syoOIiIiysHUajU8PTwQHRub5m3q1q2b5rKW5uYIvnaNyQVRLpbpE+QRERGR4QkPD0d0bCyWe7nALf+7ayFiExLR7tQ1AMDemh4wN/5wd86bkTH44sJdhIeHM7EgysWYWBARERmQrGquFBwcDABwy2+BijaW7ywX/TpBeV3e2gKW+Yw/uG8iMgxMLIiIiAyEWq2Gp2dZREfHfLjw/0tPcyUiovdhYkFERGQgwsPDER0dg83jPoOns907y8XEvUL9EWsBAH8t6QcLM5MP7vvg6WuYsjEg02IlIsPDxIKIiMjAeDrbobK74zvXR8XEK6+9SzvAysL0g/u8qn6cKbERkeHKUGKRkJCAjRs3IiAgAI8ePUJiYqLW+j/++CNTgiMiIiIiotwhQ4nFsGHDsHHjRrRu3RoVKlTg7NtERERERHlchhKLHTt24Pvvv0erVq0yOx4iIiIiIsqFPjy4dCpMTU3h5uaW2bEQEREREVEulaHE4ssvv8SyZcsgIpkdDxERERER5UIZagoVGBiIP//8EwcPHkT58uVhYqI9TN3evXszJTgiIiIiIsodMpRYFCxYEG3bts3sWIiIiIiIKJfKUGKxYcOGzI6DiIiIiIhysQz1sSAiIiIiIkouw4nF7t270bFjR9SsWROVK1fW+kmPlStXwsXFBebm5qhRowZOnz79zrKXL19G+/bt4eLiApVKhaVLl+q8TyIiIiIi0l2GEovly5ejV69esLe3x/nz51G9enUUKVIEt2/fRsuWLdO8n507d2LkyJHw9/fHuXPn4OXlhebNm+PRo0eplo+OjkapUqUwd+5cFCtWLFP2SUREREREustQH4uvv/4aa9asgZ+fHzZu3IgxY8agVKlSmDJlCp4+fZrm/SxevBj9+vVDr169AACrVq3CgQMHsH79eowbNy5F+WrVqqFatWoAkOr6jOyTiIiIKC8JCQlBSEhIurdzcHCAg4NDFkREhiJDiYVarUbt2rUBABYWFnj58iUAoHv37qhZsyZWrFjxwX3Ex8fj7NmzGD9+vLLMyMgITZs2xcmTJzMSVob3GRcXh7i4OOX3iIiIDP19IiIiopxu9erVmDZtWrq38/f3x9SpUzM/IDIYGUosihUrhqdPn6JkyZJwdnbGqVOn4OXlhTt37qR50rzw8HAkJCTA3t5ea7m9vT2uXr2akbAyvM85c+Zk6ANGRERElNsMGDAAvr6+WstiYmJQt25dAEnzlVlYWKTYjrUV9CEZSiwaN26MH3/8ET4+PujVqxdGjBiB3bt348yZM2jXrl1mx5jlxo8fj5EjRyq/R0REwMnJSY8REREREWWN1Jo0RUVFKa+9vb1hZWWV3WGRAchQYrFmzRokJiYCAAYPHowiRYrgxIkT8PX1xYABA9K0D1tbWxgbGyMsLExreVhY2Ds7ZmfVPs3MzGBmZpahv0lERERERBkcFcrIyAj58r3JSTp37ozly5dj6NChMDU1TdM+TE1NUaVKFQQEBCjLEhMTERAQgFq1amUkrCzZJxERERERfViG57E4duwYunXrhlq1auHBgwcAgC1btiAwMDDN+xg5ciTWrl2LTZs2ITg4GAMHDkRUVJQyolOPHj20OmLHx8cjKCgIQUFBiI+Px4MHDxAUFISbN2+meZ9ERERERJT5MtQUas+ePejevTu6du2K8+fPKyMqvXjxArNnz8Yvv/ySpv106tQJjx8/xpQpUxAaGgpvb28cOnRI6XytVqthZPQm93n48CF8fHyU3xcuXIiFCxeiQYMGOHLkSJr2SUREREREmS9DicXMmTOxatUq9OjRAzt27FCW16lTBzNnzkzXvoYMGYIhQ4akuk6TLGi4uLikadSp9+2TiIiIiIgyX4YSi2vXrqF+/fopltvY2OD58+e6xkRERJSjcYIxIqKUMjyPxc2bN+Hi4qK1PDAwEKVKlcqMuIiIiHIsTjBGRJRShhKLfv36YdiwYVi/fj1UKhUePnyIkydPYtSoUZg8eXJmx0hERJSjcIIxIqKUMpRYjBs3DomJiWjSpAmio6NRv359mJmZYdSoURg6dGhmx0hERJSjcIIxyk3UajXCw8PfWyYmJkZ5HRQUlGpi/Lbg4GCdYyPDkqHEQqVSYeLEiRg9ejRu3ryJyMhIlCtXDvnz58/s+IiIiIgog9RqNTw9yyI6OubDhf+fpuaNKL0ylFhomJqaoly5cpkVCxERERFlovDwcERHx2DzuM/g6Wz3znIxca9Qf8RaAMBfS/rBwszkg/s+ePoapmwM+GA5yjvSlVj07t07TeXWr1+foWCIiIiIKPN5OtuhsrvjO9dHxcQrr71LO8DKwvSD+7yqfpwpsZHhSFdisXHjRpQsWRI+Pj5pmk+CiIiIDFdY7Cs8inultSw2IUF5fTkiGubGxim2szMzgb35h5+IE1Hukq7EYuDAgdi+fTvu3LmDXr16oVu3bihcuHBWxUZEREQ52Hfqx1hy893zebQ7dT3V5SPcHDCyzLufnhNR7pSuxGLlypVYvHgx9u7di/Xr12P8+PFo3bo1+vTpg2bNmkGlUmVVnERERHqRlhF1gIyNqgMAtra2cHZ2znB8+tTVuSg+si+Y7u3s0tB+n4hyn3R33jYzM4Ofnx/8/Pxw7949bNy4EYMGDcLr169x+fJljgxFREQGQ61Ww9PDA9GxsenaLj2j6liamyP42rUsSy5CnrxEyNOXWstikjVfCroVkmpHXYfCBeBQpMB7921vziZNRPSGTqNCGRkZQaVSQUSQkKxNJRERkSEIDw9HdGwslnu5wC3/+2sgYhMS0e7UNQDA3poeMDc2+uD+b0bG4IsLdxEeHp5licWaA6cxfcuf71yvGQnobVO6N4J/jyZZEhMRGaZ0JxZxcXFKU6jAwEB8/PHHWLFiBVq0aAEjow9fRImIiHIbt/wWqGhj+d4y0a/fPGArb20By3wpOy3rQ//W1fFJLc90b+dQ+P21FUREb0tXYjFo0CDs2LEDTk5O6N27N7Zv3w5bW9usio2IiIh05FDkw02aiIgyQ7oSi1WrVsHZ2RmlSpXC0aNHcfTo0VTL7d27N1OCI20hISEICXn36Bvv4uDgAAcHhyyIiIiIiIgoSboSix49enDkJz1avXo1pk2blu7t/P39MXXq1MwPiIiIiHKdrOzQT3lbuifII/0ZMGAAfH19tZbFxMQoo48EBgamOrwhayuIiIhIgx36KavoNCoUZa/UmjRFRUUpr729vWFlZZXdYREREVEuwg79lFWYWBAREaVTWOwrPErWdAQAYpMNu345IhrmxilHhbIz47wPpH/s0E9ZhYkFERFROn2nfowlN989mEa7U9dTXT7CzQEjyzhmVVhERHrFxIKIiCidujoXxUf2BdO9nV0qHWKJiAwFEwsiIjJIWTlEt705mzQREb2NiQURERkkDtFNRJS9mFgQEZFB4hDdRETZi4kFEREZJA7RTUSUvYz0HQAREREREeV+rLHIodRqNcLDwz9YLiYmRnkdFBSUarX+24KDg3WKjYiIiIjobUwsciC1Wg1Pz7KIjo75cOFkNO2GiYiIiIiyGxOLHCg8PBzR0THYPO4zeDrbvbdsTNwr1B+xFgDw15J+sEjDGOkHT1/DlI0BmRIrEVFOkFW1vKzhJSJKOyYWOZinsx0qu79/htaomHjltXdpB1hZmH5wv1fVj3WOjYgop2AtLxFRzsDEgoiIcrWsrOVlDS8RUdoxsSAiIoOQFbW8rOElIko7DjdLREREREQ6Y40FERERkY5CQkIQEhKS7u1Sm8iRKLdiYkFERESko9WrV2PatGnp3s7f3x9Tp07N/ICI9ICJBRERGaSQJy8R8vSl1rKYuFfK66BbIal23nYoXAAORQpkeXyU/bKyVmHAgAHw9fXVWhYTE6OMPhYYGJjq8MasrSBDwsSCiIgM0poDpzF9y5/vXK8ZHeptU7o3gn+PJlkVFulRVtYqpJZ8REVFKa+9vb1hZWWV7r9NlJswschF+PSNiCjt+reujk9qeaZ7O4fCvF4aKtYqEGUtJha5CJ++ERGlnUMRPlQhbaxVIMpaTCxyET59IyIiIqKciolFLsKnb0RERESUUzGxICIiIkoHtVqN8PDwD5aLiYlRXgcFBaXafyM1tra2cHZ2znB8RPrCxIKIiIgojdRqNTw9PBAdG5uu7TQdxNPC0twcwdeuMbmgXIeJBREREVEahYeHIzo2Fsu9XOCW//01ELEJiWh36hoAYG9ND5gbG31w/zcjY/DFhbsIDw9nYkG5DhMLIiIiMjhZ1VwpODgYAOCW3wIVbSzfWzb6dYLyury1BSzzGX8wHqLcjIkFERERGRS1Wg1Pz7KIjo75cOFk0tNciYhSYmJBREREBiU8PBzR0THYPO4zeDrbvbdsTNwrZR6ov5b0S3Wi2eQOnr6GKRsDMi1WIkPCxIKIiIgMkqezHSq7O763TFRMvPLau7QDrCxM31v+qvpxpsRGZIg+3IuIiIiIiIjoA5hYEBERERGRztgUioiIiEhHYbGv8Cjulday2IQ3o0JdjoiGuXHKUaHszExgb/7+fh1EuQUTCyIiIiIdfad+jCU3Q965vt2p66kuH+HmgJFl3t8PhCi3YGJBREREeULIk5cIefpSa1lMslqGoFshqY4K5VC4AByKFHjvvrs6F8VH9gXTHZPdB0ahIspNmFgQERFRnrDmwGlM3/LnO9drhp1925TujeDfo8l7921vziZNREwsiIiIKE/o37o6Pqnlme7tHAq/v7aCiJIwsSAiIqI8waHIh5s0EVHG5YjhZleuXAkXFxeYm5ujRo0aOH369HvL79q1C2XLloW5uTkqVqyIX375RWv9559/DpVKpfXTokWLrDwEIiIiIqI8Te+Jxc6dOzFy5Ej4+/vj3Llz8PLyQvPmzfHo0aNUy584cQJ+fn7o06cPzp8/j08//RSffvop/v33X61yLVq0QEhIiPKzffv27DgcIiIiIqI8Se+JxeLFi9GvXz/06tUL5cqVw6pVq2BpaYn169enWn7ZsmVo0aIFRo8eDU9PT8yYMQOVK1fGihUrtMqZmZmhWLFiyk+hQoWy43CIiIiIiPIkvSYW8fHxOHv2LJo2baosMzIyQtOmTXHy5MlUtzl58qRWeQBo3rx5ivJHjhyBnZ0dPDw8MHDgQDx58uSdccTFxSEiIkLrh4iIiIiI0k6viUV4eDgSEhJgb2+vtdze3h6hoaGpbhMaGvrB8i1atMDmzZsREBCAefPm4ejRo2jZsiUSks2AmdycOXNgY2Oj/Dg5Oel4ZEREREREeYtBjgrVuXNn5XXFihVRqVIllC5dGkeOHEGTJinHoR4/fjxGjhyp/B4REcHkgoiIiIgoHfRaY2FrawtjY2OEhYVpLQ8LC0OxYsVS3aZYsWLpKg8ApUqVgq2tLW7evJnqejMzM1hbW2v9EBERERFR2uk1sTA1NUWVKlUQEBCgLEtMTERAQABq1aqV6ja1atXSKg8Av//++zvLA8D9+/fx5MkTODg4ZE7gRERERESkRe+jQo0cORJr167Fpk2bEBwcjIEDByIqKgq9evUCAPTo0QPjx49Xyg8bNgyHDh3CokWLcPXqVUydOhVnzpzBkCFDAACRkZEYPXo0Tp06hbt37yIgIABt2rSBm5sbmjdvrpdjJCIiIiIydHrvY9GpUyc8fvwYU6ZMQWhoKLy9vXHo0CGlg7ZarYaR0Zv8p3bt2ti2bRsmTZqECRMmwN3dHfv370eFChUAAMbGxrh48SI2bdqE58+fw9HREc2aNcOMGTNgZmaml2MkIiIiIjJ0ek8sAGDIkCFKjcPbjhw5kmJZhw4d0KFDh1TLW1hY4Ndff83M8IiIiIiI6AP03hSKiIiIiIhyPyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESks3z6DoCIKKcLCQlBSEhIurdzcHCAg4NDFkRERESU8zCxICL6gNWrV2PatGnp3s7f3x9Tp07N/ICIiIhyICYWREQfMGDAAPj6+moti4mJQd26dQEAgYGBsLCwSLEdayuIiCgvYWJBRPQBqTVpioqKUl57e3vDysoqu8MiIiLKUdh5m4iIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbhZomIklGr1QgPD/9guZiYGOV1UFBQqvNYvM3W1hbOzs46xUdERJRTMbEgIvp/arUanh4eiI6NTdd2monyPsTS3BzB164xuSAiIoPExIKIUhUSEoKQkJB0b5faZHK5RXh4OKJjY7HcywVu+d9fAxGbkIh2p64BAPbW9IC58ftblt6MjMEXF+4iPDyciQURERkkJhZEuVhW3vyvXr0a06ZNS/e+/f39MXXq1HRvl5O45bdARRvL95aJfp2gvC5vbQHLfMZZHRYREVGOxsSCKBfLypv/AQMGwNfXV2tZTEyM0uwnMDAw1X4FubW2goiIiHTDxIIoF8vKm//UajWioqKU197e3rCysspI2ERERGSAmFgQ5RJpHa0oLVJrQhUXFwczM7P3bpeRkZAAjoZERESUFzCxIMoF1Go1PD3LIjo65sOFk0nraEUAYKQCEiVr9s3RkIiIiAwfEwuiXCA8PBzR0THYPO4zeDrbvbdsTNwr1B+xFgDw15J+sDAz+eD+D56+hikbAz44GlJ6R0ICOBoSERFRXsHEgigX8XS2Q2V3R+X3kCcvEfL0Zbr341C4AByKFFB+v6p+DEB7NKSw2Fd4FPfqrS3lHa/fsDMzgb35h5MZIiIiMixMLIhysTUHTmP6lj/fuV5Tc/G2Kd0bwb9Hk/fu+zv1Yyy5+e6hbNudup7q8hFuDhhZxjHVdURERGS4mFgQ5WL9W1fHJ7U8072dQ+ECHyzT1bkoPrIvmO5926Wh6VVuk1rtTWzCm3ksLkdEw9w45TwWrL0hIqK8hIkFUS7mUES7SVNmsjfnTbEGa2+IiIg+jIkFERmErJyFnLU3REREH8bEgogMQlbOQs7aGyIiog9jYkFEuU5qkwXWqlULW7du1VoWFxeHPn36AAC+/fbbVCcAtLW1xblz5wAAwcHBWRQxERGR4csRicXKlSuxYMEChIaGwsvLC1999RWqV6/+zvK7du3C5MmTcffuXbi7u2PevHlo1aqVsl5E4O/vj7Vr1+L58+eoU6cOvvnmG7i7u2fH4RBRFsroZIGaBIOIiIiyht4Ti507d2LkyJFYtWoVatSogaVLl6J58+a4du0a7OxSTgR24sQJ+Pn5Yc6cOfj444+xbds2fPrppzh37hwqVKgAAJg/fz6WL1+OTZs2wdXVFZMnT0bz5s1x5coVmJubZ/chElEmysrJAjUTBRIREVH6fXja3Cy2ePFi9OvXD7169UK5cuWwatUqWFpaYv369amWX7ZsGVq0aIHRo0fD09MTM2bMQOXKlbFixQoASbUVS5cuxaRJk9CmTRtUqlQJmzdvxsOHD7F///5sPDIiykqayQI1P2kZQjc1DoULKPtwLVY4k6MkIiLKO/RaYxEfH4+zZ89i/PjxyjIjIyM0bdoUJ0+eTHWbkydPYuTIkVrLmjdvriQNd+7cQWhoKJo2baqst7GxQY0aNXDy5El07tw5xT7j4uIQFxen/P7ixQsAQERERIaPTReRkZEAgHM3HiAyJj7T9x+sfgQAuPQiCtGvEz5QOn1uRcUCSDqGzDh/WXkueB7eMIRzsfHQWWz6/fw7t3vXZIE9P/LB5y2qADCM85BZeC6SZOV5AHguNHge3uC5SMLz8EZmn4uMKlCgAFQq1fsLiR49ePBAAMiJEye0lo8ePVqqV6+e6jYmJiaybds2rWUrV64UOzs7ERE5fvy4AJCHDx9qlenQoYN07Ngx1X36+/sLAP7whz/84Q9/+MMf/vCHP6n8vHjx4oP39nrvY5ETjB8/XqsWJDExEU+fPkWRIkU+nJnlQhEREXBycsJ///0Ha2trfYejNzwPb/BcJOF5eIPnIgnPwxs8F0l4Ht7guUiSV85DgQIfbnKs18TC1tYWxsbGCAsL01oeFhaGYsWKpbpNsWLF3lte829YWJjWpFdhYWHw9vZOdZ9mZmYphqEsWLBgeg4lV7K2tjboD0Ba8Ty8wXORhOfhDZ6LJDwPb/BcJOF5eIPnIgnPg547b5uamqJKlSoICHgzCktiYiICAgJQq1atVLepVauWVnkA+P3335Xyrq6uKFasmFaZiIgI/P333+/cJxERERER6UbvTaFGjhyJnj17omrVqqhevTqWLl2KqKgo9OrVCwDQo0cPFC9eHHPmzAEADBs2DA0aNMCiRYvQunVr7NixA2fOnMGaNWsAACqVCsOHD8fMmTPh7u6uDDfr6OiITz/9VF+HSURERERk0PSeWHTq1AmPHz/GlClTEBoaCm9vbxw6dAj29vYAkibDMjJ6U7FSu3ZtbNu2DZMmTcKECRPg7u6O/fv3K3NYAMCYMWMQFRWF/v374/nz56hbty4OHTrEOSz+n5mZGfz9/VOdhTgv4Xl4g+ciCc/DGzwXSXge3uC5SMLz8AbPRRKehzdUIiL6DoKIiIiIiHI3vU+QR0REREREuR8TCyIiIiIi0hkTCyIiIiIi0hkTCyIDxi5URERElF2YWBAZqDt37mDXrl0AmGAQERFR1uOoUGSwRAQqlUrfYejFlStXULlyZbi6uiI4OFjf4eQYcXFxHA6Q6C15+VpJ9LbExEStaQ4A4NGjR7Czs9NTRLkLayzIoFy8eBFTpkwBgDz7RRkUFIRq1arBzc0NJiYmiIuL03dIeqNWq7F3714AwM6dOzFx4kTExsbqOaqcIS8/U8rLx55cfHw8gKQbqbzs7fdDXj8feZ2RkRFu3LiBr7/+GgCwa9cu9OvXD6GhoXqOLHdgYmGg8uIX54ULF1CzZk19h6FXFy5cQO3atTF58mRs374dt27dglqt1ndYehEbG4vp06djzpw5GDVqFPz8/FC+fPk8O1Hm2zdLmsQ7r10rEhMTlWMPCgrCo0eP9ByRfly9ehX9+/dH06ZNMXXqVFy7dk3fIemF5v0QGRmJqKgoREZGpnhandfktWvC2xISEvDDDz9gyJAh6NOnDzp16oR27dqhWLFi+g4tV8jbnx4DkPxmYenSpfD39weQdNOQly4OmhvqESNGYPr06foORy+CgoJQp04dDB8+HOPGjYOIwNjYOM8+oTc3N8fYsWNhbm6OxYsXY9CgQejVqxeAvPdEMnnV/oYNGzBmzBj06NEDhw8fzlPXieTnYdKkSRg2bBiOHj2a5z4jFy5cQK1atWBsbAwHBwccPHgQO3bsAJC3bio174dLly6hSZMmqFu3Ltzc3DB37lxcunRJ3+HphaZZXGBgIKZPn44vvvgCe/bs0XdY2crY2BhDhgzBZ599hg0bNqBLly7o2bMngLz33ZERTCxyseRfkn///TcuXLiAGTNmKNV3eSW5uHTpEmrXro1Ro0Zh1qxZyvKNGzcqnZcN3c2bN1GnTh0MHToUs2fPBgC4uLigSJEiePDgAYC8eUG0t7eHlZUVqlatisuXL2P79u0Akqq689L50FwnxowZgylTpuDJkycoVKgQmjVrhuXLl+eZ5nLJk4o1a9Zg/PjxaNasWZ6qxbp48SLq1KmDwYMH49tvv8WWLVtQp04dBAcHIzY2FuHh4foOMdsYGRnh3r17aNSoEapXr44pU6Zg8ODB2LBhAyZPnozff/9d3yFmO5VKhb1796JNmza4cOECEhIS0KFDB3z55Zd48eKFvsPLNsbGxihcuDA+/vhj/PTTT1i8eDGApPdMQkKCnqPL4YRyvbFjx0qNGjXEz89PXF1dxczMTObOnausT0xM1GN0WSs8PFzKlSsnlSpV0lo+a9YsKViwoJw6dUpPkWWvn3/+WVavXq21LCYmRkqUKCFff/21iGi/D44ePSqPHz/O1hizy9vv91evXsnly5elY8eOUqdOHdm2bZvW+pcvX2ZneHrzyy+/iJOTk5w5c0ZERI4fPy4qlUq+++47pYwhXys0zp07J+7u7nLs2DEREXn+/LkEBwfLunXrlOuFoZ6Hhw8fikqlkl69emktHzx4sHh6eoqHh4eUKVNG1q9fr6cIs4/m//jbb7+VmjVraq07cOCANG/eXD766CM5evSoPsLTmxs3boirq6t88803IiISGRkpFhYWMmbMGD1HlvVS+9xHRUXJ1KlTJX/+/LJo0SKtdbdv386u0HIVJha53J49e6RAgQISGBgor1+/llu3bsnEiROlQIECMn/+fKWcoX5RhoaGyqhRo6RixYoybdo0ERFZsGCBFClSRH799ddUt0lISMjOEPXi9evXkpiYKFWqVJE5c+ZorRs3bpy4ublJSEiInqLLOpr3+alTp2Tt2rXi7+8v165dExGRK1euSKdOnaR+/frKzfSUKVNk9OjR8urVK73FnF02b94sbdu2FRGRnTt3Sv78+ZWbh2fPnsndu3f1GV6Wefvzfu3aNSlXrpz89NNPcubMGRk4cKCUKVNGypQpI+bm5vLHH3/oKdKs9+LFC6ldu7aULVtWLl26JCIi8+bNEwsLC1mzZo2sXr1aevXqJSqV6p3XT0OzceNGKVmypNy/f19r+eHDh6VRo0bSu3dvCQ8P11N02e/8+fNSp04dERG5deuWFC9eXPr376+s11xPDY3mu+PPP/+U2bNnS/fu3eXXX3+V0NBQiYuLk2nTpom1tbUsXLhQRESmTp0q7dq1yzMPptKDiUUut2DBAqlatarWsgcPHsjgwYNFpVIpT6sN2cOHD8Xf31/KlSsnDRo0EFtbW/nzzz9TlNu3b1+2x5Ydkt84vX0T1aZNG+ndu7fy+5QpU8TCwkJOnz6dbfFlt927d0vRokWlWbNm0rBhQ60k+9y5c9K9e3dxdXWVOnXqiLm5uUGei9SS5zVr1kitWrVk586dYm1trXVt2Lx5s3To0EGePXuWjVFmveTn4fTp03Lv3j159OiRNGnSRKpVqyampqYyaNAg2bt3r/z3339SvXp1WblypR4jzhpxcXHK65cvX0qjRo2kTJkyMmzYMClatKhWEnHlyhWxt7eXKVOm6CPUbPf7779LkSJF5IcffhCRpIcyGjt27BALCws5fvy4vsLLdoGBgeLi4iJHjx4VV1dX6d+/v3JOjh8/Li1atDDYJ/WaB7X9+vWTtm3bipeXl7Rv314iIyMlLCxM5s6dKyqVSqpUqSL58+dXan9JGxOLXG737t1SvHhxCQoK0loeEBAgJiYmYmlpmaL6zlAkJiYqTxkePHgg/v7+4ujoKF26dFHKaC6IU6ZMEZVKJXfu3NFHqFlCc+wxMTFaNw4ib26ounfvLi1bthQRkcmTJ4u5ublBXwwvXrwojo6OsmHDBhFJuqFSqVQyc+ZMpcz169dl06ZNMnbsWLl69aqeIs06yW+mDx8+LBcuXBARkatXr0r9+vXFxMREqzYzKipKfH19pXfv3gZVs5n8WMaNGyfVq1eXdevWiUjSufjll1/k6NGjyvl6/fq1VK1aVb799lu9xJtVbty4IYMHD5bDhw8rNXMvX76U1q1bi0qlklWrVonIm/dNRESEVKtWTanNMhSa43v16pXExsZqrevdu7cULlxYLl68KCLayUWlSpVk0qRJ2RdoNtJ8Ri5duiRnzpyR+Ph4iYyMlLZt24qVlZV07NhRq/y4ceOkQYMG8ujRI32Em6Vu3LghHh4esnbtWhFJaiJpbm4uEyZMUMq8fv1aAgMDZcmSJXLz5k19hZrjMbHIJd7VfOf69etSuXJl+eKLL+T69evK8osXL0q3bt1k+vTpUrFiRTl//nw2RZq1Hj58KBcvXkzxxSAiEhISIv7+/uLp6Sn+/v7K8kmTJomlpaVB3VBrvhAOHjworVu3ltq1a0vnzp3l/v37WjdUs2fPlnbt2snkyZPFzMzMoM5BagICAqRx48YiIhIcHCzOzs7St29fZb0hNv9K7u2b6dKlS8v27dslIiJCRJKavXh6ekrfvn3l9OnTcvDgQWnRooVUqlRJuek0pORCRGTmzJlia2srf/zxhzx//jzF+piYGLl37560bNlSqlSponVTmdtduHBBnJ2d5bPPPpONGzdqrXv+/Lk0a9ZMSpUqpfVgatKkSeLs7GxQD2E035+XL18WPz8/qVWrlvzvf/9Tzsnr16+lWbNmYmdnp9UvLz4+XmrXrm2QtViaz/nevXvF0dFRlixZojQH27hxo5QvX146d+4sp0+flpMnT8qoUaPExsZGSb5yK8174e2HcUFBQVKxYkV59eqVXL9+XZycnKRfv37K+tOnT7PZUxoxscgFkicVK1eulC+++EJatGghu3fvlqioKNm9e7eUKVNGevXqJbt375aLFy9KixYtpFevXvLPP/9IgQIFDKIZ0MWLF8XNzU2mTp0qt27dUpZ/8803SjX2vXv3xN/fX8qWLSvz5s2T2bNnG+xT+v3790uBAgVkxIgRsmvXLildurQ0adJEjh8/rrxntmzZIiqVSqysrAzuHFy9elWWLl0qUVFRyrL169eLl5eXPHr0SFxcXKR///7KuThw4IAMHDgw1ZtLQzN9+nSxt7eXI0eOSExMjNa6pUuXSt26dSVfvnxSo0YN+eSTTyQ+Pl5ExKBuqhMTE+Xhw4dSs2ZN2bp1a4p1IknX1sWLF0uzZs2kTp06BnUerl+/LsWKFZOxY8emeA9oREZGSv369cXFxUVu3bol06ZNE3Nzczl79mw2R5v1rl27JgULFpQePXrIhAkTpFGjRlK+fHnl5jEiIkLatGkj+fPnlylTpshXX30lX375pRQsWFDroZ0hOXjwoOTPn1++/vrrFNfFDRs2SOPGjcXY2FgqVaok1apVS9EyIre6c+eODB8+XOt9fvToUalatarcvXtXXFxcpG/fvsp3x6lTp2Tw4MEG+z7IbEwscpExY8ZI0aJFZcaMGdK3b19xdXWVPn36iEhSG+lPPvlEzMzMxN3dXXx8fCQ+Pl5iY2OlUqVK8ssvv+g5et3cvn1b7O3tZfz48SmeOvfo0UOKFCmitA9/8OCBTJ8+XWxsbMTIyMjgbqhFkm4aKlasKMuXLxeRpKePTk5Okj9/fvH09FSSi8DAQKlQoYIEBwfrOeLMt379elGpVDJv3jyJjo4WkaRRwqpVqyb58uVTPhuam8jRo0dL8+bN5enTp3qLOTuEhoZKtWrVZNOmTSKSVMt34sQJGTFihKxZs0Ypd+HCBXny5IlyfgyxA3toaKiUKFFCdu/eLSLatTGxsbHy/PlzUavVsnnzZiWZMJTz8OWXX0rHjh21kqSnT5/Kv//+K7/99ptcvnxZRESio6OlcePGolKpxNLS0iCTCpGkZPvTTz9Vfn/69Kl888034uzsLN26dVOWz5gxQxo1aiTlypWTJk2aGExt/9tiY2OlXbt28sUXX4hIUpJ57do1mTFjhqxatUq5pp49e1YePnxoUNfNffv2iZ2dnQwYMEBpKioiUr58eVGpVDJ06FCt8qNHj5a6desaZBOwrMDEIpf4448/pHTp0spNckBAgOTLl0+2bNmilImNjZXg4GC5fPmy8gX65ZdfSqlSpeTBgwd6iTuzLF26VHx8fFJdFxkZKa1bt5adO3cqy+7fvy9z58412BEsgoKCZNasWRIXFycPHjyQUqVKyZAhQ+TFixfi6uoqjRo1UobTNKQvhLetWrVKVCqVzJkzR6KjoyU+Pl4WL14snp6eMnDgQImJiZFLly7J+PHjpWDBgspIOIbs0aNHUqNGDZk3b57s3btXunTpIrVq1ZLKlSuLu7u70mY4+U22oY6UFhISIg4ODjJr1iwR0a6JOH36tMyePVurxssQaipEkv5vP/nkExk+fLiybN++fdK1a1extrYWc3Nz8fb2lu3bt4tI0oOJ3r17G8wT6dT07t07xbCykZGRsnHjRnFzc5Px48cry1+8eCHR0dEG3fTl9evX0qFDB/nf//4np0+flkGDBslHH30kTk5O4uPjI506dUrRXCg3e7uJ565du6Rs2bLSt29fOXfunIgkdU738PCQJk2ayOXLlyUgIEBGjRol1tbWub4JWHZiYpFDaarkNX788Uflorhjxw4pUKCAMqpLRESEHD16VHnCIJI0ZFqXLl2kaNGiyocmN/v222+lSJEisn79egkLC5OrV6/KhQsX5Ny5c3Lo0CGpX7++jBw5Um7cuCGnT5+WV69eGezNkkjSl4KmFuLzzz+Xzp07KzdIvr6+olKppGrVqqn2RTEEyW8AV65cKSqVSrl5fP78ucycOVM8PDzE0tJSKlSoIBUqVDCIz8Hb3vUeHzRokFSqVEny5csnY8aMkT/++EMSExOlY8eOMnr06GyOMuu977O+cOFCMTIyUm6iRZIewjRv3ly6dOlicH1KNEaNGiUFCxaUvXv3yvDhw6V48eLSp08f+fnnn+Xff/+VFi1aaF03DOl6mfz/VFMD9d1330nVqlXl5MmTWmWfPn0qEyZMkNq1a4tarRYRwzoX7zNnzhzx9PQUc3Nz6dixo+zYsUNiY2Nl0qRJ0qZNG32Hlyne97Bg27ZtUrZsWenTp4/8+++/IpL00LZixYpSrFgx8fDwkNq1axtsrVVWyafvCfoopaNHj+LGjRuoW7cuypYtCwCIioqCiYkJfv/9d/Tv3x9z5szBwIEDAQABAQH4/fff4e7uDgsLCwBAuXLl4ODggKNHj8LT01Nvx6KLu3fvolChQrCxsUGVKlXQu3dvTJw4EXPmzIGVlRWePXsGMzMzWFhY4ObNmzh27BgOHTqE8PBw/PvvvyhatKi+D0Fn8v8zp6tUKty/fx8qlQqRkZHw8PBA2bJlISJQq9Vo0qQJLC0tAQClS5fGmTNnULhwYZiZmekz/Ex1/fp1rFixAh07doSDgwNKly4NEcGgQYOQkJCAYcOGISEhAZMnT8aYMWMwZMgQHDlyBG5ubrC1tYW9vb2+DyFTJSYmKjNJ//LLL3j69Cni4uLQrVs3rFy5Ejdu3EBcXBwqVKigbPPo0SO4u7vrK+Qskfw8rF27FteuXUN4eDj69+8Pb29v9O/fHw8fPkSXLl3w888/w8jICGq1Gk+ePMFPP/0ElUoFEYFKpdLzkegmOjoa0dHRuHjxIjw8PODn54eXL19i+PDhyJcvH5YsWYLatWujePHiAIAKFSrgjz/+gLGxMYA3s5Lndpr3w9OnT1G4cGHky5d0m+Pj44OoqCisXbsWxYsXh5OTEwCgUKFC6NmzJ+bMmYOLFy/CycnJYM6Fhub9HRQUhP/++w+PHz9Gp06dMG7cOLRt2xaPHj1CvXr1lHP37NkzGBsbIzY2FmZmZrn6s2FsbIzLly9j7Nix6NSpE5ycnNCwYUMAgJ+fH/Lly4dJkyZBRDBy5Eg0btwYFy9exJkzZ2Bvb4/8+fOjUKFC+j2I3EafWQ2ltHHjRnF2dpZhw4Zpja8fFRUlbm5uolKpZPPmzcrymJgYadWqlXTr1k2rQ2Lyf3Oj+Ph4adSokRQrVkyrKc/EiROVEZ807cNfvnwpY8eOFV9fX7lw4YLy1Cm3e/LkifJ637594uXlJRUqVBB7e3sZM2aMMoJHzZo1pUGDBrJv3z4ZPny4FClSRB4+fKivsLNERESEVK1aVVQqlTg7O4uPj4+0bdtWVqxYofS52b17t6hUKpk/f74yClJe8OWXX4qdnZ34+PiIpaWlVK1aVXbs2KE8qXv+/Ln8+++/0rJlS2XUE0M0duxYKVq0qAwePFgaNmwo3t7esmDBAomMjBSRpDHq27dvL35+fjJmzBjlPBjC+bh27Zr06NFDypYtK2ZmZlK4cGHp0qWLUnv79vwkiYmJ0q9fP+ndu7dBNXfRCA4OFmNjY/nyyy+1lv/2229iYmIi/fr102om++zZM6latapBT464a9cuKVy4sFSqVEkKFCgg7u7usnbtWq3mXrdu3ZKxY8eKtbW1wTQbjY+Pl4YNG4pKpZIKFSpIgQIFpFmzZvL5559LUFCQxMXFya+//ioVK1aUQYMGGWwfo+zExCIH2bx5s1hYWMjWrVslLCwsxfpDhw5JiRIlpGXLlhIQECDff/+9NGvWTCpUqGCQQ0VeunRJqlWrJp6enkpyMX78eKlevbryu2Yuiz59+mjNVZDbPX78WIoXLy7BwcHyxx9/iKWlpaxatUpCQ0Nl3bp1olKptEbCcnNzE3d3dylTpoxBNvmJioqSdevWSZUqVaRixYoSGBgoHTp0kIoVK0qhQoWkcePGsn79eunUqZPkz59fFixYYNDtozW+++47sbe3l/Pnz0tkZKQ8f/5cfH19pW7durJ//34REdm6davUq1dPmjdvblCjHiW3bt06cXFxUd77v/32m6hUKilXrpzMmjVLGfHm7ZtoQzgPFy5cEAcHB2X41ODgYBk9erS4ubmJh4eHnDhxQqt8TEyMTJgwQezt7eXKlSt6ijpr7dixQwoVKiT29vZK52SNAwcOSKFChaRt27aydu1auXTpkowaNUrs7e0N5qHU2/cBQUFBUrRoUdm4caOEh4fLq1evpEePHlKtWjVZt26dvH79Wo4dOyYtWrQQLy8vg+trc/nyZfH29hYfHx85dOiQTJs2TerUqSMuLi5SrFgxmT17tjRs2FDc3d3Fz8/PIAc7yU5MLHKIu3fvSvXq1VOMNR4bGyvXrl2TGzduiEhS3wkfHx9xdnaWatWqSceOHQ3uZiF5zUtwcLDUrl1bfHx85NmzZ3Ls2DGpXLmyfPnll3Lv3j25dOmSTJgwQYoUKWJQF4Pbt29LiRIl5MKFCzJx4kTly/HWrVvi7u6uNb62SNJTmTt37hhkR23N+yE+Pl62bt0qxYsX17pZ2LJli/j7+4urq6vUqlVLVCpVipouQzVjxgxp2LChvHr1Snm48OzZM6lfv740b95cKffHH39oTRBmSOLi4mTFihWyYMECEUmqmShYsKCsXLlS+vTpI0WKFJHZs2dLeHi4niPNfBcuXBBLS0sZP358iv/XnTt3io+Pj1SvXl2ZKXn58uXSvXt3KV68uEE+gNDYu3evctNctGhRrU7sIkkd9zt06CAODg7i4eEhHh4eBnE+3tVKYdeuXeLh4SGhoaFKmcTEROnatatUqFBBuYcICAiQ//77L9vizQ6a748rV66Ig4ODdOzYURnd6cKFC7JmzRpp27atVK5cWVQqldjZ2RlcjX92Y2KRQ9y4cUPc3Ny0qmI3bNggXbt2FXNzcylUqJBMnjxZWXf79m15+vSpQQ0VmXys9eSd17/88ktRqVRSrVo1ef78ucydO1c8PT1FpVKJp6enQU0AmFyVKlVk+vTp0qhRI1m8eLHExsZK8eLFpX///sr/+7Jly+Tw4cN6jjRrhIWFKV8Ae/bskd27d8vr169l69atUqxYMa0hIkWShpq9du2azJkzx2CfxGpoHiKMHTtWqlatqizXfIZOnDghFhYWKUYyyc3NIzUePnwoT5480arVvXPnjoSGhsrdu3elYsWKsnjxYhFJemBTuHBhcXFxkfXr1+sr5CyhVqvF1tZWOnTooCxLTEzU+i5Ys2aNWFtby5o1a+T+/fsyZcoU+d///mewo+VphISESLt27SQ0NFSWLVsmRYoUkUmTJsmwYcOUIbojIyPl4cOHcv36da1mp7mV5rN9584dWbBggUyePFmZv2Xfvn1SrFgxefHihYiIMtDLixcvxMLCQhmO2dBdvnxZHBwcpHHjxloPnuLi4iQqKkp27NhhUBND6gsTCz1asWKF8vrcuXNSokQJWb58uVy6dEl69OghPj4+0rNnT9m0aZMsWbJE8uXLJ9u2bUuxH0O4Wbh//7506NAhRRvXefPmSZEiRWTdunXK07dnz55JaGio7NmzRy5cuJBqs7HcTPP/2b59e5k2bZrs2LFDmjRpIvb29jJo0CCt8fa7du0qY8aMSTGKWG4XEREhRYoUkdGjRytNvzRfklFRUbJ161ZxdHTUSi4MIbl+l3d9xs+ePStGRkYyZ84creUBAQFSvnx5g3v6uHXrVqlRo4aUKlVKPv74Y2VIZY3Dhw+Lh4eHUnt54sQJ6datm8yfP99ganQ17ty5I9WqVRNfX98U5yF5U5j69esryUdkZKTW6IGGKjQ0VEqXLi0XLlyQmJgY2bJli1haWopKpZJ79+6JiGFdLzTXh6CgIHFwcJC6detKwYIFxdHRUcaPHy8RERHi6OiozO2jce/ePfH09JS//vpLH2FnGc37/8aNG3Ls2DE5d+6cUgtx+fJlKV68uHz00UfKvYMh3EPlJEws9GTz5s3Svn17rRvC0aNHS8GCBcXe3l7Kli0rP//8s/LE9sGDB+Lu7q6VjBiSW7duSa1ataRVq1YSGBgoIklD4RUuXFh+//13EUmqyvTy8pLKlSsbxBOm5G7duiUrVqyQ4OBgpZ3vli1b5KOPPpIff/xRvLy8xMvLS3nSGBcXJxMmTBBnZ2eDnQ300KFDYmpqKsbGxvLVV19prUueXPTq1UtPEWaP5DeJ+/btk6VLl8revXuV98KiRYvE1NRUJk6cKNeuXZPr169L69atpVGjRgb1hblq1SoxNTWVb775RpYsWSIfffSRDBo0SKvMjz/+KG5ubrJhwwa5du2afPLJJ/K///1PWW9oycX169elRYsW0rx5c63kIvl7pmHDhuLn56eP8PRCc+xt2rRRarI7duwoBQsWlEKFCsnYsWP1GF3m0xzvxYsXxcLCQqZMmSJRUVFy7949+d///id2dnZy7Ngx2b17t1hbW0uvXr3kwYMHcvfuXfH395cSJUoY1AMIzfnYs2ePlCxZUipVqiTlypWTpk2bat1LlChRQlq1amVwDyZzAiYWenL58mXlicmhQ4eU5WfOnEl1puj79+9LtWrVDLrKUvMl2aZNG+nXr58ULVpUfv31V60ywcHB4urqKjVr1jSYm6b4+Hjp2LGjODs7i6urq1hbW0uLFi2kdOnSUqJECXn69Kns3btXvL29pVy5ctKmTRtp2bKlwcxR8rbExERJSEiQkJAQUalUolKpZMKECSm+AKKiomTbtm1iamqqdfNoSJLfIH755ZdSqFAhKVu2rHh6eoqjo6McOXJERETWrl0rhQoVEkdHR3Fzc5OaNWsqDy0M4XOyfv16MTU1lR9//FFZNnnyZOnatatcuXJF/vnnHxFJ+iy1a9dOnJ2dxdHRUapWraqcB0Ma2CK55MmF5qGMSNL/+3///SctW7ZU+u4Z6jlITb9+/WTlypXSs2dPcXBwkKNHjyq1nxMnTtR3eJkqNDRUSpUqJbVr19Zafu7cObGyspKDBw+KiMj+/fvF0dFRHBwcxM3NTZydnQ1yFKTjx4+LjY2N8iB269atYmRkJAsXLlTKXLlyRczNzaVdu3YGcY3MSZhY6MFXX30lbdq0kWfPnsnx48elWLFiWp1R336q9vTpU2ndurXUq1fP4J64ve3atWvy0UcfiYWFhdZFIPkH/9q1a0pnREOhmaTq+vXr8sMPP8hXX30lHTp0kLJly0rbtm0lMjJSLly4ILNnz5auXbvK/PnzDbKmQnPjExoaqvz7008/iUqlkpEjR6ZILhITE2XXrl0G2WY8+Wf9+PHjUq9ePfn7778lNjZWLl68KP369RNTU1PlSfWDBw/kr7/+khMnThhUR+3z588r///JNWnSRJycnMTJyUksLCxkxIgRIpJUm3fs2DH5448/tJoNGrJ31VyMHTtWvLy8DOqJdHKa68WlS5fk999/lx9++EE51oULF4pKpRI3Nzfl5vnZs2fy7bffGsz1QtOs7d69e9KxY0epX7++VquGf/75R6ysrCQgIEBZ9uLFCzlw4ID8+eefypDlhkLzfpgzZ4507txZRJL6Irm4uMjAgQOVcprvl6tXrxrk96i+MbHIZmvWrBGVSqXUPISGhsrMmTOlfPnyMmrUKK2yjx8/lq1bt0rLli2lcuXKBjf607vcvHlTmjVrJi1bttT6kjTkpwrvepK4b98+qVmzprRu3VoeP3783rK5nea4fvzxR2natKls27ZNec9///33olKpZPTo0UpyMXfuXNm7d6/e4s0qb9dYfvfdd9KxY0fx9fXVukEOCwuTbt26Se3atZUmk8kZ0nWiS5cuYmtrKz/99JOIiHTo0EHKlCkj//zzj5w5c0aWLFkiKpUq1T5ohnQe3id5cnHu3DmZN2+e5M+f3+CGDn3bnj17xN7eXho0aCCOjo7StGlT2b59u0RERIifn1+Kz5OhfI8sWbJEvvjiC+WacOvWLenTp4/UqFFDtmzZImFhYeLo6CjDhg1Ttskrn4Vp06bJmDFjJCQkJMWAJ7/88ot8/fXXysM8ynxMLLLRqlWrxMTEJEVzplevXsncuXOlXLlyWsnFhg0bpHbt2tK/f3+DmswpLd5VvZ9XJJ/kcMeOHdKgQQOpUaOGklwYqr1794q5ubksWrRIbt68qbVu27ZtYmJiIp999pl07txZzMzMDK4p2Ny5c6VChQry888/K8sGDRokRYoUEWdnZ6VvkeZLctu2bVK8eHG5e/euXuLNaslvhLp16yYFCxaUmjVrSqVKlbSewt+5c0ecnJxk1qxZ+ggzx7h+/bp8/PHHYmdnJyYmJqk2qzUkp0+fFltbW1m9erWIJA2rrFKpZO7cuSJiOElEapYuXarV504kqTa/T58+UqVKFbG0tJQhQ4aIyJvmpYZM0ylfJCnpsrOzE0dHRxk8eLCy/PXr19K7d28ZNGiQ1iiUlLmYWGSTgIAArUnNND7++GP56aef5OnTpzJnzhwpV66cjB49Wll/48YN5SYirzxt0NB8SdasWVNOnjyp73Cyneb/PTExUTZt2iQtW7bUungamtu3b4unp6dyk/D69WuJjY2VgIAAZQ6CvXv3Svv27aVdu3Zy4cIFfYabJQ4dOiRt27aVxo0ba/UnmDlzphQvXlyGDx+uNcb6uXPnxNXV1eCGW05eK5f8df/+/UWlUsk333yjtTwsLEwqVaqUYh6gvOjq1avi6+sr//77r75DyXKrVq1S5mu5efOmlCpVSvr376+sN+TrpcaJEyekb9++Sq3l9evXpW/fvuLq6qo16IUh3z9cuXJFKlWqJPPnz1eWtW/fXszNzeXy5csSExMjkZGRMm7cOClWrJhBzXmVEzGxyAavXr2Sffv2KUMkarRv3148PDzk1q1bIpLU9Gnu3LlSsWJF6d27t9Y+DP1pw7sEBwfLZ599lie+IFKTPLmIiIjQczRZSzP537Fjx+T169cyb948qV27thQpUkQcHByUJ9TR0dESGxur52gzV/J20X/++ad8+umn0rBhQ2X2bBGRcePGiZeXl3Tr1k3OnDkjp0+flubNm0v16tUN6vqQ/FgeP36col9N165dxcbGRnbt2qWUbdmypdSsWdOgb57Sw9CGn36XxYsXy8CBAyU6Olpp8qJ5Txw4cECWLVsmL1++1HOUWUtzzzBw4EDlAcyNGzekT58+UrNmTfn666/1HGHW0xxvtWrVZMmSJSKS1Leidu3aUqhQIalUqZI0bNhQHB0dDa6WOydiYpGFWrdurTw1iouLkwMHDoiHh4e0bNlS2rdvL97e3kpzD80NZHh4uEycOFG6du1qsG3p00tTzZtX5ZX3we3bt6VZs2ZSs2ZNcXBwEF9fX5kxY4YEBweLm5ubTJgwQd8hZokDBw5IsWLFtMaYf1dyMXHiRClUqJBYW1vLp59+Kn379lWSLENKLkSSjrVq1apSsGBB6d27t2zYsEFZ5+fnJwULFpQ9e/ZIy5Ytxd3dPc/0QcurNNfBu3fvKu/5n3/+WVQqlRQoUEBGjRql9Rno37+/dOnSRSIjI/USb3ZJSEiQ+fPnS61ataR///5KcnHt2jXp37+/lC1bVtauXavnKDNXat+Jt27dkiFDhoi3t7fWg5q1a9fKwoULZcuWLQbbZDSnYWKRRW7fvi2jRo3SuimOjo6Wn376SZk6/u2JejQflufPnyuvDe1mgUjkzXs9JiZGq/bhzz//lMWLF8uiRYuUkTtERJo3by7ffPNNtseZHV68eCFfffWV+Pj4aM3JkTy52Ldvn7J8+vTpUr58eZk8ebJyjgwh+U5+rVuxYoXY29vLt99+K8uXL5ePP/5YKleuLAsWLFDK9OjRQ1QqlVSoUEFJKvJKH7S8RnO9+OGHH6RGjRqyfPly5f964sSJYmpqKj///LO8evVKwsLCZNy4cVK0aFG5cuWKPsPOdMknfrtx44bSxyIhIUHmzJmTIrm4cuWKDB061CBnk/77779lx44dWstu3rwpQ4cOlQoVKuSJmpqciolFNli0aJEyulFUVJT88MMP4unpqbQNFUn9CzGvPKmmvEXzvj548KC0bt1aateuLR07dpSQkJAUZSMjI2Xy5MlSrFgxuXHjRnaHmuU05+Lly5eyfPly8fLySlNyMXr0aKlcubJMmTJFq8+FIThz5oyMGTNGtmzZoiy7efOmjBo1SqpVq6ZMciWS1IGVSUXesG/fPjEzM5Ply5drXQv+++8/6d27t6hUKilbtqxUrVpVXF1dDbbJy+7du8XBwUFKliwpnp6e8u2334pIUk2dJrkYOHCg0ufC0JrFJSYmyosXL+Szzz4THx8f2bVrl9Z6zWS7JUuWlEWLFukpyryNiUUWSP4Fd+fOHfH19ZVChQrJ6dOnReRNzYWHh4c0a9ZMKcvaCcor9u/fLwUKFJARI0bIrl27pHTp0tK4cWM5fvy48jnYvXu39O7d22Dbxb5dK/nixQtZvny5VKpUKUVy0bZtW2nSpIls375dWT558mRxdXWVWbNmGcS1IzExUc6ePatMirhy5Uqt9bdu3RJPT89UbxaYVBi2hw8fStWqVZXOyHFxcfL8+XPZv3+/qNVqERE5fPiwrF27Vn788UeDm7dDc60ICwuTkiVLyrp162T//v0yduxYMTIyUpr+vH79WubPny+enp4yfPhwSUhIMJgHlJrj0Mzdcfr0afHz85N69erJzp07tcqOHDlSXFxc5KOPPlJG0qPsw8QiC02fPl3WrVunfADs7Ozk77//FpE3yUW5cuXEx8dHz5ESZZ/r169LxYoVZfny5SKS1PTPyclJ8ufPL56ennLixAkRETl69KjMmjXLICcwejsR0LQDj4qKkpUrV0rFihW1kosjR45I/fr1ZciQIVo30TNmzMjVk0UmH5xAY/PmzaJSqaRjx44pamPat28vfn5+BnOzRGkTEhIipUuXlr1798rr169l6tSpUrt2bbGxsdF6aGfIDh8+LHPnztWaKPLZs2cybdo0UalUWsnFkiVLDKr5U/I5KHr27Kk0ATtz5owyMeD333+vlB81apQsWrRIaRJG2YuJRSZKfrOwd+9esbGxUYbEvHz5snTo0CFFcrFr1y7x8/MziCeORGkRFBQks2bNkri4OHnw4IGUKlVKhgwZIi9evBBXV1dp2LCh0nTQEJ9EJ/+sL1y4UPz8/MTDw0MWLFggV65ckVevXslXX30lXl5eWqPDnTt3zqBm1E5+HqKjoyU+Pl5Ztnr1alGpVDJ+/HjlifTLly/Fx8dHazhuyhuePXsm3bt3l1KlSkmRIkWkTZs2smjRInn58qVUr15da4hZQxQTEyODBw8WlUolDRo00FqnSS5MTEy0+iAZmj179oi1tbWMGTNGLl++rCz/559/xM/PT8qVKyedOnWS3r17S6FChdhRW4+YWGSB7777TpYuXSoLFy7UWv7vv/9Khw4dxN7eXkkukndcZXJBecHr16+VccQ///xz6dy5szILqq+vr6hUKqlevbrBT2A0btw4sbe3l8WLF8vq1aulYMGC0q5dO4mMjJSIiAilQ3fbtm21tjOE60TyY1iyZIl8+umn0qxZM+nTp49Se6NJLnx8fKRPnz7Spk0b8fLyMoiO6vRumqfTERER8uzZM2X59evX5bvvvpPVq1fL8+fPleXt27eX2bNnZ3eY2S44OFi+/PJLUalUsmfPHq11z549k7Fjx0rBggXl6dOnBnGNSO7SpUtib2+fYnQrTY3mw4cPZfHixVKnTh359NNPDXKOo9yEiUUmiIuLU26MXr58KQ4ODqJSqbRmfNS4fPmydO7cWVQqlVbWTWRoEhMTlZuE//77T+7fvy9Xr17VWt+4cWOt2ZJHjBghZ8+eNahq/LclJCTI6dOnpUyZMsrEj//8848YGxvLpk2blHJRUVEyZ84c6dGjh8HdKGiMHTtWihYtKsuXL5d169ZJ0aJFpXr16soDl02bNolKpZI6depo9S8xtA6plERzvfjpp5+kfv364unpKU2aNJHAwMAUc9c8fvxYJk2aJLa2tlrXFUOgOQ/Pnj3TSq7u3Lkj//vf/6RAgQKyd+9erW2eP38ujx8/zs4ws01AQIDUqFFDYmJi5OnTp7J27Vpp2rSpODk5yf/+9z9ldLzExESlDwbpDxMLHe3evVvatWsnPj4+Mn36dBFJmpilVq1a4u7unuoFLygoSCZNmsTx1slgJe8wt2/fPvHy8pIKFSqIvb29jBkzRu7fvy8iIjVr1pQGDRrIvn37ZPjw4VKkSBGDG+VIJOkzv3//fgkMDBSRpI6H1apVExGRnTt3Sv78+ZXhEV++fCm//fabiCQlF4Y69PS///4rFStWlKNHj4pI0lCi1tbWKTptr1+/XlQqlfj7+ysPcMhw/fjjj1KgQAGZOHGiHD9+XGrWrClVqlSR7777TqnF/Pnnn6VHjx7i7OxskAM7iCRdNytWrCiVK1eW7t27K8n03bt3ZfDgwWJtba01Upwh0VzzNLWTp06dEpVKJcOGDZMKFSqIr6+vjBo1ShYvXix2dnZy+PBhfYZLb2FioYNVq1aJtbW1jBgxQoYPHy5GRkbKWPv//fefeHp6StWqVd87QgWTCzI0jx8/luLFi0twcLD88ccfYmlpKatWrZLQ0FBZt26dqFQq+eGHH0RE5N69e+Lm5ibu7u5SpkwZg7xJ2Lp1q3h7e4uvr6+MHz9eRESOHTsmxYsXl7Vr14qNjY3WzfThw4elbdu2SnMxEcMcevrIkSPi7OwsIklJRf78+WXVqlUikpRcrV+/Xrk+rl27VkxMTGTUqFFaT3DJsNy5c0eqVq2qzJ788uVLKVmypDg6Okrp0qVl+/btkpCQIJcvX5ZvvvlGmWDW0Fy4cEGKFSsmkydPlrlz54qTk5PUqVNHeehy9+5d+eKLL0SlUslPP/2k52gzV/LhyD///HPlIdS2bdukVatWMmbMGK35SapVq6Y1iSjpHxOLDNJ80SV/YuDn5yfLly9XxuNXq9Xi4+Mj1apVM7jh74je5fbt21KiRAm5cOGCTJw4Ub744gsRSRou1N3dXfr166dVPj4+Xu7cuSNPnz7VR7hZatOmTWJhYSHbt29PcUPs5+cnKpVKpk2bpiyLjY2Vjz/+WNq3b29QNRTJEyPN69u3b0uLFi1k/vz5kj9/flm9erVS5u+//5YOHTrI2bNnlWVfffWVFCxY0GCbe1DSg4YlS5bI06dP5eHDh1K6dGmlSbGXl5d4e3vLhg0b5NWrVwaVbCdvNiqS1J9i6tSpyu937twRd3d3qVWrlnJ/cevWLRk9erTBNQMTSWoJYmNjIyNHjtR62PR2jeX48eOlZMmSygAPlDMwsciAP//8M8UNgUjSha9ixYpSoEABqV27tmzdulXUarVUqlRJXF1dJSwsTE8RE2WvKlWqyPTp06VRo0ayePFiiY2NleLFi0v//v2VL9Bly5YZdBX2v//+K+XLl0/R4VBz/EePHpVmzZqJq6urbNq0SZYuXSrNmjWT8uXLK80eDCG5ePsYNG2gX7x4IfXr1xeVSqV1ExUdHS0tW7aUdu3apdiWtRWGLSEhQelfNWTIEPnss8/kxYsXIiLSu3dvMTc3lwYNGijLDIXmmnDkyBFZuHChfPzxxzJgwACtZOPOnTvi5uYm9erVkwcPHoiIYYwOFxERofX7xYsXpWjRorJmzRqt5Y8fP1aOd/v27dK9e3exs7MzyFru3M4IlG7FixdH3bp1cfbsWZw5cwYA0L59e0RFRWHSpEn4/vvv8eLFC8yaNQsqlQo//vgjatasiSJFiug5cqKslZiYCABwcXGBiGDAgAE4cOAASpYsiTZt2uDrr7+GSqXC69evcfr0afz222949eqVnqPOGg8ePEB0dDTq168PEVGWq1QqAED9+vUxe/ZstGrVCuPHj8f+/fvh5OSEoKAgmJiY4PXr1zAyyt2X6MTEROUYFi1ahC5dusDHxwcLFy7Es2fP8P3338PBwQF//fUXpk2bhrVr16J169a4f/8+duzYASMjIyQmJirnz8bGRp+HQ5kkISEBCQkJAIDbt2/jzp07uHPnDoyMjODi4gIACA0Nhb29PaysrAAk/d//8MMP+O6772Btba2v0LOESqXCoUOH0KhRI+zbtw8nT57EwYMH8ffff2tdUw8fPozLly+jV69eSEhIQL58+fQcuW6WLl2K0aNH4/Xr18px3rlzB25ubujXrx+ePn2KTZs2oUWLFvD29oa/vz8ePnwIKysrJCYm4siRI/Dx8dHzUVAKek5scq3r169LixYtpHXr1lKnTh2pXLmy1kg2mhlk3277xz4VZGhu3bolK1askODgYKVKesuWLfLRRx/Jjz/+KF5eXuLl5aVMahQXFycTJkwQZ2dng5z8TmP27Nlia2ur/J786aPmOnDlyhW5dOlSiuuCITyJTC61oXU//fRTEUm6lnbr1k0qVKggTZs2lT59+ijHb2jnIa9btGiR1nfirl27pHjx4uLi4iIVKlRQZlB+9eqVtG/fXipXrixLly6VwYMHi42NjcE1edFcE0JDQ6VPnz7y7bffSmxsrISEhIiHh4dUqVJFzp07p3XtuHfvnty4cUNfIWcKzfVu+fLlSh8KTUftY8eOiUqlkrFjx0rVqlXF19dXhg0bJvPmzRMzMzNlJD2O/pRzMbHQwfXr16Vp06ZiY2OjzPqYkJAgiYmJcvbsWSlXrpwy0ReRIYqPj5eOHTuKs7OzuLq6irW1tbRo0UJKly4tJUqUkKdPn8revXvF29tbypUrJ23atJGWLVtK0aJFDb4K+/vvvxcLCwv59ddf31lmzJgx0q9fP60baENqOy6SNJTuh4bWTUhIkOjoaK0hRZlUGJYnT55Ip06dxMrKSg4dOiSvXr2SEiVKyJo1a2TXrl0yYsQIMTIykvXr14tI0mz09erVk6pVq4q3t7ecP39evweQRU6dOiV169aVatWqyfHjx5XlkZGRUqZMGalcubKcP3/eYK4LmuaNt27dkhkzZoiIyIkTJ6R79+5KX9Q1a9ZIrVq1ZOTIkXLx4kVl22rVqr33eko5AxMLHd28eVOaN28uLVu2lL/++ktZ/vHHH0vDhg0Noo000ftoOtRdv35dfvjhB/nqq6+kQ4cOUrZsWWnbtq1ERkbKhQsXZPbs2dK1a1eZP3++QddUaNy6dUtsbGykffv2cu/ePWW55gbhxYsX0r59e1m+fLm+QswWp06dkqpVq4pI6kPr/v7778qkeBqGchNF2n1s7t+/L4MHD5ZChQrJwoUL5csvv1TWPXnyRCZMmCAqlUrplxQfHy/h4eEG0adCcx40CfS9e/ckISFBXr58KQ0bNhSVSpXiWhAZGSnlypUTV1dXg5j0TXMOgoKCRKVSKXMYLV26VLy8vKRPnz5K5/S3rwnjx48XV1dXpYaDci4mFplA0yyqVatWcuzYMWnXrp2UKVPGoDpgEr3Lu24C9+3bJzVr1pTWrVsrI/nktRvG7du3i5mZmXTp0kWrhubBgwfSsmVLqVOnjkE9mQ8JCZGLFy/Kli1b5NKlS/L06VO5cuWKODg4yOrVq985tK6mmRwZFs13n1qtll27dsn3338vO3bskEmTJomVlZU0aNBAq/yTJ09k4sSJYmJikmI+k9xMcx6uXLki7dq1kwoVKki+fPmkQoUKsnDhQomKipKPPvpIqlSpIgcOHNC6Z3j58qVUrVpVbt++ra/wM4XmmC5fviwWFhbi7++vtX7FihVSu3Zt6dmzp9I5XSRpKOoePXrkiVpuQ8HEIpNcv35dWrduLSYmJuLh4aEkFYZ000CUFpovkISEBNmxY4c0aNBAatSokSeHCX39+rUyNHWJEiWkRYsW0qxZM6lRo4ZUq1ZNuU4YQt+rPXv2SKtWraRYsWJibW0tFhYW4uvrK3///beMGDEixehPhjq0LiXR/J9euHBBSpUqJWXLlhVTU1OpWLGiTJs2TSZNmiRGRkZy4MABre2ePn0qw4cPl4IFC8rz589z/cMITfwXL14UGxsbGTx4sKxbt0727t0rbdq0ESMjI/n888/lwYMH0qRJE6levXqK5CK3nwPNsVy6dElsbW3F09NTWaeZ9FAkqc9FnTp15PPPP1dqLr777jvp0qWLXL58OXuDpgxjYpGJgoODZejQoex4SHme5oswMTFRNm3aJC1bttRqDpTXnD9/XoYOHSrNmjWTPn36yIoVK5RkwhCuE2vWrFGatxw+fFiePXsm06dPl7Jly4qHh4fMnj1bunTpIi4uLgY9tC4lSZ5UWFpaypgxY+TBgwfy008/SdOmTaVatWry22+/Se/evcXa2lp++eUXre2fPn0qjx490kfoWeLRo0fi4+Mj48aNS7F8xYoVYmpqKkOGDJH4+Hhp2LCh1K9fX/bt25frEwoR7eZPlpaW0rBhQ3F0dFTmNxJ503Fb5E1y0bdvXwkNDRWRlPNXUM7GxCKLGMLNApEukicXb49VTkkMoaZizZo1YmpqKnv27EmxbseOHVKlShWpX7++bN++XQYNGiROTk7SqFEjjv5k4NRqtdja2kqHDh20lq9atUoKFCggN2/elP/++0/69esnBQsWlEOHDukp0qx37tw5qVChgtYIcJob7ufPn8vMmTPF1NRUAgMD5cmTJ1KuXDlp0aJFin4GudU///wjJiYmMnXqVHn9+rWsXr1abG1t35lcrFixQsqVKyeDBg0yiGtkXpO7B0HOwXL7+NJEulKpVBARqFQqFChQQN/h6J3mXCRnbGysp2gyx5EjRzBgwABMnToV7dq1U+ab0Iyx36lTJ4SFhWHKlCkwNTXFypUrMXXqVBQtWlTZx+vXr3m9NEAJCQlwdXVFXFwcAgMDUbduXQBAqVKlYGpqipiYGJQuXRpjx46FsbExWrZsid9++w1NmzbVc+SZ78KFC7h58yYqVKgAIOlaoJnfxcbGBl26dMGCBQvw119/oU6dOggMDMSLFy+UOTxyu+joaAwcOBD+/v4AgE6dOgEAJk6cCABYtmwZTE1NER8fD1NTUwwePBgmJiZo1qxZrr9G5kW5e/YlIsrR3r6RzssM8VxoJgs9d+4cjh07BpVKBZVKhXz58ikTXn3xxRdwcnLC4cOHAQAFCxZUthcRJhUGysXFBd999x3i4+MxY8YMBAcHIzIyEl27dkWfPn2Um+zSpUtjxIgRyvvEELm5uQEA9uzZAyDltcDV1RWlSpXCo0ePAACFChVSJgo0BPXr18eyZcsAJH3mbWxs0LlzZ8yaNQvbtm3DsGHDAACmpqaIi4sDAPTv39+gzkFewsSCiIgyxN3dHd9++y3i4uIwa9YsBAYGKus0N08RERGIjY2Fg4MDAMDExCRFGTJM7u7uWL58OYyNjTFw4EA4Ozuja9eumDdvHgAos2+XKVMGCxYsgIeHhz7DzTIuLi6wtrbG5s2bce/ePWW5Jvl+9uwZLCwsUKVKFX2FmG00n3lra2ut5GLkyJEAADMzM32GR5mAiQUREWWY5uZRpVJh5syZOH78uNb627dvo0SJEqhZsyYAKM2lKG9wd3fHsmXLYGxsDGtra7Rt21ZZp2kOBGgnnIamRIkS+Oabb3Do0CFMnjwZly9fBvDm+BcvXoyHDx+iXr16+gwz22mSizlz5mDp0qUYP368vkOiTKASXuWJiEhHN27cwBdffAERwcSJE1GvXj28fv0abdq0gZGREX744QetG0nKW27evImhQ4dCRDB58mTUqVNH3yFlq4SEBKxbtw5DhgxB6dKlUadOHTg4OODOnTs4ePAgAgIC4OPjo+8w9eLFixfYv38/atWqhTJlyug7HNIREwsiIsoUmuTCyMgIEyZMwOLFi3H16lUEBQXBxMQEiYmJTC7ysBs3bmDkyJEIDw/HkiVLlFqs/2vnjk0kBIMAjI6iuRUYGG1mZQZbgA0IGlqMHRhvoljLwkUHd3DZv4vc+l4Fk37DMFeyrmsMwxD7vkdVVdG2bXRdF7fb7ezRTvXXcwv+J2EBwMscxxH3+z2WZYmmaeLxeERZlr4/ERER27ZF3/cxjmPUdX32OKd4Pp+R53lkWSa2+TjCAoCX2rYt5nmOaZqiKApRwS/fb0Wv6ud23qaeTyMsAHgbUQFwHcICAABI5rAPAABIJiwAAIBkwgIAAEgmLAAAgGTCAgAASCYsAACAZMICAABIJiwAAIBkwgIAAEgmLAAAgGRfG32uF0JK/YgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Cellpose Specialist vs Generalist by Dataset\n", + "\"\"\"\n", + "\n", + "cp_general_means = []; cp_specific_means = []\n", + "cp_general_sems = []; cp_specific_sems = []\n", + "\n", + "for ds in datasets:\n", + " cp_general_data = cellpose_generalist_dict[ds]\n", + " cp_specific_data = cellpose_specific_dict[ds]\n", + " \n", + " # Compute (1 - mean(F1)) for the group\n", + " cp_general_mean = 1 - np.mean(cp_general_data)\n", + " cp_specific_mean = 1 - np.mean(cp_specific_data)\n", + " cp_general_means.append(cp_general_mean)\n", + " cp_specific_means.append(cp_specific_mean)\n", + " \n", + " # Standard error of the mean (SEM) for the group\n", + " cp_general_sem = np.std(cp_general_data, ddof=1) / np.sqrt(len(cp_general_data))\n", + " cp_specific_sem = np.std(cp_specific_data, ddof=1) / np.sqrt(len(cp_specific_data))\n", + " cp_general_sems.append(cp_general_sem)\n", + " cp_specific_sems.append(cp_specific_sem)\n", + "\n", + "\n", + "x = np.arange(len(datasets))\n", + "width = 0.35\n", + "plt.rcParams['svg.fonttype'] = 'none' \n", + "fig, ax = plt.subplots(figsize=(8, 5))\n", + "\n", + "bars_cp_specific = ax.bar(\n", + " x - width/2, cp_specific_means, width,\n", + " edgecolor='black', linewidth=1,\n", + " yerr=cp_specific_sems, capsize=5, \n", + " label='Specialist', color=c1\n", + ")\n", + "\n", + "bars_cp_general = ax.bar(\n", + " x + width/2, cp_general_means, width,\n", + " edgecolor='black', linewidth=1,\n", + " yerr=cp_general_sems, capsize=5, \n", + " label='Generalist', color=c2\n", + ")\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels([name_map[ds] for ds in datasets], rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "# ax.set_title('Generalist Model Comparison of Mean Error')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_dataset_comparison_CELLPOSE_specific_general.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAai5JREFUeJzt3Xt8zvX/x/HntWEHTJixOW05ziFzCJOEnBUSoaSEfEWFkEMZIeQsyqGcKqdUOqKSYZqcQhg5T2yYnHZme//+8NuVZbTt2lw7PO6323Vz7XN473W5XJfreb3f78/bYowxAgAAAIB0crB3AQAAAACyN0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYJM89i4AwP0XGhqqiIgIe5eRInd3d5UpU8beZdjNiy++qKVLl+rkyZPy9vZOVxuBgYFq0qSJAgICNGbMGOv2xo0ba/PmzTLGZEyx2QD/1nOvlP693+21AcB2hAoglwkNDZWvb2VFR8fYu5QUubq6KCTksM0ftqKiojRr1iytWbNGf/75p27cuKFixYrJx8dHDRs2VO/evVWuXLkMqjrny44fxkJDQ+VbqZKiY2PtXUqKXJ2dFXLkSIYFi71792revHnasmWL/vrrL8XGxqpIkSKqXr26WrVqpR49eqhYsWIZ8rtyq9wYzIHUIlQAuUxERISio2O0bHgn+ZbxsHc5yYSEXlCPSWsUERFh0wet69evq2HDhtq/f7/Kly+v7t27q2jRooqIiNCOHTs0adIklStXLkuGiokTJ2r48OEqWbJkhre9bNkyRUdHZ3i7WVVERISiY2M1u4a3yhdwsXc5yRyLjNFr+07Z/G9dkhITEzVs2DBNmzZNjo6OatSokVq0aKH8+fPrwoULCg4O1pAhQxQQEKAjR45kyr+t7KJu3boKCQmRu7u7vUsBchxCBZBL+ZbxUK0KXvYuI1PMnDlT+/fvV+/evbVgwQJZLJZk+0+ePKm4uDg7VXdvnp6e8vT0zJS2c+tQm/IFXFS9kKu9y8g0o0aN0rRp01SrVi2tWrVK5cuXv+OYPXv26M0331RMTNbsobxfXF1dVblyZXuXAeRITNQGkOMEBwdLkvr3739HoJAkHx+fZB8svL295e3trStXrqhv374qUaKEnJ2dVbNmTa1YsSLF32GM0aJFi/TII4/Izc1Nrq6uqlOnjhYtWnTX4xcvXqxHH31UDzzwgFxdXVWhQgX17dtXoaGh1uNefPFFWSwWnTp1yrotPj5e77//vlq2bKnSpUvLyclJHh4e6tixo37//fdU/700btz4jr+PxMREffTRR6pbt66KFCkiFxcXlSpVSk8++aQCAwMlSWPGjFGTJk0kSWPHjpXFYrHebq8T99+ff/6pKVOmqFixYlq/fn2KgUKSatWqpZ9++umOeTr79+9X165d5enpqXz58qls2bJ69dVXdenSpWTHnTp1ShaLRS+++KKOHTump556SoULF1b+/PnVrFkz7du3L8Xfe+HCBQ0aNEjly5eXk5OT3N3d9fTTT+vAgQN3HHv763DAgAEqXbq08uTJoyVLlkiSdu/erQEDBqhatWoqVKiQXFxcVL16dU2aNEk3btxI1d9XYGCgLBbLHUP4jh49qp49e8rHx0dOTk4qUqSIatSooYEDB1qHOlksFm3evNl6P+n24osvpup3AzkdPRUAcpyiRYtKuvWBy8/PL1XnxMfHq1mzZoqMjNTzzz+vqKgorV69Ws8++6wiIiL06quvWo81xui5557TihUrVKFCBT377LPKly+ffvrpJ/Xq1UuHDh3S1KlTrccnJiaqS5cuWrNmjUqWLKlu3brJzc1Np06d0urVq9W6det79iL8/fffGjhwoB599FG1adNGhQsX1okTJ/TNN99o3bp12rJlix5++OF0/V2NGDFC7733nsqVK6dnn31WBQsW1NmzZxUUFKSff/5ZjRs3VuPGjXXq1CktXbpUjz32mBo3bmw9/4EHHkjX70XGWLp0qRISEtS3b99UzZfIk+ef//a/+eYbPfPMM3JwcFD79u1VunRpHTp0SHPmzNGGDRv022+/qXDhwsnOP3XqlOrXr6+qVavqpZde0vHjx/X111+rSZMmCgkJUfHixa3HHj9+XI0bN9Zff/2lFi1aqEOHDrpw4YK++OILbdiwQRs3blS9evWStR8XF6emTZsqMjJS7dq1U548eaxtLly4UN9++60aNWqkNm3aKDo6WoGBgRoxYoR27typL774Il1/h+fOnVPdunUVFRWltm3bqkuXLoqKitLRo0f1wQcfaOrUqcqTJ48CAgK0ZMkSnT59WgEBAdbzU/seA+R0hAoAOU7nzp316aefqnfv3tqxY4datGih2rVrW8NGSsLCwlShQgX9+uuvypcvnyRp5MiRqlmzpoYOHaqOHTtax6J/9NFHWrFihXr27Kn58+crb968km4Fk06dOmnatGnq1q2bateuLUn64IMPtGbNGj3++OP69ttv5eLyz/j+mJiY/xySUrhwYYWGht4xFv7gwYOqX7++Ro4cqZ9++intf1H//1i8vLy0f/9+ubomHyL0999/S5I1RCxdulSNGzfONhO1c4OkXrmknqTUunTpkp5//nm5u7tr27ZtKlu2rHXfypUr1a1bN40ePVrvv/9+svM2b96sSZMm6c0337Rue/vttzV+/HgtXrxYw4cPt27v0aOHwsLCtH79erVs2dK6/a233lKdOnXUp08f7d+/P1n74eHhqlGjhrZt25bsdSLdej3OnTtXjo6O1m3GGPXu3VuLFi3Stm3b9Mgjj6Tp70GSvvjiC125ckUzZ87U66+/nmzf33//bQ1iY8aMUWBgoE6fPs1rAEgBw58A5Djt2rXTtGnTZIzRtGnT1LJlS7m7u6t8+fIaMGCAjh49muJ57777rjVQSFKpUqX0+uuvKy4uTitXrrRunzNnjvLnz6+5c+daA4Uk5cuXTxMmTJCkZMOmPvjgAzk6OurDDz+844OSi4uLihQpcs/H4+TklOLk2qpVq6pJkybasmVLqod/pCRfvnzJPqgl+a+6YH/h4eGSJC+vO+dHBQYGasyYMcluSUPali1bpmvXrmnixInJAoUkde3aVbVq1Ur2bz6Jj4+Phg4dmmxbr169JEk7d+60bvv999/166+/6oUXXkgWKCSpYsWK6tOnj/74448Uh0G99957d7xOpFtzgv7979Risah///6SpJ9//vmOc9Iipd/JawBIPXoqAORIgwcPVp8+fbR+/Xr9+uuv2rVrl3777TfNnTtXH3/8sVatWqV27dpZj8+TJ4/8/f3vaOfRRx+VJOvchejoaP3xxx/y8vLS5MmT7zg+6cP94cOHJUmRkZEKCQlR+fLlVaFChXQ/nr179+q9995TUFCQwsPD7wgRERER6Zrg3bVrV33wwQeqVq2aunbtqiZNmsjf3z/FD1jIXgIDAzV27Ng7tjdu3Fjbt2+XJP322286fvz4HcfExsYqIiJCERERya6U5OfnJweH5N9HlipVSpJ05coV67ak9s+fP5/it/pJr4/Dhw+rWrVq1u3Ozs6qXr16io8nPj5ec+bM0cqVK3X48GFFRkYmu7TruXPnUjzvvzz55JMaMWKE+vfvr40bN6pVq1Z67LHH9OCDD6arPSC3IlQAyLEKFiyozp07q3PnzpKkq1evauTIkfrggw/Uq1cvnT171toz4e7ufseHJUnW8dxXr16VJF2+fFnGGJ09ezbFD2xJoqKikp1ny2U8f/31VzVt2lSS1KJFC1WoUEEFChSQxWLR2rVrtW/fvnRfzWrWrFny8fHR4sWLNX78eI0fP17Ozs565plnNG3aNC69mcUVL15cISEhOnfu3B1XNUrqnZD+GdKUJGlo29y5c+/ZflRUVLJ/A25ubncckzQ8KCEh4Y72v//+e33//ff3bP92Hh4eKV5cQZI6deqkb7/9VhUrVlSXLl3k4eGhvHnz6sqVK5o1a1a6XwPe3t7avn27xowZox9++EGrV6+WJFWuXFnvvPOO9f0DwL0RKgDkGoUKFdKcOXP0/fff6/Tp0/rjjz+s8x4iIiKUmJh4R7A4f/689Vzpnw9VtWvX1q5du1L1OyXp7Nmz6a57woQJiouL09atW9WwYcNk+7Zv337XK++kRp48eTRkyBANGTJE586d0+bNm7V48WItW7ZM4eHh2rBhQ7rbRuZr0KCBAgMDtWnTJmvwTI2kf8d//PFHsp6CjJLU/vvvv68BAwak+ry7BYqdO3fq22+/VcuWLfX9998nGwa1fft2zZo1y6Z6q1WrpjVr1ujGjRvavXu31q1bp9mzZ6tLly7y8vJK11wNILdhTgWAXMVisSh//vx3bL9586Z10uvttm7dKkmqWbOmpFu9H76+vgoJCUk23ONuChQooCpVqujkyZN3ncvxX44fP64iRYrcESiio6O1Z8+edLWZEi8vL3Xr1s16adKff/7ZOok86UPc7d9Gw/5eeOEFOTg4aMGCBYqIiEj1eUlXXUrp33xGyOj2k4ZotW3b9o55FUmv0YyQN29e1a9fX2PHjtXs2bNljNF3331n3c/rALg7QgWAHGf+/PnJJo3ebu3atQoJCdEDDzxwxze0I0eOVHx8vPXnv/76S7NmzZKTk5O6du1q3f7aa68pOjpaffr0uWP4hnRrcb3b12/o37+/EhIS9Morr9xxpafY2FjrUJG7KVu2rC5fvqyDBw9atyUkJGjIkCG6ePHiPc+9l7i4OP366693bI+KilJkZKTy5s1r7blJmrB65syZdP8+ZLyKFStq2LBhunDhglq3bq1jx46leNy/A3DPnj1VsGBBjRo1Ktm/qyTR0dHWeRHpUbduXdWrV08rVqzQqlWr7tifmJhoXfMhNZImkwcFBSXbfvDgQU2cODHddUq31r+4du3aHduTeimdnZ2t23gdAHfH8CcAOc66dev0v//9T+XLl9cjjzwiLy8vRUVF6ffff9fWrVvl4OCgDz74QE5OTtZzPD09FRUVpYceekhPPvmkdZ2KS5cuafbs2cnmRPTt21fbt2/X0qVLtW3bNjVr1kxeXl46f/68Dh8+rN9++03Lly+3LjTWr18/bd68WatXr1aFChXUrl07ubm5KTQ0VBs2bNDHH3+sDh063PXxvPrqq/rxxx/VsGFDPfPMM3J2dlZgYKDOnj2rxo0bW6/ok1YxMTF65JFHVLFiRdWuXVtlypRRZGSkvvvuO4WHh2vIkCHWv6PKlSvLy8tLK1eulJOTk0qVKiWLxaJXX33VOsQL9jFhwgTFx8dr+vTpqly5sho1aqQaNWrI1dVVFy5c0P79+7Vjxw4VKFDAuqZCsWLFtGLFCnXu3Fk1atRQq1atVLlyZcXFxenUqVPavHmzGjRooPXr16e7rhUrVqhJkybq2rWrZs6cqVq1asnFxUWhoaEKDg7WxYsXFRsbm6q26tatq7p162r16tUKCwtT/fr1FRoaqm+++UZt27bVmjVr0l3nJ598ovnz56tRo0YqV66c3NzcdOjQIf3www8qUqSIevbsaT22adOmWrNmjZ5++mm1bt1azs7OqlGjhp588sl0/34gpyBUALlUSOgFe5dwh4yqafLkyXrkkUf0008/acuWLQoLC5N0a7L0Cy+8oFdffdU6lyJJ0uJ1w4cP1yeffKIrV66ocuXKev/995NNcJVuDaFasmSJ2rRpo4ULF+q7775TZGSkPDw8VKFCBU2dOlXNmjVLdvzKlSvVokULffTRR1q2bJmMMSpZsqSeeeaZO2r5tyeeeEJr1qzRu+++q08//VSurq5q2rSpvvrqK73zzjvp/nvKnz+/Jk+erI0bN2rr1q26cOGCChcurEqVKmnixInJemccHR315Zdf6s0339SKFSt0/fp1SVL37t2zfKg4FnnvdUDsISNrcnBw0LRp09S9e3fNmzdPW7Zs0c6dOxUXF6ciRYqoatWqmjJlinr06CEPDw/reW3bttXvv/+uKVOm6Oeff9ZPP/2k/Pnzq1SpUurZs6e6d+9uU10+Pj76/fffNX36dK1du1aLFy+Wo6OjPD091ahRI3Xq1CnVbTk6Ouq7777T8OHDtX79eu3cudP6WmvdurVNoaJbt26KjY3Vtm3btGPHDsXFxalUqVLq16+fhg4dmmxhyj59+ujUqVNauXKlJk+erJs3b+qFF14gVACSLOb267EByPFCQ0Pl61tZ0dFZ74OWJLm6uigk5PA9V5jOaEk9CrcPWUL2FxoaKt9KlRSdym/D7zdXZ2eFHDlyX/+tA0BmIVQAuVBoaGiaJnXeT+7u7vf9QxahIufi3zoA3B+ECgC5HqECAADbcPUnAAAAADahpwIAAACATeipAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUpMAYo2vXrskYY+9SAAAAgCyPUJGC69evq1ChQrp+/bq9SwEAAACyPEIFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADbJEqFi7ty58vb2lrOzs+rVq6cdO3bc9diFCxfq0UcfVeHChVW4cGE1a9bsjuNffPFFWSyWZLdWrVpl9sMAAAAAciW7h4pVq1Zp8ODBCggI0J49e1SjRg21bNlSFy5cSPH4wMBAdevWTZs2bVJwcLBKly6tFi1a6OzZs8mOa9WqlcLCwqy3FStW3I+HAwAAAOQ6FmOMsWcB9erV08MPP6w5c+ZIkhITE1W6dGm9+uqrGj58+H+en5CQoMKFC2vOnDnq0aOHpFs9FVeuXNHatWvTVdO1a9dUqFAhXb16VW5ubulqAwCyoqQvWtLK09NTnp6emVARACAnyGPPXx4fH6/du3drxIgR1m0ODg5q1qyZgoODU9VGdHS0bty4oSJFiiTbHhgYKA8PDxUuXFhNmzbV+PHjVbRo0QytHwCym/nz52vs2LFpPi8gIEBjxozJ+IIAADmCXUNFRESEEhISVLx48WTbixcvrsOHD6eqjTfffFNeXl5q1qyZdVurVq3UsWNH+fj46Pjx4xo5cqRat26t4OBgOTo63tFGXFyc4uLirD9fu3YtnY8IALK2vn37ql27dsm2xcTEqGHDhpKkoKAgubi43HEevRQAgHuxa6iw1aRJk7Ry5UoFBgbK2dnZur1r167W+9WrV9dDDz2kcuXKKTAwUI8//vgd7UycODFd39wBQHaT0jCmqKgo630/Pz/lz5//fpcFAMjm7DpR293dXY6Ojjp//nyy7efPn1eJEiXuee7UqVM1adIk/fjjj3rooYfueeyDDz4od3d3HTt2LMX9I0aM0NWrV623M2fOpO2BAAAAALmYXUNFvnz5VLt2bW3cuNG6LTExURs3bpS/v/9dz3vvvfc0btw4rV+/XnXq1PnP3/PXX3/p0qVLd+2+d3JykpubW7IbAAAAgNSx+yVlBw8erIULF2rp0qUKCQlRv379FBUVpZ49e0qSevTokWwi9+TJk/X2229r0aJF8vb2Vnh4uMLDwxUZGSlJioyM1NChQ7V9+3adOnVKGzduVPv27VW+fHm1bNnSLo8RAAAAyMnsPqeiS5cuunjxokaPHq3w8HD5+flp/fr11snboaGhcnD4J/t8+OGHio+PV6dOnZK1k3RlEkdHR+3fv19Lly7VlStX5OXlpRYtWmjcuHFycnK6r48NAAAAyA3svk5FVsQ6FQByk6ioKBUoUEDSrd5eJmoDANLK7sOfAAAAAGRvhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmeexdAAAgfUJDQxUREWFzOzExMdb7e/fulYuLi81tSpK7u7vKlCmTIW0BALI2izHG2LuIrObatWsqVKiQrl69Kjc3N3uXAwB3CA0NlW+lSoqOjbV3KXfl6uyskCNHCBYAkAvQUwEA2VBERISiY2M1u4a3yhewrWchNiFRHbcfkSR9Wb+SnB1tHxl7LDJGr+07pYiICEIFAOQChAoAyMbKF3BR9UKuNrURfTPBer+qm4tc8zjaWhYAIJdhojYAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2yWPvAgAgpwkLC1NYWFiaz/P09JSnp2cmVAQAQOYiVABABps/f77Gjh2b5vMCAgI0ZsyYjC8IAIBMRqgAgAzWt29ftWvXLtm2mJgYNWzYUJIUFBQkFxeXO86jlwIAkF0RKgAgg6U0jCkqKsp638/PT/nz57/fZQEAkGmYqA0AAADAJoQKAAAAADbJEqFi7ty58vb2lrOzs+rVq6cdO3bc9diFCxfq0UcfVeHChVW4cGE1a9bsjuONMRo9erQ8PT3l4uKiZs2a6ejRo5n9MAAAAIBcye6hYtWqVRo8eLACAgK0Z88e1ahRQy1bttSFCxdSPD4wMFDdunXTpk2bFBwcrNKlS6tFixY6e/as9Zj33ntPs2fP1rx58/Tbb78pf/78atmypWJjY+/XwwIAAAByDbuHiunTp6tPnz7q2bOnqlSponnz5snV1VWLFi1K8fjPPvtMr7zyivz8/FS5cmV99NFHSkxM1MaNGyXd6qWYOXOm3nrrLbVv314PPfSQli1bpnPnzmnt2rX38ZEBAAAAuYNdQ0V8fLx2796tZs2aWbc5ODioWbNmCg4OTlUb0dHRunHjhooUKSJJOnnypMLDw5O1WahQIdWrV++ubcbFxenatWvJbgAAAABSx66XlI2IiFBCQoKKFy+ebHvx4sV1+PDhVLXx5ptvysvLyxoiwsPDrW38u82kff82ceLEdC1UBQDZzfnYG7oQdyPZttiEBOv9g9ei5ezoeMd5Hk55Vdw5b6bXBwDInrL1OhWTJk3SypUrFRgYKGdn53S3M2LECA0ePNj687Vr11S6dOmMKBEAspTPQi9qxrGwu+7vuP3PFLcPKu+pwRW9MqssAEA2Z9dQ4e7uLkdHR50/fz7Z9vPnz6tEiRL3PHfq1KmaNGmSfv75Zz300EPW7UnnnT9/PtniU+fPn5efn1+KbTk5OcnJySmdjwIAso/nyhRT8+IPpPk8Dyd6KQAAd2fXUJEvXz7Vrl1bGzduVIcOHSTJOul6wIABdz3vvffe04QJE7RhwwbVqVMn2T4fHx+VKFFCGzdutIaIa9eu6bffflO/fv0y66EAQLZQ3JlhTACAjGf34U+DBw/WCy+8oDp16qhu3bqaOXOmoqKi1LNnT0lSjx49VLJkSU2cOFGSNHnyZI0ePVrLly+Xt7e3dZ5EgQIFVKBAAVksFg0cOFDjx49XhQoV5OPjo7ffflteXl7W4AIAAAAg49g9VHTp0kUXL17U6NGjFR4eLj8/P61fv9460To0NFQODv9cpOrDDz9UfHy8OnXqlKydgIAAjRkzRpI0bNgwRUVF6eWXX9aVK1fUsGFDrV+/3qZ5FwAAAABSZjHGGHsXkdVcu3ZNhQoV0tWrV+Xm5mbvcgDkAFFRUSpQoIAkKTIyUvnz57epvT179qh27dr64RFfVS/kmhElZqg/rkarzbYQ7d69W7Vq1bJ3OQCATGb3xe8AAAAAZG+ECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATu69TAQBZWWhoqCIiImxuJyYmxnp/7969cnFxsam9kJAQW0sCACDDECoA4C5CQ0Pl61tZ0dEx/31wGjRs2DBD2wMAwN4IFQBwFxEREYqOjtGy4Z3kW8bDprZi4m6o0aCFkqQtM/rIxSmvTe2t23FEo5dstKkNAAAyCqECAP6DbxkP1argZVMbUTHx1vt+5TyV3yWfTe0dDr1o0/kAAGQkJmoDAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwSZpX1E5MTNTmzZu1detWnT59WtHR0SpWrJhq1qypZs2aqXTp0plRJwAAAIAsKtU9FTExMRo/frxKly6tNm3aaN26dbpy5YocHR117NgxBQQEyMfHR23atNH27dszs2YAAAAAWUiqeyoqVqwof39/LVy4UM2bN1fevHnvOOb06dNavny5unbtqlGjRqlPnz4ZWiwAAACArCfVoeLHH3+Ur6/vPY8pW7asRowYoSFDhig0NNTm4gAAAABkfake/vRfgeJ2efPmVbly5dJVEAAAAIDsJUOv/hQVFaUtW7ZkZJMAAAAAsrgMDRXHjh1TkyZNMrJJAAAAAFkc61QAAAAAsEma1qkoUqTIPfcnJCTYVAwAAACA7CdNoSIuLk79+vVT9erVU9x/+vRpjR07NkMKAwAAAJA9pClU+Pn5qXTp0nrhhRdS3L9v3z5CBYBcL+zSdYX9fT3Ztpi4G9b7e4+HycXpzrV+PIsUlGfRgpleHwAAGS1NoaJt27a6cuXKXfcXKVJEPXr0sLUmAMjWFny/Q+98sumu+xsNWpji9tHPN1FAj8czqywAADJNmkLFyJEj77m/dOnSWrx4sU0FAUB293LbunrSP/Vr+yTxLEIvBQAge0pTqAAA/DfPogxjAgDkLmm6pGyjRo2SDX/65ptvFBMTk9E1AQAAAMhG0hQqgoKCFB8fb/25e/fuCgsLy/CiAAAAAGQfNi1+Z4zJqDoAAAAAZFOsqA0AAADAJmmeqL1hwwYVKlRIkpSYmKiNGzfqwIEDyY5p165dxlQHAAAAIMtLc6j498J3ffv2TfazxWJRQkKCbVUBAAAAyDbSFCoSExMzqw4AAAAA2RRzKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNbA4Vr7zyiiIiIjKiFgAAAADZkM2h4tNPP9W1a9cyohYAAAAA2ZDNocIYkxF1AAAAAMimmFMBAAAAwCZpWlE7JdevX8+IOgAAAABkU/RUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE7uHirlz58rb21vOzs6qV6+eduzYcddjDx48qKefflre3t6yWCyaOXPmHceMGTNGFosl2a1y5cqZ+AgAAACA3C1DQ8Xx48fVtGnTVB+/atUqDR48WAEBAdqzZ49q1Kihli1b6sKFCykeHx0drQcffFCTJk1SiRIl7tpu1apVFRYWZr0FBQWl+bEAAAAASJ0MDRWRkZHavHlzqo+fPn26+vTpo549e6pKlSqaN2+eXF1dtWjRohSPf/jhhzVlyhR17dpVTk5Od203T548KlGihPXm7u6e5scCAAAAIHXStE7F7Nmz77n/7NmzqW4rPj5eu3fv1ogRI6zbHBwc1KxZMwUHB6elrDscPXpUXl5ecnZ2lr+/vyZOnKgyZcrY1CYAAACAlKUpVAwcOFCenp7Kly9fivvj4+NT3VZERIQSEhJUvHjxZNuLFy+uw4cPp6WsZOrVq6clS5aoUqVKCgsL09ixY/Xoo4/qwIEDKliwYIrnxMXFKS4uzvrztWvX0v37AQAAgNwmTaGibNmymjx5sp555pkU9+/du1e1a9fOkMLSq3Xr1tb7Dz30kOrVq6eyZctq9erV6tWrV4rnTJw4UWPHjr1fJQIAAAA5SprmVNSuXVu7d+++636LxSJjTKracnd3l6Ojo86fP59s+/nz5+85CTutHnjgAVWsWFHHjh276zEjRozQ1atXrbczZ85k2O8HAAAAcro0hYp33nlHnTt3vuv+KlWq6OTJk6lqK1++fKpdu7Y2btxo3ZaYmKiNGzfK398/LWXdU2RkpI4fPy5PT8+7HuPk5CQ3N7dkNwAAAACpk6bhT1WqVLnn/rx586ps2bKpbm/w4MF64YUXVKdOHdWtW1czZ85UVFSUevbsKUnq0aOHSpYsqYkTJ0q6NWfj0KFD1vtnz57V3r17VaBAAZUvX16SNGTIED355JMqW7aszp07p4CAADk6Oqpbt25peagAAAAAUilNoSKjdenSRRcvXtTo0aMVHh4uPz8/rV+/3jp5OzQ0VA4O/3SmnDt3TjVr1rT+PHXqVE2dOlWPPfaYAgMDJUl//fWXunXrpkuXLqlYsWJq2LChtm/frmLFit3XxwYAAADkFqkOFa1atdKYMWNUv379ex53/fp1ffDBBypQoID69+//n+0OGDBAAwYMSHFfUlBI4u3t/Z9zNlauXPmfvxNA+iQtKJlWnp6e9xyCCAAAsrdUh4rOnTvr6aefVqFChfTkk0+qTp061rUgLl++rEOHDikoKEg//PCD2rZtqylTpmRm3QDsYP78+em6UlpAQIDGjBmT8QUBuRDhHkBWlOpQ0atXL3Xv3l2ff/65Vq1apQULFujq1auSbl31qUqVKmrZsqV27twpX1/fTCsYgP307dtX7dq1S7YtJiZGDRs2lCQFBQXJxcXljvP4IANkHMI9gKwoTXMqnJyc1L17d3Xv3l2SdPXqVcXExKho0aLKmzdvphQIIOtI6ZvOqKgo630/Pz/lz5//fpcF5CqEewBZkU0TtQsVKqRChQplVC3I4eiyBwDbEe4BZEV2vfoTche67AEAAHImQgXuG7rsAQAAciZCBe4buuwBAEBOwbDu5NIcKhISErRt2zY99NBDeuCBBzKhJAAAACBrY1h3cmkOFY6OjmrRooVCQkIIFQAAAMiVGNadXLqGP1WrVk0nTpyQj49PRtcDAAAAZPnhRQzrTi5doWL8+PEaMmSIxo0bp9q1a9/xF+bm5pYhxQEAACB3YnhR9pKuUNGmTRtJUrt27WSxWKzbjTGyWCxKSEjImOoAAACQKzG8KHtJV6jYtGlTRteBbCY0NFQRERE2txMTE2O9v3fv3hTfHNLD3d1dZcqUyZC2ACAzZcT7Ke+lyIkYXpS9pCtUPPbYYxldBzLA/Rp7GBoaKt9KlRQdG5vm33UvSd88ZARXZ2eFHDnCf4YAsrTMeD/lvRSAPaR7nYorV67o448/VkhIiCSpatWqeumll1SoUKEMKw5pc7/GHkZERCg6Nlaza3irfAHbvg2LTUhUx+1HJElf1q8kZ0cHm9qTpGORMXpt3ylFRETwHyGALC2j3k95LwVgb+kKFbt27VLLli3l4uKiunXrSpKmT5+uCRMm6Mcff1StWrUytEikzv0ee1i+gIuqF3JN17lJom/+M/+mqpuLXPM42tQeAGRHtr6f8l4KwN7SFSoGDRqkdu3aaeHChcqT51YTN2/eVO/evTVw4EBt2bIlQ4tE6jD2EGnBvBgAAJBR0t1TcXugkKQ8efJo2LBhqlOnToYVByBzMC8GAABkpHSFCjc3N4WGhqpy5crJtp85c0YFCxbMkMIAZB7mxQAAgIyUrlDRpUsX9erVS1OnTlWDBg0kSdu2bdPQoUPVrVu3DC0QQOZhXgwAAMgI6QoVU6dOlcViUY8ePXTz5k1JUt68edWvXz9NmjQpQwtEznE+9oYuxN1Iti32toUSD16LlrPjnR9IPZzyqrhz3kyvDwAAAOmT5lCRkJCg7du3a8yYMZo4caKOHz8uSSpXrpxcXW37xhP/yMqTaJMuI5xWn4Ve1Ixjd19Ho+P2P1PcPqi8pwZX9ErX7wQAAEDmS3OocHR0VIsWLRQSEiIfHx9Vr149M+rK1UJDQ+XrW1nR0TH/fXAaZOQk2vR4rkwxNS/+QJrP83CilwIAACArS9fwp2rVqunEiRPy8fHJ6Hqg/59EGx2jZcM7ybeMh01txcTdUKNBCyVJW2b0kUsGfEBft+OIRi/ZmObzijszjAkAACAnSleoGD9+vIYMGaJx48apdu3ad6x94ObmliHF5Xa+ZTxUq4Jtw36iYuKt9/3KeSq/Sz5by9Lh0Is2twEASB/mpwHIitIVKtq0aSNJateunSwWi3W7MUYWi0UJt725AQCAjMP8NABZUbpCxaZNmzK6DgAAkArMTwOQFaU5VNy4cUPvvPOO5s2bpwoVKmRGTQAA4C6YnwYgK0rz0rd58+bV/v37M6MWAAAAANlQuoY/de/eXR9//DEL3WUxYZeuK+zv68m2xdw2mW/v8bAUr/7kWaSgPIsWzPT6AAAAkDOlK1TcvHlTixYt0s8//5zi1Z+mT5+eIcUhbRZ8v0PvfHL3+S5Jl5b9t9HPN1FAj8czqywAAADkcOkKFQcOHFCtWrUkSX/+mfwqE7dfDQr318tt6+pJf980n+dZhF4KAAAApB9Xf8pBPIsyjAkAAAD3X5onav+XCxcuZHSTAAAAALKwNPVUuLq66vTp0ypWrJgkqW3btvroo4/k6ekpSTp//ry8vLxY/A7IoVjJFwAApCRNoSI2NlbGGOvPW7ZsUUxMTLJjbt8PIGdhJV8AAJCSdM2puBcmagM5Fyv5AgCAlGR4qACQc7GSLwAASEmaJmpbLJZkPRH//hkAAABA7pOmngpjjCpWrGgNEpGRkapZs6YcHBys+wEAAIDsJDQ0VBERETa3c/tc471798rFxcXmNiXJ3d1dZcqUyZC2MkuaQsXixYszqw4AAADgvgsNDZVvpUqKjo3N0HYbNmyYYW25Ojsr5MiRLB0s0hQqXnjhhcyqAwAAALjvIiIiFB0bq9k1vFW+gG09C7EJieq4/Ygk6cv6leTsaPuScMciY/TavlOKiIjIOaECAAAASKusPLwoJCREklS+gIuqF3K1qa3om/+s3VTVzUWuee5cuymnIlQAWUhYWJjCwu6+DsTdeHp6WhehBAAgKwkNDZWvb2VFR8f898FpkJHDi2A7QgWQhcyfP19jx45N83kBAQEaM2ZMxhcEAICNIiIiFB0do2XDO8m3jIdNbcXE3VCjQQslSVtm9JFLBqyDtG7HEY1estHmdnI7QgWQhfTt21ft2rVLti0mJsb6bUxQUFCKXb30UgAAsjrfMh6qVcHLpjaiYuKt9/3KeSq/Sz5by9Lh0Is2twFCBZClpDSMKSoqynrfz89P+fPnv99lAQAA3FO6QkVCQoKWLFmijRs36sKFC0pMTEy2/5dffsmQ4gAAAABkfekKFa+//rqWLFmitm3bqlq1aqyqDQAAAORi6QoVK1eu1OrVq9WmTZuMrgcAAABANpOuFTny5cun8uXLZ3QtAAAAALKhdIWKN954Q7NmzZIxJqPrAQAAAJDNpGv4U1BQkDZt2qR169apatWqyps3+TWCv/zyywwpDgAAAEDWl65Q8cADD+ipp57K6FoAAAAAZEPpChWLFy/O6DoAAAAAZFN2X/xu7ty5mjJlisLDw1WjRg29//77qlu3borHHjx4UKNHj9bu3bt1+vRpzZgxQwMHDrSpTSAzhYaGKiIiwqY2YmJirPf37t2b4oraaRUSEmJzGwAAAEnSHSrWrFmj1atXKzQ0VPHx8cn27dmzJ1VtrFq1SoMHD9a8efNUr149zZw5Uy1bttSRI0fk4eFxx/HR0dF68MEH1blzZw0aNChD2gQyS2hoqHx9Kys6Oua/D06lhg0bZlhbAAAAGSVdoWL27NkaNWqUXnzxRX399dfq2bOnjh8/rp07d6p///6pbmf69Onq06ePevbsKUmaN2+evv/+ey1atEjDhw+/4/iHH35YDz/8sCSluD89bQKZJSIiQtHRMVo2vJN8y6Q/0MbE3VCjQQslSVtm9JGLU97/OOO/rdtxRKOXbLS5HQAAACmdoeKDDz7QggUL1K1bNy1ZskTDhg3Tgw8+qNGjR+vvv/9OVRvx8fHavXu3RowYYd3m4OCgZs2aKTg4OD1lpbvNuLg4xcXFWX++du1aun4/kBLfMh6qVcEr3edHxfzTE+hXzlP5XfLZXNPh0Is2twEAAJAkXetUhIaGqkGDBpIkFxcXXb9+XZL0/PPPa8WKFalqIyIiQgkJCSpevHiy7cWLF1d4eHh6ykp3mxMnTlShQoWst9KlS6fr9wMAAAC5UbpCRYkSJaw9EmXKlNH27dslSSdPnsyWC+KNGDFCV69etd7OnDlj75IAAACAbCNdw5+aNm2qb775RjVr1lTPnj01aNAgrVmzRrt27VLHjh1T1Ya7u7scHR11/vz5ZNvPnz+vEiVKpKesdLfp5OQkJyendP1OAAAAILdLV0/FggULNGrUKElS//79tWjRIvn6+uqdd97Rhx9+mKo28uXLp9q1a2vjxn8miyYmJmrjxo3y9/dPT1mZ0iYAAACAe0tXT4WDg4McHP7JI127dlXXrl3T3M7gwYP1wgsvqE6dOqpbt65mzpypqKgo65WbevTooZIlS2rixImSbk3EPnTokPX+2bNntXfvXhUoUEDly5dPVZsAAAAAMla616nYunWr5s+fr+PHj2vNmjUqWbKkPvnkE/n4+KT6WvpdunTRxYsXNXr0aIWHh8vPz0/r16+3TrQODQ1NFl7OnTunmjVrWn+eOnWqpk6dqscee0yBgYGpahMAAABAxkpXqPjiiy/0/PPP67nnntPvv/9uvRzr1atX9e677+qHH35IdVsDBgzQgAEDUtyXFBSSeHt7p2oi+L3aBAAAAJCx0hUqxo8fr3nz5qlHjx5auXKldfsjjzyi8ePHZ1hxQG4Tdum6wv6+nmxbTNwN6/29x8NSXPzOs0hBeRYtmOn1AQAApCRdoeLIkSNq1KjRHdsLFSqkK1eu2FoTkGst+H6H3vlk0133J62s/W+jn2+igB6PZ1ZZAAAA95SuUFGiRAkdO3ZM3t7eybYHBQXpwQcfzIi6gFzp5bZ19aS/b5rP8yxCLwUAALCfdIWKPn366PXXX9eiRYtksVh07tw5BQcHa8iQIXr77bczukYg1/AsyjAmICsICwtTWFhYms/z9PSUp6dnJlQEAFlbukLF8OHDlZiYqMcff1zR0dFq1KiRnJycNGTIEL366qsZXSMAAPfV/PnzNXbs2DSfFxAQoDFjxmR8QQCQxaUrVFgsFo0aNUpDhw7VsWPHFBkZqSpVqqhAgQIZXR8AAPdd37591a5du2TbYmJirJdMDwoKkouLyx3n0UsBILdK9zoV0q0VrKtUqZJRtQAAkCWkNIwpKirKet/Pz0/58+e/32UBQJaVplDx0ksvpeq4RYsWpasYAAAAIDs4H3tDF2677LskxSYkWO8fvBYtZ0fHO87zcMqr4s53Xh4+u0tTqFiyZInKli2rmjVrpmoROgAAACAn+iz0omYcu/sFHTpu/zPF7YPKe2pwRa/MKstu0hQq+vXrpxUrVujkyZPq2bOnunfvriJFimRWbQAAAECW9FyZYmpe/IE0n+eRwiK2OUGaQsXcuXM1ffp0ffnll1q0aJFGjBihtm3bqlevXmrRooUsFktm1QkAAIBcJOzSdYX9fT3ZtpjbhhvtPR4mlxQ+oHsWuT+XZy/unDOHMaVXmidqOzk5qVu3burWrZtOnz6tJUuW6JVXXtHNmzd18OBBrgAFAMhSQkNDFRERYXM7MTEx1vt79+5N8epPaRUSEmJzG0BOteD7HXrnk0133d9o0MIUt49+vokCejyeWWXhLmy6+pODg4MsFouMMUq4bWIKAABZQWhoqHx9Kys6Oua/D06DpEvLAsg8L7etqyf9fdN8nmcRFpG1hzSHiri4OOvwp6CgID3xxBOaM2eOWrVqJQcHh8yoEQCAdImIiFB0dIyWDe8k3zIeNrUVE3fD+s3olhl9Uhx2kVbrdhzR6CUbbW4HyIk8i96fYUzIGGkKFa+88opWrlyp0qVL66WXXtKKFSvk7u6eWbUBAJAhfMt4qFYF2662EhUTb73vV85T+V3y2VqWDodetLkNAMgK0hQq5s2bpzJlyujBBx/U5s2btXnz5hSP+/LLLzOkOAAAAABZX5pCRY8ePbjCEwAAAIBk0rz4HQAAAADcjpnVAAAAAGxi0yVlAQDIibL6olsAkNUQKgAA+BcW3QKAtCFUAADwLyy6BQBpQ6gAAOBfWHQLANKGidoAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwSZYIFXPnzpW3t7ecnZ1Vr1497dix457Hf/7556pcubKcnZ1VvXp1/fDDD8n2v/jii7JYLMlurVq1ysyHAAAAAORadg8Vq1at0uDBgxUQEKA9e/aoRo0aatmypS5cuJDi8b/++qu6deumXr166ffff1eHDh3UoUMHHThwINlxrVq1UlhYmPW2YsWK+/FwAAAAgFzH7qFi+vTp6tOnj3r27KkqVapo3rx5cnV11aJFi1I8ftasWWrVqpWGDh0qX19fjRs3TrVq1dKcOXOSHefk5KQSJUpYb4ULF74fDwcAAADIdewaKuLj47V79241a9bMus3BwUHNmjVTcHBwiucEBwcnO16SWrZsecfxgYGB8vDwUKVKldSvXz9dunQp4x8AAAAAAOWx5y+PiIhQQkKCihcvnmx78eLFdfjw4RTPCQ8PT/H48PBw68+tWrVSx44d5ePjo+PHj2vkyJFq3bq1goOD5ejoeEebcXFxiouLs/587do1Wx4WAAAAkKvYNVRklq5du1rvV69eXQ899JDKlSunwMBAPf7443ccP3HiRI0dO/Z+lggAAADkGHYd/uTu7i5HR0edP38+2fbz58+rRIkSKZ5TokSJNB0vSQ8++KDc3d117NixFPePGDFCV69etd7OnDmTxkcCAAAA5F52DRX58uVT7dq1tXHjRuu2xMREbdy4Uf7+/ime4+/vn+x4Sfrpp5/uerwk/fXXX7p06ZI8PT1T3O/k5CQ3N7dkNwAAAACpY/erPw0ePFgLFy7U0qVLFRISon79+ikqKko9e/aUJPXo0UMjRoywHv/6669r/fr1mjZtmg4fPqwxY8Zo165dGjBggCQpMjJSQ4cO1fbt23Xq1Clt3LhR7du3V/ny5dWyZUu7PEYAAAAgJ7P7nIouXbro4sWLGj16tMLDw+Xn56f169dbJ2OHhobKweGf7NOgQQMtX75cb731lkaOHKkKFSpo7dq1qlatmiTJ0dFR+/fv19KlS3XlyhV5eXmpRYsWGjdunJycnOzyGAEAAICczO6hQpIGDBhg7Wn4t8DAwDu2de7cWZ07d07xeBcXF23YsCEjywMAAABwD3Yf/gQAAAAgeyNUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGCTPPYuAAAAILcJCwtTWFhYms/z9PSUp6dnJlQE2IZQAQAAcJ/Nnz9fY8eOTfN5AQEBGjNmTMYXBNiIUAEAAHCf9e3bV+3atUu2LSYmRg0bNpQkBQUFycXF5Y7z6KVAVkWoAAAAuM9SGsYUFRVlve/n56f8+fPf77KAdGOiNgAAAACbECoAAAAA2IThTwAAADYIDQ1VRESEze3ExMRY7+/duzfFORVp5e7urjJlytjcDvBfCBUAAADpFBoaKt9KlRQdG5uh7SZN2LaVq7OzQo4cIVgg0xEqAAAA0ikiIkLRsbGaXcNb5QvY1rMQm5CojtuPSJK+rF9Jzo62jVI/Fhmj1/adUkREBKECmY5QAQAAYKPyBVxUvZCrTW1E30yw3q/q5iLXPI62lgXcN0zUBgAAAGATeioAAECOExYWprCwsDSfl9L6EZnhfOwNXYi7kWxbbMI/PRUHr0XL2fHOngoPp7wq7pw30+sD0opQAQAAcpz58+dr7NixaT4vICBAY8aMyfiC/uWz0Iuacezuoafj9j9T3D6ovKcGV/TKrLKAdCNUAACALC09l2z19/fXp59+mmxbXFycevXqJUn6+OOP5eTkdMd57u7u2rNnT6p/T0hISJrqSvJcmWJqXvyBNJ/n4UQvBbImQgUAAMiyQkND5etbWdHRMf99cBokhQt7Ke7MMCbkLIQKAACQZUVERCg6OkbLhneSbxmP1J93NUoRV6OTbYuNv6k+07+SJC0c/JSc8935Mci9kKvcC+VP9e9Zt+OIRi/ZmOrjgZyKUAEAALI83zIeqlUh9XMJxi7bqHc+2XTX/Unh4t9GP99EAT0eT/XvORx6MdXHAjkZoQIAAOQ4L7etqyf9fdN8nmeRgplQDZDzZYl1KubOnStvb285OzurXr162rFjxz2P//zzz1W5cmU5OzurevXq+uGHH5LtN8Zo9OjR8vT0lIuLi5o1a6ajR49m5kMAAABZiGfRgqpVwSvNN8+ihAogPeweKlatWqXBgwcrICBAe/bsUY0aNdSyZUtduHAhxeN//fVXdevWTb169dLvv/+uDh06qEOHDjpw4ID1mPfee0+zZ8/WvHnz9Ntvvyl//vxq2bKlYmNj79fDAgAAAHINu4eK6dOnq0+fPurZs6eqVKmiefPmydXVVYsWLUrx+FmzZqlVq1YaOnSofH19NW7cONWqVUtz5syRdKuXYubMmXrrrbfUvn17PfTQQ1q2bJnOnTuntWvX3sdHBgAAAOQOdp1TER8fr927d2vEiBHWbQ4ODmrWrJmCg4NTPCc4OFiDBw9Otq1ly5bWwHDy5EmFh4erWbNm1v2FChVSvXr1FBwcrK5du97RZlxcnOLi4qw/X716VZJ07dq1dD82W0RGRkqS9hw9q8iYeLvUcC8hobd6kf64GqXomwn/cfT9dzzqVo9UZGSk3Z7DpN8vZc3nkecwdXgO04/nMHWy8vPIc5g6PIf/jefQNlnleSxYsKAsFsvdDzB2dPbsWSPJ/Prrr8m2Dx061NStWzfFc/LmzWuWL1+ebNvcuXONh4eHMcaYbdu2GUnm3LlzyY7p3LmzeeaZZ1JsMyAgwEjixo0bN27cuHHjxo1bCrerV6/e83M9V3+SNGLEiGS9H4mJifr7779VtGjReyeyXOratWsqXbq0zpw5Izc3N3uXg3TgOcz+eA5zBp7H7I/nMPvjOUydggXvfREDu4YKd3d3OTo66vz588m2nz9/XiVKlEjxnBIlStzz+KQ/z58/L09Pz2TH+Pn5pdimk5OTnJyckm174IEH0vJQciU3NzdefNkcz2H2x3OYM/A8Zn88h9kfz6Ft7DpRO1++fKpdu7Y2bvxnJcrExERt3LhR/v7+KZ7j7++f7HhJ+umnn6zH+/j4qESJEsmOuXbtmn777be7tgkAAAAg/ew+/Gnw4MF64YUXVKdOHdWtW1czZ85UVFSUevbsKUnq0aOHSpYsqYkTJ0qSXn/9dT322GOaNm2a2rZtq5UrV2rXrl1asGCBJMlisWjgwIEaP368KlSoIB8fH7399tvy8vJShw4d7PUwAQAAgBzL7qGiS5cuunjxokaPHq3w8HD5+flp/fr1Kl68uCQpNDRUDg7/dKg0aNBAy5cv11tvvaWRI0eqQoUKWrt2rapVq2Y9ZtiwYYqKitLLL7+sK1euqGHDhlq/fr2cnZ3v++PLiZycnBQQEHDHkDFkHzyH2R/PYc7A85j98RxmfzyHGcNijDH2LgIAAABA9mX3xe8AAAAAZG+ECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAHKY2y/oxsXdsjeeP+D+u3Dhgi5evChJ+uqrr7R8+XI7VwRbJL2PJiQk2LmSnI9QAesL7tixY9q2bZv27t2r8PBwO1eFtErpjdNisdirHKTT/v37NXr0aEk8f8D9dv36dVWpUkVTpkzRxx9/rKefftreJcFGFotF69at07x58xQfH2/vcnI0uy9+B/syxshisejLL7/U4MGDVahQId28eVNeXl4aPny4Hn/8cXuXiFRIeh5/+uknLVmyRFeuXFGJEiU0btw4lShRItkCksi69u3bJ39/fw0ZMsTepSCDJL02kT0ULFhQn332mdq1a6eEhATNnj1bzz77rL3Lgg127typLl26aP78+fxfmMn4283lLBaLfv31V7300ksaOnSo9u3bp5EjR+qXX37R3r177V0eUslisejrr7/WU089JQ8PD3Xr1k0///yz2rVrpzNnzti7PKTCvn371KBBAw0aNEjvvPOOvctBOiX1GEZHRysxMVGJiYl2rgipZYxRYmKiatSooRs3bigxMVFhYWG6cOGCvUtDOh08eFD79+9X//791a1bN0JFJuNvNxdL+s9vy5Ytat26tfr3768zZ87orbfeUt++ffXGG29IEm+oWZwxRhcvXtS7776rMWPGaMaMGWrTpo2MMapXr57Kli2b7FhkPX/88YcaNGigIUOGaMKECdbtS5Ys0eeff27HypAWSb0S69atU8+ePVWvXj299dZb2r59u71Lw39Ieu4uXryoEiVKKCwsTN98840mTpyoyZMn8/9gNmOMUVRUlOrXr68+ffooLCxMkuTg4MD/g5mIUJGLJXXJx8fHq0yZMgoPD5e/v79atGihuXPnSpLWrVunL774QjExMfYsFSlIemO0WCxycnJSZGSkevfurXPnzql69epq3bq19Xn8/vvvrccia7l06ZK6du2q8uXLa+zYsdbt7777rgYNGqQyZcrYsTqkRVKP4dNPP62KFSuqQ4cOOnDggF555RUFBgbauzzcRVKg+Pbbb9W9e3etWLFCRYoU0RNPPKFVq1ZpxowZmjp1qjVYvPfee1q5cqWdq8a9WCwW5c+fX3v27FGpUqX022+/af/+/dZ9yCQGudLp06et92fMmGE8PDyMl5eX6d+/v3X7zZs3zUsvvWReeeUVExMTY48y8R++/PJLM378eBMfH2/8/PzM1KlTjY+Pj+nbt6+Jj483xhgTGhpqGjdubNatW2fnapGS8PBwM2TIEFO9enUzduxYY4wxU6ZMMUWLFjUbNmxI8ZyEhIT7WSLuIjIyMtnPBw4cMFWrVjULFy40xhhz6dIlU6xYMVOhQgVTtWpVs2nTJjtUidT48ssvjbOzs5k2bZo5duxYsn3Lly83efPmNZ06dTJdu3Y1Tk5OZs+ePXaqFHeTmJiY4vYjR46YBx54wLRt2/aO5xYZi1CRCx06dMg89NBD5r333rNue/rpp42zs7M5ePCgiYmJMZGRkWb48OGmRIkSJiQkxI7V4m727dtnPD09zbx580xsbKx54403TOHChU3Lli2THTdixAhTs2ZNc+bMGTtViv9y7tw5ExAQYKpUqWIee+wx4+7unuIH0K+++uq+14aUBQQEmPbt2ycLeCEhIaZnz57m+vXr5vTp06Z8+fLmf//7n9m0aZOpWLGiqV69+l2DIuznxIkTxtfX18yfP98Yc+sLtdjYWLNx40YTERFhjLkVOp5++mnTsWNHs2/fPnuWixQkBYpff/3VzJ8/3wQEBJjQ0FATFRVljLn1uadQoULmiSeeMMePH7dnqTmaxRgGl+U2x44d06RJk7R//349++yzGjhwoM6cOaOuXbsqJCREpUuXVpEiRfTnn3/qu+++U82aNe1dMv7lyJEjWr58ua5du6YZM2ZIkg4cOKBBgwYpOjpaTzzxhMqUKaOgoCCtWLFCmzdvVo0aNexcNf7N3DaE7dy5c1qwYIEWLlyoxo0b67PPPpN06xLBjo6OCggI0Lhx43TixAl5e3vbsWpIt16DN27cULVq1XTjxg3lzZtXkhQeHq4SJUropZdeUlxcnD7++GM5Ozvrqaee0rZt21SxYkVt2LBBrq6uDMPIIk6cOKFWrVpp0aJF8vf317Rp0/T111/ryJEjypcvn3bs2KFSpUopJiZGDg4OcnJysnfJuI35/+FrX331lXr37i0/Pz+Fh4crPj5eb731lp544gkVLVpUISEhatSokapUqaKlS5fyPpoZ7JtpcD+k1CV4/PhxM2DAAOPn52fmzJlj3b5w4UIzdepU88knn5hTp07dzzKRCgkJCebChQumXr165oEHHjDPPfdcsv27du0ygwYNMj4+PqZ27drmySefNPv377dTtUjJuXPnzP79+01sbOwd+8LCwkxAQIDx9fU1AQEB1u1vvfWWcXV1Nbt27bqPleJubn9PDQwMNI0bNzbh4eHWbdHR0aZ27dpmwoQJxhhjbty4YXr37m3ef/99c+HChfteL+7txIkTpkWLFqZ+/frG09PTtGvXzowbN86EhISY8uXLm5EjR9q7RPyHrVu3mhIlSpjFixcbY4y5evWqsVgsplKlSmb+/Pnm77//NsYY88cff5iyZcua0NBQO1abc9FTkUvs2LFDJ0+eVJcuXazbjh8/rlmzZmnTpk165ZVX1K9fPztWiHsx/7rW/Q8//KAxY8bo77//1rx589SsWbNkx8fExMjR0VGJiYlydna+3+XiLv744w917NhR3bt31/PPP68HH3xQkjRv3jx5eXmpXbt2Cg0N1aJFi7Rq1Sr17NlTCQkJeueddxQUFKTatWvb+RFA+uf1eOrUKd24cUP169dXvXr1tGzZMrm7uys+Pl4vvviiLly4oP79+2v79u36/PPPtXXrVpUsWdLe5edqSc9dbGys9SIXkhQYGKjff/9dxhg999xzKl68uCSpVatW6tChg/73v//Zs2zcw82bN7Vw4UKdOnVKkydP1vHjx9W8eXO1atVKV65c0Q8//KCpU6eqffv2KlasmOLj45UvXz57l50z2TPRIPMlJiaaq1evmk6dOpmaNWuazz//PNn+48ePG39/f1O2bFkzbdo0O1WJ1AgODjZ9+/Y1N2/eNMYY8+OPP5q6deuaTp06mS1btliPu3Hjhr1KxD2cOHHCFC9e3IwYMcKEhYUl29ejRw9TtGhRc/nyZWOMMWfPnjXvvPOOKVSokHFwcKCHIgv66quvTLVq1UxISIgJCQkxpUqVMi1atDAXL140xhjzzTffmJYtWxovLy/j6+trdu/ebeeKkdTDtG7dOtO2bVvToEED88wzz9zxejTm1iT8t99+25QoUcIcPXr0fpeKNNq3b585ePCgiYyMNI899pjp1auXMcaY69evm8KFC5tSpUqZxYsXm4SEhLtO6IbtCBU5VNKLJjo62hhjzI4dO0y3bt3Mo48+alatWpXs2MGDBxtvb2/TvHlzc+nSpfteK/5bQkKCeffdd03lypXNgAEDrMHiu+++M/Xr1zedOnUyW7dutXOVuJeZM2eamjVrprgvMjLStG3bNtlr86+//jKTJk0yR44cuV8l4j8kva/+9ddfpkWLFmbevHnWfYcOHTKlSpUyzZo1s4bDixcvmhMnTjDkKQtZu3atKViwoBk0aJD5/PPPTbly5UzTpk3Ntm3brJPu16xZY1566SXj5eXFVZ6yoNtDwb+vhLdnzx5TrVo1s23bNmPMrddlp06dzIsvvsiVn+4D1qnIgcxtCzD169dPf/75px5++GG98cYb8vT01Ny5c5MtqOXg4KBXX33Vem1uZD0ODg4aMGCAXnrpJW3fvl2vvvqqEhIS1LZtW7311lsKDw/X+PHjFRwcbO9ScRcFCxZUaGioFi9erAsXLujIkSPav3+/fv/9dwUFBen69ev67bffdOzYMe3cuVPFixfX0KFDVbFiRXuXjv9nsVi0ZcsWvfvuu3J0dFSbNm0kSYmJifL19dWPP/6ow4cPq2vXrrp48aLc3d3l4+OjYsWK2blySNLRo0f19ttva8KECZo+fbqaN2+u+Ph47dixQ71799Zvv/0mSSpWrJjKlSunwMBALlSSxSR9vvnpp5/00ksvqVWrVhoxYoSOHDkiSbp27ZouXbqky5cv68qVK1q9erWMMZo3b57KlStn5+pzATuHGmSSL774wri5uZlhw4aZgwcPWrfv3LnTdOvWzVSpUsV06dLFvPTSS6Zw4cJMys6i/n3pu+vXr5uJEyeahx9+2PTv39/6Lc2XX35pmjdvbv766y97lIm7OHnypLly5Yoxxpi9e/eaoUOHGk9PT1OhQgXj5+dnypYtaypWrGhq1Khh8ufPbywWi6lSpYrx8PDg2+0satmyZcbJycm4uLiYwMBA6/ak12JISIhxcXExHTt2ZD2RLGbv3r1mwoQJJi4uzpw9e9Y8+OCDZsCAAebq1avGx8fHNG7c2NrjyzDSrGvt2rWmQIECpn///mbBggWmSJEipkmTJtb1t5o3b26KFi1qKlWqZIoUKcLQw/uIUJED/fHHH6Z48eLWBZiSnDt3zvrn9OnTzSOPPGI6dOjANbezmKSu3SNHjpiaNWua0aNHJ9t/5coV89ZbbxlPT08zbNgw61Cofy/EBfuKj483TZo0MSVKlLBeecQYY0aNGmW9stOlS5dMYmKiuX79unnzzTdNu3btzL59+7gySRb3xRdfGA8PD9OjRw9z+PBh6/bbX7t//vmnvcrDXdy8edO67tKLL75ounbtal3HoF27dsZisZi6deuy2GsWFh4ebmrXrm1mzJhhjLn1Puvh4WEGDhyYLMQvXrzYLF26lCFP9xnDn3KgCxcuyNvbW927d9fly5f10UcfqXnz5qpXr5769esnBwcHDRo0SFu3btXy5cv10EMP2bvkXC0xMVGSdOPGDUm3hlicOHFCDz74oOrVq6eNGzfq3XfftR5fqFAhDR48WE5OTlqwYIGGDBkiSXJ1db3/xeOu8ubNq9mzZ6t06dJ65JFHdPnyZUm3nu9169bp8uXL1uGG+fPnV0REhOrWrauHHnpIpUuXtmfp+H/m/y+OGBISos2bN+u7775TYmKiOnbsqJkzZ2rjxo2aO3eujh49KunWa9cYo4oVK6pChQr2LD1XM7e+MJUk/fXXXzp79qyOHDkiR0dHVa5cWcYYhYaGqnr16tb3zXLlymnXrl1atWoVV8zLIubMmaOffvpJCQkJ1m1JV0F86aWXdPr0aXl7e6t9+/aaMWOGHBwc9Msvv0iSXnzxRfXo0YMhT/ebXSMNMkTSt2NxcXHGGGO2b99uLBaLef311021atVMu3btzJAhQ8z06dONh4eH+fnnn+1ZLlJw5MgR069fP5OQkGBWr15tHB0dzdmzZ8358+fN66+/burVq2fGjx9vPf7ixYumW7duZsKECXyrnQUlvSYTEhJMSEiIadCggalZs6a5fPmy2bp1q6lVq5Z54403zOnTp80ff/xhRo4caYoWLcrq9VlI0nP4xRdfmPLly5uqVauaGjVqGG9vb+uQ0s8++8yULFnSDBw4kOcui7j9YiNfffWVqVGjhqlWrZopXry4GTZsmHWIaP369c1jjz1mvvrqKzNw4EBTtGhRa28+soYaNWoYLy8vExgYaO2RDwsLM2XLljUfffSRKV++vHn55ZetQ9X+/PNP06pVK7N582Z7lp2rESqyudsvkffiiy9a3zCXL19u2rRpY4YNG2YOHTpkPf7hhx82a9eutUutuFPSG2VQUJCxWCymadOmxtHR0SxZssR6zIULF8zrr79u6tata1577TVz8OBBM3z4cNO0aVMTERFhr9KRgtuHTcTHx1vvv/HGG8ZisZiHH37YXLlyxUyaNMn4+voai8VifH19TfXq1c3vv/9uh4pxL0FBQcbNzc06lHTHjh3GYrGYmTNnWo/57LPPjLOzs3nzzTeTPee4/y5evGhKlixpQkJCzC+//GJcXV3NvHnzTHh4uPnoo4+MxWIxX3/9tTHGmNOnT5vy5cubChUqmIoVK3KVpyzk9qs7NW3a1JQpU8Zs2rTJ+sXpkCFDjKurq2nVqlWy80aOHGlq1arF3EI7IlTkAGvWrDGFChUygwcPTvbGmDRWNMmIESNYSTILWbBggfnoo4/M9evXjTHGjB071lgsFtOwYUNz7dq1ZMdevHjRvPvuu6Z8+fLGy8vL+Pj4MPksi/nrr79M586dzS+//JJs++TJk03RokXNRx99ZGrWrGnq1q1rLl++bMLDw80XX3xh9u3bZ86fP2+nqnEvH374oendu7cx5tY6I2XKlDH9+vWz7k/68LNy5UrmUGQBJ06cMKVKlTL79u0zo0aNMq+99pox5tYFLypUqGD69OmT7Pj4+Hhz8uTJZHOekDXcPlH+0UcftQYLY25dNvaJJ54w1atXNwsWLDDLly83AwYMMG5ubmbv3r12qhjGECqynX9/2Ny/f78pVqyYWbBgQbLtFy9etL4oV6xYYZ5//nnj4eHBtzFZSLNmzUzlypXNp59+auLj4837779vRowYYfLly2eef/55c+bMGWPMPx9cYmNjzfnz582WLVtSXKwJ9pW0kGSbNm1MUFCQMcaYiRMnmiJFipiffvrJGHPrmuk1atQwtWrVYk2YLOJeV2jq37+/efrpp8358+dN6dKlzcsvv2x9PX722WdmzJgx96tMpFLt2rXNO++8Y5o0aWKmT59uYmNjTcmSJZM9d7NmzWIYcBaW9DwlLSRpjDGNGjUypUqVsg5tCg4ONq+//ropWrSoqVWrlmndurXZv3+/XerFPwgV2ciMGTNM3759zY0bN6z/EX799dfG39/fGHNrLOmSJUtMy5YtTcmSJc3IkSPN2bNnzTfffGOee+65ZMOgYD+3d+127tzZVK1a1axatco6dCIwMNAaLM6ePWs9Njg4+L7XirRJGtPbvn1706dPH1OsWDGzYcOGZMeEhIQYHx8fU79+fS45mkWcPXvW7Ny50xhjzKeffmq9Otf69evN448/booWLWrtsUhakffVV181vXr14qprWUTSa+npp582Y8eONStXrjSPP/64KV68uHnllVesQ01v3LhhnnvuOTNs2DCGq2VBtw/pfuaZZ6xfyBhjzGOPPZYsWBhjTEREhImLi7tjZAbsg1CRDSS9Gc6ePds6VjBpbOHWrVuNxWIxb775pqlTp45p166def31183kyZONk5OT9YNo0srayBpu79rt0KGDqVKlivnkk0+sQ6E2b95s8uXLZ3r06GG2b99u3nnnHVOgQAFz/vz5ZKEEWc+RI0dM8+bNjYuLi5k6dap1++0B4siRI+bEiRP2KA+3SUxMNDExMebhhx827du3N5MmTTIWi8XMnz/fGHMrbLRq1cqULVvWfPHFF8aYWx9iRo4caTw8PPiixs6OHz9u5syZY0JCQqzDej/55BPTvHlz880335gaNWqYGjVqWFelj4uLMyNHjjRlypRhuFoW9uWXXxoXFxczceJEs3379mT7koJFYGCg9XOQMYb/F7MIQkUWl/RB5Pjx42bcuHHGGGN+/fXXZMNjFixYYPz9/c3gwYOTdf89/PDDd3xLCvtLqWu3Q4cOplq1asmCxdatW42Hh4epUaOGKVGihNm1a5dd6kXaHTt2zLRo0cK0bt3aupiWMfceagP7OXbsmCldurSxWCzWXorb9zVo0MBUq1bNlC5d2jRp0sSULl2aoaR2Fh8fb5555hlTpkwZ4+PjY9zc3EyrVq1MuXLlTKlSpczff/9tvvzyS+Pn52eqVKli2rdvb1q3bm2KFSvGc5eFhYaGGl9fX+s6FEluDxCPP/64yZ8/f7L3VmQNFmP+/2LOyHISExPl4OCgffv2qWbNmho/frxGjhypWbNmafHixapTp47Gjx+vEiVKKCoqSvnz57eeO3LkSK1cuVJbt25VyZIl7fgokJKdO3dqwoQJeu2119S0aVNJ0lNPPaVjx47pzTffVIcOHVSgQAGdOHFC4eHhKlu2LM9jNnP06FG99tprMsbo7bff1iOPPGLvkvAv5v/XM4iOjlaVKlUUHx+vJk2aaODAgapXr571uPDwcB06dEjbtm1TjRo1VKNGDZUtW9aOlUOSoqOj5erqqqNHjyokJEShoaHasmWL/vjjD/n6+uqTTz7R8ePH9f333+vgwYOqUaOGOnTowBoiWdiePXv01FNP6dtvv7WuoWWMkcViUUJCghwdHSVJbdu21cyZM3kusxp7JhrcXdI3mgcPHjQuLi53fHs2Z84c06BBA/PCCy8kG3f/9ddfmx49evBtTBa3du1aU6dOHdO5c2cTGBho3Z7UY/HZZ59ZeyyQff3555/miSeeMPXr12dOTBaT1GN48OBBExcXZ+Lj482BAwdM+fLlzdNPP83zlQ3cbcjLV199ZerXr2/atm1r7RFmeEzW9O/nZefOndbhTf8+5ueff2b0RRbHitpZUFIPxYEDB/TYY4/J29tbY8aMkSTFxsZKkvr376+uXbvq2LFjGjVqlMLDwyVJkZGRunnzpgIDA1WzZk17PQT8h/bt2ysgIEAXLlzQrFmztHnzZknSV199pcqVK2vYsGFat26dnauErSpUqKApU6aoVKlS8vLysnc5+H/m/7/5/Oqrr9SyZUuNGDFCcXFxqlq1qpYvX659+/Zp+vTpCg4OlnSr53fcuHF2rhr/lrS6cpLExERJUrt27TRw4EBFRkbqiSeeUERExB3HImuwWCwKCgrS3r17JUlly5aVo6Oj5s2bpytXrliPkaTvvvtOq1evVkxMjHXFdGQx9k41SC6ph2Lv3r3G1dXVNG7c2Hh5eVmvt21M8rGFs2fPNo888ojp3bu3CQ8PN8bcuT4F7Ov2b0T/PbHz66+/Nk2aNDHt27c327Zts27v3r27OX78+H2tE5nn9tcssoYNGzYYZ2dn8/HHH5uTJ08aY/55re7atctUrVrV1K9f37Ro0cK4urrSc5FNJD2HiYmJZunSpaZ169bm9OnTdq4Kd3PlyhXz5JNPGi8vL+vaS5s2bTLOzs6mU6dO5ptvvjFBQUFm4MCBplChQubAgQN2rhj3wpyKLGjXrl1q0KCBRo0apbfeeksff/yxRo0apWeffVazZs2SJMXHxytfvnySpLlz5+qDDz5Q48aNNXv2bOuYQ9hHUk/TzZs3lSdPHt28eVN///23WrRooYceekgjR45U5cqVrcevXbtWvXv31qOPPqpXX33VOscCQOa4efOm+vbtqwIFCmjWrFnWnoubN2/K0dFRFotF+/fv16pVq3Tt2jX169dPVapUsXfZSKWk59MYo8jISBUsWNDeJeFfkp4jSQoKCtLMmTP1xx9/aMWKFapVq5Z27typXr16KTIyUhaLRQ888IA+/vhj+fn52bdw3BOhIgvasmWLvvjiC2uAuHr1qlatWnXPYLFgwQK1aNFC3t7e9iob+idQHD9+XEuXLtWlS5fUvXt3+fv764MPPtDSpUvl5+engQMHytfX13peixYttG/fPrVu3VoffPCBXFxc6K4HMkl8fLzq1q2rJk2aaMaMGZKSf8i5du2a3NzcdPPmTTk4OMjBgZHC2c3tzyfsK+n/RUm6ceOG8ubNq9jYWDk7O1uPCQ4O1uTJkxUSEqLly5erdu3aunz5sq5cuaL4+Hh5eHiocOHC9noISCXeKbOgRo0aWYODMUaFChVS165dNWHCBC1fvlyvv/66JClfvnyKi4uTJL388ssECjtLeuP8448/1LRpU126dEmlSpVSrVq1JEmvvPKK+vTpo127dmnWrFk6fPiwpFvfmpYrV05vvPGGJkyYIFdXV/4zBDJY0vdnxhg5ODioRo0aOn/+vCIiIiTJ+s32oUOHNHz4cP3999/KkycPgSKb4j0063BwcNDp06dljFHevHn166+/qnnz5jp58qT1GH9/f7355pvy9vZW9+7ddfDgQRUuXFg+Pj6qVKkSgSKbyGPvAnBvSW+Mbm5u6tq1qyRp1KhRcnR01PTp0+Xk5GTP8nCbpB6KFi1a6IUXXtCkSZOs+5KGQvXu3VvSrZ6lESNGqGnTpjpz5ox++uknBQcHq1ixYvYqH8iR/v2NtcViUZ48eeTv76833nhD/v7+6tq1q4oVKyaLxaLVq1dry5Yt1i9sANgmLi5OXbt2VVhYmE6dOqWEhARFR0erd+/e+vjjj61fiPr7++vZZ59Vz5491axZM23YsMF6WVlkD4SKbCQpWDg4OOjll1+Wk5OTJk6caO+yoH+ud//xxx/rkUce0fDhw5Ptz5Mnj7Uno3fv3ipSpIhWrFihadOmqVixYvr8888JFEAGSwoUW7Zs0ddff62bN2+qcuXK6tevn/73v//p7NmzGjdunH755Re5ubkpNjZW69ev1+bNm+Xp6Wnv8oEcIV++fJoyZYr69esnf39/BQcH6/3339fw4cP1wgsvaMmSJfLx8ZEkVapUyTqU+/a1t5A9MKciG7p69arWrl0rf39/VaxY0d7l4DaPPvqoKlWqpI8++uiOfUmhImksaWxsrCIjI+Xo6EjXLpBJvvrqK/Xs2VNPPvmkbt68qQMHDqhu3br6+OOPJUnLli3TgQMHtGvXLlWvXl19+/ZlUjZgg9vnUNy+bceOHerRo4eKFi2q4OBgBQUFadSoUUpISLAGi3feeUdnz57VjBkzmGCfDREqsikmoWUtiYmJiomJUf369dWhQweNGzfOOuTp3wICAvTUU09xFQsgk+3atUudO3fW8OHD1bdvXx0+fFiNGjXS1atX1aZNG3311VfWY5PWOGAOBZB+SYEiPDxcp06dUv369a37bty4od9//13dunVTsWLFtH37dm3fvl2jRo3Spk2bVKdOHR06dEjBwcGqXr26HR8F0ot3z2yKQJG1ODg4KH/+/Kpbt66WLFmiY8eOKU+ePNZhUUlOnjypoKAg3bx5047VAjlLUiAwxljvS1JISIhatGihvn37KjQ0VG3atNETTzyhDz74QOvXr7fOcZLEVZ6ADODg4KAzZ86oWrVqatCggZo0aaKRI0fql19+UUxMjOrWrauVK1cqNjZWDz/8sOrXr68ff/xRCxYsUK9evbRv3z4CRTbGOyiQgVq1aqWbN2/q7bff1vHjx2WxWJIFwGXLlikuLo4rdQEZJOmb0T///FOvvfaaOnXqpKlTp0qSnn/+efXu3VsJCQnq27evHn30US1atEjt27dX6dKltWjRInXv3t3OjwDIWRITE1W6dGlVrFhRkZGROnfunNq2bavHHntMPXr00MmTJzVq1ChdvXpVzZo1s8417Nu3r8qVK2fv8mEDQgWQRkk9D7d/I5qkc+fO6tGjh3788Uf17dtXW7du1eXLl/Xbb7+pf//+mjlzpj744AO5u7vf77KBHCcpUOzbt08NGzbUX3/9JScnJ40cOVKTJ0+WJD388MP666+/dObMGb300kuSbn2bWq9ePS1btkzjxo2z50MAcpyyZcvq888/V5UqVVSyZEn169dPR44c0ZtvvqkTJ05o2rRpevHFF+Xs7KxffvlFHTt2lCQxGj/74+pPQBosWbJEv//+u6ZPny5HR8dkE9KS7k+ePFlubm5atWqVGjdurMKFC8vDw0MFCxbU5s2buUQekAGSXm/79++Xv7+/Bg0apAkTJigxMVHu7u4KDw+3XhTB2dlZcXFxWrNmjfz8/DRlyhQdOXJE06dP56prQCYoX768Jk6cqNdff11vv/22JkyYoK5du6pr1666cuWKvv32Wx0+fFh58uTR6NGjJTGsOydgojaQComJibpx44aGDBmi4OBgtWrVSmPHjr0jWCQkJMjR0VGSdPz4cYWEhCgsLEzVq1dXuXLl+AADZKAzZ86oVq1aatKkiVavXm3d3rVrVx05ckSxsbHy9vZWx44dFRUVpSlTpsjR0VHx8fFat26datasacfqgZzv6NGjevXVVyVJI0aM0GOPPZZs/90uaILsiVABpMLZs2dVsmRJXb58WVOnTtXGjRvVtGlTjRs37q49FgAy16lTp/TMM8/I09NTw4YN0yOPPKJJkyZp3LhxGjFihDw9PTV16lQ5OTnp/fffl7u7u44ePaqaNWuqdOnS9i4fyBWOHj2q1157TcYYjR49Wg0aNLB3ScgkhArgP6xZs0ZDhw7VZ599pgYNGujKlSuaNGmSAgMD7xosANwfSR9Y8uXLJw8PD33zzTf65JNP1KJFC0nS6dOn5ePjo/nz56tPnz52rhbInY4eParBgwcrIiJCM2bMSHapWeQcfAIC/oObm5uqV6+ugQMHKjg4WA888ICGDx+uxo0b65dfftHbb7+thIQEOTg4pDh5G0DmqVChgmbNmqWYmBh99tlnGjZsmFq0aCFjjG7cuKE8efKoevXq1gUm+R4NuP8qVKigKVOmqFSpUvLy8rJ3Ocgk9FQAqbB582bNmjVLp06d0pw5c6w9FpMnT9amTZvUpEkTjRs3Tnny5Ek2rwLA/XH8+HG98sorcnR01IgRI/Too49KkkaPHq1PP/1UmzdvZsgTYGfx8fHKly+fvctAJiFUAPdw+8rlmzZt0uzZs3X69OkUg0WzZs00ZswYJp0BdnL72O2JEyfqp59+UkBAgH799VcmZQNAJiNUAGmwefNmTZ8+XWfOnEkWLKZOnarPP/9czz33nPXyeADuv6Sx2zt27NDly5cVHBys2rVr27ssAMjxCBVACpJ6KHbv3m1dOKtbt24qWrSoduzYoXfffVehoaHWYHH58mW9//776tGjB6tlA3Z25MgRDRs2TO+++66qVq1q73IAIFcgVAB38cUXX6hfv36qWbOmjh07pkKFCqlXr17q37+/AgMDNXv2bJ09e1ZTpkxRo0aNkg2VAmBfN27cUN68ee1dBgDkGlz9CUjBnj171L9/f7333nvasGGDfvnlF+3du1fR0dGSpMaNG2vw4MHKnz+/Ro8erdjYWDtXDOB2BAoAuL/oqUCu9u/ehaSfP//8c3344Yf65ZdfdOTIEbVu3VqPP/64Fi5cKEm6cOGCPDw8FBQUJG9vb5UqVcpeDwEAAMDu6KlArpWYmCiLxaKLFy9q165d2r17tzVgnD17Vm5ubkpISFDz5s3VvHlzzZ8/X5L0zTffaP78+YqLi1PDhg0JFAAAINfj2pfIlZJWvz506JBefvllFSxYUK6urlq9erUcHR3VqlUrjRs3Ti4uLurXr59mzZplPXfjxo0KDQ1VXFycnJyc7PgoAAAAsgZCBXIdY4wcHBx08OBBNWzYUK+88or69u2rUqVKycHBQcYYPfjggxo2bJjef/99a0/EyZMntXDhQn366afaunWr3Nzc7PxIAAAAsgbmVCBX+vvvv9W+fXvVqlUrWS/E7XMsTpw4ocWLF2vGjBkqXLiwChcurPj4eK1YsYKFtAAAAG5DqECudOjQIbVr106LFi1Sw4YN5eCQfHpRUri4ceOGTp48qeDgYPn4+Kh8+fLy8vKyU9UAAABZE8OfkCvt3btXp0+f1qOPPiqLxWKdY5HEYrEoOjpaBw4cUN26dVWxYkU7VgsAAJC1cfUn5Ere3t7KkyePvvzyS0m6o6dCkhYtWqS33npL8fHx97s8AACAbIVQgVypbNmycnNz07Jly3T69Gnr9ttHA546dUq1a9dmES0AAID/QKhArlSyZEl9+OGH2rBhg95++20dOnRI0j/DnkaOHKk1a9aoZ8+eyRbHAwAAwJ2YqI1cKzExUQsXLtSAAQNUvnx5+fv7y9nZWWfPntX27du1fv16rvIEAACQCoQK5Ho7duzQlClTdOzYMRUsWFANGjRQr169VKFCBXuXBgAAkC0QKgBJCQkJcnR0tHcZAAAA2RJzKgAlv/oTORsAACBt6KkAAAAAYBN6KgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADb5PzrZmtw6GZzOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Cellpose Specialist vs Generalist by Data Type\n", + "\"\"\"\n", + "\n", + "dataset_agg_map = {\n", + " \"Tissue\": [\"tissuenet_wholecell\"],\n", + " \"Cell Culture\": [\"cellpose\", \"ep_phase_microscopy_all\", \"Gendarme_BriFi\"],\n", + " \"H&E\": [\"H_and_E\"],\n", + " \"Bacteria\": [\"deepbacs\", \"omnipose\"],\n", + " \"Yeast\": [\"YeaZ\", \"YeastNet\"],\n", + " \"Nuclear\": [\"dsb_fixed\"],\n", + "}\n", + "\n", + "group_names = list(dataset_agg_map.keys())\n", + "cp_group_general_means = []\n", + "cp_group_general_sems = []\n", + "cp_group_specific_means = []\n", + "cp_group_specific_sems = []\n", + "\n", + "for group in group_names:\n", + " datasets_for_group = dataset_agg_map[group]\n", + " cp_general_all = np.concatenate([cellpose_generalist_dict[ds] for ds in datasets_for_group])\n", + " cp_specific_all = np.concatenate([cellpose_specific_dict[ds] for ds in datasets_for_group])\n", + " \n", + " cp_general_mean = 1 - np.mean(cp_general_all)\n", + " cp_specific_mean = 1 - np.mean(cp_specific_all)\n", + " cp_group_general_means.append(cp_general_mean)\n", + " cp_group_specific_means.append(cp_specific_mean)\n", + " \n", + " cp_general_sem = np.std(cp_general_all, ddof=1) / np.sqrt(len(cp_general_all))\n", + " cp_specific_sem = np.std(cp_specific_all, ddof=1) / np.sqrt(len(cp_specific_all))\n", + " cp_group_general_sems.append(cp_general_sem)\n", + " cp_group_specific_sems.append(cp_specific_sem)\n", + "\n", + "\n", + "\n", + "x = np.arange(len(group_names))\n", + "width = 0.35\n", + "plt.rcParams['svg.fonttype'] = 'none' \n", + "fig, ax = plt.subplots(figsize=(8, 5))\n", + "\n", + "\n", + "bars_cp_specific = ax.bar(\n", + " x - width/2, cp_group_specific_means, width,\n", + " yerr=cp_group_specific_sems, edgecolor='black', linewidth=1, capsize=5, \n", + " label='Specialist', color=c1\n", + ")\n", + "\n", + "bars_cp_general = ax.bar(\n", + " x + width/2, cp_group_general_means, width,\n", + " yerr=cp_group_general_sems, edgecolor='black', linewidth=1, capsize=5, \n", + " label='Generalist', color=c2\n", + ")\n", + "\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels(group_names, rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_grouped_comparison_CELLPOSE_specific_general.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### CellSAM vs Cellpose - Cyto3 Comparision" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from pathlib import Path\n", + "import numpy as np\n", + "\n", + "name_map = {\n", + " \"Gendarme_BriFi\": \"BriFiSeg\",\n", + " \"cellpose\": \"Cellpose\",\n", + " \"ep_phase_microscopy_all\": \"Phase400\",\n", + " \"H_and_E\": \"H&E\",\n", + " \"tissuenet_wholecell\": \"TissueNet\",\n", + " \"YeaZ\": \"YeaZ\",\n", + " \"YeastNet\": \"YeastNet\",\n", + " \"dsb_fixed\": \"DSB\",\n", + " \"deepbacs\": \"DeepBacs\",\n", + " \"omnipose\": \"OmniPose\",\n", + "}\n", + "\n", + "\n", + "datasets = [\n", + " 'Gendarme_BriFi',\n", + " 'H_and_E',\n", + " 'YeaZ',\n", + " 'YeastNet',\n", + " 'cellpose',\n", + " 'deepbacs',\n", + " 'dsb_fixed',\n", + " 'ep_phase_microscopy_all',\n", + " 'omnipose',\n", + " 'tissuenet_wholecell',\n", + "]\n", + "\n", + "c1 = \"#fdbb84\"\n", + "c2 = \"#e34a33\"\n", + "c3 = '#deebf7'\n", + "c4 = '#3182bd'" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam')\n", + "cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose')\n", + "\n", + "cellpose_generalist_path = cellpose_path / 'cyto3'\n", + "cellsam_generalist_path = cellsam_path / 'general'\n", + "\n", + "\n", + "cp_generalist_dict = {}\n", + "\n", + "for file in cellpose_generalist_path.glob(\"*.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cp_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + "\n", + "cs_generalist_dict = {}\n", + "\n", + "for file in cellsam_generalist_path.glob(\"*.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cs_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgeNJREFUeJzt3XdUFPfbBfC7dCyggiIqKIoiBkUUC2rs3cT6sxuNYokl9t41tsQao7GjJtZYozExRoxdY9SADbGLBVBEQXp73j94d2QFFVxgYbmfczjC7Mzy7MjOzp35FpWICIiIiIiIiLRgoOsCiIiIiIgo92OwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFoz0nUBRJQsICAAISEhui4jTdbW1rC3t9d1Gekyc+ZMzJo1C3///TcaNmyoLFepVGjQoAGOHz+us9qIUuJ7Xnt8vxPlLAwWRDlAQEAAnJ2cEBUTo+tS0pTPzAx+/v6ZdqJx6dIl/Pjjjzh58iSePn2KpKQklChRAnXq1EHv3r3RrFmzTPk9lDEign379mHLli24cOECnj9/DhMTE5QtWxaNGzfGgAEDUKlSpY967k2bNqFv377YuHEjvvzyS61r/eOPP7B582b4+PggKCgIcXFxsLe3R926dTFhwgRUqFBB69+RlQICAuBU0Rkx0VG6LiVNZub54H/TT+/e89euXcPChQtx4sQJBAYGwszMDEWLFkWVKlXQoEEDDB8+HCqVKs1tT548iQYNGgAAfvnlF3Tu3DnN9dR/6wDQqVMn7N69O831Vq1ahSFDhgAA+vTpg02bNmn56oh0j8GCKAcICQlBVEwMlruWgWMBc12Xo+FORDSG+z5ASEiI1icZSUlJGDt2LJYuXQojIyM0btwYbdu2hbGxMe7du4dDhw5hy5YtmD17NqZNm5ZJr4DSIzQ0FJ07d8axY8dQqFAhNGvWDGXLlkVcXByuX7+OH3/8EcuXL4e3t7fGlWFd+f3333H+/HnUqlULrVq1grGxMfz8/LB582Zs3boVv//+Oxo3bqzrMt8pJCQEMdFRKN1pEsyK5qw7AzHPA/Bwz3y9e8//9ddf+Oyzz5CQkICmTZuiQ4cOMDMzw927d3HixAns27cPQ4cOhZFR2qdGGzZsAJB8N8TLy+udwULNyMgIBw8eREhICKytrdN8PiMjIyQkJGj/4ohyCAYLohzEsYA5Klvm03UZWWbq1KlYunQpqlatit27d6NcuXIaj0dHR2PFihV48eKFjirMmxISEtChQwecPHkSvXr1wsqVK2FhYaGxTmBgIKZMmYKwsDAdValp4cKF+OGHH1It9/b2RtOmTTFhwgT8+++/OqgsY8yK2iNfiZx9d0UbOek9P3jwYCQmJuLo0aNo1KiRxmMigiNHjsDQ0DDNbcPDw7F7925UqVIFNjY2OHLkCB49egQ7O7t3/r5WrVrh4MGD2LJlC0aOHKnx2JUrV3Dp0iW0bdsWBw4c0Pq1EeUU7LxNRNnizp07+O6772BlZYXDhw+nOsEAAHNzc4wbNw6zZs3SWB4XF4clS5agWrVqyJ8/PwoWLIhPP/1U6w/kL7/8EiqVCvfu3cN3332H8uXLw8zMDA4ODpg9ezbi4+PT3G7jxo2oVasWChQogAIFCqBWrVrvbMawZ88eNGjQAMWKFYOZmRlKlCiBpk2bYs+ePanWvXLlCrp16wZbW1uYmJigdOnS+Prrr7P8pOvnn3/GyZMnUb9+fWzevDlVqAAAW1tbeHl5oWXLlkhKSkLp0qVhZWWF2NjYNJ+zfv36MDIywuPHj/Hll18qTUP69u0LlUqlfKX08OFDeHp6omTJkjAxMUGpUqXg6emJgICAVM9vZmaW5u9t0qQJChcujDt37mR0N1Am+9j3fFa83589e4a7d+/CxcUlVagAku9CtGjR4p3NoLZv346oqCj07t0bvXv3RlJS0gebLtWpUwcVK1bExo0bUz3m5eUFQ0ND9OnT56NeD1FOxWBBRNli06ZNSExMxKBBg2BjY/PedU1NTZXvY2Nj0aJFC4wZMwYiAk9PT/Tq1QsPHz5Eu3btsGLFCq1rGzlyJL799ls0bdoUX3/9NUxNTTFjxgx079491brDhw9Hv3798OTJE3h6esLT0xNPnjxB3759MWLECI11V61ahf/973+4ffs2OnTogNGjR6Nly5YICgrCvn37NNY9cOAAatasiQMHDqBhw4YYOXIkKleujBUrVsDDwwMvX77U+nW+i7qJx9SpU2Fg8P6PBVNTUxgYGKB///4IDQ1NMyD5+/vj1KlTaNmyJUqVKoX27dujXbt2AIB27dphxowZypfarVu3UKNGDXh5eaF69eoYM2YM3Nzc4OXlBXd3d9y6dStdr+XcuXN4+fIlXFxc0vvyKYt8zHs+q97vlpaWMDIyQmBgICIjIzO8/YYNG2BoaIiePXuiY8eOKFCgADZu3AgRee92ffv2Ve5OqMXFxWHr1q1o0aIFSpQokeFaiHIyNoUiomxx5swZAMhwu/fZs2fj+PHjmDZtGmbNmqVcUXz9+jUaN26MMWPGoGPHjlp9QJ8/fx6+vr4oVaoUAGDu3Llo1qwZ9uzZgz179qBTp04Akjtv/vDDD3B2dsa5c+dgaWkJIHlkmtq1a2P58uX43//+h08//RQAsH79epiYmMDHxwfFihXT+J0p70K8ePECX3zxBaytrXHmzBmULl1aeWzHjh3o3r07pk+fnmbTH20lJCTgwoULMDIyUupOD09PT8yePRvr1q1Djx49NB5bv349AGDAgAEAgPbt2+PVq1f49ddf0b59+zQ7b3/11Vd4/vw51qxZg4EDByrLf/zxRwwdOhSDBw+Gt7d3qu2OHDmCs2fPIjY2Frdv38Zvv/0Ga2trLF26NN2vhbLGx7zns+r9bmpqirZt22Lv3r3w8PDAgAEDUKdOHVSuXBkmJibv3fbq1av4999/0aJFCxQvXhwA0LFjR/z00084duwYmjRp8s5te/fujSlTpiiBGQB+/fVXhISEwNPTM0OvgSg34B0LIsoWQUFBAKCcvKdHUlISVq1ahXLlymmcZABAwYIFMX36dMTFxWHv3r1a1TZixAiNukxMTDB37lwA0GjusHnzZgDJQUIdKgCgcOHCytX3t5tHGBsbw9jYONXvtLKyUr7/6aefEB4ejvnz52uECgDo1q0bqlWrhh07dnzci/uAFy9eID4+HtbW1u9sXpSWEiVK4PPPP8eJEyc0mh3Fx8fjp59+gq2tLdq0aZOu5woICMDff/+NSpUqKWFE7auvvkLFihVx7NgxPHr0KNW2R44cwaxZs7BgwQLs2bMHdnZ2OHz4MNzd3dP9WihrZPQ9n9Xv97Vr1+Lzzz/H1atXMXz4cLi7u6NgwYKoW7culi9fjujo6DS3U9/R6927t7JM/b36sXcpXrw4Wrduje3btyPm/0f98/LyQtGiRfH5559/1Osgysl4x4KIcix/f3+8fPkSJUqUSNXvAgCeP38OALh586ZWvyetK/UeHh4wMjLCf//9pyxTf5/WqEjqdts+Pj7Ksm7dumH8+PFwcXFBjx490KhRI9SrVy9VH4bz588DAP755x/cvXs31XPHxMQgJCTknaPLqO3fv1/j96trzapRnAYNGoR9+/Zh/fr1WLBgAYDkJl3Pnj3D5MmT3zm6ztvUNTdo0CBVG3cDAwPUr18fN2/ehI+PT6rOsosWLcKiRYsQERGBGzduYPbs2ahbty68vLxS3UmhnC2r3+9WVlY4cOAAbt++jcOHD+PChQs4f/48zp49i7Nnz2LdunU4ceIEihQpomwTGxuLLVu2oGDBgujQoYOyvFGjRrCzs8O+ffvw8uVLFC5c+J2/t1+/fjhw4AD27duH+vXr48iRIxgxYkSaFxyIcjsGCyLKFsWLF8fNmzfx5MkTODk5pWub0NBQAMD169dx/fr1d673MW2mU0qr/behoSGsrKw0RkEKDw+HgYEBihYtmuZzqFQqhIeHK8vGjh0LKysrrFq1CosXL8aiRYtgZGSENm3aYOnSpXBwcADw5nWuXLnyvXVGRkZ+MFio76qk9L5gYWVlBWNjY7x48QKxsbEa/Vs+pHnz5nBwcMDmzZsxZ84cGBkZYf369VCpVBlq5qHeZ+9qh29ra6uxXloKFCiAmjVrYv/+/XB3d8fAgQPRrFmzNP+vKHtk9D2fXe/38uXLo3z58srPPj4+6NWrF65du4ZZs2bh+++/Vx7bv38/Xrx4gb59+8Lc/M1Q4AYGBujZsycWLFiAbdu2YejQoe/8fW3atIGNjQ28vLxw7949JCUloV+/flq9BqKcik2hiChb1K1bFwDSbCf/Luor+506dYKIvPMrrVFXMiI4ODjVssTERLx48UKjyZOFhQWSkpKUK6cpPXv2DCKicTdCpVKhX79++Pfff/H8+XPs27cPHTt2xK+//orPPvsMiYmJGq/z6tWr732dbzeTetumTZtSbTNz5sz3bmNkZISaNWsiPj4eJ0+efO+6b1OpVBg4cCCCgoJw8OBBPHr0CEeOHEGTJk1QtmzZdD+P+vWn9f8AvGlSk9ZoVW8zMjJCo0aNEBkZiYsXL6a7Bsp8GX3PZ9f7/W1Vq1ZV+i8dO3ZM4zF1U6eNGzdqjGamUqmUu3Qfag5lZGSE3r1749ixY1i5ciVq1qzJwQVIbzFYEFG2+PLLL2FoaIi1a9emeWKeknoIU2dnZ1hYWODixYvvHPo1M5w6dSrVsnPnziEhIQFubm7KMvX3x48fT7W+elnVqlXT/B1WVlZo3749du7cicaNG+PGjRtK34RatWopv1MX1HcX5s2b98FRbt4eXrZv374wNjbG+vXr4eXlhaSkpFT9JAAo8wOow1RK6n128uTJVL9fRJTA8659+7anT58CAJua6FhG3/PZ9X5PS4ECBVIte/jwIby9vWFjY6OMAPf2l4ODA/777z+NJpNp6devH5KSkhAYGMi7FaTXGCyIKFs4Ojpi/PjxCAkJQatWrXD//v1U68TExGDJkiXKVXYjIyMMHjwYDx8+xNixY9M82bh27RqePXumVW3ff/89Hj9+rPwcFxeHKVOmAIDGCEbqMednzZql0SwnLCxMaROeclz648ePpzpRjo+PV5p8qDtL9+3bFwULFsSUKVPSbAISFRWl9MPICl988QU+/fRTHD9+HH379sXr169TrRMcHIwBAwbg8OHDGsttbGzQvn17HD58GKtWrYK1tTXat2+fant1u/W0OmDb29ujUaNGuH79Ory8vDQeW7t2Lfz8/NC4cWON/hXvuhvx559/Yt++fShUqBA8PDw++Nop62T0PZ+V7/fIyEjMnTsXISEhqR5LSEjAwoULAQD16tVTlm/cuBFJSUkYNGgQ1q9fn+bXxIkTAXz4rkXFihXxxx9/YN++fejZs2eG6yfKLdjHgoiyzZw5cxATE4OlS5fCyckJjRs3houLC4yNjXH//n0cPXoUL168wJw5c5RtZs2ahcuXL2P58uU4dOgQ6tevj2LFiuHJkye4evUqfH19ce7cuVTDuWZE7dq14erqiq5duyJ//vw4ePAg/P390bFjR2WoWSB50revv/4aP/zwA1xcXJQmG3v27MHjx48xfPhw1K9fX1m/ffv2sLCwQO3atVG6dGnEx8fjr7/+wo0bN/C///1PadpUtGhRbN++HZ07d4arqytatmyJihUrIjY2Fg8ePMCJEydQp06dVCf1mcXIyAj79+9H586dsXnzZhw4cEDpPxEXF4cbN27g+PHjiI+PR69evVJt/9VXX2HXrl0IDg7GmDFj0hy+08PDA+bm5li2bBlevnyp9H2YOnUqgOQ5P+rVq4cBAwbg4MGDqFSpEq5fv44DBw6gaNGiWLVqlcbz1ahRAy4uLqhSpQpKlSqFyMhIXLlyBadOnYKxsTG8vLyQP3/+LNhblBEZfc9n1fs9Pj4eU6dOxcyZM+Hh4QFXV1dYWFggODgYf/75Jx4/fgwHBwdldLekpCSl+VNawyOrde3aFSNHjsTWrVuxaNGi946s1rJlywzVTJQbMVgQ5SB3ItIe7lCXMrMmAwMDLFmyBD169MCqVatw8uRJnDx5EklJSbC1tUWLFi3Qt29fNG3aVNnG1NQUf/zxBzZs2ICffvoJe/bsQWxsLGxsbFCpUiV89dVXqFy5slZ1LVu2DLt27cL69esREBAAW1tbzJw5E5MmTUq17vLly+Hm5oZVq1Zh7dq1AIBPPvkEs2fPVmaXVps/f74y+szBgweRP39+lCtXDqtWrUrVublNmzb477//sHDhQhw9ehR//fUX8ufPj1KlSqFv375pntBnpiJFiuDo0aPYu3cvtmzZglOnTmHfvn0wMjJC2bJlMXDgQHz11VdwdnZOtW2jRo1gb2+PgIAA9O/f/53Pv3v3bsycORPr1q1ThvZUBwsnJydcvHgRs2bNwuHDh3Ho0CEULVoUffv2xYwZM1L1L5k3bx7+/vtvnDhxAs+fP4eBgQHs7e0xcOBAjBw5Ms06c6KY56lnFde1zKwpo+/5rHq/W1hY4Pfff8eff/6J06dPY9euXXjx4gXy5cuHChUqYMCAARgxYoTSp+ro0aMICAhAgwYNlEEW0mJpaYmOHTti69at2Lt3L0ciozxPJR9qUEtEWS4gIADOTk6I+v9xznOafGZm8PP3h729va5LyVRffvklNm/ejPv376NMmTK6LifXCgwMhL29PTw8PDLcATyvCggIgFNFZ8RER+m6lDSZmeeD/00/vXvPE1HW4h0LohzA3t4efv7+abb/zQmsra15gkHvtGzZMiQkJGDw4MG6LiXXsLe3h/9NP77niUivMFgQ5RD29vb8IKdcIywsDKtWrcLDhw+xfv16VKpUCV26dNF1WbkK3/NEpG8YLIiIKMNevnyJSZMmwczMDPXq1cPq1auVIWWJiChvYh8LIiIiIiLSGuexICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWlNp8Hi5MmT+Pzzz1GiRAmoVCrs37//g9scP34c1apVg6mpKRwdHbFp06YM/U4RQXh4OETk44omIiIiIqJUdBosIiMj4erqipUrV6Zr/fv376NNmzZo1KgRfHx8MHLkSPTv3x9//vlnun/n69evYWlpidevX39s2URERERE9BaV5JBL9yqVCvv27UP79u3fuc6ECRNw6NAhXLt2TVnWrVs3vHr1CocPH07X7wkPD4elpSXCwsJgYWGhbdlERERERIRc1sfi3LlzaNq0qcayFi1a4Ny5c+/cJjY2FuHh4RpfRERERESUuXJVsAgKCoKNjY3GMhsbG4SHhyM6OjrNbebPnw9LS0vly87OLjtKJSIiIiLKU3JVsPgYkyZNQlhYmPL16NEjXZdERERERKR3jHRdQEYUL14cwcHBGsuCg4NhYWEBc3PzNLcxNTWFqalpdpRHRERERJRn5ao7Fh4eHvD29tZY9tdff8HDw0NHFREREREREaDjYBEREQEfHx/4+PgASB5O1sfHBwEBAQCSmzH17t1bWf+rr77CvXv3MH78eNy8eRM//vgjfvnlF4waNUoX5RMRERER0f/TabC4ePEi3Nzc4ObmBgAYPXo03NzcMH36dABAYGCgEjIAwMHBAYcOHcJff/0FV1dXLF68GOvXr0eLFi10Uj8RERERESXLMfNYZBfOY0FERERElPlyVR8LIiIiIiLKmRgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0ZqTrAuiNwMBABAYGZng7W1tb2NraZkFFRERERETpw2CRg6xZswazZs3K8HYzZszAzJkzM78gIiIiIqJ04gR5OUhadyyio6NRr149AMDp06dhbm6eajvesSAiIiIiXWOwyOEiIyNRoEABAEBERATy58+v44qIiIiIiFJjUygdCQgIQEhIyAfXi46OVr738fFJ845FWqytrWFvb//R9RERERERZQTvWOhAQEAAnJ2cEBUTk2W/I5+ZGfz8/RkuiIiIiChb8I6FDoSEhCAqJgbLXcvAscD770DEJCah43l/AMDe2k4wM/zwCMF3IqIx3PcBQkJCGCyIiIiIKFswWOiQYwFzVLbM9951ohISle8/sTBHPiPDrC6LiIiIiCjDGCxykOCYeDyLjddYFpP4JlhcD4+CmWHqYFHM1Bg2ZsZZXh8RERER0bswWOQgWwOeY+mdd0+Q1/H8rTSXj3K0xegKJbKqLCIiIiKiD2KwyEF62hdFM5tCGd6umCnvVhARERGRbjFY5CA2ZmzSRERERES504eHGCIiIiIiIvoABgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNZ0Hi5UrV6JMmTIwMzNDrVq1cOHChfeuv2zZMjg5OcHc3Bx2dnYYNWoUYmJisqlaIiIiIiJKi06Dxc6dOzF69GjMmDEDly9fhqurK1q0aIFnz56luf62bdswceJEzJgxA35+ftiwYQN27tyJyZMnZ3PlRERERESUkk6DxZIlSzBgwAD07dsXlSpVwurVq5EvXz54eXmluf7Zs2dRt25d9OjRA2XKlEHz5s3RvXv3D97lICIiIiKirKWzYBEXF4dLly6hadOmb4oxMEDTpk1x7ty5NLepU6cOLl26pASJe/fu4ffff0fr1q3f+XtiY2MRHh6u8UVERERERJnLSFe/OCQkBImJibCxsdFYbmNjg5s3b6a5TY8ePRASEoJ69epBRJCQkICvvvrqvU2h5s+fj1mzZmVq7UREREREpEnnnbcz4vjx45g3bx5+/PFHXL58GXv37sWhQ4fwzTffvHObSZMmISwsTPl69OhRNlZMRERERJQ36OyOhbW1NQwNDREcHKyxPDg4GMWLF09zm2nTpuGLL75A//79AQCVK1dGZGQkBg4ciClTpsDAIHVOMjU1hampaea/ACIiIiIiUujsjoWJiQmqV68Ob29vZVlSUhK8vb3h4eGR5jZRUVGpwoOhoSEAQESyrlgiIiIiInovnd2xAIDRo0ejT58+cHd3R82aNbFs2TJERkaib9++AIDevXujZMmSmD9/PgDg888/x5IlS+Dm5oZatWrhzp07mDZtGj7//HMlYBARERERUfbTabDo2rUrnj9/junTpyMoKAhVq1bF4cOHlQ7dAQEBGncopk6dCpVKhalTp+LJkycoWrQoPv/8c8ydO1dXL4GIiIiIiACoJI+1IQoPD4elpSXCwsJgYWGhkxouX76M6tWr4/e6zqhsmS/Tn/9qWBRan/HDpUuXUK1atUx/fiIiIiKit+WqUaGIiIiIiChnYrAgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFozysjKSUlJOHHiBE6dOoWHDx8iKioKRYsWhZubG5o2bQo7O7usqpOIiIiIiHKwdN2xiI6Oxpw5c2BnZ4fWrVvjjz/+wKtXr2BoaIg7d+5gxowZcHBwQOvWrXH+/PmsrpmIiIiIiHKYdN2xqFChAjw8PLBu3To0a9YMxsbGqdZ5+PAhtm3bhm7dumHKlCkYMGBAphdLREREREQ5U7qCxZEjR+Ds7PzedUqXLo1JkyZh7NixCAgIyJTiiIiIiIgod0hXU6gPhYqUjI2NUa5cuY8uiIiIiIiIcp9MGxUqMjISJ0+ezKynIyIiIiKiXCTTgsWdO3fQqFGjzHo6IiIiIiLKRTiPBRERERERaS3d81gUKVLkvY8nJiZqXQwREREREeVO6Q4WsbGxGDx4MCpXrpzm4w8fPsSsWbMyrTAiIiIiIso90h0sqlatCjs7O/Tp0yfNx319fRksiIiIiIjyqHT3sWjTpg1evXr1zseLFCmC3r17Z0ZNRERERESUy6T7jsXkyZPf+7idnR02btyodUFERERERJT7cFQoIiIiIiLSWrqDRf369TWaQh04cADR0dFZURMREREREeUy6Q4Wp0+fRlxcnPJzr169EBgYmCVFERERERFR7vLRTaFEJDPrICIiIiKiXIx9LIiIiIiISGvpHhUKAP78809YWloCAJKSkuDt7Y1r165prNO2bdvMq46IiIiIiHKFDAWLtyfHGzRokMbPKpUKiYmJ2ldFRERERES5SrqDRVJSUlbWQUREREREuRj7WBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERaU2rYDFkyBCEhIRoVcDKlStRpkwZmJmZoVatWrhw4cJ713/16hWGDh0KW1tbmJqaokKFCvj999+1qoGIiIiIiLSjVbDYsmULwsPDP3r7nTt3YvTo0ZgxYwYuX74MV1dXtGjRAs+ePUtz/bi4ODRr1gwPHjzA7t274e/vj3Xr1qFkyZIfXQMREREREWkvQxPkvU1EtPrlS5YswYABA9C3b18AwOrVq3Ho0CF4eXlh4sSJqdb38vJCaGgozp49C2NjYwBAmTJltKqBiIiIiIi0p7M+FnFxcbh06RKaNm36phgDAzRt2hTnzp1Lc5sDBw7Aw8MDQ4cOhY2NDVxcXDBv3rz3zvYdGxuL8PBwjS8iIiIiIspcWgWL169fo2zZsh+1bUhICBITE2FjY6Ox3MbGBkFBQWluc+/ePezevRuJiYn4/fffMW3aNCxevBhz5sx55++ZP38+LC0tlS87O7uPqpeIiIiIiN4tV40KlZSUhGLFimHt2rWoXr06unbtiilTpmD16tXv3GbSpEkICwtTvh49epSNFRMRERER5Q1a9bHQhrW1NQwNDREcHKyxPDg4GMWLF09zG1tbWxgbG8PQ0FBZ5uzsjKCgIMTFxcHExCTVNqampjA1Nc3c4omIiIiISIPO7liYmJigevXq8Pb2VpYlJSXB29sbHh4eaW5Tt25d3LlzB0lJScqyW7duwdbWNs1QQURERERE2UOnTaFGjx6NdevWYfPmzfDz88PgwYMRGRmpjBLVu3dvTJo0SVl/8ODBCA0NxYgRI3Dr1i0cOnQI8+bNw9ChQ3X1EoiIiIiICDpsCgUAXbt2xfPnzzF9+nQEBQWhatWqOHz4sNKhOyAgAAYGb7KPnZ0d/vzzT4waNQpVqlRByZIlMWLECEyYMEFXL4GIiIiIiJCJweLu3bsYMGAAjh07lqHthg0bhmHDhqX52PHjx1Mt8/DwwPnz5z+mRCIiIiIiyiKZFiwiIiJw4sSJzHo6yuMCAwMRGBiY4e1sbW1ha2ubBRURERER0fukO1gsX778vY8/efJE62KI1NasWYNZs2ZleLsZM2Zg5syZmV8QEREREb1XuoPFyJEj3zv6UlxcXKYVRTRo0CC0bdtWY1l0dDTq1asHADh9+jTMzc1Tbce7FURERES6ke5gUbp0aXz77bfo0qVLmo/7+PigevXqmVYY5W1pNWmKjIxUvq9atSry58+f3WURERER0Tuke7jZ6tWr49KlS+98XKVSQUQypSgiIiIiIspd0n3HYvbs2YiKinrn45UqVcL9+/czpSgiIiIiIspd0h0sKlWq9N7HjY2NUbp0aa0LIiIiIiKi3EenM28TEREREZF+SFewaNmyZbompXv9+jW+/fZbrFy5UuvCiIiIiIgo90hXU6jOnTujU6dOsLS0xOeffw53d3eUKFECZmZmePnyJW7cuIHTp0/j999/R5s2bbBw4cKsrpuIiIiIiHKQdAULT09P9OrVC7t27cLOnTuxdu1ahIWFAUgeDapSpUpo0aIF/v33Xzg7O2dpwURERERElPOku/O2qakpevXqhV69egEAwsLCEB0dDSsrKxgbG2dZgURERERElPOlO1i8zdLSEpaWlplZCxERERER5VIfHSyIMktAQABCQkI+uF50dLTyvY+PD8zNzdP1/NbW1rC3t//o+oiIiIjowxgsSKcCAgLg7OSEqJiYDG1Xr169dK+bz8wMfv7+DBdEREREWYjBgnQqJCQEUTExWO5aBo4F3n8HIiYxCR3P+wMA9tZ2gpnhh0dLvhMRjeG+DxASEsJgQURERJSFMhQsEhMTcebMGVSpUgWFChXKopIoL3IsYI7Klvneu05UQqLy/ScW5shnZJjVZRERERFROmVo5m1DQ0M0b94cL1++zKp6iIiIiIgoF8pQsAAAFxcX3Lt3LytqISIiIiKiXCrDwWLOnDkYO3YsfvvtNwQGBiI8PFzji4iIiIiI8p4Md95u3bo1AKBt27ZQqVTKchGBSqVCYmLiuzYlIiIiIiI9leFg8ffff2dFHURERERElItlOFg0aNAgK+ogIiIiIqJc7KPmsXj16hU2bNgAPz8/AMAnn3yCfv36wdLSMlOLIyIiIiKi3CHDnbcvXryIcuXKYenSpQgNDUVoaCiWLFmCcuXK4fLly1lRIxERERER5XAZvmMxatQotG3bFuvWrYORUfLmCQkJ6N+/P0aOHImTJ09mepFERERERJSzZThYXLx4USNUAICRkRHGjx8Pd3f3TC2O8q7gmHg8i43XWBaTYsSx6+FRMDNMPfN2MVNj2JgZZ3l9RERERKQpw8HCwsICAQEBqFixosbyR48eoWDBgplWGOVtWwOeY+mdwHc+3vH8rTSXj3K0xegKJbKqLCIiIiJ6hwwHi65du8LT0xOLFi1CnTp1AABnzpzBuHHj0L1790wvkPKmnvZF0cymUIa3K2bKuxVEREREupDhYLFo0SKoVCr07t0bCQkJAABjY2MMHjwYCxYsyPQCKW+yMWOTJiIiIqLcJEPBIjExEefPn8fMmTMxf/583L17FwBQrlw55MuXL0sKJCIiIiKinC9DwcLQ0BDNmzeHn58fHBwcULly5ayqi4iIiIiIcpEMz2Ph4uKCe/fuZUUtRERERESUS2U4WMyZMwdjx47Fb7/9hsDAQISHh2t8ERERERFR3pPhztutW7cGALRt2xYqlUpZLiJQqVRITDHXABERERER5Q0ZDhZ///13VtRBRERERES5WIaCRXx8PGbPno3Vq1ejfPnyWVUTERERERHlMhnqY2FsbIwrV65kVS1ERERERJRLZbjzdq9evbBhw4asqIWIiIiIiHKpDPexSEhIgJeXF44ePYrq1asjf/78Go8vWbIk04ojIiIiIqLcIcPB4tq1a6hWrRoA4NatWxqPpRwlioiIiIiI8g6OCkVERERERFrLcB+L93n27FlmPh0REREREeUS6Q4W+fLlw/Pnz5Wf27Rpg8DAQOXn4OBg2NraZm51RERERESUK6Q7WMTExEBElJ9PnjyJ6OhojXVSPk5ERERERHlHpjaFYudtIiIiIqK8KVODBRERERER5U3pDhYqlUrjjsTbPxMRERERUd6V7uFmRQQVKlRQwkRERATc3NxgYGCgPE5ERERERHlTuoPFxo0bs7IOIiIiIiLKxdIdLPr06ZOVdRARERERUS7GzttERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpL96hQaomJidi0aRO8vb3x7NkzJCUlaTx+7NixTCuOiIiIiIhyhwwHixEjRmDTpk1o06YNXFxcOPs2ERERERFlPFjs2LEDv/zyC1q3bp0V9RARERERUS6U4T4WJiYmcHR0zNQiVq5ciTJlysDMzAy1atXChQsX0rXdjh07oFKp0L59+0yth4iIiIiIMibDwWLMmDH4/vvvISKZUsDOnTsxevRozJgxA5cvX4arqytatGiBZ8+evXe7Bw8eYOzYsfj0008zpQ4iIiIiIvp4GW4Kdfr0afz999/4448/8Mknn8DY2Fjj8b1792bo+ZYsWYIBAwagb9++AIDVq1fj0KFD8PLywsSJE9PcJjExET179sSsWbNw6tQpvHr1KqMvg4iIiIiIMlGGg0WhQoXQoUOHTPnlcXFxuHTpEiZNmqQsMzAwQNOmTXHu3Ll3bjd79mwUK1YMnp6eOHXq1Ht/R2xsLGJjY5Wfw8PDtS+ciIiIiIg0ZDhYbNy4MdN+eUhICBITE2FjY6Ox3MbGBjdv3kxzm9OnT2PDhg3w8fFJ1++YP38+Zs2apW2pRERERET0HrlqgrzXr1/jiy++wLp162BtbZ2ubSZNmoSwsDDl69GjR1lcJRERERFR3pPhOxYAsHv3bvzyyy8ICAhAXFycxmOXL19O9/NYW1vD0NAQwcHBGsuDg4NRvHjxVOvfvXsXDx48wOeff64sU0/QZ2RkBH9/f5QrV05jG1NTU5iamqa7JiIiIiIiyrgM37FYvnw5+vbtCxsbG/z333+oWbMmrKyscO/ePbRq1SpDz2ViYoLq1avD29tbWZaUlARvb294eHikWr9ixYq4evUqfHx8lK+2bduiUaNG8PHxgZ2dXUZfDhERERERZYIM37H48ccfsXbtWnTv3h2bNm3C+PHjUbZsWUyfPh2hoaEZLmD06NHo06cP3N3dUbNmTSxbtgyRkZHKKFG9e/dGyZIlMX/+fJiZmcHFxUVj+0KFCgFAquVEpJ8CAwMRGBiY4e1sbW1ha2ubBRURERER8BHBIiAgAHXq1AEAmJub4/Xr1wCAL774ArVr18aKFSsy9Hxdu3bF8+fPMX36dAQFBaFq1ao4fPiw0qE7ICAABga5qisIEWWhNWvWfNSADDNmzMDMmTMzvyAiIiIC8BHBonjx4ggNDUXp0qVhb2+P8+fPw9XVFffv3//oSfOGDRuGYcOGpfnY8ePH37vtpk2bPup3ElHuNGjQILRt21ZjWXR0NOrVqwcgeeQ4c3PzVNvxbgUREVHWynCwaNy4MQ4cOAA3Nzf07dsXo0aNwu7du3Hx4kV07NgxK2okIlKk1aQpMjJS+b5q1arInz9/dpdFRESU52U4WKxdu1YZiWno0KGwsrLC2bNn0bZtWwwaNCjTCyQiIiIiopwvw8HCwMBAo89Dt27d0K1bt0wtioiIiIiIcpeP6hV96tQp9OrVCx4eHnjy5AkA4Oeff8bp06cztTgiIiIiIsodMhws9uzZgxYtWsDc3Bz//fcfYmNjAQBhYWGYN29ephdIREREREQ5X4aDxZw5c7B69WqsW7cOxsbGyvK6detmaNZtIiIiIiLSHxkOFv7+/qhfv36q5ZaWlnj16lVm1ERERERERLlMhoNF8eLFcefOnVTLT58+jbJly2ZKUURERERElLtkOFgMGDAAI0aMwD///AOVSoWnT59i69atGDt2LAYPHpwVNRIRERERUQ6X4eFmJ06ciKSkJDRp0gRRUVGoX78+TE1NMXbsWHz99ddZUSMREREREeVwGQ4WKpUKU6ZMwbhx43Dnzh1ERESgUqVKKFCgQFbUR0REREREuUCGg4WaiYkJKlWqlJm1EBERERFRLpXuYNGvX790refl5fXRxRARERERUe6U7mCxadMmlC5dGm5ubhCRrKyJiAgAEBAQgJCQkA+uFx0drXzv4+MDc3PzdD2/tbU17O3tP7o+IiIieiPdwWLw4MHYvn077t+/j759+6JXr14oUqRIVtZGRHlYQEAAnJ2cEBUTk6Ht6tWrl+5185mZwc/fn+GCiIgoE6Q7WKxcuRJLlizB3r174eXlhUmTJqFNmzbw9PRE8+bNoVKpsrJOIspjQkJCEBUTg+WuZeBY4P13IGISk9DxvD8AYG9tJ5gZfngk7TsR0Rju+wAhISEMFkRERJkgQ523TU1N0b17d3Tv3h0PHz7Epk2bMGTIECQkJOD69escGYqIMp1jAXNUtsz33nWiEhKV7z+xMEc+I8OsLouIiIjekuEJ8pQNDQygUqkgIkhMTPzwBkREREREpLcyFCxiY2Oxfft2NGvWDBUqVMDVq1exYsUKBAQE8G4FEREREVEelu6mUEOGDMGOHTtgZ2eHfv36Yfv27bC2ts7K2oiIiIiIKJdId7BYvXo17O3tUbZsWZw4cQInTpxIc729e/dmWnFERERERJQ7pDtY9O7dmyM/ERERERFRmjI0QR4REREREVFaPnpUKCIiIiIiIjUGCyIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1tI9jwURUU4QHBOPZ7HxGstiEhOV76+HR8HM0DDVdsVMjWFjZpzl9REREeVVDBZElKtsDXiOpXcC3/l4x/O30lw+ytEWoyuUyKqyiIiI8jwGCyLKVXraF0Uzm0IZ3q6YKe9WEBERZSUGCyLKVWzM2KSJiIgoJ2LnbSIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0lqOCBYrV65EmTJlYGZmhlq1auHChQvvXHfdunX49NNPUbhwYRQuXBhNmzZ97/pERERERJT1dB4sdu7cidGjR2PGjBm4fPkyXF1d0aJFCzx79izN9Y8fP47u3bvj77//xrlz52BnZ4fmzZvjyZMn2Vw5ERERERGpGem6gCVLlmDAgAHo27cvAGD16tU4dOgQvLy8MHHixFTrb926VePn9evXY8+ePfD29kbv3r2zpWYiIiLKHQIDAxEYGJjh7WxtbWFra5sFFRHpL50Gi7i4OFy6dAmTJk1SlhkYGKBp06Y4d+5cup4jKioK8fHxKFKkSJqPx8bGIjY2Vvk5PDxcu6KJiIgo11izZg1mzZqV4e1mzJiBmTNnZn5BRHpMp8EiJCQEiYmJsLGx0VhuY2ODmzdvpus5JkyYgBIlSqBp06ZpPj5//vyPOqAQERFR7jdo0CC0bdtWY1l0dDTq1asHADh9+jTMzc1Tbce7FUQZp/OmUNpYsGABduzYgePHj8PMzCzNdSZNmoTRo0crP4eHh8POzi67SiQiIiIdSqtJU2RkpPJ91apVkT9//uwui0gv6TRYWFtbw9DQEMHBwRrLg4ODUbx48fduu2jRIixYsABHjx5FlSpV3rmeqakpTE1NM6Ve0h9sc0tERESUuXQaLExMTFC9enV4e3ujffv2AICkpCR4e3tj2LBh79zuu+++w9y5c/Hnn3/C3d09m6olfcI2t0RERESZS+dNoUaPHo0+ffrA3d0dNWvWxLJlyxAZGamMEtW7d2+ULFkS8+fPBwB8++23mD59OrZt24YyZcogKCgIAFCgQAEUKFBAZ6+Dche2uSUi0j8BAQEICQn54HrR0dHK9z4+Pmke79NibW0Ne3v7j66PSN/pPFh07doVz58/x/Tp0xEUFISqVavi8OHDSofugIAAGBi8mW5j1apViIuLw//+9z+N5+GVZMoItrklItIvAQEBcHZyQlRMTIa2U19QSo98Zmbw8/dnuCB6B50HCwAYNmzYO5s+HT9+XOPnBw8eZH1BRERElKuEhIQgKiYGy13LwLHA++9AxCQmoeN5fwDA3tpOMDP88HzBdyKiMdz3AUJCQhgsiN4hRwQLIiLKOA5CQJSaYwFzVLbM9951ohISle8/sTBHPiPDrC6LKE9gsKA8wc/P74PrfEybW7a3JV3iIARERJSTMFiQXnsWGw+oDNCrV68MbZfeNrdm5vngf9OP4YJ0goMQEBFRTsJgQXotPD4BkCSU7jQJZkXff/KfFB+L2xtGAgDKey6DgfH75z+JeR6Ah3vms70t6QwHISCinITNM4nBgvIEs6L2yFeiwnvXSYx70xTK3NYRhibpG36QiIhyruCY+OS71ynEJL7pY3E9PApmhqn7WBQzNYaNmXGW16dP2DyTGCyIiIhIb20NeI6ld959Fb3j+VtpLh/laIvRFUpkVVl6ic0zicGCiIiI9FZP+6JoZlMow9sVM+Xdioxi80xisKA8Kf71C8S/fqGxLDE+Vvk+KvAODNPoY2Fc0ArGBa2yvD6it3FGYaKPY2PGJk1E2YXBgvKkkH9/Q9Dxn975+J3/78T9tuINe8O2cZ8sqooobZxRmIhyGl7soLQwWFCeZF3jM1hW9MjwdrxbQbrAGYWJKCcJCAiAU0VnxERHZWi7jFzs4HDuuRODBeVJbNJEuVF2zyjMoSOJKC0hISGIiY7KkqHcAQ7nnpsxWBARUZo4dCQRvQ+Hcqe3MVgQEVGaOHQkERFlBIMFERGliUNHEhFRRjBYEBER6Rn2jyFd4FDuxGBBRJRLBcfE41lsvMaymMQ3nbevh0fBzDB15+1ipmmP6+/n5/fB38mhI3MH9o8hXeBQ7sRgQUSUS20NeI6ld959Vbrj+VtpLh/laIvRFUooPz+LjQdUBujVq1eGfj+Hjsy52D+GdIFDuRODBRFRLtXTviia2RTK8HbFTDXvVoTHJwCSxKEj9Qj7x5AusEkTMVgQEeVSNmZpN2n6WBw6kojyEvZFynwMFkRERESk1wICAhASEqKxbM2aNVi7dm2Gn2vgwIEYNGiQxjL2I0vGYEFERETpxqu8lNsEBATA2ckJUTExmfJ8a9euTRVI8pmZwc/fP8+HCwYLIiJKE4eOpLRwxCnKbUJCQhAVE4PlrmXgWOBN883QuHiExiVorBubJBh39SEAYGHl0jA1UKV6viImRihi8qYZ6p2IaAz3fcB+ZGCwICKid+DQkZQWjjiVu+XlO06OBcxR2TKf8vOSW0/fO7KeOmC87e2R9egNBgsiIkoTh47MHdJqO56WzJqDhCNO5W684/RGZo2sR28wWBARUZrYpCnn+9i24xmZg4Rtx/UL7zi9kdkj670tL94dYrAgIiLKpd7VdjwtMYlJ6HjeHwCwt7YTzAwNPvj86rbjp06dgrOz8zvX44zsuQfvOGUdPz8/jZ8za9Sp3PQ+YbAgIiLK5d5uO56WqIRE5ftPLMyRz8jwg8/7MbOyc0b2nCOrmsm9fQKd133M++R93h51Kje9TxgsiIiIKE3pnZWdM7LnPNnRTI6Svet9EvLvb3hx6VCGn8+qehtY1/gMQO57nzBY5BF5sZ0fERFljg/Nys4Z2XOerGwm9/ezV1h4O+PnFPru7feJbeM+SkDIiNzcv43BIo/gKBBERER5z9vN5IJj4pOb7miQd3z/RjHTNx2d70REp7kOacrNAeFjMVjkERwFgoj0He/MZg9OnJi7bQ14/t65Gzqev5Xmcs7dQOnBYKHHMqNzVVof1LlpdAIiyjt4ZzZ7cOLE3I1zN1BWYrDQQxzFg4j0XVqj3Xh4eGDLli0ay2JjY+Hp6QkA2LBhA0xNU19Jt7a2xuXLlzV+zu3Ht7Sau8QkvhkV6np4FMwMU48KlbK5y7tw4sTcLavnbqC8jcFCD3EUDyLSZx872o06YHyIPkwIl5XNXdikiYjehcFCj6UcnSCtNrEf7qrFDxAiynneNdpNaFw8QuMSNNaNTRKMu/oQALCwcmmYGqhSPV8REyMUMXnTKXW474Ncf/GEzV2yD/v2EL3BYJFHsE0sEembt0e7WXLr6Xuv0qsDxtv0sVMqm7tkH/btIXqDwSKPYJtYItJ3WXmVnlelSe3tgVEyq2+PelluvlNGxGCRR7BJExHpu6y8Ss+r0vQxA6MA6e/bA3BwFMr9GCyIiIjewqvS9Lb0DowCcHAUyrsYLIiIiP4fr0rTh6QcGAXg4ChEKTFYEBER/b93XZVOiAxDQlSYxrpJCXF49OtiAIBduzEwMDJJ9XxG+SxhlN9S+ZlXpfUPB0cheoPBgoiI6C1vX5UOPLb5vSeP6oDxNp486j8OjkL0BoMFERHRB/Dkkd6FTZqI3mCwICIi+gCePBIRfZiBrgsgIiIiIqLcj8GCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdaMdF0AEb1fYGAgAgMDM7ydra0tbG1ts6AiIiIiotQYLIhymICAAISEhCg/r1mzBmvXrs3w8wwcOBCDBg3SWGZtbQ17e3uNZQwuRERElBlyRLBYuXIlFi5ciKCgILi6uuKHH35AzZo137n+rl27MG3aNDx48ADly5fHt99+i9atW2djxURZIyAgAM5OToiKidH6udauXZsqkJiZmmL3nj0agSCrg0tuwpBFRET08XQeLHbu3InRo0dj9erVqFWrFpYtW4YWLVrA398fxYoVS7X+2bNn0b17d8yfPx+fffYZtm3bhvbt2+Py5ctwcXHRwSsgyjwhISGIionBctcycCxgDgDYEvAc2x6FfGDL1HrYWaOXfVHl5wuhrzHz5lN89tlnmVJrmsHFPB/8b/rlqnDh5+enfM+QRURE9PF0HiyWLFmCAQMGoG/fvgCA1atX49ChQ/Dy8sLEiRNTrf/999+jZcuWGDduHADgm2++wV9//YUVK1Zg9erV2Vo7UVZxLGCOypb5AACjy5fQCAjpVczUGDZmxsrPdyKiAUlC6U6TYFb0zQlvyL+/4cWlQxl+fqvqbWBd401IiXkegId75iMkJCRXnFA/i40HVAbo1auX1s+lLyGLiIhIGzoNFnFxcbh06RImTZqkLDMwMEDTpk1x7ty5NLc5d+4cRo8erbGsRYsW2L9/f5rrx8bGIjY2Vvk5LCwMABAeHq5l9R8vIiICAHA1LBJRCYmZ/vx3XkcDAKKe3kZiXHSmPndsyGMAya8hM/Yh94WmzNwfDxIS8SDyTZMq9b5Iio/V2BcWjjWQr6RThp/fyNxC43mS4pPfZ7nlb+Ny6GtAklC0bheYWCYHt/Bb/+D1nYsZfq6Cju6wqFBL+Tku7Dmen/kFDx48QKFChbSuNTe/T4DcddzgvtCUm46huXlfALlrf3BfaMpN7xNtFCxYECqV6v0riQ49efJEAMjZs2c1lo8bN05q1qyZ5jbGxsaybds2jWUrV66UYsWKpbn+jBkzBAC/+MUvfvGLX/ziF7/4xa+P/AoLC/vgub3Om0JltUmTJmnc4UhKSkJoaCisrKw+nLpyqfDwcNjZ2eHRo0ewsLDQdTk6xX3xBveFJu6PN7gv3uC+0MT98Qb3xRvcF5ryyv4oWLDgB9fRabCwtraGoaEhgoODNZYHBwejePHiaW5TvHjxDK1vamoKU1NTjWWZ0TQhN7CwsNDrP/CM4L54g/tCE/fHG9wXb3BfaOL+eIP74g3uC03cHzqeedvExATVq1eHt7e3siwpKQne3t7w8PBIcxsPDw+N9QHgr7/+euf6RERERESU9XTeFGr06NHo06cP3N3dUbNmTSxbtgyRkZHKKFG9e/dGyZIlMX/+fADAiBEj0KBBAyxevBht2rTBjh07cPHixY8aIpKIiIiIiDKHzoNF165d8fz5c0yfPh1BQUGoWrUqDh8+DBsbGwDJE4YZGLy5sVKnTh1s27YNU6dOxeTJk1G+fHns37+fc1ikYGpqihkzZqRqApYXcV+8wX2hifvjDe6LN7gvNHF/vMF98Qb3hSbujzdUIiK6LoKIiIiIiHI3nfaxICIiIiIi/cBgQUREREREWmOwICIiIiIirTFYEOkBdpUiIiIiXWOwIMrl7t+/j127dgFgwCAiIiLd4ahQlKuJCFQqla7L0JkbN26gWrVqcHBwgJ+fn67LyVFiY2M59B/RO+T1YyfRuyQlJWlMcwAAz549Q7FixXRUUe7COxaU61y5cgXTp08HgDz9wejj44MaNWrA0dERxsbGiI2N1XVJOhUQEIC9e/cCAHbu3IkpU6YgJiZGx1XlDHn9+lFef/0pxcXFAUg+ecrL3v6byOv7g94wMDDA7du38eOPPwIAdu3ahQEDBiAoKEjHleUODBa5VF79oPT19UXt2rV1XYbO+fr6ok6dOpg2bRq2b9+Ou3fvIiAgQNdl6UxMTAxmz56N+fPnY+zYsejevTs++eQTmJmZ6bo0nXj7JEkdwPPicSMpKUl5/T4+Pnj27JmOK9KdmzdvYuDAgWjatClmzpwJf39/XZekE+q/iYiICERGRiIiIiLVFeq8KC8eH9KSmJiIX3/9FcOGDYOnpye6du2Kjh07onjx4rouLVfgOymHS3mCsGzZMsyYMQNA8olCXjsIqE+mR40ahdmzZ+u6HJ3x8fFB3bp1MXLkSEycOBEiAkNDwzx9dd7MzAwTJkyAmZkZlixZgiFDhqBv374A8t6VyJS38Tdu3Ijx48ejd+/eOHr0aJ47ZqTcF1OnTsWIESNw4sSJPPle8fX1hYeHBwwNDWFra4s//vgDO3bsAJC3TijVfxNXr15FkyZNUK9ePTg6OmLBggW4evWqrsvTGXXTuNOnT2P27NkYPnw49uzZo+uydMLQ0BDDhg3D//73P2zcuBE9evRAnz59AOS9z5OPwWCRg6X8UPznn3/g6+uLb775Rrk9l5fCxdWrV1GnTh2MHTsWc+fOVZZv2rRJ6bicF9y5cwd169bF119/jXnz5gEAypQpAysrKzx58gRA3j3w2djYIH/+/HB3d8f169exfft2AMm3tfPSPlEfM8aPH4/p06fjxYsXKFy4MJo3b47ly5fnqSZzKUPF2rVrMWnSJDRv3jzP3cm6cuUK6tati6FDh2LDhg34+eefUbduXfj5+SEmJgYhISG6LjHbGBgY4OHDh2jUqBFq1qyJ6dOnY+jQodi4cSOmTZuGv/76S9cl6oRKpcLevXvRrl07+Pr6IjExEZ07d8aYMWMQFham6/KynaGhIYoUKYLPPvsMBw8exJIlSwAk//0kJibquLocTijHmzBhgtSqVUu6d+8uDg4OYmpqKgsWLFAeT0pK0mF1WS8kJEQqVaokVapU0Vg+d+5cKVSokJw/f15HlWW/3377TdasWaOxLDo6WkqVKiU//vijiGj+PZw4cUKeP3+erTVmp7f/9uPj4+X69evSpUsXqVu3rmzbtk3j8devX2dneTrz+++/i52dnVy8eFFERM6cOSMqlUq2bt2qrKPvxw21y5cvS/ny5eXUqVMiIvLq1Svx8/OT9evXK8cOfd4XT58+FZVKJX379tVYPnToUHF2dhYnJyepUKGCeHl56ajC7KP+f96wYYPUrl1b47FDhw5JixYtpFmzZnLixAldlKdTt2/fFgcHB1m1apWIiERERIi5ubmMHz9ex5Vln7SOA5GRkTJz5kwpUKCALF68WOOxe/fuZVdpuQqDRQ63Z88eKViwoJw+fVoSEhLk7t27MmXKFClYsKB89913ynr6/MEYFBQkY8eOlcqVK8usWbNERGThwoViZWUlf/75Z5rbJCYmZmeJOpOQkCBJSUlSvXp1mT9/vsZjEydOFEdHRwkMDNRRdVlL/Td//vx5WbduncyYMUP8/f1FROTGjRvStWtXqV+/vnIyPX36dBk3bpzEx8frrObs8tNPP0mHDh1ERGTnzp1SoEAB5YTh5cuX8uDBA12Wl6Xefu/7+/tLpUqV5ODBg3Lx4kUZPHiwVKhQQSpUqCBmZmZy7NgxHVWaPcLCwqROnTpSsWJFuXr1qoiIfPvtt2Jubi5r166VNWvWSN++fUWlUr3zeKpvNm3aJKVLl5bHjx9rLD969Kg0atRI+vXrJyEhITqqTjf+++8/qVu3roiI3L17V0qWLCkDBw5UHlcfW/WV+vPk77//lnnz5skXX3whf/75pwQFBUlsbKzMmjVLLCwsZNGiRSIiMnPmTOnYsWOeuViVEQwWOdzChQvF3d1dY9mTJ09k6NCholKplKvU+u7p06cyY8YMqVSpkjRo0ECsra3l77//TrXevn37sr227JLyhOntk6d27dpJv379lJ+nT58u5ubmcuHChWyrTxd2794tRYsWlebNm0vDhg01Avfly5fliy++EAcHB6lbt66YmZnp5f5IK0SvXbtWPDw8ZOfOnWJhYaFxnPjpp5+kc+fO8vLly2ysMnuk3BcXLlyQhw8fyrNnz6RJkyZSo0YNMTExkSFDhsjevXvl0aNHUrNmTVm5cqUOK846sbGxyvevX7+WRo0aSYUKFWTEiBFStGhRjRBx48YNsbGxkenTp+ui1Gz3119/iZWVlfz6668iknyBRm3Hjh1ibm4uZ86c0VV5OnH69GkpU6aMnDhxQhwcHGTgwIHKfjlz5oy0bNlS76/Qqy/kDhgwQDp06CCurq7SqVMniYiIkODgYFmwYIGoVCqpXr26FChQQLkjTJoYLHK43bt3S8mSJcXHx0djube3txgbG0u+fPlS3Z7TJ0lJScqVhCdPnsiMGTOkRIkS0qNHD2Ud9cFv+vTpolKp5P79+7ooNcuoX390dLTGyYLImxOpL774Qlq1aiUiItOmTRMzMzO9P+hduXJFSpQoIRs3bhSR5BMplUolc+bMUda5deuWbN68WSZMmCA3b97UUaVZJ+WJ9NGjR8XX11dERG7evCn169cXY2NjjTubkZGR0rZtW+nXr5/e3eVM+XomTpwoNWvWlPXr14tI8v74/fff5cSJE8o+S0hIEHd3d9mwYYNO6s1Kt2/flqFDh8rRo0eVO3SvX7+WNm3aiEqlktWrV4vIm7+f8PBwqVGjhnJXS1+oX198fLzExMRoPNavXz8pUqSIXLlyRUQ0w0WVKlVk6tSp2VdoNlO/V65evSoXL16UuLg4iYiIkA4dOkj+/PmlS5cuGutPnDhRGjRoIM+ePdNFudni9u3b4uTkJOvWrROR5CaTZmZmMnnyZGWdhIQEOX36tCxdulTu3Lmjq1JzPAaLHOJdTXdu3bol1apVk+HDh8utW7eU5VeuXJFevXrJ7NmzpXLlyvLff/9lU6VZ7+nTp3LlypVUHwQiIoGBgTJjxgxxdnaWGTNmKMunTp0q+fLl07uTafUHwB9//CFt2rSROnXqSLdu3eTx48caJ1Lz5s2Tjh07yrRp08TU1FTv9kNavL29pXHjxiIi4ufnJ/b29tK/f3/lcX1tAqb29ol0uXLlZPv27RIeHi4iyc1dnJ2dpX///nLhwgX5448/pGXLllKlShXlZFPfwoWIyJw5c8Ta2lqOHTsmr169SvV4dHS0PHz4UFq1aiXVq1fXOKHUB76+vmJvby//+9//ZNOmTRqPvXr1Spo3by5ly5bVuFg1depUsbe316uLMurP1OvXr0v37t3Fw8NDvvrqK2WfJCQkSPPmzaVYsWIa/fTi4uKkTp06ensnS/2e37t3r5QoUUKWLl2qNAnbtGmTfPLJJ9KtWze5cOGCnDt3TsaOHSuWlpZKAMvt1H8Xb1+k8/HxkcqVK0t8fLzcunVL7OzsZMCAAcrjFy5cYLOndGKwyAFShoqVK1fK8OHDpWXLlrJ7926JjIyU3bt3S4UKFaRv376ye/duuXLlirRs2VL69u0r//77rxQsWFBvmgBduXJFHB0dZebMmXL37l1l+apVq5Tb1g8fPpQZM2ZIxYoV5dtvv5V58+bp9RX6/fv3S8GCBWXUqFGya9cuKVeunDRp0kTOnDmj/O38/PPPolKpJH/+/Hq5H27evCnLli2TyMhIZZmXl5e4urrKs2fPpEyZMjJw4EBlfxw6dEgGDx6c5omlvpk9e7bY2NjI8ePHJTo6WuOxZcuWSb169cTIyEhq1aoln3/+ucTFxYmI6N0JdVJSkjx9+lRq164tW7ZsSfWYSPKxdsmSJdK8eXOpW7eu3u2LW7duSfHixWXChAmp/hbUIiIipH79+lKmTBm5e/euzJo1S8zMzOTSpUvZXG3W8/f3l0KFCknv3r1l8uTJ0qhRI/nkk0+UE8bw8HBp166dFChQQKZPny4//PCDjBkzRgoVKqRxIU/f/PHHH1KgQAH58ccfUx0jN27cKI0bNxZDQ0OpUqWK1KhRI1WLidzu/v37MnLkSI2/+RMnToi7u7s8ePBAypQpI/3791c+T86fPy9Dhw7V67+JzMRgkYOMHz9eihYtKt988430799fHBwcxNPTU0SS20V//vnnYmpqKuXLlxc3NzeJi4uTmJgYqVKlivz+++86rl579+7dExsbG5k0aVKqq829e/cWKysrpV34kydPZPbs2WJpaSkGBgZ6eTItknyiULlyZVm+fLmIJF9xtLOzkwIFCoizs7MSLk6fPi0uLi7i5+en44qzhpeXl6hUKvn2228lKipKRJJHC6tRo4YYGRkp7xP1CeS4ceOkRYsWEhoaqrOas0NQUJDUqFFDNm/eLCLJd/vOnj0ro0aNkrVr1yrr+fr6yosXL5T9o68d2IOCgqRUqVKye/duEdG8IxMTEyOvXr2SgIAA+emnn5QwoU/7YsyYMdKlSxeNoBQaGirXrl2TI0eOyPXr10VEJCoqSho3biwqlUry5cunl6FCJDl0t2/fXvk5NDRUVq1aJfb29tKrVy9l+TfffCONGjWSSpUqSZMmTfSqBcDbYmJipGPHjjJ8+HARSQ6a/v7+8s0338jq1auV4+ulS5fk6dOnenkM3bdvnxQrVkwGDRqkNB8VEfnkk09EpVLJ119/rbH+uHHjpF69enrdFCwzMVjkEMeOHZNy5copJ8je3t5iZGQkP//8s7JOTEyM+Pn5yfXr15UPzDFjxkjZsmXlyZMnOqk7My1btkzc3NzSfCwiIkLatGkjO3fuVJY9fvxYFixYoNejVfj4+MjcuXMlNjZWnjx5ImXLlpVhw4ZJWFiYODg4SKNGjZRhNPXxAyCl1atXi0qlkvnz50tUVJTExcXJkiVLxNnZWQYPHizR0dFy9epVmTRpkhQqVEgZAUefPXv2TGrVqiXffvut7N27V3r06CEeHh5SrVo1KV++vNI+OOUJtj6PmBYYGCi2trYyd+5cEdG8E3HhwgWZN2+exl0vfblTIZL8f/z555/LyJEjlWX79u2Tnj17ioWFhZiZmUnVqlVl+/btIpJ8kaJfv356dzU6pX79+qUaVjYiIkI2bdokjo6OMmnSJGV5WFiYREVF6X1zl4SEBOncubN89dVXcuHCBRkyZIg0a9ZM7OzsxM3NTbp27ZqqmZA+eLvZ565du6RixYrSv39/uXz5sogkd1J3cnKSJk2ayPXr18Xb21vGjh0rFhYWetMULDswWOiI+ha82oEDB5QD4I4dO6RgwYLKSC7h4eFy4sQJ5UqCSPKQaD169JCiRYsqb4rcbsOGDWJlZSVeXl4SHBwsN2/eFF9fX7l8+bIcPnxY6tevL6NHj5bbt2/LhQsXJD4+Xq9PkkSSPwTUdyG+/PJL6datm3Ji1LZtW1GpVOLu7p5mfxR9kfLkb+XKlaJSqZQTx1evXsmcOXPEyclJ8uXLJy4uLuLi4qI374mU3vW3PmTIEKlSpYoYGRnJ+PHj5dixY5KUlCRdunSRcePGZXOV2eN97/tFixaJgYGBcgItknxRpkWLFtKjRw+97FeiNnbsWClUqJDs3btXRo4cKSVLlhRPT0/57bff5Nq1a9KyZUuNY4g+HT9T/r+q70Jt3bpV3N3d5dy5cxrrhoaGyuTJk6VOnToSEBAgIvq1Lz5k/vz54uzsLGZmZtKlSxfZsWOHxMTEyNSpU6Vdu3a6Li9Tve/iwbZt26RixYri6ekp165dE5Hki7qVK1eW4sWLi5OTk9SpU0ev72BlBSNdT9CXF504cQK3b99GvXr1ULFiRQBAZGQkjI2N8ddff2HgwIGYP38+Bg8eDADw9vbGX3/9hfLly8Pc3BwAUKlSJdja2uLEiRNwdnbW2WvR1oMHD1C4cGFYWlqievXq6NevH6ZMmYL58+cjf/78ePnyJUxNTWFubo47d+7g1KlTOHz4MEJCQnDt2jUULVpU1y8hU8j/z6CuUqnw+PFjqFQqREREwMnJCRUrVoSIICAgAE2aNEG+fPkAAOXKlcPFixdRpEgRmJqa6rL8THfr1i2sWLECXbp0ga2tLcqVKwcRwZAhQ5CYmIgRI0YgMTER06ZNw/jx4zFs2DAcP34cjo6OsLa2ho2Nja5fQqZKSkpSZpH+/fffERoaitjYWPTq1QsrV67E7du3ERsbCxcXF2WbZ8+eoXz58roqOcuk3Bfr1q2Dv78/QkJCMHDgQFStWhUDBw7E06dP0aNHD/z2228wMDBAQEAAXrx4gYMHD0KlUkFEoFKpdPxKtBcVFYWoqChcuXIFTk5O6N69O16/fo2RI0fCyMgIS5cuRZ06dVCyZEkAgIuLC44dOwZDQ0MAb2Ymz+3UfxOhoaEoUqQIjIyST23c3NwQGRmJdevWoWTJkrCzswMAFC5cGH369MH8+fNx5coV2NnZ6c2+SEn9d+7j44NHjx7h+fPn6Nq1KyZOnIgOHTrg2bNn+PTTT5X99/LlSxgaGiImJgampqZ68R4xNDTE9evXMWHCBHTt2hV2dnZo2LAhAKB79+4wMjLC1KlTISIYPXo0GjdujCtXruDixYuwsbFBgQIFULhwYd2+iNxGl6kmL9q0aZPY29vLiBEjNMbUj4yMFEdHR1GpVPLTTz8py6Ojo6V169bSq1cvjQ6IKf/NreLi4qRRo0ZSvHhxjWY8U6ZMUUZ8UrcLf/36tUyYMEHatm0rvr6+ylUmffDixQvl+3379omrq6u4uLiIjY2NjB8/Xhmxo3bt2tKgQQPZt2+fjBw5UqysrOTp06e6KjvLhIeHi7u7u6hUKrG3txc3Nzfp0KGDrFixQul7s3v3blGpVPLdd98poyDlBWPGjJFixYqJm5ub5MuXT9zd3WXHjh3KVblXr17JtWvXpFWrVsoIJ/pqwoQJUrRoURk6dKg0bNhQqlatKgsXLpSIiAgRSR6TvlOnTtK9e3cZP368si/0ZZ/4+/tL7969pWLFimJqaipFihSRHj16KHdz356nJCkpSQYMGCD9+vXTy6Yufn5+YmhoKGPGjNFYfuTIETE2NpYBAwZoNJt9+fKluLu76/0Eibt27ZIiRYpIlSpVpGDBglK+fHlZt26dRpOvu3fvyoQJE8TCwkLvmpDGxcVJw4YNRaVSiYuLixQsWFCaN28uX375pfj4+EhsbKz8+eefUrlyZRkyZIje9jfKTgwW2einn34Sc3Nz2bJliwQHB6d6/PDhw1KqVClp1aqVeHt7yy+//CLNmzcXFxcXvR0e8urVq1KjRg1xdnZWwsWkSZOkZs2ays/quSw8PT015ijQB8+fP5eSJUuKn5+fHDt2TPLlyyerV6+WoKAgWb9+vahUKo3RsBwdHaV8+fJSoUIFvWzuI5IcstevXy/Vq1eXypUry+nTp6Vz585SuXJlKVy4sDRu3Fi8vLyka9euUqBAAVm4cKHet4sWSW7WYWNjI//9959ERETIq1evpG3btlKvXj3Zv3+/iIhs2bJFPv30U2nRooXejXiU0vr166VMmTLKe+DIkSOiUqmkUqVKMnfuXGWkm7dPoPVlX/j6+oqtra0yfKqfn5+MGzdOHB0dxcnJSc6ePauxfnR0tEyePFlsbGzkxo0bOqo6a+3YsUMKFy4sNjY2SsdktUOHDknhwoWlQ4cOsm7dOrl69aqMHTtWbGxs9Ooi1dvnBz4+PlK0aFHZtGmThISESHx8vPTu3Vtq1Kgh69evl4SEBDl16pS0bNlSXF1d9ba/zfXr16Vq1ari5uYmhw8fllmzZkndunWlTJkyUrx4cZk3b540bNhQypcvL927d9fbQVCyC4NFNnnw4IHUrFkz1bjiMTEx4u/vL7dv3xaR5L4Tbm5uYm9vLzVq1JAuXbro5QlCyrsvfn5+UqdOHXFzc5OXL1/KqVOnpFq1ajJmzBh5+PChXL16VSZPnixWVlZ694a/d++elCpVSnx9fWXKlCnKB+Ldu3elfPnyGuNoiyRffbl//77edtRW/13ExcXJli1bpGTJkhonCT///LPMmDFDHBwcxMPDQ1QqVao7Xvrqm2++kYYNG0p8fLxyoeHly5dSv359adGihbLesWPHNCYG0zexsbGyYsUKWbhwoYgk35koVKiQrFy5Ujw9PcXKykrmzZsnISEhOq40a/j6+kq+fPlk0qRJqf5/d+7cKW5ublKzZk1lluTly5fLF198ISVLltTbixEiyfMyqE+YixYtqtGJXSS5837nzp3F1tZWnJycxMnJSW/2x7taL+zatUucnJwkKChIWScpKUl69uwpLi4uyrmFt7e3PHr0KNvqzU7qz5QbN26Ira2tdOnSRRndydfXV9auXSsdOnSQatWqiUqlkmLFiullS4DsxGCRTW7fvi2Ojo4at103btwoPXv2FDMzMylcuLBMmzZNeezevXsSGhqqd8NDphxbPWUH9jFjxohKpZIaNWrIq1evZMGCBeLs7CwqlUqcnZ31bhLAlKpXry6zZ8+WRo0ayZIlSyQmJkZKliwpAwcOVP7/v//+ezl69KiOK806wcHBysF+z549snv3bklISJAtW7ZI8eLFNYaGFEkeatbf31/mz5+vt1dg1dQXFCZMmCDu7u7KcvV76ezZs2Jubp5q1JLc3lRS7enTp/LixQuNu7z379+XoKAgefDggVSuXFmWLFkiIskXcIoUKSJlypQRLy8vXZWcZQICAsTa2lo6d+6sLEtKStL4fFi7dq1YWFjI2rVr5fHjxzJ9+nT56quv9Hr0PJHkEcE6duwoQUFB8v3334uVlZVMnTpVRowYoQzXHRERIU+fPpVbt25pNEHNzdTv8/v378vChQtl2rRpyjwu+/btk+LFi0tYWJiIiDIATFhYmJibmyvDMucV169fF1tbW2ncuLHGxajY2FiJjIyUHTt26NUkkbrCYJGFVqxYoXx/+fJlKVWqlCxfvlyuXr0qvXv3Fjc3N+nTp49s3rxZli5dKkZGRrJt27ZUz6MvJwiPHz+Wzp07p2rT+u2334qVlZWsX79eudr28uVLCQoKkj179oivr2+aTcdyO/X/a6dOnWTWrFmyY8cOadKkidjY2MiQIUM0xtnv2bOnjB8/PtVoYvogPDxcrKysZNy4cUrzL/UHY2RkpGzZskVKlCihES70JWin5V3v90uXLomBgYHMnz9fY7m3t7d88sknennFccuWLVKrVi0pW7asfPbZZ8rQympHjx4VJycn5U7m2bNnpVevXvLdd9/p1R1etfv370uNGjWkbdu2qfZFymYw9evXV8JHRESExoiC+iooKEjKlSsnvr6+Eh0dLT///LPky5dPVCqVPHz4UET077ihPlb4+PiIra2t1KtXTwoVKiQlSpSQSZMmSXh4uJQoUUKZ50ft4cOH4uzsLCdPntRF2VlO/V64ffu2nDp1Si5fvqzchbh+/bqULFlSmjVrppxX6Ms5Vk7BYJFFfvrpJ+nUqZPGieC4ceOkUKFCYmNjIxUrVpTffvtNuUr75MkTKV++vEYY0Td3794VDw8Pad26tZw+fVpEkoe9K1KkiPz1118ikny70tXVVapVq6Y3V5RSunv3rqxYsUL8/PyUtr0///yzNGvWTA4cOCCurq7i6uqqXF2MjY2VyZMni729vV7P+nn48GExMTERQ0ND+eGHHzQeSxku+vbtq6MKs0fKk8N9+/bJsmXLZO/evcrfw+LFi8XExESmTJki/v7+cuvWLWnTpo00atRI7z4cV69eLSYmJrJq1SpZunSpNGvWTIYMGaKxzoEDB8TR0VE2btwo/v7+8vnnn8tXX32lPK6P4eLWrVvSsmVLadGihUa4SPm307BhQ+nevbsuytMJ9Wtv166dcme7S5cuUqhQISlcuLBMmDBBh9VlDfVrvnLlipibm8v06dMlMjJSHj58KF999ZUUK1ZMTp06Jbt37xYLCwvp27evPHnyRB48eCAzZsyQUqVK6eXFCPV+2bNnj5QuXVqqVKkilSpVkqZNm2qcZ5QqVUpat26tlxctdY3BIotcv35duTpy+PBhZfnFixfTnCX68ePHUqNGDb2/Nan+UGzXrp0MGDBAihYtKn/++afGOn5+fuLg4CC1a9fWq5OluLg46dKli9jb24uDg4NYWFhIy5YtpVy5clKqVCkJDQ2VvXv3StWqVaVSpUrSrl07adWqlV7NVfK2pKQkSUxMlMDAQFGpVKJSqWTy5MmpDvaRkZGybds2MTEx0Thx1CcpTwzHjBkjhQsXlooVK4qzs7OUKFFCjh8/LiIi69atk8KFC0uJEiXE0dFRateurVzA0Jf3i5eXl5iYmMiBAweUZdOmTZOePXvKjRs35N9//xWR5PdUx44dxd7eXkqUKCHu7u7KvtC3gS5SShku1BdpRJL//x89eiStWrVS+vPp835424ABA2TlypXSp08fsbW1lRMnTih3QadMmaLr8jJdUFCQlC1bVurUqaOx/PLly5I/f375448/RERk//79UqJECbG1tRVHR0ext7fX69GPzpw5I5aWlsqF2i1btoiBgYEsWrRIWefGjRtiZmYmHTt21JvjZk7BYJEFfvjhB2nXrp28fPlSzpw5I8WLF9fogPr2VbTQ0FBp06aNfPrpp3p5he1t/v7+0qxZMzE3N9d4o6d8c/v7+yudD/WJemKqW7duya+//io//PCDdO7cWSpWrCgdOnSQiIgI8fX1lXnz5knPnj3lu+++09s7FeoTnqCgIOXfgwcPikqlktGjR6cKF0lJSbJr1y69bCue8n1/5swZ+fTTT+Wff/6RmJgYuXLligwYMEBMTEyUK9RPnjyRkydPytmzZ/Wuo/Z///2n/A2k1KRJE7GzsxM7OzsxNzeXUaNGiUjyXb1Tp07JsWPHNJoP6rt33bmYMGGCuLq66uXVaJE3x42rV6/KX3/9Jb/++qvyWhctWiQqlUocHR2VE+eXL1/Khg0b9Oq4oW7a9vDhQ+nSpYvUr19fo7XDv//+K/nz5xdvb29lWVhYmBw6dEj+/vtvZQhzfaP+25g/f75069ZNRJL7JZUpU0YGDx6srKf+zLl586befr7qEoNFJlu7dq2oVCrlzkNQUJDMmTNHPvnkExk7dqzGus+fP5ctW7ZIq1atpFq1ano5+tO73LlzR5o3by6tWrXS+FDU9ysH77p6uG/fPqldu7a0adNGnj9//t519YH6tR04cECaNm0q27ZtU/7+f/nlF1GpVDJu3DglXCxYsED27t2rs3qzytt3L7du3SpdunSRtm3bapwcBwcHS69evaROnTpK88mU9O2Y0aNHD7G2tpaDBw+KiEjnzp2lQoUK8u+//8rFixdl6dKlolKp0uyTpm/74n1ShovLly/Lt99+KwUKFNDbYUPV9uzZIzY2NtKgQQMpUaKENG3aVLZv3y7h4eHSvXv3VO8rffpcWbp0qQwfPlw5Pty9e1c8PT2lVq1a8vPPP0twcLCUKFFCRowYoWyTl94TIiKzZs2S8ePHS2BgYKqBUH7//Xf58ccflYt8lPkYLDLR6tWrxdjYOFVzpvj4eFmwYIFUqlRJI1xs3LhR6tSpIwMHDtS7yZvS41238/OSlJMd7tixQxo0aCC1atVSwoU+27t3r5iZmcnixYvlzp07Go9t27ZNjI2N5X//+59069ZNTE1N9a452IIFC8TFxUV+++03ZdmQIUPEyspK7O3tlT5G6g/Ebdu2ScmSJeXBgwc6qTc7pDwB6tWrlxQqVEhq164tVapU0bgCf//+fbGzs5O5c+fqoswc5datW/LZZ59JsWLFxNjYOM2mtvrkwoULYm1tLWvWrBGR5OGVVSqVLFiwQET0K0SkZdmyZRp98ESS7/B7enpK9erVJV++fDJs2DARedPUNC9Qd9AXSQ5fxYoVkxIlSsjQoUOV5QkJCdKvXz8ZMmSIxgiVlLkYLDKJt7e3xmRmap999pkcPHhQQkNDZf78+VKpUiUZN26c8vjt27eVE4e8dlVB5M2HYu3ateXcuXO6Lkcn1P//SUlJsnnzZmnVqpXGQVIf3bt3T5ydnZWTg4SEBImJiRFvb29l/oG9e/dKp06dpGPHjuLr66vLcrPE4cOHpUOHDtK4cWONvgRz5syRkiVLysiRIzXGU798+bI4ODjo5bDLKe/Opfx+4MCBolKpZNWqVRrLg4ODpUqVKqnmBcqrbt68KW3btpVr167pupQst3r1amXeljt37kjZsmVl4MCByuP6fuxUO3v2rPTv31+5g3nr1i3p37+/ODg4aAyAkRfOK27cuCFVqlSR7777TlnWqVMnMTMzk+vXr0t0dLRERETIxIkTpXjx4no3H1ZOw2CRCeLj42Xfvn3KkIhqnTp1EicnJ7l7966IJDd9WrBggVSuXFn69eun8Rx55apCWvz8/OR///tfnvlASEvKcBEeHq7jarKeegLAU6dOSUJCgnz77bdSp04dsbKyEltbW+XqdFRUlMTExOi42syVsi3033//Le3bt5eGDRsqs2eLiEycOFFcXV2lV69ecvHiRblw4YK0aNFCatasqXfHipSv5/nz56n61vTs2VMsLS1l165dyrqtWrWS2rVr54mTpvTSx6Go07JkyRIZPHiwREVFKc1c1H8Xhw4dku+//15ev36t4yqznvpcYvDgwcrFmNu3b4unp6fUrl1bfvzxRx1XmH3Ur7tGjRqydOlSEUnuW1GnTh0pXLiwVKlSRRo2bCglSpTQuzvfORGDhRbatGmjXCGKjY2VQ4cOiZOTk7Rq1Uo6deokVatWVZp4qE8cQ0JCZMqUKdKzZ0+9bkOfUepbunlZXvp7uHfvnjRv3lxq164ttra20rZtW/nmm2/Ez89PHB0dZfLkybouMUscOnRIihcvrjGu/LvCxZQpU6Rw4cJiYWEh7du3l/79+yshS9/ChUjy63V3d5dChQpJv379ZOPGjcpj3bt3l0KFCsmePXukVatWUr58+TzVJy2vUh8THzx4oPzt//bbb6JSqaRgwYIyduxYjffCwIEDpUePHhIREaGTerNTYmKifPfdd+Lh4SEDBw5UwoW/v78MHDhQKlasKOvWrdNxlVkjrc/Ku3fvyrBhw6Rq1aoaF2/WrVsnixYtkp9//lmvm5HmJAwWH+nevXsyduxYjRPiqKgoOXjwoDI1/NuT8qjfDK9evVK+18cTBKKU1H/r0dHRGncf/v77b1myZIksXrxYGaVDRKRFixayatWqbK8zO4SFhckPP/wgbm5uGnNypAwX+/btU5bPnj1bPvnkE5k2bZqyj/QlhKc89q1YsUJsbGxkw4YNsnz5cvnss8+kWrVqsnDhQmWd3r17i0qlEhcXFyVU5KU+aXmN+rjx66+/Sq1atWT58uXK//eUKVPExMREfvvtN4mPj5fg4GCZOHGiFC1aVG7cuKHLsrNEygnfbt++rfSxSExMlPnz56cKFzdu3JCvv/5ar2eR/ueff2THjh0ay+7cuSNff/21uLi45Kk7NjkNg0UmWLx4sTKyUWRkpPz666/i7OystAMVSfsDMC9doaa8Sf03/scff0ibNm2kTp060qVLFwkMDEy1bkREhEybNk2KFy8ut2/fzu5Ss5x6X7x+/VqWL18urq6u6QoX48aNk2rVqsn06dM1+lzoi4sXL8r48ePl559/VpbduXNHxo4dKzVq1FAmtRJJ7rjKUJF37Nu3T0xNTWX58uUax4RHjx5Jv379RKVSScWKFcXd3V0cHBz0upnL7t27xdbWVkqXLi3Ozs6yYcMGEUm+Y6cOF4MHD1b6XOhr07ikpCQJCwuT//3vf+Lm5ia7du3SeFw9EW/p0qVl8eLFOqoyb2Ow+AgpP9Du378vbdu2lcKFC8uFCxdE5M2dCycnJ2nevLmyLu9OUF60f/9+KViwoIwaNUp27dol5cqVk8aNG8uZM2eU98Tu3bulX79+etsG9u07lGFhYbJ8+XKpUqVKqnDRoUMHadKkiWzfvl1ZPm3aNHFwcJC5c+fqzXEkKSlJLl26pEyMuHLlSo3H7969K87OzmmeHDBU6L+nT5+Ku7u70hE5NjZWXr16Jfv375eAgAARETl69KisW7dODhw4oJfzdqiPG8HBwVK6dGlZv3697N+/XyZMmCAGBgZKk5+EhAT57rvvxNnZWUaOHCmJiYl6d+FS/XrUc3hcuHBBunfvLp9++qns3LlTY93Ro0dLmTJlpFmzZsroepR9GCy0MHv2bFm/fr3yB16sWDH5559/RORNuKhUqZK4ubnpuFIi3bh165ZUrlxZli9fLiLJzQDt7OykQIEC4uzsLGfPnhURkRMnTsjcuXP1crKit4OAuv13ZGSkrFy5UipXrqwRLo4fPy7169eXYcOGaZxAf/PNN7l+0siUgxSo/fTTT6JSqaRLly6p7sh06tRJunfvrncnSfRhgYGBUq5cOdm7d68kJCTIzJkzpU6dOmJpaalxIU/fHT16VBYsWKAxYeTLly9l1qxZolKpNMLF0qVL9bL5U8o5KPr06aM0Bbt48aIyQeAvv/yirD927FhZvHix0jSMsheDRQakPEHYu3evWFpaKsNgXr9+XTp37pwqXOzatUu6d++uN1cZiTLCx8dH5s6dK7GxsfLkyRMpW7asDBs2TMLCwsTBwUEaNmyoNCPUx6vQKd/3ixYtku7du4uTk5MsXLhQbty4IfHx8fLDDz+Iq6urxkhxly9f1rsZtVPui6ioKImLi1OWrVmzRlQqlUyaNEm5Gv369Wtxc3PTGJ6b8o6XL1/KF198IWXLlhUrKytp166dLF68WF6/fi01a9bUGGJWX0VHR8vQoUNFpVJJgwYNNB5ThwtjY2ONvkj6as+ePWJhYSHjx4+X69evK8v//fdf6d69u1SqVEm6du0q/fr1k8KFC7Ojtg4xWHyErVu3yrJly2TRokUay69duyadO3cWGxsbJVyk7KzKcEF5TUJCgjJm+JdffindunVTZjxt27atqFQqqVmzpt5PVjRx4kSxsbGRJUuWyJo1a6RQoULSsWNHiYiIkPDwcKVDd4cOHTS205djRsrXsXTpUmnfvr00b95cPD09lTs46nDh5uYmnp6e0q5dO3F1ddWbzur0buor0uHh4fLy5Utl+a1bt2Tr1q2yZs0aefXqlbK8U6dOMm/evOwuUyf8/PxkzJgxolKpZM+ePRqPvXz5UiZMmCCFChWS0NBQvTlevO3q1atiY2OTapQr9R3Op0+fypIlS6Ru3brSvn17vZz3KDdhsEiH2NhY5WTo9evXYmtrKyqVSmNGR7Xr169Lt27dRKVSaaRqIn2WlJSknBw8evRIHj9+LDdv3tR4vHHjxhozJY8aNUouXbqkl7fu1RITE+XChQtSoUIFZQLIf//9VwwNDWXz5s3KepGRkTJ//nzp3bu33p4ciIhMmDBBihYtKsuXL5f169dL0aJFpWbNmsoFmM2bN4tKpZK6detq9DHR146o9CZUHDx4UOrXry/Ozs7SpEkTOX36dKo5bJ4/fy5Tp04Va2trjeOLvlDvi5cvX2oErPv378tXX30lBQsWlL1792ps8+rVK3n+/Hl2lpntvL29pVatWhIdHS2hoaGybt06adq0qdjZ2clXX32ljJiXlJSk9MEg3WGw+IDdu3dLx44dxc3NTWbPni0iyROveHh4SPny5dM8uPn4+MjUqVM5vjrlCSk7x+3bt09cXV3FxcVFbGxsZPz48fL48WMREaldu7Y0aNBA9u3bJyNHjhQrKyu9HOXIx8dH9u/fL6dPnxaR5E6GNWrUEBGRnTt3SoECBZShEF+/fi1HjhwRkeRwoc/DUF+7dk0qV64sJ06cEJHkYUQtLCxSddr28vISlUolM2bMUC7okH47cOCAFCxYUKZMmSJnzpyR2rVrS/Xq1WXr1q3K3czffvtNevfuLfb29no5wIPavn37pHLlylKtWjX54osvlFD94MEDGTp0qFhYWGiMGqeP1MdB9d3K8+fPi0qlkhEjRoiLi4u0bdtWxo4dK0uWLJFixYrJ0aNHdVkuvYXB4j1Wr14tFhYWMmrUKBk5cqQYGBgo4+s/evRInJ2dxd3d/b2jUTBckD57/vy5lCxZUvz8/OTYsWOSL18+Wb16tQQFBcn69etFpVLJr7/+KiIiDx8+FEdHRylfvrxUqFBBL08OtmzZIlWrVpW2bdvKpEmTRETk1KlTUrJkSVm3bp1YWlpqnEgfPXpUOnTooDQXE9HfYaiPHz8u9vb2IpIcKgoUKCCrV68WkeSA5eXlpRwv161bJ8bGxjJ27FiNK7ekf+7fvy/u7u7KjMmvX7+W0qVLS4kSJaRcuXKyfft2SUxMlOvXr8uqVauUSWf1ka+vrxQvXlymTZsmCxYsEDs7O6lbt65yAebBgwcyfPhwUalUcvDgQR1XmzVSDlH+5ZdfKhemtm3bJq1bt5bx48drzFVSo0YNjYlFSfcYLN5B/cGW8spA9+7dZfny5coY/AEBAeLm5iY1atTQy6HuiD7k3r17UqpUKfH19ZUpU6bI8OHDRSR5qNDy5cvLgAEDNNaPi4uT+/fvS2hoqC7KzVKbN28Wc3Nz2b59e6qT4e7du4tKpZJZs2Ypy2JiYuSzzz6TTp066d0dipThSP39vXv3pGXLlvLdd99JgQIFZM2aNco6//zzj3Tu3FkuXbqkLPvhhx+kUKFCet/MI697+PChLF26VEJDQ+Xp06dSrlw5pZmxq6urVK1aVTZu3Cjx8fF6F7pTNiEVSe5PMXPmTOXn+/fvS/ny5cXDw0M577h7966MGzdOL5uCqe3evVssLS1l9OjRGheg3r6DOWnSJCldurQy4APlDAwWafj7779TnQSIJB/kKleuLAULFpQ6derIli1bJCAgQKpUqSIODg4SHByso4qJdKd69eoye/ZsadSokSxZskRiYmKkZMmSMnDgQOVD8/vvv9fr29XXrl2TTz75JFXnQvXrP3HihDRv3lwcHBxk8+bNsmzZMmnevLl88sknSlMHfQkXb78OdZvnsLAwqV+/vqhUKo2Tp6ioKGnVqpV07Ngx1ba8W6H/EhMTlX5Ww4YNk//9738SFhYmIiL9+vUTMzMzadCggbJMn6iPD8ePH5dFixbJZ599JoMGDdIIG/fv3xdHR0f59NNP5cmTJyKiPyPFiSR32E/pypUrUrRoUVm7dq3G8ufPnyuve/v27fLFF19IsWLF9PLOd25nAEqlZMmSqFevHi5duoSLFy8CADp16oTIyEhMnToVv/zyC8LCwjB37lyoVCocOHAAtWvXhpWVlY4rJ8o+SUlJAIAyZcpARDBo0CAcOnQIpUuXRrt27fDjjz9CpVIhISEBFy5cwJEjRxAfH6/jqrPGkydPEBUVhfr160NElOUqlQoAUL9+fcybNw+tW7fGpEmTsH//ftjZ2cHHxwfGxsZISEiAgUHuPxwnJSUpr2Px4sXo0aMH3NzcsGjRIrx8+RK//PILbG1tcfLkScyaNQvr1q1DmzZt8PjxY+zYsQMGBgZISkpS9qGlpaUuXw5losTERCQmJgIA7t27h/v37+P+/fswMDBAmTJlAABBQUGwsbFB/vz5AST////666/YunUrLCwsdFV6llGpVDh8+DAaNWqEffv24dy5c/jjjz/wzz//aBxfjx49iuvXr6Nv375ITEyEkZGRjivPHMuWLcO4ceOQkJCgvN779+/D0dERAwYMQGhoKDZv3oyWLVuiatWqmDFjBp4+fYr8+fMjKSkJx48fh5ubm45fBaWi42CTY926dUtatmwpbdq0kbp160q1atU0Rq9Rzxj7dts+9qkgfXb37l1ZsWKF+Pn5Kbeff/75Z2nWrJkcOHBAXF1dxdXVVZnAKDY2ViZPniz29vZ6Ofmd2rx588Ta2lr5OeUVR/Ux4caNG3L16tVUxwh9uvqoltbwuu3btxeR5GNrr169xMXFRZo2bSqenp7KPtDHfZHXLV68WONzcteuXVKyZEkpU6aMuLi4KLMmx8fHS6dOnaRatWqybNkyGTp0qFhaWuplMxf18SEoKEg8PT1lw4YNEhMTI4GBgeLk5CTVq1eXy5cvaxxHHj58KLdv39ZVyZlKfQxcvny50odC3VH71KlTolKpZMKECeLu7i5t27aVESNGyLfffiumpqbK6Hoc/SnnYrB4j1u3bknTpk3F0tJSmdUxMTFRkpKS5NKlS1KpUiVlci8ifRcXFyddunQRe3t7cXBwEAsLC2nZsqWUK1dOSpUqJaGhobJ3716pWrWqVKpUSdq1ayetWrWSokWL6v3t6l9++UXMzc3lzz//fOc648ePlwEDBmicPOtbm3GR5OF0PzS8bmJiokRFRWkMJ8pQoX9evHghXbt2lfz588vhw4clPj5eSpUqJWvXrpVdu3bJqFGjxMDAQLy8vEQkeVb6Tz/9VNzd3aVq1ary33//6fYFZKHz589LvXr1pEaNGnLmzBlleUREhFSoUEGqVasm//33n94dI9TNHe/evSvffPONiIicPXtWvvjiC6Wv6tq1a8XDw0NGjx4tV65cUbatUaPGe4+xlDMwWHzAnTt3pEWLFtKqVSs5efKksvyzzz6Thg0b6k27aKL0UHeeu3Xrlvz666/yww8/SOfOnaVixYrSoUMHiYiIEF9fX5k3b5707NlTvvvuO72+U6F29+5dsbS0lE6dOsnDhw+V5eqTgrCwMOnUqZMsX75cVyVmm/Pnz4u7u7uIpD287l9//aVMiqembydPeV3Kz8XHjx/L0KFDpXDhwrJo0SIZM2aM8tiLFy9k8uTJolKplP5JcXFxEhISojd9KtT7Qh2kHz58KImJifL69Wtp2LChqFSqVMeFiIgIqVSpkjg4OOjVZG/qfeHj4yMqlUqZ12jZsmXi6uoqnp6eSif1t48RkyZNEgcHB+UOB+VcDBbpoG4W1bp1azl16pR07NhRKlSooHedLok+5F0ngPv27ZPatWtLmzZtlFF88trJ4vbt28XU1FR69OihcYfmyZMn0qpVK6lbt67eXZUPDAyUK1euyM8//yxXr16V0NBQuXHjhtja2sqaNWveObyuuqkc6R/152FAQIDs2rVLfvnlF9mxY4dMnTpV8ufPLw0aNNBY/8WLFzJlyhQxNjZONadJbqfeFzdu3JCOHTuKi4uLGBkZiYuLiyxatEgiIyOlWbNmUr16dTl06JDGucTr16/F3d1d7t27p6vyM5X6tV2/fl3Mzc1lxowZGo+vWLFC6tSpI3369FE6qYskD03du3fvPHHnW18wWKTTrVu3pE2bNmJsbCxOTk5KqNC3EwWijFB/WCQmJsqOHTukQYMGUqtWrTw5RGhCQoIyTHWpUqWkZcuW0rx5c6lVq5bUqFFDOWboSz+sPXv2SOvWraV48eJiYWEh5ubm0rZtW/nnn39k1KhRqUZ/0ufhdSmZ+v/V19dXypYtKxUrVhQTExOpXLmyzJo1S6ZOnSoGBgZy6NAhje1CQ0Nl5MiRUqhQIXn16pVeXJRQv4YrV66IpaWlDB06VNavXy979+6Vdu3aiYGBgXz55Zfy5MkTadKkidSsWTNVuNCH/SDy5u/i6tWrYm1tLc7Ozspj6gkQRZL7XNStW1e+/PJL5c7F1q1bpUePHnL9+vXsLZo+GoNFBvj5+cnXX3/NjoZEKag//JKSkmTz5s3SqlUrjeZAec1///0nX3/9tTRv3lw8PT1lxYoVSpjQl2PG2rVrlaYtR48elZcvX8rs2bOlYsWK4uTkJPPmzZMePXpImTJl9H54XUqWMlTky5dPxo8fL0+ePJGDBw9K06ZNpUaNGnLkyBHp16+fWFhYyO+//66xfWhoqDx79kwXpWeZZ8+eiZubm0ycODHV8hUrVoiJiYkMGzZM4uLipGHDhlK/fn3Zt2+f3gQKEc3mT/ny5ZOGDRtKiRIllDmPRN503BZ5Ey769+8vQUFBIpJ6/grK2RgsPpK+nCAQZYaU4eLtcckpmb7cqVi7dq2YmJjInj17Uj22Y8cOqV69utSvX1+2b98uQ4YMETs7O2nUqBFHf8oDAgICxNraWjp37qyxfPXq1VKwYEG5c+eOPHr0SAYMGCCFChWSw4cP66jS7HH58mVxcXHRGA1OfaL96tUrmTNnjpiYmMjp06flxYsXUqlSJWnZsmWq/gW53b///ivGxsYyc+ZMSUhIkDVr1oi1tfU7w8WKFSukUqVKMmTIEL05buYl+jEYsg7oyzjSRJlBpVJBRKBSqVCwYEFdl6Nz6n2RkqGhoY6qyTzHjx/HoEGDMHPmTHTs2FGZb0I9tn7Xrl0RHByM6dOnw8TEBCtXrsTMmTNRtGhR5TkSEhJ4/NRTiYmJcHBwQGxsLE6fPo169eoBAMqWLQsTExNER0ejXLlymDBhAgwNDdGqVSscOXIETZs21XHlWcPX1xd37tyBi4sLgOTjgnqeF0tLS/To0QMLFy7EyZMnUbduXZw+fRphYWHKPB76IioqCoMHD8aMGTMAAF27dgUATJkyBQDw/fffw8TEBHFxcTAxMcHQoUNhbGyM5s2b68VxM6/J/TMyEVGO8PaJdF6mr/tCPXno5cuXcerUKahUKqhUKhgZGSkTXA0fPhx2dnY4evQoAKBQoULK9iLCUKHHypQpg61btyIuLg7ffPMN/Pz8EBERgZ49e8LT01M5wS5XrhxGjRql/K3oK0dHRwDAnj17AKQ+Ljg4OKBs2bJ49uwZAKBw4cLKZIH6pH79+vj+++8BJB8DLC0t0a1bN8ydOxfbtm3DiBEjAAAmJiaIjY0FAAwcOFAv90VewGBBRETpUr58eWzYsAGxsbGYO3cuTp8+rTymPmkKDw9HTEwMbG1tAQDGxsap1iH9Vb58eSxfvhyGhoYYPHgw7O3t0bNnT3z77bcAoMy+XaFCBSxcuBBOTk66LDdLlSlTBhYWFvjpp5/w8OFDZbk6hL98+RLm5uaoXr26rkrMdupjgIWFhUa4GD16NADA1NRUl+VRJmCwICKidFOfOKpUKsyZMwdnzpzRePzevXsoVaoUateuDQBKcynKO8qXL4/vv/8ehoaGsLCwQIcOHZTH1E2BAM3QqY9KlSqFVatW4fDhw5g2bRquX78O4M0+WLJkCZ4+fYpPP/1Ul2XqjDpczJ8/H8uWLcOkSZN0XRJlApXwqE9ERBl0+/ZtDB8+HCKCKVOm4NNPP0VCQgLatWsHAwMD/PrrrxonkZT33LlzB19//TVEBNOmTUPdunV1XVK2S0xMxPr16zFs2DCUK1cOdevWha2tLe7fv48//vgD3t7ecHNz03WZOhUWFob9+/fDw8MDFSpU0HU5pCUGCyIi+ijqcGFgYIDJkydjyZIluHnzJnx8fGBsbIykpCSGizzu9u3bGD16NEJCQrB06VLlTlZe888//+C7776Dv78/ChUqBFdXV3z99deoWLGirkvLEdIa8IJyJwYLIiL6aLdv38aoUaNw5MgRlC1bFlevXoWxsTFHfyLFzZs3MW3aNCxevBj29va6LkdnEhMTYWBgAJVKxdBNeovBgoiItHLz5k38+OOPWLJkCYyMjBgqKBX1UKJ5Wcqr8rxCT/qKwYKIiDINQwURUd7FYEFERERERFpjAz8iIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERae3/ALH3PsCHfaeAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "CellSAM vs Cellpose - Cyto3 Comparision by Dataset\n", + "\"\"\"\n", + "\n", + "cp_means = []; cs_means = []\n", + "cp_sems = []; cs_sems = []\n", + "\n", + "for ds in datasets:\n", + " cp_data = cp_generalist_dict[ds]\n", + " cs_data = cs_generalist_dict[ds]\n", + " # 1 - mean for the bar\n", + " cp_m = 1 - np.mean(cp_data)\n", + " cs_m = 1 - np.mean(cs_data)\n", + " # standard error of the mean for the error bar\n", + " cp_sem = np.std(cp_data, ddof=1) / np.sqrt(len(cp_data))\n", + " cs_sem = np.std(cs_data, ddof=1) / np.sqrt(len(cs_data))\n", + "\n", + " cp_means.append(cp_m)\n", + " cs_means.append(cs_m)\n", + " cp_sems.append(cp_sem)\n", + " cs_sems.append(cs_sem)\n", + "\n", + "# Plot as a bar chart\n", + "x = np.arange(len(datasets))\n", + "width = 0.35 # width of each bar\n", + "plt.rcParams['svg.fonttype'] = 'none' \n", + "fig, ax = plt.subplots(figsize=(8, 5))\n", + "\n", + "# Plot CP bars slightly left, CS bars slightly right\n", + "bars_cp = ax.bar(x - width/2, cp_means, width, \n", + " edgecolor='black', linewidth=1,\n", + " yerr=cp_sems, capsize=5, label='Cellpose - Cyto3', color=c2)\n", + "bars_cs = ax.bar(x + width/2, cs_means, width, \n", + " edgecolor='black', linewidth=1,\n", + " yerr=cs_sems, capsize=5, label='CellSAM', color=c4)\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels([name_map[ds] for ds in datasets], rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "# ax.set_title('Generalist Model Comparison of Mean Error')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_dataset_comparison_cyto3.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaNxJREFUeJzt3XdY1XX/x/HXYbswE0EcqLlNU3Ni5spVlprVrZZhODKz0shMtJyleWuuMnGhVlpWatmygbv0NjU3khszUHDhYJ/P7w9/nETQwAMewOfjus4VfMc57+O3cziv81kWY4wRAAAAANwiJ0cXAAAAACB/I1QAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdnFxdAEAroqMjFRsbKyjy8iUl5eX/Pz8HF1GlowZM0Zjx47V2rVr1apVK9t2i8Wili1bat26dQ6rDbgWr3n78XoH8g5CBZAHREZGqmb16rqSkODoUjJV2MND4REROfYhY/v27frwww+1YcMG/f3337JarSpTpoyaNWumgIAAtWvXLkceB9ljjNHKlSv1ySefaOvWrYqJiZGbm5vuuecetWnTRv3791etWrVu6b4XLVqkwMBALVy4UM8995zdtf7www9avHixdu7cqejoaCUlJcnPz08PPPCA3njjDVWrVs3ux8hNkZGRql6jphLirzi6lEx5FCqsiAPhBe41v3fvXk2ePFnr169XVFSUPDw8VKpUKd13331q2bKlXnnlFVkslkzP3bBhg1q2bClJ+vzzz/XUU09lelza/+uS9MQTT+jLL7/M9LjZs2frxRdflCT17t1bixYtsvPZAY5FqADygNjYWF1JSNDMuhVVpWghR5eTzqFL8Xpl1zHFxsba/QHDarVq6NChmjZtmlxcXNSmTRt17txZrq6uOnLkiL777jt98sknGjdunN56660cegbIirNnz+qpp57SmjVrdNddd6ldu3a65557lJSUpH379unDDz/UzJkzFRYWlu4bYUf5/vvvtWXLFjVp0kQPP/ywXF1dFR4ersWLF2vJkiX6/vvv1aZNG0eXeUOxsbFKiL+iCk8Ey6NU3moRSIiJ1PHlEwvca/7nn3/Wo48+qpSUFLVt21aPP/64PDw8dPjwYa1fv14rV67UoEGD5OKS+UejBQsWSLraChIaGnrDUJHGxcVF33zzjWJjY+Xl5ZXp/bm4uCglJcX+JwfkAYQKIA+pUrSQ6hQv7Ogycs2bb76padOmqV69evryyy9VuXLldPvj4+P1wQcf6MyZMw6q8M6UkpKixx9/XBs2bFCvXr00a9YseXp6pjsmKipKI0eO1IULFxxUZXqTJ0/W+++/n2F7WFiY2rZtqzfeeEO///67AyrLHo9SfipcJm+3qtgjL73mBw4cqNTUVP3yyy9q3bp1un3GGP30009ydnbO9Ny4uDh9+eWXuu++++Tj46OffvpJJ06cUPny5W/4eA8//LC++eYbffLJJxoyZEi6fbt379b27dvVuXNnrVq1yu7nBuQFDNQGcFscOnRI//3vf1WyZEmtXr06w4cLSSpUqJBef/11jR07Nt32pKQkTZ06Vffff7+KFCmiYsWK6cEHH7T7j/Fzzz0ni8WiI0eO6L///a+qVq0qDw8PVapUSePGjVNycnKm5y1cuFBNmjRR0aJFVbRoUTVp0uSGXReWL1+uli1bytvbWx4eHipTpozatm2r5cuXZzh29+7d6tGjh3x9feXm5qYKFSro5ZdfzvUPXB9//LE2bNigFi1aaPHixRkChST5+voqNDRUHTt2lNVqVYUKFVSyZEklJiZmep8tWrSQi4uL/vrrLz333HO27iCBgYGyWCy227WOHz+uvn37qmzZsnJzc1O5cuXUt29fRUZGZrh/Dw+PTB/3oYceUokSJXTo0KHs/jMgh93qaz43Xu+nT5/W4cOHVbt27QyBQrra+tChQ4cbdn369NNPdeXKFQUEBCggIEBWq/Vfuys1a9ZMNWrU0MKFCzPsCw0NlbOzs3r37n1LzwfIiwgVAG6LRYsWKTU1VQMGDJCPj89Nj3V3d7f9nJiYqA4dOui1116TMUZ9+/ZVr169dPz4cXXp0kUffPCB3bUNGTJEkyZNUtu2bfXyyy/L3d1do0ePVs+ePTMc+8orr6hPnz46efKk+vbtq759++rkyZMKDAzU4MGD0x07e/ZsPfnkkzp48KAef/xxBQUFqWPHjoqOjtbKlSvTHbtq1So1btxYq1atUqtWrTRkyBDVqVNHH3zwgfz9/XXu3Dm7n+eNpHXrePPNN+XkdPM/C+7u7nJyclK/fv109uzZTMNRRESENm7cqI4dO6pcuXLq2rWrunTpIknq0qWLRo8ebbul+fPPP9WoUSOFhoaqQYMGeu2111S/fn2FhoaqYcOG+vPPP7P0XDZv3qxz586pdu3aWX36yCW38prPrdd78eLF5eLioqioKF2+fDnb5y9YsEDOzs565pln1K1bNxUtWlQLFy6UMeam5wUGBtpaJdIkJSVpyZIl6tChg8qUKZPtWoC8iu5PAG6LX3/9VZKy3c993LhxWrdund566y2NHTvW9k3ixYsX1aZNG7322mvq1q2bXX+ct2zZol27dqlcuXKSpHfeeUft2rXT8uXLtXz5cj3xxBOSrg7UfP/991WzZk1t3rxZxYsXl3R1BpqmTZtq5syZevLJJ/Xggw9KkubPny83Nzft3LlT3t7e6R7z2taHM2fO6Nlnn5WXl5d+/fVXVahQwbbvs88+U8+ePTVq1KhMu/vYKyUlRVu3bpWLi4ut7qzo27evxo0bp3nz5unpp59Ot2/+/PmSpP79+0uSunbtqvPnz+vrr79W165dMx2o/cILLygmJkZz5szR888/b9v+4YcfatCgQRo4cKDCwsIynPfTTz/pt99+U2Jiog4ePKhvv/1WXl5emjZtWpafC3LHrbzmc+v17u7urs6dO2vFihXy9/dX//791axZM9WpU0dubm43PXfPnj36/fff1aFDB5UuXVqS1K1bN3300Udas2aNHnrooRueGxAQoJEjR9rCsiR9/fXXio2NVd++fbP1HIC8jpYKALdFdHS0JNk+uGeF1WrV7NmzVbly5XQfMCSpWLFiGjVqlJKSkrRixQq7ahs8eHC6utzc3PTOO+9IUrouDosXL5Z0NUSkBQpJKlGihO1b9+u7RLi6usrV1TXDY5YsWdL280cffaS4uDhNnDgxXaCQpB49euj+++/XZ599dmtP7l+cOXNGycnJ8vLyumGXosyUKVNGjz32mNavX5+uq1FycrI++ugj+fr6qlOnTlm6r8jISK1du1a1atWyBZE0L7zwgmrUqKE1a9boxIkTGc796aefNHbsWL377rtavny5ypcvr9WrV6thw4ZZfi7IHdl9zef2633u3Ll67LHHtGfPHr3yyitq2LChihUrpgceeEAzZ85UfHx8puelteQFBATYtqX9nLbvRkqXLq1HHnlEn376qRL+f3a/0NBQlSpVSo899tgtPQ8gr6KlAkCeFRERoXPnzqlMmTIZxllIUkxMjCTpwIEDdj1OZt/Q+/v7y8XFRX/88YdtW9rPmc1+lNZPe+fOnbZtPXr00LBhw1S7dm09/fTTat26tZo3b55hzMKWLVskSf/73/90+PDhDPedkJCg2NjYG84ik+arr75K9/hptebWbE0DBgzQypUrNX/+fL377ruSrnbjOn36tEaMGHHDWXSul1Zzy5YtM/Rpd3JyUosWLXTgwAHt3Lkzw8DYKVOmaMqUKbp06ZL279+vcePG6YEHHlBoaGiGFhTkbbn9ei9ZsqRWrVqlgwcPavXq1dq6dau2bNmi3377Tb/99pvmzZun9evX6+6777adk5iYqE8++UTFihXT448/btveunVrlS9fXitXrtS5c+dUokSJGz5unz59tGrVKq1cuVItWrTQTz/9pMGDB2f6ZQOQnxEqANwWpUuX1oEDB3Ty5ElVr149S+ecPXtWkrRv3z7t27fvhsfdSh/pa2XW39vZ2VklS5ZMN9tRXFycnJycVKpUqUzvw2KxKC4uzrZt6NChKlmypGbPnq333ntPU6ZMkYuLizp16qRp06apUqVKkv55nrNmzbppnZcvX/7XUJHWmnKtm4WKkiVLytXVVWfOnFFiYmK68Sz/pn379qpUqZIWL16st99+Wy4uLpo/f74sFku2unak/ZvdqN+9r69vuuMyU7RoUTVu3FhfffWVGjZsqOeff17t2rXL9Frh9sjua/52vd6rVq2qqlWr2n7fuXOnevXqpb1792rs2LGaMWOGbd9XX32lM2fOKDAwUIUK/TPdt5OTk5555hm9++67Wrp0qQYNGnTDx+vUqZN8fHwUGhqqI0eOyGq1qk+fPnY9ByAvovsTgNvigQcekKRM+8XfSNo3+k888YSMMTe8ZTa7SnacOnUqw7bU1FSdOXMmXTcnT09PWa1W2zem1zp9+rSMMelaISwWi/r06aPff/9dMTExWrlypbp166avv/5ajz76qFJTU9M9zz179tz0eV7fNep6ixYtynDOmDFjbnqOi4uLGjdurOTkZG3YsOGmx17PYrHo+eefV3R0tL755hudOHFCP/30kx566CHdc889Wb6ftOef2XWQ/ulGk9msVNdzcXFR69atdfnyZW3bti3LNSDnZfc1f7te79erV6+ebbzSmjVr0u1L6960cOHCdLOWWSwWW+vcv3WBcnFxUUBAgNasWaNZs2apcePGTCSAAolQAeC2eO655+Ts7Ky5c+dm+qH8WmnTlNasWVOenp7atm3bDad3zQkbN27MsG3z5s1KSUlR/fr1bdvSfl63bl2G49O21atXL9PHKFmypLp27aply5apTZs22r9/v20sQpMmTWyP6QhprQoTJkz419lsrp9CNjAwUK6urpo/f75CQ0NltVozjIuQZJv/Py1IXSvt32zDhg0ZHt8YYws7N/q3vd7ff/8tSXQvcbDsvuZv1+s9M0WLFs2w7fjx4woLC5OPj49tprfrb5UqVdIff/yRrptkZvr06SOr1aqoqChaKVBgESoA3BZVqlTRsGHDFBsbq4cfflhHjx7NcExCQoKmTp1q+3bdxcVFAwcO1PHjxzV06NBMP2js3btXp0+ftqu2GTNm6K+//rL9npSUpJEjR0pSupmK0uaUHzt2bLquOBcuXLD1Ab923vl169Zl+JCcnJxs6+aRNjA6MDBQxYoV08iRIzPt9nHlyhXbuIvc8Oyzz+rBBx/UunXrFBgYqIsXL2Y45tSpU+rfv79Wr16dbruPj4+6du2q1atXa/bs2fLy8lLXrl0znJ/WTz2zwdZ+fn5q3bq19u3bp9DQ0HT75s6dq/DwcLVp0ybdeIobtUL8+OOPWrlype666y75+/v/63NH7snuaz43X++XL1/WO++8o9jY2Az7UlJSNHnyZElS8+bNbdsXLlwoq9WqAQMGaP78+Znehg8fLunfWytq1KihH374QStXrtQzzzyT7fqB/IAxFQBum7ffflsJCQmaNm2aqlevrjZt2qh27dpydXXV0aNH9csvv+jMmTN6++23beeMHTtWO3bs0MyZM/Xdd9+pRYsW8vb21smTJ7Vnzx7t2rVLmzdvzjBla3Y0bdpUdevWVffu3VWkSBF98803ioiIULdu3WzTyUpXF3R7+eWX9f7776t27dq2bhrLly/XX3/9pVdeeUUtWrSwHd+1a1d5enqqadOmqlChgpKTk/Xzzz9r//79evLJJ23dmUqVKqVPP/1UTz31lOrWrauOHTuqRo0aSkxM1LFjx7R+/Xo1a9Yswwf6nOLi4qKvvvpKTz31lBYvXqxVq1bZxkskJSVp//79WrdunZKTk9WrV68M57/wwgv64osvdOrUKb322muZTtHp7++vQoUKafr06Tp37pxtrMObb74p6eqaHs2bN1f//v31zTffqFatWtq3b59WrVqlUqVKafbs2enur1GjRqpdu7buu+8+lStXTpcvX9bu3bu1ceNGubq6KjQ0VEWKFMmFfy1kR3Zf87n1ek9OTtabb76pMWPGyN/fX3Xr1pWnp6dOnTqlH3/8UX/99ZcqVapkm8XNarXaujxlNgVymu7du2vIkCFasmSJpkyZctMZ1Dp27JitmoH8hlAB5CGHLmU+paEj5WRNTk5Omjp1qp5++mnNnj1bGzZs0IYNG2S1WuXr66sOHTooMDBQbdu2tZ3j7u6uH374QQsWLNBHH32k5cuXKzExUT4+PqpVq5ZeeOEF1alTx666pk+fri+++ELz589XZGSkfH19NWbMGAUHB2c4dubMmapfv75mz56tuXPnSpLuvfdejRs3zrZqdJqJEyfaZpn55ptvVKRIEVWuXFmzZ8/OMJC5U6dO+uOPPzR58mT98ssv+vnnn1WkSBGVK1dOgYGBmX6Yz0l33323fvnlF61YsUKffPKJNm7cqJUrV8rFxUX33HOPnn/+eb3wwguqWbNmhnNbt24tPz8/RUZGql+/fje8/y+//FJjxozRvHnzbNN3poWK6tWra9u2bRo7dqxWr16t7777TqVKlVJgYKBGjx6dYTzJhAkTtHbtWq1fv14xMTFycnKSn5+fnn/+eQ0ZMiTTOvOihJiMq4U7Wk7WlN3XfG693j09PfX999/rxx9/1KZNm/TFF1/ozJkzKly4sKpVq6b+/ftr8ODBtjFUv/zyiyIjI9WyZUvbhAqZKV68uLp166YlS5ZoxYoVzDiGO5rF/FsHWgC5LjIyUjWrV9eV/5/HPK8p7OGh8IgI+fn5ObqUHPXcc89p8eLFOnr0qCpWrOjocvKtqKgo+fn5yd/fP9uDve9UkZGRql6jphLirzi6lEx5FCqsiAPhBe41DyD30FIB5AF+fn4Kj4jItL9vXuDl5cWHC9zQ9OnTlZKSooEDBzq6lHzDz89PEQfCec0DKDAIFUAe4efnxx9x5BsXLlzQ7Nmzdfz4cc2fP1+1atXSf/7zH0eXla/wmgdQkBAqAADZdu7cOQUHB8vDw0PNmzdXSEiIbdpYAMCdhzEVAAAAAOzCOhUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuDg8Vs2bNUsWKFeXh4aEmTZpo69atNz3+/PnzGjRokHx9feXu7q5q1arp+++/z/LjGWMUFxcnY4y9pQMAAACQ5OLIB1+2bJmCgoIUEhKiJk2aaPr06erQoYMiIiLk7e2d4fikpCS1a9dO3t7e+vLLL1W2bFkdP35cd911V5Yf8+LFiypevLguXLggT0/PHHw2AAAAwJ3JYhz4lX2TJk3UqFEjffDBB5Ikq9Wq8uXL6+WXX9bw4cMzHB8SEqLJkyfrwIEDcnV1vaXHjIuLI1QAAAAAOchh3Z+SkpK0fft2tW3b9p9inJzUtm1bbd68OdNzVq1aJX9/fw0aNEg+Pj6qXbu2JkyYoNTU1NtVNgAAAIDrOKz7U2xsrFJTU+Xj45Nuu4+Pjw4cOJDpOUeOHNGaNWv0zDPP6Pvvv9ehQ4f04osvKjk5WaNHj870nMTERCUmJtp+j4uLy7knAQAAAMDxA7Wzw2q1ytvbW3PnzlWDBg3UvXt3jRw5UiEhITc8Z+LEiSpevLjtVr58+dtYMQAAAFDwOSxUeHl5ydnZWadOnUq3/dSpUypdunSm5/j6+qpatWpydna2batZs6aio6OVlJSU6TnBwcG6cOGC7XbixImcexIAAAAAHBcq3Nzc1KBBA4WFhdm2Wa1WhYWFyd/fP9NzHnjgAR06dEhWq9W27c8//5Svr6/c3NwyPcfd3V2enp7pbgAAAAByjkO7PwUFBWnevHlavHixwsPDNXDgQF2+fFmBgYGSpICAAAUHB9uOHzhwoM6ePavBgwfrzz//1HfffacJEyZo0KBBjnoKAAAAwB3PoetUdO/eXTExMRo1apSio6NVr149rV692jZ4OzIyUk5O/+Se8uXL68cff9Srr76q++67T2XLltXgwYP1xhtvOOopAAAAAHc8h65T4QisUwEAAADkrHw1+xMAAACAvIdQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXRw6pSwA5GdRUVGKiorK9nm+vr7y9fXNhYoAAHAMQgUA3KI5c+Zo7Nix2T5v9OjRGjNmTM4XBACAg7BOBQDcosxaKuLj49W8eXNJ0qZNm1SoUKEM59FSAQAoaAgVAJCDLl++rKJFi0qSLl26pCJFiji4IgAAch8DtQEAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2MXF0QUAQF4QGRmp2NhYu+8nPj7e9vPOnTtVqFAhu+9Tkry8vOTn55cj9wUAQE6zGGOMo4u4neLi4lS8eHFduHBBnp6eji4HQB4QGRmpmtWr60pCgqNLuaHCHh4Kj4ggWAAA8iRaKgDc8WJjY3UlIUEz61ZUlaL2tSwkpFrVbUuEJGlF0+rycLa/l+mhS/F6ZdcxxcbGEioAAHkSoQIA/l+VooVUp3hhu+7jSkqq7ed7PQupsIuzvWUBAJDnMVAbAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsEueCBWzZs1SxYoV5eHhoSZNmmjr1q03PHbRokWyWCzpbh4eHrexWgAAAADXcnF0AcuWLVNQUJBCQkLUpEkTTZ8+XR06dFBERIS8vb0zPcfT01MRERG23y0Wy+0qFwBsTiUk63RicrptCamptp/3xV2Rh7NzhvO83V3l4+Ga6/UBAHC7ODxUTJ06Vf3791dgYKAkKSQkRN99951CQ0M1fPjwTM+xWCwqXbr07SwTADJYEhmjaYeibri/25Y/M93+ahVfBVUrk1tlAQBw2zk0VCQlJWn79u0KDg62bXNyclLbtm21efPmG5536dIlVahQQVarVffff78mTJige++9N9NjExMTlZiYaPs9Li4u554AgDvaM36l1M7nrmyf5+1OKwUAoGBxaKiIjY1VamqqfHx80m338fHRgQMHMj2nevXqCg0N1X333acLFy5oypQpatasmfbt26dy5cplOH7ixIkaO3ZsrtQP4M7m40E3JgAApDwyUDs7/P39FRAQoHr16qlly5ZasWKFSpUqpTlz5mR6fHBwsC5cuGC7nThx4jZXDAAAABRsDm2p8PLykrOzs06dOpVu+6lTp7I8ZsLV1VX169fXoUOHMt3v7u4ud3d3u2sFAAAAkDmHtlS4ubmpQYMGCgsLs22zWq0KCwuTv79/lu4jNTVVe/bska+vb26VCQAAAOAmHD77U1BQkHr37q2GDRuqcePGmj59ui5fvmybDSogIEBly5bVxIkTJUnjxo1T06ZNVaVKFZ0/f16TJ0/W8ePH1a9fP0c+DQAAAOCO5fBQ0b17d8XExGjUqFGKjo5WvXr1tHr1atvg7cjISDk5/dOgcu7cOfXv31/R0dEqUaKEGjRooN9++021atVy1FMAAAAA7mgWY4xxdBG3U1xcnIoXL64LFy7I09PT0eUAyAN27NihBg0a6PsHaqpO8cKOLieDPReu6JFfw7V9+3bdf//9ji4HAIAM8t3sTwAAAADyFkIFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7uGTnYKvVqvXr12vjxo06fvy4rly5olKlSql+/fpq27atypcvn1t1AgAAAMijstRSER8fr7ffflvly5fXI488oh9++EHnz5+Xs7OzDh06pNGjR6tSpUp65JFHtGXLltyuGQAAAEAekqWWimrVqsnf31/z5s1Tu3bt5OrqmuGY48ePa+nSperRo4dGjhyp/v3753ixAAAAAPKeLIWKn376STVr1rzpMRUqVFBwcLCGDh2qyMjIHCkOAAAAQN6Xpe5P/xYoruXq6qrKlStnq4hZs2apYsWK8vDwUJMmTbR169YsnffZZ5/JYrGoa9eu2Xo8AAAAADknx2Z/unz5sjZs2JDt85YtW6agoCCNHj1aO3bsUN26ddWhQwedPn36pucdO3ZMQ4cO1YMPPnirJQMAAADIATkWKg4dOqTWrVtn+7ypU6eqf//+CgwMVK1atRQSEqLChQsrNDT0huekpqbqmWee0dixY3XPPffYUzYAAAAAOzl0nYqkpCRt375dbdu2tW1zcnJS27ZttXnz5hueN27cOHl7e6tv377/+hiJiYmKi4tLdwMAAACQc7K8TsXdd9990/2pqanZfvDY2FilpqbKx8cn3XYfHx8dOHAg03M2bdqkBQsWaOfOnVl6jIkTJ2rs2LHZrg0AAABA1mQ5VCQmJmrgwIGqU6dOpvuPHz+e6x/eL168qGeffVbz5s2Tl5dXls4JDg5WUFCQ7fe4uDgW6QMAAAByUJZDRb169VS+fHn17t070/27du3Kdqjw8vKSs7OzTp06lW77qVOnVLp06QzHHz58WMeOHdNjjz1m22a1WiVJLi4uioiIyDDzlLu7u9zd3bNVFwAAAICsy/KYik6dOun8+fM33H/33XcrICAgWw/u5uamBg0aKCwszLbNarUqLCxM/v7+GY6vUaOG9uzZo507d9punTt3VuvWrbVz505aIAAAAAAHyHJLxYgRI266v3z58lq4cGG2CwgKClLv3r3VsGFDNW7cWNOnT9fly5cVGBgoSQoICFDZsmU1ceJEeXh4qHbt2unOv+uuuyQpw3YAAAAAt0eWQ0Vu6d69u2JiYjRq1ChFR0erXr16Wr16tW3wdmRkpJycHDpJFQAAAICbyHKoaNGihVatWmVrGVi1apXatWunQoUK2V3ESy+9pJdeeinTfevWrbvpuYsWLbL78QEAAADcuiw3AWzatElJSUm233v16qWoqKhcKQoAAABA/nHL/YqMMTlZBwAAAIB8isEKAAAAAOySrYHaP/74o4oXLy7pn6lf9+7dm+6Yzp0751x1AAAAAPK8bIWK6xe+GzBgQLrfLRaLUlNT7a8KAAAAQL6R5VCRtnI1AAAAAFyLMRUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALnaFihdffFGxsbE5VQsAAACAfMiuUPHJJ58oLi4up2oBAAAAkA/ZFSqMMTlVBwAAAIB8ijEVAAAAAOyS5RW1M3Px4sWcqgMAAABAPkVLBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALBLjoWKw4cPq02bNjl1dwAAAADyiRwLFZcuXdL69etz6u4AAAAA5BNZXqdi5syZN91/8uRJu4sBAAAAkP9kOVQMGTJEvr6+cnNzy3R/UlJSjhUFAAAAIP/IcqioUKGCJk2apP/85z+Z7t+5c6caNGiQY4UBAAAAyB+yPKaiQYMG2r59+w33WywWGWNypCgAAAAA+UeWWyrGjRunK1eu3HB/rVq1dPTo0RwpCgAAAED+keVQUatWrZvud3V1VYUKFewuCAAAAED+wuJ3AAAAAOySpVDRsWNHbdmy5V+Pu3jxoiZNmqRZs2bZXRgAAACA/CFL3Z+eeuopPfHEEypevLgee+wxNWzYUGXKlJGHh4fOnTun/fv3a9OmTfr+++/VqVMnTZ48ObfrBgAAAJBHZClU9O3bV7169dIXX3yhZcuWae7cubpw4YKkq7M+1apVSx06dNDvv/+umjVr5mrBAAAAAPKWLA/Udnd3V69evdSrVy9J0oULFxQfH6+SJUvK1dU11woEAAAAkLdlOVRcr3jx4ipevHhO1gIAAAAgH2L2JwAAAAB2IVQAAAAAsAuhAgAAAIBdshUqUlNTtWHDBp0/fz6XygEAAACQ32QrVDg7O6t9+/Y6d+5cbtUDAAAAIJ/Jdven2rVr68iRI7lRCwAAAIB8KNtTyr799tsaOnSoxo8frwYNGqhIkSLp9nt6euZYcUBBFRUVpaioqGyf5+vrK19f31yoCAAA4NZlO1Q88sgjkqTOnTvLYrHYthtjZLFYlJqamnPVAQXUnDlzNHbs2GyfN3r0aI0ZMybnCwIAALBDtkPF2rVrc6MO4I4yYMAAde7cOd22+Ph4NW/eXJK0adMmFSpUKMN5tFIAAIC8KNuhomXLlrlRB3BHyawb0+XLl20/16tXL0PXQgAAgLwq26FCks6fP68FCxYoPDxcknTvvfeqT58+Kl68eI4WBwAAACDvy/bsT9u2bVPlypU1bdo0nT17VmfPntXUqVNVuXJl7dix45aKmDVrlipWrCgPDw81adJEW7duveGxK1asUMOGDXXXXXepSJEiqlevnj7++ONbelwAAAAA9st2S8Wrr76qzp07a968eXJxuXp6SkqK+vXrpyFDhmjDhg3Zur9ly5YpKChIISEhatKkiaZPn64OHTooIiJC3t7eGY6/++67NXLkSNWoUUNubm769ttvFRgYKG9vb3Xo0CG7TwcAAACAnW6ppeKNN96wBQpJcnFx0bBhw7Rt27ZsFzB16lT1799fgYGBqlWrlkJCQlS4cGGFhoZmenyrVq30+OOPq2bNmqpcubIGDx6s++67T5s2bcr2YwMAAACwX7ZDhaenpyIjIzNsP3HihIoVK5at+0pKStL27dvVtm3bfwpyclLbtm21efPmfz3fGKOwsDBFRESoRYsWmR6TmJiouLi4dDcAAAAAOSfboaJ79+7q27evli1bphMnTujEiRP67LPP1K9fP/Xs2TNb9xUbG6vU1FT5+Pik2+7j46Po6OgbnnfhwgUVLVpUbm5u6tSpk95//321a9cu02MnTpyo4sWL227ly5fPVo0AAAAAbi7bYyqmTJkii8WigIAApaSkSJJcXV01cOBAvfvuuzleYGaKFSumnTt36tKlSwoLC1NQUJDuuecetWrVKsOxwcHBCgoKsv0eFxdHsAAAAAByULZCRWpqqrZs2aIxY8Zo4sSJOnz4sCSpcuXKKly4cLYf3MvLS87Ozjp16lS67adOnVLp0qVveJ6Tk5OqVKki6ep8/uHh4Zo4cWKmocLd3V3u7u7Zrg0AAABA1mSr+5Ozs7Pat2+v8+fPq3DhwqpTp47q1KlzS4FCktzc3NSgQQOFhYXZtlmtVoWFhcnf3z/L92O1WpWYmHhLNQAAAACwT7a7P9WuXVtHjhxRpUqVcqSAoKAg9e7dWw0bNlTjxo01ffp0Xb58WYGBgZKkgIAAlS1bVhMnTpR0dYxEw4YNVblyZSUmJur777/Xxx9/rNmzZ+dIPQAAAACyJ9uh4u2339bQoUM1fvx4NWjQQEWKFEm339PTM1v31717d8XExGjUqFGKjo5WvXr1tHr1atvg7cjISDk5/dOgcvnyZb344ov666+/VKhQIdWoUUOffPKJunfvnt2nAgAAACAHWIwxJjsnXPsB32Kx2H42xshisSg1NTXnqssFcXFxKl68uC5cuJDtAARkJjIyUrGxsXbfT3x8vJo3by5J2rRpkwoVKmT3fUpXxy75+fnlyH0VVDt27FCDBg30/QM1Vaf4rXXnzE17LlzRI7+Ga/v27br//vsdXQ4AABlku6Vi7dq1uVEHkC9FRkaqZvXqupKQkKP3mxYuckJhDw+FR0QQLAAAQK7JVqhITk7WuHHjFBISoqpVq+ZWTUC+ERsbqysJCZpZt6KqFLWvZSEh1apuWyIkSSuaVpeHc7aXkcng0KV4vbLrmGJjYwkVAAAg12QrVLi6umr37t25VQuQb1UpWsjubjNXUv7pOnivZyEVdnG2tywAAIDbIttfhfbq1UsLFizIjVoAAAAA5EPZHlORkpKi0NBQ/fLLL5nO/jR16tQcKw4AAABA3pftULF3717b7CN//vlnun3XzgYFAAAA4M7A7E8AAAAA7GL/9DLXOH36dE7eHQAAAIB8IMuhonDhwoqJibH93qlTJ0VFRdl+P3XqlHx9fXO2OgAAAAB5XpZDRUJCgq5dfHvDhg2Kj49Pd0w2F+cGAAAAUADkaPcnBmoDAAAAd54cDRUAAAAA7jxZDhUWiyVdS8T1vwMAAAC4M2V5SlljjKpVq2YLEpcuXVL9+vXl5ORk2w8AAADgzpPlULFw4cLcrAO4o5xKSNbpxOR02xJSU20/74u7Ig9n5wznebu7ysfDNdfrAwAAyI4sh4revXvnZh3AHWVJZIymHYq64f5uW/7MdPurVXwVVK1MbpUFAABwS7K9ojYA+z3jV0rtfO7K9nne7rRSAACAvIdQATiAjwfdmAAAQMHBlLIAAAAA7EKoAAAAAGAXQgUAAAAAu2R7TEVqaqoWLVqksLAwnT59WlarNd3+NWvW5FhxAAAAAPK+bIeKwYMHa9GiRerUqZNq167NqtoAAADAHS7boeKzzz7T559/rkceeSQ36gEAAACQz2R7TIWbm5uqVKmSG7UAAAAAyIeyHSpee+01zZgxQ8aY3KgHAAAAQD6T7e5PmzZt0tq1a/XDDz/o3nvvlatr+gW8VqxYkWPFAQAAAMj7sh0q7rrrLj3++OO5UQsAAACAfCjboWLhwoW5UQcAAACAfIrF7wAAAADYJdstFZL05Zdf6vPPP1dkZKSSkpLS7duxY0eOFAYAAAAgf8h2S8XMmTMVGBgoHx8f/fHHH2rcuLFKliypI0eO6OGHH86NGgEAAADkYdkOFR9++KHmzp2r999/X25ubho2bJh+/vlnvfLKK7pw4UJu1AgAAAAgD8t2qIiMjFSzZs0kSYUKFdLFixclSc8++6w+/fTTnK0OAAAAQJ6X7VBRunRpnT17VpLk5+enLVu2SJKOHj3KgngAAADAHSjboaJNmzZatWqVJCkwMFCvvvqq2rVrp+7du7N+BQAAAHAHyvbsT3PnzpXVapUkDRo0SCVLltRvv/2mzp07a8CAATleIAAAAIC8LduhwsnJSU5O/zRw9OjRQz169MjRogAAAADkH7e0+N3GjRvVq1cv+fv76+TJk5Kkjz/+WJs2bcrR4gAAAADkfdkOFcuXL1eHDh1UqFAh/fHHH0pMTJQkXbhwQRMmTMjxAgEAAADkbdkOFW+//bZCQkI0b948ubq62rY/8MADrKYNAAAA3IGyHSoiIiLUokWLDNuLFy+u8+fP50RNAAAAAPKRW1qn4tChQxm2b9q0Sffcc0+OFAUAAAAg/8h2qOjfv78GDx6s//3vf7JYLPr777+1ZMkSDR06VAMHDsyNGgEAAADkYdmeUnb48OGyWq166KGHdOXKFbVo0ULu7u4aOnSoXn755dyoEQAAAEAelu1QYbFYNHLkSL3++us6dOiQLl26pFq1aqlo0aK5UR8AAACAPO6W1qmQJDc3N9WqVUuNGze2O1DMmjVLFStWlIeHh5o0aaKtW7fe8Nh58+bpwQcfVIkSJVSiRAm1bdv2pscDAAAAyF1Zbqno06dPlo4LDQ3NVgHLli1TUFCQQkJC1KRJE02fPl0dOnRQRESEvL29Mxy/bt069ezZU82aNZOHh4cmTZqk9u3ba9++fSpbtmy2HhsAAACA/bIcKhYtWqQKFSqofv36MsbkWAFTp05V//79FRgYKEkKCQnRd999p9DQUA0fPjzD8UuWLEn3+/z587V8+XKFhYUpICAgx+oCAAD5T1RUlKKiorJ9nq+vr3x9fXOhIuDOkOVQMXDgQH366ac6evSoAgMD1atXL9199912PXhSUpK2b9+u4OBg2zYnJye1bdtWmzdvztJ9XLlyRcnJyTesJTEx0bbqtyTFxcXZVTMAAMi75syZo7Fjx2b7vNGjR2vMmDE5XxBwh8hyqJg1a5amTp2qFStWKDQ0VMHBwerUqZP69u2r9u3by2KxZPvBY2NjlZqaKh8fn3TbfXx8dODAgSzdxxtvvKEyZcqobdu2me6fOHHiLb25AACA/GfAgAHq3Llzum3x8fFq3ry5pKvrahUqVCjDebRSAPbJ1uxP7u7u6tmzp3r27Knjx49r0aJFevHFF5WSkqJ9+/bd9hmg3n33XX322Wdat26dPDw8Mj0mODhYQUFBtt/j4uJUvnz521UiAAC4jTLrxnT58mXbz/Xq1VORIkVud1lAgZftKWXTODk5yWKxyBij1NTUW7oPLy8vOTs769SpU+m2nzp1SqVLl77puVOmTNG7776rX375Rffdd98Nj3N3d5e7u/st1QcAAADg32VrStnExER9+umnateunapVq6Y9e/bogw8+UGRk5C21Uri5ualBgwYKCwuzbbNarQoLC5O/v/8Nz/vvf/+r8ePHa/Xq1WrYsGG2HxcAAABAzslyS8WLL76ozz77TOXLl1efPn306aefysvLy+4CgoKC1Lt3bzVs2FCNGzfW9OnTdfnyZdtsUAEBASpbtqwmTpwoSZo0aZJGjRqlpUuXqmLFioqOjpYkFS1alAX4AOAazIIDALhdshwqQkJC5Ofnp3vuuUfr16/X+vXrMz1uxYoV2Sqge/fuiomJ0ahRoxQdHa169epp9erVtsHbkZGRcnL6p0Fl9uzZSkpK0pNPPpnufpi1AQDSYxYcAMDtkuVQERAQcEszPGXFSy+9pJdeeinTfevWrUv3+7Fjx3KlBgAoaJgFBwBwu2Rr8TsAQP7BLDgAgNslWwO1AQAAAOB6hAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOyS5dmfAACOFR4ebvd9xMfH237euXNnplPK3govLy/5+fnlyH0BAPIfQgUA5HGnE5Mli5N69eqVo/ebtl5FTvAoVFgRB8IJFgBwhyJUAEAeF5ecIhmrKjwRLI9S9n1otyYn6uCCIZKkqn2ny8nV3e76EmIidXz5RMXGxhIqAOAORagAgHzCo5SfCpepZtd9pCb90/2pkG8VObvlTPcnAMCdjYHaAAAAAOxCqAAAAABgF7o/AQCAPCcyMlKxsbE5cl/MegbkPkIFAADIUyIjI1WzenVdSUjI8fvOyVnPCnt4KDwigmABiFABAADymNjYWF1JSNDMuhVVpaj9rQoJqVZ12xIhSVrRtLo8nO3v/X3oUrxe2XWMWc+A/0eoAAAAeVKVooVUp3hhu+/nSkqq7ed7PQupsIuz3fcJID1CBQAUUMkXzyj54pl021KTE20/X4k6JOdM1qlwLVZSrsVK5np9AICCg1ABAAVU7O/fKnrdRzfcf+j/F8G7XulWAfJt0zuXqgIAFESECgAooLwaPariNfyzfR6tFACA7CJUAEABRTcmAMDtwuJ3AAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdWPwOAAAAeUpUVJSioqKyfZ6vr698fX1zoSL8G0IFAAB5HB+wcKeZM2eOxo4dm+3zRo8erTFjxuR8QfhXhAoAAPI4PmDhTjNgwAB17tw53bb4+Hg1b95ckrRp0yYVKlQow3mEaMchVAAAkMfxAQt3msxa2S5fvmz7uV69eipSpMjtLgs3QagAACCP4wMWgLyOUAEAAAqMUwnJOp2YnG5bQmqq7ed9cVfk4eyc4Txvd1f5eLjmen1AQUWoyEcYqAcAwM0tiYzRtEM3/lvZbcufmW5/tYqvgqqVya2ygAKPUJGPMFAPAICbe8avlNr53JXt87zdaaUA7EGocJDIyEjFxsZm6xx/f3998skn6bYlJiaqb9++kqQFCxbI3d09w3leXl7asWNHth7Ly8tLfn5+2ToHAPDvbuX9PzPx8fG2n3fu3JnpQO1bkd/f/3086MYEOAKhwgEiIyNVs3p1XUlIyNH7TQsXOaGwh4fCIyLy9R8WAMhrIiMjVb1GTSXEX8nR+02bBSoneBQqrIgD4bz/A8gWQoUDxMbG6kpCgmbWragqRbP+zdLZpGSdTUpJty3RavT6nuOSpMl1KsjdyZLhvLvdXHS3W9a/tTl0KV6v7Dqm2NhY/qgAQA6KjY1VQvwVVXgiWB6l7Ht/tSYn6uCCIZKkqn2ny8k1Y0t1diXEROr48om8/wP/gnGuGREqHKhK0UKqU7xwlo+f+uffNx18lhYursfgMwDIWzxK+alwmWp23Udq0j/dnwr5VpGzW850fwLw7xjnmhGhIh9h8BkAAIDjsSBlRoSKfITBZwAAAI7HgpQZESoAZEBfUSBvSb54RskXz6TblpqcaPv5StQhOWcypsK1WEm5FiuZ6/UBN8OMZ3cGQgWADOgrCuQtsb9/q+h1H91w/6H/H7B9vdKtAuTbpncuVQX8u9ya8TInZzxjxsucQahAjuHb7YKDvqJA3uLV6FEVr+Gf7fNopYCj3eqMl5lJSLWq25YISdKKptXl4exkd33MeJlzCBXIMXy7XXDQVxTIW+jGhPwuuzNeZuZKSqrt53s9C6mwi7O9ZSEHOTxUzJo1S5MnT1Z0dLTq1q2r999/X40bN8702H379mnUqFHavn27jh8/rmnTpmnIkCG3t+A7SHh4eLaOZ8VvAACQH2X3M09m7vQxHw4NFcuWLVNQUJBCQkLUpEkTTZ8+XR06dFBERIS8vb0zHH/lyhXdc889euqpp/Tqq686oOI7w+nEZMnipF69euXo/ebkit+s+Jo9vFkCN0f3TeDOlFufee7EVe4dGiqmTp2q/v37KzAwUJIUEhKi7777TqGhoRo+fHiG4xs1aqRGjRpJUqb7kTPiklMkY832iq8ply8o5cqFdNusKUk68fV7kqTyXV6Tk4tbhvNcCheXS5HiWX4cVnzNOt4sgayh+yZwZ7rVzzyZudNXuXdYqEhKStL27dsVHBxs2+bk5KS2bdtq8+bNOfY4iYmJSkz8Z9q9uLi4HLvvgi67K75GrVl809lJ0sLF9ZidJPfwZglkDZMTAHc2Vrm3n8NCRWxsrFJTU+Xj45Nuu4+Pjw4cOJBjjzNx4sRb+vYJ2cfsJHkXb5a4k+TUnPhZkd1uUznRFREA8iKHD9TObcHBwQoKCrL9HhcXp/LlyzuwooKL2UkAOFp+mBMfAAoih4UKLy8vOTs769SpU+m2nzp1SqVLl86xx3F3d890xiEAN8bqvciv8vqc+GtPn9fkg9kfEA4AeZ3DQoWbm5saNGigsLAwde3aVZJktVoVFhaml156yVFlARCr9yL/y6tz4h+6FP/vBwFAPuTQ7k9BQUHq3bu3GjZsqMaNG2v69Om6fPmybTaogIAAlS1bVhMnTpR0dXD3/v37bT+fPHlSO3fuVNGiRVWlShWHPQ+goGF8DO40pxKSr86Wdo2E1H9Cxb64K/JwzhgqvN1d5ePhmuv1AchbaNHPyKGhonv37oqJidGoUaMUHR2tevXqafXq1bbB25GRkXJy+qe5+e+//1b9+vVtv0+ZMkVTpkxRy5YttW7duttdPlBgFeQ3PSAzSyJjNO3QjbslddvyZ6bbX63iq6BqZXKrLAB5FC36GTl8oPZLL710w+5O1weFihUryhhzG6oCANxJnvErpXY+d2X7PG93WimAOxEt+hk5PFQAAOBoPh50YwLykrzeJZEW/YwIFQAAAMhT6JKY/xAqAAAAkKfQJTH/IVQAAAAgT6FLYv5j/0o+AAAAAO5ohAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAu7g4ugAAAIA7RVRUlKKiorJ9nq+vr3x9fXOhIiBnECoAAABukzlz5mjs2LHZPm/06NEaM2ZMzhcE5BBCBQAAwC0KDw/P1vH+/v765JNP0m1LTExU3759JUkLFiyQu7t7hvO8vLy0Y8eObD2Wl5eX/Pz8snUOcKvyRKiYNWuWJk+erOjoaNWtW1fvv/++GjdufMPjv/jiC7311ls6duyYqlatqkmTJumRRx65jRUDAIA72enEZMnipF69euXo/aaFi5zgUaiwIg6EEyxwWzg8VCxbtkxBQUEKCQlRkyZNNH36dHXo0EERERHy9vbOcPxvv/2mnj17auLEiXr00Ue1dOlSde3aVTt27FDt2rUd8AwAAMCdJi45RTJWVXgiWB6lsv6hPfb3b3Vm+3fZfrySDTrJq9GjWT4+ISZSx5dPVGxsLKECt4XDQ8XUqVPVv39/BQYGSpJCQkL03XffKTQ0VMOHD89w/IwZM9SxY0e9/vrrkqTx48fr559/1gcffKCQkJDbWjsAALizeZTyU+Ey1bJ8vG+b3tkKB2lci5WUa7GS2T4PuF0cGiqSkpK0fft2BQcH27Y5OTmpbdu22rx5c6bnbN68WUFBQem2dejQQV999VWmxycmJioxMdH2+4ULFyRJcXFxdlZ/6y5duiRJ2nPhsq6kpDqsjhs5dDFeknTl74NKTYp3cDUZJcb+Jenqv6Mjr2NaDRLX8lbllWvJdbRPXrmOaTVIXMtblVeuZV6/jtLtv5apZ/5Swpm/snw81zJreE1mXbFixWSxWG58gHGgkydPGknmt99+S7f99ddfN40bN870HFdXV7N06dJ022bNmmW8vb0zPX706NFGEjdu3Lhx48aNGzdu3G7xduHChZt+rnd496fcFhwcnK5lw2q16uzZsypZsuTN09YdLC4uTuXLl9eJEyfk6enp6HJgB65lwcB1LDi4lgUH17Jg4DpmXbFixW6636GhwsvLS87Ozjp16lS67adOnVLp0qUzPad06dLZOt7d3T3D1Gx33XXXrRd9B/H09OQFVkBwLQsGrmPBwbUsOLiWBQPX0X5OjnxwNzc3NWjQQGFhYbZtVqtVYWFh8vf3z/Qcf3//dMdL0s8//3zD4wEAAADkLod3fwoKClLv3r3VsGFDNW7cWNOnT9fly5dts0EFBASobNmymjhxoiRp8ODBatmypd577z116tRJn332mbZt26a5c+c68mkAAAAAdyyHh4ru3bsrJiZGo0aNUnR0tOrVq6fVq1fLx8dHkhQZGSknp38aVJo1a6alS5fqzTff1IgRI1S1alV99dVXrFGRg9zd3TV69OhMV/RE/sK1LBi4jgUH17Lg4FoWDFzHnGMxxhhHFwEAAAAg/3LomAoAAAAA+R+hAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqgHzo2knbmMAt/+MaAo53+vRpxcTESJJWrlyppUuXOrgi2CvtvTU1NdXBldwZCBV3gLQX1aFDh/Trr79q586dio6OdnBVuBWZvUFaLBZHlQM77N69W6NGjZLENQQc7eLFi6pVq5YmT56sBQsW6IknnnB0ScgBFotFP/zwg0JCQpSUlOTocgo8hy9+h9xljJHFYtGKFSsUFBSk4sWLKyUlRWXKlNHw4cP10EMPObpEZFHatfz555+1aNEinT9/XqVLl9b48eNVunTpdItEIm/btWuX/P39NXToUEeXghyW9jpF/lKsWDEtWbJEnTt3VmpqqmbOnKmnn37a0WXBTr///ru6d++uOXPm8DfyNuBfuICzWCz67bff1KdPH73++uvatWuXRowYoTVr1mjnzp2OLg/ZYLFY9PXXX+vxxx+Xt7e3evbsqV9++UWdO3fWiRMnHF0esmjXrl1q1qyZXn31VY0bN87R5cBOaa2HV65ckdVqldVqdXBFyC5jjKxWq+rWravk5GRZrVZFRUXp9OnTji4Ndti3b592796tQYMGqWfPnoSK24B/4QIs7Y/dhg0b9PDDD2vQoEE6ceKE3nzzTQ0YMECvvfaaJPHGmQ8YYxQTE6MJEyZozJgxmjZtmh555BEZY9SkSRNVqFAh3bHIm/bs2aNmzZpp6NCheuedd2zbFy1apC+++MKBleFWpLVK/PDDDwoMDFSTJk305ptvasuWLY4uDVmUdg1jYmJUunRpRUVFadWqVZo4caImTZrE38d8yBijy5cvq2nTpurfv7+ioqIkSU5OTvx9zGWEigIsrQk+KSlJfn5+io6Olr+/v9q3b69Zs2ZJkn744QctX75c8fHxjiwVN5D2BmixWOTu7q5Lly6pX79++vvvv1WnTh09/PDDtmv53Xff2Y5F3nPmzBn16NFDVapU0dixY23bJ0yYoFdffVV+fn4OrA63Iq318IknnlC1atXUtWtX7d27Vy+++KLWrVvn6PLwL9ICxTfffKNevXrp008/1d13361HH31Uy5Yt07Rp0zRlyhRbsPjvf/+rzz77zMFV499YLBYVKVJEO3bsULly5fS///1Pu3fvtu1DLjIokI4fP277edq0acbb29uUKVPGDBo0yLY9JSXF9OnTx7z44osmPj7eEWUiC1asWGHefvttk5SUZOrVq2emTJliKlWqZAYMGGCSkpKMMcZERkaaVq1amR9++MHB1eJGoqOjzdChQ02dOnXM2LFjjTHGTJ482ZQsWdL8+OOPmZ6Tmpp6O0vEv7h06VK63/fu3WvuvfdeM2/ePGOMMWfOnDGlSpUyVatWNffee69Zu3atA6pEdqxYscJ4eHiY9957zxw6dCjdvqVLlxpXV1fz5JNPmh49ehh3d3ezY8cOB1WKm7FarZluj4iIMHfddZfp1KlThuuLnEeoKID2799v7rvvPvPf//7Xtu2JJ54wHh4eZt++fSY+Pt5cunTJDB8+3JQuXdqEh4c7sFrczK5du4yvr68JCQkxCQkJ5rXXXjMlSpQwHTp0SHdccHCwqV+/vjlx4oSDKkVW/P3332b06NGmVq1apmXLlsbLyyvTD54rV6687bXh5kaPHm26dOmSLuiFh4ebwMBAc/HiRXP8+HFTpUoV88ILL5i1a9eaatWqmTp16twwMMLxjhw5YmrWrGnmzJljjLn6RVtCQoIJCwszsbGxxpiroeOJJ54w3bp1M7t27XJkubiBtEDx22+/mTlz5pjRo0ebyMhIc/nyZWPM1c9ExYsXN48++qg5fPiwI0st8CzG0MGsoDl06JDeffdd7d69W08//bSGDBmiEydOqEePHgoPD1f58uV19913688//9S3336r+vXrO7pkZCIiIkJLly5VXFycpk2bJknau3evXn31VV25ckWPPvqo/Pz8tGnTJn366adav3696tat6+CqkRlzTTe2v//+W3PnztW8efPUqlUrLVmyRNLVaYKdnZ01evRojR8/XkeOHFHFihUdWDWuFRERoeTkZNWuXVvJyclydXWVJEVHR6t06dLq06ePEhMTtWDBAnl4eOjxxx/Xr7/+qmrVqunHH39U4cKF6XqRxxw5ckQdO3ZUaGio/P399d577+nrr79WRESE3NzctHXrVpUrV07x8fFycnKSu7u7o0vGdcz/d2FbuXKl+vXrp3r16ik6OlpJSUl688039eijj6pkyZIKDw9XixYtVKtWLS1evJj31tzi2EyDnJBZs9/hw4fNSy+9ZOrVq2c++OAD2/Z58+aZKVOmmI8//tgcO3bsdpaJLEpNTTWnT582TZo0MXfddZd55pln0u3ftm2befXVV02lSpVMgwYNzGOPPWZ2797toGpxI3///bfZvXu3SUhIyLAvKirKjB492tSsWdOMHj3atv3NN980hQsXNtu2bbuNleLfXPseu27dOtOqVSsTHR1t23blyhXToEED88477xhjjElOTjb9+vUz77//vjl9+vRtrxdZc+TIEdO+fXvTtGlT4+vrazp37mzGjx9vwsPDTZUqVcyIESMcXSKyYOPGjaZ06dJm4cKFxhhjLly4YCwWi6levbqZM2eOOXv2rDHGmD179pgKFSqYyMhIB1ZbsNFSUUBs3bpVR48eVffu3W3bDh8+rBkzZmjt2rV68cUXNXDgQAdWiH9jrpvf/vvvv9eYMWN09uxZhYSEqG3btumOj4+Pl7Ozs6xWqzw8PG53ubiJPXv2qFu3burVq5eeffZZ3XPPPZKkkJAQlSlTRp07d1ZkZKRCQ0O1bNkyBQYGKjU1VePGjdOmTZvUoEEDBz8DXCvttXns2DElJyeradOmatKkiT766CN5eXkpKSlJzz33nE6fPq1BgwZpy5Yt+uKLL7Rx40aVLVvW0eVD/1zDhIQE28QXkrRu3Tr98ccfMsbomWeekY+PjySpY8eO6tq1q1544QVHlo1/kZKSonnz5unYsWOaNGmSDh8+rHbt2qljx446f/68vv/+e02ZMkVdunRRqVKllJSUJDc3N0eXXXA5MtHAflar1Vy4cME8+eSTpn79+uaLL75It//w4cPG39/fVKhQwbz33nsOqhJZtXnzZjNgwACTkpJijDHmp59+Mo0bNzZPPvmk2bBhg+245ORkR5WIf3HkyBHj4+NjgoODTVRUVLp9AQEBpmTJkubcuXPGGGNOnjxpxo0bZ4oXL26cnJxoocjDVq5caWrXrm3Cw8NNeHi4KVeunGnfvr2JiYkxxhizatUq06FDB1OmTBlTs2ZNs337dgdXjDRpLU0//PCD6dSpk2nWrJn5z3/+k+H1aczVwfhvvfWWKV26tDl48ODtLhW3YNeuXWbfvn3m0qVLpmXLlqZv377GGGMuXrxoSpQoYcqVK2cWLlxoUlNTbzigGzmDUJFPpb0wrly5YowxZuvWraZnz57mwQcfNMuWLUt3bFBQkKlYsaJp166dOXPmzG2vFVmTmppqJkyYYGrUqGFeeuklW7D49ttvTdOmTc2TTz5pNm7c6OAq8W+mT59u6tevn+m+S5cumU6dOqV7jf7111/m3XffNREREberRGRR2vvsX3/9Zdq3b29CQkJs+/bv32/KlStn2rZtawuJMTEx5siRI3R5yoO++uorU6xYMfPqq6+aL774wlSuXNm0adPG/Prrr7bB919++aXp06ePKVOmDLM85VHXhoLrZ8fbsWOHqV27tvn111+NMVdfo08++aR57rnnmPnpNmGdinzIXLPg0sCBA/Xnn3+qUaNGeu211+Tr66tZs2alW0jLyclJL7/8sm0ObuRNTk5Oeumll9SnTx9t2bJFL7/8slJTU9WpUye9+eabio6O1ttvv63Nmzc7ulTcRLFixRQZGamFCxfq9OnTioiI0O7du/XHH39o06ZNunjxov73v//p0KFD+v333+Xj46PXX39d1apVc3TpuI7FYtGGDRs0YcIEOTs765FHHpEkWa1W1axZUz/99JMOHDigHj16KCYmRl5eXqpUqZJKlSrl4MpxrYMHD+qtt97SO++8o6lTp6pdu3ZKSkrS1q1b1a9fP/3vf/+TJJUqVUqVK1fWunXrmMAkD0r77PPzzz+rT58+6tixo4KDgxURESFJiouL05kzZ3Tu3DmdP39en3/+uYwxCgkJUeXKlR1c/R3CwaEGt2j58uXG09PTDBs2zOzbt8+2/ffffzc9e/Y0tWrVMt27dzd9+vQxJUqUYFB2Hnb9FHcXL140EydONI0aNTKDBg2yfRuzYsUK065dO/PXX385okzcxNGjR8358+eNMcbs3LnTvP7668bX19dUrVrV1KtXz1SoUMFUq1bN1K1b1xQpUsRYLBZTq1Yt4+3tzbfaedxHH31k3N3dTaFChcy6dets29Nel+Hh4aZQoUKmW7durCuSR+3cudO88847JjEx0Zw8edLcc8895qWXXjIXLlwwlSpVMq1atbK1AtO1NG/76quvTNGiRc2gQYPM3Llzzd13321at25tW5urXbt2pmTJkqZ69erm7rvvphvibUaoyIf27NljfHx8bAsupfn7779t/506dap54IEHTNeuXZlbOw9Ka8KNiIgw9evXN6NGjUq3//z58+bNN980vr6+ZtiwYbauUNcvvgXHS0pKMq1btzalS5e2zTJijDEjR460zex05swZY7VazcWLF80bb7xhOnfubHbt2sUsJPnE8uXLjbe3twkICDAHDhywbb/2dfznn386qjz8i5SUFNt6TM8995zp0aOHbQ2Dzp07G4vFYho3bswisHlcdHS0adCggZk2bZox5up7r7e3txkyZEi6QL9w4UKzePFiujw5AN2f8qHTp0+rYsWK6tWrl86dO6f58+erXbt2atKkiQYOHCgnJye9+uqr2rhxo5YuXar77rvP0SXf8axWqyQpOTlZ0tVuFUeOHNE999yjJk2aKCwsTBMmTLAdX7x4cQUFBcnd3V1z587V0KFDJUmFCxe+/cXjplxdXTVz5kyVL19eDzzwgM6dOyfp6jX/4YcfdO7cOVu3wyJFiig2NlaNGzfWfffdp/LlyzuydFzH/P9kiOHh4Vq/fr2+/fZbWa1WdevWTdOnT1dYWJhmzZqlgwcPSrr6OjbGqFq1aqpataojS4euXr+0a/jXX3/p5MmTioiIkLOzs2rUqCFjjCIjI1WnTh3be2nlypW1bds2LVu2jFn08pAPPvhAP//8s1JTU23b0mZH7NOnj44fP66KFSuqS5cumjZtmpycnLRmzRpJ0nPPPaeAgAC6PDmCQyMNsiTt27DExERjjDFbtmwxFovFDB482NSuXdt07tzZDB061EydOtV4e3ubX375xZHl4gYiIiLMwIEDTWpqqvn888+Ns7OzOXnypDl16pQZPHiwadKkiXn77bdtx8fExJiePXuad955h2+086i012ZqaqoJDw83zZo1M/Xr1zfnzp0zGzduNPfff7957bXXzPHjx82ePXvMiBEjTMmSJVnFPg9Ku5bLly83VapUMffee6+pW7euqVixoq2L6ZIlS0zZsmXNkCFDuIZ5zLWTkKxcudLUrVvX1K5d2/j4+Jhhw4bZuo02bdrUtGzZ0qxcudIMGTLElCxZ0tbKj7yjbt26pkyZMmbdunW2lvqoqChToUIFM3/+fFOlShXz/PPP27qr/fnnn6Zjx45m/fr1jiz7jkeoyOOunQrvueees70xLl261DzyyCNm2LBhZv/+/bbjGzVqZL766iuH1IrMpb0hbtq0yVgsFtOmTRvj7OxsFi1aZDvm9OnTZvDgwaZx48bmlVdeMfv27TPDhw83bdq0MbGxsY4qHTdwbTeJpKQk28+vvfaasVgsplGjRub8+fPm3XffNTVr1jQWi8XUrFnT1KlTx/zxxx8OqBhZsWnTJuPp6WnrWrp161ZjsVjM9OnTbccsWbLEeHh4mDfeeCPdtYfjxMTEmLJly5rw8HCzZs0aU7hwYRMSEmKio6PN/PnzjcViMV9//bUxxpjjx4+bKlWqmKpVq5pq1aoxy1Mec+3sTm3atDF+fn5m7dq1ti9Vhw4dagoXLmw6duyY7rwRI0aY+++/nzGHDkaoyAe+/PJLU7x4cRMUFJTuDTCtT2ia4OBgVovMY+bOnWvmz59vLl68aIwxZuzYscZisZjmzZubuLi4dMfGxMSYCRMmmCpVqpgyZcqYSpUqMcgsD/rrr7/MU089ZdasWZNu+6RJk0zJkiXN/PnzTf369U3jxo3NuXPnTHR0tFm+fLnZtWuXOXXqlIOqRlbMnj3b9OvXzxhzdb0RPz8/M3DgQNv+tA88n332GWMo8pAjR46YcuXKmV27dpmRI0eaV155xRhzdRKMqlWrmv79+6c7PikpyRw9ejTdGCjkHdcOln/wwQdtwcKYq9PGPvroo6ZOnTpm7ty5ZunSpeall14ynp6eZufOnQ6qGGkIFXnM9R80d+/ebUqVKmXmzp2bbntMTIzthffpp5+aZ5991nh7e/OtSx7Ttm1bU6NGDfPJJ5+YpKQk8/7775vg4GDj5uZmnn32WXPixAljzD8fVhISEsypU6fMhg0bMl2YCY6XtqDkI488YjZt2mSMMWbixInm7rvvNj///LMx5ur86HXr1jX3338/a8PkMTeboWnQoEHmiSeeMKdOnTLly5c3zz//vO21uWTJEjNmzJjbVSayqUGDBmbcuHGmdevWZurUqSYhIcGULVs23TWcMWMG3YPzuLRrlbaopDHGtGjRwpQrV87WtWnz5s1m8ODBpmTJkub+++83Dz/8sNm9e7dD6kV6hIo8ZNq0aWbAgAEmOTnZ9ofv66+/Nv7+/saYq31GFy1aZDp06GDKli1rRowYYU6ePGlWrVplnnnmmXTdoOBY1zbhPvXUU+bee+81y5Yts3WXWLdunS1YnDx50nbs5s2bb3utyL60/rtdunQx/fv3N6VKlTI//vhjumPCw8NNpUqVTNOmTZlqNI85efKk+f33340xxnzyySe2WbpWr15tHnroIVOyZElbi0XaKrwvv/yy6du3LzOw5TFpr60nnnjCjB071nz22WfmoYceMj4+PubFF1+0dT9NTk42zzzzjBk2bBjd1vKoa7t7/+c//7F9SWOMMS1btkwXLIwxJjY21iQmJmbotQHHIVTkAWlvejNnzrT1B0zrP7hx40ZjsVjMG2+8YRo2bGg6d+5sBg8ebCZNmmTc3d1tH0LTVtZG3nFtE27Xrl1NrVq1zMcff2zrCrV+/Xrj5uZmAgICzJYtW8y4ceNM0aJFzalTp9KFEuRNERERpl27dqZQoUJmypQptu3XBoiIiAhz5MgRR5SHTFitVhMfH28aNWpkunTpYt59911jsVjMnDlzjDFXw0bHjh1NhQoVzPLly40xVz+4jBgxwnh7e/PFTR5x+PBh88EHH5jw8HBbd9+PP/7YtGvXzqxatcrUrVvX1K1b17ZKfWJiohkxYoTx8/Oj21oet2LFClOoUCEzceJEs2XLlnT70oLFunXrbJ+RjDH8vcxDCBUOlvYB5PDhw2b8+PHGGGN+++23dF1j5s6da/z9/U1QUFC6Jr5GjRpl+HYUeUNmTbhdu3Y1tWvXThcsNm7caLy9vU3dunVN6dKlzbZt2xxSL27NoUOHTPv27c3DDz9sWzzLmJt3sYHjHTp0yJQvX95YLBZbK8W1+5o1a2Zq165typcvb1q3bm3Kly9P19I8IikpyfznP/8xfn5+plKlSsbT09N07NjRVK5c2ZQrV86cPXvWrFixwtSrV8/UqlXLdOnSxTz88MOmVKlSXMM8LjIy0tSsWdO2DkWaawPEQw89ZIoUKZLu/RZ5h8WY/5/UGbed1WqVk5OTdu3apfr16+vtt9/WiBEjNGPGDC1cuFANGzbU22+/rdKlS+vy5csqUqSI7dwRI0bos88+08aNG1W2bFkHPgvcyO+//6533nlHr7zyitq0aSNJevzxx3Xo0CG98cYb6tq1q4oWLaojR44oOjpaFSpU4FrmQwcPHtQrr7wiY4zeeustPfDAA44uCTdg/n8dgytXrqhWrVpKSkpS69atNWTIEDVp0sR2XHR0tPbv369ff/1VdevWVd26dVWhQgUHVo5rXblyRYULF9bBgwcVHh6uyMhIbdiwQXv27FHNmjX18ccf6/Dhw/ruu++0b98+1a1bV127dmUtkTxux44devzxx/XNN9/Y1tcyxshisSg1NVXOzs6SpE6dOmn69Olcz7zIkYnmTpb2Tea+fftMoUKFMnxb9sEHH5hmzZqZ3r17p+tz//XXX5uAgAC+dckHvvrqK9OwYUPz1FNPmXXr1tm2p7VYLFmyxNZigfztzz//NI8++qhp2rQp42LyqLTWw3379pnExESTlJRk9u7da6pUqWKeeOIJrls+cqPuLitXrjRNmzY1nTp1srUS0zUm77r+2vz++++27k3XH/PLL7/QMyMfYEVtB0hrodi7d69atmypihUrasyYMZKkhIQESdKgQYPUo0cPHTp0SCNHjlR0dLQk6dKlS0pJSdG6detUv359Rz0FZEGXLl00evRonT59WjNmzND69eslSStXrlSNGjU0bNgw/fDDDw6uEjmhatWqmjx5ssqVK6cyZco4uhxcx/z/t50rV65Uhw4dFBwcrMTERN17771aunSpdu3apalTp2rz5s2SrrYEjx8/3sFV40bSVlZOY7VaJUmdO3fWkCFDdOnSJT366KOKjY3NcCzyDovFok2bNmnnzp2SpAoVKsjZ2VkhISE6f/687RhJ+vbbb/X5558rPj7etmo68iBHp5o7TVoLxc6dO03hwoVNq1atTJkyZWzzahuTvv/gzJkzzQMPPGD69etnoqOjjTEZ16eA4137Lej1gzm//vpr07p1a9OlSxfz66+/2rb36tXLHD58+LbWidx17WsXecuPP/5oPDw8zIIFC8zRo0eNMf+8brdt22buvfde07RpU9O+fXtTuHBhWi7ymbRrabVazeLFi83DDz9sjh8/7uCqcDPnz583jz32mClTpoxtTaa1a9caDw8P8+STT5pVq1aZTZs2mSFDhpjixYubvXv3Orhi/BvGVDjAtm3b1KxZM40cOVJvvvmmFixYoJEjR+rpp5/WjBkzJElJSUlyc3OTJM2aNUsffvihWrVqpZkzZ9r6FcJx0lqbUlJS5OLiopSUFJ09e1bt27fXfffdpxEjRqhGjRq247/66iv169dPDz74oF5++WXbGAsAuS8lJUUDBgxQ0aJFNWPGDFvLRUpKipydnWWxWLR7924tW7ZMcXFxGjhwoGrVquXospFNadfVGKNLly6pWLFiji4JmUi7TpK0adMmTZ8+XXv27NGnn36q+++/X7///rv69u2rS5cuyWKx6K677tKCBQtUr149xxaOf0WocIANGzZo+fLltgBx4cIFLVu27KbBYu7cuWrfvr0qVqzoqLLx/9ICxeHDh7V48WKdOXNGvXr1kr+/vz788EMtXrxY9erV05AhQ1SzZk3bee3bt9euXbv08MMP68MPP1ShQoVomgdug6SkJDVu3FitW7fWtGnTJKX/YBMXFydPT0+lpKTIyclJTk70DM6vrr2ucLy0v5eSlJycLFdXVyUkJMjDw8N2zObNmzVp0iSFh4dr6dKlatCggc6dO6fz588rKSlJ3t7eKlGihKOeArKBd04HaNGihS04GGNUvHhx9ejRQ++8846WLl2qwYMHS5Lc3NyUmJgoSXr++ecJFHlA2hvknj171KZNG505c0blypXT/fffL0l68cUX1b9/f23btk0zZszQgQMHJF39prRy5cp67bXX9M4776hw4cL84QNyUdr3ZcYYOTk5qW7dujp16pRiY2MlyfaN9v79+zV8+HCdPXtWLi4uBIp8jvfVvMXJyUnHjx+XMUaurq767bff1K5dOx09etR2jL+/v9544w1VrFhRvXr10r59+1SiRAlVqlRJ1atXJ1DkIy6OLuBOl/YG6OnpqR49ekiSRo4cKWdnZ02dOlXu7u6OLA/XSWuhaN++vXr37q13333Xti+tK1S/fv0kXW1dCg4OVps2bXTixAn9/PPP2rx5s0qVKuWo8oEC7/pvqi0Wi1xcXOTv76/XXntN/v7+6tGjh0qVKiWLxaLPP/9cGzZssH2BAyDnJCYmqkePHoqKitKxY8eUmpqqK1euqF+/flqwYIHty1J/f389/fTTCgwMVNu2bfXjjz/appVF/kGoyEPSgoWTk5Oef/55ubu7a+LEiY4uC//P/P8c9wsWLNADDzyg4cOHp9vv4uJia8no16+f7r77bn366ad67733VKpUKX3xxRcECiAXpQWKDRs26Ouvv1ZKSopq1KihgQMH6oUXXtDJkyc1fvx4rVmzRp6enkpISNDq1au1fv16+fr6Orp8oMBxc3PT5MmTNXDgQPn7+2vz5s16//33NXz4cPXu3VuLFi1SpUqVJEnVq1e3dfO+dl0u5B+MqciDLly4oK+++kr+/v6qVq2ao8vBdR588EFVr15d8+fPz7AvLVSk9RlNSEjQpUuX5OzsTBMucBusXLlSgYGBeuyxx5SSkqK9e/eqcePGWrBggSTpo48+0t69e7Vt2zbVqVNHAwYMYFA2kEOuHUNx7batW7cqICBAJUuW1ObNm7Vp0yaNHDlSqamptmAxbtw4nTx5UtOmTWOQfT5FqMijGGyW91itVsXHx6tp06bq2rWrxo8fb+vydL3Ro0fr8ccfZ7YK4Dbatm2bnnrqKQ0fPlwDBgzQgQMH1KJFC124cEGPPPKIVq5caTs2bW0DxlAAOSMtUERHR+vYsWNq2rSpbV9ycrL++OMP9ezZU6VKldKWLVu0ZcsWjRw5UmvXrlXDhg21f/9+bd68WXXq1HHgs4A9eDfNowgUeY+Tk5OKFCmixo0ba9GiRTp06JBcXFxs3aLSHD16VJs2bVJKSooDqwUKrrRAYIyx/SxJ4eHhat++vQYMGKDIyEg98sgjevTRR/Xhhx9q9erVtvFOkpjlCchhTk5OOnHihGrXrq1mzZqpdevWGjFihNasWaP4+Hg1btxYn332mRISEtSoUSM1bdpUP/30k+bOnau+fftq165dBIp8jndUIJs6duyolJQUvfXWWzp8+LAsFku6EPjRRx8pMTGR2bqAXJD2beiff/6pV155RU8++aSmTJkiSXr22WfVr18/paamasCAAXrwwQcVGhqqLl26qHz58goNDVWvXr0c/AyAgstqtap8+fKqVq2aLl26pL///ludOnVSy5YtFRAQoKNHj2rkyJG6cOGC2rZtaxuDOGDAAFWuXNnR5cNOhAogE2ktD9d+C5rmqaeeUkBAgH766ScNGDBAGzdu1Llz5/S///1PgwYN0vTp0/Xhhx/Ky8vrdpcNFGhpgWLXrl1q3ry5/vrrL7m7u2vEiBGaNGmSJKlRo0b666+/dOLECfXp00fS1W9QmzRpoo8++kjjx4935FMACrQKFSroiy++UK1atVS2bFkNHDhQEREReuONN3TkyBG99957eu655+Th4aE1a9aoW7dukiR64hcMzP4EXGfRokX6448/NHXqVDk7O6cbeJb286RJk+Tp6ally5apVatWKlGihLy9vVWsWDGtX7+eqfCAHJb22tu9e7f8/f316quv6p133pHVapWXl5eio6NtEyR4eHgoMTFRX375perVq6fJkycrIiJCU6dOZQY2IJdVqVJFEydO1ODBg/XWW2/pnXfeUY8ePdSjRw+dP39e33zzjQ4cOCAXFxeNGjVKEl2+CwoGagP/z2q1Kjk5WUOHDtXmzZvVsWNHjR07NkOwSE1NlbOzsyTp8OHDCg8PV1RUlOrUqaPKlSvzoQXIJSdOnND999+v1q1b6/PPP7dt79GjhyIiIpSQkKCKFSuqW7duunz5siZPnixnZ2clJSXphx9+UP369R1YPXBnOXjwoF5++WVJUnBwsFq2bJlu/40mOkH+RagA/t/JkydVtmxZnTt3TlOmTFFYWJjatGmj8ePH37DFAsDtc+zYMf3nP/+Rr6+vhg0bpgceeEDvvvuuxo8fr+DgYPn6+mrKlClyd3fX+++/Ly8vLx08eFD169dX+fLlHV0+cMc5ePCgXnnlFRljNGrUKDVr1szRJSEXESoASV9++aVef/11LVmyRM2aNdP58+f17rvvat26dTcMFgBuv7QPKW5ubvL29taqVav08ccfq3379pKk48ePq1KlSpozZ4769+/v4GoBHDx4UEFBQYqNjdW0adPSTTWLgoVPR4CurmZep04dDRkyRJs3b9Zdd92l4cOHq1WrVlqzZo3eeustpaamysnJKdPB2wBuj6pVq2rGjBmKj4/XkiVLNGzYMLVv317GGCUnJ8vFxUV16tSxLTbJ92aAY1WtWlWTJ09WuXLlVKZMGUeXg1xESwXw/9avX68ZM2bo2LFj+uCDD2wtFpMmTdLatWvVunVrjR8/Xi4uLunGVQC4/Q4fPqwXX3xRzs7OCg4O1oMPPihJGjVqlD755BOtX7+eLk9AHpKUlCQ3NzdHl4FcRKjAHe/a1cvXrl2rmTNn6vjx45kGi7Zt22rMmDEMLgPygGv7a0+cOFE///yzRo8erd9++41B2QBwmxEqgOusX79eU6dO1YkTJ9IFiylTpuiLL77QM888Y5sGD4BjpfXX3rp1q86dO6fNmzerQYMGji4LAO44hArcsdJaKLZv325bLKtnz54qWbKktm7dqgkTJigyMtIWLM6dO6f3339fAQEBrJYN5CEREREaNmyYJkyYoHvvvdfR5QDAHYlQgTva8uXLNXDgQNWvX1+HDh1S8eLF1bdvXw0aNEjr1q3TzJkzdfLkSU2ePFktWrRI11UKQN6RnJwsV1dXR5cBAHcsZn/CHWvHjh0aNGiQ/vvf/+rHH3/UmjVrtHPnTl25ckWS1KpVKwUFBalIkSIaNWqUEhISHFwxgBshUACAY9FSgQLv+taFtN+/+OILzZ49W2vWrFFERIQefvhhPfTQQ5o3b54k6fTp0/L29tamTZtUsWJFlStXzlFPAQAAIE+jpQIFmtVqlcViUUxMjLZt26bt27fbAsbJkyfl6emp1NRUtWvXTu3atdOcOXMkSatWrdKcOXOUmJio5s2bEygAAABugnkxUWClrX69f/9+Pf/88ypWrJgKFy6szz//XM7OzurYsaPGjx+vQoUKaeDAgZoxY4bt3LCwMEVGRioxMVHu7u4OfBYAAAB5H6ECBZIxRk5OTtq3b5+aN2+uF198UQMGDFC5cuXk5OQkY4zuueceDRs2TO+//76tJeLo0aOaN2+ePvnkE23cuFGenp4OfiYAAAB5H2MqUGCdPXtWXbp00f3335+uFeLaMRZHjhzRwoULNW3aNJUoUUIlSpRQUlKSPv30UxbPAgAAyCJCBQqs/fv3q3PnzgoNDVXz5s3l5JR+CFFauEhOTtbRo0e1efNmVapUSVWqVFGZMmUcVDUAAED+Q/cnFFg7d+7U8ePH9eCDD8pisdjGWKSxWCy6cuWK9u7dq8aNG6tatWoOrBYAACD/YvYnFFgVK1aUi4uLVqxYIUkZWiokKTQ0VG+++aaSkpJud3kAAAAFBqECBVaFChXk6empjz76SMePH7dtv7bH37Fjx9SgQQMWzgIAALADoQIFVtmyZTV79mz9+OOPeuutt7R//35J/3R7GjFihL788ksFBgamWxwPAAAA2cNAbRRoVqtV8+bN00svvaQqVarI399fHh4eOnnypLZs2aLVq1czyxMAAICdCBW4I2zdulWTJ0/WoUOHVKxYMTVr1kx9+/ZV1apVHV0aAABAvkeowB0jNTVVzs7Oji4DAACgwGFMBe4Y187+RJYGAADIObRUAAAAALALLRUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7/B9mTkgZ3r9LLQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "CellSAM vs Cellpose - Cyto3 Comparision by Data Type\n", + "\"\"\"\n", + "\n", + "dataset_agg_map = {\n", + " \"Tissue\": [\"tissuenet_wholecell\"],\n", + " \"Cell Culture\": [\"cellpose\", \"ep_phase_microscopy_all\", \"Gendarme_BriFi\"],\n", + " \"H&E\": [\"H_and_E\"],\n", + " \"Bacteria\": [\"deepbacs\", \"omnipose\"],\n", + " \"Yeast\": [\"YeaZ\", \"YeastNet\"],\n", + " \"Nuclear\": [\"dsb_fixed\"],\n", + "}\n", + "\n", + "group_names = list(dataset_agg_map.keys())\n", + "cp_group_means = []\n", + "cp_group_sems = []\n", + "cs_group_means = []\n", + "cs_group_sems = []\n", + "\n", + "for group in group_names:\n", + " # Get all datasets that belong to this group\n", + " datasets_for_group = dataset_agg_map[group]\n", + " \n", + " # Gather all F1 arrays and concatenate them\n", + " cp_all = np.concatenate([cp_generalist_dict[ds] for ds in datasets_for_group])\n", + " cs_all = np.concatenate([cs_generalist_dict[ds] for ds in datasets_for_group])\n", + " \n", + " # Compute (1 - mean(F1)) for the group\n", + " cp_mean = 1 - np.mean(cp_all)\n", + " cs_mean = 1 - np.mean(cs_all)\n", + " cp_group_means.append(cp_mean)\n", + " cs_group_means.append(cs_mean)\n", + " \n", + " # Standard error of the mean (SEM) for the group\n", + " cp_sem = np.std(cp_all, ddof=1) / np.sqrt(len(cp_all))\n", + " cs_sem = np.std(cs_all, ddof=1) / np.sqrt(len(cs_all))\n", + " cp_group_sems.append(cp_sem)\n", + " cs_group_sems.append(cs_sem)\n", + "\n", + "# Now plot side‐by‐side bars for the groups\n", + "x = np.arange(len(group_names))\n", + "width = 0.35\n", + "plt.rcParams['svg.fonttype'] = 'none' \n", + "fig, ax = plt.subplots(figsize=(8,5))\n", + "\n", + "bars_cp = ax.bar(\n", + " x - width/2, cp_group_means, width,\n", + " yerr=cp_group_sems, edgecolor='black', linewidth=1, capsize=5, \n", + " label='Cellpose - Cyto3', color=c2\n", + ")\n", + "bars_cs = ax.bar(\n", + " x + width/2, cs_group_means, width,\n", + " yerr=cs_group_sems, edgecolor='black', linewidth=1, capsize=5, \n", + " label='CellSAM', color=c4\n", + ")\n", + "\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels(group_names, rotation=45, ha='right')\n", + "ax.set_ylabel('Mean Error (1 - F1)')\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(\n", + " loc='upper center',\n", + " bbox_to_anchor=(0.5, 1.15),\n", + " ncol=2,\n", + " prop={'size': 14},\n", + " frameon=False\n", + ")\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_grouped_comparison_cyto3.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### LiveCell" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from pathlib import Path\n", + "import numpy as np\n", + "\n", + "cellsam_path = Path('/home/ulisrael/AllCell/livecell/cellsam')\n", + "cellpose_path = Path('/home/ulisrael/AllCell/livecell/cellpose')\n", + "\n", + "\n", + "c1 = \"#fdbb84\"\n", + "c2 = \"#e34a33\"\n", + "c3 = '#deebf7'\n", + "c4 = '#3182bd'\n", + "\n", + "\n", + "cellpose_generalist_path = cellpose_path / 'general/'\n", + "cellsam_generalist_path = cellsam_path / 'general/'\n", + "cellsam_fewshot_path = cellsam_path / 'general_FS_10_FT/'\n", + "\n", + "\n", + "cp_generalist_dict = {}\n", + "for file in cellpose_generalist_path.glob(\"LIVECell_good.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cp_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + "\n", + "cs_generalist_dict = {}\n", + "for file in cellsam_generalist_path.glob(\"LIVECell_good.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cs_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + "\n", + "\n", + "cs_fewshot_dict = {}\n", + "for file in cellsam_fewshot_path.glob(\"LIVECell_good.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cs_fewshot_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAJRCAYAAADRdhTRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOxhJREFUeJzt3XtcVXW+//H3BmEjXjAlLnlQVDRFTRTC8JqFUjqZ3UQbB8PLeLw0FqNN5BzRtOhiSjko6aT2K2+jNXO6mI0xWnLUsTSdLmZpKk4CSiYoIBjs3x+Ou74BBYIs3Lyej8d6DPu7vmvvz2JWi7ff9V1r2xwOh0MAAAD/4WZ1AQAAoH4hHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEgyvkgQceUHBwsNFms9k0Z84cS+qB6+DYQm3hWKpbc+bMkc1mU25urtWl/KJGtfEmmZmZlu+sr6+v2rRpU6P3OHz4sJ555hlt2bJFJ06ckKenp7p3766RI0fqt7/9rRo3blxL1aIq6sNxJV29x9Ynn3yiuXPn6sMPP1ROTo5atWql0NBQDR8+XA8++GCF24wcOVIbNmzQI488oqeffrrc+m3btmnQoEGSpFdeeUVjxowp16dv377asWOHunbtqk8//bR2d6oG6sPxVNNjyapz1NVwLD3wwAN6+eWXK1z3zjvv6Lbbbvul3bwqLVmyRN7e3nrggQdq9X1rHA4yMzPV5frrVXj+fG3Uc9m8vbx04ODBy/4P7+2339Z9990nu92uuLg4devWTSUlJcrIyNDMmTP12WefadmyZbVcNSqTmZmpLl26qLCw0OpS5O3trQMHDlxVx9aOHTs0aNAgtWnTRhMnTlRAQICOHz+uXbt26fnnn6/whJ6fn68333xTwcHBWrt2rZ566inZbLYK39/Ly0tr1qwpd0I/evSoduzYIS8vr1rdn5rKzMzU9Z276HyRtceTV2NvHfzi8o4lq85RV9OxZLfb9ec//7lce48ePar8HlebJUuWyNfXt/6Fg9zcXBWeP68XegQrpKk1/7I+dK5Iv9t/VLm5uZf1H92RI0c0atQotW3bVv/4xz8UGBjoXDd16lQdOnRIb7/9dm2WjF+Qm5urwsJCLVy6QiEdO1tWx6GvvlDC5HFX3bH1xBNPyMfHRx9++KFatGhhrDt58mSF27z22msqLS3VihUrdMstt+iDDz7QwIEDK+w7dOhQvfHGG8rNzZWvr6+zfc2aNfL391fHjh313Xff1dr+1FRubq7OFxWq7T2J8rq2ZqNAl+v8qUwdey35so4lK89RV9Ox1KhRowpHIFB9tTbnIKRpY3X38bZkqWkoeeaZZ3Tu3Dm99NJLxn90zn0LCdH06dOdr1999VWFh4ercePGatmypUaNGqXjx49X+3MvXX/64osvNHLkSDVv3lytWrXS9OnTdf4nIzHff/+95s2bpw4dOshutys4OFiPPfaYiouLjX4fffSRYmJi5Ovrq8aNG6tdu3YaN26c0aesrEwpKSnq2rWrvLy85O/vr0mTJtWrk/klIR07q1uPnpYtNQ0mVh1bhw8fVteuXcudzCXJz8+vwm1Wr16twYMHa9CgQerSpYtWr15d6fvfeeedstvt2rBhg9G+Zs0ajRw5Uu7u7tWuuS54XdtG3td1smSpSSip7nEkcSxVpCrnvoSEBLVq1UoOh8PZ9uCDD8pms+mFF15wtuXk5Mhms2np0qXOtsWLF6tr167y9vbWNddco4iICK1Zs6ZcHWfOnNEDDzygFi1ayMfHR/Hx8eVGSatyzg8ODtZnn32m999/XzabTTabTTfffHNt/KqYkChJb775ptq3b68+ffr8Yt8nnnhCcXFx6tixoxYuXKiHHnpI6enpGjBggM6cOXNZnz9y5EidP39eycnJGjp0qF544QX99re/NfpMmDBBs2fPVq9evbRo0SINHDhQycnJGjVqlLPPyZMnNWTIEB09elSPPvqoFi9erF//+tfatWuX8V6TJk3SzJkz1bdvXz3//POKj4/X6tWrFRMTowsXLlzWPqBiVh1bbdu21Z49e6p8zf/EiRPaunWrRo8eLUkaPXq0Nm7cqJKSkgr7e3t7684779TatWudbfv379dnn32m+++/v1q14pdV5ziSGvaxlJubayx5eXnOdVU59/Xv31+nT5/WZ5995txu+/btcnNz0/bt2402SRowYIAkafny5frd736n0NBQpaSkaO7cuQoLC9M///nPcjWOHDlSZ8+eVXJyskaOHKlVq1Zp7ty5Rp+qnPNTUlL0X//1X+rcubNeeeUVvfLKK5o1a1a1f2cVqZUJiVez/Px8ffPNN7rzzjt/se+xY8eUlJSk+fPn67HHHnO233333erZs6eWLFlitFdVu3bt9L//+7+SLg4RNm/eXEuWLNGMGTN0ww03aP/+/Xr55Zc1YcIELV++XJI0ZcoU+fn5acGCBdq6dasGDRqkHTt26LvvvtPf//53RUREON9//vz5zp8zMjL05z//WatXrzb+wxs0aJBuu+02bdiwgZN7LbHy2JoxY4Zuv/12hYWFKTIyUv3799ett96qQYMGycPDo1z/tWvXym63O2sdNWqUZs+erU2bNmnEiBEVfsb999+vO+64Q8ePH1dQUJBWr16t9u3b66abbqpynfhl1TmOpIZ9LBUUFOjaa6812gYOHKht27ZV+dzXr18/SRf/+Hfr1k15eXn65JNPdM899+iDDz5wbrd9+3a1bNlSoaGhki7OCenatWu5EZCK9OzZUy+99JLz9bfffquXXnrJOXGzquf8ESNG6I9//KN8fX1r/XJKgx85yM/PlyQ1a9bsF/u+/vrrKisr08iRI41kGhAQoI4dO2rr1q2XVcPUqVON15cm+GzatMn434SEBKPf73//e0lyXmu8NOz31ltvVToCsGHDBvn4+Gjw4MHGPoSHh6tp06aXvQ8oz8pja/Dgwdq5c6eGDx+u/fv365lnnlFMTIxat26tN954o1z/1atXa9iwYc5aO3bsqPDw8J8dDh4yZIhatmypdevWyeFwaN26dc5/LaL2VOc4khr2seTl5aUtW7YYy3PPPSep6ue+a6+9Vp07d3YGgf/7v/+Tu7u7Zs6cqZycHH311VeSLoaDfv36OSdatmjRQv/+97/14Ycf/mKd//3f/2287t+/v7799lvn/9dVPedfSQ1+5KB58+aSpLNnz/5i36+++koOh0MdO3ascH1FKboqfvp+HTp0kJubm44ePSrp4r8E3NzcFBISYvQLCAhQixYtdOzYMUkXE/I999yjuXPnatGiRbr55ps1YsQI3X///bLb7c59yMvLq/RaYWUTjFB9Vh9bN954o15//XWVlJRo//79+utf/6pFixbp3nvv1b59+5z/4jlw4IA+/vhjxcXF6dChQ87tb775ZqWmpio/P9+5Lz+t6b777tOaNWsUGRmp48ePM+p0BVTnOJIa9rHk7u6u6OjoCtdV59zXv39/5x/o7du3KyIiQhEREWrZsqW2b98uf39/7d+/36jxD3/4g9577z1FRkYqJCREQ4YM0f3336++ffuW+6yfTki95pprJEnfffedmjdvXuVz/pVEOGjeXNddd12VrqeVlZXJZrPpnXfeqXCSTNOmTWulpspu+ams/cfrN27cqF27dunNN9/Uu+++q3Hjxum5557Trl271LRpU5WVlcnPz6/SFP/TITlcvvpybHl6eurGG2/UjTfeqE6dOik+Pl4bNmxQUlKSpIsT1yTp4Ycf1sMPP1xu+9dee03x8fEVvvf999+vtLQ0zZkzRz169HD+kUDtqc5xJHEsVaY6575+/fpp+fLl+vrrr7V9+3b1799fNptN/fr10/bt23XdddeprKxM/fv3d27TpUsXHTx4UG+99ZY2b96s1157TUuWLNHs2bPLzSeobJLljydBSr98zr+SGnw4kKRf/epXWrZsmXbu3KmoqKhK+3Xo0EEOh0Pt2rVTp06dau3zv/rqK7Vr1875+tChQyorK3M+uaxt27YqKyvTV199pS5dujj75eTk6MyZM2rbtq3xfjfddJNuuukmPfHEE1qzZo1+/etfa926dZowYYI6dOig9957T3379uWhTnXA6mPrpy7NRcnKypJ08WS0Zs0aDRo0SFOmTCnXf968eVq9enWlJ/R+/fqpTZs22rZtW4UPukHtqOpxJHEsVaY6575Lf/S3bNmiDz/8UI8++qiki5MPly5dquuuu05NmjRReHi4sV2TJk0UGxur2NhYlZSU6O6779YTTzyhxMTEaj2voTrn/CsVIBr8nANJeuSRR9SkSRNNmDBBOTk55dYfPnxYzz//vO6++265u7tr7ty55RKew+HQt99+e1mfn5qaarxevHixJOn222+XdPE+YOnizNQfW7hwoSRp2LBhki4OSf20rrCwMEly3v4ycuRIlZaWat68eeXq+P777y/7jgtUzKpja+vWreXeR/rhWub1118v6eL11KNHjyo+Pl733ntvuSU2NlZbt27ViRMnKvycS7d3JSUl6Te/+U21akTVVfU4ksSxVInqnPvatWun1q1ba9GiRbpw4YLz0kD//v11+PBhbdy4UTfddJMaNfrh39c//b16enoqNDRUDoej2neBVfWcL10MJFfivF1rIweHzhXV1lvV+Wd36NBBa9asUWxsrLp06WI8fWzHjh3asGGDHnjgAU2fPl3z589XYmKijh49qhEjRqhZs2Y6cuSI/vrXv+q3v/2tZsyYUe3PP3LkiIYPH67bbrtNO3fu1Kuvvqr777/f+VSvHj16aOzYsVq2bJnOnDmjgQMHavfu3Xr55Zc1YsQI5yNIX375ZS1ZskR33XWXOnTooLNnz2r58uVq3ry582AbOHCgJk2apOTkZO3bt09DhgyRh4eHvvrqK23YsEHPP/+87r333hr9PmvToa++uKo/36pj68EHH1RhYaHuuusude7c2fl569evV3BwsPNfb6tXr5a7u7txsvmx4cOHa9asWVq3bl25yVGX3HnnnVWeSW+186cyr8rPrupxdKkvx1J51T339e/fX+vWrVP37t2dcwJ69eqlJk2a6Msvvyw3J2LIkCEKCAhQ37595e/vrwMHDuhPf/qTMTmzqqp6zpek8PBwLV26VPPnz1dISIj8/Px0yy231OA39R+OGjp27JjD28vLIcnSxdvLy3Hs2LEa7cuXX37pmDhxoiM4ONjh6enpaNasmaNv376OxYsXO86fP+/s99prrzn69evnaNKkiaNJkyaOzp07O6ZOneo4ePCgs8/YsWMdbdu2Nd5fkiMpKcn5OikpySHJ8fnnnzvuvfdeR7NmzRzXXHONY9q0aY6ioiJj2wsXLjjmzp3raNeuncPDw8MRFBTkSExMNOrau3evY/To0Y42bdo47Ha7w8/Pz/GrX/3K8dFHH5Xb12XLljnCw8MdjRs3djRr1szRvXt3xyOPPOI4ceJEjX6HteXYsWMOb29vy48rSQ5vb++r7th65513HOPGjXN07tzZ0bRpU4enp6cjJCTE8eCDDzpycnIcDofDUVJS4mjVqpWjf//+P1t7u3btHD179nQ4HA7H1q1bHZIcGzZs+NltBg4c6OjatWtVfjV14tixYw6vxtYfT16Na3YsVfU4cjga3rE0duxYR5MmTX6xX1XPfampqQ5JjsmTJxvt0dHRDkmO9PR0o/3FF190DBgwwNGqVSuH3W53dOjQwTFz5kxHXl6es8+lc/6pU6eMbVeuXOmQ5Dhy5IizrSrnfIfD4cjOznYMGzbM0axZM4ckx8CBA3/xd1AVNoejgvGianKFLzSxwpw5czR37lydOnXKeGwoLqoPx5V0dR5bKK8+HE8cS7ha1MplhTZt2nDAo9ZxXKE2cTwBVceERAAAYCAcAAAAQ63MOQAAAK6DkQMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsJBDTkcDuXn58vhcFhdCgAAtYJwUENnz56Vj4+Pzp49a3UpAADUCsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAABDI6sLAC7JyspSVlZWtbcLDAxUYGDgFagIABomwgHqjRdffFFz586t9nZJSUmaM2dO7RcEAA2UzeFwOKwu4mqWn58vHx8f5eXlqXnz5laXc1WraOSgqKhI/fr1kyRlZGSocePG5bZj5AAAahfhoIYIB1dWQUGBmjZtKkk6d+6cmjRpYnFFAOD6mJAIAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGHoKECmVmZio3N9fqMlRUVOT8ed++fRU+58AKvr6+atOmjdVlAMAVwXMOasgVn3OQmZmpLtdfr8Lz560upd7y9vLSgYMHCQgAXBIjBygnNzdXhefP64UewQppau2/1M+XlunuXQclSa/fdL283K2/EnboXJF+t/+ocnNzCQcAXBLhAJUKadpY3X28La2h8PtS589dmzeWdyN3C6sBgIbB+n+GAQCAeoVwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwMCtjKg3cs5f0MniC0bb+dIfbmX8LL9QXu7lb2X0s3vI38vjitcHAA2Fy4WD1NRUPfvss8rOzlaPHj20ePFiRUZGVtr/zJkzmjVrll5//XWdPn1abdu2VUpKioYOHVqHVUOSVmee0qJDWZWuv3vXlxW2PxwSqIRO112psgCgwXGpcLB+/XolJCQoLS1NvXv3VkpKimJiYnTw4EH5+fmV619SUqLBgwfLz89PGzduVOvWrXXs2DG1aNGi7ouHft3mWg32b1Ht7fzsjBoAQG1yqXCwcOFCTZw4UfHx8ZKktLQ0vf3221qxYoUeffTRcv1XrFih06dPa8eOHfLwuPgHJjg4uC5Lxo/4e3F5AADqA5eZkFhSUqI9e/YoOjra2ebm5qbo6Gjt3Lmzwm3eeOMNRUVFaerUqfL391e3bt305JNPqvRH17l/qri4WPn5+cYCAIArcZlwkJubq9LSUvn7+xvt/v7+ys7OrnCbr7/+Whs3blRpaak2bdqk//mf/9Fzzz2n+fPnV/o5ycnJ8vHxcS5BQUG1uh8AAFjNZcLB5SgrK5Ofn5+WLVum8PBwxcbGatasWUpLS6t0m8TEROXl5TmX48eP12HFAABceS4z58DX11fu7u7Kyckx2nNychQQEFDhNoGBgfLw8JD7j26P69Kli7Kzs1VSUiJPT89y29jtdtnt9totHgCAesRlRg48PT0VHh6u9PR0Z1tZWZnS09MVFRVV4TZ9+/bVoUOHVFZW5mz78ssvFRgYWGEwAACgIXCZcCBJCQkJWr58uV5++WUdOHBAkydPVkFBgfPuhbi4OCUmJjr7T548WadPn9b06dP15Zdf6u2339aTTz6pqVOnWrULAABYzmUuK0hSbGysTp06pdmzZys7O1thYWHavHmzc5JiZmam3Nx+yENBQUF699139fDDD+uGG25Q69atNX36dP3hD3+wahcAALCcS4UDSZo2bZqmTZtW4bpt27aVa4uKitKuXbuucFUAAFw9XOqyAgAAqDnCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGBpZXQCAupWVlaWsrKxqbxcYGKjAwMArUBGA+oZwADQwL774oubOnVvt7ZKSkjRnzpzaLwhAvUM4ABqYSZMmafjw4UZbUVGR+vXrJ0nKyMhQ48aNy23HqAHQcBAOgAamossDBQUFzp/DwsLUpEmTui4LQD3ChEQAAGAgHAAAAAPhAAAAGFwuHKSmpio4OFheXl7q3bu3du/eXWnfVatWyWazGYuXl1cdVgsAQP3jUuFg/fr1SkhIUFJSkvbu3asePXooJiZGJ0+erHSb5s2bO+/7zsrK0rFjx+qwYgAA6h+Xulth4cKFmjhxouLj4yVJaWlpevvtt7VixQo9+uijFW5js9kUEBBQl2UCTpmZmcrNzbW6DBUVFTl/3rdvX4W3MtY1X19ftWnTxuoygAbJZcJBSUmJ9uzZo8TERGebm5uboqOjtXPnzkq3O3funNq2bauysjL16tVLTz75pLp27Vpp/+LiYhUXFztf5+fn184OoMHJzMxUly5dVFhYaHUphkvPO7Cat7e3Dhw4QEAALOAy4SA3N1elpaXy9/c32v39/fXFF19UuM3111+vFStW6IYbblBeXp4WLFigPn366LPPPtN//dd/VbhNcnLyZT1dDvip3NxcFRYWauHSFQrp2NnSWs4XFWnkHbdKkv7yZrq8LB45OPTVF0qYPE65ubmEA8ACLhMOLkdUVJSioqKcr/v06aMuXbroxRdf1Lx58yrcJjExUQkJCc7X+fn5CgoKuuK1wnWFdOysbj16WlpD4Y8eghTavYe8eQgS0KC5TDjw9fWVu7u7cnJyjPacnJwqzynw8PBQz549dejQoUr72O122e32GtUKAEB95jJ3K3h6eio8PFzp6enOtrKyMqWnpxujAz+ntLRUn3zyCc+QBwA0aC4zciBJCQkJGjt2rCIiIhQZGamUlBQVFBQ4716Ii4tT69atlZycLEl6/PHHddNNNykkJERnzpzRs88+q2PHjmnChAlW7gYAAJZyqXAQGxurU6dOafbs2crOzlZYWJg2b97snKSYmZkpN7cfBku+++47TZw4UdnZ2brmmmsUHh6uHTt2KDQ01KpdAADAci4VDiRp2rRpmjZtWoXrtm3bZrxetGiRFi1aVAdVAQBw9XCZOQcAAKB2uNzIAYCfdzI7Sydzso228+d/eELi55/ul5dX+ecc+PkHyC+AybpAQ0A4ABqYNf/vJb3w7BOVrh/5q1srbP/dzFl66JE/XqmyANQjhAOggbk/bryiY4ZVezs/f76DBGgoCAdAA+MXEMjlAQA/iwmJAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGBpZ+eFlZWV6//33tX37dh07dkyFhYW69tpr1bNnT0VHRysoKMjK8gAAaJAsGTkoKirS/PnzFRQUpKFDh+qdd97RmTNn5O7urkOHDikpKUnt2rXT0KFDtWvXLitKBACgwbJk5KBTp06KiorS8uXLNXjwYHl4eJTrc+zYMa1Zs0ajRo3SrFmzNHHiRAsqBQCg4bEkHPz9739Xly5dfrZP27ZtlZiYqBkzZigzM7OOKgMAAJZcVvilYPBjHh4e6tChwxWsBgAA/Fi9vVuhoKBAH3zwgdVlAADQ4NTbcHDo0CENGjTI6jIAAGhw6m04AAAA1rDsOQctW7b82fWlpaV1VAkAAPgxy8JBcXGxJk+erO7du1e4/tixY5o7d2613zc1NVXPPvussrOz1aNHDy1evFiRkZG/uN26des0evRo3Xnnnfrb3/5W7c8FAMBVWBYOwsLCFBQUpLFjx1a4fv/+/dUOB+vXr1dCQoLS0tLUu3dvpaSkKCYmRgcPHpSfn1+l2x09elQzZsxQ//79q/V5AAC4IsvmHAwbNkxnzpypdH3Lli0VFxdXrfdcuHChJk6cqPj4eIWGhiotLU3e3t5asWJFpduUlpbq17/+tebOnav27dtX6/MAAHBFlo0cPPbYYz+7PigoSCtXrqzy+5WUlGjPnj1KTEx0trm5uSk6Olo7d+6sdLvHH39cfn5+Gj9+vLZv3/6Ln1NcXKzi4mLn6/z8/CrXCADA1cBl7lbIzc1VaWmp/P39jXZ/f39lZ2dXuE1GRoZeeuklLV++vMqfk5ycLB8fH+fCl0MBAFyNZeFgwIABxmWFN954Q0VFRXX2+WfPntVvfvMbLV++XL6+vlXeLjExUXl5ec7l+PHjV7BKAADqnmWXFTIyMlRSUuJ8PWbMGO3bt++yr/v7+vrK3d1dOTk5RntOTo4CAgLK9T98+LCOHj2qO+64w9lWVlYmSWrUqJEOHjxY4WOb7Xa77Hb7ZdUIAMDVoN5cVnA4HDXa3tPTU+Hh4UpPT3e2lZWVKT09XVFRUeX6d+7cWZ988on27dvnXIYPH65BgwZp3759XC4AADRYlo0cXAkJCQkaO3asIiIiFBkZqZSUFBUUFCg+Pl6SFBcXp9atWys5OVleXl7q1q2bsX2LFi0kqVw7AAANiaXh4N1335WPj4+kH/6V/+mnnxp9hg8fXuX3i42N1alTpzR79mxlZ2crLCxMmzdvdk5SzMzMlJtbvRksAQCgXrI0HPz0AUiTJk0yXttstmo/RnnatGmaNm1aheu2bdv2s9uuWrWqWp8FAIArsiwcXJr8BwAA6hfG2AEAgIFwAAAADIQDAABgIBwAAAAD4QAAABjqVTiYMmWKcnNzrS4DAIAGrV6Fg1dffZWvQAYAwGL1KhzU9PsVAABAzdWrcAAAAKxXr7546ezZs1aXAAA1lpWVpaysrGpvFxgYqMDAwCtQEVA99SocAIArePHFFzV37txqb5eUlKQ5c+bUfkFANREOAKCWTZo0qdw3yhYVFalfv36SpIyMDDVu3LjcdowaoL4gHABALavo8kBBQYHz57CwMDVp0qSuywKqjAmJAADAQDgAAACGehsODh8+rFtuucXqMgAAaHDq7ZyDc+fO6f3337e6DABXuczMzHrxWPaioiLnz/v27atwQqIVfH191aZNG6vLQD1jWTh44YUXfnb9N998U0eVAHBVmZmZur5zF50vKrS6FMOluxbqA6/G3jr4xQECAgyWhYOHHnpIgYGB8vT0rHB9SUlJHVcEwNXk5ubqfFGh2t6TKK9rrf3jV3ahWF+99JAkqeP4FLl52C2tR5LOn8rUsdeSlZubSziAwbJw0LZtWz399NMaOXJkhev37dun8PDwOq4KgCvyuraNvK/rZGkNpSU/XFZoHBgid8/6cVkBqIhlExLDw8O1Z8+eStfbbDa+iAkAAAtYNnLw+OOPq7Cw8uuAoaGhOnLkSB1WBAAAJAvDQWho6M+u9/DwUNu2beuoGgCoPRfOfqsLZ7812kovFDt/Lsw6JPcK5hx4NGslj2atrnh9wC+pt7cyAsDVKvfDt5S97f9Vuv7QfyYm/lTAzXEKvGXsFaoKqDpLwsFtt92mOXPm6KabbvrZfmfPntWSJUvUtGlTTZ06tY6qA4Ca8b3xV/LpHFXt7Rg1QH1hSTi47777dM8998jHx0d33HGHIiIidN1118nLy0vfffedPv/8c2VkZGjTpk0aNmyYnn32WSvKBIDLwuUBXO0sCQfjx4/XmDFjtGHDBq1fv17Lli1TXl6epIt3KYSGhiomJkYffvihunTpYkWJAAA0WJbNObDb7RozZozGjBkjScrLy1NRUZFatWolDw8Pq8oCAKDBqzcTEn18fOTj42N1GQAANHj19lsZAQCANQgHAADAQDgAAAAGS8NBaWmpPvjgA505c8bKMgAAwI9YGg7c3d01ZMgQfffdd1aWAQAAfsTyywrdunXT119/bXUZAADgPywPB/Pnz9eMGTP01ltvKSsrS/n5+cYCAADqluXPORg6dKgkafjw4bLZbM52h8Mhm82m0tJSq0oDAKBBsjwcbN261eoSAADAj1geDgYOHGh1CQAA4EcsDweSdObMGb300ks6cOCAJKlr164aN24cj1MGAMAClk9I/Oijj9ShQwctWrRIp0+f1unTp7Vw4UJ16NBBe/futbo8AAAaHMtHDh5++GENHz5cy5cvV6NGF8v5/vvvNWHCBD300EP64IMPLK4QAICGxfJw8NFHHxnBQJIaNWqkRx55RBERERZWBgBAw2T5ZYXmzZsrMzOzXPvx48fVrFkzCyoCAKBhszwcxMbGavz48Vq/fr2OHz+u48ePa926dZowYYJGjx5tdXkAADQ4ll9WWLBggWw2m+Li4vT9999Lkjw8PDR58mQ99dRTFlcHAEDDY2k4KC0t1a5duzRnzhwlJyfr8OHDkqQOHTrI29vbytIAAGiwLA0Hl76V8cCBA2rXrp26d+9uZTkAAED1YM4B38oIAED9Ynk44FsZAQCoXyyfkMi3MgIAUL9YHg74VkYAAOoXS8PBhQsX9PjjjystLU0dO3a0shQAAPAfls458PDw0L/+9S8rSwAAAD9h+YTEMWPG6KWXXrK6DAAA8B+Wzzn4/vvvtWLFCr333nsKDw9XkyZNjPULFy60qDIAABomy8PBp59+ql69ekmSvvzyS2Pdj+9eAAAAdcPycMDdCgAA1C+Wzzn4OSdPnrS6BAAAGhzLwoG3t7dOnTrlfD1s2DBlZWU5X+fk5CgwMNCK0gAAaNAsCwfnz5+Xw+Fwvv7ggw9UVFRk9PnxegAAUDfq9WWFy5mQmJqaquDgYHl5eal3797avXt3pX1ff/11RUREqEWLFmrSpInCwsL0yiuv1KRkAACuevU6HFTX+vXrlZCQoKSkJO3du1c9evRQTExMpXMXWrZsqVmzZmnnzp3617/+pfj4eMXHx+vdd9+t48oBAKg/LAsHNpvNGBn46evLsXDhQk2cOFHx8fEKDQ1VWlqavL29tWLFigr733zzzbrrrrvUpUsXdejQQdOnT9cNN9ygjIyMGtUBAMDVzLJbGR0Ohzp16uQMBOfOnVPPnj3l5ubmXF8dJSUl2rNnjxITE51tbm5uio6O1s6dO6tUzz/+8Q8dPHhQTz/9dKX9iouLVVxc7HzN10oDAFyNZeFg5cqVtfp+ubm5Ki0tlb+/v9Hu7++vL774otLt8vLy1Lp1axUXF8vd3V1LlizR4MGDK+2fnJysuXPn1lrdAADUN5aFg7Fjx1r10YZmzZpp3759OnfunNLT05WQkKD27dvr5ptvrrB/YmKiEhISnK/z8/MVFBRUR9UCAHDlWf6ExNri6+srd3d35eTkGO05OTkKCAiodDs3NzeFhIRIksLCwnTgwAElJydXGg7sdrvsdnut1Q0AQH3jMncreHp6Kjw8XOnp6c62srIypaenKyoqqsrvU1ZWZswpAACgoXGZkQNJSkhI0NixYxUREaHIyEilpKSooKBA8fHxkqS4uDi1bt1aycnJki7OH4iIiFCHDh1UXFysTZs26ZVXXtHSpUut3A0AACzlUuEgNjZWp06d0uzZs5Wdna2wsDBt3rzZOUkxMzPTeTeEJBUUFGjKlCn697//rcaNG6tz58569dVXFRsba9UuAABgOZcKB5I0bdo0TZs2rcJ127ZtM17Pnz9f8+fPr4OqAAC4elgeDkpLS7Vq1Sqlp6fr5MmTKisrM9b/4x//sKgyAAAaJsvDwfTp07Vq1SoNGzZM3bp1q/FTEgEAQM1YHg7WrVunv/zlLxo6dKjVpQAAANWDWxk9PT2dzxkAAADWszwc/P73v9fzzz9f7e9SAAAAV4bllxUyMjK0detWvfPOO+ratas8PDyM9a+//rpFlQEA0DBZHg5atGihu+66y+oyAADAf1geDmr72xkBAEDNWD7nAAAA1C+WjxxI0saNG/WXv/xFmZmZKikpMdbt3bvXoqoAAGiYLB85eOGFFxQfHy9/f399/PHHioyMVKtWrfT111/r9ttvt7o8AAAaHMvDwZIlS7Rs2TItXrxYnp6eeuSRR7Rlyxb97ne/U15entXlAQDQ4FgeDjIzM9WnTx9JUuPGjXX27FlJ0m9+8xutXbvWytIAAGiQLA8HAQEBOn36tCSpTZs22rVrlyTpyJEjPBgJAAALWB4ObrnlFr3xxhuSpPj4eD388MMaPHiwYmNjef4BAAAWsPxuhWXLljm/pnnq1Klq1aqVduzYoeHDh2vSpEkWVwcAQMNjeThwc3OTm9sPAxijRo3SqFGjLKwIAICGzfLLCpK0fft2jRkzRlFRUfrmm28kSa+88ooyMjIsrgwAgIbH8nDw2muvKSYmRo0bN9bHH3+s4uJiSVJeXp6efPJJi6sDAKDhsTwczJ8/X2lpaVq+fLnxjYx9+/bl6YgAAFjA8nBw8OBBDRgwoFy7j4+Pzpw5U/cFAQDQwFkeDgICAnTo0KFy7RkZGWrfvr0FFQEA0LBZHg4mTpyo6dOn65///KdsNptOnDih1atXa8aMGZo8ebLV5QEA0OBYfivjo48+qrKyMt16660qLCzUgAEDZLfbNWPGDD344INWlwcAQINjeTiw2WyaNWuWZs6cqUOHDuncuXMKDQ1V06ZNrS4NAIAGyfJwcImnp6dCQ0OtLgMAgAbPsnAwbty4KvVbsWLFFa4EAAD8mGXhYNWqVWrbtq169uzJty8CAFCPWBYOJk+erLVr1+rIkSOKj4/XmDFj1LJlS6vKAQAA/2HZrYypqanKysrSI488ojfffFNBQUEaOXKk3n33XUYSAACwkKXPObDb7Ro9erS2bNmizz//XF27dtWUKVMUHBysc+fOWVkaAAANluUPQbrEzc1NNptNDodDpaWlVpcDAECDZWk4KC4u1tq1azV48GB16tRJn3zyif70pz8pMzOT5xwAAGARyyYkTpkyRevWrVNQUJDGjRuntWvXytfX16pyAADAf1gWDtLS0tSmTRu1b99e77//vt5///0K+73++ut1XBkAAA2bZeEgLi5ONpvNqo8HAACVsPQhSAAAoP6pN3crAACA+oFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgMHlwkFqaqqCg4Pl5eWl3r17a/fu3ZX2Xb58ufr3769rrrlG11xzjaKjo3+2PwAADYFLhYP169crISFBSUlJ2rt3r3r06KGYmBidPHmywv7btm3T6NGjtXXrVu3cuVNBQUEaMmSIvvnmmzquHACA+sOlwsHChQs1ceJExcfHKzQ0VGlpafL29taKFSsq7L969WpNmTJFYWFh6ty5s/785z+rrKxM6enpdVw5AAD1h8uEg5KSEu3Zs0fR0dHONjc3N0VHR2vnzp1Veo/CwkJduHBBLVu2rLRPcXGx8vPzjQUAAFfiMuEgNzdXpaWl8vf3N9r9/f2VnZ1dpff4wx/+oOuuu84IGD+VnJwsHx8f5xIUFFSjugEAqG9cJhzU1FNPPaV169bpr3/9q7y8vCrtl5iYqLy8POdy/PjxOqwSAIArr5HVBdQWX19fubu7Kycnx2jPyclRQEDAz267YMECPfXUU3rvvfd0ww03/Gxfu90uu91e43oBAKivXGbkwNPTU+Hh4cZkwkuTC6Oioird7plnntG8efO0efNmRURE1EWpAADUay4zciBJCQkJGjt2rCIiIhQZGamUlBQVFBQoPj5ekhQXF6fWrVsrOTlZkvT0009r9uzZWrNmjYKDg51zE5o2baqmTZtath8AAFjJpcJBbGysTp06pdmzZys7O1thYWHavHmzc5JiZmam3Nx+GCxZunSpSkpKdO+99xrvk5SUpDlz5tRl6QAA1BsuFQ4kadq0aZo2bVqF67Zt22a8Pnr06JUvCACAq4zLzDkAAAC1g3AAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwOBy4SA1NVXBwcHy8vJS7969tXv37kr7fvbZZ7rnnnsUHBwsm82mlJSUuisUAIB6yqXCwfr165WQkKCkpCTt3btXPXr0UExMjE6ePFlh/8LCQrVv315PPfWUAgIC6rhaAADqJ5cKBwsXLtTEiRMVHx+v0NBQpaWlydvbWytWrKiw/4033qhnn31Wo0aNkt1ur+NqAQCon1wmHJSUlGjPnj2Kjo52trm5uSk6Olo7d+6stc8pLi5Wfn6+sQAA4EpcJhzk5uaqtLRU/v7+Rru/v7+ys7Nr7XOSk5Pl4+PjXIKCgmrtvQEAqA9cJhzUlcTEROXl5TmX48ePW10SAAC1qpHVBdQWX19fubu7Kycnx2jPycmp1cmGdrud+QkAAJfmMiMHnp6eCg8PV3p6urOtrKxM6enpioqKsrAyAACuLi4zciBJCQkJGjt2rCIiIhQZGamUlBQVFBQoPj5ekhQXF6fWrVsrOTlZ0sVJjJ9//rnz52+++Ub79u1T06ZNFRISYtl+AABgJZcKB7GxsTp16pRmz56t7OxshYWFafPmzc5JipmZmXJz+2Gw5MSJE+rZs6fz9YIFC7RgwQINHDhQ27Ztq+vyAQCoF1wqHEjStGnTNG3atArX/fQPfnBwsBwORx1UBQDA1cNl5hwAAIDaQTgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYHC5cJCamqrg4GB5eXmpd+/e2r1798/237Bhgzp37iwvLy91795dmzZtqqNKAQCon1wqHKxfv14JCQlKSkrS3r171aNHD8XExOjkyZMV9t+xY4dGjx6t8ePH6+OPP9aIESM0YsQIffrpp3VcOQAA9YdLhYOFCxdq4sSJio+PV2hoqNLS0uTt7a0VK1ZU2P/555/XbbfdppkzZ6pLly6aN2+eevXqpT/96U91XDkAAPVHI6sLqC0lJSXas2ePEhMTnW1ubm6Kjo7Wzp07K9xm586dSkhIMNpiYmL0t7/9rdLPKS4uVnFxsfN1Xl6eJCk/P78G1dcv586dkyR9klegwu9LLa6m/jlccF7Sxd9TTf5/v/R7/vRfH6uwoKBWanMVXx/+UlLt/Y4LT3yl0pKiWqnNlRTn/ltSzX/P9VWzZs1ks9msLuPq5HAR33zzjUOSY8eOHUb7zJkzHZGRkRVu4+Hh4VizZo3Rlpqa6vDz86v0c5KSkhySWFhYWFjq+ZKXl1fzPy4NlMuMHNSVxMREY7ShrKxMp0+fVqtWrUiouKrl5+crKChIx48fV/Pmza0uB6ixZs2aWV3CVctlwoGvr6/c3d2Vk5NjtOfk5CggIKDCbQICAqrVX5LsdrvsdrvR1qJFi8srGqiHmjdvTjgAGjiXmZDo6emp8PBwpaenO9vKysqUnp6uqKioCreJiooy+kvSli1bKu0PAEBD4DIjB5KUkJCgsWPHKiIiQpGRkUpJSVFBQYHi4+MlSXFxcWrdurWSk5MlSdOnT9fAgQP13HPPadiwYVq3bp0++ugjLVu2zMrdAADAUi4VDmJjY3Xq1CnNnj1b2dnZCgsL0+bNm+Xv7y9JyszMlJvbD4Mlffr00Zo1a/THP/5Rjz32mDp27Ki//e1v6tatm1W7AFjGbrcrKSmp3GUzAA2PzeFwOKwuAgAA1B8uM+cAAADUDsIBAAAwEA4AAICBcADgipkzZ47CwsKcrx944AGNGDHCsnoAVA3hAKjnfu4PanBwsFJSUlRSUiJfX1899dRTFfabN2+e/P39deHCBa1atUo2m63c4uXlZWyTnZ2tBx98UO3bt5fdbldQUJDuuOOOcs8GAeB6XOpWRqCh8vT01JgxY7Ry5Uo9+uijxjqHw6FVq1YpLi5OHh4eki4+BfHgwYNGvx8//vvo0aPq27evWrRooWeffVbdu3fXhQsX9O6772rq1Kn64osvrvxOAbAMIweAixg/fry+/PJLZWRkGO3vv/++vv76a40fP97ZZrPZFBAQYCyXngciSVOmTJHNZtPu3bt1zz33qFOnTuratasSEhK0a9cuZ78zZ85owoQJuvbaa9W8eXPdcsst2r9//5XfWQBXFOEAcBHdu3fXjTfeqBUrVhjtK1euVJ8+fdS5c+cqvc/p06e1efNmTZ06VU2aNCm3/sffJXLffffp5MmTeuedd7Rnzx716tVLt956q06fPl2jfQFgLcIB4ELGjx+vDRs26Ny5c5Kks2fPauPGjRo3bpzRLy8vT02bNjWW22+/XZJ06NAhORyOXwwTGRkZ2r17tzZs2KCIiAh17NhRCxYsUIsWLbRx48Yrs4MA6gRzDgAXMnr0aD388MP6y1/+onHjxmn9+vVyc3NTbGys0a9Zs2bau3ev0da4cWNJF+coVMX+/ft17tw5tWrVymgvKirS4cOHa7AXAKxGOABcSPPmzXXvvfdq5cqVGjdunFauXKmRI0eqadOmRj83NzeFhIRU+B4dO3aUzWb7xUmH586dU2BgoLZt21ZuHV9jDlzduKwAuJjx48crIyNDb731lnbs2GFMRKyKli1bKiYmRqmpqSooKCi3/syZM5KkXr16KTs7W40aNVJISIix+Pr61sauALAIIwfAVSAvL0/79u0z2n46nH/JgAEDFBISori4OHXu3Fl9+vQp18fhcCg7O7tcu5+fn9zc3JSamqq+ffsqMjJSjz/+uG644QZ9//332rJli5YuXaoDBw4oOjpaUVFRGjFihJ555hl16tRJJ06c0Ntvv6277rpLERERtbLvAOoe4QC4Cmzbtk09e/Y02iobEbDZbBo3bpwee+wxJSYmVtgnPz9fgYGB5dqzsrIUEBCg9u3ba+/evXriiSf0+9//XllZWbr22msVHh6upUuXOj9n06ZNmjVrluLj43Xq1CkFBARowIABxm2RAK4+fGUzAAAwMOcAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADD8f+D7ZjoPgLAJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "dataset = 'LIVECell_good' # Single dataset name\n", + "\n", + "# Extract data from dictionaries (replace with your actual data extraction logic)\n", + "cp_data = cp_generalist_dict.get(dataset, [])\n", + "cs_data = cs_generalist_dict.get(dataset, [])\n", + "cs_fewshot_data = cs_fewshot_dict.get(dataset, [])\n", + "\n", + "# Compute mean and standard error\n", + "cp_mean = 1 - np.mean(cp_data)\n", + "cs_mean = 1 - np.mean(cs_data)\n", + "cs_fewshot_mean = 1 - np.mean(cs_fewshot_data)\n", + "\n", + "cp_sem = np.std(cp_data, ddof=1) / np.sqrt(len(cp_data)) \n", + "cs_sem = np.std(cs_data, ddof=1) / np.sqrt(len(cs_data)) \n", + "cs_fewshot_sem = np.std(cs_fewshot_data, ddof=1) / np.sqrt(len(cs_fewshot_data)) \n", + "\n", + "# Set up bar positions\n", + "x = np.array([0]) # Single data point\n", + "bar_spacing = 0.05 # Space between bars\n", + "width = 0.2 # Bar width\n", + "\n", + "fig, ax = plt.subplots(figsize=(5, 6)) # Adjust figure size\n", + "\n", + "# Adjust positions of each bar for even spacing\n", + "bars_cp = ax.bar(x - width - bar_spacing, cp_mean, width, yerr=cp_sem, capsize=5, \n", + " label='Cellpose', color=c2, edgecolor='black')\n", + "\n", + "bars_cs = ax.bar(x, cs_mean, width, yerr=cs_sem, capsize=5, \n", + " label='CellSAM', color=c3, edgecolor='black') # Adjusted color for distinction\n", + "\n", + "bars_csf = ax.bar(x + width + bar_spacing, cs_fewshot_mean, width, yerr=cs_fewshot_sem, capsize=5, \n", + " label='CellSAM Fewshot', color=c4, edgecolor='black')\n", + "\n", + "# Labels and styling\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels([\"LIVECell\"], ha='center')\n", + "ax.set_ylabel(\"Mean Error (1 - F1)\")\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "# Adjust legend to accommodate three categories\n", + "ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15), ncol=3, prop={'size': 12}, frameon=False)\n", + "ax.set_xlim([-0.5, 0.5]) \n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_livecell_dataset.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "576 576 576 576\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJMCAYAAADng8XUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXeYZGWd9n+fyjl37p7pCUweZgaGOAzDIMGVVTGB4oriBboYllfWhO6KrLjs62/NivuKuiYQxbCrggERBCQ7zBAm93TO3dXdlcMJvz+qzulU4aTqqpr6fq6rr5mqOuc5p7uqznnu5/4GRhAEAQRBEARBEARBEARB6I6h2idAEARBEARBEARBEKcrJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiCIFeA973kPuru7Fz3HMAw++9nPVuV8iNMH+mwRekGfpZXls5/9LBiGwdTUVLVPhSCICmOq9gkQBHH6MTAwUPVJRCgUwqpVqzSN0dPTgy984Qt4+OGHMTIyAovFgu3bt+Oaa67B+973Ptjtdp3OlpBDLXyugPr9bL388su444478Pzzz2N8fBzBYBBbtmzBG97wBnz4wx8uuM8111yDBx54AB//+Mfxf//v/132+mOPPYb9+/cDAH70ox/hH/7hH5Zts2fPHjz11FPYunUrXnnlFX1/KQ3UwudJ62epWteoevgsvec978EPfvCDgq/97ne/w2tf+9pyv2Zdcvfdd8PhcOA973lPtU+FIIgFkOgmCEJXBgYGsHnjRiRSqaqeh8Nmw5Fjx1RPaB988EG87W1vg9VqxfXXX49t27Yhk8ngySefxMc+9jG8+uqr+Pa3v63zWRPFGBgYwObNm5FIJKp9KnA4HDhy5Ehdfbaeeuop7N+/H6tWrcJNN92E1tZWDA4O4plnnsFXv/rVgkIpEongN7/5Dbq7u/GTn/wE//Ef/wGGYQqOb7PZcN999y0TSn19fXjqqadgs9l0/X20MjAwgI2bNiOVrO7nyWZ34NhRdZ+lal2j6umzZLVa8Z3vfGfZ8zt27JA9Rr1x9913IxQKkegmiBqDRDdBELoyNTWFRCqFr+3oxnpXdZzgk7Ek/ulQH6amplRNZnt7e/H2t78dq1evxp///Ge0tbVJr33wgx/EyZMn8eCDD+p5ykQZpqamkEgk8KVvfQ/rz9hUtfM4eeIobr35vXX32fr85z8Pr9eL559/Hj6fb9FrExMTBff5xS9+AY7j8L3vfQ+XXnopHn/8cezbt6/gtq973evw61//GlNTUwiFQtLz9913H1paWnDGGWdgZmZGt99HK1NTU0glE1j9lttga9IWtaCW1OQA+n9xl6rPUjWvUfX0WTKZTAUdc4IgiJWGcroJgqgI6112bPc6qvKjVex/4QtfQCwWw3e/+91Fk1npd1u/Hrfccov0+Mc//jHOPvts2O12BAIBvP3tb8fg4KDi44r5fUePHsU111wDj8eDYDCIW265BaklkQMsy+Jzn/sc1q1bB6vViu7ubnzqU59COp1etN0LL7yAK6+8EqFQCHa7HWvWrMF73/veRdvwPI+vfOUr2Lp1K2w2G1paWvD+97+/pkSSyPozNmHbjl1V+9Eq+Kv12erp6cHWrVuXiSQAaG5uLrjPvffei8svvxz79+/H5s2bce+99xYd/41vfCOsViseeOCBRc/fd999uOaaa2A0GhWf80pga1oFR/uGqvxoEftKP0cAfZYKIefad+uttyIYDEIQBOm5D3/4w2AYBl/72tek58bHx8EwDL71rW9Jz33961/H1q1b4XA44Pf7sXv3btx3333LzmN2dhbvec974PP54PV6ccMNNyyL6pFzze/u7sarr76Kv/zlL2AYBgzD4JJLLtHjT0UQhEZIdBMEQSzhN7/5DdauXYsLL7yw7Laf//zncf311+OMM87Al770Jfyf//N/8Mgjj+Diiy/G7OysquNfc801SKVSuOuuu/C6170OX/va1/C+971v0TY33ngjPvOZz+Css87Cl7/8Zezbtw933XUX3v72t0vbTExM4IorrkBfXx8++clP4utf/zre+c534plnnlk01vvf/3587GMfw549e/DVr34VN9xwA+69915ceeWVyGazqn4HojDV+mytXr0af/vb32TnVI+MjODRRx/FO97xDgDAO97xDvz85z9HJpMpuL3D4cAb3/hG/OQnP5GeO3ToEF599VVcd911is6VKI+SzxHQ2J+lqampRT9zc3PSa3KufXv37kU4HMarr74q7ffEE0/AYDDgiSeeWPQcAFx88cUAgHvuuQf/9E//hC1btuArX/kK7rjjDuzcuRPPPvvssnO85pprEI1Gcdddd+Gaa67B97//fdxxxx2LtpFzzf/KV76Czs5ObNq0CT/60Y/wox/9CJ/+9KcV/80IgtAfCi8nCIJYQCQSwfDwMN74xjeW3ba/vx+333477rzzTnzqU5+Snn/zm9+MXbt24e677170vFzWrFmD//3f/wWQCxX1eDy4++678dGPfhRnnnkmDh06hB/84Ae48cYbcc899wAAPvCBD6C5uRn/+Z//iUcffRT79+/HU089hZmZGfzxj3/E7t27pfHvvPNO6f9PPvkkvvOd7+Dee+9dNKHdv38/Xvva1+KBBx4g0aQT1fxsffSjH8Xf/d3fYefOnTj33HOxd+9evOY1r8H+/fthNpuXbf+Tn/wEVqtVOte3v/3t+MxnPoOHHnoIV199dcFjXHfddXj961+PwcFBdHV14d5778XatWtx/vnnyz5PojxKPkdAY3+W4vE4mpqaFj23b98+PPbYY7KvfRdddBGAnKjetm0b5ubm8PLLL+Mtb3kLHn/8cWm/J554AoFAAFu2bAGQy7nfunXrMse+ELt27cJ3v/td6fH09DS++93vSgXn5F7zr776avzLv/wLQqEQhdUTRI1BTjdBEMQCIpEIAMDtdpfd9pe//CV4nsc111yzyElpbW3FGWecgUcffVTVOXzwgx9c9FgsTPTQQw8t+vfWW29dtN0///M/A4CUyymGf/72t78t6lg/8MAD8Hq9uPzyyxf9DmeffTZcLpfq34FYTjU/W5dffjmefvppvOENb8ChQ4fwhS98AVdeeSU6Ojrw61//etn29957L6666irpXM844wycffbZJcOCr7jiCgQCAdx///0QBAH333+/5G4S+qHkcwQ09mfJZrPh4YcfXvTzxS9+EYD8a19TUxM2bdokCey//vWvMBqN+NjHPobx8XGcOHECQE50X3TRRVKBOJ/Ph6GhITz//PNlz/Mf//EfFz3eu3cvpqenpfda7jWfIIjahZxugiCIBXg8HgBANBotu+2JEycgCALOOOOMgq8Xcn3ksHS8devWwWAwoK+vD0DOuTIYDFi/fv2i7VpbW+Hz+dDf3w8g5+i85S1vwR133IEvf/nLuOSSS3D11Vfjuuuug9VqlX6Hubm5ormYxQojEcqp9mfrnHPOwS9/+UtkMhkcOnQIv/rVr/DlL38Zb33rW3Hw4EHJoTty5AhefPFFXH/99Th58qS0/yWXXIJvfvObiEQi0u+y9Jze9ra34b777sO5556LwcFBipKoAEo+R0Bjf5aMRiMuu+yygq8pufbt3btXEr5PPPEEdu/ejd27dyMQCOCJJ55AS0sLDh06tOgcP/GJT+BPf/oTzj33XKxfvx5XXHEFrrvuOuzZs2fZsZYW0vP7/QCAmZkZeDwe2dd8giBqFxLdBEEQC/B4PGhvb5eVr8jzPBiGwe9+97uCxX1cLpcu51SstU6x5xe+/vOf/xzPPPMMfvOb3+APf/gD3vve9+KLX/winnnmGbhcLvA8j+bm5qKu09LQTEI9tfLZslgsOOecc3DOOedgw4YNuOGGG/DAAw/g9ttvB5AruAUAH/nIR/CRj3xk2f6/+MUvcMMNNxQc+7rrrsN//dd/4bOf/Sx27NghiS9CP5R8jgD6LBVDybXvoosuwj333INTp07hiSeewN69e8EwDC666CI88cQTaG9vB8/z2Lt3r7TP5s2bcezYMfz2t7/F73//e/ziF7/A3Xffjc985jPL8rWLFYdbWLwNKH/NJwiidiHRTRAEsYS///u/x7e//W08/fTTuOCCC4put27dOgiCgDVr1mDDhg26Hf/EiRNYs2aN9PjkyZPgeR7d3d0AcoWMeJ7HiRMnsHnzZmm78fFxzM7OYvXq1YvGO//883H++efj85//PO677z68853vxP33348bb7wR69atw5/+9Cfs2bMHdnt1Wrw1EtX+bC1FzPUfHR0FkJvk33fffdi/fz8+8IEPLNv+c5/7HO69996iQumiiy7CqlWr8Nhjj0n5qIT+yP0cAfRZKoaSa58oph9++GE8//zz+OQnPwkgVzTtW9/6Ftrb2+F0OnH22Wcv2s/pdOLaa6/Ftddei0wmgze/+c34/Oc/j9tuu01Rv3El13wS5gRRm1BON0EQxBI+/vGPw+l04sYbb8T4+Piy13t6evDVr34Vb37zm2E0GnHHHXcscyQEQcD09LSq43/zm99c9PjrX/86AODv/u7vAOT62AK5SrUL+dKXvgQAuOqqqwDkQhOXntfOnTsBQGozc80114DjOHzuc59bdh4sy6quwE4UplqfrUcffXTZOMB8rujGjRsB5PJV+/r6cMMNN+Ctb33rsp9rr70Wjz76KEZGRgoeR2yjdPvtt+Nd73qXonMk5CP3cwSAPktFUHLtW7NmDTo6OvDlL38Z2WxWChHfu3cvenp68POf/xznn38+TKZ5L2vp39VisWDLli0QBEFxVwi513wgJ/Tpuk0QtQc53QRBVISTsWTdHnvdunW47777cO2112Lz5s24/vrrsW3bNmQyGTz11FN44IEH8J73vAe33HIL7rzzTtx2223o6+vD1VdfDbfbjd7eXvzqV7/C+973Pnz0ox9VfPze3l684Q1vwGtf+1o8/fTT+PGPf4zrrrsOO3bsAADs2LED7373u/Htb38bs7Oz2LdvH5577jn84Ac/wNVXX439+/cDAH7wgx/g7rvvxpve9CasW7cO0WgU99xzDzwejzSJ27dvH97//vfjrrvuwsGDB3HFFVfAbDbjxIkTeOCBB/DVr34Vb33rWzX9PfXk5ImjdX38an22PvzhDyORSOBNb3oTNm3aJB3vpz/9Kbq7uyW38d5774XRaFw0iV/IG97wBnz605/G/fffv6yok8gb3/hG2ZW1q01qcqAujy33cyRuS5+l5Si99u3duxf3338/tm/fLuVcn3XWWXA6nTh+/PiynPMrrrgCra2t2LNnD1paWnDkyBF84xvfWFRUTi5yr/kAcPbZZ+Nb3/oW7rzzTqxfvx7Nzc249NJLNfylCILQBYEgCEJH+vv7BYfNJgCo6o/DZhP6+/s1/S7Hjx8XbrrpJqG7u1uwWCyC2+0W9uzZI3z9618XUqmUtN0vfvEL4aKLLhKcTqfgdDqFTZs2CR/84AeFY8eOSdu8+93vFlavXr1ofADC7bffLj2+/fbbBQDC4cOHhbe+9a2C2+0W/H6/8KEPfUhIJpOL9s1ms8Idd9whrFmzRjCbzUJXV5dw2223LTqvAwcOCO94xzuEVatWCVarVWhubhb+/u//XnjhhReW/a7f/va3hbPPPluw2+2C2+0Wtm/fLnz84x8XRkZGNP0N9aK/v19wOBxV/1wBEBwOR919tn73u98J733ve4VNmzYJLpdLsFgswvr164UPf/jDwvj4uCAIgpDJZIRgMCjs3bu35LmvWbNG2LVrlyAIgvDoo48KAIQHHnig5D779u0Ttm7dKudPsyL09/cLNnv1P082u7bPktzPkSA03mfp3e9+t+B0OstuJ/fa981vflMAINx8882Lnr/ssssEAMIjjzyy6Pn/9//+n3DxxRcLwWBQsFqtwrp164SPfexjwtzcnLSNeM2fnJxctO9///d/CwCE3t5e6Tk513xBEISxsTHhqquuEtxutwBA2LdvX9m/AUEQlYcRhAIxQgRBEBoYGBjA1NRUVc8hFAotqwhb63z2s5/FHXfcgcnJSYRCoWqfTs1RC58roD4/W8RyauHzRJ8lgiCIxoDCywmC0J1Vq1bRRJLQHfpcEXpCnyeCIAhipaBCagRBEARBEARBEARRIUh0EwRBEARBEARBEESFoJxugiAIgiAIgiAIgqgQ5HQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhGk50C4KASCQCQRCqfSoEQRAEQRAEQRDEaU7Die5oNAqv14toNFrtUyEIgiAIgiAIgiBOcxpOdBMEQRAEQRAEQRDESkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQVRXdjz/+OF7/+tejvb0dDMPgf/7nf8ru89hjj+Gss86C1WrF+vXr8f3vf7/i50kQBEEQBEEQBEEQaqiq6I7H49ixYwe++c1vytq+t7cXV111Ffbv34+DBw/i//yf/4Mbb7wRf/jDHyp8pgRBEARBEARBEAShHEYQBKHaJwEADMPgV7/6Fa6++uqi23ziE5/Agw8+iFdeeUV67u1vfztmZ2fx+9//XtZxIpEIvF4v5ubm4PF4tJ42QRAEQRAEQRAEQRSlrnK6n376aVx22WWLnrvyyivx9NNPF90nnU4jEoks+iEIgiAIgiAIgiCIlcBU7RNQwtjYGFpaWhY919LSgkgkgmQyCbvdvmyfu+66C3fcccdKnSJBEKcZfX19+Od//mdkMhls2LABX/ziF6t9Sg3NkSNH8KlPfQosy+oy3saNG/Gf//mfuoxFFOauu+7CU089pctYZrMZ//Ef/4ENGzboMh5RnuPHj+MTn/iE7O/c/v37ceutt8ra9n//93/xne98R8vpLcJqteLLX/4yurq6dBuTIAhCD+pKdKvhtttuW3Txj0QidDEmCEI2Tz/9NH75y19ig8uG3/3udyS6q8x9992HPz74W+zxOzWPFc6w+O1vf4tPfOITaGpq0uHsiEJ87ctfgisRwxqnVfNYD01GcPnll5PoXkF+85vf4KHf/Br7gu6y2/Yl0njx+edli+4f/vCHeObZ57Hz7HO0niYEQcBvf/sLvOlNb8I73/lOzeMRBEHoSV2J7tbWVoyPjy96bnx8HB6Pp6DLDeRWPa1W7Td6giAak2w2CwB4z+pmfOrVAQiCAIZhqnxWjcvzzz6LC/xOfG/3es1jDSTS2PPYK3juuedw1VVX6XB2RCFmIxF8YF0Lbuhu1jzWzkdfwezsrOztM5kM3vTmN2NycrLstq+59FLcddddGs7u9OTUqVNY55H3nfvZ0BT++aV+pFIp2Gy2sttPTU3hoksuxZfu/p4ep4otqwKYmprSZSyCIAg9qauc7gsuuACPPPLIoucefvhhXHDBBVU6I4IgTndE0W0zGhY9JqrDwRcPYJvHoctYXXYLvFYLXnzxRV3GI5aTSqWQSmfgMRt1Gc9jNmFmZkb29n19fXjowQfh8Tdh7YatRX+SaRY/+tGPdDnH042ekyfQZZH3/q1y5EyO3t5eWdtPTk3B5w+oPrelBAJBWQssBEEQK01Vne5YLIaTJ09Kj3t7e3Hw4EEEAgGsWrUKt912G4aHh/HDH/4QAPCP//iP+MY3voGPf/zjeO9734s///nP+NnPfoYHH3ywWr8CQRCnOSzLwsAwMBty7nY2m4XFYqnyWTUmk5OTGJ+axuautbqMxzAMNrlsizpiEPoiutIekz6i22syKhLdExMTAIBPfOZOrN+wqeh2P/zuf+Hz//pximQpQM/xE9jvkHfNW50X3T09Pdi8eXPZ7WfCYfgDQU3ntxCfP6Do80EQBLFSVNXpfuGFF7Br1y7s2rULAHDrrbdi165d+MxnPgMAGB0dxcDAgLT9mjVr8OCDD+Lhhx/Gjh078MUvfhHf+c53cOWVV1bl/BuBH/3oR2hra0Nra2vRn7a2NmlhhCBON7LZLMwGA0z5ibheBbwI5Rw7dgwAsM5VPmxVLusdFhwh0V0xJNGtk9PtNjKYm5uTvb2YkhZqKh3aHgo1IZvNKgpdbwQ4jkP/0BBW2eWl6bVYzbCZjOjp6Sm7rSAICIfD8Pr8Wk9TwuvzIxwO6zYeQRCEXlTV6b7kkktQqk3497///YL7UCjgyvHII4/AZLHi2nfeUHSbn933ffz5z3/G9ddfv4JnRhArQzabhck4L7opvLx6nDp1CsC8m6YHqx1W/Ka/jxzOCjHvdOsz3fAYGcwqEFUTExMwGo3weH0ltwuGcqJ8fHwcfr9+IrDeGRwcRJZlsVpmETwDw6DLaZe+q6VIJBLIZDLw+nwaz3Iej9dHopsgiJqkrgqpESvPwMAAduzajQ/e+omi2xw9/PKiiARinldffRVXv/71SKdSsrZfs3YtHnviCZr81xA5p3txeDlRHQYGBhCwW2E36hek1W63IBKLIxKJwOv16jYukUN0pXVzuk1G9CgMLw81NcNgKP2ZCear109OTmLTpuJh6I2G6Fh3K1joWm01oWdB6mAxxAUZr1dfp7vv5Jhu4xEEQegFiW6iJAODg7j0yh0lt2nv7MKf/3Bohc6ovnjppZdwsrcXH1zbCpOhtJA+EUviob/+FfF4HC6Xa4XOkCgHy7IwMuR01wJjY2NosembT99sNUtjk+jWH1F0u3XK6faYTYpCwCcmJhAMlW8HJ24j5oATOU6dOgUDw6DDLv97t8phwdMnTpTdTnwf3R6P2tNbhtvjoRQBgiBqEhLdRFEEQcDQ4CDa2jtLbtfW3omhwUEKzyxANBoFA+ATG9vL/m0emZjDQ2OziEajJLprCNHpNuXfPsrprh7T09Pwm/QtReK35G6DFJJaGSKRCADApdP75jYZEJuLyt5+fHxcCh0vhdfnh8lkWtaWtNHp6elBu8sOS5lIgYWsdlhx78l+8DxfMsJAWpDx6LfY5fZ4MUeimyCIGqSuWoYRK8vk5CTS6TTaO7tKbtfe2YV0Ok1tOgoQi8XgtJhlLUY485PSaFT+hJKoPNlsFiYDI0UqkNNdPSJzc3DpfNcSHVhRHBL6EolE4LKYYdBpQdZlMiISjcnefmJiAoFQqOx2BoMBwVATie4l9PT0YJVVmT+z2mFFOpPByMhIye2kBRm3W/X5LcXlctM9lCCImoSc7jrhG9/4Bg4ePKh6/7e85S34u7/7O0X7iHna7R1lRHf+9YGBATQ3l3cUGoloNAqnWd7XzGk0SvsQtUM2m4WJYSi8vAZIJRNwKXDc5GDLL6Ykk0ldxyVyRCIRuGVeA+XgMhkRTybBcRyMxvIh6+MTE9iwbZessYOhJlo8XsKpE8exUUFoOZALLwdygr2zs3iknHivc7l0FN1uDxKJhOzPB0EQxEpBorsO4HkeH/3nf0arxYhAPv9QCf2xJE6dPKlYdPf39wOALKdb3H737t2Kz+90JhaLwSUzl1EMv4zF5Ls4ROXJ5XST6K4FOJaDUecUFmNedHMcp+u4RI5oNAqHTvncAKTraSwWk5WDPykzpxsAAqEmyulewqneXlzRpiznuss+36t73759RbcTRbfDqV86ldPpBCD/80EQBLFSkOiuA4aHh5HOZHDHmevxmmblN5H/ODqM38goarKUgYEB2Ox2+APBktv5A0HYHQ6qYF6AaDQKh8xKyw5yumuSbDYLMzMfXk453VWEAfgSbSbVIA5H9SgqQywWg0vHavNO4/ziZDlRlc1mMTMzIyunG8j18p4YG9J8jqcLMzMzmI1EsXqdvEULEZvRgDanHb29vSW3SyQSsFgsMOnUTg4A7I6c6I7H4yS6CYKoKSinuw4QW3ao7U272mnF4Ogo0um0ov36+/vR2bmq7GSUYRh0dHRJzjgxTywWg7NM1XIRcrprk5zTDclhJdFdPSwWK7I6i25xPItF36roRI5YLAaHzGugHBwKrpNTU1MAICunG8iFl4+T0y0hzj3EcHElrLKbpf2LEY/H4ciLZL1wOOdFN0EQRC1BorsOOHXqFACgU2FelcgquwWCICgWxf39/WjvXCVr2/bOVSS6C5AT3fK2tRsNYEBOd63BsizMDAMzie6q4/J4kOD0Fd1xNhdWLoalEvoSjURkXwPlIIaXy7lOiqHioSZ5Tncw1IQpyumWEOceYri4ErqsZpwq06s7kUjAZneoOrdi2B0OaWyCIIhagkR3HdDb24s2px02lSF6q/IOeblQr6X09fejo0ue6O7oWoU+Et3LiEUissPLDQwDu9lEK/Q1RjabXeR0U0539fB6vYjw+oruSJaTxib0Jx6Lwa5jeLk9X0hPznVSEt0yc7qDoWaEw2H6jufp7e2Fx2qR2uopYbXDgr7eUyW3SaVSsNltak+vIFarTRqbIAiiliDRXQf09vaiy6a8gJpIm80CI8MoFt0DCp3uARLdy4hGIlIOohycZhOFl9cYLMvCxDAwU0531QmFQpjJ6lvwLJxlpbEJ/YnF5Ne1kIPdpFx0B4JyRXduO6pgnuPUqVPoUpnW1uWwYnxquuT7lEwmYbPZ1Z5eQUTRTd0ICIKoNUh01wG9J0+iy6a+0IjJwKDT5VAkumOxGMLhMDq6SlcuF+no6kI4HCbBuIR4LAqngsq9TpOR/oY1Rk50A0Zm/jFRHVpbWzGeVFabohwTqZyr2dLSouu4RI54LKar6BbHkiu6HU6nFHJcjmB+4YVEd47enh50WdRVnhdD0vv6+opuk06nYTbrW0vBYrVIYxMEQdQSJLrrgL6+XnSqyKlaSIfVWPLmtxQxP7tDptMtbqfkGI1ALBZXFFrpMBoop7vGYFkWRkBqGUaiu3p0dnYikWUxl9XvPRhNZdAUCMBq1XaNJQqTTCT0DS/PjyUnZ3diYkJ2aDkAqco5tQ3L0dvTgy4VRdQASPuVWuzPZDKSSNYLS17EZzIZXcclCILQConuGieTyWB0YlJ1ETWRTpsZfadKVxJdiCieleR0A6BiakuIxeOKwssdBgPldNcYouimnO7q093dDQAYTOg3oR5MZtC9plu38YjFJFMp1fVICmFmGBgYRlb48OTkJPxB+WkDgSA53SI8z6N/aAirVC74t1jNsBgNZUW3yaQ+da4QZguJboIgahMS3TXO4OAgBEHQLrrtFvQrdLpNJhNaWttlbd/S2g6TyUSiewnxZEJReLnDQK1Oag02m4WJmXe6OU7fnGJCPuvXrwcA9CX0Cx3tT2WxfsNG3cYjFpNMpnR1upl8wUm5oltuPjeQazdls9vJ6QYwOjqKLMuqzuk2MAw6y/TqZllWEsl6YTKbpbEJgiBqCRLdNc7AwAAAoEOj6G63WTA+NS07z6m/vx/tHZ0wGuUJRqPRiPaOThLdC+A4Dql0Rll4uYFBjMLLawqWZWE2MDBRIbWqEwwGEfT50BPXrzLxyXgaGzZs0G08YjHJdBo2g75TDZvRKEt0j09MSO61XILBEDndmI9207Lg32E1lVzsZ1kWRoO6nPFiiOPRdZogiFpDfXUuYkUYHBwEALTaNIru/I1zeHgYa9euLbu9kh7d0jGoV/ciRMdaSREhh9GASRLdNQWbzcLGMJLTTeHl1WXLli043ntEl7HCGRbTyTS2bNmiy3jEYgRBQDqTgVVHpxsAbEaDLNE9NTWFHbsvUDR2INiEqakptad22qCH6O60mXH8VPG2YRzHwSBzYV8u4ngUkZTj97//fdFoA5PJhHe84x1wuVwrfFYE0ZiQ6K5xBgcHEbBZNYfnteVF++DgoCzR3dffj87V6xUdo6NzFfr6T6o6v9MRtaI7TtXLawqWzcLMMFL1cprMVZdtO3bgz4df0mWsI5FcMa7t27frMh6xGDGyypqPEtELq9EgK2pranJSsdMdIKcbQG7h3W+zKkqPWkqn3YI/lliI53keBp2jIMTxeJ7Xddx6ZGxsDFdddRUYQYCBWf4dzPI8ZmZm8PGPf7wKZ0cQjQeFl9c4Q0NDaNUYWg4A7fk+36JzXo6B/n60yyyiJh2ji3p1L0QS3QomLXaTAfEE5XTXEmyWhZHJ5SgyoLDFarNjxw6cnIsjxWmfVB+OJmGzWnDGGWfocGbEUkRhbNFZWFkYpqzozmQymJubgz+gUHSHQpgg0Y2BgQF0qMznFumwWzA9O1u0TokgCGAKiEEtiOMJgqDruPXIz3/+cxgAvPiaM3HqtbuW/VzV5sdP77uv2qdJEA0DOd01zsjwMFrN2icsDpMRbosZo6OjZbdNp9MYHR2V3S5MpKNzFUZHR5FOp6n9DuZFt7KWYUYk4uVb4RArB8uxUuVyk8FATneVOeuss8AJAo5Ek9jlc2oa65W5BM7cfiZMJroVVoJ50a2vsLIYGKRSpfP6p6enAeREtBL8gSAOv3RA9bmdLgz096NN49xDrEUzODiITZs2FdxGZ81NonsB9997Ly4OeeC3FL6+vb7Vj3988RCOHz+uW12Lubk5/PWvf1309/d6vbjooot0GZ8g6hlyumuckcFBtFr1aanR6rBiZGSk7HZDQ0MAgPbOLkXji9uL+zc6Yh9ZJeHldqMBcRn9Z4mVI+d0z4tuyumuLtu3b4fJaMRLc9ojQl6KZ3DOeefpcFZEIcS2TbqLboYp+z0U87IDgaCisf2BEKYppxsDfb3osGmbe7QvSGsrht7aWBR7eoet1xv9/f346zPP4I1tvqLbXNrshctixk9+8hPdjnvnnXfiqquuwt///d9LP3v37sWRI/rU4SCIeqaxr0p1wMjICJp1Et0tZiOGh4fLbicWQ1PjdC/cv9FRI7odRgMSqfIFgoiVg2Wzkug2GBhyuquMzWbDju3bcHBW2+JUJMuhJxLD7t27dTozYimi6DbrbGeamPJ9mCXRraBlGAAEQyFMT083/Pd8aHhYEs1qacnPXcQuLEthGEb33GtRdOsdtl5v3HfffXCYTbiyxVd0G7vRgNc2eXDvD3+oW2TAyZMnccHeS/DsK7149pVePPjoswCAnp4eXcYniHqGRHcNw/M8xqendRPdIbMR4zKcbvEG2d7RqWh8cftiN9hGQ014ud1oQCqdoSIwNQTHcVIRNSNDorsWOO/CPXgxpq1t2KG5OAQBOP/883U6K2IpkujW2XU0KxDd/kBA0dg+fwCCIGB2dlbt6dU90WgUc9GY5q4pVqMBTQ5b0cV+g8FAortC3PvDH+KyJk/ZQnhvag/gxKlTeOGFF3Q5bl9/P7rXrkdTSyuaWlqxccs2mM1mMmMIAiS6a5pwOAyO4xCy6pNvGLKYMDZWPqe7v78fTc0tsNpsisa32mxoam6hi2se0elWKroX7ktUH57j5sPLSXTXBOeffz565uKYyagvave3mTh8Hjf16K4g86JbXwFkhlC2kNr09DSMRiPcHq+isf3+oLR/oyKK5Da79gX/NpulaMqZ0WgEr/P1lMsXumzkOg0vv/wyXj16FFe3+ctue2HQjZDdqluI+UB//6IoSYPBgLaOTqkFHUE0MiS6a5ixsTEAQJNOTneT1YzxiYmy2w0ODip2uUXaOzplV0g/3RGFs02F6C5W7ZVYebIsuyi8nKqXV58LL7wQAPDirPrvyd/m4jj/ggsaPvezkojfFZPe4eUGRhJXxZienobPH1DsePryzngji25RJLdatXdOaTEbMFxEdJtMJnC8zqI7P14ji+6f/exn8Fot2NfkKbutycDgqmYPHrj/fs1RB7OzswiHw+havXrR812r1xTtFU4QjUTjXpXqALFXaLBI5UmlBC0mzEVjyGQysFiK30z7BwbQ1qGsiJpIW0cX+im8HEBOdFuNRkmwycGWFwDJJOV11wo8x0FcN6Hw8tpg7dq1aA4G8fxMDJc2e/HtU+O4p29c1r43dbfgxjXNODCXxMcu2lvhM21s5kW3vuOamPKLX1NTU/D7lYWWA5D2mWrgYmpiwdUWjYXUAKDFasLLRRbiTSYTWJ0LU4rjNbLo/vlP78flIbfsVn1Xtfrxg2eP49lnn8UFF1yg+riisF61es2i51etXoMjL1NHAIKgJf4aRioEo5PoFscpt4I/MDCguHK5SHtnF+V050kmk7Ap6NENzDvdJLprB47jYMgvnJDorg0YhsGevXvxwlwumiTGchhLZWX9xFgOx6IpRNIZ7Nmzp8q/yemNJLp1Di83MUxZsRYOhyXXWgnevOgOh8Oqzu10YGRkBF6rRVFqVDFarBaMjhauJWOxWMCy+orurFgxv4SxcDpz9OhRHD1xEq9r9cne59yAC0G7Ff/zP/+j6dinTp0CAHSu6l70fNfqbpzq6aE2bkTDQ6K7hpmamoKRYeBRKNyKITrmpVbwBUHA0OAg2lSGl7d1dGJwYIAursg53XaF752NcrprDo7jpfBYEt21w0V79+LQbAIZnofLZESrzSzrx2Uy4vmZGExGI84999xq/xqnNaLoNkJf0W1kmLJiLRwOw+tTLrqtViscTmdDi+7R0VG02K26jNViM2MyPFMwMsFisSCTLl0QTymZbL6OgFmftLx647e//S3sJhMuCpUPLRcxMgwuC7rwm//5laZjnzhxAh6PF4FgaNHzq9esQyQSaejoEYIAKLy8ppmamoLfbtWtCqdfhuiemZlBIpFAW7tK0d3eiWQyiZmZGQRUuAynE8lkUlE+NwDY8mWySXTXDizLwoDc4omRAeV01wgXXXQRkiyLV+YSeN/aFrxvbYvsfT98sBe7du6E0+ms4BkSYo6oQeecbiMD8Fzp/NPpcBjtXWtVje/z+RtadI+NjaHJrI8n02QxQRAEjI+Po6OjY9FrVqsV2azOojvd2E737x96COcHXIqjFC5p8uKnL57AwMAAVq1S1i5W5MSJE+heu27ZnLV77Xrp9aYmZS38COJ0gpzuGmZmZgZes37rIuJYMzMzRbcRi6BpKaS2cJxGJpFISDnachG3T6W0tUMi9IMXeEk0GCrQV5ZQx65du2C3WfH8jPJias9HUti7b18FzopYiBgVonN0ORgwYLnSi1/hcBhef/nqzYXw+QMNXUhtfHQEIZNOojtfCHaiQBFXm82GdFrfe10mk6tqb7fbdR23Hkin03jyr3/F3qBL8b57gm4wDPDoo4+qPv6JEyewas26Zc+v7l4rvU4QjQyJ7hpmdnYWXp1ufACkMPVS/UelqqXtHUW3KYW4H4nuvNOtcLZJOd21x8I+3QaAwstrBLPZjPPOPU+x6B5JZjAcS1A+9wow73TrO66RKf89nAmH4fWpE90er6/k4vTpzsTYGEI6dk0BgPHx5YUObTYbUjrf60QRb1PY8vR04Pnnn0c6k8F5AeWi228xYZPXhb/85S+qj3/s2DGsO2PjsucdTifaOzpx7Ngx1WMTxOkAie4aZmZmBl4dZysmAwOXxVxyMjE0NASj0Yim5lZVx2hqboXRaJT6fDYyyWQSVoXvn41Ed83BcbxUgd5ITndNcdHFF+OFSEJRDYnnZ2K5fS+6qFKnReSRRLfOOd0Mw0Dgi7/ngiDkFq29PlXje3y+kovTpzsTk1MI6dg1BSgsuu12e9l+60oRRbzD4dB13Hrg2Wefhd1kwha3ut/9bLcNzz31lKp9Z2ZmMDExgbXrzyj4+pr1G0h0Ew0Pie4aJjI7C5eOTjcAuM0mRCKRoq8PDw9LwlkNomAn0Z0X3YyygnLUMqz24HhOcuoMMhw2YuXYs2cPppNp9CXkT9z/NhPD+u5uNDc3V/DMCADSYojORjeYBWMXIplMIpPJwOPzqRrf6/Uj3KBON8dxCM/NIaiT0201GuCymAvWkrHb7Ugm9a1fIoruRgwv/9vf/oZtXofqbgE7fE4cPn4c8bjylB1RUK9dt6Hg6+vWb8DhI0dUnRdBnC6Q6K5hInNzcOtUuVzEZTYiGo0WfX1oaAit7e2ajtHa3i6FqTcyKRXh5SYDAyPDUE53DcHzguTUGUBOdy1x/vnng2EYyb2WwwuRFC68+OIKnhUhIgljvVV3bvCiL4kutcfjUzW019e44eXhcBiCIMCvYz2ZgNWCycnJZc87HA4kEwldr6miiG9Ep/ulAwewyam+6vwmtx2CIODw4cOK9z18+DAYhikYXg4A6zZswskTJ5DVuS87QdQTJLprmEhkDk6dnW6X0VDW6W5ubdN0jJbWdgyS6M6LbuXvn81sItFdQ/A8v8jpJtFdO/h8PmzZsAEHZOZ1J1gOh+diuPDCCyt8ZsRCVtrpFkW3V6XT7fH4EJmbU7VvvSMWkAvoFF4OAH6zsWA1eJcrl3usZ153Iu/SNlpnApZlcbynBxtc6nPZxX2PqHCkDx8+jK7V3bAViTA4Y+NmsCyLkydPqj4/gqh3SHTXMPFYHC6VYd7FcBoYxGLFXaHhkRG0tmpzulta2zA6OqppjNOBRCIOqxrRbTRQeHkNkQsvF51uCi+vNc6/6CIciMpbpDo0lwDHCzj//PMrfFbEQpQl2cijVCtNyelWm9Pt9TZsTrcojn1m/eYeXiNTsBq8KLoTCeXhzMWIx2MwGo2wWvXpM14vDA4OIsuyWONUL7odJiNanXZVVcZfffVVrN+wuejr6zdskrYjiEaFRHcNk0gmFfdaLIeNmV8JLsToyAiaNYru5tZ2jI6MaBrjdCCVTMFqVO7xWI1GEt01RC68PAc53bXH+eefj2NzccTZ8oshB2fjcNrt2LZt2wqcGSGhs+ouN5womN0ej6rx3R4v0ul0Q16HxbB6PduV+kwGzJZwuuMljAClJOIxOJ3OkosypyO9vb0AgFUObf3JV9nN6OvrU7zfy6+8gg2bthR9PdTUjGCoCa+88oqGsyOI+oZEdw0Tr4DodhgNRW9w6XQa4XAYLZrDy9sQDocbPkQ6nUqpcrqtBkb3iq6EegRBWOB0U053rXHeeeeBFwS8NFe+INPBuQTOOWe36kKRhDIqKnxKjD2XDw13u72qhhbFeqlUrNMVUXR7dHS6PWYjZgo43W63G0BOKOtFPBZTvdhSzwwMDAAA2mzaRHe7xYT+U6cU7TM7O4vhoSFs3LK15HYbN28l0U00NCS6axSO45DJZqUWUnphMxoQL3KDGxsbAwA0NbdoOkZzS67dWKEWIY1EOp1SldNtNRhIdNcQvCBQTncNs2XLFjhsNhyaKx+ieiiWxu5zz1uBsyKAedGt9zemnNMdiURgMBjgUJnXK4r1RhTdc3NzMBsMiouAlsJrMhUM1xdFdzSq3985Go3A04Cie2hoCAG7VfOcsdVmxrDCmjyikN6wqbTo3rBpC156+WXV50YQ9Q6J7hpFFF1K+zyXw2JgkE4VFnSS6G5R16NbJJQX7eJ4jUoqlVYVXm4xUPXyWoLneakQFOV01x5GoxG7du4s63RPp7MYjiWwe/fuFTozwpBfdBR0ji/nBQHGEp09IpEI3G6PaqfdlReDjSi6I5EIPFazrlEKLpMB0QIRdqI4jpXoqKKUWDTakKJ7dHQUrRpdbgBotZoxMj5eslDhUl566SWYzeailctFNm7ZjpMnTiCR0LdNHEHUC/ol7RC6IopuiwqntBRWgwGZIi6qXk53E4luAEA6k4HFoNxpsTAg0V0jCIKwKLxcfI6oLc465xw8eLi0g/JyJDfRO/vss1filAjMi25e568ML8yPXYhIJAJnPl9YDS53TrTNNWAF80gkAqdJ36mhy2REpIDo9npzEQXRqH5/52hkDj5v8bSChx56CA899JAux7r22muxd+9eXcbSyujoKJp06HbTZDUjlU4jEolI7085Dh06hPUbNsFiKS36N2/bDkEQ8Morr+Dcc8/VfK4EUW+Q6K5R5kV3BZzudGFBNzY2BqPRCH8gqOkYgWAIRqOx4SuYp9JpWAzKJ34WBhReXiOIAltyuim8vCY566yz8I1vfB1xloOziAN6OJKE2+nE2rVrV/jsGhdRGHM6L1QJEGBgSotuUTirQRTsUR0d2HohFovp3qrUYTIgk80im83CbDbPP+9wwGQyIapjREEsGkFHa1PR1//tc3fiwEuvwuZr1nScZHgUwyMjtSO6h4fQqUObt2Zb7v0ZGxuTLboPHjqETVu3l91uw8YtMBgMOHToEIluoiEh0V2jsCwLADDpLLpNDAO2SJXf8fFxSTBrwWAwIBAMYWJiQtM49U7O6VZRvZyhQmq1gii6pZxukNNdi+zYsQOCAByNJnG2v/BC1+FIAmdu317SISX0RbyX6P2V4QTAVKK6djQa1eZ0u8Rc48YT3fF4HA6d5x2O/OcgHo/Dt6B3OsMw8Pn07YkemZvD1k1nFH19eGQU/rNeh44rbtJ0nP5ffQFDw7XTpWVsZBRnWXUQ3Zac6B4dHcXGjaXDxYFcutXLL72Ey656U9ltbXY71p2xEQcPHtR6mgRRl9Dso0aRRLfO1V9zopst+NrExASCoeIrxEoIhpoaWnTzPA+W41RVL8/l3VN4eS0gutpM3utmQE53LbJ582YYjQYcjRZv8XQsmcX2nTtX7qQISXSzOqtuVhBgNBYXGLFYDM68cFaD1WaD0WhETMdWVvVCPB6HXWfRLXZhKZTL6/X5EJmb0e1Ykcgs/H5/wdcEQcDE+BjM7oDm45hdAYyO1EY0nyAIGJucQLPVXH7jMjRZ551uOZw4cQLJZBJbt++Utf3mbWfiRRLdRINCortGEYWxUWfRbTQwyLLZgq+R6NaPTCYDADCrmLyQ6K4dloaXMyCnuxax2WxY370Gx4qI7iwvoCeSoP7cK4wpnxvM6Z7TLZR1utVWLgdyDqzL5W5IpzuZTMKmc6c3sRJ6ob7nfr8fcwUqm6tlbnZ2kZu+kEgkgkw6BbNLu+g2uQOYnFBWcKxSzM3NIZXOSKHhWnCZDHCYTRgZkefiv/jiiwCAzTLCywFg6/YdeOnQISpISjQkJLprFNFN03nBuWR47OTkJPzBkC7H8Td4eLmWnHyLgSla7I5YWZZ+D8nprl22bN+Ok4lMwdf6E2lkeR5btmxZ4bNqbETRrb/TjdJOdzwOp1N9eDkA2B1OxOPl29CdbqQSCd27pohtrAoVCA34/Zib1cfp5nkekbniTrfYxtTkKvy6EsxOPzKZdE1UuBcFcqtVe/VyhmHQarcqEt2dXavg88tbyNiyfSfi8ThOnjyp5TQJoi4h0V2jLHXY9B278POTU1MI6iS6g8EQpqandRmrHhGdbjXV5y0GA1UvrxHI6a4fNm3ejJ4iovtkLPd92rRp00qeUsNTMdHNCzCXqJQci8Vgd6h3uoFcka9GDC/PZNK6d00RI77E++JCAoGAbqI7GpkDz/MIBgsXgxVFty5Od34MccxqMjw8DABo0cHpBoAWi1G26D5w4AC2bN8he+yt+W0PHDig6twIop4h0V2jzE/29ZXdpUTD9NQUfBorl4v4AkFMT03pMlY9Mi+6lb9/ZoYpODkhVp55V5tyumudjRs3YiSeRJJb/v70xlNwORxobW2twpk1LmKlar2rl7MLxi5EPB6Hw+HQdAy7szGd7nQ6rXstGXO+0nyhAqGBQACzM2FdjjM7kxPvxZxuMfrO5PRpPpbZlRujFkT30NAQAKBVJ9HdZjFhsK+v7HaCIODFF1/EFpn53ADg8wfQ2bWKRDfRkJDobjAYhikougVBwPT0NPwyQ4TK4Q8EMTU11bCuoJTTrWLyYjYwyBRp60asLNLi14Lw8kb9TNc669evBwD0xZdP7PsSaZyxbh0YncUEURpRGGd1btRdTnQnEgnNTrfd4WhI0c1mWVW1SEohjleoiGswGNRRdOei60KhwhF7ExMTYAxGGG3aUg8AwOTwAcil5VWbwcFBNDlsukUotNksGBocLLtdf38/wuEwtp25S9H4W87cKeWCE0QjQaK7RhHb2gjQd7LCCwKMxuVveywWQzabhb9IWJZS/IEAWJZtyPA8QGt4OYNstnCxO2JlofDy+kHsvz2YXC66B1JZrNuwYaVPqeGx5EPAdRfdglBSdCcTCdjtdk3HsNscBQt/ne6wLKt7LRljfrxCxbOCwSBmwvqkos2Ew9KYhZicnITV5QWjgzg12t1gGENNiO6hoSG02bTnc4u02c0YHhsrG9UlutXbztypaPxt23fhwIEDdC8lGg4S3TWK6MjoPFcBv2Dshczkw7K8Xu0FRhaOI47baGipXm42MMhkSHTXAiS664fW1lZYLRYMJpaL7qE0i+41a6pwVo2NKLr1zunOCIDVai36eiKRgN2uMbzcYS/Y4up0h+d5GHRPa8uNV0h0h0IhpFIpJHSIKhAd81KiW4/QcgBgDAZYXN7aEN2Dg2g16zedb7VZkGXZssVwDxw4gKbmFjS3tikaf+uZOzEzM4M+GSHsBHE6QaK7RhGdbl7nyYogCNLYCwnnV4i9RXKhlCKOI47baGjL6TYgk6Wc7lpgWXg5Q6K7VmEYBl0dHRhOLf7u8IKAkXgSq1evrtKZNS6i6M7ovHqcFebHXgrP80ilUrDZtDndVpu9IcPLBYHX3ekWr5+Frp1iKPjMjHa3Ozw9BafTWTTKYXp6Ggab+v7tSzE7PJiugYKxQwMDaNWhR7eIOFa5Ymq5Imo7FY8vFlOjEHOi0SDRXaOIoXOszvN7VgDMpuUXZ3K69UUU3WoK0pDTXTsUKmhIort2WbV6NUZTi7874QyLDMejs7OzSmfVuMyLbn2LD2b54uHlYucHq92m6Rg2mx1J6iKhC+LVs5ToDk9rL7wanp4qms8NAFNTU2DsHs3HETHYa0N0j42N6tKjW0Ssgl5OdL/44ouKQ8sBoLm1Dc0trSS6iYaDRHeNUslWKyaTcdnzc3NzAACP16vLccRxxHEbDTEnW00hNRPDIFug4Ayx8hQML6fq5TVLR1cXxjOLQ1jH8iK8o6OjGqfU0Eg53XqHl/N80fBySXRbtYluq9XWkK0bGYbRuZIMpPEKRdk1NTUBAMI6dDsJT08hWEJ0T06HYdJRdDM2N6aq3KWFZVlMzcyiWUenO2jJjVWqMvvY2BjGxsYUtQtbyOZtO6iCOdFwkOiuUSpW9VUQYCrgEMzOzgIA3B59RLc4jjhuoyGJbhVxehYDgyxLTnctsEx0U3h5TdPW1oaJJaJ7Ip2VXiNWlkqFl2d4oazo1hpebrM3qug26F9LRkrTWX4/1NfpnkRLc3Px18MzMNq1Vy4XMdpcmJ6Z1W08NYhdYoIWk25jmg0M/DZrSdF98OBBAMBWFeHluf12SGMQRKNAortGqVQBmqwgFMyFm5ubg81uL1kRVglmsxk2u71hRbcUXq5CdJsYBpksOd21xHzLMGo5Vcs0NzdjKr04p3sqn6rRXGIyTlQGhmFgMZuRLtA7XQtpGU63pUShNTlYrTakG1B0m00m3WvJiCK+0PzC4XDA5XJhelp7QbLw9FTJ7/nc7AyMOuZ0G+1uhMPVTaET6+b4zfqJbgDwW0wl0wMPHjwIt9uDzlXqamVs2XYmRkZGyhZrI4jTCRLdNYo4odA7Fy7D8bAVCLuLRCJwu/ULuwIAt9uDaDSq65j1gpbwcrOBAc/zZdt1EJWnWE97ojZpbm5GPJNFcoHIC2dYeN2uooW3iMpis1qQ1tvp5oqL7nQ6V72+VHVzOVisVmmsRsJoNumf1pYfz2hcntoGAKGmJkzrUAV8empSCldfiiAIiEUjMOnsdM/Nzeo2nhpEY8NjLvy3VYvHZCxpmhw8eBCbtm4vmDIgh83bdkjjEESjQKK7RqlUWF6aF2CxLZ+MRKNROF363YwAwOlyNbzoVut0LxyDqB3I565txFZBs5n5SJGZDItQIFCtU2p4bFar7ovHaZYrWqFaFMpmjYssZrO5IUW3xWzRP8IuP48pFknX3NysS3j59ORkUac7kUiA4zgYrE7NxxExWp2IVXmOI86xXAVq9WjBaWRKzt8OvfQSNm/drnr81WvWwu5w4OWXX1Y9BkHUGyS6axSDwQCL2YxUBcLyCvUvzYlu/cKuAMDpcje86FZVSM1AortWWFq9nPp01zb+fKvCOXY+r3s2y8HvJ9FdLWxWm65OtyAISHMcbLbChdKkdo0WjU63xSqN1UhYbfq+X8B8Ib1i0QetLS2YmtQWZpxOpRCJzKGlpaXg62JRV6NVW//2hRhtDiQTcbBVLHyaTCYBAHajvtN5OzM/9lJSqRSOHzuGjVu2qR7fYDBgw6YtJLqJhoJEdw1jt1mR0tkhSPE87I7lN51YLAaHQ78VYABwOl2IxWK6jlkviDdho8rq5QvHIKrPwj7dRO0iie4FNREiWQ4+crqrhtVm1XXxOJUXhOVEt9b6JGaLpSGdbqvNpnsOvvj+FxPdzc3NmJ4sXrRLDmJOeDGnOxKJANBXdBvyY1XTXJA+7zrfnMwMU7SmweHDh8HzPDZu3qrpGJu2bMehl17SNAZB1BMkumsYu82mu9Od5FFQdCcSCd1Ft93uQCKR0HXMekEKL9cgusnprj6U011feDy5uhQxdv66GeV4eHy+Kp0RYbPZdF08TufHKi+6tYeXsyzbcN93u8OBlM6/s/j+F0sJaGlpwfSUtpxu0Skv5nSLBoBBT6fb4lg0djXguFxUj1HnBWEjw4DnuIKvHT58GABwxqYtmo5xxsbNOHrkiPQ7EMTpDonuGsZhty8qCKQHaSFXLXQp8Xi8oBjXgt3hQDwe13XMemHe6Va+r9hmjJzu2oFZ8i9Rm7jydSkSCyZxCQFwu/VNnSHkY3c4dF08Fu+JxQSctOCpsZqzyZRzyhvtOmy325HWeZ0hVeY9a8mHl2tZ4JiakCe6jRZtreQWYsiPVU3RXbFFIQZFq9gfPnwYbe0dmovvnrFxM1KpFPr7+zWNQxD1AonuGsbhdOkuuhO8AKdzuaMdTyQqIrpjDSy6TQZDwb6k5RCFeqNN9mqRwk43VZWvVcRrW3yB0x3n+ILXPGJlcOgsussJOKmehklbeLko2hst4sjpdCKp8yVOnMcU+x62tLQgnU4jGo2oPobodBerXi453ZbCERJqMFirL7rFivB635V4QYCpSHG2w4cPY92GTZqPsX5jboxXX31V81gEUQ+Q6K5hXG4X4nqLbpaT3KCFJJNJ2AoUWNOCze6QeqY2GtlsVlXlcoDCy2uReaebvO5axmg0wmqxLFqsTHF8wegeYmWwO5xI6hhenuJyC2HFRLcUZWTS5nSLor3RrsNOpxMJvecdHA+DwVA0JaC1tRUAMDWhPq97cmIcwWCwaC6/WBTMYNZWYG8hBlMuhaGaaXSm/Oe8Em3eTEUWro4dP461687QfIzWtg7YHQ4cP35c81gEUQ+Q6K5hnC43Eqz+N79Cq82pVEpzX9OlWK3WhhXdLMvCqLJ/pVh8jfKcqk9Bp1vnyr6EvtitVinvF8i1SSwm0IjK43A6kdLxNibmBxdbSBFFt9ZCaqJob7TrsNvtRpzV93eOsRxcDnvRyC8xJHxyXL3onp4cR3OR0HJgXhgbzDo63fmxqim6K9VeNsMXbrvHcRxO9fSge+16zcdgGAbda9bhxIkTmsciiHqARHcN4/Z4dHe6Y1m2oNOdE9363YwAwGq1Nazo5jhOVRE1YN7pbrTJHkHogdVqkdxQIFd4S+8FRUI+DodD1xxhMby8nOg2GLX1LRbDdhstzcftdiOa1fd3jrE8PCVakkpOt4YK5lOTE2jLj1OIZDIJxmAEY9QWAbEQg7n6TrcYPZDRudNNRigcTTI4OIhMJqOL6AaA7rXrSXQTDYN+Vx9Cd9xuN0Z0DBkSBAHxTLZgUaFUKgWL3k63zYZUkT6Ppzu5nG6VoltjIbWjR4/iySefLLnNpZdeirVr16oav5Gg6uX1h9ViRXZB3n2G4yU3iFh5HA4Hkjq6cMkyoluq5mzQKrrzYbsNJro9Hg/imSw4QVDV8rIQMZaDx+MteUybzYbJfHj5d771VXzvW1+TNfZ7b/4n3HjzLZicGMe67q6i26VSKRg1VrRfCpMPL69mazlRdKe5xd+xb58axz198hYxbupuwfvWLo4SSAtCwXSA3t5eAMCqNfrMH7q61+DhB/9Hl7EIotYh0V3DuN1uxDj9JisJjoeAwpV8s5kMLBZ9RbfZbGm4fDgRlmVhUDlhEQupqf3bffSjH8WDDz5Ycpt3vvOd+PGPf6xq/EaEWfYfolYxm03g+Iz0mOVJdFcTh8Oha46wbNGtMadbKlCls4NY6/jy7fViLAevxgrwIpEsB0+zr+jrDMOgpbUVE+NjuWNHoxgbHZE1dizfI3tqYhwXnre76HbpdBpGk77XAYOx+qJbdKOXtuWLsRzGUvLmELEC6QSpImk5YqXxjo7iCxxK6OhchaHBQXAcJ33nCOJ0hUR3DePxeBb1m9VKNH9hLSS6M5kMLBZtOXBLsVjMUs/URoNlWdXh5VpzuienpvDWd1yPL3zt/xV8/eb3vB3T09OqxiYA8rlrG4PRiOyCaASW56ViQ8TK43Q6de3CkShTCVsUyQaVNTVExP0bVXTPZXUU3SwHnz9QcpvW1lbJ6Xa53Whta5c1tis/n5kYH0NbW1vR7VKplK6h5QDAGI1gGENtiO4l3zGXyYhWm7w5natAlfJSorupuQXWIkXxlNLZtRrZbBajo6Po7OzUZUyCqFVoJlLDeDwexHTMrRIFvNe7PMwrk8nArHPoldlsaVjRzXGcaqfbAG2ie3Z2FtvzE6dCeLw+DJw6pmrsRkUsAERGd+1jNpnBZeZFN8cL5KBUEafTiaSOhbkSHAezyVS0UJookrW+54YGdbr9fj+AnOjWizlOwNpgsOQ27W1tUvXyG2++BTfefIvs8ZOJBKLRSEnRnc1mYdDYRq4QBpOpqhF9Ygj4UtH9vrXLQ8aVkOIK18IYHh5Ga1uH6nGXIi6uDA8Pk+gmTnuokFoN4/V6EclkdcshFZ3uQqI7m81qDsdbisncuE43x3Eacrrnx1DD7MwMPF5f0dc9Xi9mZmZUjd1oFPzuUU53TcMYmEXRCJwgaHY9CfU4HA4kdMyLTnI8HPbiLpsokotVypaL+JlptIKWouie1XHBf47jpXGLkXO6x1SNLzrkLSWql2ezWTAa8/wLYTDWhuhO61y9PM3zBZ3u0dFRNLcWX9xQijjW6OiobmMSRK1CM5Eaxuv1guV53ULzItnioptlWd1DMI1GY8NNWERYloXa27sR6gupCYKA2dlZeEuKbh/mZmdVnl1jwiz5l6hdDAYj+PzCiLhoolWAEepxOp1IsRw4nRarEiwPp71433We53V5v8UxGq1wYiCQCwPXU3TPZlhp3GIsDC9XiijWSzndLMuCqUDEC1Mjonup062VNMsVLKQ2MjqK5pbiVeKV4g8EYTKZMDIiL4efIOoZEt01jJhbFdEpNC+SF3G+JaHHPM9DEAQYdF4FNhiMEASh4cLzAI3h5RpyulOpFDKZDDwlwsu9Xh9mSXTLgqqX1x8MwyzLuyenu3qILSr1WjxOcDycrsL53EDu+6mL6EZjim6v1wuj0YiZjD7zDkEQMJPOoKmpqeR2bW1tmJ6aVHXfEwuwlRLdHMdVxOlmGENV5zgVc7q5wqJ7anISgWBIt+MYDAYEgiFMTU3pNiZB1CpVn4l885vfRHd3N2w2G8477zw899xzJbf/yle+go0bN8Jut6Orqwsf+chHTtte0GI4VkSn3KpIloPBYFhWSE2q9qrzKnCj9jkFcgsZatutiNXL1Uw+xLBxd6n2LF4f0uk0kg3azk0N5JPWF6JOEqeh5HRXD7HgWVynoqBxjoPT6Sr6um6iu0GdboZhEPR5Ec7o494mOR4plkOwTE53a2sreJ7H9OSE4mNMjo/BbDaXdNNzwlj/KS/DGKoa0SfmXad1FP6CICBTJKc7HA7DWyZVQClenx/hcFjXMQmiFqmq6P7pT3+KW2+9FbfffjsOHDiAHTt24Morr8TEROGL7n333YdPfvKTuP3223HkyBF897vfxU9/+lN86lOfWuEzXxl0d7qzHDxO5zLXR6/CM0sRj9NokxYgJ5iNKud9Wpxu0cEuFV7uzqcXkNtdnsJOd+NFbtQTJLBrC1F0J3QSJkmOl9zzYujyGcgP0Yj3r6ZQCOGMPovl0/lxyjndra25kGXRtVbC5MQ4WlpbS77vPM8DFbg2MIbqim6TyQSDwYCMjk636JovFd2ZTAaxWAw+X+lUAaX4/AHqqEI0BFUV3V/60pdw00034YYbbsCWLVvwX//1X3A4HPje975XcPunnnoKe/bswXXXXYfu7m5cccUVeMc73lHWHa9XFrbu0IO5LAe/b7kDWqm8x0YX3erDy+fHUIokun3FV6JFQU6iuzzSZ5eZ/6cRP88EoRZRIOvVqzvO8nB5PLqMRRSmqaVFEstakSu6xdBwNXnd5dqFAfnrNlOBKW8NLPLZLBZkdHS6RQG/NLw8mu+J7tb5++dye6SxCeJ0pmqiO5PJ4G9/+xsuu+yy+ZMxGHDZZZfh6aefLrjPhRdeiL/97W+SyD516hQeeughvO51ryt6nHQ6jUgksuinXphv3aHPzW8uyyIQWB7iJVV7VVltuyjM4vEbCY7j1BdSy9/E1fzdxPByT4FieSJiZXOqYC4fqZBaDUywiNKs9KJIT08P3vKWt+Af/uEfkEgkVvTY9YAkunUKL0/wgtSbmagMza1tCOv0fomiu7m5ueR2LS0tYBhGldM9MT6G9jKi+3TGZrXq6nSLAn6p0x2LxQAADkfxmgpqcDgc0tgEcTpTNdE9NTUFjuOWtXhoaWnB2Fjhi+51112Hf/u3f8NFF10Es9mMdevW4ZJLLikZXn7XXXfB6/VKP11dXbr+HpXEbrfDZrXo5nTPZjn4S+RV6S0oGjUnDhCdbnX7imJdi9Pt8fiKbuOh8HLZLP3sktNd++RyenP/ZxY8Vykef/xx/PKXv8S9996LEydOVOw49YoouuM6heAmeJQNLye00dzcjKmsPqJ7Kp3LDS/ndJvNZoRCIUyqCi8v73RXkmrfE2xWq67Vy1N50b20ZVg8Hs897yjePUANdocTURLdRANQ9UJqSnjsscfw7//+77j77rtx4MAB/PKXv8SDDz6Iz33uc0X3ue222zA3Nyf9DA4OruAZayfg9enWumOO40uK7krRiO4gz/Oqv1xac7otFgtsBfprini9fmlbQh5iJePG+yTXI8KyyIRKTooXtguqZuugWkUS3bo53byUJ14MXd7vBl5ba2lpwWRan8/yZDqLgNcLs9lcdtvWtjZVTvfUxLiUE16M3LWgAm+qIFS9O4LdbkdSx4jCFCdI4y56Pl+02FqgqrkWrDYb0um0rmMSRC2ib2NmBYRCIRiNRoyPL87fGR8vfvH813/9V7zrXe/CjTfeCADYvn074vE43ve+9+HTn/50wQuf1WotWIGxXvAH/JhN6RMGPMsJ2FpCdFd7tfZ0guM4DaJ7fgylzM7OwuP1lVzosNntMJvNFF4ug4KF1HRuzULoiyAIyxZHSHRXD91zujl+WQeOhTAMo8v7zecLJlZbUFWD1tZWhJMpsLwAk8a0s6kMi9YlEY3FaG9rw8TEqKLxOY7D1OREWaebYRigAkUwBYGv+mfE4XQiGdcvtUVs7+dY4miLnWhMRn2lg9lkasguN0TjUbUrhcViwdlnn41HHnlEeo7neTzyyCO44IILCu6TSCSWXdzEitunq2AMBkOY1amgyUyWLdhSo1JuUKUKtNUDPM+rLqRm1PB+zM7Oli1ywjAMPF4fiW4ZSJ/h/GOGOX2vNacLAs8vuuZUOiVgodDOZDIVO069YjabYbVYENepC0csy62I6G7k+1dLSwsEAFM6tA2bSGfR0lbahRZpa2tTHF4+PTkBnufLim6DwVCRzhNCDTjdbrdbt0gSAIjlv6tLv2fitc4kI2pBCUaTiRYsiYagqleKW2+9Fffccw9+8IMf4MiRI7j55psRj8dxww03AACuv/563HbbbdL2r3/96/Gtb30L999/P3p7e/Hwww/jX//1X/H6179e93ZXtUKgqQkzeuV0p7NScbaFSDcMneeloiNY7RtSNdDkdC8YQymi010Oj9eLubk5xeM3GoVbhpHornUWyiS9RFgxFgptEt2FcTkc0kReK/FstmRON4lu7YgCdiqtfcF/MsujraNT1ratra2KRbcYjl5OdJtMJqASRV15Pjd2FfH4fIjq9P0C5kW3p8gCfqXq/xDE6U5VrxTXXnstJicn8ZnPfAZjY2PYuXMnfv/730vF1QYGBhYJtn/5l38BwzD4l3/5FwwPD6OpqQmvf/3r8fnPf75av0LFCQQC6NchnDXD84hlsggWCC8X/8Z6VxkXx2tE0c3zvOY+3Wqrl4s526Xwen2U0y2D+Yl37jEVUqt9VnqhZGEuIuUlFsblciHGaRdwLC8gxXIlRffCVpVaJvPiZ6YR71+igJ3QIa97MsvhwjL51guPOzkxrui9UyK6K+F08zxbddEdCAZxitPvGjebN3qWmjSVnCs24veMaDyqe6UA8KEPfQgf+tCHCr722GOPLXpsMplw++234/bbb1+BM6sNgsGgLk63eBEtJbrVOKulEMdrxIspz/Oqi25pzel2l6hcLuLyeCm8XAFMgf8RtQm/JKe70gsl6XQabrcH0WhEKjRELMblciKRDGseR6yAXiq8XC/R3ciLxlL7Lh1E93gyLbuyeFtbW67N69wsvL7yi8cAMDk+BoZhyrYkM5lMEHRY+FmKwHFVj7QMBoP4m47h5TMZFk67fVk9pErNFfklKUEEcbrSeHeTOiMYDGJGhxvfTD4vvKTTrfOFVGjgSYum6uVQn9M9Ize83OPFLIWXl6XQe8BXwC0h9GXh/K3Sk7lkMgmvzwcAJLqL4PZ4ENNBFIh5q3JEt1Y3rpHvXyaTCU0BP8ZS2tIlEiyHWCYrW3SLRXSVVDCfnBhHKBQqWx3dbDYDvL5zHADgORYWi0X3cZXQ3NyMqbR+qS3TmSyaQ6Flz4t/Y07nomdstvp/Q4JYCarudBOlCYVCmEtnNFcRncm3HQsVuJAyDAOj0QhO5xsSy7EwGo0NuYKprWXY/BhKmZ2dhTvfh7sUHq8PJ0YGFI/faCwrpAYKL691Vjq8PJFI5Ba6BgeQTCYrdpx6xuPxIj6g/f5SrMDTQha6cVrCfsXrbyPevwCgra0d45F58fvtU+O4p2+8xB7z3NTdgvetbcF43jBQ4nQDOSF9xsbNsvaZGB9Dq4zxzWYzeJ3FoiAI4DlWVju0StLW1oZwKo0Mz8OiwyLReDqL9q41y5635VuFpdP6Li6m0ylpbII4nSHRXeOIInk2yyJkVX9hF53uQqIbyK1s692ygWOrn+tULXLVy9XtK+6mRnRH5ubgdssR3V7K6ZbB0mJKVL28/qi0ZIrH43A4nbA7HIjH4xU+Wn3i9noxqUPLsDgn3+kWNDrd4vW32qHD1aKjqwsTB4akxzGWw1hKXtSduDgibt/R0SFrv3nRrcTpHkObjJxxi8UCntW30KEYrl5t0d3Z2QlBAMZTWXQ5tLfIHUmzWLV69bLnxXBzvWtXZDJp2Oq4tS9ByKUxFVEdIYrkcEab6A5nWBgMBvjyYZBLMZlMYHVu2cCybMNOWLTkdIsCT2nelCAI+erl5UW32+1FhMLLy0JOd/1TaaMyHo/DbnfC6XQhFotV9mB1itvtRp8OWRlynG7xnqM175TPR3416j2srb0dLzw7/6a5TEa02uTNQVym3N9MdLrb29tl7ed0OuF2uxVVMJ+aHMfWTRvKbme1WsGx+s5xhLyIr7ZL293dDQAYSmZ0Ed1DaRYX58dciNi3O5nUryc4ACQT8WU9wQnidIREd40jie6sNhd6JsPC7/EUnUCYTCZwOhcZYdls1VeAqwXPcaqdbiBXwVypuEsmk2BZtmyfbiDnPM3OzmouNnS6s/Q9YDDfCo+oDyq9RjIXicDt8cDpciEajVb2YHWK2+1GXIfqykrCy7XWXmjkQmpAzp1+cEE9mfetzYWMK2E8lYU7L6Tl0tLaiskJeWHsQK6QWtv+fWW3y4nujK73PJ7LSmNXk9WrV4NhGPQn0rggKP9vXYgMz2MklsSaNcvDy8X3MR7T9zoXj8XQ0dqk65gEUYs05t2kjhBFtxgerpbpDItQaHkRNRGz2YxMRt9V4Gy2+rlO1SKX063+xm5gGMXh5WK4uEdG9XKP14tsNks5qGVY1jKswj2fCX1Y+BYJqGxe7tzcHFxuD9weL+YoeqQgbrcbMR0KdcoppCYuLGstDCo65Y3qdLe3t2MikQKrYZFxLJVBa4syod6qQHQLgoCJiXGpAFspbDYbIAi6VjAX2NoQ3TabDava23Eqrj3XeiCRAScI2LBhefSA0+kEwzCI6xzRE4tFFS3MEES9QqK7xvH7/TAYDAhrFN0zWRZNTcVbalgsFrA6h15ls5mGrUgpLGlbpBQGynO6xQm/LKfb4120D1EYqVdv/t005J6s3gkRZTEsEdiVjuaYnZ2F1+eDh9rwFcXtdiOuQ+vLGMvBbDKVFDm6hZc3uOju6OgALwiY0rAYP57OorOrU9E+ba2tssPLY7EoUsmkLNFtt9sBAAKrXz4ynx+rFkKjN2/bihNx7b/biVhuIX7Tpk3LXmMYBh6PB9GIvvOGWCQCr4y0OIKod0h01zgGgwFBnxfTGkV3OMMhVGLF2Ww2I6NzcQw228Dh5TynKZdUk9Mto2WY250T5iS6S0M53fUHwxiw8B2q9LsVnp6Gzx+Azx/AdFh7L+rTEbfbjZgOkVRxjofb6Sy5jV6im2vwnG4xD1tu8bRCjGc4dHStUrRPa2srpiYnZG0rOuJyqqOLolvPYmpCNr1o7GqybfuZOJbQ/rsdiyYR8HqLLmT4AwHM6ry4ODs7g0AgoOuYBFGLkOiuA0LBoGanO8wJaGoqnjNjsVp1d7ozmTQsDVqRUuCFZY6bEtTkdJPTrT9Lw8vBADyJ7pqGMTCLRXcFnW6WZTEzM4NAIAR/MISJCXliodFwu93I8jzSGiuYx1gObper5DZixwytNUp4rsGrl+crjo+n1c8LxjKc7MrlIkrCy6fGx6V9yiGJ7qyOTnc2s2jsarJjxw4MRhOY01j/53A0iZ27dhW9Zvr9fszN6ie6BUHA3OwM/H6/bmMSRK1CorsOCDU1a87pDmfZou3CgFxOkt5OdyadrnquU7XQUr0cyIk89eHlMlqGecjplsNSp9sA5REIxMpiMBik900QBAionHCampqCIAgINTejqbkFkyS6CyIVYNIouuMsB1eZ3E+9nG6xhWajtr1samqCyWjEWEqdeyoIAsYTKVWiOzw9hayMbipia7EWGXnjYgi4vqI7tWjsarJr1y4AwKsRbXVaXo5lsPOss4q+HgwGMROe1nSMhUSjEbAsi2CweM0hgjhdINFdBzS1tmJaYz7cdCpTUnRbLBZkdG4Zls1mGzanm+c5TV8uNQW75ubmwDAMnM7SThBATrdcpArGi/p0k+iuZQwGI8RC2eI3qFJO98jICAAg1NyCpuYWTExMSGKNmEdc5BOrj6slxvLweEtH8ogimdco8Bu9kJrBYEBbc7Pq8PKZLIc0x8luFyYiCujpqfILWJMT47BarbLygZ35tARRKOuBOJazTMrDSrBp0yY47XYcmo2rHmM6ncVQLIFzzjmn6DbNTU0IT0+pPsZSwlO5sUpFYhLE6QKJ7jogFAphRkO7lSTHI5FlS17UbDYbMin9bkYAOd1aJvpqCqlFIhG4XG5ZLW6crpxbRKK7NEvfg9z7QuHltYzBYACfl9viW1Up4TQ8PAwAaGvrQEtrO3iex+joaEWOVc+ITrd20c2VrVkhvtdaFz84joXBYGjolortnZ0YVym6x/MOuRqnG4CsEPOpyQm0trbKeo8kpzujp+iunUJqRqMRu3efjRfn1PfQfjEv2M8777yi2zTpLLpnwiS6icaBRHcd0NTUpKmQmpgPXuqiZrfZkM7oG16eTqfgqIFcp2og8Nqql6vN6S4XeiliNBrhcrtJdJdhWXg5w0DgtVdhJiqH0WCQxDaXf/8qJbr7+/thsVgQam6RCkYNDAxU5Fj1zLzo1pjTzQtla1boldPNcVzDutwiHV1dGFM59xjL54KrdbqnZKRqTE6Mo1lmSzJXvhaArqI7kwvlrgWnGwAu2HMR/hZJqi72+bfZOFpCIXR3dxfdprm5GdNTkyrPcDniWM3NxbvrEMTpAonuOqCpqQlhlXlVADCdrxpbSnTncrp1drozjet0C4IAgwbVraZKdiQSkZXPLeJyeRCJRBSeWWMxH16ee5x7X6p3PkR5DCajJLZFiScn+kMNvb29aO/sgsFgQGfXauk5YjFieHlco9Md5wVprGLoVr2cZRs2n1uko6MDE1l1CyWiQy6nsvhCRPElp4L51OSE7D7gkujWM7w8k4LVZq+ZxZk9e/ZgIpFCv8oq5s/PJbBn796SkQOtra2YCU/LyrmXw+TEOAwGQ8n0R4I4XSDRXQc0NTUhybJIqJywTMtwum02G1JJfUV3OpWGzWbTdcx6QWshNTUtw3Kiu3zlchGX202iuwxL+3TnRDfldNcyRuN8Trcovislnk6ePInV3esAAE6XC03NLejp6anIseoZ0emOag0v5wRprGLM53RrbxnW6KK7vb0dY0l1EXBjqSyagwHFbUMtFgv8fr+s8PLpyXFZRdSABeHlafXh10vhMsmaCC0X2bNnDxiGwbPhqOJ9UxyPgzNx7L344pLbieH/cnLu5TA5MY7m5uaaWbggiEpCorsOEMWy2hBzWeHldjvSOjvdqVSyJlppVANe4AENsluN0z03NweXS77odns8FF5eBnHhQ1z4ZxiAo+rlNY3ZZJbaulU6vPzY8eNYs2699Lh77XocO3asIseqZ0SXUY/q5XJFN6s1vJycbnR0dGAunUFSxfs2ns6gtVWZyy3S3NIiS9RNT03KFt1GoxFWmx1cRlt174Xw6YSswqUrhd/vx45tW/FMOKZ43xdn40hzHC655JKS24mie3xMn9oVE+NjaJHR8o0gTgdIdNcBeohup91eUgDbbDbdRXc6nWpYp1sQtOV056pkKw8vl5vTDeSKqUWjylfEGwlqGVZ/mMxmsJLozj1XCdGdyWRw8sQJrNuwSXpu/YZNePXwYd2PVe8YDAY47XZENXbhiGVZ+aJbY/gry1JOt5iPPaGiV/dEmkXnqlWqjtva0lI2vFwQBExNTijKBXa6XODT+oluLpMs+3lcaS55zWV4ei6heP7w9HQUfo8H27dvL7md+JmYHB9TfY4LmRgbRYfCvH+CqFdIdNcBWkX3dIZFU5keiHa7HWmdq5enU6mGdbo153SrKKQWiUbhcisIL3dReHk5lrYMM1BSd81jMpskh1sU30pDXOVw7NgxcByHMzZulp47Y+NmHDt6lNqGFcDtciKuIeRbEAREM9myIke3nG6OnG4xH1tNBfOJLI82lWKqpaUF02VEdywWRTqdlu10A7l7HpfRL7ycTyfg9tSW6N6/fz+GY0nFed1Pzcaxb//+sgtNYii4bk732IjiCvcEUa809h2lThALTIgF0ZQync4i1Fw6zMtutyOV0m8FGGjw8HJOW0632pZhTpf8UDeny42hPn1Wq09XJNGdf0xOd+1jMpmRFUU3XznRfejQIQDApq3zztCmrduRTqdx7NgxbN26Vfdj1jMulwsxVv09JsUL4AUlOd3avqcsy8JIohuAOqd7PJ1VXLlcpLm5GS+9UjpiZHoyV/Vaiej2ejxI6Ox0+1vkL3SvBPv27YPBYMBT0xF0O+W14UqwHA6EY/jSZZeV3dZgMKC1rQ3joyPSc9/51lfxvW99Tdax3nvzP+HGm2+RHo+PjykutkcQ9Upj31HqBKvVCo/LKeVmK2U6w6K5pXTOjN1uRyqpr+hOJhpXdAuCoLFPt3KnOxaNSv235eB2U3h5OaRCavn3Uk3YP7GymMxmpPJ6i61gIbUDBw5gVfcaeBZ0DNiy7UzpNRLdi/F6vIiryDUVEXt8l6teTjnd+uHz+WCzWqSe23LhBQGTybRqMSWnLdXU5Li0rVw8HjeGInFV51SQTAIeT23lI3u9Xpx79tl4YugkrlslT3Q/OxNDlufxmte8Rtb2nZ2dGFsgumPR6KLHpYgtmHNks1lMjI2iq6tL1r4EUe809h2ljmgKhjClMuc6zAnYVubGZLfbkdRZdDey040q5XQryS+jnO7ySIXU8o9zEQgkumsZs9kMUW5V0ul+4YUXsO3MXYue83h96F67Ds8//zze9a536X7Mesbt9SA2ob6HuSi6Vyynm2MbPqebYRi0NTcrdrrDGRYsz2sW3TzPF233J4ryUgVil+LzecFNTqs6p0IImWTZRaBqcNmVV+Lu/3wJvCBIC8aleHIqio7WFmzatKnstgDQ1dmJsdFh6bHL7UZrm7yohoV1ZyYnxiAIAjo7O2XtSxD1DonuOqGppRnTw6dU7Tud5cquBjscDv3Dy5OJhhXdmgupQZnoFgQBsVhMkdPtdLkWrToTy5l3upH/V3kEArGymM1msPm3KFuhnO5sNosXXngBH7nt9mWv7TjrHDzz7LO6Hu90wO3xaqpeHmdz+65YTjc53QCAlrY2TAwra4M3mVbXo1ukubkZPM9jdiaMQLBw/+bpqUkYDAYEy9SrWYjX4wEyg6rOqRB8Ol6bovuyy3DnnXficCSJbd7yLc2enEngNW94k+zovI6ODhw89LL0+Mabb1kUMi6X0eEhaTyCaASokFqd0NzSinBWZXh5KlN2NdjhcCCVTOomKHieRyqVgtPp1GW8emOlRXc8HocgCIpzuqPRKInIEsw73flCalCea0+sLBaLZd7prpDoPnToEJLJJHadfe6y13adfS4Ovvii7pFD9Y7b40FMw1cnxilzunleayE16tMNAO2dXZjMKPtbTqRz30Al+dYLEecr4empotuEp6YQCoWKOuGF8Hq9EHQspMal4vB6veU3XGHOP/98OGw2PDFVvlDqVDqLw7NRXCYjn1ukq6sLIyNDmucOouim8HKiUSDRXSc0NTcjzCq/wGV4HtFMVpboBqBbXrdYCV0ct9HgBUFLm27F1ctjsVyupBKn2+Vyg2VZpNNpxefXKMxXL4f0L4nu2sZsni+klqlQePmTTz4Jq9WKbTvOWvba7vMuRDabxXPPPafrMesdt9uNuIbUDLlOtyiUsxrDyzmWwsuBXF/mSVbZNU90ultV9l+WOrZMFs/rnp6aQEhBaDmQE91cSr+c7mwyVpOi22q1Yu/evXhSRg2Fv07not3k5nMDOZGciMcRmZtVe4oAgNGRIbhcrpr8GxJEJaBl3DqhubkZ01kW3z41jnv6xmXtc1N3C17f7gdQPu9JFMfJZAJ2HYRyMplYNG6jkXO6tRRSU+Z0S6LbKd/pduSjEGKxWMP2Uy/HspxuhgGn0UEjKovFYkFWDC+vkOj+y1/+gh1nnQOr1brstY1btsHj8eLxxx/Hvn37dD1uPeN2uxFn1X935OZ0i0KZ1xhezpLTDSAnnCcUtgybTGfhdbtU31ckpztcwukOT6O5iqJb4FiwmVTNCsbLrrgCn3n0UaQ5HlZjcX/tr9NRbN5whqJK86vy/ddHhgbh9flVn+Po8BA6u7o0FZ0liHqCnO46oampCdOpDGIsh7FUVtZPjOWkiudycroBIJnQ54Ykim7K6dY2hlxE0e1QEM7vyAt0KqZWHFF0G5n58HIKx69tLBaL5HBn8+9fIXGsFp7n8fjjj+O8C/cWfN1oNGL3+Xvw2GOP6XbM0wG32y0JZzWIgr1cypJe1ct5Et0AciHi4VQanILr3kQ6ixYFVcWX4vP5YDQaS4eXT08pKqIG5ER3JhnT5RrOpePSmLXIpZdeiiTL4sW50nO6p2YTeM0VVyoaWxLdw9ry44eHBtC9erWmMQiiniDRXSc0NTUhkWVhNRrQajPL+nGZjJhKKxPdqZS6CulLSSZyoruhc7o1hZdX3ul25fO/43EdW6icZlD18vrDYrFIudyZ/L96iu6XXnoJ4XAYF+7dX3SbC/buw1NPPaXb9fR0QKvTHed4uByOsjm88063Dn26Kbw8V9RMEDCjoGXpVIZFa6v63ssGgwGhUKik6J4JTyMUKlxkrRherxcCz4HPav9eio55rYruHTt2wO/x4Kmp4ovqw8kM+qMJ7N9f/FpWiNbWVpjNZgwPaRPdI8NDWE2im2ggaBm3ThBXdN/Y7scH18nPk/rV8PSi/YshiuOEzk53Q4tuDfsr7dOtxekW9yWWI4nuBdXLKae7trFYLEjnBZcYXm6xWHQb/09/+hNsNht27l5eRE3kwr378fnUJ/DUU0/h0ksv1e3Y9Yzb7UY8k5XdxmgpcZaDy1k+XUmvnG6e50h0Y74Y2lSGRcgqL01jOsuhVUG4ciGCoRBmwsXbe82ocLp9Ph8AgEvFYLRoi8KrdafbaDTi4ksuwTNPPVZ0m6fz+dxK02AMBgM6u7owMqS+BSAADA8OYNW1b9M0BkHUE+R01wlSYZG0spC56QwLh81WNrdaCi+P61PZUxyncXO6+RWtXi6JbocC0e2Yz+kmCrOsejkDyumucaxWKzL59y1TAdH9x4cfxjnnX1TSPd+4eStCTc14+OGHdTtuvSNG1iRUOtAxlpfGKIVuOd0sCzOFl0tRclMKenVPs3zZ6LpyNJVwugVBQHh6SpXTDUCXvG4umbtvikK+Frl43z68OBuXFiGX8mw4iq2bNylquybSvXo1hgfVi+54LIbZmTA53URDQaK7ThBvYGEFIV5ATnQ3ybigio606FBrRXTMG9XphiBoKg6iNLxcDBG3KxDdYsE8Ci8vznxOd+6x0ggEYuWxWq1SLrfeOd3JZBJPPP44LrqktHttMBiwZ9+l+OMf/6jLcU8HxAJocYWVsEXiHAe3u3xPZIZhdCl4yHPkdAPzc49pBXOP6Qyr2IVeSigUwsx0Yac7EY8jnU4rFovzTrcOojs/Ri2L7r179yLFcng5Unhe93w0hYsvURZaLrJ69WoMa3C6xX1JdBONBInuOkG8gU0pFN1hmTc/0ZHWO7y8UZ1uQFPHMFV9us1msyJHT3S6SXQXZ75l2LzTTTndtY3VakUm7+ykdXa6n3zySaRSKezdf3nZbfdechkOHDiAyRJtjxoJqYaEyrzuOMuXrVwuYjQawWl0ujkS3QBy75vFbJa94C8IAsLJtGbRHQwGMTsTLvja7ExOjCt1uiXRndRePJRL5ZzuWg0vB4CdO3fCbrPibzPL7/HhDIueuTj27Nmjauzu7m5NTre4L4luopGg2Kk6wWq1wu10YjqjLE9tKpNFk4xemZLTndApvLzhC6npMYYy0a0ktBwAbPnK8iS6i7O0kJoBFF5e61itVqTywi7DCzAZjbqJpz/84Q9oaWvHxs1by2570b6cG/7www/juuuu0+X49YwomGMqxXCc4+DylHe6gZzo1hpeTjndORiGQVMgINvpjrI8sjyvWBAvJRQKYaZIy7CZcE6Mq3a603o43THYHU7d2xHqidlsxjm7d+PAycPLXjs4m/sbXHDBBarG7u7uxuTEOFLJpDSXUMLQYD/MZrOiVmWFOHHiBMLh+cWZjo4OdHZ2ahqTICoFOd11RFMwqDi8PMwKaJKRW2WxWGA0GnVzuhOJOIxGo665lPXESud0x+NxRaHlQC4E1u5wkOguwbzTjfy/FF5e61itVvCCAE4QkOZ5WHW8Bv3+D3/ARfteIyt1pLm1DZu3bscf/vAH3Y5fz2jN6U7wgFuB6NbudPMkuvMEQyHZ1ctFY0AXp3t2puBrM3kHXKmwdzgcMJpMkkutBS4Vg6eGXW6R8y64EAdjy6u1H5yNI+T3Y82aNarG7e7uBqC+bdjwYD+6Vq3S9B0Lh8PYvHkzzj//fOnnrN27VY9HEJWGRHcdEWpuUpRXBQDhLCfr5scwDJxOp359uhNxuFwuTXnN9QyvtWUYlInuRCIBu0P5arPd7kBCp+iG0xFJdOeXUKhlWO0j5m9neAEZXtBNdI+MjODVV17BxZdeJnufvfsvwx//+EdaqMEC0a02p5sXZBVSA/JOt8aIFAovn6epuRnhrLy5hyjO1RTnWkggEEAsGkUmk1n2mhheHggEFI3JMAw8Hq9UBE0LXCoGr9eneZxKs3v3bozEkssK4b0USeDsc3arnqOJonuwv0/V/oP9fViTH0MtfX194DgO3W/7F2z64D1ov/xGTI6P05yGqFlIdNcRzS2tyguppbOyV5ydTqduF6tEItGwoeUijAavW+mNUI3TDeRW/ukGVZxCTje1DKttRNGd4nhkeB5Wqz6i+49//CMYhsGei+W3ANu7/3KMjY3h5Zdf1uUc6hlRMMdU5nQnOEH2PSUnurV9T6mQ2jzBpibMylwsmc3m3l+tolvcf65AXvfszAxMJpPsRZiFeH1+3ZzuYMCveZxKc9ZZZwEAXllSTO3VeAZnna3eFe7s7ITJZMLgQJ+q/YcG+lW77CIjIyMAANfq7bC3rIWjYxMAYHh4WNO4BFEpSHTXEU3NzZjm5DsmWV7AXDojW3Q7nE4k4vq0j0rEY4p6Rp9u6OFsKXW6bTab4mPY7BReXoplOd0MwJHormkWOt1pXoBNp8rlDz/8MLZu34lAUH5I6+5zL4DNZqPWYZiv76E2vDxXvXzlCqnxAoWXiwSDQczIFN0zWf2cbgCYm5td9trczAyCwaAql9bv9+kkuuMI+GtfdK9duxZOux1Ho0npuXCGxVg8iZ07d6oe12g0omvVKgypFN2DA32aRffQ0BAYgxEmZ+59MHtC0vMEUYuQ6K4jmpqaEM7In0iIrrhc0e1yucjp1glBEDTldItjyCUXXq787223O5BMJstv2KAsq14OfRZUiMohLj6leR5pjodFB9EtCAL+/Oc/48J9ytrrWG027D5/D/70yCOaz6HeMRqNsFmtSKoU3UmWU+h0a/uektM9TyAQkBzscsxmWNhtVlWLwEuPCaBgBfPZ2TD8CkPLRYIBvy7Vy4V0DH6/T/M4lcZgMGDr1q04tkB0i//ftm2bprHXrlmDgb5exftFInOYnQlrFt2Dg4OweUNg8t9Ti6dJep4gahES3XVEU1MTptPL85uKEVZY0MTpdCKpk+uZjMdJdK9gTncymYTNpjyn22a3keguQaHwcoCEdy0jTvbFnG4134ulHDlyBGNjY4pCy0Uu3HsJHv/LX5DNKus8cTricjjUtwzLsrLDiQ0Gg+acbp7nYTDQFAkA/H4/5mR2TpnLcvDrUGDMn3eRC4nuuZkZ6XWlBPx+8DpUL+dTMdXnsNJs2bYNJ5LzqYknYimYjEacccYZmsZdu3Ythgb7Fe83lM8DX7t2rabjDw4OwuyZn98aLDZYXT4MDKhvZUYQlYTuKHVEU1MTYpks0jKdAqVOt9vl0rV6uVtFvtXphKbq5Qp3VhtebrXZKae7BIUKqS18nqg95sPLeaR5Hja7NscNAB577DGYzWacfc75ive94KJ9SCQSeOGFFzSfR73jdDgQV+F0c4KAlEKnW3N4OYluiUAggFgmi6yM6IHZLAu/T7sYFQXt3Ozs8mPMzqgO7fb7/RDS+uR014vo3rRpE3piSWmxuCeewrrubs3tztauXYtBFU73QH+vtL8WTvX2wehZ3J3H4msm0U3ULHRHqSPE9hhyq4iKlc7lttVwOp1I6OV0N3h4uR6NuhU53amUOqfbZienuwTie8AscbpJdNcu4uJTrpCaAJtVu+h+/PHHsX3nWarqVGw9cxecLhf+8pe/aD6PesflcqoKLxcrnssunKVDaz9BINEtIva3jsqIUoiwnOrQ74VYrVbY7XbMFWgbNjen3un2+Xy6VC/PJqLS36XW2bBhA2KZLKbyc8K+RBpnbNqkedy1a9dibm624HtUisH+XrhcLs293Ht7+2DxtSx6zuBpQW9fn6ZxCaJS0B2ljhAda7kVzMMZFmaTCR6ZvU2dTieSSb2c7lhDi26tOd1KK58nk0lY7WpEN4WXl2Le6c4hhplTeHntIjrdaT7fp1uj0y0IAp588knsPn+Pqv1NJhN27T4PTz75pKbzOB1wOF2qCqmJ+8i9pxgMBghaq5eT0y0hiss5GQv+c1kOPh1EN5APay9QSC06N6dadPv9frAaC6kJHAs2nawbp1t0lAcTaQDAQJrDuvXrdRtXdK7lMtDfhzVr12pqKcuyLMbGRpaJbou3GadO9akelyAqianaJ0DIR43obgoEZF/YqGWYfmgVZUpzulOplCQ2lGC12TE1TqK7GDzPg8F8CzfDgueJ2mRhTneaE+BSUWBwIUNDQxgeHsZZu89TPcau3efhJ9//dr7Wg7qJ5iuvvIKjR48uem79+vWaKhCvNC63C4lR5WHfiXyouBLRrbllGIluCW8+Rzsio5halBfQopMD7PP7EY3MLXs+MjerSXRnElEIPA9G5fsrivZ6Ed1iwbKBZAa7fAKG4knNRcwAYN26dblxe09h+46zZO830HsK6/P7qmVwcBA8x8Hib1v0vNXfhsEXfkPfX6ImIdFdR0jh5XJFd5ZFMCQvnxvIhe4ldcrpTibiqnponk5o6tOtcPuUyvByq82GdDqteL9Gged5KaQcmBffJLprl3mnm0dmwWO1PPfccwCAnWedo3qMnWedg6//57+jt7dXdR7j6994NfpO9Sx6rrmlFeNjo6rPa6VxutyqcrqVOt0Mw2j+jmpZIDndEEW3nPDyKCdI22vF5/MhUiCne25uVnVot8/nAwQBXDoBk13dHEWsfl4v4eUejwdetwujyQzCGRYplsOqVas0j+v3++Hz+dCvMK97cKAX5559taZj9/bmjmnxty563uJvRTabwejoKDo6OjQdgyD0hkR3HeFyuWAxm5U53Wuay2+Yx+l06tazOREnp3slx0inUrCqKaRmtSKVSiner1HgeX7RxFv8n9YiTUTlWOR0C4Jm0X3gwAG0tLWjubWt/MZF2LZjFwDgxRdfVCW6BUHA8OAg2q94H0K7rwIAhA/9CUMPfh2ZTAYWi0X1ua0kTpcLsyoujUkVoltzTveS734jo0h0s5xuotvv8yGyxOlmWRaJeFz1MUR3mkvF1IvuVHzRWPVAZ3sHRlJhjKRyVeg7Ozt1GXftunUYVBBezrIshgb6JZdcLT09PWAYAyzeJeHleee7p6eHRDdRc1DsRR3BMAxCAT9mZIruGZZHU0tL+Q3zuFwu3VqGJeKxhne6tSR1M4zy8HI1E2+r1UaiuwQ5p3v+MeV01z4Lq5dneGjuF3zw4EFs3nqmpjGamlvQ3NKKgwcPqto/HA4jm83A6m+D0eaC0eaSJpfj4+Oazm0lcTgcSKjony0WUnM4HLK2ZxgGArQWUhMoPDWP2+0GAMTZ8tED8Swnu45MObxe77LwcvGxWpd5XnSr79UtOt31JLo7VnVhLJXFeCrXdra9vV2XcdevW4eBvlOytx8dHgLLsrqIbru/GQbT4grs1gWimyBqDbqj1BnBYEh29fIwyyuqDpnL6Y7rUPVVQCLR2H26eUFbyzBATU63cnFhsVqRofDyogiCsCi8XGwdRqK7dllUSE0Hp/vVV1/Fhk2bNZ/XGRs349VXX1W178jICADA5A5Kz5k9uWv78PCw5nNbKZxOJ5JqRLcKp1trBwlBADndeaxWKyxmM2JynO5MVhLpWvF6vYhGI4vHj0Sk19QgiW4NFcxFwV4v4eUA0NbegSmWx2SGBcMwaFFgyJRi3bp16O+VL3D78wJdq+g+2dMDk2959JHBbIXd30yim6hJKLy8zmhuaUH4qLwcvpkMq0h0u1wusCyLTCajaaKayWTAsmxDi25AY59uhdun02lYVLxnFou28HJBEDA0NIRsNlvwdYZhsHr16rp1jHKF1JaHl1NOd+3CMAwsZjPSYsswDU53MplEf38/1q7fqPm81p2xEc89pa5t2Oho7ppvXii68/8XBXk94HSqaxlWlfByUE73QtxOZ9l8/AzPI8vzuoruWBGnW63oFoUyp6GCOZuMwWg01lU0X0tLCx7LcphIZxHy+2Ay6TP9X7duHUZHhpFOp2XNG/t7e2A0GjXnlB89dhzmQOExzP52nDhxQtP4BFEJ6nMm3MCEmpsRlhHiJQgCwqkMgsFg2W1FxAmN1mJq4v71dEPSnRXM6WZZFhzHwWJRIbqtFk2F1H79619j1apVWLduXcGftWvX4q677lI9frXJ5XTPPxb/TzndtY3NaplvGaZhAfHUqZwr071GmysDAKvXrEPvqVOqFmxEYb1QdJvsHhiMJkmQ1wMOh0OV6E7l/2ZyF1D0EsskuudxOZ1lne640n7qZcg53YvDwGP5x9UU3VwqBo/XV1efj+bmZkyncoXUmpvkF9gtx7p163KL7wN9srYf6DuFVatXw2w2l9+4CIIg4FRPD6yBwjnbZn87jhw7rnp8gqgU5HTXGcFgEC/LEN0Jjkea4xQ73QAQj8fg86vvsxmPxxaN14jkKt+uzLEymVyOlsWqPKdbq9M9ODgIg8mMtf9QWFiPPPhVDA0NqR6/2iytXi7+n8LLaxurxYI0zyPNaRPdAwMDAIDO1as1n1PnqtVIp9OYmJhAa2tr+R0WMDw8DKvLtyh/kTEYYPOG6iq83OFwICkjRHkpSY6H3WZVFDGjR5oUMY/L5UQyPVtyGzENQK97v8fjQTQyt6iSfDSac7rVuulGoxFOtxtsUltOt8frU71/NQiFQohlshhLZRDqkl9gtxximHhfbw/WnVE+Iqi/t0dzaPnY2BiSiThag4VFtzXYiVNPPU4dCIiag0R3nREKhTAro1fmTD7vW2lONwAkNfbqFvdv5PDylezTLTrVapxuq8UKlmVV35wikQjMNifca3cVfN3kDmJubnmf1XpheU73/PNE7WKz2vJ9urWJ7uHhYRgMBjS3qK9cLtLanpsgDg0NKRbdIyMjsHiWRy2Z3MG6Ci93OBxIyKxJspAkx8OuoGYFTbT1x+F0IZEIl9wmzirrp14Oj8eTS3lLp6XuHLGYNqcbAHxeP9h8TvfEXx/AxNM/l7Vf8wVvRfOet4FLxRAI1E8RNWB+LtgTT2Nrk36iu6OjA1arFQO98oqpDfT1Yv++vZqOeezYMQCALdRV8HVrsBPxWAxjY2Noa9N+7SYIvSDRXWcEg0GEU+XDgcW2YmrCy0WnWi3i/o0sugGNfboVTBolp1tF9XJzfp9sNqtq/0gkApOtxPtstiMSUe8oVJtcTvc8lNNdH1itFmT4FDIcpymne3x8HP5AUJf8x1B+ojsxMaF43+GRERhcy6/lBmcAQ3XkdNvtdrA8D5YXYDLIv8YlOR4Ou13RsWhhTF9cLhcSo6UX/MXUAblV5sshutnRaGRedEejMBqNmr7XXp8PE/liaFw6gWxkStZ+XDpnKHDJKALtPtXHrwaBQC56sT+RxsUK5oXlMBgM6F6zRlYFc0EQMNDfi3Xr3qPpmMePH8+1C/MXFtS2UK4d2rFjx0h0EzUF5XTXGcFgECmWK5sXN5PhpO3lIoaE6eV0N3p4+UqNIYpus1lNeHluH7V53dFoFAZL8cmw0erAXCRS9PVaZ2magOh6k+iubaxWa87pZjlNTvf09DT8GlJtFhIIhKQxlTI4NAxTAdFtdocwOFg/olsUYymF358Ux8PuUCa6ye3WF4fLhVSZyvNJXlnBu3KIrcdiC/K647Eo3G63pvc3GPBL1cuNVgfMnpCsH6M19/kV0nEEA/pcF1YKUXSnOF73Vmfr161Df1/5Xt1TkxNIxOOaw8uPHTsGR6h9WbswEYu/DYzBiOPHKa+bqC0ULd/zPI+//OUveOKJJ9Df349EIoGmpibs2rULl112Gbq6Cod6EPohiuiZDAu7vbjIEsPLq+l0N7LoBrRXL1csulU41aZ8MZNi1cfLEY1GwZQT3XODqsauBXieh3HB5E78L7lotY3VakM8zkEANInuSCQCl049h602GywWi6p0i+HhYZg3LM+XNHuCGD1SP+Hl9rxbneR4uExG2fslOR52tz7uKaEOu8OBiXKiu0JOd2LBnCQei8GlsTp6KBgAN5pbrGre8zY073mbov35dKyuenQDi8Px9W51tm7dOjz0uz+U3W5Ap3ZhR44cgSnQWfR1g8kCR7AdR48e1XQcgtAbWU53MpnEnXfeia6uLrzuda/D7373O8zOzsJoNOLkyZO4/fbbsWbNGrzuda/DM888U+lzbmjE1cqZMnlxsxkWFrNZ0YqzuG1Co+hOxuOLxmtEBEFYsT7domBWUw1UFOqicFdKJBIBLMUnWAaLHZFofYeXg1qG1R1Wuw3RfH6pljDUeDwOu10/sedwOJFQGEnEcRymJsalvtwLMbtDiEbmFI9ZLUTRnVJYwTzFK3O69VoUo8W1eex2O9Jl/hzi+2pXmApQDHHhXszjBnKL+lpbkvl8PiCjvksLl6w/0b1QaGvJhy/EunXrMDjQV/a+ONjfBwBYs2aNpuMdPnIM1mBpk88U6MCRI0c0HYcg9EaW071hwwZccMEFuOeee3D55ZcXnNz39/fjvvvuw9vf/nZ8+tOfxk033aT7yRLzzvVspozozrII+pW1tJgX3domcPG86NZrtbse0Vq9XJXTrUZ058Oz1IruublI2fDyhROmemNZeDkovLwesFltiOa7PGhxutPptKoChcWwWK2KUzkmJibAcdyidmEiC3t1r1+/XpdzrCSS6FYRXq7kfqJH1WI9en2fTtjt9rLh5en861oWuhYiiut4bN4ISMTjmhf0/X4/+JT6+xKbjOruFleahddBj07ROyJr165FOp3G+NgI2tqLO9AD/b1obm7WFAWZSqUwONCHzh1vKrmdNbQKrx5+TvVxCKISyHK6//jHP+JnP/sZXve61xWd2K9evRq33XYbTpw4gUsvvVTXkyTmmXe6Sxc0mclyCChciRWLk+jRp9tut8NolB8+eDqiNbxcLqLTbSqS31QKreHlc9GolOdWCIPFsWjCVG/wPC8JbYDCy+sFi80m9RTWIrp5nodBx+sYYzAoXrCRenQXcro9wUXb1DrzTrey70/O6ZYvtHQR3ZpjlU4vbDabJKqLkeaU9VMvx3xHlfk5STweg0cHp5tNqLsvCTyPTB063Qu/D1ojBZaydu1aAPNOdjEG+3qxJr+tWo4fPw6e52ENrSq5nS3UhaHBfiSTSU3HIwg9kSW6N2/eLHtAs9msOV+DKI7X64XBYMCsjPDyQFB+uzARl8slOdVqicfjDZ/PLWDlCqlJoluF0y1WZWZZ5W18ACAajZVxuu1IJRPgOOW9eWuBpU43s+B5onax6iS6dUfF50bsw212Fw4vB+pRdCsNL8/lFMtFEARoCjVCbnf6ns9jtVqRLrNglOYFmIxG3Rbc5+vMzM9JEjrML/x+PzLJqKr3l88kAEGoO9G9EL3nZ93d3QCAoYH+ktsNDvRhnUbRLeZp25pKh5dbm1ZDEAQqpkbUFLpVL4/H43j88cf1Go4ogsFggN/jwUy58HKWg19FWwin06k9pzsRh6OB87kBIKe5NbQMU7DtvNOtvK2RWaPTHYtGYSwhukVBHqtTtzvndM9D1cvrA5vNhogO4eVmsxmsyu9GIdS05hsZGQFjMMLkXJ6HabA6YLLaJWFe64gOaDnxtpS0oMw9zdXU0B5eTt/zecSOAKXI8DysKgp6FsNsNsNisSxyupMJncLL2SyErPKuHWJ/73oLL1+I3qLb4XCgtbUVA/2lK5gP9vdqzuc+cuQIrG4/TI7Seem2plXS9gRRK+gmuk+ePIn9+/frNRxRAr/Ph7ky4eWznICAGtHtcmkOL0/EYw1dRA1YWadbdKm1hJerdbrj8RgMpcLL86/Vs+heGJZHhdTqA6vVqovTbbVakU6n9DotZDJpVaLb5gmAMSx3DxmGgdUTqjunu1yY8lIygqCoOJcgCDAYtE1vGIOBnO4F5ER36etehhd0Fd1A3ghYMCdJ6CC6RcHMpZTfl7h8Lng9O92VqLezursbwyWc7kwmg7HREX1Ed5nQcgAw2d2weQI4fPiwpuMRhJ5Qn+46xB8MYK5MePkcy0v530rI3eC0FVJLJBINL7oBbdGNSvadF93KQ/pMxpw7rsbpFgQBiXiZ8PL8a9E6rWC+tAo95XTXB3qJbqfTiVRSn8rgue+LcsEwMjJSsIiaiNEVwOjoqNbTWxEkp1theHmaF5Q53TyvWXQbSHQvwmq1IlPmfcvwAsxm5RFXpXA4nYvyclPJpGbRKApmVo3ozjvdJLoXs3bNGgwO9BV9fWRoEIIgSKHoannp5VdhkSG6AcASWo3D5HQTNYTsq2M5AVevOZv1SCAYwuzQqZLbzGVZVTcFt8u1aFVZDYl4DK4GF916TNYUO90qcrqNGnK6M5kMOI4rE16emyhrrRNQLSinuz5pamqS/h9UEfEj4na7EdNpwSiZSIDnecWVg4eHh8E4i99/je4QBgaHtJ7eiiAK59+Nz+D2I4Oy9rmpuwVpXlC0eMLpILopvHwxZrMZ2TJ/j6zAw6pjtX8gt/C1KLw8mdAsGiWnO6n8uy264/UcXq5XobuFdHd34/Enniz6+tBgzgVfvXq16mNwHIeekyfQdNk+WdtbQl14+ZVXVR+PIPRGtuhOp9O4+eabsX379oKv9/f344477tDtxIji+AMBDJQIzxMEAXOpjCrRrZfT3fCF1HTo0y0XUTAbCoSflkMseKPG6RZDxkVhXQhDnTvdS6uXU8uw+uDf/u3f8K53vQsejwcdHR2qx/F6vYhE5nQ5p2h0ThpTCQNDIzC7u4u+bnYHMTj0gpZTWzFE4RxneYyl5F1zYiyHNM8rzunWWkjNYDCQmbAAs9mMbBmnm62A022325FKzqd4pJJJXXK6AZXh5XmhTqJ7MatXr8bY6AhYli1YX2ZkaBAMw6Crq3QBtFKcOnUKmUwaNplOt61pNU69+Lui50QQK43sT+HOnTvR1dWFd7/73QVfP3ToEInuFcLv9+NltvjNL8nxyPK8KtHtcrkwNagtPzCZiKMl2K5pjHpHqxOqpE/3fHi58puKMR9ermZyOS+6y4eXnzZON4WX1wUmk0lR141iBAIBzM3O6NKCanZmRhpTCaOjI7Dt3F30dbM7iInxMV3OsdIYDAaYTSaYGAatNnmROS6TERlOWXg5z3GaK2gbDEZaXFuA2WwGW9bpFlRFXJXC4XAguSDFI5nQ7nRLojupXHSzqRicbnddt0SthOhetWoVOI7DxPgo2juWC+uR4UG0trZqSvcRi6LZmuW55bam1WCzWfT09GDjxo2qj0sQeiF7ln7VVVdhdna26OuBQADXX3+9HudElMHn82GOLS6SxNfUrMQuLVqiBiqklkNbn275e4uCWc0kQNxHi+iWU728nkX3Yqd7/nni9CcYDCKbzSIej8Hl0tbbdjYcBqBMdGcyGcxMT2FViZxuszuIVDKBubm5unDfrBYLzgm48O2z5bcW/VrvhKLJOs/zMKqI/FmIQUVP9dMZs9kMAQAvCFIXh6VwgrrF31I47HakU/M53clkQlFRvULYbDZYLFawKRXh5ckYvB6fpuNXG7POCyNATnQDwPDgQEHRPTw4gK5V8hzqYhw5cgRmm7Ng+8RCLKxgTqKbqAVkXx0/9alPlXy9q6sL//3f/635hIjy+Hw+REu0DItk1Ytul8uFhEaBRIXUVLXjXTqCYqfboEJ0G4w5GalGdItCunR4ee61+q5ePv+YoZZhDYWYGx6emtIsusPhqUVjykGsSl6qkJrZM9+ru15Ed7nWU0vJcLyynG6OA6O1kJrRSOHlCxDFdJYXYDUWFt0sL0jRU3pht9uRSuXCy1mWBcuymkU3AHh8PlVON5eKIljHRdSAyohuMWx8bLRw+8Kx0WGs0hBaDuTEs615teyIHpMrAIvDjSNHjuDqq6/WdGyC0AOqXl6H+Hw+RNIZ8EVEmRbRvbRoiRqSiXjD53QDVXC6NeR0Vyq8nDEYYTRb6tbp5nm+4DtBorsxCIVygnYmL5i1EJ6egtFoVHRdlkS3p7izIwryemkblhPdCquXc5xi0W00apveGA0kuhci3itKvXOcIMCis6Cz2WxI5Z3udF586xEe7fP5VbYMiyMYqG/RXYk0FI/HA7fbjbGRwqJ7fGQYnZ2dmo7x0iuvwhyUL9wZhoGtaRW1DSNqBtl3pYsvvnhRePmvf/3rRW0ciJXD5/NBQK4YTSGiGsLLXS6XZoEUj5Po1h5+LN/pFieGapxuUahrcrrNpSfDJqu9bkX30veAwssbi+bmZgDA1OSE5rGmpyYRCoUUVdUeHs5NYEs63flQS3HbWsdisSjq083yAnhBUNTfnNMjp5uc7kWIf0+2xHvHCQIMKlpXlsJutyOTF9vpdEp6Tit+v091IbWA36f5+KcjHZ2dGC0iukdHhzUVtRQEAcePHZVdRE3EFOzCy6+S6CZqA9l3/yeffBKZTEZ6/A//8A910xv0dEOsfhspktctPq+0NQ2gn9Pd6OHlgLbVZCX7iq6rmhY5Bg1Ot1jl3mAu7ToYzba6Ft0GKqTWsIhO9/SUDk731CSa8iJeLsPDwzCarTDai4e2G8wWWF3e+hHdVmVOt7itUqdbTTeHhRhJdC9CiopCKdGtrrZIKWw2myS2xX/1cLpDAXVONzLxuu7RXUk62tsxMbZcF8RiUcRjMU2ie2RkBPFYTMrTlosttBonjh+nezZRE6iOv6IPcPUQxXS0iOiOZnOr/GqEr8vlQiqVUj3Z4DgOqVSq4UW35u+HoNzpVjPZEYW6mnBpOTnd4uv1KrqpZVhjYzab4fP5EJ6e1DxWeHoKTSF5BYBEhoeHYfM1lV2Es3hC9SO6LVZkFTjdmfx1UEkeqh5Ot9FklOplEAvCy0u8dTwEzQXslmK1WpFOpwEA6VRaek4rfr8fggrRzadiJLqL0N7ejonx5aJbFOLt7eq72hw9ehQAYA0pywu3NXUhEY9haGhI9bEJQi8op7sOEZ3uWBHRHWM5eJxOVU6rKJbVVjAX92v08HJAY043w8gW3aIAVPN+SxMpFSIykUjAaLaAKTPJYszWuhXdS/utk9PdeARDIcyEpzWPMxOeVlREDcg73a7ioeUijDOIwcH6mFRaLZaSIcpLEbdVIrRYloVRYxVtyulezLzoLv7e8UJusUJPrFYrMqLozjvduonutLqWYfVQsLAatBdxusfzz7W1take++jRozAYTbD6lQl3MRz92LFjqo9NEHqh6K70hz/8QRJ8PM/jkUcewSuvvLJomze84Q36nR1REMnpzhYPL/e41VXaFcVyIh6D2608PD0Rjy0ap1FZKtZUjKBIdDMMo0p0ixV+1eZ0m0oUUZOOYbZJoej1xtI+3eIqJTndjUMwGMRMvt2XFmZmwjhz6yZF+/QPDMIooz2O2dOE/sFBtae2opitFsm9loPoisvN6RYEASzLam5dZTSZkI5rd7pZlpXaudVzb2cpKqrENrwgqEpzKoXVakUmkxPd4r96iW4upXwxOJuIktNdhJaWFkxOTuTvm/M3zqnJcQBAa2ur6rGPHj0KR6gTjMLvkMXXCoPRhGPHjuGyyy5TfXyC0ANFd6V3v/vdix6///3vX/SYYRhaGV4B3HlBHSvyt46zHFxun6qxRadbrTOZiCcWjdPIaCkQqqR6Oc/zqidzBiY3QVLj3CYSCRjMMibCpvp1unmeX9STVpxIkNPdOAQDAUTmZjSPMzcTVjxZHxwcgnnV+WW3M3tCGHr5ObWntqJYKxxeLi6IaW1dZTKZdAkvf/Nb3orf/Pp/8da3vQ0P/OxnmserFpLoLuV0A2CYSojuXD2hbP5fPUS3z+dDNqGsTzefTYPLZkh0F6GlpQXJRALxeGxRi8XJ8XHYbDZp7qqGI0ePwhhQnhPOGI1whDrJ6SZqAtlXR57ny/6Q4F4ZRBe5ePVyHh6vcpcamBfLSdWiO7ZonEZlJauXL11VVoKWnO5EIlGyXZgIY7LWrdO9tGUYs+B5ojHwer2IRiKax4lFo4rCUnmex+joMCze8iHpFm8zwlOTUu5rLWOyWJBVcH1kFTrdolDWnNNtNCGTzWoaAwCG863cRkbqu/CstOBYYhuhAoXUrFYrsvn3IZvJSs9pxe/3I5uKQ1Awb+WSOZFO4eWFEZ3sqYnF3R6mJifQ0tKiqbjssWMnYFXQLmwhxkAHjpLoJmqAqud0f/Ob30R3dzdsNhvOO+88PPdc6dX62dlZfPCDH0RbWxusVis2bNiAhx56aIXOtjYwGo1w2u1FC6nFWQ4er0/V2HrldDe86C45NZGDMqdbbUifFuc253SXn/wYzFZEY/XpdC9NExArmZPobhzcbjfiMWWO2FIEQUAsFlXk9ExMTIDNZmH2lBfd5rwwr4diQRaFOd1ZhU63KNBM5tpwusVra71fM+bvFcW3EaB+AbgYFosF2WzO4c7k/1XSPq4YonDmFOR1s/nCa+R0F0asWbG08GR4ekpx54aFpFIpDA8NwBZS1+fbGujAkaMkuonqU1XR/dOf/hS33norbr/9dhw4cAA7duzAlVdeiYmJwj1RM5kMLr/8cvT19eHnP/85jh07hnvuuUdTG4J6xe1yFnW647wAt4p2YcC8i55U6Uwm4lRIDdDudDMKxtDidDManW7GJEd025BIJBWPXwvwPI+Fvo1YvZzCyxsHh8OBVL5PsFqy2Sw4joPD4ZC9z8DAAADA4is/WbV4mxftU8uYLRZF4eXitnJFtyiUTSb51c4LYTKbqXr5AmQ53Zi/p+iFxWKRCqmJ4eVKKtkXQxTOXFK+6BZzwEl0F0YU3UsLT86Ep9CssIjkQk6dOgVBEGBVEV4OANZgJ0aGBusiEog4vdG2FKyRL33pS7jppptwww03AAD+67/+Cw8++CC+973v4ZOf/OSy7b/3ve8hHA7jqaeeki663d3dK3nKNYPL6USCKzwRTPDqRe98TnfuRvSdb30V3/vW18ru996b/wk33nwLOd0LUJKXvWxfBbvyPK86gVyr083IdLoTM3UcXr6wT/eC54nGYGGfYLWoqbrc398PYF5Ql6KuRLfZDCVB22z+2iS3MJrkdGsspGYyGqWxtCDkFw1K5ULXA/Oiu/jvIQjqumiUwmw2z4eXZ/UX3WwqCrnfSgovL00wmOu0MD01tej5mfA0tmw8Q/W4J06cAJATz2qwBjvA8zx6e3uxaZOyYpYEoSdVE92ZTAZ/+9vfcNttt0nPGQwGXHbZZXj66acL7vPrX/8aF1xwAT74wQ/if//3f9HU1ITrrrsOn/jEJ4rmEaXT6UWrWxEdcvNqAafLjXiksJBJ8Lxq0b3U6Y5FoxgbHSm7XyyauxmR051Dj/nVijjdGkR3PJGAYCwf5mcw129ON7UMI8xmM1iN4ouT3Ff5t9z+/n6YrHYY7eWjlgxmK2zugCTUaxmTyVSyAvZSOLXh5To43XqI7tMFOfcYQeZ2SjCbzRAEARzHSd9DPUS3FF6uyOnOzXPI6S6M2WyGx+PB3Ozibg+z4TBCofJdGIpx8uRJmKx2mFzq/u7WYM4hP3HiBIluoqpUTXRPTU2B4zi0tLQser6lpQVHjx4tuM+pU6fw5z//Ge985zvx0EMP4eTJk/jABz6AbDaL22+/veA+d911F+644w7dz7/auFwuJGYKi+EEx6t2mi0WC0wm03y/bbcbrW3l+yK68rmKiUQcJpNJVc4Vz/O47PIr0NtXfOLodNjx4G9/g9WrVysef6XR1KcbdSC643HZOd3JVP2Gly/O6c49oqKRhBLE75eS72l/fz9sgVbZ+5h9zejr61NzeiuK2WwGq+Byw6oU3VqFmcmkj+gWnWFaqFOH+D6y2SyyrH6iWwovTykQ3ckYLBYr7PbyBUQbFX8ggNmZxd0eZmdnEAgEVI/Z09MDe7Bd9TzH7ArCaLbi1KlTqs+BIPRAk+j+wAc+gH/7t3/TtIKlBJ7n0dzcjG9/+9swGo04++yzMTw8jP/v//v/ioru2267Dbfeeqv0OBKJoKtLXQXEWsLpdiHJFfYLEqx60Q3kQsPFKuQ33nwLbrz5Ftn7JhNx1cc+evQoHv3zI/DvuBxmd4ELtCCg/+lf4I9//CNuuukmVcdYKZb2d1Y+QB2I7kQSBrO3/DFMVqTqVHRzHAfjgr8t9eluPHIpBtrcOzVdAnp7e2F0t5TfMI/R04JTvb2Kz22lMZlMULJkxfHqwsvNGott5Qp4kdO9lJVeO5BEN8uCyxeP1UN0u91uGAwGKWRcDlwqBre3/D2vkQkEApidnRfdgiBgVkW7xIWcOHkSBm+b6v0ZgwH2QBt6enpUj0EQeqBJdP/4xz/GRz/6UVWiOxQKwWg0Ynx8fNHz4+PjUtuBpbS1tcFsNi8KJd+8eTPGxsaQyWQKuqtWq1WX9hK1hsPpQqRIMZokyyoq2LMUl8ulOhw4kUioDi1/9tlnAYZB11UfhtFWWLgneg/gqaeeqg/RrWF/hlEmhKshupOJJAy28vmmBosVaY2FqKpFMaebRHfjkMlkNAs4c76fvRIRd7KnF2b/BtnbW/yt6Ol5RvG5rTQmk0lyr+UguuJyW1HpltOtQ1oBMJ/TXe9Ot95h43IR30eOYxcUydMepGkwGOD2eBU53WwyCp+PQstL4ff5EJ2blR4nEwmwLKtJdJ/s6YWldaem8zJ6W0h0E1VHU5lJLTcRi8WCs88+G4888oj0HM/zeOSRR3DBBRcU3GfPnj04efLkognv8ePH0dbWpksLiXrC6XQiUWTen8hqE90OpxNJlS3Dkok4HCqd7qeffhqu1jVFBTcA2Do2469P1/7EEtAeXi6XnMDXNiFSVUgtmQRjlpHTbbKCzVdvrjd4npfahAHkdDciyWQSVqtN0xhWW25/uYuZgiCgv78PVr98d8fqb8PIyFDNu7NGoxGcgsuNmNO90k63mXK6awLxfc91AGBhMBh0WwDw+vxgFeV0xxAIkOguhc/nQ2RuTnocicwCALwqIwR4nsfw4ICia2EhzL5W9PTWfs0L4vSmqi3Dbr31Vtxzzz34wQ9+gCNHjuDmm29GPB6Xqplff/31iwqt3XzzzQiHw7jllltw/PhxPPjgg/j3f/93fPCDH6zWr1A17HY70gWEUpYXwAmCJtHtdDoRj6sT3fG4+vDyx5/8K6ztm0tu4+zaihPHjiIcDpfcrtro4WqspNOthlQyCYOslmG5yW8yWX8h5hzHLbpIin+uelxAINQRjUalmhVqMRqNsDsciMXkTfAnJiaQSiZg8ReO+iqExd8GnuMwODio9jRXBLWiW67Tncm3lbLIWBAshclslsbSQr073CLVcrrF953nOLAsq4vLLeL3+6TiaHLgklEE/T7djn864vP5JKENQBLgakX3yMgIstkMLD75qTaFsPhbMdDfd9p8H4n6RNPVKxqVf7EqxLXXXovJyUl85jOfwdjYGHbu3Inf//73UnG1gYEBKRcOALq6uvCHP/wBH/nIR3DmmWeio6MDt9xyCz7xiU9oOo96xG63I1UgvDyVz/PWUujDqdHpViO6Z2ZmcOzIYax609+XPrdVWwHkXPGrrrpK1TmuBALU51kDygupVYNkKgmbjEJqYi/vZDJZd1XteZ5fJLqNFF7ecMzNzcHl1p7H6fF4MTs7K2tbMQzSGihfxFJE3Lanpwdr165VfH4rRU50KwkvVye6Ned0my26iG6Rep/sV+v8RZHNcix4jpP9OZBDMOBH/5h8p1tIxxEIdOt2/NMRj8cjdbMBgFg01zFIregW2yBafPIXIAth8bUgmYgjHA5Lrc0IYqWpap9uAPjQhz6ED33oQwVfe+yxx5Y9d8EFF+CZZ+ojvLiS2O12SWAvJJUXAzab+nBIt8sltf5SSiIeh1uFsBLbxLlWbSu5ncXfBpsngL/+9a+1Lbo15nSLY1QaLTndmXQKdhlteQym08fpNix4nmgMpqan0dy+SvM4Xp8f09PTsrY9efIkgNz1Ti4WbzMYgxE9PT24/PLLVZ3jSmA0GsGV6PW8FF5hTrcolLW2DDNbLEin05oKVQLz19Z6F93VYqHTzfF6i+4A+D75Fa2FdIzahZXB4/EgHpsX3fF8dI/HU771YSEk0e0tXz+mFKJTPjAwQKKbqBpVDS8n1GOz2ZAu4HSneb2cbnWF1JKJhCqn+8knn4TNE4CljLPDMAxsnVvx+BNPqjq/lWSlcrqrRSqVkt0yTNy+3uA4DguneNQyrPGYmJhAMNSkeZxgqAmTk5Oytu3p6YHNE4TRIv86zhhNcARaa75YkNFoRJEaoAVRGl6eTqcBABarPsXvxOJdauFJdGtivvK/oLvT7ff7IaSVtQwj0V0at9u9yOmO5p1ut8oUnYGBAZjtzpK1fuQginZRxBNENSDRXadYrVakCzjdmXyynJaK7U6nE4mE/BvRQpJJdeHlf3n8Cdg6t8pyFJyrtuH5556TJle1iB7zq1qepHEcB45lZeV0M/XudC/4SBpJdDcc42NjCDVpc1kAINTcgtHRUVnbnjz5/7P331GSZPWZN/6ET1fetqnuam9npsfhRggWjUCLE1qBEIvTYHYFYoVZVlp+8oh3Ja10kECLYIUYzb46u8yAFvRKIIFghJmBQYz37X35qsystOHj90fmjaqsShPmRlVk1f2cM6enMyNu3K7MirjPfb7mfMcNyGYIAztx9uw53+dtJDXR7cPpXnWeF9zw8pA53ZIsNYwXFNfp9rPTwHAhn7tlWbV0H57esrW/vx+2j+rlRrXIRHcHat1vyu73nhg4QVPLrl+/DqU//P1XTPWDF0RMTU2FHovBCMqmh5czgpFIJKA1WfhrFMLLa6I7mNMdpJCapml45OGHMfJT7/Z0fGbvDZjSNTz66KN4yUteEmSakRNWMPvJ6d4MiGvNe6leXj8mzpskrbBMs6FPt8AKqW0risUiCoUCxnasCOC/+uyncPdnP+3p/He971fxnvd9EAAwvmMnnn/6cU/nnT57DuLALt/zlQd24kzMRTfP874KqRGB7lVsuU536D7dijte0OKgANwdWMdHSH23EkWElut0OzZs26budHutXu5YJgy1wkR3B9LpNCzLgq5pUBIJlMslSJIUuLf6tevXwWf8tyVeC8fzSPSPxL7QJGNrw0R3l6IoCvQmC3+9vpseZsGx0YXUHn74Yei6hszeGzwdnxw/CCmRwgMPPBBr0R2m2GvcRTdxrYmL3Y7udrpNiKtbhjGne1tx/fp1AMD4+IoALhWLmJ2Z9nT+6jDL8R27cP3aNU85wufPnUP6Nm/3w9Uog7tw6clvUncEaSIIgi/5GTSnO6zTTZ6hYTcLyaaB3SQyjdEZ8j12bBu2HS6/fi0DAwPQK0U4tg2uw++LWXfEt4LoDlunoB1k/VeplKEkEqiUS6E2ra5euw4xQycHW8wMYXra272bwYgCak/lCxcu4BWveAWt4RgdkGUZhmWvE2aGQye8vFoJJpCqlarvG+wDDzwAMZFCcuyAp+M5QUBq93F87/vfDzLFDSFs7+y453S7TrcH0d3VhdRMyxXaAHO6txsk/2/XxEohtUxPD8Z37PT03+pWYzt3T0BV1Y553UtLSygs56EM+Xe6laFd0DXV3SyIIxzH+QovJ0d6FQkrOd3Bn4HAitMdNrycdDqI8yZqnFnJ6bZr4piy6HYcG7beObLPqhbdc7qdKJ9fZP1XrdZ+pqqqhhLdM9MzkHoGqcyNTw9gioluxiZCzekulUr43ve+R2s4RgckSYIDwHLQ4MQZdVsgaCgPsPFO9/cfeADp3cfB+QgbS+05iQce/EpsHZ2wy6u4O91EdPtxursyvNwyGwqpifUFX9jiSozu4MqVK+B5viG8/D3v+6AbMu6HXbv3uGOOjrbOUTx3rhYeHlR0A7Wc8D17wldcjwK/9+sg4eU8z4fu57w6vDwMROBsh406B/Q3jFd32LAdus97IqDNaglCon3OsVXdOk63ZVlU+52vJpVKAVhZI6jVCpL11/ziOA4WFuYwfjMlp7tnCNevn6UyFoMRBM+/dZ/+dPscNlacYGMhoW+6bUPkV2SBTkl0VwKK7opP0W3bNh78wQ/Qc9vP+7pOeu8NmPmXe/Dss8/ihhv8h2FGTdiWYRsluoNew3W6ha3dMsw0TIirKqmx8PLtxeXLl7Fj565Q91PC7j17AQCXLl3C7bff3vK4lR7dAXK6+8fBcXysI89qOd3ROd26rje43EFz8En187BON7lXmOyeEYjVopt2WDQR0Fa1AAy07wNtqVvH6TZNM1Q0ZDuI6K7W285WK5XA3XRyuRxMw4CYofMzlzKDmD83R2UsBiMInkX3hz70IezYsaNlrnDYBxPDH2SXcm1BGrKYCbNITKVSMAwDhmH4Goeck/Kxq/nss8+iVChgfM8JX3NM7zoKXhDxwAMPxFd0h8np5jbW6fa7kHGdbi8tw7rY6TatxkJqACDyPBPd24RLly5h18ReKmP19Q8g09ODK1eutD3u/PnzSPQMQlD8u0O8KCE5OO665XGE4zhfkUDkWD9OtyKv3JeC5uATpztsq0NXdLPomEBsiOhWO5sM5hZzuqOCFPHVNLX+pxZYdM/N1QSylKbzMxfT/cjnsjBNMzKnn8Foh+dv3d69e/FHf/RH+IVf+IWm7z/xxBO49dZbqU2M0R4ihs0WOd1hnW6glpMjSX2ezyM5PH6c7gcffBC8ICK9+5ivOfJyAumdh/DgD36A97///b7O3QjCOt1kDC9EVRClHSs53R6+Z7wAjuO71uleL7o5GIaxSTNibCSXLl/G7j3eak10guM47J7Yi8uXL7c9Lmi7MILYvwPnY9yrm+M4Xy0V/W4+qqra4HSTHHwvrM7BJ2OEDi+vi+3tsFEXZXh5q7+HYcXpLnY4suZ0C6IYrpJ9TIjyu0gENvm90TQVqYCim9S/oOV0i+l+OI6DxcVFjI+3j2xgMKLAs+i+9dZb8eijj7YU3bUHaXxzULcaZJdurei26uHlYXbxXNFdKaO314foroek+3G6f/CDHyC98yB42X+Ls8Tu4/j+Aw/6Pm+jCB1ebnuvdhv0dy9seDnnIbyc4zgIktydTrdpunncBIE53duGq1eu4AU/QS9Me9fE3o5O97nzFyD07wh8DWlgB86di7no9uF12/AntDRNawidDZqDryjEsQt33zLM2gad2eUbda7j7PG4bqCvr7a+MVUPortaQm9ff1f9+1qxEU63Wt9k11Q1cCi7K7pT3teh7RDT/QBqxSqZ6GZsBp4rUnz84x/Hm970ppbvHz9+HJcuXaIyKUZnSPuUtblxVv2RGKaXpZuT47OCOTnez07wAz/4IRK7jvu6DiG95wSmrl2NXQsIImTDPJz9hJfTWAT4HYMsRHkP4eW147pTdBuG3lCoEKgVU2NO99ZH13XMzs5i564JamPu3LUblzuI7ouXLkHpkF/aDmVgBy5duhDbTfAg9ys/56iq6oaGh4HkdIcNLzcNA5woueK722n3rYqyF3kU32dBEJDp6XWLpLXDqhbR19dPfQ6bQZSimwhsXSdOt+YKcb8sLi6C4/iORe68IqZr4r1TBwkGIyo8i+7jx4/jtttua/m+JEnYu5dO7hujM0RU22ueQyTHm4rornZuo7EacrxXp3tubg5XL19CeiKY6M5M1PLAf/SjHwU6Pypc0R1iDA7+IkeiXOw0w4/TDQCCKIdevG4GptlYSA2o5XSz/Mytz9TUFBzHwc5du6mNuWPXbky1aeelqioW5mYhDwR3uuWBHSiXSsjlcoHHiJoo71aapkEJuMhfDU2nm5eTW8fpbvPhOQ7Ah1h7eLk+bfr7BzyFl5tqEUNDdFpXbTYbKbp1XQvsdGezWcjpno491L0iJmvpI3G+NzK2NvHrtcTwhCu61yxfiFALI7pXh5f7wW94+b/+67/WrhdQdEu9w0gOjG1J0c3D385+2PDywE63h5ZhAMCJUlc63aZhQFrzs5FYTve2gETQjHnMB/bC+I5dyOfzqFSab2iS0HO5P7jTLQ+MAUDH3PGtSs3p9nZfagetQmqGbkCQU9CN7i42uxJe3vpZ46C7wsuBWl63pXpxuksYHuz+ImpAtEVaXdGt6fU/w4luMdVLbW7EMc9ms9TGZDD84El0/8zP/IwnYVMsFvFHf/RH+MxnPhN6Yoz2kEqua6uXkyzgMA++FafbZ3h51V94+Y9//GMkegch9bXuWdsJZcdh/Ohffxz4/Ciw67nYYauX2x5zujcjvHylT7c3p5vvUqfbMJo53Ux0bwdmZmYAAKNj9HL/RupjkbHXsiK6g98T5b6xhrHiSJSR75qmQVYoON2J8E634zjQNRW8koKhdbfo9lo9nrbojjpNYnBwAKYHp9vRSluicjkQrdNN6gkZ9U0mw9ADi+5cLgdBoRNaDgAcL0BOZpjoZmwanqptvelNb8LP//zPo6+vD6973etw2223YefOnUgkEsjlcnjuuefw4IMP4h//8R/xmte8Bn/8x38c9by3Pa1CvUi4udcHZDOI6FZVf6KbHO/Z6f7xj6HsOBxug2DXETz20L2wbTvUv5kmK053iJxuAI7jvZBaUIIuaDRNAy+I4HhvERWc0J1Ot2EakLjG26TEcrq3BQsLCxBFEX399Bbag0PD7tgHDqyvin716lWA4yD3jgS+hpjuhyDJuHbtWuAxoiZKM3Rt9fKgiKIIQRBCbRaS+4SgpKDqGvWWVxuJl/By24lOdHMcB57nqYvwocEB2Nevdp6HunVEt9cN/SBwHAdZlt02wn5bz64mn88DAVontkNMZrC8vEx1TAbDK55E97vf/W687W1vw5e//GXcd999+Mu//Ev3S8txHI4fP45XvepVePjhh3HsmL/WT4xgtAr1In8P8+AjLR/UFiGQrSDHe+nJ6DgOHnnkUSRveq3/Ca4iufMwpkslnDt3DkeOHAk1Fi3IooAP43SDg7M2Yb/VsZuwiNM0zVu7sDpdK7oNEyLX+O9kTvf2IJvNon9gkG6LosFaTujS0lLT969fv45EzyA4IXj3CY7jkOgbwfU2ueNbGVVVkUgEa1G0FiWRCCW6SfSXUM8lDVNUarMhm9rt5JqNcBv+Tcd0I8c4cBxHXTAODAwA2nMdj7O2kOiOGkmSVpxuXQ8uupeXwSt0W7QJSrom5hmMTcDzk11RFLztbW/D2972NgDA8vIyqtUqhoaGQvWEZgSj1a4z+ftmhpd7Ed3Xr19HPpfF/p2H/E9wFakdBwEAjz32WGxEt7tICDGGn/ByYONbhmmaBsFjPjcAoEtzunVDh8g37rRLHOfu4jO2Lvl8Hj299PIJAaCnp1Y9t5XTMjU1Bal3OPR1hJ5hTE1NhR6nG6mqKpRkT+cDPaAodEQ3KeBUqVS6VnSvFG9t/cywEa6eTDNWO91+C4x6YWBgAJbWuX6NUS12vei++dQpPP7EE57WaGGQJMktHGgaRuAaC/nlAniFbvE6TkmhWOycTsBgREHgLcm+vj6Mj48zwb3JRGFyiqIIURR9h5dXqxWIoujpO/HUU08BAJLj60Ms/SCm+pAcGHPHiwP0wsu9O91hFyJBCqn5cbrBd6voNqCscW5kJrq3BeVyGak0vXxCAEjV612Uy80X+dPT0+DT4ReZfHoA12PWSpEQ5F7l5xxVValULwfCi25SMI/0Gfa7kR0nWtWRWU0UhdTcyDGep/KsW8vAwADMSnsR5tgWjGq560X3t++/H88//zzGxsYivU5NdNc6fJhm8PDyYrEEQaYbXs5JSZRKnQvnMRhREDyGjbGlSSaTUH22DNPUqucd1KeeegpSMhOqiBpBHt2HJ598MvQ4tFjZmQ8+BgfAtqMrdrLuegEKqXktogYAEMSuLKSmGyakNXkCEs9E93ZAVdXABYBawXEcFEVpKb6mZmYh9gRvF0aQeoYwPf1s6HGiwHEc8D42JP12cqDVpxsAlETrz8oLRHQLddHdarOlGyCiu131csuJ2OnmeepFwPr7+6FXim3z7Ul18/7+fqrX3mgGBwcxOBh92zNJWulLHyanu1wqgR+lGxnCyQksFwpUx2QwvBKPylMM33RahITdDU6lUlCr/kRStepddD/77LNIjk5S2RVXRvbi6Wc652RtFO7OfIgxeJ87+psRXu4rp7sLq5dblgXbtiGvEd0yBya6twGmaUIMkVvdCkEUW6aOzM3NQUyHd9PEdD8W5udCjxMFNXHj/fggG4K0QrgVJREqQoc4alKm9pl2s+gmYtps88ywQF90E5HN8wJ4Phqn27Et2HrrzRVLLbvHMjojSRIss+Z0W5YVWHRXqhXwMt1QeF5KoFLp3ogTRnfDRHeX0iqEmXdzvcM9mBKJhO/wck1VPYvup599DtLQRJCprSMxsgfXr12JzYKGSsswALYVfcuwMH26OcH7g5QXJFTV7govJ4ttiWu8TUoI10aI0R04TjtPLzitQmQdx0F2aQliui/0NcR0H5bzOZj1hW+ccBzHV+INOdbrM01VVSiUclYTIQupkWeSWBfd3RzWSlpBtQsvtxzHPY4W5HnK8zx4no+mkBrQtle3VW8pxkS3NwRRbHC6g34n1GoVvEQ32oiXEiiX/UVxMhi08CW6LcvC97//fVb5Lwa0EnbcmveDkkgmoWn+FhuqWkXCY+Xy8+fOQRmmJLrr4v38+fNUxguLu0gIkdPN+yykttHURLf34iicKEHtMqFKhLWy1unmaxtMjK2NJEmwLPqi1WyxCK1UKtA1FWKqP/Q1yBhx7EfrOI67OewFv6K7Wq1CodCnG6hVLw8TXu463T1DDX/vRrwUUovW6a6Jbtrh5a7obtOr26wLcia6vbG6kJplmoG+E47jQFOr4P0UbPUAJ0oo++zMw2DQwpfoFgQBr3zlK5HL5aKaD8MjK053I0QfhBVsyWTS9w6/pmmenO75+XlUyiUoQ7uCTq8BuT7OuXPnqIwXllafjR84cLD85HRTDrnrhK7rgI/QW06Qui4km3z/14WX8zzULi6IxPBGIhEutLgZtm1D07SmueKkjZhIofK2mOptGDNO2Lbtz+n2+UzTVJWa6JZDFlIjVZKJ6C50cS4p2ShqG17uIDqnW+DB80JkotustnO6t0ZO90YhiiLs+udkWmag8HLTNGv3CsqimxdlFqnG2DR8h5efPHkSFy9ejGIuDB+QB5GwxjEg4eZhw8trhdT8h5d7yaW7dOkSAEAeCF8wCKhVhpUSKVy+fJnKeGGhEl7O+ateHpYg4eXgvS+ueFGC2qXh5fKa6uUKzzGnexuQTqdRKdN1Jqt1hyWTWV8VnbjSQiq86CZ9oePqdPu53fA+n2nVapVaTncikQzldC8vL4MXRLd6eTeLbiKcTLv152A6DvWONlGHlxMhbbdpG2apJXAch17KLQS3KoKwsjliW1Ygp5s8f311SfFAzQDorrUIY+vgW3R/4hOfwEc/+lF87Wtfw8zMDAqFQsN/jI3BDbla8zox5cLuBicUxfeNSdNUJD0sdq5cuQIAkPvotK3gOA5K/5g77mbjFlILIYb9VuzdaDRNA3zkdHNC97UMc51uofFzVJjTvS3o7+/HMuVUqkKhNl6zMFWStiUkwrcpExK11mSt+oFvJn6dbj/PNMdxauHl1AqpKaiE+F0vFAqQkmlwPA8pkY7l5+EV4mAbbZ5LpgPqopt87gIvQBDFSKqXAysh5E3noJaQ6el1K7gz2iOKIkzidAcMLzfq4emcj819L3CC6I7NYGw0vr/Nr371qwEAr3/96xvcMdJugfYNkdEcV3SvEXbE+Q4tuhMJ6D5FkqZ5c7qvX78OUUm6C0Ma8D3DuD41RW28MKzkdAeH5zjPhdSAEAI9cPVyHZzf8PIuFd2JJk636rPeAaP7GBoaQj6XhRXQqWlGvu48Dw0NrX+PiG4l/H2RCPc41l+xbXtdhFY7/ERvkZBUmjnd+aXgVeDz+TzE+mchJTNdLbo3y+kmxQB5QWhwUGkhyzISyVTbnG6rWkRvb/gCh9sFQRDc8HLLsgKlHLiim3IHCY4X3HxzBmOj8f1t/s53vhPFPBg+cXd/16xdBEpOt6IoyJd85nSrGgZ6Oud0z8zMQOkdphIWTRB7hnD12nVq44XBDS8PMQYPuA+tTtD8OXpF0zVfuVacsFLNtFtwRbfQKLoTAnO6twPj4+OwbRvZpUWMjNKJypmfm3XHXguJFKOxGclLCXC8EEuRZ9u2ryggP3VKSCg4zfDyMBE6y8vL4OufJ59Ix3ITxCtETLdzug2bvugmaxlRFCEItXZ77XpqB6G3r89tC9Z0DmoZI6yImmdIwTvHceA4TqBNS7fzAkc3uoCLoC4Ag+EV36L7ZS97WRTzYPhkRXRH43QrigIj62/BZugaFKW/43Hz8/MQ0p2P84OY6sf81dNUxwxKq3x7P3Ac17ZK7Gajqho4wfvClhclVLvM6SYL+LXVyxWeR7XMnO6tzs6dOwEAczPT1ET33OwMgNaimxclKtV6OY6DlEi5hbziRNDwci+im2yU0QwvD5PTncvlwCk1p5tPZLpadMty7XvZrpCaYdvucbRY63QDwd3TVvT29mG5Q3j5wEA/tettdYjT7a5TA4hu17ygHdIfQV0ABsMrge5a+XweX/jCF/D8888DAE6cOIF3vetd6Otj4TcbBXkQiWuEHfl72P6sSoCcbl1vXpV3LQsLC+AS4YsFrUZM9yGXXaQ6ZlDIgybMRnzsW4bpOjjBe+5pN1Yvd10zvonTrTGne6uzd+9eAMD01DWcvOlmKmNOXb+KHTt2NBUmxWIRUiJF5ToAIMY0h9iyLPA+7o2kkJqXjeQVp5tOn24l4b+Lx2qWslnw9XQBTsnEsrCdV8iz3WgTXh6F6HadbkFc6RVOWXQPDPQj2y68XC1hkFLh1+2AKAiwHXvFgAghusPFDK6H45joZmwevreQHnnkERw4cAB/+qd/imw2i2w2i09+8pM4cOAAHnvssSjmyGhC6/ByiqLbpzOpt2iFs5alXN6trksLMZFBuVSKRdgQjT7dAsfF+sGgazp4n326uy2Pyl3Arw0v5zlUWfXyLc/o6CiSySSuX6VXoPH61cvYOznZ9L1CoUAln5vAK8lY9oW2LAuCj3ujn0JqrtNNMac7TCrJ0lIOQrJW8VpIZLCY7d52q0RMa21Et2ZF53QLogi+fi8Ou75Zy9BAP6w21cuhV1iPbh+QKvPOqsrzgaGcPueAbmoCg+EH378JH/7wh/H6178ely9fxle+8hV85StfwaVLl/Da174WH/rQhyKYIqMZpMiEyK91umt/hn0oybLs25k0DMPTA3d5uQBBoefoAHDdhDiEU1JpGQbvOd2bgaZpPgupiTAMPdYV2ddCRHdyjehOCjwqqtpV/xaGfziOw779+3H54gVqY165dAGHDh5s+l6pVIKg0HFoAYCX4xte7sfpJhvJfnK6lSStnO5wfboXl5bcDWYh2YPFxfj1TfcKx3GQRBFamwKfumVRy6cnrA5RFuvPHNrVpwcGBuBolZbv21qJRXL6YG14eRDR7Qpj2s9Z9txmbCKBnO5f//VfbwjtEUURv/Zrv4ZHHnmE6uQYrXFF99rw8vpqJuxDSZZl32MYuu5JdFcqFfAS3QczLynu2JtNq3x7P/AcYNkxFt26Ds5H/0yu3l6sm1p1tMrpJs53mMU4ozs4cvgwLl08R228i+fP4fDhw03fKxaL4CR6ohtSMpaiuxZe7sPpXnVeJ9zih5TCy8P26c7nshBTNadbTPUhl+ve8HIAUGQZegun23Ec6JbtKdrND4ZhgOM4CEKtZRgQvmbNWvr6+uBo7XK6y0x0+4AXBNi2DdsJHl6+4kbTFt2bU3yWwQACiO7e3l5cvXp13evXrl1DTw/dkGFGawzDAM9x6xYvRITTEN2mz2rThunN6dY01Vflay+Q4kNhFki0cMPLQ9zXBR/t9zbDcTV03Vf/TL4uurupV3e5XEZKEtc9oInzHYcNHka0HD16FBfPnaEy1tLiAvK5LI4cOdL0/VKpBMj0RDcnJWIruv0swf0UB40kvDxgVIthGCgVC67oFpI9KORzXR0hk1AU6C0iDkjYOW2n2zRN1+QRpWg2b/v6+mC3cbpNJrp9IdTDy+0Q4eXkM3cop9k5jgVBpNMCksHwi+/fhDe/+c1497vfjfvuuw/Xrl3DtWvXcO+99+I973kP3vKWt0QxR0YTDMOA1ORGRkt0S5L/vsqGrntqF2KaJv3ei0I0O+BBcIuHhMjp5uHvYRN45zbgebqhg9/iTnelUkGySbEeJrq3DydOnMDM9BQKhfAFyc6dWSk82ozlQgE8RdEtKEkUijHN6Q4QXu6nkJqSoOO2JhLJmoMboAgkKZpGcrrFVB8sy4plcTuvJBQFagunW6s/r2g73aZpumJbjOg539fXB6Pa/HfFsSwYaoWJbh/Ucrotdw0TZH2yIropr+lsy/0eMRgbje9v3p/8yZ+A4zi84x3vcPOGJUnC+973PvzhH/4h9QkymmMYBiRhveiWKYWXS5Lk+8FmmqYn0V27EVMO76HUKo0Gbh5TmJxujoPVJnduszF0HbLPnG4AXVXBvFwuI9VkRzxVD5Url9sU3mFsCYhAPnf6Odz6gheHGuvs889CkiQcOnSo6fvLhSJ4md7CnpeTWC7MURuPFqZp+kq9IQLdS50S2uHlRECqqupbTC4t1fK3V8LLa38uLi6iv7+fyvw2mkQyAc1uHk2mWjUxnkxSTJFAbS1DRBIJL6e9edvf3w+jWmra/5sUWGOi2zscx8GxnVBON1lLOhbdonmOZbnfIwZjo/H1m2BZFn70ox/hd3/3d5HL5fDEE0/giSeeQDabxZ/+6Z9S3+FktEbX9eZOd13phRU3kiT5LsbmVXTX+i5GUxwjSO4QbVZEd5jq5d5bhtEIV/Q7hmH4Cy8norvbwsvXFlEDgFT9NSa6tz7Hjh2DIAg48/yzocc68/yzOHL0aMt7ZLFQhCDTKzAZ10JqlmX5WniQ+6iX55HrdFMMLweC1W9YXKy1sBTT/fU/+xpe70YSiSTUFpvBxOmOQnQTkSSJ0URM9fb2wrEtOMb655NVDztnots7PM/DcVbWFUFEN0lVdCy6n7VtGVBkplUYm4Ov7R5BEPDKV74Szz//PPbt24cbbrghqnkxOmAYxrrK5QAgcbWbW1jRLYqi7xZP1qrcq05jU9+9tFcqnG42Ky3DgiPAe043gMBh4kHD0g3d8FlILRqHIkrK5TLSTeJgmejePiiKgsNHjuD0s8+EHuv0c0/j1E03tXy/WCyCH2kULPM/+DLmH/pbT+OPvviNGL3jTe7fBSWFUil+ots0TbfLhhfEIDndlPKKlbpjHqRWyMLCAgA0FFJb/Xo3kkqnUC02F91EjEchuslGlShF8xwhgtrSKuDlxu8Oc7r9w3EcbNta1cnF/zqDmHi0Rbdj6pAot7VjMLziO8bi5MmTuHjxIvbt2xfFfBge0XUdcpPdQ5rh5YbPQmqm5U10K7ICg/bupVnbZKBdxCUItKqX+3G6w1bj9ON0O45Tc7p9hZd3XyG1UqmEVJONrZTIu+8ztj6nbroJzz/7ZKgxbNvGmeefxVt+4Y0tjykWC0ivcbotrQKj4M0ZtdYUghKUFMpbwOkm+15eRbckSdQ2X1eHl/tlcXERHC9ASNQKzBLR3c1OdyqVbul0V+uvp1J024EahhF5IbXe3trGiKWVIfUMNrxnq+WGYxidcft019cVQdYnPM9DlCR3bUcLxzSQorwxxGB4xbfo/sQnPoGPfvSj+P3f/33ceuutSKfTDe+zG9PGUBPdTZxuSuHlpM+iH7w63alUCjmdbrsluz4e7Qd+EGjkdPMc57llWBjRTc7zI7pJmCcR0l7gu9DpLhWLSDX5sabrC3omurcHp06dwt//wz/U+ksHCJMEgMuXLqBSLuPUqVNN33ccB+VyCb2JxvuXoKQg9Q57uoagNJ7LKynoulZ7VsTI2TFN09fCQ/ARXq6qKjWXGwgXXr6wsAAl3VdPp6pF+8ipni53utOotBLddvSiO8rwcgBNK5iz8HL/cBwHx3HcQmpBN8ESiSRsne5GvW2oSKU3f53I2J74Ft2vfvWrAQCvf/3rGxb6ZOEfh0JW24GW4eWURDfP874/S8uyPC1Ke/t6sdimPUcQbL02Xhza1tHJ6fZeSG2jRTf5bvkR3d1YSK1ULKCvWU533emOY74sgz6nTp1CuVTClUsXse/AwUBjPP/0k+5YzVBVFZZprhPOo3e8qSFk3A9krGKxiKGhoUBjREGtkJr340Uf0VuqqlIrogasFGQLIrrn5+chZhqFmpTu72rRnc5kMNviUVE1a8+rtUZMWGrh5bVNo6gKqa043a1FNzOUvFMrpLbSpzvo+iSZSsE2KBs0hob0ABPdjM3Bt+j+zne+E8U8GD7RdR0y1yS8nFLLMEEQAoluLzuag/19OHeNrktoVUtIpTOenPaoWQkvDz6GwHmvxL55otv77nU3hpcXlwvY1aR6ucBxSIoic7q3CTfV87Cff+bJ4KL72aexa9cujIyMNH2fbODwNAup1UV3oVCIl+g2DDdP2wt++3TTdPVJQbagOd18slF0C6k+zM/PU5nbZpBOp1FtsRdciSine3XLMCmi8HKyWU/yt1dja2VwHBeLKLpuged52E648HIAyGR6UNb9/+61w9Iq6Otrfh9mMKLGl0IxDAMf//jH8bnPfa5l2xPGxlALL1//OqloTiW83EefaACewy+Hh4fhnAtfDXg1ZrWAgYHBzgduAK7oDtWnm4PlJ6c74LXIw9DPZ02+W3wAp7ubwssLxQLSTUQ3AKRlkTnd24SxsTHs2LEDzz/7NF79sz8faIxnn37SFe/NKBQKANaHiIdBUNINY8cF0zCg+FiEiz7DyxMURR/p9x1ks3B2dg58qr/hNW4LiO5Ki2cFEd2ZTIbqNQ3DWOnTXQ8vpx0xRUS3ra0XeJZWRSqTCV03ZTtRq14ermUYAPRkMihQjoqEqaKH8neUwfCKL9EtSRKeeuqpqObC8IGu600/PFIVNqyjSG6SXl1Ux0fLrtHRUdjVH4aa31rM8jLGR7zlPkYNjfBykedgeqzwvnlO99ZuGVYqlZDpa/5vzIgCE93biFOnTuHZp4MXUzv97FN497vuavm+K7oT9EJzBaUmPuP2PbUsy1e9C799umm1CwNWnO4g4eWzc/MQexvNCTHdj+nZaSpz2wwymUzLnO6KZUESRer1A3Rddx1uSY7G6VYUBaIkwdLXCzxbr6Anw0LL/UDCyx07nNPd19eLa7n1n4nXrg5rOzoAgKNXWKoAY9Pwvf30tre9DV/4wheimAvDB5qmNS2kxnEcZIEPvRPsV4z5aQ0xPj4OvbAUfHJNMEtZ7N65k+qYQSGLQzFEzzAeiG1ON1nwBMnp7ianu1gqu0XT1pIRhdg5iIzoOHXqFE4/+3Sgcxfm5zA3O4Obb7655TEr4eX0XNrV4eVxwtB1t/aIF/w63TRFnywHr14+vzAPKT3Q8JqYHuhqpzuTyaBsNg/zr5g20hFUhW5oGRZRITWO45BOZ2CpzXO608wZ9QWN6uUAMDQ4AEtdn8ZFujp0+q9Zjr6tltHf3x9oPgxGWHwnwJqmibvvvhvf/va3m1Yv/+QnP0ltcozW6LqOVpJHEgQqhdQA7yHjfm6uO3fuhF4pwtbVdT0xg2KXFrF7941UxgrL2pZhf3lxDp+/POfp3PdOjuE/7B+rFVLzGPJt23ao0DdSadQrrtPN+8/p7pZCapZloVSpoFdqnvuV4bnYOYiM6LjpppswOzOF7NIiBof8RdQQsd4uvJx8l6iGl8srhdTihGH6y+n2Lbrrbb5oELR6uWVZyGeXsCu9vpDa3MIClTaPm0E6nUalheguWzYylIuoAaR6ee35QTZUoniOpNMZWE3yh21dRW/v5hdo7SbWhpcHrV7e398P6OfWve61q0Oz+6mpllglesam4Vt0P/PMM7jlllsAAGfPnm14rxsfIt2KrmmQWvy4ZZ6e0x3FeRMTEwAAvbCAxPBEoOusRV9ecMfdbNaK7pJpYVb1tjNfMleKsFmW5Wlx5jgOEKYneH1X2iuu0y16d5S6zekmRdIyLXK6MzxQWF7eyCkxNhFSdfz5Z5/GHT/5b3yde/q5p5FOp3HgwIGWx5DvG9VCavUNzbgV/DMN018hNd676NY0DTLF8HJRFMHzvO+0mKWlJdi2DTGz1unuh2HoKBQKXbnwz2QyKOsGbMdZlz5VMi2kM/TFaS28vPasicrpBmr/tlxT0V1FzxBzuv3AcRxs2/YVAdmMwcFB2E2c7qBdHRzbhl4uYnAwHvV/GNsPVr28S9F1rWWInsRzsc6dnZycBADouVkqotvSqtBKeezduzf0WDQgi0Mi1zKigPGEt1BsIvJWV+ztVJHdtu3AO8lACKfbR04332VONwnJzbTIEegRBWTz+Q2cEWMzOXjwIJLJJE4/F0R0P4MTJ0+2jRgql2tVk3mJnkvL8QIESUGlQrkQUUgMw3Dvb14gAt1ryzCaOd0AICuKb6ebhJCLa8PL6yJ8bm6uK0U3KThWsex1G5Jl00LPAP1cWcMwINUdbvJnJKK7J4PFJjndll5Fb0886sV0CzWn24aDcOHlg4ODMCv0InUsrQzHsWPVzYGxvaDaX2l+fh6jo6M0h2S0QNc0pFos4iSej7WjuHv3bgiiCC03Q2U8PV8bZ9++fVTGCwtxukl/2f+wvxYy7gdyrhfR7ThO4OqggH+nO4joRj0UvVtE93Ldxe5p4XT3iAIu5HIbOSXGJiIIAk6cOIHTzz7j+9wzzz2DO178wrbHlMtlCJIMLsTvcTNEJeEK+rhgGsFyur080zRNg0wxLx4AEkrC9yb23FwtnUha43STv8/Pz+Pw4cN0JriBENFdMq11ortk2eiNYCNB1/V1LcOiMBV6MxnYi002VwxW7dovJLzcCRlePjQ0BK28DMe2qdwbzcqyOy6DsRl4/hanUiksLCy4f3/Na16DmZkV0TQ3N4cdO3bQnR2jJZqmQWqxeyjzXGhxQ5xPPw6o1+NFUcTExF5o2alAc1uLtlQbJy5t7NxCaiFCvgUfeYxhc7p5nvfVkz1Q9XKOAy+Isd4MWk2+7mL3Si1EtySw8PJtxg033ICzz/trdWgYBs6deR433ti+3oSqqhAoutwEXpQD9ZiOEsM0fTrdtT83I6cbCOZ0E9G9zumu/312dpbO5DYYIrrL5vpN2rJpozeCAlW6rkOuh5dzHAdRjOY5kunJwNabie7qutpFjPaQjfywLcNGRkbg2FbTYmpBMMvL7rgMxmbg+TdBVdUGQfX9739/3cPcr0BjBMfQWrsFUoActLX4vVn6rYJ97Ohh6IvXg01uDdrSdaR7emJzIyWLw1Atw3y4O7VidyHCy+u70l5ZKaTmL1CGF6VYpz2sppPT3SsKWI5ZVWhGtNxwww04d+Y5XxtUly+eh2EYuOGGG9oep2kaeNF7NwCv8KIcu+gS0zBcIe0FEvXjKbxc09yK47SQZf8/w7m5OYhywm3bRhCSPeAF0RXl3cZqp3stZcdx36eJvqpPN1ALMY/iO92TyQDm+ueTbahMdPuE53nYlrXSPjWg6CaRs2Y5T2VeZJy4rBUZ2w+qsWyskNrGoel605ZhACBxXOidYL+tHnyL7mPHYGavBZvcGtSFqzhy5Ghsvn9EdLeKRPAC6U3rZYFfE90bV0iNLHj8igRelLrP6W4luiUBy6WSr58bo7s5efIkVFXFtSuXPZ9DnPETJ060Pc4wDLfuAU04Cp0saGOaliukvSD5DS+n7HRLshwovFzuWV+sieM4KD0DXSu6SX/jZqK7ZEUkulcVUgMAKaLnSCqVAsz1TretM9HtF0EQYNvhw8vHxmppeUaJTiqXWc6B53kMD7McfcbmQDeBjLFhtCukJvPhc2eDim6vIuT48eOoLM3ANsIvCI2lq7jhxPHQ49DCLaQWYg/AT5uc0OHlnL/w8pU+3T6d7i4LL5d4Hkmh+S2yVxRg23bsKkMzooMI57OnvYeYnz3zPMbGxjou8izLCtWBoCU+f7c3AsM0fG1IchwHgeO8Vy+X6G5eyLISSHSvrVxOEDPdL7qLTcLLi6YVSXE4XdfdAmpAdE53Op2GY6z/nC1DY6LbJzzPw3bCh5ePj48DAMxSlsq8jGIWg8MjoQrPMhhh8PybwHFcw8J+7d8ZG4tptF64iAhf3dOyLF+fMTnWq+g+ceIEHMeGunglzDTh2Daq81dw8uTJUOPQhFTnDfP74Se83LKsUA+RwIXU/IaXC90TXp7L5dCXkFt+hn2S6B7H2B7s2LED/f39OHfmtOdzzp1+rqPL7RLR8zRuz2nD8JfTDQCix+Kguq7Tz+mWFd8ib2ZmBlyqv+l7XLIfs10vups43Yblvk8TwzAgrSomKknRie5mOd2WrtZccIZnBEGohZfblvv3IPT09EBJJGEU6Yhus5TF2Ki/orYMBk08r5odx8Hhw4fdB3ipVMLNN9/s7mCxfO6NxTBMiC0adYsUwsuDCDlBEDy7KmQhWp27hNSO4AXQ9OU5mFo1VqLbNE2IIStt+sljtCwLfBjRLQjBRLfP8HJOFGMX6tqKfD7vCutmkAJr+Xx8WtUxooXjOBw7fhznzz7v+ZwL587glXe+ouNxPM8DUTxDHSd2ots0TV/VywFAFLyL7tWhyDSQZMn3fWt6Zg5Spnk7TDEziOmZ7iykpigKFFleF17uOA6KurEhTrcsRxNenkwmYa3J6XYcByYT3b4ha0HbCie6OY7D2PgOqMVFKvMyikvYs28XlbEYjCB4Ft1//dd/HeU8GD4xDAMS1/zjE7nwTneQ3s+CD/HW09ODiT2TUGcvBpmeS3X2AgB0rA68kRiGAbFFWLJX/ISXW5YFngvXMixQ9XKfTjfXZU53b4se3QDQXxfdzOneXhw/dgz/+vBjno41TROXL57HsWO/0vFYSZLgWJ1/1/3iWKbbZikuGKbpu7ODxHsLLzdi4nTPzs1CPNb8mSRlBjBz6TkaU9sUejNpFNaIbtV2YNr2xuR0RxRenkqlYK1xuh3TABwHySTdNnRbHUEQYJnmSqpdCFNg966deL64RGVedjmLnTuPURmLwQiC51XzO9/5zijnwfCJbhiQ+OY7+jLC53QHcU8FUfS0MCLcfOpGfPfZsKL7IvoHBmPVrs4MsKhci9+WYWGcbj8RCkDtu8ULou++mRzfPTnduVwOfW3cOBZevj05duwY/s8Xv1gvXtj++3/18kUYhoFjxzov8hKJBCyTvpCwTT12giGI6PYTXi6K/jYDOyFJ/gqpWZaF7OICdjYppAYAYs8gFubn4MQwCsELfb29KK0pOEbCzaNwuo1VfbqB6MLLk8kkLL3xc7brznfcfofijiAIMC0TthWukBoA7JnYjWf+1Xt0UTuM5QXs3r2bylgMRhDoPp0YG4ZpmS0LdYk8ByPkQ6mWR+XPIREFn6L75pvxze88EGrxoc5ewM03n4rV4sUwjNDh5ZLP8PJwOd3+RLemab6LqAHd5XRnFxcw0KJHN7BS1TybpZNrxugOjh49imqlgtmZKezc1Tx8mHDh3Bn3nE6k02mYaoXKHFcTx3xUwzR9VS8HvKdMrQ1FpoEo+QtnXlxchGVZEDPNRbeUGYSua8jn8xgYaF5sLc709fXjm+dOY05d+ZmUIhTdq/t0A/4/D68kk0nYlgnHtsDVW3A69Y0wJrr9IYoibMuCWY/eCbMRNjExAevbD4Sek20aUItZTEy0v28zGFHCRHeXYhhm60JqXK1CbBhM02zYXfaCKEm+RPepU6egFXMwiouQe4P1TdTnL+CWV//7QOdGhRlgUbmWjSykJgj+w8uFID2Fu6h6eXYpi31tRLfIc+hVZOZ0bzOOHDkCALh4/lxH0X3x/FlkMhlPUTi9vb2wLRO2oYOnlJPsOA4MtRJJcaugWJYFx3ECON3eRHeQzeJOSJK/WhSzs7V8balnqPl4dTE+OzvblaL7bb/0S/i7r/xfrN1ufM2tPR370QfBMAxI8mqnOxrRnUgkANSiQwS5JrLtejVz8h7DG6IowlrVpzus6K7m5+HYtu/outUYxSXAcZjoZmwqTHR3KabVutepyHGoGuHyAw3D8H2jFEV/ourmm28GAFRnzgcS3Wa1iMrSjDtOXDAMI3R4uVg/3XNO90aHlwdY2HKC/4JEm0Uum0Vfpv33v1+WsLREJ9eM0R1MTk5ClmVcPH8WP/Gy9gXSLp4/h8NHjniKwiHiy1KL4KXmYs0vtlaBY1sYHGzuuG4G5Pngt5CatIlOtyTJUMtVz8fPzMzUzmvRMoyI8ZmZGU+pB3HjQx/6ED70oQ9t2PVqKQMrzxtRjCZiighrx9ABIrrrTjcT3f4Q66mGFoWc7j179sA2DZjlPKQWKRte0PNz7ngMxmbB+nR3Ke3y4miFl0ctuvfs2YO+/gFUps/5nR6AmlgHEEvR7XdRuRa/1ctDOd31XWmv6LoeKLwcvNg14eVL+Vzb8HKgVkyNhZdvL0RRxP4DB3Dp/NmOx166eA5H6854J0gfb7OcDzO9BszKcsPYcYDcz6Jwum3brrnolJ1uUZJ8PU+J6G4VXi7WhQM5jtGe9dXL5UicbqVegM+2Vj5rx6pdh4luf6w43TXRHaaYI+kOoi/Ph5qTvsxEN2PzYU53F0IWF616nfLg3FyaoARxDPxWFeU4Drfeegsem66J5/kffBnzD/2tp3NHX/xGOHCQSKbckM+4QMfp9i66TdMMJ7p5wVdagKZpgZxuCCK0LnC6q9UqqqqGAbmD0y1wzOnehhw5fBiXL17oeNzlC+fx2p95pacxx8fHAQBGMYvk+IFQ8yMY9Yq/ZOw44DrdfquXe3C63bEpV2sXRQmGj/vj9PQ0lExfy3ukICchJdOYnp6mNcUti+M4ME2zMadbjDa83FmVmucYzOkOgiiKMA1jZZMtRHi5K7rzs0jv7lwfoxV6bhYDQ8Oxq3HB2F74/k2wLAv33HMP7r//fszPz69rEfUv//Iv1CbHaI6bJ9PG6TZDhpfruu47N04S/YcP33brrXjosf8FALC0CoyCt36MllaBlp3CjTfeGEpwRoGu66Gdbrmeu+Tl50nD6fYjumtOd5DwchGqqnY+cJMhQrq/TZ9uAOgXeSwthNt9Z3Qfhw4dwpe+3H5zsFBYxuLCPA4dOuRpzB07doDjOBiU+tECgFFYAIBYVesli3AhgkJqbnsike7zQPR5f5yenobc2z66QOkdZqLbA+Tnvrq+jChFk6bkOt2rugjYdadbppyysNURRRGGabjh5WFEd39/P9I9PdBz4SJD9Pwc9u3bF2oMBiMsvn8TPvjBD+Kee+7Ba17zGpw8eTJWVaO3C+7iosWPXgDcm11QNsLpBmqh4dXcf4dZXoagpCB1WKwQBCUFfe48bn/ja31dbyOo9VDfaKc7+EPNb3h5rXp5sJxuVY1/eDkR3Z2c7gFZxMUFeiKJ0R0cPnwY169drVVVbnGPvHzxvHusFxRFwfDomJt3SAM9P4d0T0+sCqmRZ5ff+6PAda5v4Qq0CMLL/YjuqelpcOn2uad8ehBTU1Nhp7blcaMX1hVS855j7xXyu+ysihIk/69Q7v2+1ZEkCZZpugV9w0SfcByHyb37MJubDTUnMz+Lg7d7ux8zGFHhe6V+77334ktf+hJe/epXRzEfhgeIQOJbhZdzHEwfIqoZmqb53t2VZX/9TIGVfOzK7HmM3vEmjN7xJk/nWXoVU//8P2OXzw2Q8PJwY8g+crpN04QQYidZDFBILZDoFiVoesn3eRuNK7o7ON2DkogsCy/fdhw6dAi2bePalUs4cKh5agsR3QcPHvQ87v59+3A2pJuzGi03i32T+6mNR4OgOd0S1/leaFIo2tQMURB8hTNfvXYdYk/7zWOhZwjXrjPR3Qmyid9QSE2SUC4vU78WEdaNottoeI/hDam+UWXVW8mFTfk4dPAArj1zLdQY5vIs9u//mVBjMBhh8V1ITZZlXwsJBn1ISH+rCD2Bw7qwf79omgbZ54NGVhTfovvQoUNIptJuUTSvqHOXAMeJpejWdR1SSNHt2+nmw4WX+1lUapoGBHDWeUGC1gVO9+Jizb0e7OB0D8oiFnM5OI6zEdNixATy/Lt8qXVe95VLFzEyMoL+/n7P4x49chhWjl7IsZGdwtGj8XJ2glYvF+E9vDxMKGszeJ+bklNTU5A7iG6pZxjXmejuSLM8fUmSoEeQ073idK/K6aZQCGw7IkkSLMuCrtee92F/Jw8c2A9rObjTbZsGqrl57N8fr01IxvbDt+j+z//5P+NTn/oUW2huImQBIKC1021Tcbp9im7Zv+jmeR433ngjqrOdCxOtpjp7AYIo4sSJE77O2whoFFIji1Iv4fpBeqqvRvQZXq6qKsAHDC/vgurli4uLEHkePWL72+OALEI3DJRK8XfvGfTYuXMnkskkrrQppnb54nnsP+CvINqRI0dQXbhK7dmqL13zXD19owhcvdyD0+0+F0Ok2jS9to/7o2maWJyf65gmJfeNYG52JvTm+FZnpRBXY8uwKAqpEWHdzOlmOd3+ID+vaqUCSZJCp6EeOHAA1ewsnIDrWn15Do5jM9HN2HR8P50efPBBfOc738E//dM/4cSJE+t2AL/yla9QmxyjOeRB3eo+xnMIXb1c0zRIfkW3kghUKOuWm0/h2a/+k69zKjPncfjw0ViGfem6jrCPaMlHeHmQ9m6rEYSNcbo50X/6wWawuLiIwYTccaFAnPDFxUX09PRsxNQYMYDneew/cABX2jrdF3D8iLciaoTjx4/DqJZgFBch946EmqNZLUFdXsTx48dDjUMb143226cb3nO6aYeX8z66O8zOzsK2bUh9o22Pk3qHYRg6FhcXMTra/tjtjBtevtrpjqhlmCu67RVhR0Qec7r9QX5eRHSH5cCBA7AtE3phHsrADt/n69laBBGL0mVsNr6d7v7+fvzcz/0cXvayl2F4eBh9fX0N/zGiZyW8vHXLsLBuiaqqvttkKAHCywHgpptuQnn+WkPV0E4YC5dwy803+b7WRqBrGiTfv1mNCBwHgeM8Od1GyEJqouTPOVBVFbzof1uBFyXoXSC6FxYWMKR0XigM1UX3wsJC1FNixIyDBw7g6uVLLd+/evmS7wXeDTfcAABQ5y6HmVp9jIsNY8aFoC3DRJ7r2CvbfS5SFt2CIHh2pK9fvw4AHauXk00VcjyjOW7hvdWi22c1ea80dbrtaFIWtjrE6S6XS9RENwBoS8FSMrTsNERJilUnB8b2xPed5K//+q+jmAfDB0RQt9J1PAcqoru/Z8DXOUoigXwx5/taN9xwAxzbgrpwFakdnReqjuOgOncZN974Dt/X2gh0TYNMoaq/JPDewssNA8me4A82QfC3iKlUVXABRHctvDz+LcMWFhYw2CG0HFhxupno3n4cPHgQ//erf9f0vVKpiMWFeXeh6JXJyUmk0hlUZy+g99DtoeZXnbsIUZJwJK7h5X6dbo6D1uFe6BYY5UPueK6B53nP4eXXrtWKPXV0uvtG3ONvueWWcBPcwjTr8+y3BolXyDUanG7bAsdxsWtLGndWwsvLVKIR9+7dC0EUoWWD1bzQlqawd+8+9jkyNh26TyfGhuCGl7d4nwPghMwVq1SrvnO6FSWBStV/Kw+Sl63OX/Z0vLE8D0Mt4+TJk76vtRHouhY6pxsAJN6b6DZM03dP9dWIPhcxqqaBC3A9XpTdwipxZnF+HgNMdDPacODAAVy/eqXpZtXVSzWX2a/TTepbVGbOhZ5fZeYcjh1fn/612YRyug2PTjdHd1nD8bxnp/vatWsQlSSERKbtcWKqH7wouSKd0ZxmottvZJZX3Gs4K5+1Y9uhOoNsV4jorlQqvlvPNkMURUzsmYSWDeZ069lpHPGZ7sNgREGgu8nf/u3f4ktf+hKuXr26ThQ89thjVCbG6EyrnFOupRz3TrVaDRReXg0guvv6+jC+c5dn0V2tHxe3fEWCpmmQKbgtsken2zCM0IXUDMO7A61WVfDJAE631B053fNzc7i1Q+VyAJB5Hr2K7FY7Z2wfDhw4ANM0MTN1HRN7Jxveu3L5onuMX26/7VY8fe/fhZ6fMXcBL/iZnww9Dm2IWBKCFFLT2wutlVon4Z9/q+F53nNh0qtXryIxMNZxDhzPI9k/iqtXr9KY4palWe910Wdklldcp3t1PRzbAh+iM8h2xRXdlMLLAeDo4YN46FIw0W3mp3Ho4AupzIPBCINvZfDpT38ad911F8bGxvD444/jBS94AYaGhnDx4kX823/7b6OYI2MNXkLHw4aXV6tVJJJJX+ckkslAohsAThw/BnXR266/tnAViWQKe/bsCXStqDE0HYrP8MlmeHa6Q4puyW9Ot6YF6tPNizJMw4h9xd6FhXk3X7sTQ4qE+fn5iGfEiBukCi4R2Ku5duUSenp6MDzcPq+3GbfeeivKC9dgqcEr4tuGjvLsJdx6662Bx4iKwC3DPNS3cEU3hXvvajjOe42Uy1eugO/xVgRP6GWiuxOu6F71fBMlCWYETjcJPXYanG6LhSQHYCWnm054OQAcPnwYVn7G93mOZaG6NI3Dh+PVPpGxPfEtuv/iL/4Cf/mXf4k///M/hyzL+LVf+zV861vfwq/+6q9ieXk5ijkyAhA6p7taRSLhU3QnklADiu5jR4/CzHoT3eriNRw6fJh67h4tNF33vahshsTznpxhwzAghQiBE332PVVVFbzk/0FK8sDj7Hbbto2FbA5DsrdNhSFJYKJ7G7J3717wPI9rV9YXU7t65TL27d8fyHG9/fZaLndlOniIeXX2AmzLxG233RZ4jKhwK4z7/NGIXOc+3W6tE8rPBT+i++LFyx3zuQli3yguXLocYmZbn2YV6UWf3Ta84l5jteh2bPBCPNcZcYa42+VSkZrTfejQIVSWphpy7r2gL8/BtkwcOsTCyxmbj++7ydWrV/GSl7wEAJBMJlEsFgEAb3/72/HFL34x0CQ+85nPYHJyEolEAi984Qvx4x//2NN59957LziOwxve8IZA193KhA2xq1arUPyK7hBO9+HDh1FdmvZ0QzVyUzh+NF4Fglaj6xokGuHlPOdZdIcLL/fndGuaGtjpBhD4O7IR5HI5WJbl2ekeFDnMzc5GPCtG3JAkCRN79jStYH718kXs37cv0LhHjhxBMpVGZepM4LlVps9AlCTceOONgceICrcadYCc7k7FzIgwph1ezvnoBnL16hXIfWOejpX7x3H58uUQM9v6NAsvF0TBc2E7P5DNmoZ6OLYNgYWX+2YlvLxMrcf5oUOHYJsG9GV/m9wkgpKJbkYc8K0MxsfHkc1mAQB79uzBj370IwDApUuXArmr9913Hz7ykY/gd37nd/DYY4/hpptuwqte9aqO7tHly5fx0Y9+FC996Ut9X3Or0Orn7SCcyw3UhFEqlfJ1TjKZCiyoVm6onYtSGdmpWPdb1DUdMgWnW+Y7uzsA6dMdIrzcZ99TbQs73eS+M6R4E93DsoQFJrq3Jfv37cP1q5fXvX796uVA+dxAzW279dZbUZk6HXhelanTOHnDjdTCOmkStHq5yHEwOxRSI1AX3R6d7kKhgOV8DrLHPsJy/xgW5+divQm52TQtpBZRyzA3QmLVZ+04Tmwj6uLM6pZhNMPLAf9tw7TsFGRZwcTEBJV5MBhh8H03ecUrXoG///u/BwDcdddd+PCHP4yf/umfxpvf/Gb83M/9nO8JfPKTn8R73/te3HXXXTh+/Dg+97nPIZVK4e677255jmVZeOtb34rf+73fc3PrthNeFhVhFh6O44TK6Q6y+UI+Rz3XPmfHNnRU8wux/tx1nY7oljhvTreu66F2kyW/1csD9+mOv9NNRPeIx/DyYUVk4eXblP37969zui3LwtS1q9gX0OkGgBe/6IXQZ4OHl+sz5/DiF74g8PlR4jqXgaqX0w8p9gTHeXqeEtda6ffudAPAlStXAk9tq0O+L6tDvP22uPTKirhevX5xqG/ibAdWF1JTKDnde/bsgSTJ0DzW/iFoS1OY3Lef5eYzYoFv0f2Xf/mX+I3f+A0AwK/8yq/g7rvvxrFjx/Dxj38cn/3sZ32Npes6Hn30Udx5550rE+J53HnnnXjooYdanvfxj38co6OjePe7393xGpqmoVAoNPzX7ZCHQKtyVGF9blWtVbL2ndNdF+lBRNXevXvBcVxH0a0vzwFAqEVt1Gi6Tqd6OQfPfbolKYTolmVP1wFqGzK6FrBPdxeI7rm52vfLj9M9t7gYuoYCo/vYt28frq1xumdnpmAYRqj702233YZKdhZGKef7XEstozR/BS94wRYT3Vzn8PLN5tKl2gaMV6dbGRhvOI+xHvKZN/TpFqIJLyfrqobwcscBmOj2zerw8jCpb6sRBAGT+/b7drr1pes4FuN0RMb2wnf1JZ7nG8JtfvEXfxG/+Iu/GOjii4uLsCwLY2ONO8NjY2M4fbp5eN2DDz6IL3zhC3jiiSc8XeMP/uAP8Hu/93uB5hdX3IdDi/dtB+BD7OpVKhUAQDJAeDkQLDRdURQMj451DC8n+Tx79+71Nf5GohuG75zFZsg+nG5RCl5ITfLRyoscxwcQ+eScOIvu+fl5yAKPXtHb78+wIkI3DCwvL6O/vz/ayTFixb59+5DPZTE/O4NUptaX+cLZM+57QXGLqU2dQd+RF/k6tzJzDnCcWBZRA8KFlxuGN3eT+gaY5yJqFyHICsTMgKfjpd5h8IKIixfXV8Bn1CDienXbLiGi8HKgSYQgCy8PxEqf7jISFNNcjh09gu8+f93XOWZuCkeOvILaHBiMMAS6mzzwwAN429vehhe/+MWYmqrtOv3N3/wNHnzwQaqTW0uxWMTb3/52fP7zn/fcjuVjH/sYlpeX3f+uXfMXmhJH3IIfLdYCDsJVcHVFdzKY6Cbn+2ViYgJ6oX2orlEX5bt27Qp0jY1AoxZe7i3/uRZeHvzB5ienmwhmXvR/PXJOnEX33NwcRpIJzyGFw/UwdBZivv0gdSVedMN+3LhvFDfuG8Uvvfn1EAQh1Kbg5OQk+voHUJk+6/vcytRZJJIpHDt2LPD1o8QNF/Z5nsBxMK32QsvdjKYsuh3HW4jxxYsXkRzc6fnewfECkoPjzOluQ7Pq5YIgRCa6azgt/p/hFSK6bdumVkgNAI4cOQwz693ptk0dlewsK6LGiA2+7bH/+3//L97+9rfjrW99Kx5//HFXFCwvL+O//bf/hn/8x3/0PNbw8DAEQXBDOglzc3MYHx9fd/yFCxdw+fJlvO51r3NfI705RVHEmTNn1hWwURQllgVlwkAEtd1icWF7XCS0gojmIDndq8/3y56J3bjwTPsbqlFcwsDgUGw/U8dxoBsGFAptRmSuVrSsE7quQwrxYJMlGYbH8HIimLkAhdRI8bW4i26vlcuBmtNNzmN9QLcXt99+O772ta+hVGrsqb17927fkT6r4TgOt912Kx697j+vuzJzFqdOnYpt/qJpmhA85kivRuTQ0emOTHR7zOs9f/48hL7165Z2CP07cP78haBT2/I0Cy8nrrfXzRDfrPn+sJxu/6wW2rRahgG1grvV7CxsU/dUV0bLTgOOw57NjNjgW3R/4hOfwOc+9zm84x3vwL333uu+fscdd+ATn/iEr7FkWcatt96K+++/3237Zds27r//fnzgAx9Yd/zRo0fx9NNPN7z2m7/5mygWi/jUpz61baoTuqK7xfs2EGrRFVR0k3D0crkc6Lo7d+yA/a9PtT3GKC5hfNxbztxmQHKjaTjdCs+7+fWtcBynJrpDPNgkWfKc002+G0EKqRGhHnRTZiOYm53FsOj9syNO99qNQ8bWh+M4vOY1r4lk7NtuvRU/fPSvfZ9nzF3A7S//2QhmRAfTNCEF2JD00jLMfS7arZ6MwbBt21Pk2NlzFyCP+mvTJg/swNlz54NObctDPnNu1c+ffBaWZTWIcWowkR2a1aKbpkFy+PBhOI4NLTuN5Ohkx+O1pVooOnO6GXHB9x3rzJkz+Mmf/Ml1r/f19SGfz/uewEc+8hG8853vxG233YYXvOAF+LM/+zOUy2XcddddAIB3vOMd2LVrF/7gD/4AiUQCJ0+ebDif5FGufX0rQwS11WJH33IcKqI7lUr7Om91TncQRkZGYJaX2x5jlvPYscNbddjNgER+0GoZttxBdJOw8FDh5ZL3QmpueLmU8H2dbnC6Z2emMenD6e6XBEg8z0Q3gyo333wzqrk/gllehpju83SOpVdRXriGU6dORTu5EBiGASFA6pPAcTA6hBSvFMLa+PByy7Jw9epljB/9GV9jK4O7cPGpb0Xn2nY5ZANlda9sd/0TleheAyuS6Z/VnwttpxuoVST3JLoXryOVzjSNnGUwNgPfd6zx8XGcP38ek5OTDa8/+OCDgdo4vfnNb8bCwgJ++7d/G7Ozszh16hS+8Y1vuMXVrl69ygpZrIE8dFqHl9PK6fbpdIcMLx8ZGYFWyrddgNjVZYyNxjNfEVgtuimEl/NcR6fbddbDhJcriudCaq7THUDkk5zuODvd87NzuF3xvkjgOA4jqQQT3Qyq3HTTTQCA6txF9Oy/2dM56twlwHFiLbpN0/RduRyo9+n26nQ7lJ1uy2pwWptx7do1mIYBZdBfrRFlcCc0tYqZmRns3LkzzDS3JMTpXm0ikPZhtCMaACKwV38/vfVoZzTCcRwkSYJhGFRF944dO5BMpT1XMNeyUzh46BDb0GLEBt+i+73vfS8++MEP4u677wbHcZiensZDDz2Ej370o/it3/qtQJP4wAc+0DScHAC++93vtj33nnvuCXTNbmbF6W7+vuU4EMXgNzoSHq74bhkWLrx8aGgItmXC1qsQlOY5kY5axNDQUKDxNwK6TjffUQyT98PkdEuSDMuyYFlWxwiJlfBy/6Kb43kIkhJb0e04DmYXFjCyf8TXecOyiNnZ2YhmxdiOHDp0CLKSQHXWu+iuzl0Ez/M4fvx4xLMLjmmaviuXA6SQWnvRvdoBpYmX++L587UQcWXQn3BWhmoi/dy5c0x0N4EI61bh5ZHQoLmZ6A5KFKKb4zgcOHAQM1lvFcyN7BSOveAoteszGGHxLbr/63/9r7BtGz/1Uz+FSqWCn/zJn4SiKPjoRz+K//Sf/lMUc2SsgYTutAsvD9NCioT/bnR4+cBArdWKVS22FN1mtegeF0eIM61QcLoVgYOmtXe6XdEdok+3rMjuWJ0KQK043f7DywFAlBOxDS8vFotQNQ0jPpxuABgROcwx0c2giCAIOHrsGK7Pe28npc5dxr79B5FIBPvd3Agsy4LABcjp5mrntouCciPAaItuu7PoPnfuHHhBhNzvL4xV7t8BcBzOnz+Pl73sZWGmuSUhont15B7PReN0E3HNrVbdHOe5ZRyjESK2aYpuADh29DCuPuqtDoKRm8ahQ6/rfCCDsUH4VmYcx+E3fuM38F/+y3/B+fPnUSqVcPz4cWTqfUoZ0ePu9LYT3UJw0b1Z1cv7+mq5i5bW2ik3q2X3uDhC3elWvTndcr1YyV999lO4+7Of9jT+u973q3jP+z7o5oPruu5ddAeoXg7UwtKDRkJEDXGrfYtuWcT5KX+9QxmMTtx0w0lc+t6jno/XFi7jplM3RDij8IRxuoGa0GolgMlmNO12UrYHp/vcuXNIDu4A57OWCi/JSA2M4dw5/5XqtwNECPNNnG7aDrQr4ldt6nAcF0kY+3YgKtF98OBBfO3b3+t4nKVXUc0vuK0dGYw4EFiZybIc6zC2rQzHcRAFAWaLZ47pIJTTXalUkEgkfOeF8zyPRCIRWHT39vYCACy1+fmObcPQKujp6Qk0/kZARDAVp5vnoOkeRXc9vLxULGJ2ZtrT+KVisXadumD3ktdNBHOQQmrkvLiL7lG/oluR8MNZltPNoMvx48dx799+1XORLX3pGo4fj6aaOi0sy0KQ/Ugi1E3T7Ci6bZuu022aZkfhcObMGYgDwcLDpcFdOMtEd1Pc8PLVQjjCKvX1C6y8yPEsvDwgUYnuQ4cOoZqbh21obTf/9dwMADDRzYgVnpXZu971Lk/H3X333YEnw/COJIkwWzwMTNsJFW5cE93+XG5CIpkKLLpJtIRtNA+ptk0NcJxYi24SXk6rZZimta8q7or8unDO9PRgfIe3xV+m/nMkTrcX0V2pVMALIriAkRS8tPWc7lFFwuzVWVaBmEGVI0eOwKiWYJaykHra17Gw1DLU5UUcPRrv/MWghdT4eshvuzxesrgnHR1oYRqdRffpM+cgjwSLMpAGduH06bOBzt3qNBXdEfVjX7nWatHNnO6giBGJ7gMHDgAAtNxM2wrm2lLNfGCimxEnPK+c77nnHuzduxc333wz2/mLAaIgwmjRGsVwHPeGF4RKpeIWRfNLIpEMnLNLQpttvYXoNmqi0G9V9Y2EptMt8xxUj4XUiHB+z/s+iPe874P+ruNDdJfLZYhK8J8/JwWPhIia2dlZJEQBPaK/z25EkaAbBnK5HAYHByOaHWO7ceTIEQCAuni9o+gm/WjJOXGlltMdJLx85fxWuLVOKIeXW5bZtjWVaZq4cuUSdhz7t4HGV4Z24+LT3/LcD3w70WwjM2rR3RhezsOhXA1/u0B+Z6IILwcAvUOvbi07jVQ6g9HRUarXZzDC4Fl0v+9978MXv/hFXLp0CXfddRfe9ra3sQXmJiKJ7Z3udIhq1tVqFYlksPDhRDK4qCJi2jabu7tO/fXuEN10nG61Q/9s93ohiieRQmqd2pMBQKlUghCwiBoAQIy30z2cVHy71cNK7TY6NzfH7okMahw4cAAcx0HLXkfPvpvaHqvWW+iQPrZxJajoJu64F6ebdk53pwrMly9fhmWavtuFEZShXdDUKqampjAxMRF0mluSjRTd7ndrjdNtmhFVSd/iRBVePj4+DkVJQMvOtD1Oz01j3779LPqMESs8b6t+5jOfwczMDH7t134N//AP/4CJiQn8wi/8Ar75zW8y53sTkKQ2TjfC3egqlYpbidwvyWQqsNNNqu46LUV3LWyQhFLHEbd6uUDH6bZtu+0icq3THeg69XO9iO5yuQxeDuF0y0kU67nkcWN2dhYjsv+weZIDztqGMWiiKAp27ppwwyTboWenMDA4FOsik0A9JzvAGpjnVnK6WxFVeLlh6FDabGKTImiJ4WCCWRne3TAOo5FWops25LvF8Ss1AzheoF4Nf7tAnO52USJB4Hkeeyf3uTnbrdBzMzh08ADVazMYYfGlDBRFwVve8hZ861vfwnPPPYcTJ07g/e9/PyYnJ1EqlaKaI6MJsiS3drqxUlgrCNVq1a2G7RclEbwllCAI4DgOjtV80WTXXw/zb4ualZZhFJzuunBvJ4bd64XYiCAuudfw8qDtwoBaIbViKZ5O99zsLEZE/58byQGfm2PF1Bh0OXTwAPRcZ9GtZadxoAtyFy3LcvOz/eAlvFwQBAiCAMNoHx3kF0PXIXUQ3YIkQ+odCTS+0j8OXhBx9izL6/ZDVE736p7g4Hjqhfm2C0Rsd6r8H4RDB/d3vC9ay7M4cGA/9WszGGEIbMfxPF8TSI7T9kHIiIaa090818iwnVBOt6qqgQupKUq4PsyiKMFp8ZBzrNpONO1wJZqstAyjU7189ZjtrhcmvFxRvIvuUqkELmDlcgAQ5ASKxXhu0M1OTWFE9v/dSgs8UpKImZn2O+8Mhl8OHToIa7nzZo6Zn8XhLnB1glYv5z2ElwO1DVndw33MD4ahQ27zzDl37hySQzsbxZoPOEFEcnCcOd0+2Yjwco4X3P7wDH8QsR2F6N6/f3/b+6JjW6hmZ7Fv3z7q12YwwuDrKaFpGr74xS/ip3/6p3H48GE8/fTT+B//43/g6tWrrE/3BiPJMvSWhdTCucFhRHcikfQUptwKUZLgtFpY1Qua0A5XoomqquAABDBM10GKsXlxusOElxOX3MtmSblcBsQQTrecRCnGOd1+24UBtXDHkaTCnG4Gdfbt2wetQxglABj5ma5YYFqWhSBLcN6D0w3U7mW0nW5d093Up2acOXsWQn+wdmEEcWAnc7p9QjvM3A0vX9WZg4Saswrm/okqvByo3ReruZmWmyFGcQm2ZXbFPZGxvfD82/D+978f9957LyYmJvCud70LX/ziFzE8PBzl3BhtqC0uCk3f0x0nVLhxtVqFkggYXp4M53TzAu+K67U4dneI7qQkUlkQeHG63fDyME63j/DyQrEIXgmW7w/URHe5HD+n27ZtzC0tYWQkWDGkEUlkOd0M6uzbtw96uQBLLUFINN/Ytk0d1eXFrlhg2raNILdGwUPLMKD2XNRUuk63pqlQlNbV48+ePQ9l562hriEP7MKZs8+HGoMRjpXw8sacbqB9f3hGc0gl/ih+bpOTk7B0DWY5DykzsO59PTfrHsdgxAnP6uVzn/sc9uzZg/379+N73/sevve97zU97itf+Qq1yTFaI8tKG6fbCe10ZwYC5qcpCZRywQtl8e1adNTDzuNcjVLTNMgUiqgB3nK6q9UqFMV/xe2G69TDy71EKCwXiuCl9Q85rwhyEsUYiu6lpSVYluW7RzdhROQwO9M595bB8ANZNGr5OaTGm4tufXkecJyuEN1hne5OjqOSSEDX6YpuXddaOt2GYeDatSvYdcPrQ11DGdqFy499vfbzYeKugbVuZlSh3qQAX0Of7rroNgwj1gVc40wU3+e9e/cCAPTlueaiux56To5jMOKCZ9H9jne8I9ZiZ7shK3LLnG7dCim6NQ2DAcOVZVnp2Fu6HRzHAS0equTVOPcyVVUVCqWHjNfwciKag0KK5nkR3cViCUJf8FBKXkmiUi43bQWzmRCXekQJFkUxrEh4coqJbgZdiJDWczNIjTfP2e4mV8e27YB9ujn3/HYoigJVDR5p1Qxd11sKritXrsC2LMiD4cLL5cGdMAwdU1NT2LNnT6ixthKkbtBqyN83JLxcEBreY3iH1GGIyukGAD03h/Suo+ve1/Pz6B8YRDqdpn5tBiMMnleY99xzT4TTYPglkUi0dbrD7Mqqqho4XFlJJELldNdosZMd0cOWJqqqQqZQuRxYCS/vJLqDVpon8DwPRVE8pQWUSiXww2FyulNwHAflcjlWdSBIPvaIIuEvL87h85e95We/d3IM/2H/GEYVEfPzLKebQZfR0VEoSgJ6rvV3S8/Pgef5rujxbFlWgNrlcEPSO4WXJ5NJaKGfP42o1SqSyeY1Ti5cuAAAUEKKbnL+hQsXmOhexUaKbtfpbhFezghGFKJ7YGAAiWQKxvJ80/f15Tns2cNcbkb8iG9yLKMtSiLZUnRrlh1KdGua1rZaaztkWfaUG9yKOAtqL6iq6jrUYSEV0Nv9PKvVatsiP15RFG+bJeVSEckQOd1Cvd1YqVSKlehecbollEwLs6q3Xr8l03LPm1+aY+GhDKpwHIfdE3tQaFOpV8/PYnR8R6y7OhBqTrf/80hOdyenO0Fl07cRTW19j7148SJ4QYTcOxrqGnL/GMBxuHjxIv7Nv/k3ocbaSpCottWRUVGLbgirRbfY+B7DM+RziuJ5yHEcdu3ajUIL0W0WFjB5lG1eMeIHE91diqwoKLQML7dChZfruh7YPZVlGbpOt3psN1ET3ZScbsGb0x200nzDtTwuVsulEjJhCqnVzy0WixgfHw88Dm1mZ2eRkSUkBR4ZUcB4wpuAyYi1BcWwIsG2bSwuLmJsbCzKqTK2Gfv3T+LH11oX6dPzczjaBaHlQE00B9mS9JrTnUomoWmURbemtXS6L168iOTAmBuGHBRelJHsH3Wdc0aN1ULb/f/6d4C2mFtxuleHlzPRHZao0gH37p3AYzMLTd+ziovYs+cFkVyXwQgDE91dSiKRwGKLQD3NskI53bquB25BJcsKDCa6qYyV8JjTLVNwuhOJzlXndV2HYejg5eAiX6ifWyrFq5ja3NwcRhK1jar/sL8WMu4H0mpsdnaWiW4GVfbv24cfPXN/y/et5TkcvOnmDZxRcBzHCRRezq9xOVuRSqWgVisBrtCaduHlly5dgthPZ/NQ6h/H5cuXqYy1VSCCzbIs9//Jxktk4eVNWoYx0R2cqKIX90xM4JFzDzd9T19ewK5dwTqRMBhREt+KVIy2KErz6uWO40C37FAhx4auQwwYqiiFDC/vdlRVhUzpIeMlp5tmeHkn0V0s1qrSC5Sc7jgxOzuLETm4czIs1xZqrFc3gzaTk5PQ8q2/V8byXFcUUQPqLcMCnEfO6ZTTnUqlUK3QLaRWqZRbFmQ6f/ESxJCh5QSxbxTnL16iMtZWYXV4OcF2ona6V4WXM6c7NFGlW+3evRtGcb3Tbesq9EqRiW5GLGGiu0tRFAV6k01/IsTDOt1B8wNFUYzuAdUF+d6apiFBaZrec7ophJcnk55FNw2nu1Bo3mN+s5ibmcGIGPx2OFx3upnoZtBm37590CtFmNX10SG2oaOaX+gq0R3kt4zcUj053So9p9swDJimiVSq+Ubj1atXIVNyuuW+MVy9epXKWFsF191etdliW3bDe7RYcbpX1j4spzs8UYWX79ixA1oh66YbEIziEgAw0c2IJSy8vEtJJBLQmyxAiOgO436apglRDPbVEEUxukqfEfXnpIlarVILLxd5DiLPd3S65ZAtwwB4ql6+4nTXXJ/5H3wZ8w/9rafxR1/8Roze8Sbw9XNj53TPzOCWgD26ASAp8OiRJSa6GdRx2+PkZyAmDzW8R/rRdkOPbqAmmoPcHv2El40tf7wAAJKfSURBVFcq9ER3tVJ2x133XrWK3NIi9vSNULmW1D+K67MzMAyjK4ribQTEJV0d4UDCy6MT3aud7tr/b+c6NUEhYeVRhZfv2LEDtmXCrBYgpfvd14no3rFjRyTXZTDCwER3l5JIJKBZ64vKaPUHUqjwcsOAKAZ1uqVtvSusVqvIUBLdAKCIgofw8uDh3oREItmxkBpxp3ml5lZbWgVGYdHT+JZWWwjzcgLguNg53fPzcxgeCNd6bSQhu1XQGQxa7N+/HwBQOPtjWGvc7srMOQDdI7rDhpd3KqSWTqdRLZcDXKE5lTai+/r16wAAuY9OeLncOwLHcTAzM8PahtVxnW5n5XMnAnxjCqnV1kFMdAcnStENAGZxqVF0l7IN7zMYcYKJ7i4lkUhAa5LTTSO83DTNwA80gUJ4eWszI/5Od7VawSDFHXiF59s60JVqFcN9Q6Gvk0imfDvdgpKC1DvsaXySB85xHKREKlZOt2VZWMjmMDK+O9Q4w7KA+fnmLUwYjKAMDw9jdGwMM/ff3fT93r5+7N4d7ru7UXRyqltB1u2dzs9kMlSdbjJWT0/PuvempqYAwPM9sBNSb80xv379OhPddcg6JLe0BKseQVcqFhreowUR1g3h5SynOzBRtXYjkIKlRimH1QlvZikHSZLR19cXyXUZjDAw0d2lKIriutqroeF0W5YFIWB4Oc/zHd2IdtRu0C0WVvWbeFQ5QjTQqioSNJ1ugd+QnO5EIoFKtb0QJu40EdCjd7wJo3e8yfe1xEQ6Vk730tISbNvGkBwupHNI4DE3O0NpVgxGDY7jcPbMGSwtLTV9f2BgIHA60EbjhHS6O4nudDqNSpleZ4RKvctCs0Jq09PTAACph5Lo7qltns7MsHsIgfzcX3778YbXE4lEZNXLeYG1DKNJ1KLbLOUaXjdKOQyPjEZ2XQYjDN3xpGasI5FIQDPXV3JVrfA53ZZlBXe6BaFjhdl2cDzfMXc7zjdTTVOhCPQ2BWShc043jerliUQSy9n2Lq0bXh6ikBpQE+1xEt3EnR5Rwt0OhxQRT02zBTODPn19fVvCuan1W/Z/nlfRnclkUC6XGvo6h4GElzcT3TMzM5ASKQhK+E1PABCSPeBFiYnuVdx55534+te/vm7jeWJigvq1Vpzu9aJ7O3dkCUtU67VUKoVkKg2znG943azksXuMTsoHg0EbJrq7lFpO93pxG9bpXilSEkx0k/Ns2w7kSPNtRLcTUasQmqiqCkWg6HTz7Z3uSqUChVL18k5hmYVCAVIiVdsYCQGvpGMVXk5E96Ac7nY4LEtYXFjfwoTBYNSo9ekO7nV3iqLKZDKwLAu6pkGhsBlZrjvdzcLL5+fnIfcMhL4GgeM4KD0DLEVlFZIk4dWvfvWGXMvN225oGVaLfmJOd3CiNEmGhkdgVJYbXjPLyxjfQ6e4IYNBm/jG6TLakkgkoFs27DUClYjuoDndTsgQ7mZ9Nf2e7zgtFlYRVS2liabpbqsvGig81zbXWq1WkWzRzsYPSQ8twwqFAsQQPbpdpCSWl5c7H7dBrDjdIcPLZREL2Wzg7z6DsdWpiW7/eF23E3FcKtHZ1CvXx2kmuhcWFiAk+6lchyCm+1kHhE1C13XwotQgEnkWXh6aKEX36OjIOqfbUQsYGWGimxFP4qteGG0hTvbaYmpaPbw8mQzmfoYVDJzH1i6tEAURsJuHp3eF061p1FqGAYDMeenTTSe8vOrB6RYS68Ms/cIrKSzHKLx8YWEBiiAgHTItYFiRYJhmrDYUGIztRG9vL4AVhzosZJxMJrPuvcWlJSCxXoyHgUv0IpvNUh2T4Q1d1xvyuYGVSuYsvDw4UYrukaFBmGtq0djVAoaGwheXZTCigInuLmVFdDe6wmHDy8NWnAwrugVRhNNKdNvRtAqhiappVHO6FZ7rnNOdpNMyzIvTzcvhr8UrKeTy8RGm8/PzGEoqoRcHQ/XwdBYeymC0JkwhtU64TneRzqZesVRAJpNpGl21sLAIIUlXdPPJHswvemvDyKCLYRjg17RKZeHl8WZ4eBiO2ii6zQoT3Yz4wnK6uxQiqlXLBlY9J4jzHdb93CzRLYoi9Fai26q1DJGkcGHAUaLpOmSaTjda77JblgVd1+lUL08mPIluUAgvF5Q0CtkrocehxeLioiuYw0BywhcXF3H48OHQ4zEYjEY6PVeI012iVDOiVCy6Y64lm8tD7B9b9/r8D76M+Yf+tuPYoy9+47ruD2Iig1z2WrDJMkLRzOlGfbOF9en2z0YUvB0cHIS9SnQ7jgO9XMDAAL1aCwwGTZjo7lJI+Li+Nry87nQHDS8nBBXNYZ1yWZJQtprvKjt2vEW3bdswTBMK5ZxutYUYJiI5kaQQXp5MdSykll9epuJ0C0oKxZiFlw9QKH5HhPtClxRTMwwDf/zHf4xSqQRFUfDhD3+4pcBgMOJAp+cKqfBeLNG5v5SKBfS2qBpfLBTAj61Pt7G0CoxCZ7fa0tbfb3klheX5+EQBbSd0XW+oXA7Uvm+8KDHRHYCNEN39/f2w1JVUEsfQYFsmE92M2MJEd5fS4HSvQrVscBwXWJiGdapJddmgN1xFUeC0aDlGnO6gReKihjjSVHO6eQ7lFuHlRCQnKYSXJ5MpWJYFwzBafndy+WXwSviHGa+ksFyMz8JycX4OQ1L4lIV+acXp7gYeffRR/MZv/AaS/SOo5hdw8uRJ/PzP//xmT4vBCAzZNCoW6NxfioVCy42ocrmEjLx+w1NQUpB6O/fuFppEDQlyEuV6mzLGxtIsvBwABFFi4eUxZWBgAEZlxek26653f3//Js2IwWgPE91diiu61+V0O1BkadPCw0M73YoM22q+q+yYtQefLMuBxo4aIrppVy/PthDdK043nerlQE3It+oHvLxcgDC4O/S1hEQa5VIpVD94mizOz+MAhfBykefQr8hd43ST3PMD7/0Mnvvkv2e56IyuJ5lMQhRFapE0xcJyS9FdrVTQK6+PKBu9403rwsa9wkuJjgUtGdGg67pbOG01nCAypzsAG9HFo6+vD6ZWhWNb4HgBdj16hIluRlxhhdS6FCK614WXWzaSSvBwY1Iwxm7hNnfCCdnWK5lIuOJ63diWAUEQIIrx3CsiBc9o5nQrPA+tg9NNpXp5Xbi3CzEvFgoQmiwy/SIotZDMuPTqXlxawoBE5zs1oEhYWlqiMlbUzM/PAxwHMdUPJdPPRDdjQwiyFPd6Dsdx6Ovroye6iwUMNFnA27YNw9DBi3Q3gDlJga6zStmbQSvRzTPRHVvIhpil1QwIS600vM5gxA0muruUluHlto1EInj4Ncdx4HkeVotiZp0wLRM8zwd2ulPJBByz+QPONjTIITYUoiYKp1vmOahae9GdSoVv45WoO93tiqkVi8vgKbQMi5PodhwHS7k8BmQ6jnu/JHSN6J6bm4OS7gMnCKw/MGND4DgumOh2Vs7vRF9/PwqFfICrrKe4nG/qmrnhxmsLb4WEF0SYhuGmaTE2Dl3Xm36enCCy8PKYQroV2FotJcOq/0leZzDiBhPdXQoJB27WpzsZ0vkURRFWQKfbsqxQTnQqlYLdRnTTcHWjYkV008zp5ltWL3ed7pBF84DG8PJm2LaNcqlEpU83yWWMQz/rYrEI07KoOd2DAoelLsnpnp2dhZSp5ehz6QHMzM5u8owYW52a6A7udXsS3X19KFK6txSLhabpNqZZqy/SzBkNBV/b/GOie+MxDGNdITUA4AWW0x0EEl4eZZg5EdeWXjMLbF1teJ3BiBtMdHcp7Z3ucMJUEARY9UWFX+yQebqpVAowm4tM29SpFA2LiqgKqela800IN6ebRnh5ve1Yudy8iA9xpYlLHQbilhdiUMGcuNL9tMLLJQFLXZLTPTMzAz49CAAQ0wOYmp7Z5BkxtjoczyPIGpyc4kV0D/T3UyukVlhebup0hy0Y2gqOqy3Jgm56M4JjGAbQNKdbYKI7pqTTtbWErRHRXfszk8ls2pwYjHYw0d2lrLQMW1NIzbJDC1NJkmC2yKvuhGm2rn7thVQqBRjNw6ltQ0UyFV/RTfK+aIeXay1y/Nzq5VTCy2s/11bh5UQg0xDdZIw4iO5sNgsA6KcUXt4nicjVx4w7U9MzEDI10S31DGGGiW5GxAQOL191ficGBgawnM8HuMqaazoOlvO5pu2HomqH5Phw9Bl0MQwDHL/+OcDxzOmOK67orq8ZbUOFIAixLbbLYDDR3aWQtllrw8tV24ESsm+zJEnQ9WAPGV0PL7rtVk63riKTCS/6oiK68PLmTjfVlmGp9jndRCDzTdrc+CVO4eW5XA4APae7XxKQy+eojBU1U9MzkHpWRPf83OyGVJxlbF+Cikk/Od39/f0oLIf/HayUyzBNs6nTTQqFOg7lMHAnXCFSRnB0XYfTLF1AEFghtRBE+UxZEd21tZelV5FIJtmmFSO2sDt7l8JxHBRZXhdertm2GyocFFmWQzndYXYZM5mMm5ezFttQkUl3g+im63TrLXbZiehWKISXJztUL3edbgo53Xy9AnocCqkR0d1HoU93bRwR2fzmbyZ0wnEczM3OQOoZAgCIPYPQdc11/hmMKOB5HkFkql13gL2I0YGBASwv5wNcpRFSjK2Z003qljhWsDSsVjj1sPI4tFLcbtTCy5s53ayQWhiiFN2peuQjEd2OoUEJuf5lMKKEie4uJqHITfp026FDsGVZht6ieFcndE2DGMLpzmQysFqJbl1Fb098c3VWwsvp7bJKbUR3tVpFIpGg4op0ahnmim4KLcM4noeUSMfG6eYA9Ii0RLcATdfbVoGPA7lcDrqmQuodBgDIPbU/p6amNnNajC0Ox3Gwg+R0+3C6BwcHUaBwb8nXN+QGBwfXvUeiuRyLrhhzLAOSJDOnbhPQdb1pITXwLKc7DFGKblLPhnS8sU0dSSa6GTGGie4uJqEoTcLLw1ezVhKJwL1CdV1z882DkMlkYKrNhZ+jV2NdIIM43RLlPt2GaTatZlupVFyxHBZZlsHzfEuxSFxpnkJONwCIiVQsnO7l5WX0KDJ4SotcIt7jsKHQDiKuidgm4nt6enrT5sTY+vA8Hyinm9z9PDvd+VzoxX6hnhfeKqdbSSRbdtoIim3oVCKXGP4xTLNpTjd4wa1Wz/BPlKJblmsbVCQl0TZ1Kt1cGIyoYKK7i0koifXh5Y7j5nsHHjeRgKY2d5s7oalqqGramUwGlqHBadYn3FBj3QoiKqcbQNOd9kqlEmqDYzUcxyGRTHZ2uhU61xMS6VgUUlteXkYPpXxuAOiRukt0E7Et9QwBHMecbkakBA4vd7yHlw8ODsKyLJRK4Tb18vmsO14zksmkWzWZFrZeRSrGKVRbGV1vXkiNOd3xheM4yLLibn45po5EyPUvgxElTHR3MUpCgbbGAdUdhBZiiUSiZW/oTui6Hkr0EyebtH5Yja1XYu10R1G9XKo7sM0KudScbnq7uslkqmXLsEKhAFFONF+UBICXU7EQpvl8nlo+NwD01Z3uPIXqyVEyNTUFcJyb080JIhKZASa6GZEiCEJA0b1yfieISF7OhSumRsLLmxVSA4BMT2/T51QYLL2CTCa+G8tbGcM0m4eXc8zpDgJJkYi6OKcky3DqNYgc04CSYKKbEV+Y6O5iEokkNKvxhqbZTui+zalkEqoabDFRrVaQDpFTTkS11cRBsPVqrJ1ushsuUczHI053K9FNs295MplsW71cStLb8ODkZCzCywuFAjICvc8rUxfdcXDx2zE1NYVEz0DDIlPqG2aimxEpPM/DCrAGt3200iKiO5db8n+hVSzns+jr63OLpq2lv68PlloKdY212GoZ/f19VMdkeMNk4eWRELXolhXFFd22ZTKnmxFrmOjuYpKp5DqnW7Od0E53KpUKLLpVtepWlAzCitO9PszZinlONxHGFDWc65o3izyoVqtUne5Eor3oFii0C3ORkrEQpsViERmK6QBEdMdhQ6Ed169fd0PLCXx6CNevX9+kGTG2A7Wcbv+L8CBOdz6k053LZjHQIrQcAIaHBmFW6f6em9UihgfX55Azosc0TIBbvyTmeNYyLAyRO92SBMeubYo4lgGF9ehmxBgmuruYZDK5LqdbtezQOd2pVApqJaDoroQT3cTJtpqE7RlqJdZOt67rkAWeauVZkWuf0x22PdxqEqlUy5zuYrEIjkLlcoKgJLFc2HxhWsjnkRbo3Qa7yenm00MNr0m9w7h6jTndjOgQBCGQ023VF+5eRPfQUO17nQ/tdOfcsZoxMjIMm7LodtQiRkZGqI7J8Ear8HKOF2BaTWrMMDwRuegWJbd1n2NbkOXg3XMYjKhhoruLSSRT0O214eU2Fae7UgkWNletlkNdn4jqtQVqHMuEbRpIx7jIjGEYkCj3V5XbFFKrOd303OdEItG2ejlN0c3LqXiI7uVlVyjTQOI5KIIQe6f76rWpdU631DOMqWkmuhnRIQgCgsgXy4fTnclkIEkSciF7zueySxhq43SPjIzAqeZDXWMtdnWZie5NwjRNcE2cbtQ7iDCCsSE53fXCu45luu38GIw4wkR3F5NIJqGtuaFpphU6pzuTybR0PDtRLpdDudGtCqlZWm0+cXe6abYLA1ac7mbhbeVKJfRnvZpEsrXTXSgUAYmm0x2PlmHlUhEpik43AKQlEaUS3VxP2kzPTEPqWSO6e4eRW1pkoZSMyBAEIVCfbj/VyzmOw9DQEPK5cKI7n8tieHi45ftjY2MwSuFC2NeiF7MYHx+nOibDG5ZlAU2+Xxwv1ELPGYGIWnQLgrDS7ca2WtZgYDDiABPdXUwikYC6phSsalqhw8szmQwq5WCioVIuhcq7dguprRHdRITH3ekWKVYuBwCxk9NNM7w80aZlWLFINaebl5MoB/yO0aRcrlAX3UlRaFkFPg7ouo7s4gKk3jXh5fVK5jMzM5sxLcY2QBTFgE53beHu1cUaHBpCPhsuvDyXXWobXj4+Pg6tmIdDKfTYNnTo5QIT3ZuEZVlNC6lxHA/LDlJznwFsRHi5uCK6HctTNAyDsVkw0d3FJBIJ6KvuZ7bjwKAQXp7JZFAO6NRVyuVQwjiZTILjONh6Y59wIsLj7HQbhkG1cjmwUgm9WfXUSqWCRIj8+bW0Dy8vgZfoueq8kgz8HaNJuUJfdKdEPtaie3Z2FsCKyCYQET49Pb3hc2JsD2pOt/9FOJG1XhfUw0NDyFFwutuJ7l27dsFxbBilcNchGMVFd1zGxmNZVsvwcovldAdmI5xukE0R22ZONyPWMNHdxSQSiYbwcq0etxc25LinpyewC1kqFdHb2xv42jzPI5lKrQsvt42aCI+z022aJgTa4eUdnW56QlhJJFFpJbpLJfAKxfByOQVdUzd9MVOuVpGimNMNACk+3qKbiGpxrejOMKebES2iKMIMEV7uWXQPDyMfIqfbcZyOTvfu3bsBAMbyfODrrMYoMNG9mTi23bx6OSfAMpno9gsR25GLblGA4xCn22ZONyPWMNHdxSSTSairwp5I+7CwQqy3txeVctm3ILIsC5VyOZToBoBkKr3O6SZ/j7PojsLpFts43Srt8PJk6/DycqkEgabTXS/Ktpm5z47jQNU0JCk73QmeaxkxEAdcpzvTWCRKSPWCF0QmuhmRIYqiGyruB9NnePnw8DCyS4u+r0MolYowDKNtUbM9e/YAAPTCQuDrrEZfnmsYl7Gx1MLLmzwLOA62w8LLgxK16OZ5HnCv4Xiq+8BgbBbs29nFKIrSUL1cs+g53UCtyJQfyPFhQ8CTyZTrbBO6QXSbpgk+ItG9MTndCaiq2vS9crnkCmUa8HKiPu7mOcKk97lCOTpB4dDy5xgHZmdnwfECxFRfw+scxyHRO8RENyMyak53ANFdf855DR0dHh5GLhtcdOeWltxxWtHf3490JgM9Nxv4OqvRc3PoHxiM9TNuK2M7rZxuHrbFRHdQNiS8nFzDcZjTzYg1THR3MYlEApoVjdMNAMXCsq/zisVCw/lBSaVSsA2t4TXy9zA9wKPGNE36Tnf9N7RZ1EGtZRjF6uWJZEuHtlqtuEKZBrxUK/a3mU43EcYJyjvjCb4WhRBXZmdnkegZaOrqiJkB1wlnMGgjiqIroP1AQtL9iO6lEE43EeztRDfHcZic3A89T+f3RcvPYN/+/VTGYvjHblUsjeNYn+4Yw/M8HBKJ4DjgKK/BGAyaMNHdxUQluvv7+wEAhULB13mF5eWG84OSTjcT3TWBFLZIXJSYpgmB8g1fQOvw8mq1CoVy9fJmYtE0TZiGQVd0x8DpJqJbpu108zyqAVvubQSzs7MQM837D3PJPszOzm3wjBjbhcBOd4Cc7mqlEnjzK1t3ujv1zD54YD/0HJ3IEDM/i0MHmOjeLGzbbl5IjeNWhS8z/BK10801fD4svJwRb9i3s4upie6VHVgSah62ZRgRzb6d7gId0Z1KJmGbjaLbMXXwPA9ZlkONHSWWZUGkvMlKCrOtFd2WZcE0Tarh5UqyefVyIox5in26SSX0zcx9Jv2oZcoPaZnnYMS41/X8/Dy4ZPNoFCEzgNl5OoWhGIy1SJIUzOm2a2GjXhfUxKHOBgwxJ/ng7QqpAcChQwdh5emIbiM3jYMHD1IZi+Efx3FqAnsNHMcFqrjPqBG56K5dhVws0msxGGFhoruLSSQS0FZV1SSud1g3uK+vlutZWM77Oo+IbnJ+UFLJRBOnW4eSSMY6dKiW0013TOLrrBXdbmg05fBykue8GlJcjYSE04CI7s10uonolmhXnOc4aPr6n2NcmJ2bh5Dub/qelB7A3BwT3YxoqIlu//mxpuNA8tFlgDjUJDfbL7nsInp6ejpuYB88eBCV7Cwca30kkh9sQ0M1N89E92bSQnQDXOvQc8amw3HcKqObhZcz4g0T3V1MIpGA5Tiuc0CrZdjAwACAlXBxryzn8wAoON2pFByz0Sm0TT20gx81lmWBdgkPUphtbU43cYgVhWLLMCUBwzDWXSsa0V2LWIiD001bdEs8B0OLs9O9sK6IGkFI9Yaq+sxgtCNMeLkoeO+/S0R30O/y0uIihtrkcxMOHToEx7aghQwx17JTAIDDhw+HGocRlibPAibiYk2DyObARDcj1jDR3cUQEUrahpE/w4pTRVGQTCaxnM/5Om85n0MymQwt+hVFAazGat2OqUPuBtFNO6e7heh285Flej8TJVEba60QdkW3SC+0nzjdrVqUbQSkIjztz6zmdAcT3Z/97GfB8zw4joMkSfja175GdW4AsLS02FJ0i6k+VMqlphEPDEZYZFmGEaAolWk7kDwWUQNWwsuXloK188ouLXbM5wZWRLK2eC3QdQja4vWG8RgbT9Rh0NsNIn7Zz5XBWIGJ7i6GiFuSy02rZRhQc7vzPkV3Pp9zXfIwJBKJ9aLbMqBQFJhRYFkW/fBybmXs1ayEl1PM6a675msFF7kWR7OQmqg0jL0ZkJ+pQP0z4+AEDEd84IEHsP/gYfy3T34Gff0DeOihh6jOzbZtFJbzEFPNc7rJ60sBw3IZjHZIkgTDsn0vxHXHgSx769EN1FpLJpNJZBeD53SPehDdu3btQjKVhloXzUFRF6+ht6+/bbV0xubBhKN/NtZxZp8PoztgoruLIY42yeXWKDndADAwOIjlXNbXOYV8Dv0URLcsy4DdmCNnWwYUCpsJUWLbNvVfqFbh5W6PaYruPxHda4Uw+TtNp5sTBHC8EBPRTXdxwHOAGTDH89y5c7jl9hfhF9/+Lhw+ehznzp2jOrfl5WXYtg2hRSE1sf56Nuvvd5/B8IIsy3AAWD7XyIbtQJb83X+GR0aQywbP6fbidHMch8NHjkBdvBLoOgR18RqOHDnCQmNjCvtc4kvts2GfD6M7YKK7iyGONgkrp1W9HACGBgd9O925XBbDHaq9ekGWZTjmWqfbhCR5dzo2g0hEd/3PtTvtUYSXk/D9teHlUYhuABAkORaim6f8wBY4DnaAEFrHcXD27FnsO1ArpjR54BBOnzlDdW65XO13Wkz2NH1fqL9OjmMwaELu4YZP59CwbUiS9/ByoJbXvbQYbXg5AJw8fgxmPSc7KObSNZw8cTzUGAxGnNio6AAWhcDoJpjo7mLWhZfbNniepyJOh4aGkPfpduWzWSrhcbIsw1njdNfCy+PbLgyo9/mkPCbfIi/KFd0UnW7Sjm1teDn5OyfQ3fQQRHlTc4fJz5R2SgAPBKp2Oz09jUKhgIOHjwIADh46grNnzqyLcghDvl7sUEhmmr4vJGqvM9HNiAJyjzF8tg0zHAeSz/v/6MgIsgFzupcWFjyL7qNHj0KdvxJ48e84DqqLV3Hs2LFA5zPoUHNMm3yGTNSFYiOiBFYuwRxvRrxhoruLIaKbhJVrlo2ELFO5yQ0NDSGf8xeal88tdexr6gVJkta1YHEsC5KPnL7NIAqnm3ySa0UcEatRON0tRbdI9+fPi9KWLdgV5HfwmWeeAQAcOlJzvA4dPQ5N03DhwgVq83JFt5Ju+j4R3cs+OxcwGF4gUViGz00pw3Z8d2oYHR0NVL1c0zQUiwWMjo56Ov748ePQKwWY5WAbVUZhAaZaYaJ7s+G4FgKbtaEKAnO6GYz1MNHdxZAFDHG6dduh5gbXRLdPpzuXpSe67UZ3z7FNyDEPL3ccJwKnu/ZnS9Gt0HP/WxVSI621OB8te7zACaI7NgN4+umnkUqnMbF3EgBw9PhJAMBTTz1F7RqFQgEAwCeai25eksELonscg0ET4nTrvsPLHfdcr4yMjAQqpJbLLrrne+H48dommTofLK+bnMdE9+bSUlg7AM+zpXJcWSu6mQhnxBl2J+liXKd7VSE1hZIIGxkZQc5neHk2u0QlvFwUxSZO9/YU3WS8tQ8SIlZp9ukmrvlaIUz+zlMOL+dEaUuK7qCP/CeeeAJHjp1wF3jDI6MYGR3DE088QW1uxWIRACDIqZbHSIm0exyDQRNXdPsML9dsx3etkpGRkUBONxHqXkX3gQMHIEoS1MWrvq8FAOrCVSiJJCYnJwOdz6ADz/OAsz4Cw2FOdyii/tnV7iQcuRgT3YxYw0R3F7M+p9tBklKF7+HhYRSLBc+iSNM0lIpFKqK7mdMN2/LVMmYzcBwHG/VsJm603zzHdpCf79rPnPSzBi9QuxYAcLywqaKbiFuf6/+O2A7ABXBGHnv8cRy/4VTDa8dP3kRddHO80DZVQFCSKJVK1K7JYBBWorP8hZfrtu27e8Xo6Cjy+dzK/csjpPia1/BySZKwf/9BqPOXfV2HoC5cwaFDhyEIdO+vDH/wPN9csDk2+2xCELnodpzVSd1MdDNiDRPdXQxZwJDq5ZptUyusRcQzCbXrBDmORnh5zeleG15uQaAc3hwJlO/3XItCakSs+m2j045WTrdpmjWhRvnhyfEC1SJhfiELKZvyh2Y5ju9FWrlcxpnTp3HyxpsbXj9508147LHHqM2tXC5DUpJtP0teTjDRzYiEoE63bju+n23Eqc75dLuX6sXXvDrdAHDDDSegL17zdR2CsXQFN95wItC5DHrwHN88p9txILDw8pjDrfmTwYgn7E7SxawUUluV001ZdHvNiSPHeXUH2iGKYpOcbst3y5jNIKpN3VaiW6QYci+1qF5eE90R3Cp4wbcLRRMijE3KVrcNQPQpup944gnYto0bblovumdmZjA9PU1lbuVyGYLc3jHkpQQqlQqV6zEYq1lbh8Qruu34drqJaPbbNiy7uIhUKoVUqnUKxlpOHD8OPUCvbsdxoC5cY/ncMaDmdDcJL693hWH44z/+x/+IN7zhDXjhC18Y6XVYTjejm2B3ki5mbaieZtlIJJJUxnYXLB5dAnKcH3egFaIowl4bXt4lIV5R3e/XOpO6roPneao/EyLg1wphy7LAUw4tBwCO4wO11qLFitNNF8txwPuMynj00UehKAoOHW3s1XvDqVsAAI888giVuVUqFfBSh405UWGimxEJZKNYtXyGlwO+N5TJBrDXZxhhaXEBIz43j48fPw61kIVZ8VeA0CznoJeXceIEc7o3G14QgLXrDgCOY0EQ47/2iBu/9Eu/hK9+9auR1yqohZfX/8Jyuhkxh4nuLkYURQiC0FC9PJmkLLoX5z0dnw0QkteKmtPduCjjbItK//HIoex0kwfIWtFtGIbvar6dkMTWopuLQHSD29zw8qA9gzthBugi8Mgjj+DoiRvWfcd37NyN4ZFRaqK7Wq2C8yC6q9UqlesxGKsJ6nRrtuMKdq+QZ5HfXt3ZpUXfzzHiVKsL/oqpscrl8UEQhKZON+zu2PDfrji2Aw4sp5vRHTDR3eUokuS6BlqAYjOtyGQySCQSWFrwtmDJLi4ikUggnW7eisgPgiDAXlu93LZi/+DjOC4yp3sthmFQDS0HVpzutTndtQJxEcTNc9ymOt0ropvuHHTbgeSzi8DDjzyCG266dd3rHMfhxI03UxPdqqqCF9uLbk6UmNPNiISV4p8+nW4HvkV3Op1GMpn0/AwjLC0uYMyn03348GHwPA/VZ4i5ungVgijiwIEDvs5j0EcQhPUFXAE4ju07XYixcThYVUiNVZlnxBwmurscRZYbqpcnfOShtYPjOIyOjnpuubK0uICxsTEq4oxUL2/YsXTsrnC6aWtuMt7an6tpmhDbVKAOgiDUiqWZ5poNjwh3EjZzVzpoz+BOGI7jq5VbqVSqFVFbk89NuIFiMTVVVYEOoe+cKKOiqlSux2CsZm0dEq/ojv96JRzHYXhkxH9O99KCb6c7kUhgYs+kb6dbW7iG/fsPdsWzbasjiiLQZDPIsS1IYvzryWxXWE43o5uIhej+zGc+g8nJSSQSCbzwhS/Ej3/845bHfv7zn8dLX/pSDAwMYGBgAHfeeWfb47c6CUVZyel2/Oe9tWPEh+jOLi36zoNrhUgecKsfgF2Q083zfGSie20hF8MwVn5OFBFFsXlxs4ic7s18QAYNde2EbtuQfTjdTz/9NBzHwYkbbmr6/vEbbsLc3BxmZmZCz03TNEBoPzdekKCqWttjGIwgBHW6tYCpU342jglLiwuBCoKeOHHMdwVzfekqTp443vlARuQ0K+AKALAtiF1QxHW74tgOVlcvZ6KbEWc2XXTfd999+MhHPoLf+Z3fwWOPPYabbroJr3rVqzA/3zyX+Lvf/S7e8pa34Dvf+Q4eeughTExM4JWvfCWmpqY2eObxQFEUqCSn2/Gf99aO8bExLC54y+leWpzHKIV8bmBFdDvOygPQsczYuwE8z1MvykX04FrRbZomhAhEtyCK65xuANFUiIsqbN0jQYs6dUK1HSRT3tMsnnzySYiiiINHmud1HjtxIwDgqaeeCj23muju7HSvrWDPYNCARJf4/Z1TLTvQs210ZMR3TvfSon+nGwCOHzsGM3vd1zn60jUcPXrE97UY9JEkEY69/tnn2BYLL48xtfDyVX9nopsRYzZddH/yk5/Ee9/7Xtx11104fvw4Pve5zyGVSuHuu+9uevz//t//G+9///tx6tQpHD16FH/1V38F27Zx//33b/DM44G8yunWKTvdo6OjngupLS7MY2xsjMp1XdG9usiWbW5Lp9uuP0Caiu4I2piIoriuuBnHcbUHG3U2V3QT54y66Hbgy5V7+umnse/AoZa/uxN7J5FKp/H000+HnltVVcGLHZxukTndjGjgOA4JRfYdXq5ZViDRPTIy4svp1lQVpWIxkOg+cuQIKkszsE2988EALL2Kam4eR48e9X0tBn1IWttaHMukXrSUQRuW083oDjZVdOu6jkcffRR33nmn+xrP87jzzjvx0EMPeRqjUqnAMAwMDg42fV/TNBQKhYb/thKJRKIhp5u+6PbmEiwtzFPp0Q2sEt2rHoBOF1Qv5zgOFmVtSuTgWnFqWVYk4eUCL6xzunmej8zp3sz+p6IoQhJFVCmL7qrt+Orx+9xzz+Hw0dYhpjzP49Dho3juuedCz01VNXAdRDcnSMzpZkRGQlZ8b3RVzWCi288zDACWQnThOHLkCBzHhrbkLepOW7runsfYfCRRbNzoJ9jRPGsZlFizNNkqTne5XMYHP/hBvOc978F73/tePProo5s9JQYFNvVOsri4CMuy1jmkY2NjOH36tKcxfv3Xfx07d+5sEO6r+YM/+AP83u/9Xui5xhUloUBbJtXL6YaXj/kIL1+g6HSTXWXHWsktdqz4i25BECIIL3fcsVdjWVatryhlhCZOtyAI0VQZd5xNj15IJRNQKf/bVJ/5p6dPn8ab3npX22P2HzqC5z3eE9uhaho4of3cOFGGzkQ3IyKSPn/nHMeBalqBcrpHRkaQXfTudJNjg2wgHz58GEBNTCfH9nU8Xqvnf5PzGJuLJElN+3SjCzb8tzON3VW2Tk73Aw88gE9/+tOYzCRxuVSFIAi49db1HU4Y3cWmh5eH4Q//8A9x77334qtf/WpLsfmxj30My8vL7n/XrvkrdBJ3kolkQ59u2k53pVxGpVxue1y5VEK1UqEmuskDbnV+lWPHP8RLFEXYlMOwiXPeTHQLEfTO5nl+ncAWBAGO1STPOyRODByETCqNiklXdFcsGz09PZ6OLRaLmJ2dxb4Dh9oet2//IZw7ezb03NSqCr5D1XtekKBqrHo5IxqSiQQ0HyFBplPbfAxaSG15Ob+uDWIrSCh6ENE9OjqKTG8v1EVved3q4nUMDA5hYGDA97UY9FEUuWGj38VhojvO1EQ2CS/fOk73+fPnIQs8vvvSY3jNeD/OnTmz2VNiUGBTRffw8DAEQcDc3FzD63NzcxgfH2977p/8yZ/gD//wD/HP//zPuPHGG1sepygKent7G/7bSiirwst126YquomI7uR2k/fpO92rRHcXFFITBIF6eLnVwul2HAdcBKHZzUS3JEmwmzkAYbE3/zNNZ9IoUw4vL5sWMpmMp2MvXLgAANi7b3/b4/bs24elpSUsLy+HmltVVTuHl4syNCa6GRGRTCZ9Od0kFD2o0w3AczE1IrqDhJdzHIeDBw9B81hMTctOMZc7Rsiy3Lx6uWVSXVcx6NLYWnbriO6LFy9iIpOCwHHYm1Jw8fz5zZ4SgwKbKrplWcatt97aUASNFEV78Ytf3PK8//7f/zt+//d/H9/4xjdw2223bcRUY4uSWAnV0ywrItE91/Y48j6tnO5mots29dg/+ERR3DDRbdt2JPnQXAvRDcdpnu8WAsc2N93p7sn0oGzS/XeVddOz6L506RIAYPeeybbH7dm7r+H4oKjVKnip/e8RLyvQWSE1RkQkkylfdRTI8y2U6PYYYr64OI90Oh3oWgBw9PAhmNlpT8dauWkcOdw+woWxcSiyDDSJ6HIsI/ZRdtset47a1imkduXKFeyUa+u+XUkF12dmoknzq/PYY48hlUrhta97XWTXYMQgvPwjH/kIPv/5z+N//a//heeffx7ve9/7UC6XcdddtRzHd7zjHfjYxz7mHv9Hf/RH+K3f+i3cfffdmJycxOzsLGZnZ1EqlTbrn7CppDMZfHt+GZP/9Bjyqo502nurok5sltNNxLWzqgqsbRpdIbppB2GbddG91hG2bTuSBwwHbt2NvVmOPQ3i8Jn29PWhRFF0m7aDqml6Di+/fPkyEskkhkfab1jtmtjrHh+GcqUMXmpf94GXFBiG3rxfO4MRklQ67auQGhHofooTEshG8JLHCubZxUWMhNg8PnjwIIz8jKdjtew0Dh1iojsu1Jzu9fc8JwYRWYztx/T1axiTa6bEeEKCaVktWynT4OzZs6hWq/jOv/xLZNdgbHIhNQB485vfjIWFBfz2b/82ZmdncerUKXzjG99wBdzVq1cbHL3Pfvaz0HUdb3zjGxvG+Z3f+R387u/+7kZOPRZ8/OMfx8tf/nIANTd07c8lDENDQ+B53pPo5nkeQ0NDVK5LhJi9SuRZRrc43XSt7lai24moxzXXJCdq9efBg16hPsfcfAehf3AQBYrh5cW6gO/v7/d0/NWrV7Fr10THz3J4ZBSJRAJXrlwJNb9qpYJUR9Fdc/lKpRLLN2VQJ5lO+3K6qxscXh4ktJxw8OBBVPMLsHUVvNz698xSy9BKeRw4cCDwtRh0kVs63Sy8vFvYGoHlNRbn53FKqUm0obr4XlhY6Jh6GxRS92Kzow+3OrH46X7gAx/ABz7wgabvffe73234e1inZ6tx+PDhyPLCBEHAyMiIJ9E9MjJCrRI1KYrnGLWbgGPbsLvgwSeKIgyf/Wc7QWp8NbsRRiO614/ZLPKABpapU622H4S+vj5MUYzYIqK7r6/P0/FXrlzBzt17Oh7HcRx27poIJboty4JarUBQ2osXQak5isVikYluBnVS6TRyPu6TYXK6Sai41/Dy7NIiRkOIbiKitfwskqOTLY/TctMNxzM2H0VRmovuGGwOM7yxlcLL88sF9I7U7nm9Um1tHbamSztIm9CtkhMfVzY9vJwRb8bGx7HYIaRlcWEeYxR334gQs+sij4i9oHl2G4UkSa4zTQsy3kbuPq696ZKfu01bdBv6pn+m/f39KFCsXl4w/Dndly5fxu49ez0du3NiTyjRXSwWAQC80j4FhYjuQqEQ+FoMRitSqRRUH7fJaj3dJWjq1PDIiFsgrRPZpYVQTvf+/bWCiHqufYi5nq29v29f59ZijI1BlmU41vpnXDfUk2FsPaqqioRQk2jJ+p/VajWy66mq2vAnIxqY6Ga0ZXxsDAvzs22PWZyfo5bPDayIPCK2bVNreD2uyLJM3ekm4zV76Ee1I7l2t5jkUtoGveJajm3D0tVN/0z7+/tRMOhl4hd8hpdfvnTJzdfuxO6JvbgYopBaLpcDAAjJ9kXeyPv5fD7wtRiMVqRSKag+7pNhcrqBeq9uz6I7XHj5+Pg4ZFmBnmv/zNRys0ilMxgeHg58LQZdFEVpWrckDrVHGN7YSi6tZVsQ62sxoV4pzjTpt24lVCoVAIBhGJFeZ7vDRDejLWNjY1habO90Ly3OYzwC0W0bav3P7nC6IxHdju2OvZYoHjDNcsWJw2Tr9HZAyUaK1yrfUTE4OIi8Rq9gWF433XE7kc1mkc/nsXfSm9s1sXcSFy9cCPy5Ly0tAQDEZPsib0L9/Ww2G+g6DEY7UqkUqgHCy4OK7tGRkY7PMMLSQjinm+d57N6zF1onpzs/gz179m6pcNhuR1EU2Ob6Z4HFRHfXsJV+mziOc3PUyZ9RdKwhrI5sY1Fu0cFEN6MtY2NjnnK6aTrdK85q3emui++gi66NQpIkGJRbOhARv7aQGsdxEYnu9U73iuimF9pEBDzNavtBGBwcRNU0fRV2akfeMMFxnKec7rNnzwIAJvcf9DT2vgOHUCgUsLDgrSjUWhbrea1iur/tcWKyNveg12Ew2pFOp1Hx0X6wElJ0Dw8Pe3K6dV1HsVgI7T4f2D8JPd++zaaRn8PBAyy0PE4kEommKVR2FxRx3fbUl0JbyemWJQk6aQdstzZfaEEi4QC24R4lTHQz2rIZolsQBMiyssrprrmicRfdsixDo9zLWq+L7rU3W57nIxLd6/t/EzearuiuNoy9WRBHOk8pxDxnWOjv6fG0I3369GkANTHthQOHjgAAnn/++UBzm5urCYFOopsTBCiZfszOtg+RZTCCkEqlUPFRR6Fi1u5JQYXPyMgIcvUoj3bksovu8WHYNzkJu9BedFuFeUxOToa6DoMuzZxux7LgOPamF/xktKbBJOC2TjG1ZCLhRvmoVm2tF2W059zcHMbGdwBgG+5REovq5Yz4MjY2hlKxCLVaRaLJL7xaraJULFIV3QCQSCZdYUZc0c0WaJ1IJBIwKLafAlZE99oFpyAIsCkLfKDW/3utYCQ9py2KopuM5bWfdVSQNnc53cSORPhd5KxuYmioc2g5ADzzzDPYs3cSKY9u/+T+g5AkCU8//TRe9rKX+Z7b9PQ0lHQfeLHzv1PuGcLMjLd+wwyGH9LpNKo+cgarlo10Mhl4MT0yMoJstrPoJhXOw4ruvXv3Qsu33qh2HAdafg5793qr5cDYGBKJBAy1gun7/9p9zalXM2eiu0vYOkY30qkUKlbNcKrW13pRRgZOTU/j5E23YG7265iamorsOtsd5nQz2jI6OgoALd1u8jpt0Z1Kp12xTRzvzQ5F7oSiKDBsGzZFB5qEFa0V3TzPw7Lpi27LstaJ7lQqBUEQYKllatex62P19vZSGzMIZIG9pNNxurO6gdFRb78Ljz/+OI6evNHz2JIk4dCRY3jiiScCze369euQe72FzvKZIVy7dj3QdRiMdqTTaVQN03OkTsWykU4Fd3iGh4eRz2VhddikJMI8bHj53r17oZeXYWnNNykttQRDrWDPns6tAhkbxy233IKJiQkI57/n/ide+gH2HziIEydObPb0GC2obcatZD9vFac7lc64qTXkzyjXwFevXMHxkzcimUqF6pLCaA9zuhltIWJ6cWGuaWujxYW5huNokU5nUHCd7niEIneCCGPNdpAU6Nz42zrdlPPHAcC2rHXtyTiOQ6anl6rotrTaWF6rfEcFWWBnaYluw8JwfaOqHbZt49FHH8W73/chX+OfvOkW/PjhhwPN7cqVK+B7vAkKsW8UFy9dDnQdBqMdqVQKDgDV432yallIhQirHBkZgeM4yOeyGBpu7WLn6nnfYUU3EdNGYR7CyPpnpr5c26hmTne8eOlLX4orly5u9jQYPuH4VfVtmhSC7VYSiQT0Yu3fpdXXgVFFXJTLZczMzGDP5H7sndyPCxcuRHIdBnO6GR1YEd3Nne6lxYWG42jRk8m4YpuEIsfd6SY3RJ2iGCZO99qbrSiKsCJo62BaZtOe4L19/bDUErXrkLG8FByLkp6eHiiyTM/pNh2MeBDdZ86cwfLyMk7d9gJf45+69XY8+8wzbs9tP5y/cAnSwA5Px8r947h85dKWKkzDiAdk87RieovUqVg20pngaShEROc6hJhnlxYhSVLo6JuJiQkAgN4ixNyoi25yHIPBCA7P87UKsHW2iugWRAFW/d9Foiejql5OirruP3gI+w4ccuvNMOjDRDejLW74bYvCCovz8+A4jnq/0d7ejCu2ba0CUZJiX0GUCGONYtswzWoeXi6KIswIcrpNs7noHhwcgKX6F3qtsKolyLKy6W3gOI7D6NAQFim1DVvQTU8bUA888AAEQcCpW2/3Nf5tL3wJbNvGj370I1/n2baNy5cuQhnY6el4ZXAnSoWC22aMwaAF2Twte6x/UTZtpDPBN1zJM6xTBfNsdgkjIyOhF+27du0Cx3EwCs2fmfryAgRRpL5RzWBsRxrCyx0bgiBs6nxooVZVyHztXiTXxbamaZFc65lnngEAHDxyDIeOHsczzzzDNtwjgoluRltEUcTQ0BAWF1uI7sUFDA0NNRVqYejt7YWtVQDUwstTqXi73MBKZUmVYjE11XaQUOR1C0FRFGEa9PpLE0zDaPpZDg8NwqrSc7rNahG9mxxaThgbG8MiBafbcRwsVjVPi+nvfve7OHnjKWR8OngHDh3B8Mgovvvd7/o67/r169A0FcrQLk/HK8O7AazsgDMYtCBOd9ljBfOqZfv+PVmNm0LSQXTnlhYxWC+sGAZJkjA8OgZ9ufkz0ygsYGxsx5YRBwzGZlLr5GI3/H0rsLS4iH6pthYbkGv3CtL2kzaPP/449uydRE9PL46duAELCwuskGpEbI1vJyNSRkZHsbTQvAXK0sKcp3Bav/T29AD1AmqWVkVPz+YW3PJCJKLbspFU1ufxyLJMXXQ7jgPTNJv2ghweGoJdLVC7llUpYGgw/AKXBmM7d2KBgtNdNG1oltVRdDuOg3/5l3/Bi37i5b6vwXEcXviSl+Lb99/v6zzSZiwx4q14U2JoN8BxgduTMRitIE531WOkTtmykQkR8t3f3w+e5zuGl+eySxgNWbmcsHv3bhjF5gtko7CAPXtYaDmDQQOe5wGS0ufYWyK8vFqtYmpuDntStQjHiWTtz/Pnz0dyvYcffhgnb7oFAHDyppvd1xj0YaKb0ZHxNr26FxcXqC1UVtPb2wtHrzvdWgWZTW4t5QVXdFPM6VYtG8kmxTNkWYZu6NSuAwBGXcRLkrTuvaGhITgUw8vNagEjI3RTEoIyNj6OJSt8KBUJUe8kup966inMzc3hjpe9ItB1fuJlP4VHHn4Y2WzW8znPPvssRDkBuX/c0/G8pCA9tBPPPvtsoDkyGK1wc7o9bk5WnHBFNAVBwODgIHIdfl9yuSy1NKk9E7tbhpebhUXsZaKbwaCCwPNYCS93tkQEySOPPALbtnFDbwoAMCCL2JVJ+U4r84KmaXjkkUfc+jI7d01gfMcu/OAHP6B+LQYT3QwPjI6OtgzNyy4uRJKbtjq83NLK6OuLv9OdStVukFWq4eU2UunUutdlWYahUxbd9fGaOt3DwzAry9SuZZXzGBulv1kThB07dmBeCx9ePlcX3Tt2tC9W9s1vfhPJVAq3v+iOQNd56SvuhG3b+Pa3v+35nKeeegrJsUlwPkLvpJFJPPnUU0GmyGC0xA0v9yq6bSd054rBoSHksh3Cy7NLGKIQXg4Au3ftgl1q7qxbpSXs2uUtzYPBYLRHEISG6uVbIbz8H/7hHzCUVHCsd6XmzUv7k/ja//d31HOtf/zjH0NVVbzgxT8BoBZNd/uL78B3fKawMbzR/d9ORuS0Fd1Li24vb5r09vbCJKJbr6K/N/5OdxSiu2rZ7rirURQFpmlSbRum65o79lpGR0ehFXPUbviOWojkexOEnTt3Yr6ihu6vPl8X3Tt3ti9W9k//9E940R0vC1wYcOeuCRw+ehz/9E//5PmcRx97AvLIPl/XSYwdwBNPPMkKqjCoEqh6ecjOFcPDw55yummJ7l27dkEvrL+e4zjQlheY6GYwKMELK+HljmN1vejWdR1/c889eO1oL4RVofI/u3MQ5y9dxve//32q1/vmN7+J/oFBnLjhlPvaHT/5Cjz6yCOR5ZDPzc3hm9/8Jr71rW+hUqlEco240t3fTsaGMDY2htPPPYOb9o+t++/M889G4nT39PTAqJaQe/Z7MHLTm97P2QtRie5kC9ENADrFapZEdDfrBTk6OgrbMqn16jbLebeq8GazY8cOGLaNXMhianOqgXQyiZ42qRCFQgEPPvggXn7nq0Jd62U/9Up84xvf8LTpomkaTp9+Dsmdh3xdI7njILJLi5iamgo6TQZjHYlEAjzP+6hebrX9nfLC8NBQ5/Dy7BK18PJdu3ZBLxdgG433Z1srw9SqHTfmGAyGN0RBWCmkZltdH17+13/915hbXMA79zauj+4Y6sGRvjT+4P/5f6he7//7+7/Hy37qlQ0/t39z56vgOA6+/vWvU70W4T3vfS9+5md+Bq985SvxqU99KpJrxBW6JacZW5L3vOc9SKfTTRf4PM/jLW95C/VrHjx4ELZp4PJ9H6///c3Ur0GbKER3zeVZH1pJRLeqVpGg1HZL1/SGsVdDNlbMcg5iMlyop2Pb0Iq52LTMIQvgOc3AkLI+n90r85qBHePt/03f/va3YZomXv5T4UT3y+/8GXz+M3+GJ598EjfffHPbY5966imYhoHUjsO+rpHaWTv+kUcewe7duwPPlcFYDcdxyKSSnquXlw0zdHj50NAQrk490/L9aqUCVVWpOt0AYBQWGzoGGMWlhvcZDEY4JFGEY9fWLk6XtwwrFAr43d/6LfzsjkEcyjSu6ziOw4f3j+GXv/Ut/PM//zNe+cpXhr7e6dOn8czTT+NX/vNvNLw+MjaO2174Ytz3pS/hne98Z+jrrOXhRx7F4Kmfhjp7AQ8//Aj18eMME92MjoyPj+PDH/7whl7z1a9+NYrFIqx6hdveENVrNwri4HgtEOSFaovKvaRom6ap1K6lqtWGsVczPl4rwGUUl5AYDlcEyFKLsC3THXOzIQvgOdXA8RBfs1lVx+5D7YXtN77xDew/cAgTeyeDXwjArS94MVLpNL7xjW90FN0PP/wweEFEcvwA5n/wZcw/9Lcdxx998Rsx8pI3ItE7hIcffhhveMMbQs2XwVhNJp1GxUP1csdxqInufK61053LLbnH0cAV3cWlRtFdqF2HOd0MBh1ESQLs+r3EtpoWgu0WPvaxj6GQz+G//sSxpu+/erwfLxruxa/88i/jyWeeaZp66Ie/+Zu/QV9ff1MT4HX/7s34+P/vP2Nubo6qQbK4uIi5mWlM/sS7ICR78djjj1Mbuxtg4eWM2JLJZNDX14e+vr6uaAPBcRzSSe8OjhfKDprmM7qV0qv0RXez8HIikM2S94rZrTCK2YYxN5vx8XHwPI8ZNVxhulnDwq6J9i257r//fvzEy38q1HWAWrG7F77kJ3G/h9Zh//qv/4r0jgPgJRmWVoFRWOz4n6VVwHEcEjuP4KGH6FdMZWxvMpkMSh7uk6rtwHbCF1IbHh5Gvk14OXmPlugmonpt2zDidDPRzWDQQRQEOHXR7VjdG17+3e9+F3/xF3+BXzs4jl3J9cVsgdoa8w+PT+Da1av42Mc+Fup6pmninnvuwWv/3S9AabLme93PvQmiKOKee+4JdZ21PFUvzpocP4Dk+AFcuXwRxSK9zjhxh4luBoMimVTKc/9ZL1St5gtOV3TXhTKVa9ULWjRzunt6epBIplzBHAay8OxU5XujEEURY8NDmFXD9eqe1a22YaNXr17FxYsX8eKXvjzUdQgvfunL8MMf/hBah7z+B3/wEJSdRwEAgpKC1Dvc8T9Bqe2gJ3cfx48f/rEbccJg0KAn04Oyh0JqpfoxYXO6BwcHsbycb/k9zuXoiu5W90ujuIie3r6m91gGg+EfURRdp9uxrdrfu4x8Po93vPWtePFwH+6abF9g9kAmgf96eAc+/elP41vf+lbga/7d3/0dpqen8e/f8e6m7/cPDOLVP/vz+J//839Sff4/88wzECQZyuAuJMdqxV2fe+45auPHne77djIYMSadSaNs0RPCZbt55V4SVqRW6VV+VKvVhrFXw3EcxsZ3oFps3gbHD8T9iYvoBmrhoDML1wKf7zgOZstqW9FN+l7e9sKXBL7Oam5/0R2oVqt4/PHH8aIXvajpMYuLi7h44Rz2nnojAGD0jjdh9I43eb5GeuIYZr5dwrPPPosbb7yRyrwZjJ6+XpTmr3Y8jpboHhoaguM4WM7nMDi0vlhaPks3vJzcL+ce/yaqcxfd1ytTZ7FnB3O5GQxaSKvCy50uDC93HAfv++VfxvLiAr58x1HwHqI63zU5in9ZLOKdb3sbnn7uuUD3rU9/+tO47UUvwbGTrZ/r73j3L+OrX/o/+NrXvoaf/dmf9X2NZjz//PNIDU+AEwQo9VTF06dP44UvfCGV8eMOE90MBkUymQxKyyVq45VNu+mCkwhxmu0WqnUB36o9z8TuXXg2H76FhFFYQv/AYNMw9s1iYu8kZq5fCnx+VjehWRYmJlrnuz/88MPYM7kPQ8N0qrYfO3EjZFnGww8/3FJ0P/TQQwCA9J4Tga6R2nUEHC/ghz/8IRPdDGr09Q/gG/PLuP177R0Oo168M2xND7IozeeyzUV3PgdBENDX1xfqOqt5z7t+Cf/w9X8EUFh5cf84/t0b6CxeGQwGEd21ziOO1X2i+7777sO9992HPz+1r2VY+Vp4jsMnb9iDV/7wDN7/vvfhvi99ydc1H3vsMTzwwAP4H1/4322Pu+mW23HzbS/An/3Zn1ET3afPnIEwUNt4FOQkkgOjOHPmDJWxuwEmuhkMivT29qGyNE1tvLJhthXdVZqiu9JedO+Z2I2nrj8b+jpGYRE7d8areu/uiQk8awTPxZ+uh6a3q/L91FNP4dgJesJVlmUcOnIcTz75ZMtjfvjDHyLRNwy5P1j+vCAnkdl5CD/84Q/xy7/8y0GnymA08Ju/9Vu45dZbPR3b09ODm266KdT1iOhezueavp/P5TA4OEi1dshv/uZv4jd/8zepjcdgMNYjSRJQbxlm22ZXie6FhQV84P3vw2t3DOINOwd9nTuekPH7R3fhA1/+Mn7xq1/Fz/3cz3k+98/+7M+we2IPXvnq13c89l3/8T/hP7337XjyySdD34cB4PnTZ6Acern7d2lwN06fZqKbwWAEINPbixKl/BfHcVDSjaY53eS1Spmeq16plMHzfEsHevfu3bCK3wt9HaOwgMkD4Sqg02ZiYgLTleBF6abrRdjaOd3nzp3Da36Obuu7fQcP4dy5cy3f//4DDyKx61goMZHYfQzfe+DBwOczGGu57bbbcNttt23Y9QYHawvafK656F7OZzEw6G/Ry2AwNh9ZluFYtU1v2zQgy97c4jjwsY99DFalgt+/5Wig81+/YwB/N5PHr/7Kr+BVr3qVp2rm8/PzuO+++/CRj/2Op/z3V732Ddixcxc+/elP4wtf+EKgeRKy2SzmZqax945J9zVlZC8ef6K1cbDVYIXUGAyK9Pb1oWQ5VMZSbQeW4zR1usnNtVwuU7kWAJRLRWQymZYCbWJiAtX8PJwm/dr9YJcWsWdP+yrfG82ePXtQ0g0UjGAbJjNVHbIkYXS0eREU27YxNTWFnbvXi/K/+uyn8JIbD3T8768++6l15+7cPYGr15rnouu6jkceeQTpPScD/ZsI6T0ncfXyJczOzoYah8HYLAYGBgB0droZDEZ3sVZ0d4vT/fzzz+Puu+/GRw6MYVgJNmeO4/A7R3dhbn4Of/7nf+7pnLvvvhs8z+MX3vpLno4XRRFvecd78MUvfhH5fD7QPAmkrk1690pLtNTuY7h86QLm5uZCjd0tMNHNYFCkt7cXZUodw0gRoWZ5hoIgIJVKUXW6y+Vy24JFExMTsE0DZjkf6jpafr6tI7wZkE2AqWqwtmFTqo6JnTvB881vqcvLy7AsCwOD6wuelIpFzM5Md/yv1KStxtDQMLJLzYvbPf7449A1FemJYPncBJIPTvLDGYxuI5lMIplMIpdt/ruynM9isC7MGQxG9yDLMmBZcGwbtmVCUZTNnpIn/uRP/gTjKQX/fmJ9jQk/TKYV/MLOQfzpn/wJdL39+sVxHHzhC1/Av339v0P/gPdNxl946zuh6zruvffeUHP9u7/7O6SGd0EeWCmi27P/FnA8j7//+78PNXa3wEQ3g0GR3t5elCw6qpuI7lZFhHp6elAq0etvWC4VkW7TD3fv3r0AAH15PvA1LK0KvbzsjhUXiOieDtire6qqY89k639TxW3Htj78K9PTg/EdOzv+l2myIaIkkqhWm1fLf+ihhyBIMpI7Dgb6NxHk3hEkB8aY6GZ0NaRtWDOWczlqlcsZDMbGIcsybMuAUy+m1g3h5eVyGff+n/+Dt+4ahCKEl2F3TY5ibnERX//619se96Mf/Qjnz5/Hz//i232NPzq+Az/5ilfif/2//2/gOebzedx735fQe/IVDdGUUmYAvQduxWc/9z/hOHSiROMMy+lmMCjS29uLgmFSGYuEOrcU3b29KFMU3aVisW31XiJM9fws0ruD5SDpy3MNY8WF8fFxiIKA69X2Pa9bMa1b+P+3d59RUV1fG8CfGXov0hQVEFBQUURAwIIRg73EEhv2WF977LHFHiyJRqOJfzXGEjExKmLBboIdpCjSREUB6b0zM+f9QOZGBJEycEH2b61ZK3PrlpuZufuec/ZpZ2L6wfXSH5nyflS+mjUfX82aX63zgrEPDge4/+ABVJtaQihf8+52Ss2scOcuJd2k4dLW0UHWB7qXZ2ZmcF3QCSENh5KSEpioGExUzL2v765du4a8ggIMbiqb75w2Giqw0laHt7d3hQXVvLy8YGDUFF1culf5HIOGjcSiWVPw+vXrat2//fDDDygsKoaeQ9nibXpOwxF4dDkuXbqE/v37V/nYDQkl3YTIkKamJnKKZJN0Z1fQvVx6ruxyuhxXV052VoVT8+jo6EBNXR1FGdUfeyPd19TUtNrHqA1ycnJo3rQp4qvdvbwY/Stovf+v2rzsxuADJcXvPlRt/t79B1Bu1kkm51E1tkKg3zGIxWLIycnJ5JiE1CVdXV1ERoTh1jXfMuuSkxJpTDchDZCSkhIkomJIxA0n6b5z5w6aqanATE1206Y6a6ngn1u3PrieMYazZ8/Cvd/gav2Gu/UZAAUFBZw7dw5z586t0r6xsbH4znMbmjgOgYJG2e9ZDQt7aJp1xKKvF+Pzzz9vMOPyq4O6lxMiQ1paWsgXiVAsqXk3mY8l3VqamsjOyqzxebjzZWVBq4KkWyAQoGVLUxRlVL+gVlFGIuTk5dGsWbNqH6O2mJiZIrYaSXeRRILEvPwKu8xrampCQUEBqak1n+f8XelpqdAtp1tsRkYGXr96CdVmrWVyHtVmlsjPy21U82mST4t5q1a4+/dNTBkztMwrLTUFrVq14jtEQkgVKSkpQVxc2KBaup+FhsJaTbbd4NtqqiI6JgaFheX31nv27BliYmLg1qd6LckaGppwdOkOn490YS/P/AULwBSUYeTqUe56gUCApn1nIzIyArt2lS0Y+ymhpJsQGZImyNKEuSY+1r1cW1sb2VlZNT6PVHZ2JrS1tSvcxryVKYpr0tKd/hbNjFvUy9ZSE7NWiCuq+nWLzy8GY6gw6RYIBGhmbIz4uPIrjVdXfOwbtCynKF1ISAgA1Hg8t5SKkTkAICgoSCbHI6SuHThwAHFxceW+EhISMH581cY5EkL4p6ysDLGomKtgrqKiwnNEHxf35g2aVrNi+Yc0VVYEYwxv374td/2VK1egpKRUra7lUj0+642/b9/+YGJfnmvXruGv06dh9PkMyCmX3ysPAFSbWkDPYQjWrvsW8fHx1Y6xvqPu5YTIkDTpziwWQVexZh+vbJEYqsrKH+xqo62tjVdv4mp0jndlZWR8NOlu1aoVrt95hPSn1ZuvO/fNM7QzN6vWvrXNxMQEVwqKq7xf3L/jwD82zsnC3BwxL6KrFduHvHoRDecuZec7fvr0KYRy8lBq0lwm55FX1YSKtj5CQ0NlcjxC6pp8Pe1hQwipPmVlZTCJGOKikoKiDaGlOyszA5oKsm14kB4v6wMNMTdu3EBnR2co1+ChRNcevbBl3Urcv38frq6uH91eIpFgwcJF0DBpD50Obh/d3qjXJESG3sTq1atrPCd4fUVJNyEyJE1aZdXSraX54Sm8tLW1kVXDeRNLnS8rs8JCagBgb2+P3bt349Wp9dU+j8PopdXetzaZmJggMS8fRRIJFD8w9Vd5pF3SP5Z0t23bFhcuXq5RjO8Si8WIjgrH1MkTyqyLiIiAqp6xTIqoSSk0aYGIyEiZHY8QQgipCWXlknHR4vyS6VMbQtJdXCyCvGLZAqi/vEjEgVeV60k4zdQQ01sZcu8V/i2oWlxctuFAIpHAz88Pk2ZUbSz2+6za2UBLSxu3b9+uVNJ9/vx5hD59Asupuz5Y8PVd8irq0Os6Gkd++x/WrVtX76aWlQVKugmRIWkF3MxiGSTdIjF0tD9c3VJHRwdZMhrTzRhDZkb6R4sJjR8/HkOHDoVEUv1p0Soq1sYnExMTMFbSXdxUrfI/3HH5RTDS1+N+/D+kY8eO2LNnD3Jzciqcmq2yXkZHoaCgAB07diyzLjo6GnJaTcvZq/oUtJsiMvK5TI9JCCGEVBeXdBeUJN0NoXu5QCAodyaTHJEYCZXsbZfzXsOO9GjlJbehoaHIyMiAfReXKsf6LqFQCDtHZ/jduVOp7ff//DM0WrSFukn7Sp+jif0AJN3+DYcPH8aaNWuqG2q9RUk3ITIkbenOkkHSnVksho7Rh5NgHR0dZGakg1UwbVRlFeTno6ioqFLT5miUM1/0p0BaUf3kmxSYVSHpvpuWDRNz649u17lzZzDG8OxpMByculY3TM7T4EAAQKdOZSuUx7yOhYKWbKdlU9QyQGzwA5kekxBCCKmu/1q6s0u9r88UFOQhYmXHRavLy8FIuXK909TlS3dPL/63IaS84Yj37t2DnJwcbO0cqhFtaXYOTjiwZwckEgmEFfQIzMvLw/Vr12HQ+6sqHV9OSRXqll3w19lzlHQTQiqmpaUFgUCATBnM1Z1ZLIJWBUmwrq4uioqKkJ+XB9UPTBtVWRkZadwxG6uWLVuimZER9r6oenX2BRM+nkS3a9cOysrKeBL0WCZJd0igPywsLMp9UJKUnAR5qw41Pse75NW1kZGWStOGEUIIqRekLdsNqaVbWVkZRYUFZZZPb1W6y3hVFP47Y0553evv37+PNm3b1/g+EQA62TsiKysL4eHhaNu27Qe3CwoKQnFxEdRNq34fom7aEU8u/oiCgoIG8RClKijpJkSGhEIhtNTVZdO9XMJgUUESLE2Q09NTa550p1HSraioiNj4+HK7fX1MRU98pRQUFGDbqROCA/2rE14ZwYH+cHR0LHdddlYWdJVr3oX9XXLK6mCMIScn56Nj/wkhhJDaJk3K8hOiS72vz5SUlFGYV/0heuUp/Lelu7x/v39AAGw6dpbJedp3LOlZ5+/vX2HSLZ1eVFmv6j3ulPVNIBGL8eLFiwrP0RDRlGGEyJiOtpZMku5MEaswCW7y7/zM0oS5JtLT00ods7ESCAQQCoVVflWWo4MDngQF1DjO4uJihD0NgYND+d3FigoLIJCX7Tygwn+PV5XpQgghhJDaYmBgAABIC7oCNTV1qMmgNbe2Kakoo0BS9Yf7FZG2dL+fdBcWFuJZaCjadbCVyXk0NbVgYtYKgYGBFW735s0bKGvoQqhQ9cJ2CloG3DE+NdTSTYiM6ejoIjO95vMMZhSLKhxjLU2QpQlzjc6VllrqmKR2ODg4YPfu3SVThmhpV/s4UeHPUFBQAHv7stOFEUIIIY2BmZkZ4uPjkZOTAx0dnQ9OsVqfqKqqoaAGxWjLUyAuOd773evDw8MhFoth3c6m1PL/7duFQ/t2V+rYU2bNw1ez5nPvrdraICQkpMJ9YmNjoaClV6njv09BowkgECA2NrZa+9dnlHQTImO6enrISKr5E7rMwuIKk249vZIvtPS0lBqfKz09raRrPHUbrlV2dnYAgGdPQ+DUtUe1jxP6JBgCgQC2trblrldSVgErlm2LtOTf4zWEMXOEEEIah6ZNZTtTR21T19REtki2SXf+v0m3qqpqqeXPnj0DAFi2KV3sNSc7GwlvK9c4lJOdXeq9ZRtrnP79SIX7hEdEVHsGFaG8AlR1DBH5CU5RSkk3ITKmq6eHt+KafaHmiyXIF4kqbHnW0NCAgoIC0lNTa3QuAEhPTYWenl6VukqTqmvdujWUlJQQVsOkOyw0BOYWFlD/wNRjWlraEP1bWEZWxAU5kJOTaxDd9wghhJD6SFtbG3Ey7l6eUSyChppamSKnz58/RxM9/TI969Q1NGDUtFmljq3+3ow1ZuaWePv2LXJzc8u9HyguLkZAwGNoOY+u2j/iHYqG5rhz916196+vKOkmRMZ0dXXxTFyzL1Rp9fOKxnQLBALo6+sjNbXmLd1pqcnQ09ev8XFIxeTl5WHdti0iwkJrdJzIsFB0sLH54PqmzZriVVbN/794V1FWCvQMDOnBDCGEEFJNBgYGuC2Duj/vSikUwVC/bHfu169fw7h5izLLv5o1v1SX8aowbt6SO7a1ddnpUm/evIm83By0sKh+8TZ1c3vcu7QHKSkpXK/OTwEl3YTImK6uLjJqOGVYxr9fyB8bY91ETw9pMki6U1NToP8JfbHVZ+3btcOziLAaHeN5ZDjcek774PrWFuZ4fv9Zjc7xvsK0OLQzN5fpMQkhhJDGxMTEBHE5+RBJGOSFApkc801+IVpalU2AExMToWdgJJNzSOkZlkxrlpSUVG7Svf/nn6FmaAKVppYl2935A0n3/qzUsQ2cR8Cg60jotHNF/OWfcPjwYSxZskR2wfOMmiwIkbEmTZogvbC4RsdIL/p4SzdQ8sQ0LSW5RucCgLTUFK4KKKld1tbWeB4RXq2pyQAgMyMdSYkJ5f7YSbVv3x4FSS+rfY7yiJJfwaZ9O5kdjxBCCGlsrK2tUSyR4EVu2bm6qysiX4S27duXWZ6ZmQkNTU2ZnQcANDQ0uWO/LzIyEmfPnIGu4xcQCEoeKIgL81CclVKpl7gwDwAgr6YFHRs37Nj5PQoKZPd34hsl3YTImK6uLnKLilFUg+qU0pbyj7V0GxkaIlUWSXdKMiXddcTa2hpZWZlISUqs1v4vnkdyx/kQe3t7FOVlozBVNtU/xQW5yE2MoWrphBBCSA107twZAoEAARm5MjleWpEI0Zk5cHR0LLNOJBZDTihXzl7VJy9f0klaLC7bRX7Lli1Q0mwCXds+3DI5JVUoaOpV6iWn9F8hOIPuo5GYmIAjRyou2taQUPdyQmSMm8qrSAxD5eo910ovEkEgEEBbW7vC7QwMDHD/waNqneNdqSnJ0Kcx3XXCysoKAPDieRT0Dave7Ss6qiTptrS0/OA2Tk5OEAqFyHkVAmW9suO5qirn9VMwJkG3bt1qfCxCCCGksdLS0oJj5864GRuNMS1qPqzvVnJJi7Obm1uZdSoqKigoyK/xOd6Vl5fLHftdSUlJOHb8OAw+mwyhgiK33KDrSBh0HVnl8yjrtYBO2+7YtmMnpk+fzrWcN2TU0k2IjHFTedVgXHd6sRi6WlplKlG+z8DAoMYt3RKJBKkpyTD8d5wOqV3m5uaQk5PD86jwau3/PCocJiYmFVYR19LSQmd7B2RH+1c3zFKyn/ujqXFztG7dWibHI4QQQhqrYSNH4mZKFrJkUFDNOyEDzo6OaNasbDVyI0NDJCW+rfE53pWcmAAAZe4Zz5w5A7FYgiZ2fWV2Lt3OAxAdFYng4GCZHZNPlHQTImP/tXRXP+lOKxJBV/fDc3RLGRoaIiMjHUVFRdU+V3paKsRiMSXddURRUREWlpZ4Xs1ialHhYWjbtu1HtxsyeBByo/0hKa7+/xsAwBhDbtR9DBk08JN40kwIIYTwycPDA8WM4c+4mk35+iavEDeTMjFp6tRy17dp06ZGNWTKExH2DAKBoExvu4CAAKg3bQV5VS2ZnUvdpAMgECAgIEBmx+QTJd2EyBjX0l2DpDu9SFSpKbyMjEq6J6emJFX7XCnJSaWORWqfTfv2CH/2tFr7RoY9RftyCqa8b/jw4SguyENW1MNqnUcqLz4CeanxGDFiRI2OQwghhBCgWbNm+HLklzjwOgXFNZiz+5eXidDW0sS4cePKXe/s7IyMjPQaT1P6Lv/7d9Dexgbq6uqllhcVFUEgpyCz8wCAQE4OQqFcjRqW6hNKugmRMW1tbQiFQqTVqHu5CPoGH295lrZOJ1ezKNe7+1JLd93p1KkTwp6GVPnpc0Z6GuJi38DW1vaj21pZWcGmQ0ekh1yrZpQl0oOuQd/AEK6urjU6DiGEEEJKrFi5ErE5+fCKrd60r3H5Rfg9Ng0Lv178weFm3bp1g7q6Oq5c9K5JqJyioiLcuHoJ/fv1K7OuXbt2yEt4AXGh7MaQ58VFQCIWoV27T2PmFEq6CZExoVCIJtpaSKtJ93Ixq1RLd9OmTQHULOmWVtGmlu6607lzZ2RlZeLli+dV2i8ksKSLVWWriE+ZPAlZEfcgyi07tUdlSERFyHx6HRMnjOcqlhJCCCGkZmxsbDB2zGjsjE5EjqjqY7u3RcZDS1sb8+fP/+A2ysrKGDFiBE7//lu51car6tplH6SnpcLDw6PMulGjRoFJREh+cKbG55FK8juJliam6Nq1q8yOySe6iyKkFug1aYK0oqxq759eLP7odGEAoK+vD4FAAF+fc0hJql4X8zu3r0NTUxOqqqof35jIRJcuXSAQCPD44X20Mv9wFfL3BTy6D11d3Qorl7/Lw8MDS5cuQ2qgLwy7fVnlODPD/FCUm4UpU6ZUeV9CCCGEfNiWrd/hr7/+wo/P32KFVfNK7/c4PQen41Lxyy+/QENDo8JtZ8+ejV9//RW+F86h/+Bh1Y6VMYaD+3ahR48e5Q5xa9myJebNnYvde36CVhtnqBiaVftcAJAWcgMZYXfws5fXR4sKNxSUdBNSC/T0DZD+Kq3a+6cWFldqCi95eXnY2dnhz99/w5+//1bt8/Xq1ava+5Kq09bWRnsbGzy4+w9GjBlf6f0e3fND9+7dK13QTE9PDyNGjMC5qz4wcBkBgbBqnZvS/H3QrXuPCucEJ4QQQkjVtWzZEstXrMSmDesxsrkeLNSVP7qPmDGsCo9Hpw4dKvVA3MHBAW5ubtizYwv6DhwKYRXvA6T+vnEVgf4PcfHixQ9us2nTJvheuYpXXutg/tWPkFfVrNa58hKiEee9A2PGjsXIkVWfbqy+ou7lhNQCfSMjpFZzKogiiQRZhUWVnjf70aNHkEgkNXpdu1azcb+k6tx69cK9f25Welx3Xm4uHj+6X+UHJP/3f7ORlxJX5enD8hNfIOtlMObO+b8q7UcIIYSQylm6dClaNG+BteGxlbofOP46BU/Ss7F3//5KtwBv3LgR4c+e4sypE9WKUSwWw3PjanTr1g19+354SjAVFRWc9z4HRXEeYk6urdbsKUWZyYg58Q3atbXG/w4c+KRmTaGkm5BaoKenhxSRBAXiqr8SC4q5Y1SGQCCQyYvUrT59+iA+LhZRlZw67P6dv1FUVIQ+ffpU6TwuLi7o0NEWKQ/OVmm/5PtnYWjUFF988UWV9iOEEEJI5aioqGDXnj34OykTlxMzKtw2vUiEbc8TMHnyZDg7O1f6HE5OThg5ciS2b16L3JycKsf454nfEPY0BNu2bfvo/WKrVq1wwec8CuIj8OasJ5hEUunziAty8erESjRRV8bFCz6f3LBH6l5OSC1o2rQpQtOzYekbWKNjkE9Xz549oaqqiuu+F9Da6uPzbl/3vQBzc3O0bt26SucRCARYuGA+Jk+ejILUWCg3+fi4MVFeFjKfXMe6NaugoCDbKUAIIYQQ8p+BAweif9++2OB3G730taAkV36b6I6oeEgUFLF169Yqn8PT0xPW1tb46QdPLFm1vtL7ZWVlYvvmtRg3bhycnJwqtY+LiwtOnDiOESNGQFHXGE3dJn90HyYRI+bPTRDmpuDKvXto1qxZpWNsKARMljOmNwBZWVnQ0tJCZmYmNDWrN9aAkI9JS0vDpUuXqjwllJS6ujqGDBlCLdCfuOHDhyP61Wuc8f2nwu3EYjFcOphjvMc47Nixo8rnKSgoQDPj5pBv7Yrm/T/eXTzRzwvJN39FbOwbGBgYVPl8hBBCCKm88PBwtG/XDt+0aYZpZmWncH2ZW4DP/nmGLVu/w5IlS6p1jrVr12Lr1q3w9QuEiVmrSu2zcfVSeB09hMjIyConwlu2bMHKlSthNmY9tK0rrkAef+0gkv1O4vLly/j888+rdJ6GgpJuQgjhyYkTJzBu3Dj88zgcxi1MPrjdw7t+GD3kc9y9e7dKXcretWLFCuzY9SO02rt9dNvsiDsYObg/jh6tfnE+QgghhFTeV199hbMnjuFud2uoypcerz0/+BUeiBXw/OVLKCt/vOBaefLy8mBlZQXrDp2w/1evj27/4nkk+nbvjPXr12PFihVVPh9jDEO/+AKXr95E69kHoKBZ/rDJ7BeBiD6yBJs2barWeRoKSroJIYQnWVlZMDAwwNcr1+Gr2Qs+uN2apQtw6+oFxMTEVLvyaFxcHEaM/BJ5efkf3VZRUQGHDx0sd1oQQgghhMjeq1evYGFhjjVtjDHF9L9eZq/zCtH9dih+2LULc+fOrdE5pA/7T567CkeXbhVuO338SESFPUF4eHi1E/3U1FRYt20HkV5rmI5eV2a9pLgIkT9NhZ21Of6+fava9zgNASXdhBDCo2HDhiH6ZQzOXr1T7npp13KPcWOxc+fOOo6OEEIIIXVlzOjReHjxPG51s+KGGG4Kj8XJlDzExr+FmppajY4vkUjg6OgIJpTHHxdufnAYY8DDexg5oBeOHz+OsWPH1uic0kTfcsr3UDftUGpdot8pJN44iKdPnsDKyqpG56nvPt3HCYQQ0gCMGjUKIUGPEfPyRbnr79/5G8lJiRg9enQdR0YIIYSQujRr9my8yM7Dtsh4XE/KhG9iBva/SMSESZNrnHADgFAoxKZNm/D40QP8fePqB7f7wXMjbGxsZHLvMXr0aLS36YCkf46XWi4RFSH13ilMnjTpk0+4AUq6CSGEVwMHDoSqqiounDtd7voLZ/+EmZkZHBwc6jgyQgghhNSlbt26obW5OX6MTsAk/+f4KiAaAoEAU6dOldk53N3d4dilC/bt2lbu+uBAf9y5fQOrV6+WSXdvoVCIJYu/RmaUPwrT4rnlmWF+KMxOx9dff13jczQElHQTQgiP1NTUMGDAAFzy/qvMOpFIhCsXvTFy5EiqZE8IIYR84oRCIYKePEF8fDz3Sk1NRYcOHT6+cyUJBAIsXbIED+/5ITQkqMz6wz/vQatWrTBs2DCZnXPEiBFQUVVD+tNb3LKMp7fg4NilUbRyA5R0E0II70aMGIHQJ0GIfR1Tarn/g7tIS03B8OHDeYqMEEIIIXVJRUUFTZs25V46OjoyP8eQIUPQvHlznPjtYKnl6WmpuHz+DGbNmgU5ObkP7F11qqqq+Pzz3sh9/hAAIBEVIyc6AMOHfSGzc9R3lHQTQgjP+vXrB0VFRVy77FNq+bXLPmjWrBns7e15iowQQgghnxp5eXlMmDABF878gcLCQm65z9k/IRaLMWHCBJmf0/3zz5HzJgySogLkxUVAVFQAN7ePT2P6qZDnOwBCCGnsNDQ00MPVFadOHEF+fh63/PL5MxgwYMAnPYUGIYQQQure2LFjsXnzZvjdvg439/4AgIvnTsOtd28YGBh8ZO+q69q1KyRiEfLeRiE3NgzKKqqwtbWV+XnqK0q6CSGkHpg8aRLmz5+PQ/t2ccvk5eUxbtw4HqMihBBCyKeobdu2sLC0xPXLF+Dm3h+ZGenwf3AXe/furZXztWvXDoqKSkgLvor8hBfo2LEj5OUbTypKzSeEEFIPjB07FsnJyUhJSeFeCQkJcHV15Ts0QgghhHxiBAIB+vfrB98L55CclIhzp70gFovRr1+/WjmfgoICOtnZIdX/AvJiw+Di7FQr56mvBIwxxncQdSkrKwtaWlrIzMyEpqYm3+EQQgghhBBCSJ3z8fHBoEGDuPeWlpaIjIystfMlJycjOjoaANChQweoqqrW2rnqG0q6CSGEEEIIIaSRkUgkuH79OgoKCgAA1tbWsLCw4DmqTxMl3YQQQgghhBBCSC2hMd2EEEIIIYQQQkgtoaSbEEIIIYQQQgipJfUi6d67dy9MTU2hrKyMLl264OHDhxVu/8cff8DKygrKysqwsbHBxYsX6yhSQgghhBBCCCGk8nhPur28vLBo0SKsXbsWjx8/RseOHdGnTx8kJSWVu/3du3cxZswYTJ06FYGBgRg6dCiGDh2Kp0+f1nHkhBBCCCGEEEJIxXgvpNalSxc4ODhgz549AEqq6LVo0QJz587F8uXLy2w/atQo5ObmwsfHh1vm5OQEW1tb7N+//6Pno0JqhBBCCCGEEELqCq8t3UVFRQgICEDv3r25ZUKhEL1798a9e/fK3efevXultgeAPn36fHD7wsJCZGVllXoRQgghhBBCCCF1gdekOyUlBWKxGIaGhqWWGxoaIiEhodx9EhISqrT9li1boKWlxb1atGghm+AJIYQQQgghhJCP4H1Md21bsWIFMjMzudebN2/4DokQQgghhBBCSCMhz+fJ9fT0ICcnh8TExFLLExMTYWRkVO4+RkZGVdpeSUkJSkpKsgmYEEIIIYQQQgipAl5buhUVFdG5c2dcv36dWyaRSHD9+nU4OzuXu4+zs3Op7QHg6tWrH9yeEEIIIYQQQgjhC68t3QCwaNEiTJw4Efb29nB0dMQPP/yA3NxcTJ48GQAwYcIEGBsbY8uWLQCA+fPnw9XVFTt27MCAAQNw8uRJ+Pv745dffuHzn0EIIYQQQgghhJTBe9I9atQoJCcnY82aNUhISICtrS0uX77MFUt7/fo1hML/GuRdXFxw4sQJrFq1CitXroSlpSXOnj2L9u3b8/VPIIQQQgghhBBCysX7PN11jebpJoQQQgghhBBSVz756uWEEEIIIYQQQghfKOkmhBBCCCGEEEJqCSXdhBBCCCGEEEJILaGkmxBCCCGEEEIIqSW8Vy+va9K6cVlZWTxHQgghhBBCCCGkodPQ0IBAIPjg+kaXdGdnZwMAWrRowXMkhBBCCCGEEEIauo/NjNXopgyTSCSIj4//6NMIUr6srCy0aNECb968oSnXGgC6Xg0PXbOGha5Xw0PXrGGh69Xw0DVrWOh6yQa1dL9HKBSiefPmfIfR4GlqatIHswGh69Xw0DVrWOh6NTx0zRoWul4ND12zhoWuV+2iQmqEEEIIIYQQQkgtoaSbEEIIIYQQQgipJZR0kypRUlLC2rVroaSkxHcopBLoejU8dM0aFrpeDQ9ds4aFrlfDQ9esYaHrVTcaXSE1QgghhBBCCCGkrlBLNyGEEEIIIYQQUkso6SaEEEIIIYQQQmoJJd2EEEIIIYQQQkgtoaSbEEIIIYQQQgipJZR0E0IIIe+g+qKE1L7w8HD4+fnxHQYhhNQJSroJIYSQf0kkEggEAsTHxyMwMJDvcEgViMVivkMglSSRSLBmzRocOnSIe08IkQ16cFw/UdLdyKWlpeH58+d4+vQpfUgbiJycHLpWDRxdv/pJIpFAKBTi6dOnsLOzg5eXFwC6Xg3B8+fP8b///Q8AJd8NgVAoRJMmTRAbG8u9J/VXbGws/vzzTxw6dAghISF8h0MqIH1wnJubi8zMTGRkZPAdEvkXfcs1Yk+fPkXv3r0xbNgwdOjQAXPmzMGbN2/4DotUIDw8HB07dsSJEyf4DoVU0qtXr7Br1y6sW7cOx44dAwAIBAKeoyLvkybcwcHBcHZ2hqamJn799VeEh4fT9arnnjx5Amtra8yaNQuJiYmQk5PjOyRSDunDK5FIBAAYNGgQUlNTUVxcTA9K6rEnT56ga9eu+PHHHzFv3jwsWbIEz5494zssUg7p71hoaChGjRoFFxcXjB49GkeOHOE7NAJKuhutiIgIuLm5oW/fvjhy5Aj++usv/Pbbb7hw4QLfoZEKnDx5Ei9fvsT//d//4ejRo2XWU4tc/fLkyRN069YNPj4+uHjxIr766its2LCB77DIe6Q3KiEhIXB2dsa8efPg6+sLfX19+Pr6AqDW0/oqODgYXbp0wZgxY+Do6Ih9+/ZRV+V6qqCgAAAgLy8PADAyMkJERAQiIyPpQUk9FR4ejs8//xweHh64ePEiAgICcO/ePURGRvIdGnkPY4zrqdW9e3eYm5tj4cKF0NTUhJeXF3Jzc0ttS+qegNFfvtHJycnBjBkzoK6ujp9//hmMMQgEAixZsgT37t3D33//DYFAQK079dC5c+dw/fp1mJiYYNmyZTh06BAmTJgAoCQpoBuX+iMmJgZubm4YPnw4tm7dipycHPz+++/44Ycf4OPjg1atWvEdInnH48ePYW9vj2+++YZ7MDJ27FgEBAQgIiKC5+hIeYKCgtC9e3csWLAAGzZswIQJE/D06VP4+/tDKBRyv22Ef9HR0Zg8eTIMDAzQoUMH9OrVC4WFhfD09MSaNWvQtWtXiEQiLiEn/MvNzcXMmTOhqqqKn376CUKhEAKBAMOHD4eLiwsAwNzcHEOHDuU3UMKJi4tD7969MXToUGzZsgUAcO3aNezcuRO//PILlJSUoK+vDwD0/cgD+nZrhDIyMlBQUIDhw4eXWm5mZoYrV65Qwl2PGRoa4vr16wgICEB8fDy++uoraGtr4/bt22jZsiXmz5/Pd4gEJT9mf/zxBywsLPDNN99AIBBAQ0MDnTt3RnJyMgoLC/kOkbzn+fPn+Prrr7Fhwwau5Xv16tVwd3fHvn37MGvWLL5DJO+Ii4uDnZ0dli1bxj0kWb16NZycnLB7924sWLCAfsfqkcTERAwePBiBgYG4ffs2Dh8+DJFIhLi4OOjo6KBr166Ql5enh8f1RHZ2NjQ0NDB8+HCYmZlx12Tjxo04c+YMhEIhYmJikJeXh4CAAOrBVU/ExMRg0KBBmD59Orfs1q1bCAoKgrOzM4yNjWFjY4MDBw7Q9yMfGGk0Xr16xYqKihhjjAUGBnLLRSIRY4wxb29v5uLiUmqf169f11l8pCyxWMz9t0QiYW/fvmX29vYsNTWVMcbY+vXrmVAoZBoaGuzZs2d8hUneERcXx6KiotjNmzfZ5s2bueUSiYQVFhYyMzMzdufOHR4jJJWVmZnJevXqxUaMGMF3KKQc586d4/5bIpGw7Oxs9uWXX7JBgwaxoqIiJpFIeIyOMMZYWFgYe/78eZnlb968YVFRUWzjxo3M0dGRTZ48mVsnvSch/Hj79i2zs7Nj9+/f5+4ZGWPM39+fKSoqsrNnzzLGGCsoKGALFixgLi4u3D0J4Yf0uy43N5e9fPmSW75582amqqrKDh8+zK5du8YOHjzImjdvzg4dOsRTpI0bjeluJMLCwmBmZgYPDw8wxmBrawugZCyj9AlmUVERkpOTuSIn69atw4oVK0qNAyF15+XLl9i/fz9EIhFXjdLIyAhqamqIiooCAERFRUFdXR35+fl48uQJzxE3bowx5ObmwtnZGadPn0bPnj2xYsUKbp1AIICioiKEQiHy8/O5/a5du0ZjUHlW3t+fMQZNTU0sW7YM3t7eVO+inggKCsLixYsBAIMHD+aWCwQCqKurY+LEifDx8YGfnx+15PAsODgYbdu2xfnz57ll7N8RjU2bNoWFhQUWLFgADw8PPH78mGudo5ZufsXGxuL169cIDQ2FgoICd806d+6M6OhoDBkyBBKJBEpKSjAzM0NWVhYUFRV5jpoAJcM4VFRUuPfGxsY4c+YMJk2aBDc3NwwdOhQqKiqIj4/nMcrGi5LuRiAoKAj29vYwNjZGfHw8kpOTAfxXdEFKIpFwY6rWrl2L9evXY9GiRVBTU+Mr9EYrJCQE1tbWWLt2LcRiMYRCIYqKigAA2traeP36NebPn49r167Bz88PK1euxOjRo3Hq1CmeI2+8BAIB1NTUMHToUBw8eJCbCke6TiQSITc3FyKRiPtRXLVqFdzd3ZGQkMBX2I2WSCTibiaLi4tLrZM+5AIAOzs7uLq6wtvbGxKJhB6Q8Cg4OBguLi4Vjvvt06cP+vXrh/379yMnJ6cOoyPvkl6rpUuXYsGCBdxy6edKTk4OYrEYampqmDx5MmbMmIErV65g7ty5PEVMpOzt7TF27FisXbsWqampEAgE3HelsbExgP+meIuMjESHDh2goKDAW7yk5HPl4+ODjh07IiIigvtNmzBhAtzd3bntFBQUYGZmBlNTUwBUUK2uUdL9iQsODkbXrl3xzTffICgoCEFBQTh8+DCA/378pB86ZWVlmJubY+3atfjuu+/g7+8POzs73mJvrKRTFo0ePRr6+vrYunUrAHA/aq6urvDw8MBff/0FHx8f2NjY4Ntvv8W3334LGxsbPkMnKGl9EwqFePDgAYD/ql6/WytBVVUVW7Zswa5du/Dw4UM0a9aMt3gbmzt37gAoqaAsEAjg6+uLcePGYdKkSfjtt9+4h1zS66anp4f+/fvjwIEDSEhIoPmEeSJN4hYsWMB9J5ZHTk4OPXv2xJ07d5CamlqHERKpyMhI2NnZYfny5di6dSvEYjHOnTsHT09PnD9/HmFhYQD+S7zV1dXh4eGBVatWYeHChTxH37hJHyqOHTsWWlpaXA8f6X2i9DesoKAAq1atwqlTp/DNN99ASUmJn4AJACA9PR0vX77E9u3b0aNHD+5+8f2k2tPTEy9evED37t0B0PSldY6XTu2kToSFhTGBQMBWrlzJLVu4cCFzcnJisbGxZbY/e/YsEwgETFtbm/n7+9dlqORfQUFBTE1NjX3zzTeMMcY8PDxYz549WWFhIbfNjRs32NixY1lQUBBfYZJ/fWjMaN++fVmXLl3KXWdnZ8ccHByYoqIie/ToUW2GR95z9epV1rp1a7Zu3TrGGGMPHjxg8vLybMaMGczR0ZF16dKFzZkzhxUXFzPGGDeeMTExkfXo0YNFR0fzFntj9uzZM6apqcmWLFlSavnZs2fZgwcPuPfvfh6bNm3KZs6cWWcxkv/8+OOPTCAQsIsXLzLGGPvss8+Yra0ta9GiBWvVqhVzcnJiV65c4baXXjcag8+/d+vIuLu7M1dXV+699PqcPXuWTZ48mRkbG7PHjx/XdYjkPU+fPmVycnLMwsKCnTx5stxtAgIC2Pz585mOjk6pmk6kblHS/YmSSCRs7969bOfOnaWW+/j4MGVlZXb16lVuO6n79+8zMzMzKsjFk5cvXzKBQMAl3Iwx9vDhQyYQCNiJEydKbZudnV3X4ZFy5Ofnl3ovfThy584dZmJiwv744w9unUQiYWlpaUxLS4vJy8uzkJCQOo2VlCTP8+bNY05OTuzbb79lnp6e7IcffmCMlRSg+e6775iDgwObOXMml3iLxWImFotZVlYWn6E3ajNnzmRCoZD99ddfrKCggDHG2IYNG5iWlhYLDg4uta1YLGYikYjt2LGDRUZG8hFuoxUVFcWio6NZYWEhW7duHRMIBMzU1JQNHz6cu6+4ffs2Gz58OOvTpw9LSUnhOWISFhbGtm7dyv75558y6wICApiBgQH7/fffSy2Pjo5mW7duZVFRUXUVJmGlH4i8KyEhgc2aNYsJhUK2e/fuMtsmJiayNWvWsP79+9N9B88o6f6Evds6+m5yPWzYMObi4sIyMzPL7EM3lvw6evQo998ikYgVFxezL7/8kg0ZMoRlZmZ+8EuX1L3Xr18zCwsLtnr1anb37t1S6xISEljnzp3ZjBkzuGXSa3fs2DEWFhZWp7GS//7+KSkpbMGCBaxnz56sTZs2pVoGsrOzucT7//7v/0pV7iX8kUgkbOjQoczGxoZdunSJrV+/nhkYGHAtqeWh78q6lZ+fz1xdXdmWLVsYYyX3Ehs2bGAuLi5lWtaOHz/O1NTU6HuwHti1axfT1tZmJiYmbMKECez27dvc915SUhJzdXXlfsfEYjF3L0kV5uuW9PssKiqKLV26lM2cOZPt37+fW5+YmMhmzpzJlJSUym1US0xMZGlpaXUbNCmDku5PVHk3HNIP4K+//srMzc3ZvXv3GGMlX57UvYs/H/ubHzx4kGloaHBPKOlmsn7w9/dnW7ZsYc2bN2dWVlbsyy+/ZIGBgdwPm5eXF1NTU2O3bt0qtR9dP368+zl7+/YtW7RoEdPR0WFTpkwptV1ubi7bvn07s7CwYIsWLarrMMm/3r59y27fvs28vb25ZYMHD2YGBgZMQ0ODnT9/njFGv1n1ibu7e6mpv9LT09njx4+5BgBponb79m3Wtm1bmpK0noiKimJHjx5llpaWzMLCgjk6OrLLly+zoqIiduXKFSYnJ0dDoXgkvWcICgpiBgYGrF+/fqxPnz5MVVWV7du3j9suOTmZTZkyhSkrK7Pr168zxujhSH1DFWE+IS9fvsTdu3cBlFSWZO8VUJAWTPDw8ICSkhK+//57ACXFTKTrqKhC3QoLC8OyZcu4ivLvVkaWXr8pU6agY8eO+PbbbyESiaiQE88iIyOxYMECbN68Gc2bN8eDBw+wbNkyhISE4IsvvsCgQYPg6+uLVq1aoXfv3rh16xYAcFPx0fXjh0AgwD///IOAgAAYGRlh+fLlmDJlCgICArBhwwZuO1VVVcycORPz5s3DnDlzeIy48QoNDcWQIUOwc+dOHDx4EHl5eQCAc+fOwd3dHbq6uigoKEBBQUGpysqEH9LvtoEDByIpKQlAyW+ZtrY2OnXqxE0nJZ0KzNvbG7q6utDU1OQn4EYuOTkZjx49woEDB3D37l3Iy8vDw8MDISEh2LJlC4yNjTFu3Dh0794d9+7dg729Pby8vLgZVEjdkUgkEAqFCAkJgbOzM6ZOnYqLFy/ixIkTGDhwINLS0rj7Rj09PezatQtjxozB0KFD4evrS9Pv1Tc8J/1ERsLDw5muri4zNDRkvr6+3PL3WwGkT72OHz/OmjZtyu7fv1+ncZL/FBYWss6dOzNdXV02bdo0lpSUxBgr3RIqvX5btmxh1tbWLCYmhpdYSYmgoCCmr6/PBg8ezEaNGsXk5OTYjz/+yK0/dOgQ+/LLL5mamhobNmwY09HRYaampiwnJ4fHqAljjGVkZLBBgwaxZs2asYCAAMZYyTCABQsWMEdHR7Z+/fpS21MLKj9CQ0OZtrY2W7lyJXv79i23XDrGnjHGdTU/fvx4mboKpO68P/zC29ub6enpsYSEhHI/P1FRUVwPExpbyo+QkBDWqVMn1rZtW6ahocHk5ORY8+bN2ZEjR0ptd/78ebZkyRKmpaXFBAIBc3R0pM8aT168eMF0dHTYhAkTSi0fNmwYc3JyYnZ2dmzkyJFct/L09HQ2evRoZmhoyHJzc/kImXwANbl8ApKSkjB//nzY2dnhs88+w6JFi3D58mUAKNMKIH3qZW1tDS0tLTRv3pyXmElJS7aqqiocHBwQHR2NFStW4O3btxAKhWXmAp47dy4iIyNx4MABnqIl0ifN06ZNw7lz53DixAnMmjULz58/R3Z2NgBg8uTJ8PLywvHjx2Fubg45OTnExMQgLS2N5+gbL+n3n5aWFpYuXQpnZ2eMGTMGAQEBMDQ0xPLly+Hi4gJfX18sX76c2496/dS9jIwMzJ07F+PGjcOmTZtgZGQEoOQaysvLc9O4nTlzBubm5ti+fTt+//13FBYW8hl2oxQREYHx48dj0aJFOHnyJF68eAFFRUVYW1ujqKgIAoGg1O9YSEgIPD09ce3aNdy4cYOmt+RBWFgYunfvDnd3d3h5eSErKwsnTpxAp06dMGnSJOzbt4/bduDAgfD09ERwcDA2btyIo0ePQllZmcfoG6/Q0FCoqalBRUUFwcHBAICtW7fi0qVL+OyzzzB69GjcvXsXixcvxtu3b6GtrY2ffvoJgYGBUFVV5Tl6Ugq/OT+RheDgYNa/f39248YN9vDhQ+bh4cHatWvHLl26xBgr22IjfU+tb/xbt24dO3LkCNu/fz9zcHDgCpacOXOGa0WQ9k7YuXMnFZ7hyevXr5menh4bOXJkqeWjRo1itra2zMrKivXp04cdPnyYWycWi1lSUhJ79epVHUfbeL3bS0TaMvp+68zdu3fZkCFDWOvWrUu1eH/11Vesd+/eLDk5ue4CJqW8evWKmZubs4sXL1ZYl0SqZ8+erGvXruUWBSW168KFC2z27NnMycmJdezYkRkaGrI2bdowgUDAVq1axW337nV89OgRi4+P5yPcRi8/P58NGzaMzZ49mzFW+rP07NkzNm7cOCYUCrmxwIz9d+2o1w//fv/9d2ZnZ8dmz57N5syZw/T19Uv1an3y5AkTCATs2LFjPEZJPoaS7k9EaGgo99/3799n48aNK5V4M/Zf8kZF0/gjvTmU/u1XrFjBpk+fzhhj7IcffmA9evRgZmZmTEVFhWVnZ5ebRJC69/LlS+bg4MAGDx7M/Pz8GGMlXf5VVVXZhg0b2P/+9z9mbW3NLC0tuXlLqYAJP16+fMkyMjIYY4zdu3ePdevWrcz82nfv3mXu7u7MysqKPX36lDFWUt01ISGhzuMl//H29mYCgYArRlhe4p2Xl8fOnTvHvX/z5k2dxUcYi4uLYz4+Ptw1kn7P+fv7s9u3b7OJEycyV1dXtmnTJm4fmgWAf4WFhczGxoZ7MCyRSMo8EGnTpg3XhZkKfvJPep+Yl5fHGCuZ+aRDhw5MRUWF/fTTT9x2IpGIhYWFMSsrq1KJOKl/qHt5AyctYNK2bVtuWZcuXTBv3jzY2tpi8eLF8PX1BQAsXrwYPj4+VDSNJ48fP4apqSnCw8O5Zb169eIKz8yfPx95eXlITEyEu7s7VzRN2qVSXl6el7gJYGpqiuPHj6OoqAienp6YNm0avv/+e5w5cwarVq3C1KlTcfnyZTx//hyPHj0CACpgwoPi4mJMmTIFVlZWyMjIQF5eHgoKCjBt2jS8evWK287Z2Rljx45FREQE3NzcEBgYCAMDAxgaGvIXfCP16tUreHt7AwBat24NRUVF/PHHHxCLxeUWHTx9+jS2b9+OrKwsAKAhUnUoNDQU/fv3h5eXFx4+fAjGGPc9Z2dnhx49emDbtm2wsbGBt7c3PD09AQAKCgp8ht2opaSkIDs7G6mpqYiMjOSuhUAgKPX5sre3h5ubG+7fvw/GGBX8rAcEAgGuXr2KYcOGoaCgAOPGjcOaNWvQpk0bBAQEIDAwEEDJvcaJEycgkUjQrl07nqMmFaFPVQMUHh6Ob775BjExMWVu7KVjqBwdHTF//nzY2tpi6dKlGDBgAHbt2kU3KDwJDg5Gz549MXHiRFhZWXEPPIyNjfH8+XMUFxdj8uTJiIuLw6xZs5CRkYEZM2YgJSWFkrd6wtLSErt27UJ+fj6OHz+OpUuXwt3dHYwxFBcXQ05ODh06dICuri7foTZaCgoK2L17N1q0aIFevXrBzs4Onp6eEIvFmDhxIl68eMFt26ZNG7i7u2Po0KHQ0NDgMerGKz4+Hg4ODli+fDm8vLxgYWEBKysrHDhwoNTDyXc9efIEHTt2pLGKdSw0NBTdunVD7969sXz5cvTp06fUg3uBQACxWAx9fX2sWrUKzs7OOHjwIDdLCql7b968ga2tLSIjI6GpqQlzc3N4e3sjNTW11HbS+0YtLS3o6+tTgwxP9u3bh1u3bpWqheDv749mzZpx4+mHDx+OJUuWICgoCLt370ZUVBS2bNmCbdu2wcvLC8bGxnyFTyqD55Z2UkVFRUXMwcGBCQQCZmlpyRYvXsxOnTpVZhupO3fusGbNmjEdHR0WHBxc1+ESxlhYWBjT1NRky5YtY4yVHieVnJzMunTpwnr27MmMjY3Zs2fPGGOMbdq0ifXp04fGv9VDz58/Z+7u7qxfv37s77//5pavXr2amZmZ0dyzPJF2xROLxSwsLIx16dKFOTs7s/T0dHb9+nVu/G9UVBQTiURszZo1bOrUqSwrK4vnyBuvmzdvMqFQyBwcHNjAgQOZt7c3CwoKYoaGhqxXr16lZtfIyMhgy5YtY8bGxlTboo6lp6eznj17siVLlpRZl5OTw1JSUhhjJZ9BaXfz+Ph4tmzZMvby5cu6DJW84/bt28zU1JS7Jt9++y0TCATswIEDpWr6SL87J0yYwGbPns3EYjENP6xD0r91mzZtWMuWLdmdO3e4+/iFCxeyyZMnM8ZKD1k7fvw4c3JyYubm5kxZWZn5+/vXfeCkyijpboA8PT3Zzp072ZUrV9jatWuZjo4O8/DwYD/99FOpL8ri4mK2cOFCpqyszJ48ecJjxI1XUFAQ09bWZmpqauzQoUPcuOx3x0tNnDiRmZqackWdpFJTU+s0VlJ5kZGRrG/fvqxPnz7s8ePH7LvvvmPKysrceG5S+6SfoXcLpb37wPHrr7/mprpJT09nt2/fZr1792YCgYA5ODgwNTU1mraoHpgyZQqztbVlw4cPZ5999hk7cuQIu3z5MjMyMmIGBgasf//+bMyYMczd3Z01a9aMPmM8iI2NZe3bty9VI+aff/5hGzduZK1bt2YdOnQoNVZYmhxQXQt+nT9/npmZmZUqyiqd0tLT05NFREQwxhhLSUlhq1evZjo6OvRAq469P3be1dWVtWrViv3zzz+MMcbmzp3LpkyZwq1/9x7/t99+Y/b29vQ71oBQ9/IGyMHBAevWrYOOjg7WrVuH0NBQWFhYYPHixXBxccGBAwcQGRmJ5ORk3L17F3fv3kX79u35DrvRCQwMRNeuXTF58mSMHj0aBw4cwM8//8yN1ZaOx//+++/h5+cHOzs7AP919aJuyvWXpaUldu/eDQUFBfTt2xerVq2Cn58fOnXqxHdojYZQKERcXBwmTJiAmzdvAvhv7Kinpyd+/fVXHDhwACKRCL169UKHDh1w4cIF/O9//8PUqVMRHBxM0xbxSDrN1/Dhw2Fra4tp06ZBR0cHhw8fRnZ2NkJCQjB69GgUFBQgLS0N3bt3x99//02fMR4kJSUhJycHaWlpKCgowL59+7Bw4ULcvn0bn3/+OVxcXDBlyhRcvnwZAoGAGxJFQ6PqXnZ2NgoKCgCUfMYKCwtRXFwMsVgMOTk57Nq1C2PGjMGyZcvg7OwMGxsbDBo0CEePHsX169dhZWXF87+g8ZBIJBAKhXj16hX27NmD6Oho3Lp1C/r6+vDw8EBgYCDy8/PRsmVLAEBWVhby8/PBGENcXBzGjx+PW7du0e9YQ8J31k+qZ/HixWzcuHFcK8+oUaOYlZUVmzhxIuvRowdTUFBghw8fpqlUeBIbG8tUVVXZwoULGWMlXSPHjRvHnJ2d2d69e7kWb+rC1bCFh4ezwYMHcxWwSd2Kjo5mzs7OrH///qWqyuvq6rKrV68yxkqmw7G1tWW2trbUe4Rnr1+/Zn/99VepZUlJSczKyort2bOHJSYmsmHDhrFu3bqx8+fP8xQlYYyxFy9esL1793Lvx48fz9TV1ZmZmRlTVlZm27dv5773UlNTWbt27di6dev4Cpewki79Li4u7Oeff2aMlUw9amlpyRgraVF9t9v4n3/+yb777ju2YMECduzYMZraso5JW7hDQkJY69at2RdffMHOnDnDrbe3t2dWVlasffv2XI8tQ0NDZmJiwmxsbJiNjQ0NjWqABIwxxnfiT6ruzz//xM6dO+Hn54fp06fDx8cH169fR7t27RAREYFLly7h888/p0qGPGCMISIiAmlpaXBxcYFIJIK8vDwyMzMxZ84cREdHw8PDA9OnT4e8vDz3tJM0TMXFxVSdl0dRUVGYN28elJSUYGBggLNnz+LYsWNwd3fntgkPD0f//v1hYGCAu3fvQiAQULGgOvbmzRt06tQJaWlp6NevHyZOnAhbW1u0bt0a58+fx7Zt23D69GmkpKRg1apVyMzMxKhRozBt2jQAJd+rdM3qhkgkwubNm7Fnzx4sXboUixcvBgCcOnUKYrEYzs7OMDU15bZPS0vD4MGDMXXqVEyePJmnqAkADBw4EDExMVixYgXi4uLg6+uLa9eulbttfn4+VFRU6jhCIhUeHg4XFxfMmDEDc+fORbNmzUqt79OnD65evYq1a9fCzc0NeXl5kEgkUFdXh5GRESwsLHiKnFQXJd0NmKurK/z8/GBkZISLFy+iY8eOfIfU6EVGRmLv3r2Ii4uDi4sLFi1aBOC/xOxDiTfdUBJSfZGRkZgzZw78/PywYcMGfP311wBQ6oGWdLocMzMzPkNttGJiYjBixAgoKCigsLAQdnZ2uHr1KlauXAltbW0cPXoUs2fPRr9+/fDs2TPMnz8fKioqOHbsGDQ1NfkOv9F58eIFDhw4gDNnzmDSpElYvnw5AJR5SMwYw5o1a3Dy5Elcu3YNJiYmfIXcaL169QoXLlxAnz59YGFhgS+//BKvX7+Grq4uLl++DCcnJ2RnZ0NdXR1isRgFBQVgjMHY2BinTp2ChoYG3X/UsYKCAkyYMAEGBgbYs2cPt7y4uBixsbFQVVWFoaEhBgwYgPDwcHh5ecHe3p7HiIks0MS/DZA0QVu2bBkSEhLw3XffoWPHjpS48Sw4OJgb36aiooLly5dDIpFg8eLFUFBQgEgkgpaWFvbs2YM5c+bg5MmTyM/Px4IFC2jsGyE10Lp1a+zbtw+zZ8/G9evX0aVLF3Tr1g1CoZBLElq3bs13mI2aiYkJTpw4wX0v9u/fn5vKUltbGxcuXEBycjLc3NzQtm1b7NmzB2pqapRw1zHp56VVq1aYNWsW1NXVsW/fPmhqamL27NmlEu779+/j5MmTOHbsGK5evUoJNw+ePHmCESNGoF27dmjevDksLCxw6tQpjB07FidPnoSTkxN69OgBNTU1KCoqgjGGvLw8qKurY8CAAfT54om8vDwSEhLQo0cPbpmvry8uX76MQ4cOQVNTE05OTrhw4QL69u0LNzc3+Pr6wsnJiceoSU1R0t0ASRPrzp07QyKRICAgAEOHDqWEm0chISFwdnbGwoULsWnTJkgkEujp6SEuLg4FBQVQVlaGvHzJx01LSwt79+7F+PHjceXKFUyZMgU6Ojo8/wsIadjMzc2xZ88ezJs3Dxs3bsTq1avRtWtXGrpRj1haWmLz5s1YuHAh9u/fjx9//BE+Pj548uQJRCIRRo0axSUGbdq04TvcRiU7Oxvy8vJQUVHhema1bNkSWVlZSEpKwo4dO5Cfn8/1Ijly5Ah++OEHNGnSBLdu3aJirTwIDw+Hq6trud2TT5w4AXl5efj7+6NTp04YOnQolJSUeIyWvCsvLw/JyckICQlBREQE/vrrLxw5cgTt27fHhg0boK6ujvXr12Pjxo24fPkyevfuDT09Pb7DJjVE3csbuGPHjmHmzJm4ceMGHB0d+Q6nUXrz5g3s7Ozw2Wef4dSpU9zy0aNHIyIiAgUFBTA1NcWYMWMwYcIEbn1WVhZycnLKjOMhhFRfVFQUFi1ahJSUFHz//ffUMlAPRUVFYc6cOQCANWvWoGvXrjxH1Li9ffsWI0aM4GbaUFdXBwBs3boV27dvx/fff4/w8HCcPn0a06ZN4xJvPz8/tGnTBvr6+nyG3yhV1D05Li4OSkpKaNq0KaZPn45bt25hzZo1GDp0KHdtCf9u3LiBPn36wNjYGGlpadi2bRvc3NxgYWGB4uJiDBw4EE2aNMGJEyf4DpXICDUBNHCfffYZHBwcKHHjkVgshpmZGQoLC3Hnzh0AJTcr58+fx/Dhw7F48WLExMRg48aNCA4O5vbR1NSk60aIjFlaWmLbtm1o3rw5fb7qKUtLS+zZswdCoRAbNmyAn58f3yE1ak2bNoWOjg52796Ns2fPAgB27NgBT09PnDhxAuPHj8e0adMwdOhQHD58GOvWrQMAdOvWjRJunki7J787xZevry+WLl2Kjh07wtHREcOHD8cvv/yCnj17YvHixbh48SKPEZP39erVCy9evMDp06fx4sULzJgxgyuOJicnBy0tLZibm0MikXBTyZKGjVq6PwHS7suEP9IKyoqKijAwMIC3tzeOHj3KVVB+/fo1TE1NsX//fkyfPp3naAn59BUVFUFRUZHvMEgFqFcCv8orwBUVFYXWrVvj6tWrOHPmDFxdXbntY2JisH37djx48ACXL1+Gjo4ODWvjSVZWFrp06YLu3bvj66+/LtU9uUePHlz35ClTpmDNmjWYNGkS1qxZg1atWvEdOvmIoqIibNiwAYcOHcKtW7dgaWnJd0hERijpJkRGyqugzBiDSCRCUlISBgwYgFWrVmHEiBF8h0oIIfVCeHg4Vq9ejR07dqBly5Z8h9NovFuAa+LEiRgyZAgAYNy4cfj999+xZMkSbNmypVQxQqBkOJV0ej7Cr8p0T9bT08Px48f5DpVU0rFjx/Do0SN4eXnh0qVL6NSpE98hERmiQmqEyMj7FZQdHR3RvXt3KCgo4Oeff+aeTBNCCClhZWWF48ePU6+EOlRRAa7jx49DIBDA29sb7du3x4gRI6CiosIl3i1atOAxcvIuaffkpKQkmJiYlCq0Je2e3KpVK0jb1qhXQv0WERGBgwcPQkdHBzdv3oS1tTXfIREZo5ZuQmRM2tWcMYYtW7bg6tWrWLt2Le7evUtPLQkhhPDmYwW4lJWVYWRkhBkzZnAFuL744guoqqryGDWpCuqe3HAlJSVBSUkJWlpafIdCagG1dBMiY5aWlti9ezcWLVqEvn37Ij09Hffu3aOEmxBCCK8qMz+wo6MjTp8+jenTp+Prr7+GgoICvvzySx6jJpX1fvdkSrgbFhq28WmjpJuQWmBpaYnt27dj6dKl2Lx5M9q1a8d3SIQQQhq5ys4PvH79evzyyy8oKiqCvb0932GTSqDuyYTUb9S9nJBaVFxcDAUFBb7DIIQQQgBQAa5PGXVPJqT+opZuQmoRJdyEEELqEyrA9emi7smE1F/U0k0IIYQQ0shRAS5CCKk91NJNCCGEENKIUQEuQgipXZR0E0IIIYQ0UlSAixBCah91LyeEEEIIacSoABchhNQuSroJIYQQQgghhJBaIuQ7AEIIIYQQQggh5FNFSTchhBBCCCGEEFJLKOkmhBBCCCGEEEJqCSXdhBBCCCGEEEJILaGkmxBCCCGEEEIIqSWUdBNCCCGEEEIIIbWEkm5CCCGEEEIIIaSWUNJNCCGEEEIIIYTUEkq6CSGEEEIIIYSQWkJJNyGEEEIIIYQQUkso6SaEEEIIIYQQQmrJ/wN0bAdsttTYkQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.patches as mpatches\n", + "from pathlib import Path\n", + "\n", + "\n", + "cellsam_path = Path('/home/ulisrael/AllCell/livecell/cellsam')\n", + "cellpose_path = Path('/home/ulisrael/AllCell/livecell/cellpose')\n", + "\n", + "cellpose_generalist_path = cellpose_path / 'general/'\n", + "cellsam_generalist_path = cellsam_path / 'general/'\n", + "cellsam_fewshot_path = cellsam_path / 'general_FS_10_FT/'\n", + "\n", + "cp_generalist_dict = {}\n", + "for file in cellpose_generalist_path.glob(\"LIVECell_good.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cp_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + "\n", + "cs_generalist_dict = {}\n", + "for file in cellsam_generalist_path.glob(\"LIVECell_good.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cs_generalist_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + "\n", + "cs_fewshot_dict = {}\n", + "for file in cellsam_fewshot_path.glob(\"LIVECell_good.txt\"):\n", + " try:\n", + " data = np.loadtxt(file)\n", + " cs_fewshot_dict[file.stem] = data\n", + " except Exception as e:\n", + " print(f\"Error reading {file.name}: {e}\")\n", + " \n", + "dataset = ['LIVECell_good']\n", + "\n", + "# Load cell types\n", + "celltypes = pd.read_csv(\n", + " '/home/ulisrael/cellSAM/paper_figures/metadata_LIVECELLgood_0_orig.csv', \n", + " header=None\n", + ")\n", + "celltypes_array = celltypes.values.flatten()\n", + "\n", + "# Load errors (already doing 1 - value)\n", + "cp_data = 1 - cp_generalist_dict.get(\"LIVECell_good\", [])\n", + "cs_data = 1 - cs_generalist_dict.get(\"LIVECell_good\", [])\n", + "cs_fewshotData = 1 - cs_fewshot_dict.get(\"LIVECell_good\", [])\n", + "\n", + "print(len(celltypes), len(cp_data), len(cs_data), len(cs_fewshotData))\n", + "\n", + "# Build DataFrame\n", + "df_cp = pd.DataFrame({\n", + " 'error': cp_data,\n", + " 'method': 'CellPose',\n", + " 'celltype': celltypes_array\n", + "})\n", + "df_cs = pd.DataFrame({\n", + " 'error': cs_data,\n", + " 'method': 'CellSam',\n", + " 'celltype': celltypes_array\n", + "})\n", + "df_csf = pd.DataFrame({\n", + " 'error': cs_fewshotData,\n", + " 'method': 'CellSam Fewshot',\n", + " 'celltype': celltypes_array\n", + "})\n", + "df_all = pd.concat([df_cp, df_cs, df_csf], ignore_index=True)\n", + "\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "# Get unique cell types in the order they appear\n", + "unique_celltypes = df_all['celltype'].unique()\n", + "x_positions = np.arange(len(unique_celltypes)) \n", + "offset = 0.25\n", + "v_width = 0.2 \n", + "\n", + "for i, ct in enumerate(unique_celltypes):\n", + " cp_vals = df_all.query(\"celltype == @ct & method == 'CellPose'\")['error']\n", + " cs_vals = df_all.query(\"celltype == @ct & method == 'CellSam'\")['error']\n", + " csf_vals = df_all.query(\"celltype == @ct & method == 'CellSam Fewshot'\")['error']\n", + " \n", + " vio_cp = ax.violinplot(\n", + " [cp_vals], \n", + " positions=[x_positions[i] - offset],\n", + " widths=v_width,\n", + " showmeans=True,\n", + " showextrema=False,\n", + " showmedians=False\n", + " )\n", + " for b in vio_cp['bodies']:\n", + " b.set_facecolor(c2) \n", + " b.set_edgecolor('black')\n", + " b.set_alpha(1.0) \n", + " if 'cmeans' in vio_cp:\n", + " vio_cp['cmeans'].set_color('black')\n", + " vio_cp['cmeans'].set_linewidth(2.0)\n", + "\n", + " vio_cs = ax.violinplot(\n", + " [cs_vals],\n", + " positions=[x_positions[i]],\n", + " widths=v_width,\n", + " showmeans=True,\n", + " showextrema=False,\n", + " showmedians=False\n", + " )\n", + " for b in vio_cs['bodies']:\n", + " b.set_facecolor(c3) \n", + " b.set_edgecolor('black')\n", + " b.set_alpha(1.0)\n", + " if 'cmeans' in vio_cs:\n", + " vio_cs['cmeans'].set_color('black')\n", + " vio_cs['cmeans'].set_linewidth(2.0)\n", + "\n", + " vio_csf = ax.violinplot(\n", + " [csf_vals],\n", + " positions=[x_positions[i] + offset],\n", + " widths=v_width,\n", + " showmeans=True,\n", + " showextrema=False,\n", + " showmedians=False\n", + " )\n", + " for b in vio_csf['bodies']:\n", + " b.set_facecolor(c4) \n", + " b.set_edgecolor('black')\n", + " b.set_alpha(1.0)\n", + " if 'cmeans' in vio_csf:\n", + " vio_csf['cmeans'].set_color('black')\n", + " vio_csf['cmeans'].set_linewidth(2.0)\n", + "\n", + "# Set x‐labels, y‐labels, title\n", + "ax.set_xticks(x_positions)\n", + "ax.set_xticklabels(unique_celltypes, rotation=45, ha='right')\n", + "ax.set_ylabel(\"Mean Error (1 - F1)\")\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "\n", + "# Build a custom legend that matches the violin colors exactly\n", + "legend_patches = [\n", + " mpatches.Patch(facecolor=c2, edgecolor='black', label='Cellpose'),\n", + " mpatches.Patch(facecolor=c3, edgecolor='black', label='CellSAM'),\n", + " mpatches.Patch(facecolor=c4, edgecolor='black', label='CellSAM Fewshot')\n", + "]\n", + "ax.legend(handles=legend_patches, loc='upper center', bbox_to_anchor=(0.5, 1.15), ncol=3, prop={'size': 12}, frameon=False)\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_dataset_livecell_dataset.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Neurips" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAJRCAYAAABBUxDvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPClJREFUeJzt3XtYVWX+/vEbUE6iOEpCOgjmEZJE8RBW0oHEtIwyT2kSHqckLVILaySzBjNFLS1HJ7VpNPk6pVkZZeQhFfOAWqaZmgmpgEwJ4gEM1u8Pf+56Eg0Q2Kjv13Xta9rP+qy1PovZcu+1nr0XDpZlWQIA4P9ztHcDAIDqhWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBlQLjz76qPz9/Y0xBwcHvfDCC3bpB1cHXlflU8PeDVyL0tPTlZOTY9cevLy81Lhx48vaxoEDBzRlyhStWrVKR44ckbOzs4KCgtSnTx8NHz5cbm5uFdTtOQsXLlR0dLTtuYuLixo3bqyuXbvq73//u7y9vSt0f1caXlfl980332jixInasmWLsrKyVL9+fQUGBqpnz5564oknKnx/1R3BUMXS09MV0LKlTp05Y9c+3F1dtWfv3nL/I/7444/Vu3dvubi4aNCgQWrdurUKCwu1fv16jR07Vt9++63mzp1bwV2f8+KLL6pJkyY6c+aM1q9frzfffFMrV67Url275O7uXin7rO7S09PVslWAzpw+Zdc+XN3ctfe7PVfU62rjxo2644471LhxYw0bNkw+Pj7KyMjQpk2bNHPmTIIBlS8nJ0enzpzRa2381cyj4t/5lMb+/NMatfNH5eTklOsf8MGDB9WvXz/5+fnpiy++0PXXX29bNnLkSO3fv18ff/xxRbZsuOeee9S+fXtJ0tChQ1W/fn0lJibqgw8+UP/+/Sttv9VZTk6Ozpw+Jb9ecXK97vLesZfXmWPpOvRewhX3unr55Zfl6empLVu2qG7dusay7OzsCt/flYA5Bjtp5uGmIE93uzwuN5CmTJmi/Px8vfXWW8Y/XtuxNWum0aNH257/5z//UUhIiNzc3FSvXj3169dPGRkZl9XD7915552Szv1ikaRff/1VkyZNUtOmTeXi4iJ/f3+NHz9eBQUFxnpbt25VRESEvLy85ObmpiZNmmjw4MFGTXFxsWbMmKEbb7xRrq6u8vb21ogRI/TLL79UWP8VyfW6xnJv2MIuj8sNJHu9rg4cOKAbb7zxglCQpAYNGhjPFyxYoDvvvFMNGjSQi4uLAgMD9eabb16wnr+/v+69916tWbNG7du3l5ubm4KCgrRmzRpJ0vvvv6+goCC5uroqJCRE27dvL3PflYlgQJl9+OGHuuGGG9S5c+c/rX355Zc1aNAgNW/eXImJiXryySeVkpKiLl266Pjx4xXSz4EDByRJ9evXl3TuLGLChAlq166dpk+frrCwMCUkJKhfv362dbKzs9W1a1f9+OOPevbZZ/X6669rwIAB2rRpk7HtESNGaOzYsbrllls0c+ZMRUdHa9GiRYqIiNDZs2crpH+cY6/XlZ+fn7Zt26Zdu3b9ae2bb74pPz8/jR8/XtOmTZOvr68ef/xxzZ49+4La/fv36+GHH9Z9992nhIQE/fLLL7rvvvu0aNEiPfXUUxo4cKAmTpyoAwcOqE+fPiouLi5T35WJS0kok7y8PB0+fFj333//n9YeOnRI8fHxeumllzR+/Hjb+IMPPqi2bdvqjTfeMMZLKzc399ylkzNntGHDBr344otyc3PTvffeq507d+rtt9/W0KFDNW/ePEnS448/rgYNGmjq1KlavXq17rjjDm3cuFG//PKLPvvsM9tlKUl66aWXbP+9fv16/etf/9KiRYv08MMP28bvuOMOdevWTUuXLjXGUX72fF2NGTNG99xzj4KDg9WxY0fddtttuuuuu3THHXeoZs2aRu3atWuNye+YmBh169ZNiYmJGjlypFG7d+9ebdy4UaGhoZKkwMBARUREaNiwYfruu+9sl9v+8pe/aMSIEVq3bp1uv/32UvddmThjQJnk5eVJkmrXrv2nte+//76Ki4vVp08f5eTk2B4+Pj5q3ry5Vq9eXa4ewsPDdd1118nX11f9+vWTh4eHli1bpkaNGmnlypWSpNjYWGOdp59+WpJs16jPXzb46KOPLvrOf+nSpfL09NTdd99t9B8SEiIPD49y948L2fN1dffddys1NVU9e/bUzp07NWXKFEVERKhRo0ZasWKFUfv7UDj/BiUsLEw//PCDcnNzjdrAwEBbKEhSp06dJJ279Pn7OZjz4z/88EOZ+q5MnDGgTOrUqSNJOnHixJ/W7tu3T5ZlqXnz5iUu/+O7sdKaPXu2WrRooRo1asjb21stW7aUo+O59ziHDh2So6OjmjVrZqzj4+OjunXr6tChQ5KksLAw9erVSxMnTtT06dN1++23KzIyUg8//LBcXFxs/efm5l5wnfm8a3VisjLY+3XVoUMHvf/++yosLNTOnTu1bNkyTZ8+XQ899JB27NihwMBASdKGDRsUHx+v1NRUnTplfgIsNzdXnp6etud/nIA/v8zX17fE8eo0b0UwoEzq1Kmjhg0blup6bHFxsRwcHPTJJ5/IycnpguUeHh7l6qFjx47G5Z+SODg4/Ony//73v9q0aZM+/PBDffrppxo8eLCmTZumTZs2ycPDQ8XFxWrQoIEWLVpU4jauu+66cvWPC1WH15UkOTs7q0OHDurQoYNatGih6OhoLV26VPHx8Tpw4IDuuusutWrVSomJifL19ZWzs7NWrlyp6dOnXzBHUFJvlxq3LKvcfVc0ggFldu+992ru3LlKTU01TpX/qGnTprIsS02aNFGLFi2qpDc/Pz8VFxdr3759CggIsI1nZWXp+PHj8vPzM+pvvvlm3XzzzXr55Ze1ePFiDRgwQEuWLNHQoUPVtGlTff7557rlllsq5UtVMFW319X5Nx9Hjx6VdG5yvKCgQCtWrDDOBq7GS4rMMaDMxo0bp1q1amno0KHKysq6YPmBAwc0c+ZMPfjgg3JyctLEiRMveDdkWZb+97//VXhv3bt3lyTNmDHDGE9MTJQk9ejRQ9K50/Y/9hQcHCxJto+19unTR0VFRZo0adIF+/n1118r7FNVOMder6vVq1eX+G79/HxVy5YtJf32Tv/3tbm5uVqwYEGZ9ncl4IzBTvbnn75i9920aVMtXrxYffv2VUBAgPEN1Y0bN2rp0qV69NFHNXr0aL300kuKi4vTjz/+qMjISNWuXVsHDx7UsmXLNHz4cI0ZM6aCjuqcNm3aKCoqSnPnztXx48cVFhamzZs36+2331ZkZKTuuOMOSdLbb7+tN954Qw888ICaNm2qEydOaN68eapTp44tXMLCwjRixAglJCRox44d6tq1q2rWrKl9+/Zp6dKlmjlzph566KEK7f9ynTmWfsXu216vqyeeeEKnTp3SAw88oFatWtn2l5SUJH9/f9ttWLp27SpnZ2fdd999GjFihPLz8zVv3jw1aNDAdlZx1bBQpQ4dOmS5u7pakuz6cHd1tQ4dOnRZx/L9999bw4YNs/z9/S1nZ2erdu3a1i233GK9/vrr1pkzZ2x17733nnXrrbdatWrVsmrVqmW1atXKGjlypLV3715bTVRUlOXn52dsX5IVHx9ve75gwQJLkrVly5ZL9nX27Flr4sSJVpMmTayaNWtavr6+VlxcnNFTWlqa1b9/f6tx48aWi4uL1aBBA+vee++1tm7desH25s6da4WEhFhubm5W7dq1raCgIGvcuHHWkSNHyvgTqzyHDh2yXN3c7f66cnVzv+JeV5988ok1ePBgq1WrVpaHh4fl7OxsNWvWzHriiSesrKwsY90VK1ZYN910k+Xq6mr5+/tbr7zyijV//nxLknXw4EFbnZ+fn9WjR48Ljk2SNXLkSGPs4MGDliTr1VdfLcdPq3I4WFY1mvG4RlwtNztD9cLrChWFYAAAGJh8BgAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgKIFlWcrLy5NlWfZuBQCqHMFQghMnTsjT01MnTpywdysAUOUIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABjsHgyzZ8+Wv7+/XF1d1alTJ23evPmitd9++6169eolf39/OTg4aMaMGZfc9uTJk+Xg4KAnn3yyYpsGgKuYXYMhKSlJsbGxio+PV1pamtq0aaOIiAhlZ2eXWH/q1CndcMMNmjx5snx8fC657S1btuif//ynbrrppspoHQCuWnYNhsTERA0bNkzR0dEKDAzUnDlz5O7urvnz55dY36FDB7366qvq16+fXFxcLrrd/Px8DRgwQPPmzdNf/vKXymofAK5KdguGwsJCbdu2TeHh4b814+io8PBwpaamXta2R44cqR49ehjbvpSCggLl5eUZDwC4VtktGHJyclRUVCRvb29j3NvbW5mZmeXe7pIlS5SWlqaEhIRSr5OQkCBPT0/bw9fXt9z7B4Arnd0nnytSRkaGRo8erUWLFsnV1bXU68XFxSk3N9f2yMjIqMQuAaB6q2GvHXt5ecnJyUlZWVnGeFZW1p9OLF/Mtm3blJ2drXbt2tnGioqKtG7dOs2aNUsFBQVycnK6YD0XF5dLzlkAwLXEbsHg7OyskJAQpaSkKDIyUpJUXFyslJQUxcTElGubd911l7755htjLDo6Wq1atdIzzzxTYihUtPT0dOXk5FT6flB5vLy81LhxY3u3AdiN3YJBkmJjYxUVFaX27durY8eOmjFjhk6ePKno6GhJ0qBBg9SoUSPbfEFhYaF2795t++/Dhw9rx44d8vDwULNmzVS7dm21bt3a2EetWrVUv379C8YrQ3p6ugJattSpM2cqfV+oPO6urtqzdy/hgGuWXYOhb9++OnbsmCZMmKDMzEwFBwcrOTnZNiGdnp4uR8ffpkGOHDmitm3b2p5PnTpVU6dOVVhYmNasWVPV7V8gJydHp86c0Wtt/NXMw83e7aAc9uef1qidPyonJ4dgwDXLrsEgSTExMRe9dPTHX/b+/v6yLKtM27dHYDTzcFOQp3uV7xcAKsJV9akkAMDlIxgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgqGHvBgBUrfT0dOXk5Ni7DVwGLy8vNW7cuNK2TzAA15D09HS1bBWgM6dP2bsVXAZXN3ft/W5PpYUDwQBcQ3JycnTm9Cn59YqT63WV944TlefMsXQdei9BOTk5BAOAiuN6XWO5N2xh7zZQTTH5DAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAw2D0YZs+eLX9/f7m6uqpTp07avHnzRWu//fZb9erVS/7+/nJwcNCMGTMuqElISFCHDh1Uu3ZtNWjQQJGRkdq7d28lHgEAXF3sGgxJSUmKjY1VfHy80tLS1KZNG0VERCg7O7vE+lOnTumGG27Q5MmT5ePjU2LN2rVrNXLkSG3atEmrVq3S2bNn1bVrV508ebIyDwUArho17LnzxMREDRs2TNHR0ZKkOXPm6OOPP9b8+fP17LPPXlDfoUMHdejQQZJKXC5JycnJxvOFCxeqQYMG2rZtm7p06VLBRwAAVx+7nTEUFhZq27ZtCg8P/60ZR0eFh4crNTW1wvaTm5srSapXr95FawoKCpSXl2c8AOBaZbdgyMnJUVFRkby9vY1xb29vZWZmVsg+iouL9eSTT+qWW25R69atL1qXkJAgT09P28PX17dC9g8AVyK7Tz5XppEjR2rXrl1asmTJJevi4uKUm5tre2RkZFRRhwBQ/dhtjsHLy0tOTk7KysoyxrOysi46sVwWMTEx+uijj7Ru3Tr99a9/vWSti4uLXFxcLnufAHA1sNsZg7Ozs0JCQpSSkmIbKy4uVkpKikJDQ8u9XcuyFBMTo2XLlumLL75QkyZNKqJdALhm2PVTSbGxsYqKilL79u3VsWNHzZgxQydPnrR9SmnQoEFq1KiREhISJJ2bsN69e7ftvw8fPqwdO3bIw8NDzZo1k3Tu8tHixYv1wQcfqHbt2rb5Ck9PT7m5udnhKAHgymLXYOjbt6+OHTumCRMmKDMzU8HBwUpOTrZNSKenp8vR8beTmiNHjqht27a251OnTtXUqVMVFhamNWvWSJLefPNNSdLtt99u7GvBggV69NFHK/V4AOBqYNdgkM7NBcTExJS47Pwv+/P8/f1lWdYlt/dnywEAl3ZVfyoJAFB2BAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMdg+G2bNny9/fX66ururUqZM2b9580dpvv/1WvXr1kr+/vxwcHDRjxozL3iYAwGTXYEhKSlJsbKzi4+OVlpamNm3aKCIiQtnZ2SXWnzp1SjfccIMmT54sHx+fCtkmAMBk12BITEzUsGHDFB0drcDAQM2ZM0fu7u6aP39+ifUdOnTQq6++qn79+snFxaVCtgkAMNktGAoLC7Vt2zaFh4f/1oyjo8LDw5Wamlql2ywoKFBeXp7xAIBrld2CIScnR0VFRfL29jbGvb29lZmZWaXbTEhIkKenp+3h6+tbrv0DwNXA7pPP1UFcXJxyc3Ntj4yMDHu3BAB2U8NeO/by8pKTk5OysrKM8aysrItOLFfWNl1cXC46ZwEA1xq7nTE4OzsrJCREKSkptrHi4mKlpKQoNDS02mwTAK41djtjkKTY2FhFRUWpffv26tixo2bMmKGTJ08qOjpakjRo0CA1atRICQkJks5NLu/evdv234cPH9aOHTvk4eGhZs2alWqbAIBLs2sw9O3bV8eOHdOECROUmZmp4OBgJScn2yaP09PT5ej420nNkSNH1LZtW9vzqVOnaurUqQoLC9OaNWtKtU0AwKXZNRgkKSYmRjExMSUuO//L/jx/f39ZlnVZ2wQAXBqfSgIAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGGqUdYXi4mKtXbtWX375pQ4dOqRTp07puuuuU9u2bRUeHi5fX9/K6BMAUEVKfcZw+vRpvfTSS/L19VX37t31ySef6Pjx43JyctL+/fsVHx+vJk2aqHv37tq0aVNl9gwAqESlPmNo0aKFQkNDNW/ePN19992qWbPmBTWHDh3S4sWL1a9fPz333HMaNmxYhTYLAKh8pQ6Gzz77TAEBAZes8fPzU1xcnMaMGaP09PTLbg4AUPVKfSnpz0Lh92rWrKmmTZuWqyEAgH1V6KeSTp48qXXr1lXkJgEAVaxCg2H//v264447KnKTAIAqxvcYAACGMn2PoV69epdcXlRUdFnNAADsr0zBUFBQoMcee0xBQUElLj906JAmTpxYIY0BAOyjTMEQHBwsX19fRUVFlbh8586dBAMAXOHKNMfQo0cPHT9+/KLL69Wrp0GDBl1uTwAAOyrTGcP48eMvudzX11cLFiy4rIYAAPbFp5IAAIYyBUOXLl2MS0krVqzQ6dOnK7onAIAdlSkY1q9fr8LCQtvzgQMH6ujRoxXeFADAfi7rUpJlWRXVBwCgmmCOAQBgKPNfcPv000/l6ekp6dxfc0tJSdGuXbuMmp49e1ZMdwCAKlfmYPjjl9tGjBhhPHdwcODWGABwBStTMBQXF1dWHwCAaoI5BgCAgWAAABgIBgCAgWAAABgIBgCA4bKD4fHHH1dOTk5F9AIAqAYuOxj+85//KC8vryJ6AQBUA5cdDNwvCQCuLswxAAAMZb4lxh+dOHGiIvoAAFQTnDEAAAwEAwDAQDAAAAwEAwDAYPdgmD17tvz9/eXq6qpOnTpp8+bNl6xfunSpWrVqJVdXVwUFBWnlypXG8vz8fMXExOivf/2r3NzcFBgYqDlz5lTmIQDAVaVCg+HAgQO68847S12flJSk2NhYxcfHKy0tTW3atFFERISys7NLrN+4caP69++vIUOGaPv27YqMjFRkZKTxF+RiY2OVnJys//znP9qzZ4+efPJJxcTEaMWKFZd9fABwLajQYMjPz9fatWtLXZ+YmKhhw4YpOjra9s7e3d1d8+fPL7F+5syZ6tatm8aOHauAgABNmjRJ7dq106xZs2w1GzduVFRUlG6//Xb5+/tr+PDhatOmzZ+eiQAAzinT9xhee+21Sy4/fPhwqbdVWFiobdu2KS4uzjbm6Oio8PBwpaamlrhOamqqYmNjjbGIiAgtX77c9rxz585asWKFBg8erIYNG2rNmjX6/vvvNX369Iv2UlBQoIKCAttzbvEB4FpWpmB48skndf3118vZ2bnE5YWFhaXeVk5OjoqKiuTt7W2Me3t767vvvitxnczMzBLrMzMzbc9ff/11DR8+XH/9619Vo0YNOTo6at68eerSpctFe0lISNDEiRNL3TsAXM3KFAx+fn565ZVX1KdPnxKX79ixQyEhIRXSWHm9/vrr2rRpk1asWCE/Pz+tW7dOI0eOVMOGDRUeHl7iOnFxccaZSF5ennx9fauqZQCoVsoUDCEhIdq2bdtFg8HBwaHUN9Xz8vKSk5OTsrKyjPGsrCz5+PiUuI6Pj88l60+fPq3x48dr2bJl6tGjhyTppptu0o4dOzR16tSLBoOLi4tcXFxK1TcAXO3KNPn84osvqnfv3hddHhgYqIMHD5ZqW87OzgoJCVFKSoptrLi4WCkpKQoNDS1xndDQUKNeklatWmWrP3v2rM6ePStHR/OwnJycVFxcXKq+AOBaV6YzhsDAwEsur1mzpvz8/Eq9vdjYWEVFRal9+/bq2LGjZsyYoZMnTyo6OlqSNGjQIDVq1EgJCQmSpNGjRyssLEzTpk1Tjx49tGTJEm3dulVz586VJNWpU0dhYWEaO3as3Nzc5Ofnp7Vr1+rf//63EhMTy3KoAHDNuuy7q16Ovn376tixY5owYYIyMzMVHBys5ORk2wRzenq68e6/c+fOWrx4sZ5//nmNHz9ezZs31/Lly9W6dWtbzZIlSxQXF6cBAwbo559/lp+fn15++WX97W9/q/LjA4ArUamDoVu3bnrhhRd08803X7LuxIkTeuONN+Th4aGRI0f+6XZjYmIUExNT4rI1a9ZcMNa7d+9LXs7y8fHRggUL/nS/AICSlToYevfurV69esnT01P33Xef2rdvr4YNG8rV1VW//PKLdu/erfXr12vlypXq0aOHXn311crsGwBQSUodDEOGDNHAgQO1dOlSJSUlae7cucrNzZV07tNIgYGBioiI0JYtWxQQEFBpDQMAKleZ5hhcXFw0cOBADRw4UJKUm5ur06dPq379+qpZs2alNAgAqFqXNfns6ekpT0/PiuoFAFAN2P222wCA6oVgAAAYCAYAgKHMwVBUVKR169bp+PHjldAOAMDeyhwMTk5O6tq1q3755ZfK6AcAYGflupTUunVr/fDDDxXdCwCgGihXMLz00ksaM2aMPvroIx09elR5eXnGAwBw5SrX9xi6d+8uSerZs6ccHBxs45ZlycHBQUVFRRXTHQCgypUrGFavXl3RfQAAqolyBUNYWFhF9wEAqCbKfUuM48eP66233tKePXskSTfeeKMGDx7MLTIA4ApXrsnnrVu3qmnTppo+fbp+/vln/fzzz0pMTFTTpk2VlpZW0T0CAKpQuc4YnnrqKfXs2VPz5s1TjRrnNvHrr79q6NChevLJJ7Vu3boKbRIAUHXKFQxbt241QkGSatSooXHjxql9+/YV1hwAoOqV61JSnTp1lJ6efsF4RkaGateufdlNAQDsp1zB0LdvXw0ZMkRJSUnKyMhQRkaGlixZoqFDh6p///4V3SMAoAqV61LS1KlT5eDgoEGDBunXX3+VJNWsWVOPPfaYJk+eXKENAgCqVpmDoaioSJs2bdILL7yghIQEHThwQJLUtGlTubu7V3iDAICqVeZgOH931T179qhJkyYKCgqqjL4AAHbC3VUBAAburgoAMHB3VQCAgburAgAMZQ6Gs2fP6sUXX9ScOXPUvHnzyugJAGBHZZ5jqFmzpr7++uvK6AUAUA2Ua/J54MCBeuuttyq6FwBANVCuOYZff/1V8+fP1+eff66QkBDVqlXLWJ6YmFghzQEAql65gmHXrl1q166dJOn77783lv3+U0oAgCsPn0oCABjKNcdwKdnZ2RW9SQBAFSpTMLi7u+vYsWO25z169NDRo0dtz7OysnT99ddXXHcAgCpXpmA4c+aMLMuyPV+3bp1Onz5t1Px+OQDgylPhl5KYfAaAK1uFBwMA4MpWpmBwcHAwzgj++BwAcOUr08dVLctSixYtbGGQn5+vtm3bytHR0bYcAHBlK1MwLFiwoLL6AABUE2UKhqioqMrqAwBQTTD5DAAwEAwAAAPBAAAwEAwAAAPBAAAwlOu220VFRVq4cKFSUlKUnZ2t4uJiY/kXX3xRIc0BAKpeuYJh9OjRWrhwoXr06KHWrVvz7WcAuIqUKxiWLFmi//u//1P37t0ruh8AgJ2Va47B2dlZzZo1q+heAADVQLmC4emnn9bMmTO5NxIAXIXKdSlp/fr1Wr16tT755BPdeOONqlmzprH8/fffr5DmAABVr1zBULduXT3wwAMV3QsAoBooVzBwl1UAuHrZ/Qtus2fPlr+/v1xdXdWpUydt3rz5kvVLly5Vq1at5OrqqqCgIK1cufKCmj179qhnz57y9PRUrVq11KFDB6Wnp1fWIQDAVaXcwfDf//5Xffr00c0336x27doZj9JKSkpSbGys4uPjlZaWpjZt2igiIkLZ2dkl1m/cuFH9+/fXkCFDtH37dkVGRioyMlK7du2y1Rw4cEC33nqrWrVqpTVr1ujrr7/W3//+d7m6upb3UAHgmlKuYHjttdcUHR0tb29vbd++XR07dlT9+vX1ww8/6J577in1dhITEzVs2DBFR0crMDBQc+bMkbu7u+bPn19i/cyZM9WtWzeNHTtWAQEBmjRpktq1a6dZs2bZap577jl1795dU6ZMUdu2bdW0aVP17NlTDRo0KM+hAsA1p1zB8MYbb2ju3Ll6/fXX5ezsrHHjxmnVqlUaNWqUcnNzS7WNwsJCbdu2TeHh4b814+io8PBwpaamlrhOamqqUS9JERERtvri4mJ9/PHHatGihSIiItSgQQN16tRJy5cvv2QvBQUFysvLMx4AcK0qVzCkp6erc+fOkiQ3NzedOHFCkvTII4/o3XffLdU2cnJyVFRUJG9vb2Pc29tbmZmZJa6TmZl5yfrs7Gzl5+dr8uTJ6tatmz777DM98MADevDBB7V27dqL9pKQkCBPT0/bw9fXt1THAABXo3IFg4+Pj37++WdJUuPGjbVp0yZJ0sGDB+36pbfzN/O7//779dRTTyk4OFjPPvus7r33Xs2ZM+ei68XFxSk3N9f2yMjIqKqWAaDaKVcw3HnnnVqxYoUkKTo6Wk899ZTuvvtu9e3bt9Tfb/Dy8pKTk5OysrKM8aysLPn4+JS4jo+PzyXrvby8VKNGDQUGBho1AQEBl/xUkouLi+rUqWM8AOBaVa5gmDt3rp577jlJ0siRIzV//nwFBAToxRdf1JtvvlmqbTg7OyskJEQpKSm2seLiYqWkpCg0NLTEdUJDQ416SVq1apWt3tnZWR06dNDevXuNmu+//15+fn6lPj4AuJaV6wtujo6OcnT8LVP69eunfv36lXk7sbGxioqKUvv27dWxY0fNmDFDJ0+eVHR0tCRp0KBBatSokRISEiSdu913WFiYpk2bph49emjJkiXaunWr5s6da9vm2LFj1bdvX3Xp0kV33HGHkpOT9eGHH2rNmjXlOVQAuOaU+3sMX375pQYOHKjQ0FAdPnxYkvTOO+9o/fr1pd5G3759NXXqVE2YMEHBwcHasWOHkpOTbRPM6enpOnr0qK2+c+fOWrx4sebOnas2bdrov//9r5YvX67WrVvbah544AHNmTNHU6ZMUVBQkP71r3/pvffe06233lreQwWAa0q5zhjee+89PfLIIxowYIC2b9+ugoICSVJubq7+8Y9/lPht5IuJiYlRTExMictKepffu3dv9e7d+5LbHDx4sAYPHlzqHgAAvynXGcNLL72kOXPmaN68ecadVW+55RalpaVVWHMAgKpXrmDYu3evunTpcsG4p6enjh8/frk9AQDsqNzfY9i/f/8F4+vXr9cNN9xw2U0BAOynXMEwbNgwjR49Wl999ZUcHBx05MgRLVq0SGPGjNFjjz1W0T0CAKpQuSafn332WRUXF+uuu+7SqVOn1KVLF7m4uGjMmDF64oknKrpHAEAVKlcwODg46LnnntPYsWO1f/9+5efnKzAwUB4eHhXdHwCgipUrGM5zdna+4PYTAIArW5mCobTfDbjY31MAAFR/ZQqGhQsXys/PT23btrXrXVQBAJWnTMHw2GOP6d1339XBgwcVHR2tgQMHql69epXVGwDADsr0cdXZs2fr6NGjGjdunD788EP5+vqqT58++vTTTzmDAICrRJm/x+Di4qL+/ftr1apV2r17t2688UY9/vjj8vf3V35+fmX0CACoQuW+u6p07vbbDg4OsixLRUVFFdUTAMCOyhwMBQUFevfdd3X33XerRYsW+uabbzRr1iylp6fzPQYAuAqUafL58ccf15IlS+Tr66vBgwfr3XfflZeXV2X1BgCwgzIFw5w5c9S4cWPdcMMNWrt2rdauXVti3fvvv18hzQEAql6ZgmHQoEFycHCorF4AANVAmb/gBgC4ul3Wp5IAAFcfggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYKgWwTB79mz5+/vL1dVVnTp10ubNmy9Zv3TpUrVq1Uqurq4KCgrSypUrL1r7t7/9TQ4ODpoxY0YFdw0AVye7B0NSUpJiY2MVHx+vtLQ0tWnTRhEREcrOzi6xfuPGjerfv7+GDBmi7du3KzIyUpGRkdq1a9cFtcuWLdOmTZvUsGHDyj4MALhq2D0YEhMTNWzYMEVHRyswMFBz5syRu7u75s+fX2L9zJkz1a1bN40dO1YBAQGaNGmS2rVrp1mzZhl1hw8f1hNPPKFFixapZs2aVXEoAHBVsGswFBYWatu2bQoPD7eNOTo6Kjw8XKmpqSWuk5qaatRLUkREhFFfXFysRx55RGPHjtWNN974p30UFBQoLy/PeADAtcquwZCTk6OioiJ5e3sb497e3srMzCxxnczMzD+tf+WVV1SjRg2NGjWqVH0kJCTI09PT9vD19S3jkQDA1cPul5Iq2rZt2zRz5kwtXLhQDg4OpVonLi5Oubm5tkdGRkYldwkA1Zddg8HLy0tOTk7KysoyxrOysuTj41PiOj4+Ppes//LLL5Wdna3GjRurRo0aqlGjhg4dOqSnn35a/v7+JW7TxcVFderUMR4AcK2yazA4OzsrJCREKSkptrHi4mKlpKQoNDS0xHVCQ0ONeklatWqVrf6RRx7R119/rR07dtgeDRs21NixY/Xpp59W3sEAwFWihr0biI2NVVRUlNq3b6+OHTtqxowZOnnypKKjoyVJgwYNUqNGjZSQkCBJGj16tMLCwjRt2jT16NFDS5Ys0datWzV37lxJUv369VW/fn1jHzVr1pSPj49atmxZtQcHAFcguwdD3759dezYMU2YMEGZmZkKDg5WcnKybYI5PT1djo6/ndh07txZixcv1vPPP6/x48erefPmWr58uVq3bm2vQwCAq4rdg0GSYmJiFBMTU+KyNWvWXDDWu3dv9e7du9Tb//HHH8vZGQBce666TyUBAC4PwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMFSLYJg9e7b8/f3l6uqqTp06afPmzZesX7p0qVq1aiVXV1cFBQVp5cqVtmVnz57VM888o6CgINWqVUsNGzbUoEGDdOTIkco+DAC4Ktg9GJKSkhQbG6v4+HilpaWpTZs2ioiIUHZ2don1GzduVP/+/TVkyBBt375dkZGRioyM1K5duyRJp06dUlpamv7+978rLS1N77//vvbu3auePXtW5WEBwBXL7sGQmJioYcOGKTo6WoGBgZozZ47c3d01f/78Eutnzpypbt26aezYsQoICNCkSZPUrl07zZo1S5Lk6empVatWqU+fPmrZsqVuvvlmzZo1S9u2bVN6enpVHhoAXJHsGgyFhYXatm2bwsPDbWOOjo4KDw9XampqieukpqYa9ZIUERFx0XpJys3NlYODg+rWrVvi8oKCAuXl5RkPALhW2TUYcnJyVFRUJG9vb2Pc29tbmZmZJa6TmZlZpvozZ87omWeeUf/+/VWnTp0SaxISEuTp6Wl7+Pr6luNoAODqYPdLSZXp7Nmz6tOnjyzL0ptvvnnRuri4OOXm5toeGRkZVdglAFQvNey5cy8vLzk5OSkrK8sYz8rKko+PT4nr+Pj4lKr+fCgcOnRIX3zxxUXPFiTJxcVFLi4u5TwKALi62PWMwdnZWSEhIUpJSbGNFRcXKyUlRaGhoSWuExoaatRL0qpVq4z686Gwb98+ff7556pfv37lHAAAXIXsesYgSbGxsYqKilL79u3VsWNHzZgxQydPnlR0dLQkadCgQWrUqJESEhIkSaNHj1ZYWJimTZumHj16aMmSJdq6davmzp0r6VwoPPTQQ0pLS9NHH32koqIi2/xDvXr15OzsbJ8DBYArhN2DoW/fvjp27JgmTJigzMxMBQcHKzk52TbBnJ6eLkfH305sOnfurMWLF+v555/X+PHj1bx5cy1fvlytW7eWJB0+fFgrVqyQJAUHBxv7Wr16tW6//fYqOS4AuFLZPRgkKSYmRjExMSUuW7NmzQVjvXv3Vu/evUus9/f3l2VZFdkeAFxTrupPJQEAyo5gAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgKFaBMPs2bPl7+8vV1dXderUSZs3b75k/dKlS9WqVSu5uroqKChIK1euNJZblqUJEybo+uuvl5ubm8LDw7Vv377KPAQAuGrYPRiSkpIUGxur+Ph4paWlqU2bNoqIiFB2dnaJ9Rs3blT//v01ZMgQbd++XZGRkYqMjNSuXbtsNVOmTNFrr72mOXPm6KuvvlKtWrUUERGhM2fOVNVhAcAVy+7BkJiYqGHDhik6OlqBgYGaM2eO3N3dNX/+/BLrZ86cqW7dumns2LEKCAjQpEmT1K5dO82aNUvSubOFGTNm6Pnnn9f999+vm266Sf/+97915MgRLV++vAqPDACuTDXsufPCwkJt27ZNcXFxtjFHR0eFh4crNTW1xHVSU1MVGxtrjEVERNh+6R88eFCZmZkKDw+3Lff09FSnTp2Umpqqfv36XbDNgoICFRQU2J7n5uZKkvLy8sp0PPn5+ZKkb3JP6tSvRWVaF9XDgZPnzirz8/PL/P//leD8a/TUkX0qKjxt525QHgU5P0kq/2u0du3acnBwuGSNXYMhJydHRUVF8vb2Nsa9vb313XfflbhOZmZmifWZmZm25efHLlbzRwkJCZo4ceIF476+vqU7kD94Zld6udZD9REWFmbvFipVxopEe7eAy1Te12hubq7q1KlzyRq7BkN1ERcXZ5yFFBcX6+eff1b9+vX/NFmBy5GXlydfX19lZGT86T9WoCLUrl37T2vsGgxeXl5ycnJSVlaWMZ6VlSUfH58S1/Hx8blk/fn/zcrK0vXXX2/UBAcHl7hNFxcXubi4GGN169Yty6EAl6VOnToEA6oNu04+Ozs7KyQkRCkpKbax4uJipaSkKDQ0tMR1QkNDjXpJWrVqla2+SZMm8vHxMWry8vL01VdfXXSbAIDfsexsyZIllouLi7Vw4UJr9+7d1vDhw626detamZmZlmVZ1iOPPGI9++yztvoNGzZYNWrUsKZOnWrt2bPHio+Pt2rWrGl98803tprJkydbdevWtT744APr66+/tu6//36rSZMm1unTp6v8+IBLyc3NtSRZubm59m4FsLH7HEPfvn117NgxTZgwQZmZmQoODlZycrJt8jg9PV2Ojr+d2HTu3FmLFy/W888/r/Hjx6t58+Zavny5WrdubasZN26cTp48qeHDh+v48eO69dZblZycLFdX1yo/PuBSXFxcFB8ff8GlTMCeHCzLsuzdBACg+rD7F9wAANULwQAAMBAMAAADwQD8fwsXLqwW31+pqD4cHBxst4r58ccf5eDgoB07dlz2dnH1IxhQLTz66KNycHDQ5MmTjfHly5dX2bfP+/btq++//77S97N69Wp1795d9evXl7u7uwIDA/X000/r8OHDlb5voDQIBlQbrq6ueuWVV/TLL79U+b7Pnj0rNzc3NWjQoFL3889//lPh4eHy8fHRe++9p927d2vOnDnKzc3VtGnTKnXfQGkRDKg2zv/CTEhIuGTd+vXrddttt8nNzU2+vr4aNWqUTp48aVv++0so59WtW1cLFy6U9NtllaSkJIWFhcnV1VWLFi264BLOCy+8oODgYP3zn/+Ur6+v3N3d1adPH9vddyVpzZo16tixo2rVqqW6devqlltu0aFDh0rs+6efftKoUaM0atQozZ8/X7fffrv8/f3VpUsX/etf/9KECROM+k8//VQBAQHy8PBQt27ddPToUduyLVu26O6775aXl5c8PT0VFhamtLS0S/7c/mjXrl2655575OHhIW9vbz3yyCPKycmxLb/99ts1atQojRs3TvXq1ZOPj49eeOEFYxvfffedbr31Vrm6uiowMFCff/75BT//jIwM9enTR3Xr1lW9evV0//3368cffyxTr6haBAOqDScnJ/3jH//Q66+/rp9++qnEmgMHDqhbt27q1auXvv76ayUlJWn9+vWKiYkp8/6effZZjR49Wnv27FFERESJNfv379f//d//6cMPP1RycrK2b9+uxx9/XJL066+/KjIyUmFhYfr666+Vmpqq4cOHX/TS19KlS1VYWKhx48aVuPz3oXTq1ClNnTpV77zzjtatW6f09HSNGTPGtvzEiROKiorS+vXrtWnTJjVv3lzdu3fXiRMnSnXsx48f15133qm2bdtq69atSk5OVlZWlvr06WPUvf3226pVq5a++uorTZkyRS+++KJWrVolSSoqKlJkZKTc3d311Vdfae7cuXruueeM9c+ePauIiAjVrl1bX375pTZs2GALusLCwlL1Cjuw91evAcuyrKioKOv++++3LMuybr75Zmvw4MGWZVnWsmXLrN+/TIcMGWINHz7cWPfLL7+0HB0dbbc8kWQtW7bMqPH09LQWLFhgWZZlHTx40JJkzZgxw6hZsGCB5enpaXseHx9vOTk5WT/99JNt7JNPPrEcHR2to0ePWv/73/8sSdaaNWtKdYyPPfaYVadOnT+tW7BggSXJ2r9/v21s9uzZlre390XXKSoqsmrXrm19+OGHtrHf/xzOH/P27dsty7KsSZMmWV27djW2kZGRYUmy9u7da1mWZYWFhVm33nqrUdOhQwfrmWeesSzr3M+iRo0a1tGjR23LV61aZez3nXfesVq2bGkVFxfbagoKCiw3Nzfr008//dOfBeyDMwZUO6+88orefvtt7dmz54JlO3fu1MKFC+Xh4WF7REREqLi4WAcPHizTftq3b/+nNY0bN1ajRo1sz0NDQ1VcXKy9e/eqXr16evTRRxUREaH77rtPM2fONC73/JFlWaWeSHd3d1fTpk1tz6+//nrjz91mZWVp2LBhat68uTw9PVWnTh3l5+crPb10fwtk586dWr16tfFzbNWqlaRzZ2Xn3XTTTcZ6v+9j79698vX1Ne6E3LFjxwv2s3//ftWuXdu2n3r16unMmTPGflC92P1eScAfdenSRREREYqLi9Ojjz5qLMvPz9eIESM0atSoC9Zr3LixpHNzDNYf7vRy9uzZC+pr1ap12b0uWLBAo0aNUnJyspKSkvT8889r1apVuvnmmy+obdGihXJzc3X06FHjlvAlqVmzpvH8j8cUFRWl//3vf5o5c6b8/Pzk4uKi0NDQUl+eyc/P13333adXXnnlgmW/762kPoqLi0u1j/P7CQkJ0aJFiy5Ydt1115V6O6haBAOqpcmTJys4OFgtW7Y0xtu1a6fdu3erWbNmF133uuuuM96579u3T6dOnSpXH+np6Tpy5IgaNmwoSdq0aZMcHR2Nvtq2bau2bdsqLi5OoaGhWrx4cYnB8NBDD+nZZ5/VlClTNH369AuWHz9+vNTfX9iwYYPeeOMNde/eXdK5Cd7fTxz/mXbt2um9996Tv7+/atQo36+Bli1bKiMjQ1lZWbabXm7ZsuWC/SQlJalBgwb8vYkrCJeSUC0FBQVpwIABeu2114zxZ555Rhs3blRMTIx27Nihffv26YMPPjAmn++8807NmjVL27dv19atW/W3v/3tgne+peXq6qqoqCjt3LlTX375pUaNGqU+ffrIx8dHBw8eVFxcnFJTU3Xo0CF99tln2rdvnwICAkrclq+vr6ZPn66ZM2dqyJAhWrt2rQ4dOqQNGzZoxIgRmjRpUqn7at68ud555x3t2bNHX331lQYMGCA3N7dSrz9y5Ej9/PPP6t+/v7Zs2aIDBw7o008/VXR0tIqKSvf3yu+++241bdpUUVFR+vrrr7VhwwY9//zzkmS7ZDZgwAB5eXnp/vvv15dffqmDBw9qzZo1GjVq1EU/YAD7IxhQbb344osXXLa46aabtHbtWn3//fe67bbb1LZtW02YMMH2jl6Spk2bJl9fX9122216+OGHNWbMGLm7u5erh2bNmunBBx9U9+7d1bVrV91000164403JJ2bB/juu+/Uq1cvtWjRQsOHD9fIkSM1YsSIi27v8ccf12effabDhw/rgQceUKtWrTR06FDVqVPH+NTRn3nrrbf0yy+/qF27dnrkkUc0atSoMn0Ho2HDhtqwYYOKiorUtWtXBQUF6cknn1TdunWN29xfipOTk5YvX678/Hx16NBBQ4cOtX0q6fwt7t3d3bVu3To1btxYDz74oAICAjRkyBCdOXOGM4hqjNtuAxfxwgsvaPny5dxGogw2bNigW2+9Vfv37zcmz3FlYY4BQLktW7ZMHh4eat68ufbv36/Ro0frlltuIRSucAQDgHI7ceKEnnnmGaWnp8vLy0vh4eHc2uMqwKUkAICByWcAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgOH/AenMPImTgATuAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cp_mean = 1- 0.8612\n", + "cs_mean = 1- 0.8723\n", + "\n", + "x = np.array([0]) # Single data point\n", + "bar_spacing = 0.05 \n", + "width = 0.2 # Width of bars\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 6))\n", + "\n", + "# Bar plots with error bars\n", + "bars_cp = ax.bar(x - (width/2 + bar_spacing), cp_mean, width, label='CellPose', color=c2, edgecolor='black')\n", + "bars_cs = ax.bar(x + (width/2 + bar_spacing), cs_mean, width, label='CellSam', color=c4, edgecolor='black')\n", + "\n", + "# Labels and styling\n", + "ax.set_xticks(x)\n", + "ax.set_xticklabels([\"Neurips Challenge\"], ha='center')\n", + "ax.set_ylabel(\"Mean Error (1 - F1)\")\n", + "ax.spines[\"top\"].set_visible(False)\n", + "ax.spines[\"right\"].set_visible(False)\n", + "ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15), ncol=2, prop={'size': 12}, frameon=False)\n", + "\n", + "plt.tight_layout()\n", + "# fig.savefig(\"mean_error_neurips_dataset.svg\", format=\"svg\", dpi=300)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "cs_vvlab", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.16" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 314f241af39c667e8f0f25b4326398df75d1ee82 Mon Sep 17 00:00:00 2001 From: ulisrael Date: Tue, 18 Feb 2025 08:55:32 -0800 Subject: [PATCH 2/7] updated meta data naming for livecell --- .../{metadata_LIVECELLgood_0_orig.csv => metadata_LIVECELL.csv} | 0 paper_figures/paper_figures.ipynb | 2 +- 2 files changed, 1 insertion(+), 1 deletion(-) rename paper_figures/{metadata_LIVECELLgood_0_orig.csv => metadata_LIVECELL.csv} (100%) diff --git a/paper_figures/metadata_LIVECELLgood_0_orig.csv b/paper_figures/metadata_LIVECELL.csv similarity index 100% rename from paper_figures/metadata_LIVECELLgood_0_orig.csv rename to paper_figures/metadata_LIVECELL.csv diff --git a/paper_figures/paper_figures.ipynb b/paper_figures/paper_figures.ipynb index 0cdfa13..a6afdd6 100644 --- a/paper_figures/paper_figures.ipynb +++ b/paper_figures/paper_figures.ipynb @@ -1556,7 +1556,7 @@ "\n", "# Load cell types\n", "celltypes = pd.read_csv(\n", - " '/home/ulisrael/cellSAM/paper_figures/metadata_LIVECELLgood_0_orig.csv', \n", + " '/home/ulisrael/cellSAM/paper_figures/metadata_LIVECELL.csv', \n", " header=None\n", ")\n", "celltypes_array = celltypes.values.flatten()\n", From 862a6338bd4a582491d59f1eae39a2a4fd8e27fe Mon Sep 17 00:00:00 2001 From: ulisrael Date: Tue, 18 Feb 2025 08:57:52 -0800 Subject: [PATCH 3/7] rm old plotting script --- paper_figures/generate_fig1.py | 186 --------------------------------- 1 file changed, 186 deletions(-) delete mode 100644 paper_figures/generate_fig1.py diff --git a/paper_figures/generate_fig1.py b/paper_figures/generate_fig1.py deleted file mode 100644 index 258b4eb..0000000 --- a/paper_figures/generate_fig1.py +++ /dev/null @@ -1,186 +0,0 @@ -import matplotlib.pyplot as plt -from pathlib import Path -import numpy as np - -name_map = { - "Gendarme_BriFi": "BriFiSeg", - "cellpose": "Cellpose", - "ep_phase_microscopy_all": "Phase400", - "H_and_E": "H&E", - "tissuenet_wholecell": "TissueNet", - "YeaZ": "YeaZ", - "YeastNet": "YeastNet", - "dsb_fixed": "DSB", - "deepbacs": "DeepBacs", - "omnipose": "OmniPose", -} - - -datasets = [ - 'Gendarme_BriFi', - 'H_and_E', - 'YeaZ', - 'YeastNet', - 'cellpose', - 'deepbacs', - 'dsb_fixed', - 'ep_phase_microscopy_all', - 'omnipose', - 'tissuenet_wholecell', -] - -# colors for the plots -c1 = "#fdbb84" -c2 = "#e34a33" -c3 = '#deebf7' -c4 = '#3182bd' - -# define paths to results -cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam') -cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose') - -cellpose_generalist_path = cellpose_path / 'general' -cellsam_generalist_path = cellsam_path / 'general' - -# read in results for cellpose generalist -cp_generalist_dict = {} -for file in cellpose_generalist_path.glob("*.txt"): - try: - data = np.loadtxt(file) - cp_generalist_dict[file.stem] = data - except Exception as e: - print(f"Error reading {file.name}: {e}") - -# read in results for cellsam generalist -cs_generalist_dict = {} -for file in cellsam_generalist_path.glob("*.txt"): - try: - data = np.loadtxt(file) - cs_generalist_dict[file.stem] = data - except Exception as e: - print(f"Error reading {file.name}: {e}") - - -cp_means = []; cs_means = [] -cp_sems = []; cs_sems = [] - -for ds in datasets: - cp_data = cp_generalist_dict[ds] - cs_data = cs_generalist_dict[ds] - # 1 - mean for the bar - cp_m = 1 - np.mean(cp_data) - cs_m = 1 - np.mean(cs_data) - # standard error of the mean for the error bar - cp_sem = np.std(cp_data, ddof=1) / np.sqrt(len(cp_data)) - cs_sem = np.std(cs_data, ddof=1) / np.sqrt(len(cs_data)) - - cp_means.append(cp_m) - cs_means.append(cs_m) - cp_sems.append(cp_sem) - cs_sems.append(cs_sem) - -# Plot as a bar chart -x = np.arange(len(datasets)) -width = 0.35 # width of each bar - -fig, ax = plt.subplots(figsize=(8, 5)) - -# Plot CP bars slightly left, CS bars slightly right -bars_cp = ax.bar(x - width/2, cp_means, width, - edgecolor='black', linewidth=1, - yerr=cp_sems, capsize=5, label='CellPose', color=c2) -bars_cs = ax.bar(x + width/2, cs_means, width, - edgecolor='black', linewidth=1, - yerr=cs_sems, capsize=5, label='CellSam', color=c4) - -ax.set_xticks(x) -ax.set_xticklabels([name_map[ds] for ds in datasets], rotation=45, ha='right') -ax.set_ylabel('Mean Error (1 - F1)') -# ax.set_title('Generalist Model Comparison of Mean Error') -ax.spines["top"].set_visible(False) -ax.spines["right"].set_visible(False) -ax.legend( - loc='upper center', - bbox_to_anchor=(0.5, 1.15), - ncol=2, - prop={'size': 14}, - frameon=False -) -plt.tight_layout() -fig.savefig("mean_error_dataset_comparison_cp_reg.svg", format="svg", dpi=300) -plt.show() - - -dataset_agg_map = { - "Tissue": ["tissuenet_wholecell"], - "Cell Culture": ["cellpose", "ep_phase_microscopy_all", "Gendarme_BriFi"], - "H&E": ["H_and_E"], - "Bacteria": ["deepbacs", "omnipose"], - "Yeast": ["YeaZ", "YeastNet"], - "Nuclear": ["dsb_fixed"], -} - -group_names = list(dataset_agg_map.keys()) -cp_group_means = [] -cp_group_sems = [] -cs_group_means = [] -cs_group_sems = [] - -for group in group_names: - # Get all datasets that belong to this group - datasets_for_group = dataset_agg_map[group] - - # Gather all F1 arrays and concatenate them - cp_all = np.concatenate([cp_generalist_dict[ds] for ds in datasets_for_group]) - cs_all = np.concatenate([cs_generalist_dict[ds] for ds in datasets_for_group]) - - # Compute (1 - mean(F1)) for the group - cp_mean = 1 - np.mean(cp_all) - cs_mean = 1 - np.mean(cs_all) - cp_group_means.append(cp_mean) - cs_group_means.append(cs_mean) - - # Standard error of the mean (SEM) for the group - cp_sem = np.std(cp_all, ddof=1) / np.sqrt(len(cp_all)) - cs_sem = np.std(cs_all, ddof=1) / np.sqrt(len(cs_all)) - cp_group_sems.append(cp_sem) - cs_group_sems.append(cs_sem) - -# Now plot side‐by‐side bars for the groups -x = np.arange(len(group_names)) -width = 0.35 -plt.rcParams['svg.fonttype'] = 'none' -# plt.rcParams['ps.fonttype'] = 42 -# plt.rcParams['font.family'] = 'Arial' # Set a standard font (adjust as needed) -fig, ax = plt.subplots(figsize=(8,5)) - -bars_cp = ax.bar( - x - width/2, cp_group_means, width, - yerr=cp_group_sems, edgecolor='black', linewidth=1, capsize=5, - label='CellPose', color=c2 -) -bars_cs = ax.bar( - x + width/2, cs_group_means, width, - yerr=cs_group_sems, edgecolor='black', linewidth=1, capsize=5, - label='CellSam', color=c4 -) - -ax.set_xticks(x) -ax.set_xticklabels(group_names, rotation=45, ha='right') -ax.set_ylabel('Mean Error (1 - F1)') -# ax.set_title('Grouped Comparison of Mean Error') -ax.spines["top"].set_visible(False) -ax.spines["right"].set_visible(False) -ax.legend( - loc='upper center', - bbox_to_anchor=(0.5, 1.15), - ncol=2, - prop={'size': 14}, - frameon=False -) -plt.tight_layout() -# save figure as vector -# export to edit in illustrator - -# fig.savefig("mean_error_general_grouped_comparison_cp_reg.svg", format="svg", dpi=300) -plt.show() \ No newline at end of file From bff4d015e690f259155276e26fa670e1e55f90d1 Mon Sep 17 00:00:00 2001 From: Ross Barnowski Date: Tue, 18 Feb 2025 13:39:08 -0800 Subject: [PATCH 4/7] Modify paths in notebook. --- paper_figures/paper_figures.ipynb | 306 +++++------------------------- 1 file changed, 47 insertions(+), 259 deletions(-) diff --git a/paper_figures/paper_figures.ipynb b/paper_figures/paper_figures.ipynb index a6afdd6..fba57f0 100644 --- a/paper_figures/paper_figures.ipynb +++ b/paper_figures/paper_figures.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -53,14 +53,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "## define paths and load results\n", "\n", - "cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam')\n", - "cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose')\n", + "\n", + "\n", + "cellsam_path = Path.cwd() / \"eval_results/cellsam\"\n", + "cellpose_path = Path.cwd() / \"eval_results/cellpose\"\n", "\n", "cellpose_generalist_path = cellpose_path / 'general'\n", "cellsam_generalist_path = cellsam_path / 'general'\n", @@ -87,20 +89,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhe9JREFUeJzt3XdcVfX/B/DXBZkiaIAMBUFRRFFwz9wzC1du09TUryNX7oUzTE3NNPfMmTPLspLSxDRTw4koLlIBxYXs9f79we8euQIqXODC5fV8PO7Dy+cM3ud4Ofe8z2epRERARERERESkBQNdB0BERERERIUfEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItJaMV0HQESFT2hoKCIjI3UdRqZsbGzg7Oys6zBea9asWZg9ezb++OMPNGvWTClXqVRo2rQpjh07prPYigJ+frXHzzARZYaJBRFlS2hoKDzc3REbH6/rUDJlbmqKoODgXLk5O3fuHL755hv8+eefePDgAVJTU+Ho6IiGDRuiX79+aN26dS5ETPkpNDQU7pU9EB8Xq+tQMmVqZo7ga0G5llwUlM/w5cuXsWjRIhw/fhxhYWEwNTWFra0tqlevjqZNm2LUqFFQqVSZbvvnn3+iadOmAIDvvvsO3bp1y3S9zZs3Y8CAAQCArl27Yu/evZmut2rVKgwfPhwA0L9/f2zevFnLoyMiNSYWRJQtkZGRiI2Px3IvF7hZmOk6HA0h0XEYdeEOIiMjtboxS01Nxfjx47F06VIUK1YMLVq0gI+PD4yMjHDr1i0cPnwY27Ztw5w5czBjxoxcPALKa5GRkYiPi0W5rlNgaluwagbiH4Xi7j4/rT+/QMH6DP/22294//33kZycjFatWqFz584wNTXFzZs3cfz4cRw4cAAjRoxAsWKZ35Js2LABQFptyMaNG7NMLNSKFSuGH374AZGRkbCxscl0f8WKFUNycrL2B0dEGphYEFGOuFmYoZqVua7DyBPTp0/H0qVL4e3tjb1796JChQoay+Pi4rBixQo8fvxYRxGStkxtnWHuWEnXYeSZgvQZHjZsGFJSUnD06FE0b95cY5mI4Ndff4WhoWGm20ZFRWHv3r2oXr067Ozs8Ouvv+K///6Dk5NTlr+vffv2+OGHH7Bt2zaMGTNGY9nFixdx7tw5+Pj44NChQ1ofGxFpYudtIqJ0QkJCsHDhQlhbW+PIkSMZbsgAwMzMDBMmTMDs2bOVssTERCxZsgQ1a9ZE8eLFUaJECbz77rta37x8/PHHUKlUuHXrFhYuXIiKFSvC1NQUrq6umDNnDpKSkjLdbtOmTahXrx4sLCxgYWGBevXqZdnkY9++fWjatClKly4NU1NTODo6olWrVti3b1+GdS9evIiePXvCwcEBxsbGKFeuHD799FMmWQVIQfoMP3z4EDdv3oSnp2eGpAJIq4Vo27Ztls2gdu7cidjYWPTr1w/9+vVDamrqG5suNWzYEJUrV8amTZsyLNu4cSMMDQ3Rv3//HB0PEb0eEwsionQ2b96MlJQUDB06FHZ2dq9d18TEBACQkJCAtm3b4rPPPoOIYNCgQejbty/u3r2Ljh07YsWKFVrHNWbMGHzxxRdo1aoVPv30U5iYmMDX1xe9evXKsO6oUaMwcOBA3L9/H4MGDcKgQYNw//59DBgwAKNHj9ZYd9WqVfjwww9x48YNdO7cGePGjUO7du0QHh6OAwcOaKx76NAh1K1bF4cOHUKzZs0wZswYVKtWDStWrECDBg3w9OlTrY+TtFeQPsNWVlYoVqwYwsLCEBMTk+3tN2zYAENDQ/Tp0wddunSBhYUFNm3aBBF57XYDBgxQaifUEhMTsX37drRt2xaOjo7ZjoWI3oxNoYiI0jl58iQAoEWLFm+9zZw5c3Ds2DHMmDEDs2fPVp6+vnjxAi1atMBnn32GLl26aHUzc/r0aVy4cAFly5YFAMyfPx+tW7fGvn37sG/fPnTt2hVAWkfXr7/+Gh4eHjh16hSsrKwApI3iU79+fSxfvhwffvgh3n33XQDA+vXrYWxsjMDAQJQuXVrjd6avhXj8+DE++ugj2NjY4OTJkyhXrpyybNeuXejVqxdmzpyJr7/+OsfHSLmjIH2GTUxM4OPjg/3796NBgwYYPHgwGjZsiGrVqsHY2Pi12166dAn//PMP2rZtC3t7ewBAly5dsHXrVvz+++9o2bJlltv269cP06ZNw8aNG1GrVi0AwPfff4/IyEgMGjQoW8dARG+PNRZEROmEh4cDgHID/yapqalYtWoVKlSooHFDBgAlSpTAzJkzkZiYiP3792sV1+jRozViMjY2xvz58wFAo2nIli1bAKQlEuqkAgBKlSoFX1/fDOsDgJGREYyMjDL8Tmtra+X91q1bERUVBT8/P42kAgB69uyJmjVrYteuXTk7OMpVBe0zvHbtWnzwwQe4dOkSRo0ahdq1a6NEiRJo1KgRli9fjri4uEy3U3fa7tevn1Kmfq9elhV7e3u899572LlzJ+L/fwS7jRs3wtbWFh988EGOjoOI3ow1FkREWggODsbTp0/h6Oio0V5d7dGjRwCAa9euafV71DUM6TVo0ADFihXDv//+q5Sp36efW0BN3cY9MDBQKevZsycmTpwIT09P9O7dG82bN0fjxo1haWmpse3p06cBAH///Tdu3ryZYd/x8fGIjIzMciQeKrjy+jNsbW2NQ4cO4caNGzhy5AjOnDmD06dP46+//sJff/2FdevW4fjx43jnnXeUbRISErBt2zaUKFECnTt3VsqbN28OJycnHDhwAE+fPkWpUqWy/L0DBw7EoUOHcODAATRp0gS//vorRo8enWkSTUS5g4kFEVE69vb2uHbtGu7fvw93d/c3rv/kyRMAwJUrV3DlypUs18tJ+/L0Mmsrb2hoCGtrazx//lwpi4qKgoGBAWxtbTPdh0qlQlRUlFI2fvx4WFtbY9WqVfjyyy+xePFiFCtWDB06dMDSpUvh6uoK4OVxrly58rVxxsTEMLHQsYL6Ga5YsSIqVqyo/BwYGIi+ffvi8uXLmD17Nr766itl2cGDB/H48WMMGDAAZmYvh7U2MDBAnz59sGDBAuzYsQMjRozI8vd16NABdnZ22LhxI27duoXU1FQMHDhQq2MgotdjUygionQaNWoEAPD393+r9dVP9rt27QoRyfKV2Qg12REREZGhLCUlBY8fP9Zo8mRpaYnU1FTlKXN6Dx8+hIho1EaoVCoMHDgQ//zzDx49eoQDBw6gS5cu+P777/H+++8jJSVF4zgvXbr02uN8tZkU5b+C+hl+lbe3t9In5/fff9dYpm7qtGnTJqhUKo3XggULNNbJSrFixdCvXz/8/vvvWLlyJerWrQtPT89cPQYi0sTEgogonY8//hiGhoZYu3Ztpjfn6SUkJMDDwwOWlpY4e/ZslkO/5oYTJ05kKDt16hSSk5NRo0YNpUz9/tixYxnWV5d5e3tn+jusra3RqVMn7N69Gy1atMDVq1cREhICAKhXr57yO6lgK6if4cxYWFhkKLt79y78/f1hZ2enjGr26svV1RX//vuvRjPAzAwcOBCpqakICwtjbQVRPmBiQUSUjpubGyZOnIjIyEi0b98et2/fzrBOfHw8lixZglmzZqFYsWIYNmwY7t69i/Hjx2d6Y3b58mU8fPhQq7i++uor3Lt3T/k5MTER06ZNA5B2I6mmHp9/9uzZGk2enj9/rrSfTz+G/7FjxzIM3ZmUlKQ0jzE1NQWQNnxniRIlMG3atEyby8TGxir9MEi3CtJnOCYmBvPnz0dkZGSGZcnJyVi0aBEAoHHjxkr5pk2bkJqaiqFDh2L9+vWZviZPngzgzbUWlStXxs8//4wDBw6gT58+2Y6fiLKHfSyIiF4xb948xMfHY+nSpXB3d0eLFi3g6ekJIyMj3L59G0ePHsXjx48xb948AGk38efPn8fy5ctx+PBhNGnSBKVLl8b9+/dx6dIlXLhwAadOncownGt21K9fH15eXujRoweKFy+OH374AcHBwejSpYsy1CwANGnSBJ9++im+/vpreHp6Ks1b9u3bh3v37mHUqFFo0qSJsn6nTp1gaWmJ+vXro1y5ckhKSsJvv/2Gq1ev4sMPP1SaNtna2mLnzp3o1q0bvLy80K5dO1SuXBkJCQm4c+cOjh8/joYNG+LIkSM5PkbKPQXlM5yUlITp06dj1qxZaNCgAby8vGBpaYmIiAj88ssvuHfvHlxdXZURy1JTU5XmT+kT5lf16NEDY8aMwfbt27F48WIlAc5Mu3btshUzEeUcEwsiypGQ6MyHiNSl3IrJwMAAS5YsQe/evbFq1Sr8+eef+PPPP5GamgoHBwe0bdsWAwYMQKtWrQCkjdX/888/Y8OGDdi6dSv27duHhIQE2NnZoUqVKvjf//6HatWqaRXTsmXLsGfPHqxfvx6hoaFwcHDArFmzMGXKlAzrLl++HDVq1MCqVauwdu1aAEDVqlUxZ84cDBgwQGNdPz8/ZaSeH374AcWLF0eFChWwatWqDOP9d+jQAf/++y8WLVqEo0eP4rfffkPx4sVRtmxZDBgwAH379tXqGPNT/KNQXYeQQW7GVFA+w5aWlvjpp5/wyy+/ICAgAHv27MHjx49hbm6OSpUqYfDgwRg9erTST+jo0aMIDQ1F06ZNlYEDMmNlZYUuXbpg+/bt2L9/P3r37p2zE0VEuUolb5q+kogondDQUHi4uyP2/8eGL2jMTU0RFBwMZ2dnXYeSKz7++GNs2bIFt2/fhouLi67DKfRCQ0PhXtkD8XGxug4lU6Zm5gi+FqQ3n18iKlpYY0FE2eLs7Iyg4OBM20wXBDY2Nrwpoyw5Ozsj+FoQP79ERHmAiQURZZuzszNvfqjQ4ueXiChvcFQoIiIiIiLSGvtYEBERERGR1lhjQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNikQkRQVRUFERE16EQERERERUKTCwy8eLFC1hZWeHFixe6DoWIiIiIqFBgYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERForEInFypUr4eLiAlNTU9SrVw9nzpzJct1169bh3XffRalSpVCqVCm0atUqw/off/wxVCqVxqtdu3Z5fRhEREREREWWzhOL3bt3Y9y4cfD19cX58+fh5eWFtm3b4uHDh5muf+zYMfTq1Qt//PEHTp06BScnJ7Rp0wb379/XWK9du3YICwtTXjt37syPwyEiIiIiKpJUIiK6DKBevXqoU6cOVqxYAQBITU2Fk5MTPv30U0yePPmN26ekpKBUqVJYsWIF+vXrByCtxuLZs2c4ePBgjmKKioqClZUVnj9/DktLyxztg/KOOlnMLgcHBzg4OORBRERERERUTJe/PDExEefOncOUKVOUMgMDA7Rq1QqnTp16q33ExsYiKSkJ77zzjkb5sWPHULp0aZQqVQotWrTAvHnzYG1tnek+EhISkJCQoPwcFRWVg6Oh/LJmzRrMnj0729v5+vpi1qxZuR8QEREREek2sYiMjERKSgrs7Ow0yu3s7HDt2rW32sekSZPg6OiIVq1aKWXt2rVDly5d4Orqips3b2Lq1Klo3749Tp06BUNDwwz78PPzy9GNKunG0KFD4ePjo1EWFxeHxo0bAwACAgJgZmaWYTvWVhARERHlHZ0mFtpasGABdu3ahWPHjsHU1FQp79mzp/K+WrVqqF69OipUqIBjx46hZcuWGfYzZcoUjBs3Tvk5KioKTk5OeRs85VhmTZpiYmKU997e3ihevHh+h0VERERUpOm087aNjQ0MDQ0RERGhUR4REQF7e/vXbrt48WIsWLAAv/76K6pXr/7adcuXLw8bGxuEhIRkutzExASWlpYaLyIiIiIiens6TSyMjY1Rq1Yt+Pv7K2Wpqanw9/dHgwYNstxu4cKFmDt3Lo4cOYLatWu/8ffcu3cPjx8/ZlMYIiIiIqI8ovPhZseNG4d169Zhy5YtCAoKwrBhwxATE4MBAwYAAPr166fRufuLL77AjBkzsHHjRri4uCA8PBzh4eGIjo4GAERHR2PChAk4ffo07ty5A39/f3Ts2BFubm5o27atTo6RiIiIiEjf6byPRY8ePfDo0SPMnDkT4eHh8Pb2xpEjR5QO3aGhoTAweJn/rFq1ComJifjwww819qMe8cfQ0BAXL17Eli1b8OzZMzg6OqJNmzaYO3cuTExM8vXYiIiIiIiKCp3PY1EQcR6LwicmJgYWFhYA0mqt2HmbiIiIKH/pvCkUEREREREVfkwsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa8V0HQDRm4SGhiIyMvK168TFxSnvAwMDYWZm9lb7trGxgbOzs1bxERERERGgEhHRdRAFTVRUFKysrPD8+XNYWlrqOpwiLTQ0FB7u7oiNj8+T/ZubmiIoOJjJBREREZGWWGNBBVpkZCRi4+Ox3MsFbhZZ10LEp6Siy+lgAMD++u4wNXxzK7+Q6DiMunAHkZGRTCyIiIiItMTEggoFNwszVLMyz3J5bHKK8r6qpRnMixnmR1hERERE9P/YeZuIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLTGxIKIiIiIiLRWTNcBEBFR7gkLC0NYWFi2t3NwcICDg0MeREREREUFEwsiIj2yZs0azJ49O9vb+fr6YtasWbkfEBERFRlMLIiI9MjQoUPh4+OjURYXF4fGjRsDAAICAmBmZpZhO9ZWEBGRtphYEBHpkcyaNMXExCjvvb29Ubx48fwOi4iIigB23iYiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0xsSAiIiIiIq0ViMRi5cqVcHFxgampKerVq4czZ85kue66devw7rvvolSpUihVqhRatWqVYX0RwcyZM+Hg4AAzMzO0atUKN27cyOvDICIiIiIqsnSeWOzevRvjxo2Dr68vzp8/Dy8vL7Rt2xYPHz7MdP1jx46hV69e+OOPP3Dq1Ck4OTmhTZs2uH//vrLOwoULsXz5cqxevRp///03ihcvjrZt2yI+Pj6/DouIiIiIqEjReWKxZMkSDB48GAMGDECVKlWwevVqmJubY+PGjZmuv337dgwfPhze3t6oXLky1q9fj9TUVPj7+wNIq61YtmwZpk+fjo4dO6J69erYunUrHjx4gIMHD+bjkRERERERFR06TSwSExNx7tw5tGrVSikzMDBAq1atcOrUqbfaR2xsLJKSkvDOO+8AAG7fvo3w8HCNfVpZWaFevXpZ7jMhIQFRUVEaLyIiIiIienvFdPnLIyMjkZKSAjs7O41yOzs7XLt27a32MWnSJDg6OiqJRHh4uLKPV/epXvYqPz8/zJ49O7vhk45ExCfhYUKSRll8Sory/kpULEwNDTNsV9rECHamRnkeHxEREVFRpNPEQlsLFizArl27cOzYMZiamuZ4P1OmTMG4ceOUn6OiouDk5JQbIVIe2B76CEtDwrJc3uX09UzLx7o5YFwlx7wKi4iIiKhI02liYWNjA0NDQ0RERGiUR0REwN7e/rXbLl68GAsWLMDRo0dRvXp1pVy9XUREBBwcHDT26e3tnem+TExMYGJiksOjoPzWx9kWre1KZnu70iasrSAiIiLKKzpNLIyNjVGrVi34+/ujU6dOAKB0xB45cmSW2y1cuBDz58/HL7/8gtq1a2ssc3V1hb29Pfz9/ZVEIioqCn///TeGDRuWV4dC+cjOlE2aiIiIiAoanTeFGjduHPr374/atWujbt26WLZsGWJiYjBgwAAAQL9+/VCmTBn4+fkBAL744gvMnDkTO3bsgIuLi9JvwsLCAhYWFlCpVBgzZgzmzZuHihUrwtXVFTNmzICjo6OSvBARERERUe7SeWLRo0cPPHr0CDNnzkR4eDi8vb1x5MgRpfN1aGgoDAxeDl61atUqJCYm4sMPP9TYj6+vL2bNmgUAmDhxImJiYjBkyBA8e/YMjRs3xpEjR7Tqh0FERERERFlTiYjoOoiCJioqClZWVnj+/DksLS11HU6Rdv78edSqVQs/NfJANSvzXN33peexeO9kEM6dO4eaNWvm6r6JCpKYmBhYWFgAAKKjo1G8eHEdR0RERPpI5xPkERERERFR4cfEgoiIiIiItMbEgoiIiIiItKbzzttEBU1YWBjCwrKegC8rDg4OGnOnEBERERUlTCyIXrFmzRrMnj0729ulH5mMiIiIqKhhYkH0iqFDh8LHx0ejLC4uDo0bNwYABAQEwMzMLMN2rK0gIiKiooyJBdErMmvSFBMTo7z39vbmcJ1EREREr2DnbSIiIiIi0hoTCyIiIiIi0hoTCyIiIiIi0hoTCyIiIiIi0ho7bxMRFVKhoaGIjIx843pxcXHK+8DAwExHNcuMjY0NnJ2dcxwfEREVLUwsiIgKodDQUHi4uyM2Pj5b26mHTX4b5qamCAoOZnJBRERvhYkFEVEhFBkZidj4eCz3coGbxetrIOJTUtHldDAAYH99d5gavrkVbEh0HEZduIPIyEgmFkRE9FaYWBARFWJuFmaoZmX+2nVik1OU91UtzWBezDCvwyIioiKInbeJiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhr2R5uNjU1FcePH8eJEydw9+5dxMbGwtbWFjVq1ECrVq3g5OSUF3ESEREREVEB9tY1FnFxcZg3bx6cnJzw3nvv4eeff8azZ89gaGiIkJAQ+Pr6wtXVFe+99x5Onz6dlzETEREREVEB89Y1FpUqVUKDBg2wbt06tG7dGkZGRhnWuXv3Lnbs2IGePXti2rRpGDx4cK4GS0REREREBdNbJxa//vorPDw8XrtOuXLlMGXKFIwfPx6hoaFaB0dERERERIXDWycWb0oq0jMyMkKFChVyFBBRfgsKCnrjOnFxccr7wMBAmJmZvXEbGxsbODs7axUbERERUWGR7c7brxMTE4Nz586hSZMmublbojzxMCEJUBmgb9++2dqucePGb7WeqZk5gq8FMbkgIqICJSwsDGFhYdnezsHBAQ4ODnkQEemLXE0sQkJC0Lx5c6SkpOTmbonyRFRSMiCpKNd1CkxtX3/zn5qUgBsbxgAAKg5aBgMjk9euH/8oFHf3+SEyMpKJBRERFShr1qzB7Nmzs72dr68vZs2alfsBkd7I1cSCqDAytXWGuWOl166TkviyKZSZgxsMjd/cFIqIiKggGjp0KHx8fDTK4uLilBr5gICATJv8sraC3iRbicU777zz2uWsqSAiIiIq2DJr0hQTE6O89/b2RvHixfM7LNID2UosEhISMGzYMFSrVi3T5Xfv3s1R1RoRERERERVu2UosvL294eTkhP79+2e6/MKFC0wsiIiIiIiKoLeeeRsAOnTogGfPnmW5/J133kG/fv20jYmIiIiIiAqZbNVYTJ069bXLnZycsGnTJq0CIiIiIqLCi8PZFl0cFYqIiIiIcg2Hsy26spVYNGnSBIcOHULJkiUBAIcOHULr1q3fahZiIiIiItJ/HM626MpWYhEQEIDExETl5759+yIwMBDly5fP9cCIiIiIqPDhcLZFV7Y6b79KRHIrDiIiIiIiKsS0SiyIiIiIiIiAHHTe/uWXX2BlZQUASE1Nhb+/Py5fvqyxzqvt6oiIiIiISL9lO7F4dXK8oUOHavysUqmQkpKiXVRERERERFSoZCuxSE1Nzas4iIiIiIioEGMfCyIiIiIi0hoTCyIiIiIi0hpn3iYiIiLSY6GhoYiMjHztOnFxccr7wMDAt5782MbGBs7OzlrFR/qDiQURkR6JiE/Cw4QkjbL4dANqXImKhamhYYbtSpsYwc7UKM/jI6L8FRoaCg93d8TGx7/1NuoZst+GuakpgoKDmVwQACYWRER6ZXvoIywNCctyeZfT1zMtH+vmgHGVHPMqLCLSkcjISMTGx2O5lwvcLLKuhYhPSUWX08EAgP313WFq+ObW8iHRcRh14Q4iIyOZWBCAXEgshg8fjjlz5sDGxiY34iHSuaQXj5H04rFGWUpSgvI+NiwEhkYmGbYzKmENoxLWeR4f0ev0cbZFa7uS2d6utAlrK4j0mZuFGapZmWe5PDb5Zc1mVUszmBfLWLNJ9CZaJxbbtm3D+PHjmViQ3oj850eEH9ua5fKQDWMyLbdv1g8OLfpnuowov9iZskkTERHphtaJhYjkRhxEBYZNnfdhVblBtrdjbQUREREVZexjQfQKNmkiIiIiyj6tE4sXL17kRhxERERERFSIcYI8IiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGjtvExEREVGOBQUFvXGduLg45X1gYCDMzLKerE/NxsaGE+8VMjpPLFauXIlFixYhPDwcXl5e+Prrr1G3bt1M171y5QpmzpyJc+fO4e7du1i6dCnGjBmjsc6sWbMwe/ZsjTJ3d3dcu3Ytrw6BiIiIqMh5mJAEqAzQt2/fbG3XuHHjt1rP1MwcwdeCmFwUIrmaWNy8eRODBw/G77///lbr7969G+PGjcPq1atRr149LFu2DG3btkVwcDBKly6dYf3Y2FiUL18e3bp1w9ixY7Pcb9WqVXH06FHl52LFdJ4/EREREemVqKRkQFJRrusUmNq+/uY/NSkBN/5/gtmKg5bBwMjktevHPwrF3X1+iIyMZGJRiOTqHXd0dDSOHz/+1usvWbIEgwcPxoABAwAAq1evxuHDh7Fx40ZMnjw5w/p16tRBnTp1ACDT5WrFihWDvb19NqMnIiIiouwytXWGuWOl166TkviyKZSZgxsMjd/cFIoKn2wlFsuXL3/t8vv377/1vhITE3Hu3DlMmTJFKTMwMECrVq1w6tSp7ISVwY0bN+Do6AhTU1M0aNAAfn5+r812ExISkJCQoPwcFRWl1e8nItJHYWFhCAsLy/Z2Dg4OcHBwyIOIiIioIMlWYjFmzBg4ODjA2Ng40+WJiYlvva/IyEikpKTAzs5Oo9zOzk6r/hD16tXD5s2b4e7ujrCwMMyePRvvvvsuLl++jBIlSmS6jZ+fX4Z+GUREpGnNmjU5ulb6+vpi1qxZuR8QEREVKNlKLMqVK4cvvvgC3bt3z3R5YGAgatWqlSuB5VT79u2V99WrV0e9evVQrlw5fPfddxg0aFCm20yZMgXjxo1Tfo6KioKTk1Oex0pEVJgMHToUPj4+GmVxcXFKR8yAgIBMR3phbQVRwRIRn5TW8Tqd+JQU5f2VqFiYGhpm2K60iRHsTI3yPD4qvLKVWNSqVQvnzp3LMrFQqVQQkbfal42NDQwNDREREaFRHhERkav9I0qWLIlKlSohJCQky3VMTExgYvL6TkREREVdZk2aYmJilPfe3t4oXrx4fodFRNm0PfQRloZk3ayxy+nrmZaPdXPAuEqOeRUW6YFsJRZz5sxBbGxslsurVKmC27dvv9W+jI2NUatWLfj7+6NTp04AgNTUVPj7+2PkyJHZCeu1oqOjcfPmTXz00Ue5tk8iIiKiwqqPsy1a25XM9nalTVhbQa+XrcSiSpUqr11uZGSEcuXKvfX+xo0bh/79+6N27dqoW7culi1bhpiYGGWUqH79+qFMmTLw8/MDkNaH4+rVq8r7+/fvIzAwEBYWFnBzcwMAjB8/Hh988AHKlSuHBw8ewNfXF4aGhujVq1d2DpWIiIhIL9mZskkT5Q2dTvDQo0cPPHr0CDNnzkR4eDi8vb1x5MgRpUN3aGgoDAwMlPUfPHiAGjVqKD8vXrwYixcvRtOmTXHs2DEAwL1799CrVy88fvwYtra2aNy4MU6fPg1bW9t8PTYiIiIioqLkrROLdu3aYdasWahfv/5r13vx4gW++eYbWFhYYMSIEW/c78iRI7Ns+qROFtRcXFze2Idj165db/ydRERERESUu946sejWrRu6du0KKysrfPDBB6hdu7YyV8TTp09x9epVBAQE4KeffkKHDh2waNGivIybiIiIiIgKkLdOLAYNGoS+fftiz5492L17N9auXYvnz58DSBsNqkqVKmjbti3++ecfeHh45FnARRknpyIiIiKigipbfSxMTEzQt29f9O3bFwDw/PlzxMXFwdraGkZG7ASU1zg5FREREREVVFp13raysoKVlVVuxUJvwMmpiIiIiHIPW4PkLp2OCkXZw8mpiIiIiHIPW4PkLiYWRERERFQksTVI7mJiQUREpMfY1IMoa2wNkruynVikpKTg5MmTqF69OkqWLJkHIREREVFuYVMPIsov2U4sDA0N0aZNGwQFBTGxICIiKuDY1IOI8kuOmkJ5enri1q1bcHV1ze14iIiIKBexqQflt6QXj5H04rFGWUpSgvI+NiwEhkYmGbYzKmENoxLWeR4f5Z0cJRbz5s3D+PHjMXfuXNSqVSvDBcnS0jJXgiMiIiKiwiXynx8RfmxrlstDNozJtNy+WT84tOifR1FRfshRYvHee+8BAHx8fKBSqZRyEYFKpUJKSkruREdEREREhYpNnfdhVblBtrdjbUXhl6PE4o8//sjtOIiIiIhIDxTUJk2hoaGIjIx843pxcXHK+8DAwEz7IL3KxsYGzs7OWsWnD3KUWDRt2jS34yAiIiIiyhOhoaHwcHdHbHx8trZTD3LwJuampggKDi7yyUWO57F49uwZNmzYgKCgIABA1apVMXDgQFhZWeVacEREpFvqa3xWcvJkD+DTPSLKX5GRkYiNj8dyLxe4Wbz+OhWfkooup4MBAPvru8PU0OC164dEx2HUhTuIjIws8te1HCUWZ8+eRdu2bWFmZoa6desCAJYsWYL58+fj119/Rc2aNXM1yKIoL6vrAH6pE9HrPUxIAlQG6Nu371tv87ZP9gDA1MwcwdeCeB0ionzlZmGGalbmr10nNvllX+GqlmYwL2aY12HpjRwlFmPHjoWPjw/WrVuHYsXSdpGcnIxPPvkEY8aMwZ9//pmrQRY1eV1dB7DKjoheLyopGZBUlOs6Baa2WV8nUpMScOP/R3ipOGgZDDIZQvJV8Y9CcXefH5/uERHpmRzXWKRPKgCgWLFimDhxImrXrp1rwRVVeVldB7DKjojenqmtM8wdK2W5PCXxZa2pmYMbDI3frtaUiIj0T44SC0tLS4SGhqJy5coa5f/99x9KlCiRK4ERq+uIiIiIqPB48+PtTPTo0QODBg3C7t278d9//+G///7Drl278Mknn6BXr165HSMRERERERVwOaqxWLx4MVQqFfr164fk5GQAgJGREYYNG4YFCxbkaoBERERERHkhIj4pbbCKdOLTTfR8JSoWpoYZW4OUNjGCnalRnsdX2GQ7sUhJScHp06cxa9Ys+Pn54ebNmwCAChUqwNz89c12iIiIiIgKiu2hj7A0JCzL5V1OX8+0fKybA8ZVcsyrsAqtbCcWhoaGaNOmDYKCguDq6opq1arlRVxERERERHmqj7MtWtuVzPZ2pU1YW5GZHDWF8vT0xK1bt+Dq6prb8RARERER5Qs7UzZpyk056rw9b948jB8/Hj/++CPCwsIQFRWl8SIiIiIioqIlRzUW7733HgDAx8cHKpVKKRcRqFQqpKTr9EJERERERPovR4nFH3/8kdtxEBERERFRIZbtxCIpKQlz5szB6tWrUbFixbyIiYiIiIiICpls97EwMjLCxYsX8yIWIiIiIiIqpHLUFKpv377YsGEDJ8PLZ5zEhYiIiIgKqhwlFsnJydi4cSOOHj2KWrVqoXjx4hrLlyxZkivBkSZO4kJEREREBVWOEovLly+jZs2aAIDr1zVvZtOPEkW5i5O4EBEREVFBxVGhChFO4kJERAVJWFgYwsKyrknPioODAxwcHPIgIiLSpRwlFq/z8OFDlC5dOrd3S0RERAXMmjVrMHv27Gxv5+vri1mzZuV+QESkU9lKLMzNzXH37l3Y2toCADp06ID169crTx0iIiLg6OjICfKIiIiKgKFDh8LHx0ejLC4uDo0bNwYABAQEwMzMLMN2rK0g0k/ZSizi4+MhIsrPf/75J+Li4jTWSb+ciIiI9FdmTZpiYmKU997e3hkGeCEi/ZXrTaHYeZuISD8lvXiMpBePNcpSkhKU97FhITA0MsmwnVEJaxiVsM7z+IiISLdyPbEgIiL9FPnPjwg/tjXL5SEbxmRabt+sHxxa9M+jqIiIqKDIVmKhUqk0aiRe/ZmIiPSXTZ33YVW5Qba3Y20FEVHRkK3EQkRQqVIlJZmIjo5GjRo1YGBgoCwnIiL9xCZNRET0OtlKLDZt2pRXcRAREVEuCA0NRWRk5GvXST/wSmBgYKYjN2XGxsYGzs7OWsVHRPorW4lF//5sI0tERFRQhYaGwsPdHbHx8W+9jXpo2LdhbmqKoOBgJhdElCl23iYiItITkZGRiI2Px3IvF7hZZF0LEZ+Sii6ngwEA++u7w9TQ4I37DomOw6gLdxAZGcnEgogyxcSCiIhIz7hZmKGalXmWy2OTX05kW9XSDObFDPMjLCLSc29+REFERERERPQGTCyIiIiIiEhrTCyIiIiIiEhrOepjkZKSgs2bN8Pf3x8PHz5EamqqxvLff/89V4IjIiIiIiqMwsLCEBYWlu3tHBwc4ODgkAcR5b0cJRajR4/G5s2b0aFDB3h6enL2bSIiIiKidNasWYPZs2dneztfX1/MmjUr9wPKBzlKLHbt2oXvvvsO7733Xm7HQ0RERERU6A0dOhQ+Pj4aZXFxccrcMQEBAZlOTllYayuAHCYWxsbGcHNzy+1YiIiIiIj0QmZNmmJiYpT33t7eKF68eH6HladylFh89tln+Oqrr7BixQo2gyIiIipCgoKCXrs8Li5OeR8YGJjpE9nM2NjYcOI9okIuR4lFQEAA/vjjD/z888+oWrUqjIyMNJbv378/V4IjIiKiguFhQhKgMkDfvn3feht1k4+3YWpmjuBrQUwuqNB6U9IN6H/inaPEomTJkujcuXNux0JEREQFVFRSMiCpKNd1Ckxts77BSU1KwI0NYwAAFQctg4GRyRv3Hf8oFHf3+SEyMrJQ3DwRpZeTpBvQz8Q7R4nFpk2bcjsOIiIiKgRMbZ1h7lgpy+UpiS+fyJo5uMHQ+O2eyBIVVm+bdAP6n3jnKLEgIiIiIqKX3pR0A/qfeOd45u29e/eie/fuqF+/PmrWrKnxyo6VK1fCxcUFpqamqFevHs6cOZPluleuXEHXrl3h4uIClUqFZcuWab1PIiIiIiLSXo4Si+XLl2PAgAGws7PDv//+i7p168La2hq3bt1C+/bt33o/u3fvxrhx4+Dr64vz58/Dy8sLbdu2xcOHDzNdPzY2FuXLl8eCBQtgb2+fK/skIiIiIsptSS8eI/bBdc1XWIiyPDYsJOPyB9eR9OKxDqPWTo6aQn3zzTdYu3YtevXqhc2bN2PixIkoX748Zs6ciSdPnrz1fpYsWYLBgwdjwIABAIDVq1fj8OHD2LhxIyZPnpxh/Tp16qBOnToAkOnynOyTiIiIiCi3Rf7zI8KPbc1yecj/97V4lX2zfnBo0T+PospbOUosQkND0bBhQwCAmZkZXrx4AQD46KOPUL9+faxYseKN+0hMTMS5c+cwZcoUpczAwACtWrXCqVOnchJWjveZkJCAhIQE5eeoqKgc/X4iIiIiIgCwqfM+rCo3yPZ2RiWs8yCa/JGjxMLe3h5PnjxBuXLl4OzsjNOnT8PLywu3b9+GiLzVPiIjI5GSkgI7OzuNcjs7O1y7di0nYeV4n35+fpg9e3aOficRERER0auMSlgX6iQhJ3LUx6JFixY4dOgQAGDAgAEYO3YsWrdujR49ehTK+S2mTJmC58+fK6///vtP1yERERERERUqOaqxWLt2LVJTUwEAI0aMgLW1Nf766y/4+Phg6NChb7UPGxsbGBoaIiIiQqM8IiIiy47ZebVPExMTmJi8eRxhIiIiIiLKXI4SCwMDAxgYvKzs6NmzJ3r27JmtfRgbG6NWrVrw9/dHp06dAACpqanw9/fHyJEjcxJWnuyzqAgLC0NYWFi2t3NwcICDg0MeREREREREhUmOJ8g7ceIE1qxZg5s3b2Lv3r0oU6YMvv32W7i6ur71FOXjxo1D//79Ubt2bdStWxfLli1DTEyMMqJTv379UKZMGfj5+QFI65x99epV5f39+/cRGBgICwsLuLm5vdU+KXNr1qzJUT8TX19fzJo1K/cDIiIiIqJCJUeJxb59+/DRRx+hT58++Pfff5URlZ4/f47PP/8cP/3001vtp0ePHnj06BFmzpyJ8PBweHt748iRI0rn69DQUI2akQcPHqBGjRrKz4sXL8bixYvRtGlTHDt27K32SZkbOnQofHx8NMri4uKUJDEgIABmZhlnh2RtBREREREBOUws5s2bh9WrV6Nfv37YtWuXUt6oUSPMmzcvW/saOXJkls2U1MmCmouLy1uNOvW6fVLmMmvSFBMTo7z39vZG8eLF8zssIiIiIiokcpRYBAcHo0mTJhnKrays8OzZM21jIiIi0hr7jhER5a8cz2MREhICFxcXjfKAgACUL18+N+IiIiLSCvuOERHlrxwlFoMHD8bo0aOxceNGqFQqPHjwAKdOncL48eMxY8aM3I6RiIgo29h3jIgof+UosZg8eTJSU1PRsmVLxMbGokmTJjAxMcH48ePx6aef5naMRERE2ca+Y3kv6cVjJL14rFGWkpSgvI8NC4GhUcZ5oorijMRERUGOEguVSoVp06ZhwoQJCAkJQXR0NKpUqQILC4vcjo+IiIgKqMh/fkT4sa1ZLg/ZMCbTcvtm/eDQon8eRUVEupLjeSyAtAnpqlSpkluxEBERUSFiU+d9WFVukO3tWFtBpJ+ylVgMHDjwrdbbuHFjjoIhIiKiwoNNmogovWwlFps3b0a5cuVQo0aNt5pPggq2oKCg1y6Pi4tT3gcGBmbayTEzNjY2cHZ21io2IiLKHRHxSXiYkKRRFp+Sory/EhULU0PDDNuVNjGCnalRnsdHRPojW4nFsGHDsHPnTty+fRsDBgxA37598c477+RVbJRHHiYkASoD9O3b9623UY+i8jZMzcwRfC2IyQURUQGwPfQRloZkPZ9Hl9PXMy0f6+aAcZUc8yosItJD2UosVq5ciSVLlmD//v3YuHEjpkyZgg4dOmDQoEFo06YNVCpVXsVJuSgqKRmQVJTrOgWmtlnf/KcmJeDG/3e8qzhoGQwyGdnjVfGPQnF3nx8iIyOZWBBRvgkNDUVkZOQb18tJTWxhr4Xt42yL1nYls71daRPWVhBR9mS787aJiQl69eqFXr164e7du9i8eTOGDx+O5ORkXLlyhSNDFSKmts4wd6yU5fKUxJdfwGYObjA0frumUERE+Sk0NBQe7u6IjY/P1nZvWxNrbmqKoODgQptc2JmySRMR5Q+tRoUyMDCASqWCiCAlXXtNIiKi/BIZGYnY+Hgs93KBm8XrH4DEp6Siy+lgAMD++u4wNTR47foh0XEYdeEOa2GJiN5CthOLhIQEpSlUQEAA3n//faxYsQLt2rWDgcHrL9BERER5xc3CDNWszF+7Tmzyy4dgVS3NYF4sY6dlIiLKmWwlFsOHD8euXbvg5OSEgQMHYufOnbCxscmr2IiIiIiIqJDIVmKxevVqODs7o3z58jh+/DiOHz+e6Xr79+/PleCIiIiIiKhwyFZi0a9fP478REREREREGWR7gjwiIiIiIqJXaTUqFBEREREBYWFhCAvLeiLCrDg4OMDBwSEPIiLKf0wsiIhIL0XEJ+FhQpJGWXy6odGvRMXC1DDjqFClTTjvA2XfmjVrMHv27Gxv5+vri1mzZuV+QEQ6wMSCAABJLx4j6cVjjbKUpATlfWxYCAwzmXnbqIQ1jEpY53l8RETZtT30EZaGZP0Eucvp65mWj3VzwLhKjnkVFumpoUOHwsfHR6MsLi5OmYgxICAg05neWVtB+oSJBQEAIv/5EeHHtma5PGTDmEzL7Zv1g0OL/nkUFRFRzvVxtkVru5LZ3q60CWsrKPsya9IUExOjvPf29kbx4sXzOyyifMXEggAANnXeh1XlBtnejrUVRFRQ2ZmySRMRUX5iYkEA2KSJiIiIiLRjoOsAiIiIiIio8GNiQUREREREWmNTKCIiomzinAVERBkxsSAiIsomzllARJQREwsiIqJs4pwFRVtoaCgiIyPfuF5cXJzyPjAwMNPPRGZsbGzg7Oyc4/iIdIWJBRERUTZxzoKiKzQ0FO6VPRAfF5ut7dRJ59swNTNH8LUgJhdU6DCxICIiInpLkZGRiI+LRbmuU2Bq+/ob/9SkBNz4/wlmKw5aBgMjkzfuP/5RKO7u80NkZCQTCyp0mFgQERERZZOprTPMHSu9dp2UxJdNocwc3GBo/HZNoYgKKw43S0REREREWmNiQUREREREWmNTKCIiojcICgp64zocAajg4/wjRHmLiQUREVEWHiYkASoD9O3bN1vbcQSggonzjxDlLSYWREREWYhKSgYklSMA6QnOP0KUt5hYEBERvQFHANIPeTn/SNKLx0h68VijLCUpQXkfGxYCw0ySTaMS1jAqYZ2j30lU0DCxICIiItJS5D8/IvzY1iyXh/x/bdar7Jv1g0OL/nkUFVH+YmJBREREpCWbOu/DqnKDbG/H2grSJ0wsiIiIiLTEJk1EnMeCiIiIiIhyAWssiIiIsokddQu+0NBQREZGvnG97M4/8jZzmhAVVUwsiIiIsokddQu20NBQeLi7IzY+PlvbZWf+ESLKiIkFERFRNrGjbsEWGRmJ2Ph4LPdygZvF62sg4lNS0eV0MABgf313mBq+vpX4Hw+fYdGN7M/eTVQUMLEgIiLKJjZpKhzcLMxQzcr8tevEJqco76tamsG8mOFr1w+JjnvtcqKijJ23iYiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIa0wsiIiIiIhIaxwVioiIiIqEiPgkPExI0iiLT3k5KtSVqFiYGmYcFaq0iRHsTI3yPD6iwo6JBRERERUJ20MfYWlI1nNQdDl9PdPysW4OGFfJMa/CItIbTCyIiIioSOjjbIvWdiWzvV1pE9ZWEL0NJhZERERUJNiZskkTUV5i520iIiIiItIaEwsiIiIiItJagUgsVq5cCRcXF5iamqJevXo4c+bMa9ffs2cPKleuDFNTU1SrVg0//fSTxvKPP/4YKpVK49WuXbu8PAQiIiIioiJN54nF7t27MW7cOPj6+uL8+fPw8vJC27Zt8fDhw0zX/+uvv9CrVy8MGjQI//77Lzp16oROnTrh8uXLGuu1a9cOYWFhymvnzp35cThEREREREWSzhOLJUuWYPDgwRgwYACqVKmC1atXw9zcHBs3bsx0/a+++grt2rXDhAkT4OHhgblz56JmzZpYsWKFxnomJiawt7dXXqVKlcqPwyEiIiIiKpJ0mlgkJibi3LlzaNWqlVJmYGCAVq1a4dSpU5luc+rUKY31AaBt27YZ1j927BhKly4Nd3d3DBs2DI8fP84yjoSEBERFRWm8iIiIiIjo7ek0sYiMjERKSgrs7Ow0yu3s7BAeHp7pNuHh4W9cv127dti6dSv8/f3xxRdf4Pjx42jfvj1S0s2umZ6fnx+srKyUl5OTk5ZHRkRERERUtOjlPBY9e/ZU3lerVg3Vq1dHhQoVcOzYMbRs2TLD+lOmTMG4ceOUn6OiophcEBERERFlg05rLGxsbGBoaIiIiAiN8oiICNjb22e6jb29fbbWB4Dy5cvDxsYGISEhmS43MTGBpaWlxouIiIiIiN6eThMLY2Nj1KpVC/7+/kpZamoq/P390aBBg0y3adCggcb6APDbb79luT4A3Lt3D48fP4aDg0PuBE5ERERERBp0PirUuHHjsG7dOmzZsgVBQUEYNmwYYmJiMGDAAABAv379MGXKFGX90aNH48iRI/jyyy9x7do1zJo1C2fPnsXIkSMBANHR0ZgwYQJOnz6NO3fuwN/fHx07doSbmxvatm2rk2MkIiIiItJ3Ou9j0aNHDzx69AgzZ85EeHg4vL29ceTIEaWDdmhoKAwMXuY/DRs2xI4dOzB9+nRMnToVFStWxMGDB+Hp6QkAMDQ0xMWLF7FlyxY8e/YMjo6OaNOmDebOnQsTExOdHCMRERERkb7TeWIBACNHjlRqHF517NixDGXdunVDt27dMl3fzMwMv/zyS26GR0REREREb6DzplBERERERFT4MbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtFdN1AEREuSEsLAxhYWHZ3s7BwQEODg55EBEREVHRwsSCiPTCmjVrMHv27Gxv5+vri1mzZuV+QEREREUMEwsi0gtDhw6Fj4+PRllcXBwaN24MAAgICICZmVmG7VhbQURElDuYWBCRXsisSVNMTIzy3tvbG8WLF8/vsIiIiIoMdt4mIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtMbEgIiIiIiKtcbhZIip0QkNDERkZ+cb14uLilPeBgYGZzmPxKhsbGzg7O2sVHxERUVHExIKICpXQ0FB4uLsjNj4+W9upJ8p7E3NTUwQFBzO5ICIiyiYmFkSFWFhYGMLCwrK9XWaTyeXnvrURGRmJ2Ph4LPdygZvF62sg4lNS0eV0MABgf313mBq+vvVnSHQcRl24g8jISCYWRERE2cTEgqgQW7NmDWbPnp3t7Xx9fTFr1iyd7Ts3uFmYoZqV+WvXiU1OUd5XtTSDeTHDvA6LiIioyGJiQVSIDR06FD4+PhplcXFxSrOfgICATPsVvE2NQl7um4iIiPQPEwuiQiyzZkcxMTHKe29vbxQvXrzA7ZuIiIj0DxMLokIiL0dCAoCEhASYmJjkyb450hIREZH+Y2JBVAjk9UhIAACVASCpebJvUzNzBF8LYnJBRESkx5hYEBUCeTkSEgD88fAZFt0IQ7muU2Bqm/XNf2pSAm5sGAMAqDhoGQyMXl/DAQDxj0Jxd59foR5pqaCOkEVERFSQMLEgKkReHQkpIj4JDxOSXllLsnj/UmkTI9iZGik/h0SnNXEytXWGuWOlLH9/SuLLplBmDm4wNH67plCFXUEfIYuIiKggYGJBVIhtD32EpSFZP0nvcvp6puVj3RwwrpLja/ed9OIxkl481ihLSUpQ3seGhcAwkxoLoxLWMCph/dp9FzYcIYuIiOjNmFgQFWJ9nG3R2q5ktrcrbWL0xnUi//kR4ce2Zrk85P+bRL3Kvlk/OLTon+2YtJVZ7U18yst5LK5ExcLUMOM8Fq/W3mSGI2QRERG9GRMLokLMzvTNN8U5ZVPnfVhVbpDt7XRVW5GbtTdBQUFv/H05GSGLo2MREZE+Y2JBRJkqbE2acqP25mFCEqAyQN++fbO1j7cdIYujYxERkT5jYkFEeiE3am+ikpIBSX3j6FhA9kfI0ofRsYiIiF6HiQUR0SveNDoWUHRHyCIiIsrKmwe4zwcrV66Ei4sLTE1NUa9ePZw5c+a16+/ZsweVK1eGqakpqlWrhp9++kljuYhg5syZcHBwgJmZGVq1aoUbN27k5SEQkR5LevEYsQ+ua77CQpTlsWEhGZc/uJ5hVC0iIiJ9pvMai927d2PcuHFYvXo16tWrh2XLlqFt27YIDg5G6dKlM6z/119/oVevXvDz88P777+PHTt2oFOnTjh//jw8PT0BAAsXLsTy5cuxZcsWuLq6YsaMGWjbti2uXr0KU1PT/D5EIirkCtsIWURERLqg88RiyZIlGDx4MAYMGAAAWL16NQ4fPoyNGzdi8uTJGdb/6quv0K5dO0yYMAEAMHfuXPz2229YsWIFVq9eDRHBsmXLMH36dHTs2BEAsHXrVtjZ2eHgwYPo2bNn/h0cEemFwjZCFhERkS7oNLFITEzEuXPnMGXKFKXMwMAArVq1wqlTpzLd5tSpUxg3bpxGWdu2bXHw4EEAwO3btxEeHo5WrVopy62srFCvXj2cOnUq08QiISEBCQkvJ/56/vw5ACAqKirHx6aN6OhoAMCl5zGITU55w9rZF/IirW147IMbGu3Ec0NC5D0AaceQG+cvL88Fz8NLPBdpcvs8pDy+h/jHacdfmM4DwM+EWl6eB4DnQo3n4SWeizQ8Dy/l9rnIqRIlSkClUr1+JdGh+/fvCwD566+/NMonTJggdevWzXQbIyMj2bFjh0bZypUrpXTp0iIicvLkSQEgDx480FinW7du0r1790z36evrKwD44osvvvjiiy+++OKLr0xez58/f+O9vc6bQhUEU6ZM0agFSU1NxZMnT2Btbf3mzKwQioqKgpOTE/777z9YWlrqOhyd4Xl4ieciDc/DSzwXaXgeXuK5SMPz8BLPRZqich5KlCjxxnV0mljY2NjA0NAQERERGuURERGwt7fPdBt7e/vXrq/+NyIiAg4ODhrreHt7Z7pPExMTmJhojkFfsmTJ7BxKoWRpaanXfwBvi+fhJZ6LNDwPL/FcpOF5eInnIg3Pw0s8F2l4HnQ83KyxsTFq1aoFf39/pSw1NRX+/v5o0CDzjpINGjTQWB8AfvvtN2V9V1dX2Nvba6wTFRWFv//+O8t9EhERERGRdnTeFGrcuHHo378/ateujbp162LZsmWIiYlRRonq168fypQpAz8/PwDA6NGj0bRpU3z55Zfo0KEDdu3ahbNnz2Lt2rUAAJVKhTFjxmDevHmoWLGiMtyso6MjOnXqpKvDJCIiIiLSazpPLHr06IFHjx5h5syZCA8Ph7e3N44cOQI7OzsAQGhoKAwMXlasNGzYEDt27MD06dMxdepUVKxYEQcPHlTmsACAiRMnIiYmBkOGDMGzZ8/QuHFjHDlyhHNY/D8TExP4+vpmaP5V1PA8vMRzkYbn4SWeizQ8Dy/xXKTheXiJ5yINz8NLKhERXQdBRERERESFm077WBARERERkX5gYkFERERERFpjYkFERERERFpjYkGkx9iFioiIiPILEwsiPXX79m3s2bMHABMMIiIiynscFYr0lohApVLpOgyduHr1KmrWrAlXV1cEBQXpOpwCIyEhgcMBEr2iKF8riV6VmpqqMc0BADx8+BClS5fWUUSFC2ssSK9cvHgRM2fOBIAi+0UZGBiIOnXqwM3NDUZGRkhISNB1SDoTGhqK/fv3AwB2796NadOmIT4+XsdRFQxF+ZlSUT729BITEwGk3UgVZa9+Hor6+SjqDAwMcOPGDXzzzTcAgD179mDw4MEIDw/XcWSFAxMLPVUUvzgvXLiA+vXr6zoMnbpw4QIaNmyIGTNmYOfOnbh58yZCQ0N1HZZOxMfHY86cOfDz88P48ePRq1cvVK1atchOlPnqzZI68S5q14rU1FTl2AMDA/Hw4UMdR6Qb165dw5AhQ9CqVSvMmjULwcHBug5JJ9Sfh+joaMTExCA6OjrD0+qipqhdE16VkpKC77//HiNHjsSgQYPQo0cPdOnSBfb29roOrVAo2n89eiD9zcKyZcvg6+sLIO2moShdHNQ31GPHjsWcOXN0HY5OBAYGolGjRhgzZgwmT54MEYGhoWGRfUJvamqKSZMmwdTUFEuWLMHw4cMxYMAAAEXviWT6qv1NmzZh4sSJ6NevH44ePVqkrhPpz8P06dMxevRoHD9+vMj9jVy4cAENGjSAoaEhHBwc8PPPP2PXrl0AitZNpfrzcOnSJbRs2RKNGzeGm5sbFixYgEuXLuk6PJ1QN4sLCAjAnDlzMGrUKOzbt0/XYeUrQ0NDjBw5Eh9++CE2bdqE3r17o3///gCK3ndHTjCxKMTSf0n+/fffuHDhAubOnatU3xWV5OLSpUto2LAhxo8fj/nz5yvlmzdvVjov67uQkBA0atQIn376KT7//HMAgIuLC6ytrXH//n0ARfOCaGdnh+LFi6N27dq4cuUKdu7cCSCtqrsonQ/1dWLixImYOXMmHj9+jFKlSqFNmzZYvnx5kWkulz6pWLt2LaZMmYI2bdoUqVqsixcvolGjRhgxYgQ2bNiAb7/9Fo0aNUJQUBDi4+MRGRmp6xDzjYGBAe7evYvmzZujbt26mDlzJkaMGIFNmzZhxowZ+O2333QdYr5TqVTYv38/OnbsiAsXLiAlJQXdunXDZ599hufPn+s6vHxjaGiId955B++//z5++OEHLFmyBEDaZyYlJUXH0RVwQoXepEmTpF69etKrVy9xdXUVExMTWbBggbI8NTVVh9HlrcjISKlSpYpUr15do3z+/PlSsmRJOX36tI4iy18//vijrFmzRqMsLi5OypYtK998842IaH4Ojh8/Lo8ePcrXGPPLq5/3pKQkuXLlinTv3l0aNWokO3bs0Fj+4sWL/AxPZ3766SdxcnKSs2fPiojIyZMnRaVSyfbt25V19PlaoXb+/HmpWLGinDhxQkREnj17JkFBQbJ+/XrleqGv5+HBgweiUqlkwIABGuUjRowQDw8PcXd3l0qVKsnGjRt1FGH+Uf8fb9iwQerXr6+x7PDhw9K2bVtp3bq1HD9+XBfh6cyNGzfE1dVVVq1aJSIi0dHRYmZmJhMnTtRxZHkvs7/7mJgYmTVrllhYWMiXX36psezWrVv5FVqhwsSikNu3b5+UKFFCAgICJDk5WW7evCnTpk2TEiVKyMKFC5X19PWLMjw8XMaPHy/VqlWT2bNni4jIokWLxNraWn755ZdMt0lJScnPEHUiOTlZUlNTpVatWuLn56exbPLkyeLm5iZhYWE6ii7vqD/np0+flnXr1omvr68EBweLiMjVq1elR48e0qRJE+VmeubMmTJhwgRJSkrSWcz5ZevWrdK5c2cREdm9e7dYWFgoNw9Pnz6VO3fu6DK8PPPq33twcLBUqVJFfvjhBzl79qwMGzZMKlWqJJUqVRJTU1P5/fffdRRp3nv+/Lk0bNhQKleuLJcuXRIRkS+++ELMzMxk7dq1smbNGhkwYICoVKosr5/6ZvPmzVKuXDm5d++eRvnRo0elefPmMnDgQImMjNRRdPnv33//lUaNGomIyM2bN6VMmTIyZMgQZbn6eqpv1N8df/zxh3z++efy0UcfyS+//CLh4eGSkJAgs2fPFktLS1m8eLGIiMyaNUu6dOlSZB5MZQcTi0Ju0aJFUrt2bY2y+/fvy4gRI0SlUilPq/XZgwcPxNfXV6pUqSJNmzYVGxsb+eOPPzKsd+DAgXyPLT+kv3F69SaqY8eOMnDgQOXnmTNnipmZmZw5cybf4stve/fuFVtbW2nTpo00a9ZMI8k+f/68fPTRR+Lq6iqNGjUSU1NTvTwXmSXPa9eulQYNGsju3bvF0tJS49qwdetW6datmzx9+jQfo8x76c/DmTNn5O7du/Lw4UNp2bKl1KlTR4yNjWX48OGyf/9++e+//6Ru3bqycuVKHUacNxISEpT3L168kObNm0ulSpVk9OjRYmtrq5FEXL16Vezs7GTmzJm6CDXf/fbbb2JtbS3ff/+9iKQ9lFHbtWuXmJmZycmTJ3UVXr4LCAgQFxcXOX78uLi6usqQIUOUc3Ly5Elp166d3j6pVz+oHTx4sHTu3Fm8vLyka9euEh0dLREREbJgwQJRqVRSq1YtsbCwUGp/SRMTi0Ju7969UqZMGQkMDNQo9/f3FyMjIzE3N89QfacvUlNTlacM9+/fF19fX3F0dJTevXsr66gviDNnzhSVSiW3b9/WRah5Qn3scXFxGjcOIi9vqD766CNp3769iIjMmDFDTE1N9fpiePHiRXF0dJRNmzaJSNoNlUqlknnz5inrXL9+XbZs2SKTJk2Sa9eu6SjSvJP+Zvro0aNy4cIFERG5du2aNGnSRIyMjDRqM2NiYsTHx0cGDhyoVzWb6Y9l8uTJUrduXVm/fr2IpJ2Ln376SY4fP66cr+TkZKldu7Zs2LBBJ/HmlRs3bsiIESPk6NGjSs3cixcvpEOHDqJSqWT16tUi8vJzExUVJXXq1FFqs/SF+viSkpIkPj5eY9nAgQPlnXfekYsXL4qIZnJRvXp1mT59ev4Fmo/UfyOXLl2Ss2fPSmJiokRHR0vnzp2lePHi0r17d431J0+eLE2bNpWHDx/qItw8dePGDXF3d5d169aJSFoTSVNTU5k6daqyTnJysgQEBMjSpUslJCREV6EWeEwsComsmu9cv35datasKaNGjZLr168r5RcvXpS+ffvKnDlzpFq1avLvv//mU6R568GDB3Lx4sUMXwwiImFhYeLr6yseHh7i6+urlE+fPl3Mzc316oZa/YXw888/S4cOHaRhw4bSs2dPuXfvnsYN1eeffy5dunSRGTNmiImJiV6dg8z4+/tLixYtREQkKChInJ2d5ZNPPlGW62Pzr/RevZmuUKGC7Ny5U6KiokQkrdmLh4eHfPLJJ3LmzBn5+eefpV27dlK9enXlplOfkgsRkXnz5omNjY38/vvv8uzZswzL4+Li5O7du9K+fXupVauWxk1lYXfhwgVxdnaWDz/8UDZv3qyx7NmzZ9KmTRspX768xoOp6dOni7Ozs149hFF/f165ckV69eolDRo0kP/973/KOUlOTpY2bdpI6dKlNfrlJSYmSsOGDfWyFkv9d75//35xdHSUpUuXKs3BNm/eLFWrVpWePXvKmTNn5NSpUzJ+/HixsrJSkq/CSv1ZePVhXGBgoFSrVk2SkpLk+vXr4uTkJIMHD1aWnzlzhs2e3hITi0IgfVKxcuVKGTVqlLRr10727t0rMTExsnfvXqlUqZIMGDBA9u7dKxcvXpR27drJgAED5J9//pESJUroRTOgixcvipubm8yaNUtu3ryplK9atUqpxr579674+vpK5cqV5YsvvpDPP/9cb5/SHzx4UEqUKCFjx46VPXv2SIUKFaRly5Zy8uRJ5TPz7bffikqlkuLFi+vdObh27ZosW7ZMYmJilLKNGzeKl5eXPHz4UFxcXGTIkCHKuTh8+LAMGzYs05tLfTNnzhyxs7OTY8eOSVxcnMayZcuWSePGjaVYsWJSr149+eCDDyQxMVFERK9uqlNTU+XBgwdSv3592bZtW4ZlImnX1iVLlkibNm2kUaNGenUerl+/Lvb29jJp0qQMnwG16OhoadKkibi4uMjNmzdl9uzZYmpqKufOncvnaPNecHCwlCxZUvr16ydTp06V5s2bS9WqVZWbx6ioKOnYsaNYWFjIzJkz5euvv5bPPvtMSpYsqfHQTp/8/PPPYmFhId98802G6+KmTZukRYsWYmhoKNWrV5c6depkaBlRWN2+fVvGjBmj8Tk/fvy41K5dW+7cuSMuLi7yySefKN8dp0+flhEjRujt5yC3MbEoRCZOnCi2trYyd+5c+eSTT8TV1VUGDRokImltpD/44AMxMTGRihUrSo0aNSQxMVHi4+OlevXq8tNPP+k4eu3cunVL7OzsZMqUKRmeOvfr10+sra2V9uH379+XOXPmiJWVlRgYGOjdDbVI2k1DtWrVZPny5SKS9vTRyclJLCwsxMPDQ0kuAgICxNPTU4KCgnQcce7buHGjqFQq+eKLLyQ2NlZE0kYJq1OnjhQrVkz521DfRE6YMEHatm0rT5480VnM+SE8PFzq1KkjW7ZsEZG0Wr6//vpLxo4dK2vXrlXWu3Dhgjx+/Fg5P/rYgT08PFzKli0re/fuFRHN2pj4+Hh59uyZhIaGytatW5VkQl/Ow2effSbdu3fXSJKePHkily9fll9//VWuXLkiIiKxsbHSokULUalUYm5urpdJhUhast2pUyfl5ydPnsiqVavE2dlZ+vbtq5TPnTtXmjdvLlWqVJGWLVvqTW3/q+Lj46VLly4yatQoEUlLMoODg2Xu3LmyevVq5Zp67tw5efDggV5dNw8cOCClS5eWoUOHKk1FRUSqVq0qKpVKPv30U431J0yYII0bN9bLJmB5gYlFIfH7779LhQoVlJtkf39/KVasmHz77bfKOvHx8RIUFCRXrlxRvkA/++wzKV++vNy/f18nceeWZcuWSY0aNTJdFh0dLR06dJDdu3crZffu3ZMFCxbo7QgWgYGBMn/+fElISJD79+9L+fLlZeTIkfL8+XNxdXWV5s2bK8Np6tMXwqtWr14tKpVK/Pz8JDY2VhITE2XJkiXi4eEhw4YNk7i4OLl06ZJMmTJFSpYsqYyEo88ePnwo9erVky+++EL2798vvXv3lgYNGkjNmjWlYsWKSpvh9DfZ+jpSWlhYmDg4OMj8+fNFRLMm4syZM/L5559r1HjpQ02FSNr/7QcffCBjxoxRyg4cOCB9+vQRS0tLMTU1FW9vb9m5c6eIpD2YGDhwoN48kc7MwIEDMwwrGx0dLZs3bxY3NzeZMmWKUv78+XOJjY3V66YvycnJ0q1bN/nf//4nZ86ckeHDh0vr1q3FyclJatSoIT169MjQXKgwe7WJ5549e6Ry5cryySefyPnz50UkrXO6u7u7tGzZUq5cuSL+/v4yfvx4sbS0LPRNwPITE4sCSl0lr3bo0CHlorhr1y4pUaKEMqpLVFSUHD9+XHnCIJI2ZFrv3r3F1tZW+aMpzDZs2CDW1tayceNGiYiIkGvXrsmFCxfk/PnzcuTIEWnSpImMGzdObty4IWfOnJGkpCS9vVkSSftSUNdCfPzxx9KzZ0/lBsnHx0dUKpXUrl07074o+iD9DeDKlStFpVIpN4/Pnj2TefPmibu7u5ibm4unp6d4enrqxd/Bq7L6jA8fPlyqV68uxYoVk4kTJ8rvv/8uqamp0r17d5kwYUI+R5n3Xve3vnjxYjEwMFBuokXSHsK0bdtWevfurXd9StTGjx8vJUuWlP3798uYMWOkTJkyMmjQIPnxxx/l8uXL0q5dO43rhj5dL9P/n6proLZv3y61a9eWU6dOaaz75MkTmTp1qjRs2FBCQ0NFRL/Oxev4+fmJh4eHmJqaSvfu3WXXrl0SHx8v06dPl44dO+o6vFzxuocFO3bskMqVK8ugQYPk8uXLIpL20LZatWpib28v7u7u0rBhQ72ttcorxXQ9QR9ldPz4cdy4cQONGzdG5cqVAQAxMTEwMjLCb7/9hiFDhsDPzw/Dhg0DAPj7++O3335DxYoVYWZmBgCoUqUKHBwccPz4cXh4eOjsWLRx584dlCpVClZWVqhVqxYGDhyIadOmwc/PD8WLF8fTp09hYmICMzMzhISE4MSJEzhy5AgiIyNx+fJl2Nra6voQtCb/P3O6SqXCvXv3oFKpEB0dDXd3d1SuXBkigtDQULRs2RLm5uYAgAoVKuDs2bN45513YGJiosvwc9X169exYsUKdO/eHQ4ODqhQoQJEBMOHD0dKSgpGjx6NlJQUzJgxAxMnTsTIkSNx7NgxuLm5wcbGBnZ2dro+hFyVmpqqzCT9008/4cmTJ0hISEDfvn2xcuVK3LhxAwkJCfD09FS2efjwISpWrKirkPNE+vOwbt06BAcHIzIyEkOGDIG3tzeGDBmCBw8eoHfv3vjxxx9hYGCA0NBQPH78GD/88ANUKhVEBCqVSsdHop3Y2FjExsbi4sWLcHd3R69evfDixQuMGTMGxYoVw9KlS9GwYUOUKVMGAODp6Ynff/8dhoaGAF7OSl7YqT8PT548wTvvvINixdJuc2rUqIGYmBisW7cOZcqUgZOTEwCgVKlS6N+/P/z8/HDx4kU4OTnpzblQU3++AwMD8d9//+HRo0fo0aMHJk+ejM6dO+Phw4d49913lXP39OlTGBoaIj4+HiYmJoX6b8PQ0BBXrlzBpEmT0KNHDzg5OaFZs2YAgF69eqFYsWKYPn06RATjxo1DixYtcPHiRZw9exZ2dnawsLBAqVKldHsQhY0usxrKaPPmzeLs7CyjR4/WGF8/JiZG3NzcRKVSydatW5XyuLg4ee+996Rv374aHRLT/1sYJSYmSvPmzcXe3l6jKc+0adOUEZ/U7cNfvHghkyZNEh8fH7lw4YLy1Kmwe/z4sfL+wIED4uXlJZ6enmJnZycTJ05URvCoX7++NG3aVA4cOCBjxowRa2trefDgga7CzhNRUVFSu3ZtUalU4uzsLDVq1JDOnTvLihUrlD43e/fuFZVKJQsXLlRGQSoKPvvsMyldurTUqFFDzM3NpXbt2rJr1y7lSd2zZ8/k8uXL0r59e2XUE300adIksbW1lREjRkizZs3E29tbFi1aJNHR0SKSNkZ9165dpVevXjJx4kTlPOjD+QgODpZ+/fpJ5cqVxcTERN555x3p3bu3Unv76vwkqampMnjwYBk4cKBeNXdRCwoKEkNDQ/nss880yn/99VcxMjKSwYMHazSTffr0qdSuXVuvJ0fcs2ePvPPOO1K9enUpUaKEVKxYUdatW6fR3OvmzZsyadIksbS01Jtmo4mJidKsWTNRqVTi6ekpJUqUkDZt2sjHH38sgYGBkpCQIL/88otUq1ZNhg8frrd9jPITE4sCZOvWrWJmZibbtm2TiIiIDMuPHDkiZcuWlfbt24u/v79899130qZNG/H09NTLoSIvXbokderUEQ8PDyW5mDJlitStW1f5WT2XxaBBgzTmKijsHj16JGXKlJGgoCD5/fffxdzcXFavXi3h4eGyfv16UalUGiNhubm5ScWKFaVSpUp62eQnJiZG1q9fL7Vq1ZJq1apJQECAdOvWTapVqyalSpWSFi1ayMaNG6VHjx5iYWEhixYt0uv20Wrbt28XOzs7+ffffyU6OlqePXsmPj4+0rhxYzl48KCIiGzbtk3effddadu2rV6NepTe+vXrxcXFRfns//rrr6JSqaRKlSoyf/58ZcSbV2+i9eE8XLhwQRwcHJThU4OCgmTChAni5uYm7u7u8tdff2msHxcXJ1OnThU7Ozu5evWqjqLOW7t27ZJSpUqJnZ2d0jlZ7fDhw1KqVCnp3LmzrFu3Ti5duiTjx48XOzs7vXko9ep9QGBgoNja2srmzZslMjJSkpKSpF+/flKnTh1Zv369JCcny4kTJ6Rdu3bi5eWld31trly5It7e3lKjRg05cuSIzJ49Wxo1aiQuLi5ib28vn3/+uTRr1kwqVqwovXr10svBTvITE4sC4s6dO1K3bt0MY43Hx8dLcHCw3LhxQ0TS+k7UqFFDnJ2dpU6dOtK9e3e9u1lIX/MSFBQkDRs2lBo1asjTp0/lxIkTUrNmTfnss8/k7t27cunSJZk6dapYW1vr1cXg1q1bUrZsWblw4YJMmzZN+XK8efOmVKxYUWN8bZG0pzK3b9/Wy47a6s9DYmKibNu2TcqUKaNxs/Dtt9+Kr6+vuLq6SoMGDUSlUmWo6dJXc+fOlWbNmklSUpLycOHp06fSpEkTadu2rbLe77//rjFBmD5JSEiQFStWyKJFi0QkrWaiZMmSsnLlShk0aJBYW1vL559/LpGRkTqONPdduHBBzM3NZcqUKRn+X3fv3i01atSQunXrKjMlL1++XD766CMpU6aMXj6AUNu/f79y02xra6vRiV0kreN+t27dxMHBQdzd3cXd3V0vzkdWrRT27Nkj7u7uEh4erqyTmpoqffr0EU9PT+Uewt/fX/777798izc/qL8/rl69Kg4ODtK9e3dldKcLFy7I2rVrpXPnzlKzZk1RqVRSunRpvavxz29MLAqIGzduiJubm0ZV7KZNm6RPnz5iamoqpUqVkhkzZijLbt26JU+ePNGroSLTj7WevvP6Z599JiqVSurUqSPPnj2TBQsWiIeHh6hUKvHw8NCrCQDTq1WrlsyZM0eaN28uS5Yskfj4eClTpowMGTJE+X//6quv5OjRozqONG9EREQoXwD79u2TvXv3SnJysmzbtk3s7e01hogUSRtqNjg4WPz8/PT2Saya+iHCpEmTpHbt2kq5+m/or7/+EjMzswwjmRTm5pFqDx48kMePH2vU6t6+fVvCw8Plzp07Uq1aNVmyZImIpD2weeedd8TFxUU2btyoq5DzRGhoqNjY2Ei3bt2UstTUVI3vgrVr14qlpaWsXbtW7t27JzNnzpT//e9/ejtanlpYWJh06dJFwsPD5auvvhJra2uZPn26jB49WhmiOzo6Wh48eCDXr1/XaHZaWKn/tm/fvi2LFi2SGTNmKPO3HDhwQOzt7eX58+ciIspAL8+fPxczMzNlOGZ9d+XKFXFwcJAWLVpoPHhKSEiQmJgY2bVrl15NDKkrTCx0aMWKFcr78+fPS9myZWX58uVy6dIl6devn9SoUUP69+8vW7ZskaVLl0qxYsVkx44dGfajDzcL9+7dk27dumVo4/rFF1+ItbW1rF+/Xnn69vTpUwkPD5d9+/bJhQsXMm02Vpip/z+7du0qs2fPll27dknLli3Fzs5Ohg8frjHefp8+fWTixIkZRhEr7KKiosTa2lomTJigNP1Sf0nGxMTItm3bxNHRUSO50IfkOitZ/Y2fO3dODAwMxM/PT6Pc399fqlatqndPH7dt2yb16tWT8uXLy/vvv68Mqax29OhRcXd3V2ov//rrL+nbt68sXLhQb2p01W7fvi116tQRHx+fDOchfVOYJk2aKMlHdHS0xuiB+io8PFwqVKggFy5ckLi4OPn222/F3NxcVCqV3L17V0T063qhvj4EBgaKg4ODNG7cWEqWLCmOjo4yZcoUiYqKEkdHR2VuH7W7d++Kh4eH/Pnnn7oIO8+oP/83btyQEydOyPnz55VaiCtXrkiZMmWkdevWyr2DPtxDFSRMLHRk69at0rVrV40bwgkTJkjJkiXFzs5OKleuLD/++KPyxPb+/ftSsWJFjWREn9y8eVMaNGgg7733ngQEBIhI2lB477zzjvz2228iklaV6eXlJTVr1tSLJ0zp3bx5U1asWCFBQUFKO99vv/1WWrduLYcOHRIvLy/x8vJSnjQmJCTI1KlTxdnZWW9nAz1y5IgYGxuLoaGhfP311xrL0icXAwYM0FGE+SP9TeKBAwdk2bJlsn//fuWz8OWXX4qxsbFMmzZNgoOD5fr169KhQwdp3ry5Xn1hrl69WoyNjWXVqlWydOlSad26tQwfPlxjnUOHDombm5ts2rRJgoOD5YMPPpD//e9/ynJ9Sy6uX78u7dq1k7Zt22okF+k/M82aNZNevXrpIjydUB97x44dlZrs7t27S8mSJaVUqVIyadIkHUaX+9THe/HiRTEzM5OZM2dKTEyM3L17V/73v/9J6dKl5cSJE7J3716xtLSUAQMGyP379+XOnTvi6+srZcuW1asHEOrzsW/fPilXrpxUr15dqlSpIq1atdK4lyhbtqy89957evdgsiBgYqEjV65cUZ6YHDlyRCk/e/ZspjNF37t3T+rUqaPXVZbqL8mOHTvK4MGDxdbWVn755ReNdYKCgsTV1VXq16+vNzdNiYmJ0r17d3F2dhZXV1extLSUdu3aSYUKFaRs2bLy5MkT2b9/v3h7e0uVKlWkY8eO0r59e72Zo+RVqampkpKSImFhYaJSqUSlUsnUqVMzfAHExMTIjh07xNjYWOPmUZ+kv0H87LPPpFSpUlK5cmXx8PAQR0dHOXbsmIiIrFu3TkqVKiWOjo7i5uYm9evXVx5a6MPfycaNG8XY2FgOHTqklM2YMUP69OkjV69elX/++UdE0v6WunTpIs7OzuLo6Ci1a9dWzoM+DWyRXvrkQv1QRiTt//2///6T9u3bK3339PUcZGbw4MGycuVK6d+/vzg4OMjx48eV2s9p06bpOrxcFR4eLuXLl5eGDRtqlJ8/f16KFy8uP//8s4iIHDx4UBwdHcXBwUHc3NzE2dlZL0dBOnnypFhZWSkPYrdt2yYGBgayePFiZZ2rV6+KqampdOnSRS+ukQUJEwsd+Prrr6Vjx47y9OlTOXnypNjb22t0Rn31qdqTJ0+kQ4cO8u677+rdE7dXBQcHS+vWrcXMzEzjIpD+Dz84OFjpjKgv1JNUXb9+Xb7//nv5+uuvpVu3blK5cmXp3LmzREdHy4ULF+Tzzz+XPn36yMKFC/WypkJ94xMeHq78+8MPP4hKpZJx48ZlSC5SU1Nlz549etlmPP3f+smTJ+Xdd9+Vv//+W+Lj4+XixYsyePBgMTY2Vp5U379/X/7880/566+/9Kqj9r///qv8/6fXsmVLcXJyEicnJzEzM5OxY8eKSFpt3okTJ+T333/XaDaoz7KquZg0aZJ4eXnp1RPp9NTXi0uXLslvv/0m33//vXKsixcvFpVKJW5ubsrN89OnT2XDhg16c71QN2u7e/eudO/eXZo0aaLRquGff/6R4sWLi7+/v1L2/PlzOXz4sPzxxx/KkOX6Qv158PPzk549e4pIWl8kFxcXGTZsmLKe+vvl2rVrevk9qmtMLPLZ2rVrRaVSKTUP4eHhMm/ePKlataqMHz9eY91Hjx7Jtm3bpH379lKzZk29G/0pKyEhIdKmTRtp3769xpekPj9VyOpJ4oEDB6R+/frSoUMHefTo0WvXLezUx3Xo0CFp1aqV7NixQ/nMf/fdd6JSqWTChAlKcrFgwQLZv3+/zuLNK6/WWG7fvl26d+8uPj4+GjfIERER0rdvX2nYsKHSZDI9fbpO9O7dW2xsbOSHH34QEZFu3bpJpUqV5J9//pGzZ8/K0qVLRaVSZdoHTZ/Ow+ukTy7Onz8vX3zxhVhYWOjd0KGv2rdvn9jZ2UnTpk3F0dFRWrVqJTt37pSoqCjp1atXhr8nffkeWbp0qYwaNUq5Jty8eVMGDRok9erVk2+//VYiIiLE0dFRRo8erWxTVP4WZs+eLRMnTpSwsLAMA5789NNP8s033ygP8yj3MbHIR6tXrxYjI6MMzZmSkpJkwYIFUqVKFY3kYtOmTdKwYUMZMmSIXk3m9Dayqt4vKtJPcrhr1y5p2rSp1KtXT0ku9NX+/fvF1NRUvvzySwkJCdFYtmPHDjEyMpIPP/xQevbsKSYmJnrXFGzBggXi6ekpP/74o1I2fPhwsba2FmdnZ6VvkfpLcseOHVKmTBm5c+eOTuLNa+lvhPr27SslS5aU+vXrS/Xq1TWewt++fVucnJxk/vz5ugizwLh+/bq8//77Urp0aTEyMsq0Wa0+OXPmjNjY2MiaNWtEJG1YZZVKJQsWLBAR/UkiMrNs2TKNPnciabX5gwYNklq1aom5ubmMHDlSRF42L9Vn6k75ImlJV+nSpcXR0VFGjBihlCcnJ8vAgQNl+PDhGqNQUu5iYpFP/P39NSY1U3v//fflhx9+kCdPnoifn59UqVJFJkyYoCy/ceOGchNRVJ42qKm/JOvXry+nTp3SdTj5Tv3/npqaKlu2bJH27dtrXDz1za1bt8TDw0O5SUhOTpb4+Hjx9/dX5iDYv3+/dO3aVbp06SIXLlzQZbh54siRI9K5c2dp0aKFRn+CefPmSZkyZWTMmDEaY6yfP39eXF1d9W645fS1cunfDxkyRFQqlaxatUqjPCIiQqpXr55hHqCi6Nq1a+Lj4yOXL1/WdSh5bvXq1cp8LSEhIVK+fHkZMmSIslyfr5dqf/31l3zyySdKreX169flk08+EVdXV41BL/T5/uHq1atSvXp1WbhwoVLWtWtXMTU1lStXrkhcXJxER0fL5MmTxd7eXq/mvCqImFjkg6SkJDlw4IAyRKJa165dxd3dXW7evCkiaU2fFixYINWqVZOBAwdq7EPfnzZkJSgoSD788MMi8QWRmfTJRVRUlI6jyVvqyf9OnDghycnJ8sUXX0jDhg3F2tpaHBwclCfUsbGxEh8fr+Noc1f6dtF//PGHdOrUSZo1a6bMni0iMnnyZPHy8pK+ffvK2bNn5cyZM9K2bVupW7euXl0f0h/Lo0ePMvSr6dOnj1hZWcmePXuUddu3by/169fX65un7NC34aezsmTJEhk2bJjExsYqTV7Un4nDhw/LV199JS9evNBxlHlLfc8wbNgw5QHMjRs3ZNCgQVK/fn355ptvdBxh3lMfb506dWTp0qUikta3omHDhlKqVCmpXr26NGvWTBwdHfWulrsgYmKRhzp06KA8NUpISJDDhw+Lu7u7tG/fXrp27Sre3t5Kcw/1DWRkZKRMmzZN+vTpo7dt6bNLXc1bVBWVz8GtW7ekTZs2Ur9+fXFwcBAfHx+ZO3euBAUFiZubm0ydOlXXIeaJw4cPi729vcYY81klF9OmTZNSpUqJpaWldOrUST755BMlydKn5EIk7Vhr164tJUuWlIEDB8qmTZuUZb169ZKSJUvKvn37pH379lKxYsUi0wetqFJfB+/cuaN85n/88UdRqVRSokQJGT9+vMbfwJAhQ6R3794SHR2tk3jzS0pKiixcuFAaNGggQ4YMUZKL4OBgGTJkiFSuXFnWrVun4yhzV2bfiTdv3pSRI0eKt7e3xoOadevWyeLFi+Xbb7/V2yajBQ0Tizxy69YtGT9+vMZNcWxsrPzwww/K1PGvTtSj/mN59uyZ8l7fbhaIRF5+1uPi4jRqH/744w9ZsmSJfPnll8rIHSIibdu2lVWrVuV7nPnh+fPn8vXXX0uNGjU05uRIn1wcOHBAKZ8zZ45UrVpVZsyYoZwjfUi+01/rVqxYIXZ2drJhwwZZvny5vP/++1KzZk1ZtGiRsk6/fv1EpVKJp6enklQUlT5oRY36evH9999LvXr1ZPny5cr/9bRp08TY2Fh+/PFHSUpKkoiICJk8ebLY2trK1atXdRl2rks/8duNGzeUPhYpKSni5+eXIbm4evWqfPrpp3o5m/Tff/8tu3bt0igLCQmRTz/9VDw9PYtETU1BxcQiH3z55ZfK6EYxMTHy/fffi4eHh9I2VCTzL8Si8qSaihb15/rnn3+WDh06SMOGDaV79+4SFhaWYd3o6GiZMWOG2Nvby40bN/I71DynPhcvXryQ5cuXi5eX11slFxMmTJCaNWvKzJkzNfpc6IOzZ8/KxIkT5dtvv1XKQkJCZPz48VKnTh1lkiuRtA6sTCqKhgMHDoiJiYksX75c41rw33//ycCBA0WlUknlypWldu3a4urqqrdNXvbu3SsODg5Srlw58fDwkA0bNohIWk2dOrkYNmyY0udC35rFpaamyvPnz+XDDz+UGjVqyJ49ezSWqyfbLVeunHz55Zc6irJoY2KRB9J/wd2+fVt8fHykVKlScubMGRF5WXPh7u4ubdq0UdZl7QQVFQcPHpQSJUrI2LFjZc+ePVKhQgVp0aKFnDx5Uvk72Lt3rwwcOFBv28W+Wiv5/PlzWb58uVSvXj1DctG5c2dp2bKl7Ny5UymfMWOGuLq6yvz58/Xi2pGamirnzp1TJkVcuXKlxvKbN2+Kh4dHpjcLTCr024MHD6R27dpKZ+SEhAR59uyZHDx4UEJDQ0VE5OjRo7Ju3To5dOiQ3s3bob5WRERESLly5WT9+vVy8OBBmTRpkhgYGChNf5KTk2XhwoXi4eEhY8aMkZSUFL15QKk+DvXcHWfOnJFevXrJu+++K7t379ZYd9y4ceLi4iKtW7dWRtKj/MPEIg/NmTNH1q9fr/wBlC5dWv7++28ReZlcVKlSRWrUqKHjSInyz/Xr16VatWqyfPlyEUlr+ufk5CQWFhbi4eEhf/31l4iIHD9+XObPn6+XExi9mgio24HHxMTIypUrpVq1ahrJxbFjx6RJkyYycuRIjZvouXPnFurJItMPTqC2detWUalU0r179wy1MV27dpVevXrpzc0SvZ2wsDCpUKGC7N+/X5KTk2XWrFnSsGFDsbKy0nhop8+OHj0qCxYs0Jgo8unTpzJ79mxRqVQaycXSpUv1qvlT+jko+vfvrzQBO3v2rDIx4HfffaesP378ePnyyy+VJmGUv5hY5KL0Nwv79+8XKysrZUjMK1euSLdu3TIkF3v27JFevXrpxRNHorcRGBgo8+fPl4SEBLl//76UL19eRo4cKc+fPxdXV1dp1qyZ0nRQH59Ep/9bX7x4sfTq1Uvc3d1l0aJFcvXqVUlKSpKvv/5avLy8NEaHO3/+vF7NqJ3+PMTGxkpiYqJStmbNGlGpVDJlyhTlifSLFy+kRo0aGsNxU9Hw9OlT+eijj6R8+fJibW0tHTt2lC+//FJevHghdevW1RhiVh/FxcXJiBEjRKVSSdOmTTWWqZMLIyMjjT5I+mbfvn1iaWkpEydOlCtXrijl//zzj/Tq1UuqVKkiPXr0kIEDB0qpUqXYUVuHmFjkge3bt8uyZctk8eLFGuWXL1+Wbt26iZ2dnZJcpO+4yuSCioLk5GRlHPGPP/5YevbsqcyC6uPjIyqVSurWrav3ExhNnjxZ7OzsZMmSJbJmzRopWbKkdOnSRaKjoyUqKkrp0N25c2eN7fThOpH+GJYuXSqdOnWSNm3ayKBBg5TaG3VyUaNGDRk0aJB07NhRvLy89KKjOmVN/XQ6KipKnj59qpRfv35dtm/fLmvWrJFnz54p5V27dpXPP/88v8PMd0FBQfLZZ5+JSqWSffv2aSx7+vSpTJo0SUqWLClPnjzRi2tEepcuXRI7O7sMo1upazQfPHggS5YskUaNGkmnTp30co6jwoSJRS5ISEhQboxevHghDg4OolKpNGZ8VLty5Yr07NlTVCqVRtZNpG9SU1OVm4T//vtP7t27J9euXdNY3qJFC43ZkseOHSvnzp3Tq2r8V6WkpMiZM2ekUqVKysSP//zzjxgaGsqWLVuU9WJiYsTPz0/69eundzcKapMmTRJbW1tZvny5rF+/XmxtbaVu3brKA5ctW7aISqWSRo0aafQv0bcOqZRGfb344YcfpEmTJuLh4SEtW7aUgICADHPXPHr0SKZPny42NjYa1xV9oD4PT58+1Uiubt++Lf/73/+kRIkSsn//fo1tnj17Jo8ePcrPMPONv7+/1KtXT+Li4uTJkyeybt06adWqlTg5Ocn//vc/ZXS81NRUpQ8G6Q4TCy3t3btXunTpIjVq1JA5c+aISNrELA0aNJCKFStmesELDAyU6dOnc7x10lvpO8wdOHBAvLy8xNPTU+zs7GTixIly7949ERGpX7++NG3aVA4cOCBjxowRa2trvRvlSCTtb/7gwYMSEBAgImkdD+vUqSMiIrt37xYLCwtleMQXL17Ir7/+KiJpyYW+Dj19+fJlqVatmhw/flxE0oYStbS0zNBpe+PGjaJSqcTX11d5gEP669ChQ1KiRAmZNm2anDx5UurXry+1atWS7du3K7WYP/74o/Tr10+cnZ31cmAHkbTrZrVq1aRmzZry0UcfKcn0nTt3ZMSIEWJpaakxUpw+UV/z1LWTp0+fFpVKJaNHjxZPT0/x8fGR8ePHy5IlS6R06dJy9OhRXYZLr2BioYXVq1eLpaWljB07VsaMGSMGBgbKWPv//fefeHh4SO3atV87QgWTC9I3jx49kjJlykhQUJD8/vvvYm5uLqtXr5bw8HBZv369qFQq+f7770VE5O7du+Lm5iYVK1aUSpUq6eVNwrZt28Tb21t8fHxkypQpIiJy4sQJKVOmjKxbt06srKw0bqaPHj0qnTt3VpqLiejn0NPHjh0TZ2dnEUlLKiwsLGT16tUikpZcbdy4Ubk+rlu3ToyMjGT8+PEaT3BJv9y+fVtq166tzJ784sULKVeunDg6OkqFChVk586dkpKSIleuXJFVq1YpE8zqmwsXLoi9vb3MmDFDFixYIE5OTtKoUSPlocudO3dk1KhRolKp5IcfftBxtLkr/XDkH3/8sfIQaseOHfLee+/JxIkTNeYnqVOnjsYkoqR7TCxySP1Fl/6JQa9evWT58uXKePyhoaFSo0YNqVOnjt4Nf0eUlVu3bknZsmXlwoULMm3aNBk1apSIpA0XWrFiRRk8eLDG+omJiXL79m158uSJLsLNU1u2bBEzMzPZuXNnhhviXr16iUqlktmzZytl8fHx8v7770vXrl31qoYifWKkfn/r1i1p166dLFy4UCwsLGTNmjXKOn///bd069ZNzp07p5R9/fXXUrJkSb1t7kFpDxqWLl0qT548kQcPHkiFChWUJsVeXl7i7e0tmzZtkqSkJL1KttM3GxVJ608xa9Ys5efbt29LxYoVpUGDBsr9xc2bN2XChAl61wxMJK0liJWVlYwbN07jYdOrNZZTpkyRcuXKKQM8UMHAxCIH/vjjjww3BCJpF75q1apJiRIlpGHDhrJt2zYJDQ2V6tWri6urq0REROgoYqL8VatWLZkzZ440b95clixZIvHx8VKmTBkZMmSI8gX61Vdf6XUV9uXLl6Vq1aoZOhyqj//48ePSpk0bcXV1lS1btsiyZcukTZs2UrVqVaXZgz4kF68eg7oN9PPnz6VJkyaiUqk0bqJiY2Olffv20qVLlwzbsrZCv6WkpCj9q0aOHCkffvihPH/+XEREBg4cKKamptK0aVOlTF+orwnHjh2TxYsXy/vvvy9Dhw7VSDZu374tbm5u8u6778r9+/dFRD9Gh4uKitL4+eLFi2Jraytr167VKH/06JFyvDt37pSPPvpISpcurZe13IWdASjbypQpg8aNG+PcuXM4e/YsAKBr166IiYnB9OnT8d133+H58+eYP38+VCoVDh06hPr168Pa2lrHkRPlrdTUVACAi4sLRARDhw7F4cOHUa5cOXTs2BHffPMNVCoVkpOTcebMGfz6669ISkrScdR54/79+4iNjUWTJk0gIkq5SqUCADRp0gSff/453nvvPUyZMgUHDx6Ek5MTAgMDYWRkhOTkZBgYFO5LdGpqqnIMX375JXr37o0aNWpg8eLFePr0Kb777js4ODjgzz//xOzZs7Fu3Tp06NAB9+7dw65du2BgYIDU1FTl/FlZWenycCiXpKSkICUlBQBw69Yt3L59G7dv34aBgQFcXFwAAOHh4bCzs0Px4sUBpP3ff//999i+fTssLS11FXqeUKlUOHLkCJo3b44DBw7g1KlT+Pnnn/H3339rXFOPHj2KK1euYMCAAUhJSUGxYsV0HLl2li1bhgkTJiA5OVk5ztu3b8PNzQ2DBw/GkydPsGXLFrRr1w7e3t7w9fXFgwcPULx4caSmpuLYsWOoUaOGjo+CMtBxYlNoXb9+Xdq1aycdOnSQRo0aSc2aNTVGslHPIPtq2z/2qSB9c/PmTVmxYoUEBQUpVdLffvuttG7dWg4dOiReXl7i5eWlTGqUkJAgU6dOFWdnZ72c/E7t888/FxsbG+Xn9E8f1deBq1evyqVLlzJcF/ThSWR6mQ2t26lTJxFJu5b27dtXPD09pVWrVjJo0CDl+PXtPBR1X375pcZ34p49e6RMmTLi4uIinp6eygzKSUlJ0rVrV6lZs6YsW7ZMRowYIVZWVnrX5EV9TQgPD5dBgwbJhg0bJD4+XsLCwsTd3V1q1aol58+f17h23L17V27cuKGrkHOF+nq3fPlypQ+FuqP2iRMnRKVSyaRJk6R27dri4+Mjo0ePli+++EJMTEyUkfQ4+lPBxcRCC9evX5dWrVqJlZWVMutjSkqKpKamyrlz56RKlSrKRF9E+igxMVG6d+8uzs7O4urqKpaWltKuXTupUKGClC1bVp48eSL79+8Xb29vqVKlinTs2FHat28vtra2el+F/d1334mZmZn88ssvWa4zceJEGTx4sMYNtD61HRdJG0r3TUPrpqSkSGxsrMaQokwq9Mvjx4+lR48eUrx4cTly5IgkJSVJ2bJlZe3atbJnzx4ZO3asGBgYyMaNG0UkbTb6d999V2rXri3e3t7y77//6vYA8sjp06elcePGUqdOHTl58qRSHh0dLZUqVZKaNWvKv//+qzfXBXXzxps3b8rcuXNFROSvv/6Sjz76SOmLunbtWmnQoIGMGzdOLl68qGxbp06d115PqWBgYqGlkJAQadu2rbRv317+/PNPpfz999+XZs2a6UUbaaLXUXeou379unz//ffy9ddfS7du3aRy5crSuXNniY6OlgsXLsjnn38uffr0kYULF+p1TYXazZs3xcrKSrp27Sp3795VytU3CM+fP5euXbvK8uXLdRVivjh9+rTUrl1bRDIfWve3335TJsVT05ebKNLsY3Pv3j0ZMWKElCpVShYvXiyfffaZsuzx48cydepUUalUSr+kxMREiYyM1Is+FerzoE6g7969KykpKfLixQtp1qyZqFSqDNeC6OhoqVKliri6uurFpG/qcxAYGCgqlUqZw2jZsmXi5eUlgwYNUjqnv3pNmDJliri6uio1HFRwMbHIBepmUe+9956cOHFCunTpIpUqVdKrDphEWcnqJvDAgQNSv3596dChgzKST1G7Ydy5c6eYmJhI7969NWpo7t+/L+3bt5dGjRrp1ZP5sLAwuXjxonz77bdy6dIlefLkiVy9elUcHBxkzZo1WQ6tq24mR/pF/d0XGhoqe/bske+++0527dol06dPl+LFi0vTpk011n/8+LFMmzZNjIyMMsxnUpipz8PVq1elS5cu4unpKcWKFRNPT09ZvHixxMTESOvWraVWrVpy+PBhjXuGFy9eSO3ateXWrVu6Cj9XqI/pypUrYmZmJr6+vhrLV6xYIQ0bNpT+/fsrndNF0oai7tevX5Go5dYXTCxyyfXr16VDhw5iZGQk7u7uSlKhTzcNRG9D/QWSkpIiu3btkqZNm0q9evWK5DChycnJytDUZcuWlXbt2kmbNm2kXr16UqdOHeU6oQ99r/bt2yfvvfee2Nvbi6WlpZiZmYmPj4/8/fffMnbs2AyjP+nr0LqURv1/euHCBSlfvrxUrlxZjI2NpVq1ajJ79myZPn26GBgYyOHDhzW2e/LkiYwZM0ZKliwpz549K/QPI9TxX7x4UaysrGTEiBGyfv162b9/v3Ts2FEMDAzk448/lvv370vLli2lbt26GZKLwn4O1Mdy6dIlsbGxEQ8PD2WZetJDkbQ+F40aNZKPP/5YqbnYvn279O7dW65cuZK/QVOOMbHIRUFBQfLpp5+y4yEVeeovwtTUVNmyZYu0b99eozlQUfPvv//Kp59+Km3atJFBgwbJihUrlGRCH64Ta9euVZq3HD16VJ4+fSpz5syRypUri7u7u3z++efSu3dvcXFx0euhdSlN+qTC3NxcJk6cKPfv35cffvhBWrVqJXXq1JFff/1VBg4cKJaWlvLTTz9pbP/kyRN5+PChLkLPEw8fPpQaNWrI5MmTM5SvWLFCjI2NZeTIkZKYmCjNmjWTJk2ayIEDBwp9QiGi2fzJ3NxcmjVrJo6Ojsr8RiIvO26LvEwuPvnkEwkPDxeRjPNXUMHGxCKP6MPNApE20icXr45VTmn0oaZi7dq1YmxsLPv27cuwbNeuXVKrVi1p0qSJ7Ny5U4YPHy5OTk7SvHlzjv6k50JDQ8XGxka6deumUb569WopUaKEhISEyH///SeDBw+WkiVLypEjR3QUad47f/68eHp6aowAp77hfvbsmcybN0+MjY0lICBAHj9+LFWqVJF27dpl6GdQWP3zzz9iZGQks2bNkuTkZFmzZo3Y2NhkmVysWLFCqlSpIsOHD9eLa2RRU7gHQS7ACvv40kTaUqlUEBGoVCqUKFFC1+HonPpcpGdoaKijaHLHsWPHMHToUMyaNQtdunRR5ptQj7Hfo0cPREREYObMmTA2NsbKlSsxa9Ys2NraKvtITk7m9VIPpaSkwNXVFQkJCQgICEDjxo0BAOXLl4exsTHi4uJQoUIFTJo0CYaGhmjfvj1+/fVXtGrVSseR574LFy4gJCQEnp6eANKuBer5XaysrNC7d28sWrQIf/75Jxo1aoSAgAA8f/5cmcOjsIuNjcWwYcPg6+sLAOjRowcAYNq0aQCAr776CsbGxkhMTISxsTFGjBgBIyMjtGnTptBfI4uiwj37EhEVaK/eSBdl+ngu1JOFnj9/HidOnIBKpYJKpUKxYsWUCa9GjRoFJycnHD16FABQsmRJZXsRYVKhp1xcXLB9+3YkJiZi7ty5CAoKQnR0NPr06YNBgwYpN9kVKlTA2LFjlc+JPnJzcwMA7Nu3D0DGa4GrqyvKly+Phw8fAgBKlSqlTBSoD5o0aYKvvvoKQNrfvJWVFXr27In58+djx44dGD16NADA2NgYCQkJAIAhQ4bo1TkoSphYEBFRjlSsWBEbNmxAQkIC5s+fj4CAAGWZ+uYpKioK8fHxcHBwAAAYGRllWIf0U8WKFbF8+XIYGhpi2LBhcHZ2Rp8+ffDFF18AgDL7dqVKlbBo0SK4u7vrMtw84+LiAktLS2zduhV3795VytXJ99OnT2FmZoZatWrpKsR8o/6bt7S01Eguxo0bBwAwMTHRZXiUC5hYEBFRjqlvHlUqFebNm4eTJ09qLL916xbKli2L+vXrA4DSXIqKhooVK+Krr76CoaEhLC0t0blzZ2WZujkQoJlw6puyZcti1apVOHLkCGbMmIErV64AeHn8S5YswYMHD/Duu+/qMsx8p04u/Pz8sGzZMkyZMkXXIVEuUAmv8kREpKUbN25g1KhREBFMmzYN7777LpKTk9GxY0cYGBjg+++/17iRpKIlJCQEn376KUQEM2bMQKNGjXQdUr5KSUnB+vXrMXLkSFSoUAGNGjWCg4MDbt++jZ9//hn+/v6oUaOGrsPUiefPn+PgwYNo0KABKlWqpOtwSEtMLIiIKFeokwsDAwNMnToVS5YswbVr1xAYGAgjIyOkpqYyuSjCbty4gXHjxiEyMhJLly5VarGKkr///hsLFy5EcHAwSpYsCS8vL3z66aeoXLmyrkPTqcwGt6DCiYkFERHlmhs3bmDs2LH49ddfUb58eVy6dAlGRkYc/YkAANeuXcOMGTPw5ZdfwtnZWdfh6ERKSgoMDAygUqmYbJPeYWJBRES56tq1a/jmm2+wZMkSFCtWjEkFaVAPK1pUpX86zyf1pG+YWBARUZ5hUkFEVHQwsSAiIiIiIq2xYR8REREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWnt/wBrzmr9EMTDGAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "Cellpose vs CellSAM - Generalist Models by Dataset\n", @@ -157,20 +148,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYrNJREFUeJzt3Xt8zvX/x/HntWEHbGHY5jTM+bA5m5RDTiFEB75JSZIoh1BzGiGKnFI5RDqRCqWTDhipSQhhljlNbGNy3tH2/v3htysXI9u1uTZ73G+369a1z+f9+ez16bPrcj2v9/vz/liMMUYAAAAAkEVOji4AAAAAQN5GqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsUsDRBQDIe6KiohQXF+foMjLk5eWl8uXLO7qM/zRhwgRNnDhRGzZsUMuWLa3LLRaLWrRoodDQUIfVdifjb9d+/O0CyAihAkCmREVFqUa1aopPTHR0KRlyd3VVeEREtn042759u95++21t2rRJJ06cUFpamnx9fdWsWTP16dNHbdu2zZbfczPpH+Ku5u7ursqVK6t79+4aOXKkChcunON15HVRUVGqVr2GEhPiHV1Khlzd3BWxP/yO+tuVpD179mj69OnauHGjoqOj5erqqpIlS6pu3bpq0aKFXnjhBVkslttSC4CcQ6gAkClxcXGKT0zU3AA/+Rdxc3Q5NiIvJuiFXUcUFxdn9weztLQ0jRgxQrNmzVKBAgXUunVrdenSRQULFtShQ4f0zTff6KOPPtIrr7yicePGZdMR3FyPHj1Uu3ZtSVJ0dLTWrFmjiRMn6quvvlJYWJgKFSp0W+rIq+Li4pSYEK8KPYLlWjJ39QgknorS0ZVT77i/3R9//FGdO3fW5cuX1aZNGz344INydXXVwYMHtXHjRq1evVqDBg1SgQJ8HAHyOl7FALLEv4ib6ni6O7qMHDN27FjNmjVLgYGB+vzzz1W5cmWb9QkJCZo3b55Onz5922p66KGH1LNnT+vPM2bMUOPGjbVjxw4tW7ZMTz755G2rJS9zLVle7r5VHV1GjslNf7sDBw5UamqqfvrpJ7Vq1cpmnTFGP/zwg5ydnXO8DgA5jwu1AeAakZGRev3111WiRAmtXbv2ug9lkuTm5qaRI0faDEtKTk7WzJkzVb9+fRUuXFhFixbVPffcozVr1uRInUWLFrUGid9//926/OjRo+rXr5/KlCmjQoUKqWzZsurXr5+ioqKu20d0dLSGDBmiKlWqyM3NTXfddZdq1KihZ599VufOnbNpe7uPD5mXm/52T548qYMHD6p27drXBQrpyjUY7du3txn6lJycrDfffFPt27dXuXLl5OLiolKlSql79+76448/rtvH0qVLZbFYtHTpUn311Vdq0qSJ3N3dVaZMGY0bN05paWmSpPfff18BAQFyc3NT+fLlNX369CwfF4CMESoA4BpLly5VamqqBgwYoNKlS9+0rYuLiyQpKSlJ7du314svvihjjPr166fevXvr6NGj6tq1q+bNm5ejNad/MPvrr7/UqFEjLVmyRA0aNNCLL76oevXqacmSJWrYsKH++usv6zbx8fG6++679eabb6py5cp6/vnn9eSTT6pq1ar68MMPderUKWtbRx8fbk1u+tv19PRUgQIFFB0drUuXLt3SNv/884+GDh2qpKQkdezYUcOGDVPLli317bffqlmzZjbh+WqrV6/WI488okqVKunZZ59VkSJFNHnyZI0fP17Tp0/XCy+8oICAAD3zzDNKS0vTqFGj9MEHH2TpuABkjOFPAHCNX375RZLUunXrW97mlVdeUWhoqMaNG6eJEydaP+RfuHBBrVu31osvvqju3bvL19c32+q8ePGi9YNR48aNJUnPPvusTp06pQULFuiZZ56xtn377bc1aNAgDRw4UOvWrZMkrVu3TocPH9bQoUM1a9as6/ZdsGBBhx4fMi83/e26uLioS5cuWrVqlYKCgtS/f381a9ZMderUueH1P8WKFVNUVJTKlCljs3zv3r1q2rSpRo8erR9//PG67b777jv98ssvatSokSRp4sSJ8vf316xZs+Th4aE//vhDlSpVkiSNGDFC/v7+mjFjhvr06ZOpYwJwY/RUAMA1YmJiJElly5a9pfZpaWl65513VLlyZZsPZdKVIUrjx49XcnKyVq1aZVddn3/+uSZMmKAJEyZo4MCBqlatmvbt26eGDRuqZ8+eioqK0oYNG1SzZk3179/fZttnn31W1atX1/r163Xs2DGbdW5u119wX6RIEes32bfr+GC/3Pa3u3DhQj3wwAP6888/9cILL6hhw4YqWrSo7r77bs2dO1cJCQk27V1cXK4LFJJUq1YttWrVSps2bVJKSsp163v37m0NFOm1d+7cWfHx8Ro4cKA1UEhSuXLl1Lx5c+3bt0+XL1/O0nEBuB49FQBgp4iICJ05c0a+vr7XTf0qyTqMaP/+/Xb9npUrV2rlypWS/p1S9plnntGIESNUqFAh7dy5U5LUokWL66bodHJy0r333qv9+/dr586dKleunO699175+Pho2rRp2rVrlzp37qwWLVqoRo0aNtvfruPD7ZfT57ZEiRJas2aNDhw4oLVr12rr1q3asmWLfv31V/36669atGiRNm7cqOLFi1u32blzp15//XVt3rxZMTEx14WIuLg4+fj42CwLDAy87nent7nRutTUVMXGxmYYYgBkHqECAK7h7e2t/fv36/jx46pWrdp/tv/nn38kXRmisXfv3hu2u9Vx5TeyfPlym9mfrnX+/HlJuuFY+vQPWentPD09tWXLFo0fP15fffWVvv32W0lXvsl9+eWX9dxzz0m6fccH++XWv90qVaqoSpUq1p937typ3r17a8+ePZo4caLmzJkjSfr111+tQ7fatWunKlWqqEiRIrJYLPriiy+0a9cuJSUlXbd/Dw+P65alT1N7s3UZ9XoAyBqGPwHANe6++25Jsl578F/SP7T06NFDxpgbPt57770cq/nqOmJjYzNcnz405uoPWeXLl9fSpUt16tQp/fHHH3rttdeUlpamQYMGafny5TbtHX18+G955W83MDBQb775piRp/fr11uVTpkxRUlKSfvrpJ61Zs0ZvvPGGJk6cqAkTJsjb2ztbawCQvQgVAHCNJ598Us7Ozlq4cKHNDEgZSUpKUo0aNeTh4aFt27Y59JvP9GEemzZtkjHGZp0xRps2bbJpdzUnJycFBgZq1KhR1jCRPp1objk+/Le89LdbpEiR65YdPHhQxYsXV/PmzW2Wx8fHa8eOHberNABZQKgAgGv4+/tr1KhRiouL0/3336/Dhw9f1yYxMVEzZ87UhAkTVKBAAQ0cOFBHjx7ViBEjMvxwtmfPHp08eTJH6y5fvrxatWqlvXv3asmSJTbrFi5cqPDwcLVu3VrlypWTdGXIS0a9GunLXF1dJSnXHB/+W27627106ZKmTJmiuLi469ZdvnzZeq+IqwNEhQoVdObMGZuhWKmpqRoxYsR/hiQAjsU1FQCQgcmTJysxMVGzZs1StWrV1Lp1a9WuXVsFCxbU4cOH9dNPP+n06dOaPHmypCtTWO7YsUNz587VN998o3vvvVelSpXS8ePH9eeff2rXrl0KCwtTqVKlcrTud955R82bN1f//v311VdfqWbNmtq7d6/WrFmjkiVL6p133rG2/fHHHzVy5Ejdfffdqlq1qkqUKKFDhw5pzZo1cnV11aBBg6xtc8vx4b/llr/dlJQUjR07VhMmTFBQUJACAgLk4eGh2NhYff/99/r7779VsWJFhYSEWLd5/vnn9cMPP6h58+Z65JFH5OrqqtDQUB0/flwtW7ZUaGhodv6vApCNCBUAsiTyYsJ/N7rNsrMmJycnzZw5U//73//0zjvvaNOmTdq0aZPS0tLk4+Oj9u3bq2/fvmrTpo2kK1Nhfvfdd1q8eLE++OADrVy5UklJSSpdurRq1qypZ599VnXq1Mm2+m6kWrVq2rZtmyZOnKi1a9fqm2++UcmSJdW3b1+FhISoQoUK1rbt27fXkSNHtGnTJq1atUoXL15UmTJl9Oijj2rUqFGqWbOmtW1uOb7skHjq+juLO1p21pRb/nY9PDz07bff6vvvv9fmzZv12Wef6fTp03J3d1fVqlXVv39/DRkyRJ6entZtOnfurM8//1yvvvqqPvroI7m7u6t169ZavXq1XnnllWz7fwQg+1nMtQNvAeAmoqKiVKNaNcUnJjq6lAy5u7oqPCJC5cuXd3QpyGWioqJUrXoNJSbEO7qUDLm6uStifzh/uwDyJEIFgEyLiorKcJx0buDl5cWHMtwQf7sAkDMIFQAAAADswuxPAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6EiA8YYnT9/XsYYR5cCAAAA5HqEigxcuHBBnp6eunDhgqNLAQAAAHI9QgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdskVoeKtt96Sn5+fXF1d1aRJE23duvWGbRctWqR77rlHxYoVU7FixdSmTZvr2j/55JOyWCw2jw4dOuT0YQAAAAD5ksNDxYoVKzR8+HCFhIRox44dCggIUPv27XXy5MkM24eGhqpXr17asGGDwsLCVK5cObVr107Hjx+3adehQwdFR0dbH8uXL78dhwMAAADkOxZjjHFkAU2aNFGjRo00b948SVJaWprKlSun559/Xi+//PJ/bp+amqpixYpp3rx56tOnj6QrPRVnz57VF198kaWazp8/L09PT507d04eHh5Z2geA/Cv9y4zM8vHxkY+PTw5UBABAzirgyF+enJys7du3Kzg42LrMyclJbdq0UVhY2C3tIz4+XikpKSpevLjN8tDQUJUqVUrFihVT69atNXnyZJUoUSJb6weAjCxYsEATJ07M9HYhISGaMGFC9hcEAEAOc2ioiIuLU2pqqkqXLm2zvHTp0tq/f/8t7eOll16Sr6+v2rRpY13WoUMHde/eXRUrVtTBgwc1evRo3X///QoLC5Ozs/N1+0hKSlJSUpL15/Pnz2fxiABAGjBggLp06WKzLCEhQc2bN5ckbd68WW5ubtdtRy8FACCvcmiosNe0adP0ySefKDQ0VK6urtblPXv2tD6vU6eO6tatq8qVKys0NFT33XffdfuZOnVqlr5VBICMZDSM6dKlS9bngYGBKly48O0uCwCAHOPQC7W9vLzk7Oys2NhYm+WxsbHy9va+6bYzZszQtGnT9MMPP6hu3bo3bVupUiV5eXkpMjIyw/XBwcE6d+6c9XHs2LHMHQgAAACQjzk0VBQqVEgNGjTQunXrrMvS0tK0bt06BQUF3XC7119/XZMmTdLatWvVsGHD//w9f//9t06fPn3DoQUuLi7y8PCweQAAAAC4NQ6fUnb48OFatGiR3n//fYWHh2vgwIG6dOmS+vbtK0nq06ePzYXcr732msaNG6clS5bIz89PMTExiomJ0cWLFyVJFy9e1MiRI7VlyxYdOXJE69atU9euXeXv76/27ds75BgBAACAO5nDr6l49NFHderUKY0fP14xMTEKDAzU2rVrrRdvR0VFycnp3+zzzjvvKDk5WQ899JDNftJnTXF2dtbu3bv1/vvv6+zZs/L19VW7du00adIkubi43NZjAwAAAPIDh9+nIjfiPhUAstulS5dUpEgRSVd6VLlQGwBwJ3H48CcAAAAAeRuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsEsBRxcAALlZVFSU4uLi7N5PQkKC9fnOnTvl5uZm9z69vLxUvnx5u/cDAIC9LMYY4+gicpvz58/L09NT586dk4eHh6PLAeAgUVFRqlGtmuITEx1dSobcXV0VHhFBsAAAOBw9FQBwA3FxcYpPTNTcAD/5F7GvZyExNU3dt0RIklY1rSZXZ/tGn0ZeTNALu44oLi6OUAEAcDhCBQD8B/8ibqrj6W7XPuIvp1qf1/Jwk3sBZ3vLAgAg1+BCbQAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsEuuCBVvvfWW/Pz85OrqqiZNmmjr1q03bLto0SLdc889KlasmIoVK6Y2bdpc194Yo/Hjx8vHx0dubm5q06aNDhw4kNOHAQAAAORLDg8VK1as0PDhwxUSEqIdO3YoICBA7du318mTJzNsHxoaql69emnDhg0KCwtTuXLl1K5dOx0/ftza5vXXX9fcuXM1f/58/fbbbypcuLDat2+vxMTE23VYAAAAQL7h8FAxc+ZM9e/fX3379lXNmjU1f/58ubu7a8mSJRm2//jjj/Xcc88pMDBQ1atX17vvvqu0tDStW7dO0pVeitmzZ2vs2LHq2rWr6tatqw8++EAnTpzQF198cRuPDAAAAMgfHBoqkpOTtX37drVp08a6zMnJSW3atFFYWNgt7SM+Pl4pKSkqXry4JOnw4cOKiYmx2aenp6eaNGlyw30mJSXp/PnzNg8AAAAAt6aAI395XFycUlNTVbp0aZvlpUuX1v79+29pHy+99JJ8fX2tISImJsa6j2v3mb7uWlOnTtXEiRMzWz4AZCg2MUUnk1JsliWmplqf7z0fL1dn5+u2K+VSUKVdC+Z4fQAAZDeHhgp7TZs2TZ988olCQ0Pl6uqa5f0EBwdr+PDh1p/Pnz+vcuXKZUeJAPKhj6NOaVZk9A3Xd9/yV4bLh/n7aHhV35wqCwCAHOPQUOHl5SVnZ2fFxsbaLI+NjZW3t/dNt50xY4amTZumn376SXXr1rUuT98uNjZWPj4+NvsMDAzMcF8uLi5ycXHJ4lEAgK3HypdU29J3ZXq7Ui70UgAA8iaHhopChQqpQYMGWrdunbp16yZJ1ouuBw8efMPtXn/9dU2ZMkXff/+9GjZsaLOuYsWK8vb21rp166wh4vz58/rtt980cODAnDoUALAq7cowJgBA/uLw4U/Dhw/XE088oYYNG6px48aaPXu2Ll26pL59+0qS+vTpozJlymjq1KmSpNdee03jx4/XsmXL5OfnZ71OokiRIipSpIgsFouGDh2qyZMnq0qVKqpYsaLGjRsnX19fa3ABAAAAkH0cHioeffRRnTp1SuPHj1dMTIwCAwO1du1a64XWUVFRcnL6d5Kqd955R8nJyXrooYds9hMSEqIJEyZIkkaNGqVLly7pmWee0dmzZ9W8eXOtXbvWrusuAAAAAGTMYowxji4itzl//rw8PT117tw5eXh4OLocAA6yY8cONWjQQN/eXUN1PN0dXY6NP8/Fq+Mv4dq+fbvq16/v6HIAAPmcw29+BwAAACBvI1QAAAAAsAuhAgAAAIBdHH6hNgDg9omOjlZ09I1vzHcjPj4+Nvf+AQDgaoQKAMhHFixYoIkTJ2Z6u6tn2AMA4FqECgDIRwYMGKAuXbrYLEtISFDz5s0lSZs3b5abm9t129FLAQC4GUIFAOQjGQ1junTpkvV5YGCgChcufLvLAgDkcVyoDQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCmR2g7S0NG3cuFE///yzjh49qvj4eJUsWVL16tVTmzZtVK5cuZyoEwAAAEAudcs9FQkJCZo8ebLKlSunjh076rvvvtPZs2fl7OysyMhIhYSEqGLFiurYsaO2bNmSkzUDAAAAyEVuuaeiatWqCgoK0qJFi9S2bVsVLFjwujZHjx7VsmXL1LNnT40ZM0b9+/fP1mIBAAAA5D63HCp++OEH1ahR46ZtKlSooODgYI0YMUJRUVF2FwcAAAAg97vl4U//FSiuVrBgQVWuXDlLBQEAAADIW7J19qdLly5p06ZN2blLAAAAALlcpmd/upnIyEi1atVKqamp2blbAMANhIeH272PhIQE6/OdO3fKzc3N7n1KkpeXl8qXL58t+wIA5G7ZGioAALfHyaQUyeKk3r17Z+t+mzdvnm37cnVzV8T+cIIFAOQDmQoVxYsXv+l6eigA4PY4n3JZMmmq0CNYriXt+9CelpKkA4uHSpKq9Jstp4IudteXeCpKR1dOVVxcHKECAPKBTIWKpKQkDRw4UHXq1Mlw/dGjRzVx4sRsKQwA8N9cS5aXu29Vu/aRmvzv8Cc3H385F8qe4U8AgPwjU6EiMDBQ5cqV0xNPPJHh+l27dhEqAAAAgHwmU7M/derUSWfPnr3h+uLFi6tPnz721gQAAAAgD8lUT8Xo0aNvur5cuXJ677337CoIAAAAQN6SrfepAAAAAJD/ZCpU3HvvvTbDn9asWWMzvzkAAACA/CdToWLz5s1KTk62/ty7d29FR0dne1EAAAAA8g67hj8ZY7KrDgAAAAB5FNdUAAAAALBLpmZ/kqTvv/9enp6ekqS0tDStW7dOe/bssWnTpUuX7KkOAAAAQK6X6VBx7Y3vBgwYYPOzxWJRamqqfVUBAAAAyDMyFSrS0tJyqg4AAAAAeRTXVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC72B0qnnvuOcXFxWVHLQAAAADyoEzfp+JaH330kUaMGCEvL6/sqAcAkINSLpxWyoXTNstSU5Ksz+OjI+Vc0OW67QoWLaGCRUvkeH0AgLzJ7lBhjMmOOgAAt0Hc718rJvSDG66PXDw0w+XeLfvIp/UTGa4DAMDuUAEAyDu8GnWWZ/WgTG9HLwUA4GbsDhUXLlzIjjoAALcBw5gAADmB2Z8AAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALCLw0PFW2+9JT8/P7m6uqpJkybaunXrDdvu3btXPXr0kJ+fnywWi2bPnn1dmwkTJshisdg8qlevnoNHAAAAAORv2RoqDh48qNatW99y+xUrVmj48OEKCQnRjh07FBAQoPbt2+vkyZMZto+Pj1elSpU0bdo0eXt733C/tWrVUnR0tPWxefPmTB8LAAAAgFuTraHi4sWL2rhx4y23nzlzpvr376++ffuqZs2amj9/vtzd3bVkyZIM2zdq1EjTp09Xz5495eJy/R1f0xUoUEDe3t7WB3f7BgAAAHJOpu5TMXfu3JuuP378+C3vKzk5Wdu3b1dwcLB1mZOTk9q0aaOwsLDMlHWdAwcOyNfXV66urgoKCtLUqVNVvnx5u/YJAAAAIGOZChVDhw6Vj4+PChUqlOH65OTkW95XXFycUlNTVbp0aZvlpUuX1v79+zNTlo0mTZpo6dKlqlatmqKjozVx4kTdc8892rNnj4oWLZrhNklJSUpKSrL+fP78+Sz/fgAAACC/yVSoqFChgl577TU98sgjGa7fuXOnGjRokC2FZdX9999vfV63bl01adJEFSpU0Keffqp+/fpluM3UqVM1ceLE21UiAAAAcEfJ1DUVDRo00Pbt22+43mKxyBhzS/vy8vKSs7OzYmNjbZbHxsbe9CLszLrrrrtUtWpVRUZG3rBNcHCwzp07Z30cO3Ys234/AAAAcKfLVKh45ZVX9PDDD99wfc2aNXX48OFb2lehQoXUoEEDrVu3zrosLS1N69atU1BQUGbKuqmLFy/q4MGD8vHxuWEbFxcXeXh42DwAAAAA3JpMDX+qWbPmTdcXLFhQFSpUuOX9DR8+XE888YQaNmyoxo0ba/bs2bp06ZL69u0rSerTp4/KlCmjqVOnSrpyzca+ffusz48fP66dO3eqSJEi8vf3lySNGDFCDzzwgCpUqKATJ04oJCREzs7O6tWrV2YOFQAAAMAtylSoyG6PPvqoTp06pfHjxysmJkaBgYFau3at9eLtqKgoOTn925ly4sQJ1atXz/rzjBkzNGPGDLVo0UKhoaGSpL///lu9evXS6dOnVbJkSTVv3lxbtmxRyZIlb+uxAQAAAPnFLYeKDh06aMKECWratOlN2124cEFvv/22ihQpokGDBv3nfgcPHqzBgwdnuC49KKTz8/P7z2s2Pvnkk//8nUBulX7Dxszy8fG56RA/AACAnHTLoeLhhx9Wjx495OnpqQceeEANGza03gvizJkz2rdvnzZv3qxvv/1WnTp10vTp03OybuCOtGDBgizNRBYSEqIJEyZkf0FAPkXAB4DMueVQ0a9fP/Xu3VufffaZVqxYoYULF+rcuXOSrsz6VLNmTbVv316///67atSokWMFA3eyAQMGqEuXLjbLEhIS1Lx5c0nS5s2b5ebmdt12fIgBshcBHwAyJ1PXVLi4uKh3797q3bu3JOncuXNKSEhQiRIlVLBgwRwpEMhPMvqW89KlS9bngYGBKly48O0uC8h3CPgAkDl2Xajt6ekpT0/P7KoFdqK7HgCyBwEfADLHobM/IXvRXQ8AAABHIFTcQeiuBwAAgCMQKu4gdNcDAIA7BcO685ZMh4rU1FT98ssvqlu3ru66664cKAkAAAD5HcO685ZMhwpnZ2e1a9dO4eHhhAoAAADkCIZ15y1ZGv5Uu3ZtHTp0SBUrVszuegAAAACGdecxTlnZaPLkyRoxYoS+/vprRUdH6/z58zYPAAAAAPlHlnoqOnbsKEnq0qWLLBaLdbkxRhaLRampqdlTHQAAAIBcL0uhYsOGDdldB64RFRWluLg4u/eTkJBgfb5z584Mxx5mhZeXl8qXL58t+wKAnMT7KQDkvCyFihYtWmR3HbhKVFSUalSrpvjExGzdb/qFTdnB3dVV4RER/EMIIFe7E99PmWYTQG6U5ftUnD17VosXL1Z4eLgkqVatWnrqqafk6emZbcXlV3FxcYpPTNTcAD/5F7Hvm7DE1DR13xIhSVrVtJpcnbN0GY2NyIsJemHXEcXFxREqAORqd+L7KdNsAsiNshQqtm3bpvbt28vNzU2NGzeWJM2cOVNTpkzRDz/8oPr162drkfmVfxE31fF0t2sf8Zf/vb6lloeb3As421sWAOQ5d9L7KdNsAsiNshQqhg0bpi5dumjRokUqUODKLi5fvqynn35aQ4cO1aZNm7K1SCCvyo6x3IzjBnA1ptkEkBtluafi6kAhSQUKFNCoUaPUsGHDbCsOyMtyYiw318UAAIDcKEuhwsPDQ1FRUapevbrN8mPHjqlo0aLZUhiQ12XXWO7cMo4bAADgRrIUKh599FH169dPM2bMULNmzSRJv/zyi0aOHKlevXpla4FAXmfvWO7cMo4bAADgRrIUKmbMmCGLxaI+ffro8uXLkqSCBQtq4MCBmjZtWrYWiFsXm5iik0kpNssSr7oR4d7z8XJ1vv4DaSmXgirtWjDH6wMAAMCdKdOhIjU1VVu2bNGECRM0depUHTx4UJJUuXJlubvbN7MG7PNx1CnNirzx3OXdt/yV4fJh/j4aXtU3p8oCAADAHS7TocLZ2Vnt2rVTeHi4KlasqDp16uREXciCx8qXVNvSd2V6u1Iu9FIAAAAg67I0/Kl27do6dOiQKlasmN31wA6lXRnGBAAAgNsvS6Fi8uTJGjFihCZNmqQGDRpcNx+2h4dHthQHAIAjcI0aAGROlkJFx44dJUldunSRxWKxLjfGyGKxKPWqN14AAPIarlEDgMzJUqjYsGFDdtcBAECuwTVqAJA5mQ4VKSkpeuWVVzR//nxVqVIlJ2oCAMChbvc1auHh4XZtn5CQYH2+c+dOubll/YabV/Py8uIGmQBuSaZDRcGCBbV79+6cqAUAgHzlZFKKZHFS7969s22fzZs3z7Z9ubq5K2J/OMECwH/K0vCn3r17a/HixdzoDgAAO5xPuSyZNFXoESzXkln/4J6WkqQDi4dKkqr0my2ngi5215Z4KkpHV05VXFwcoQLAf8pSqLh8+bKWLFmin376KcPZn2bOnJktxQEAkB+4liwvd9+qWd4+Nfnf4U9uPv5yLpQ9w58A4FZlKVTs2bNH9evXlyT99ZftDBhXzwYFAAAA3Imio6MVHX3jWeJuxMfHRz4+PjlQkWMx+xMAAACQSQsWLNDEiRMzvV1ISIgmTJiQ/QU5WJZCxc2cPHlSpUqVyu7dAgAAALnGgAED1KVLF5tlCQkJ1skSNm/enOFMbHdiL4WUyVDh7u6uo0ePqmTJkpKkTp066d1337X+z4mNjZWvry83vwOyiLv4AgCQN2Q0jOnSpUvW54GBgdddd3wny1SoSExMlDHG+vOmTZts5saWZLMeQOZwF18AAJAXZfvwJy7UBrKOu/gCAIC8KNtDBYCsu9138QUAAMgOTplpbLFYbHoirv0ZAAAAQP6TqZ4KY4yqVq1qDRIXL15UvXr15OTkZF0PAAAAXC0qKkpxcXF27+fqa3l37tyZ4exKWeHl5cWd4+2UqVDx3nvv5VQdAAAAuANFRUWpRrVqik9MzNb9pk/dmh3cXV0VHhFBsLBDpkLFE088kVN1AMgDuHso4HgpF04r5cJpm2WpKUnW5/HRkXIu6HLddgWLllDBoiVyvD7gWnFxcYpPTNTcAD/5F7GvZyExNU3dt0RIklY1rSZX50yN5M9Q5MUEvbDriOLi4ggVduBCbQC3jLuHAo4X9/vXign94IbrIxcPzXC5d8s+8mnNl4NwHP8ibqrj6W7XPuIv/3vvploebnIvcP29m+AYhAoAt4y7hwKO59WoszyrB2V6O3opAOQkQgWAW8bdQwHHYxgTgNzI/oFoAAAAAPI1eipw23CRLwAAwJ0pS6EiNTVVS5cu1bp163Ty5EmlpaXZrF+/fn22FIc7Cxf5AgAA3JmyFCqGDBmipUuXqlOnTqpduzZ31cYt4SJfAACAO1OWQsUnn3yiTz/9VB07dszuenAH4yJfAACAO1OWQkWhQoXk7++f3bUAAAAADhEeHm73PhISEqzPd+7cmeEIjKzw8vLK9Tfmy1KoePHFFzVnzhzNmzePoU/5GC8+AACQ151MSpEsTurdu3e27jd9eHd2cHVzV8T+8Fz92SZLoWLz5s3asGGDvvvuO9WqVUsFCxa0Wb9q1apsKQ65Ey++OwfBEACQ351PuSyZNFXoESzXkvb9u5OWkqQD/39X+yr9ZsupoIvd9SWeitLRlVMVFxeXq/9dzFKouOuuu/Tggw9mdy3II3jx5X0EQwAAbLmWLC9336p27SM1+d8v2tx8/OVcKHu+aMsLshQq3nvvveyuA3kQL768i2AIAACyk8NvfvfWW29p+vTpiomJUUBAgN588001btw4w7Z79+7V+PHjtX37dh09elSzZs3S0KFD7donkJ8RDAEAQHbIcqj4/PPP9emnnyoqKkrJyck263bs2HFL+1ixYoWGDx+u+fPnq0mTJpo9e7bat2+viIgIlSpV6rr28fHxqlSpkh5++GENGzYsW/aJ2yflwmmlXDhtsyw1Jcn6PD46Us4ZfMtdsGgJFSxaIsfrAwAAQNZkKVTMnTtXY8aM0ZNPPqkvv/xSffv21cGDB/X7779r0KBBt7yfmTNnqn///urbt68kaf78+frmm2+0ZMkSvfzyy9e1b9SokRo1aiRJGa7Pyj5x+8T9/rViQj+44frI/x9Ccy3vln3k0/qJHKoKAAAA9spSqHj77be1cOFC9erVS0uXLtWoUaNUqVIljR8/Xv/8888t7SM5OVnbt29XcHCwdZmTk5PatGmjsLCwrJSV5X0mJSUpKenfb8zPnz+fpd+Pm/Nq1Fme1YMyvR29FAAAALlblkJFVFSUmjVrJklyc3PThQsXJEmPP/64mjZtqnnz5v3nPuLi4pSamqrSpUvbLC9durT279+flbKyvM+pU6dq4sSJWfqduHUMYwIAALgzOWVlI29vb2uPRPny5bVlyxZJ0uHDh2WMyb7qbpPg4GCdO3fO+jh27JijSwIAAADyjCz1VLRu3Vpr1qxRvXr11LdvXw0bNkyff/65tm3bpu7du9/SPry8vOTs7KzY2Fib5bGxsfL29s5KWVnep4uLi1xc7J8GEwAAAMiPstRTsXDhQo0ZM0aSNGjQIC1ZskQ1atTQK6+8onfeeeeW9lGoUCE1aNBA69atsy5LS0vTunXrFBSU+XH3ObVPAAAAADeXpZ4KJycnOTn9m0d69uypnj17Zno/w4cP1xNPPKGGDRuqcePGmj17ti5dumSdualPnz4qU6aMpk6dKunKhdj79u2zPj9+/Lh27typIkWKyN/f/5b2CQAAACB7Zfk+FT///LMWLFiggwcP6vPPP1eZMmX04YcfqmLFimrevPkt7ePRRx/VqVOnNH78eMXExCgwMFBr1661XmgdFRVlE15OnDihevXqWX+eMWOGZsyYoRYtWig0NPSW9gkg67jXCAAAyEiWQsXKlSv1+OOP67HHHtMff/xhnY713LlzevXVV/Xtt9/e8r4GDx6swYMHZ7guPSik8/Pzu6ULwW+2TwBZx71GAABARrIUKiZPnqz58+erT58++uSTT6zL7777bk2ePDnbigOQu3CvEQAAkJEshYqIiAjde++91y339PTU2bNn7a0JQC7FMCYAAJCRLIUKb29vRUZGys/Pz2b55s2bValSpeyoCwAAAMi1uM7QVpZCRf/+/TVkyBAtWbJEFotFJ06cUFhYmEaMGKFx48Zld40AAABArsJ1hrayFCpefvllpaWl6b777lN8fLzuvfdeubi4aMSIEXr++eezu0YAAAAgV+E6Q1tZChUWi0VjxozRyJEjFRkZqYsXL6pmzZoqUqRIdtcHAAAA5Dp36jCmrMryfSqkK3ewrlmzZnbVAgAAACAPylSoeOqpp26p3ZIlS7JUDAAAACBJsYkpOpmUYrMsMTXV+nzv+Xi5Ojtft10pl4Iq7Vowx+uDrUyFiqVLl6pChQqqV6/eLd2EDgAAAMiKj6NOaVZk9A3Xd9/yV4bLh/n7aHhV35wqCzeQqVAxcOBALV++XIcPH1bfvn3Vu3dvFS9ePKdqAwAAQD71WPmSalv6rkxvV8qFXgpHyFSoeOuttzRz5kytWrVKS5YsUXBwsDp16qR+/fqpXbt2slgsOVUnAAAA8pHSrgxjykucMruBi4uLevXqpR9//FH79u1TrVq19Nxzz8nPz08XL17MiRoBAAAA5GKZDhU2Gzs5yWKxyBij1KsunAEAAACQf2Q6VCQlJWn58uVq27atqlatqj///FPz5s1TVFQU96kAAAAA8qFMXVPx3HPP6ZNPPlG5cuX01FNPafny5fLy8sqp2gAAAADkAZkKFfPnz1f58uVVqVIlbdy4URs3bsyw3apVq7KlOAAAAAC5X6ZCRZ8+fZjhCQAAAICNTN/8DgAAAACuZtfsTwAAAABAqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANglV4SKt956S35+fnJ1dVWTJk20devWm7b/7LPPVL16dbm6uqpOnTr69ttvbdY/+eSTslgsNo8OHTrk5CEAAAAA+ZbDQ8WKFSs0fPhwhYSEaMeOHQoICFD79u118uTJDNv/+uuv6tWrl/r166c//vhD3bp1U7du3bRnzx6bdh06dFB0dLT1sXz58ttxOAAAAEC+4/BQMXPmTPXv3199+/ZVzZo1NX/+fLm7u2vJkiUZtp8zZ446dOigkSNHqkaNGpo0aZLq16+vefPm2bRzcXGRt7e39VGsWLHbcTgAAABAvuPQUJGcnKzt27erTZs21mVOTk5q06aNwsLCMtwmLCzMpr0ktW/f/rr2oaGhKlWqlKpVq6aBAwfq9OnT2X8AAAAAAFTAkb88Li5OqampKl26tM3y0qVLa//+/RluExMTk2H7mJgY688dOnRQ9+7dVbFiRR08eFCjR4/W/fffr7CwMDk7O1+3z6SkJCUlJVl/Pn/+vD2HBQAAAOQrDg0VOaVnz57W53Xq1FHdunVVuXJlhYaG6r777ruu/dSpUzVx4sTbWSIAAABwx3Do8CcvLy85OzsrNjbWZnlsbKy8vb0z3Mbb2ztT7SWpUqVK8vLyUmRkZIbrg4ODde7cOevj2LFjmTwSAAAAIP9yaKgoVKiQGjRooHXr1lmXpaWlad26dQoKCspwm6CgIJv2kvTjjz/esL0k/f333zp9+rR8fHwyXO/i4iIPDw+bBwAAAIBb4/DZn4YPH65Fixbp/fffV3h4uAYOHKhLly6pb9++kqQ+ffooODjY2n7IkCFau3at3njjDe3fv18TJkzQtm3bNHjwYEnSxYsXNXLkSG3ZskVHjhzRunXr1LVrV/n7+6t9+/YOOUYAAADgTubwayoeffRRnTp1SuPHj1dMTIwCAwO1du1a68XYUVFRcnL6N/s0a9ZMy5Yt09ixYzV69GhVqVJFX3zxhWrXri1JcnZ21u7du/X+++/r7Nmz8vX1Vbt27TRp0iS5uLg45BgBAACAO5nDQ4UkDR482NrTcK3Q0NDrlj388MN6+OGHM2zv5uam77//PjvLAwAAAHATDh/+BAAAACBvI1QAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYJcCji4AAAAgu0VHRys6OjrT2/n4+MjHxycHKgLubIQKAABwx1mwYIEmTpyY6e1CQkI0YcKE7C8IuMMRKgAAwB1nwIAB6tKli82yhIQENW/eXJK0efNmubm5XbcdvRRA1hAqAADAHSejYUyXLl2yPg8MDFThwoVvd1nAHYsLtQEAAADYhVABAAAAwC4MfwIAALlaVFSU4uLi7N5PQkKC9fnOnTszvKYiK7y8vFS+fPls2ReQVxEqAABArhUVFaUa1aopPjExW/ebfsF2dnB3dVV4RATBAvkaoQIAAORacXFxik9M1NwAP/kXsa9nITE1Td23REiSVjWtJldn+0eBR15M0Au7jiguLi5ToYL7aOBOQ6gAAAC5nn8RN9XxdLdrH/GXU63Pa3m4yb2As71lZRn30cCdhlABAABwm3EfDdxpCBUAAOCOE5uYopNJKTbLElP/7anYez5ers7X91SUcimo0q4FM/37wsPDM19kFmR22BQXkeN2IVQAAIA7zsdRpzQr8sYfvrtv+SvD5cP8fTS8qu8t/56TSSmSxUm9e/fOdI03k10Xkru6uStifzjBAjmOUAEAAO44j5Uvqbal78r0dqVcMtdLcT7lsmTSVKFHsFxL2vfBPS0lSQcWD5UkVek3W04FXezaX+KpKB1dOTXTF5EDWUGoAAAAd5zSrlkbxpRVriXLy9236i23T7lwWikXTtssMzd4frWCRUuoYNESmS8QyGGECgAAgNss7vevFRP6wQ3XR/5/j8W1vFv2kU/rJ3KoKiDrCBUAAAC3mVejzvKsHpTp7eilQG5FqAAAALjNGMaEO439t5LMBm+99Zb8/Pzk6uqqJk2aaOvWrTdt/9lnn6l69epydXVVnTp19O2339qsN8Zo/Pjx8vHxkZubm9q0aaMDBw7k5CEAAAAA+ZbDQ8WKFSs0fPhwhYSEaMeOHQoICFD79u118uTJDNv/+uuv6tWrl/r166c//vhD3bp1U7du3bRnzx5rm9dff11z587V/Pnz9dtvv6lw4cJq3769EhMTb9dhAQAAAPmGw0PFzJkz1b9/f/Xt21c1a9bU/Pnz5e7uriVLlmTYfs6cOerQoYNGjhypGjVqaNKkSapfv77mzZsn6UovxezZszV27Fh17dpVdevW1QcffKATJ07oiy++uI1HBgAAAOQPDr2mIjk5Wdu3b1dwcLB1mZOTk9q0aaOwsLAMtwkLC9Pw4cNtlrVv394aGA4fPqyYmBi1adPGut7T01NNmjRRWFiYevbsed0+k5KSlJSUZP353LlzkqTz589n+djscfHiRUnSn+cuKf5y6n+0vv0iLyRIkuJPHFBqcoKDq7leUtzfkq78f3TUOUz//VLuPI+cw1vDOcw6zuGtyc3nkXN4aziH/41zaJ/cch6LFi0qi8Vy4wbGgY4fP24kmV9//dVm+ciRI03jxo0z3KZgwYJm2bJlNsveeustU6pUKWOMMb/88ouRZE6cOGHT5uGHHzaPPPJIhvsMCQkxujIlNA8ePHjw4MGDBw8ePK55nDt37qaf65n9SVJwcLBN70daWpr++ecflShR4uaJLJ86f/68ypUrp2PHjsnDw8PR5SALOId5H+fwzsB5zPs4h3kf5/DWFC1a9KbrHRoqvLy85OzsrNjYWJvlsbGx8vb2znAbb2/vm7ZP/29sbKx8fHxs2gQGBma4TxcXF7m4uNgsu+uuuzJzKPmSh4cHL748jnOY93EO7wycx7yPc5j3cQ7t49ALtQsVKqQGDRpo3bp11mVpaWlat26dgoIyviFMUFCQTXtJ+vHHH63tK1asKG9vb5s258+f12+//XbDfQIAAADIOocPfxo+fLieeOIJNWzYUI0bN9bs2bN16dIl9e3bV5LUp08flSlTRlOnTpUkDRkyRC1atNAbb7yhTp066ZNPPtG2bdu0cOFCSZLFYtHQoUM1efJkValSRRUrVtS4cePk6+urbt26OeowAQAAgDuWw0PFo48+qlOnTmn8+PGKiYlRYGCg1q5dq9KlS0uSoqKi5OT0b4dKs2bNtGzZMo0dO1ajR49WlSpV9MUXX6h27drWNqNGjdKlS5f0zDPP6OzZs2revLnWrl0rV1fX2358dyIXFxeFhIRcN2QMeQfnMO/jHN4ZOI95H+cw7+McZg+LMcY4uggAAAAAeZfDb34HAAAAIG8jVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBXCHuXpCNyZ3y9s4f8Dtd/LkSZ06dUqStHr1ai1btszBFcEe6e+jqampDq7kzkeogPUFFxkZqV9++UU7d+5UTEyMg6tCZmX0xmmxWBxVDrJo9+7dGj9+vCTOH3C7XbhwQTVr1tT06dO1ePFi9ejRw9ElwU4Wi0Xfffed5s+fr+TkZEeXc0dz+M3v4FjGGFksFq1atUrDhw+Xp6enLl++LF9fX7388su67777HF0ibkH6efzxxx+1dOlSnT17Vt7e3po0aZK8vb1tbiCJ3GvXrl0KCgrSiBEjHF0Kskn6axN5Q9GiRfXxxx+rS5cuSk1N1dy5c/W///3P0WXBDr///rseffRRLViwgH8Lcxj/d/M5i8WiX3/9VU899ZRGjhypXbt2afTo0Vq/fr127tzp6PJwiywWi7788ks9+OCDKlWqlHr16qWffvpJXbp00bFjxxxdHm7Brl271KxZMw0bNkyvvPKKo8tBFqX3GMbHxystLU1paWkOrgi3yhijtLQ0BQQEKCUlRWlpaYqOjtbJkycdXRqyaO/evdq9e7cGDRqkXr16ESpyGP9387H0f/w2bdqk+++/X4MGDdKxY8c0duxYDRgwQC+++KIk8YaayxljdOrUKb366quaMGGCZs2apY4dO8oYoyZNmqhChQo2bZH7/Pnnn2rWrJlGjBihKVOmWJcvXbpUn332mQMrQ2ak90p899136tu3r5o0aaKxY8dqy5Ytji4N/yH93J06dUre3t6Kjo7WmjVrNHXqVL322mv8O5jHGGN06dIlNW3aVP3791d0dLQkycnJiX8HcxChIh9L75JPTk5W+fLlFRMTo6CgILVr105vvfWWJOm7777TypUrlZCQ4MhSkYH0N0aLxSIXFxddvHhRTz/9tE6cOKE6dero/vvvt57Hb775xtoWucvp06fVs2dP+fv7a+LEidblr776qoYNG6by5cs7sDpkRnqPYY8ePVS1alV169ZNe/bs0XPPPafQ0FBHl4cbSA8UX331lXr37q3ly5erePHi6ty5s1asWKFZs2ZpxowZ1mDx+uuv65NPPnFw1bgZi8WiwoULa8eOHSpbtqx+++037d6927oOOcQgXzp69Kj1+axZs0ypUqWMr6+vGTRokHX55cuXzVNPPWWee+45k5CQ4Igy8R9WrVplJk+ebJKTk01gYKCZMWOGqVixohkwYIBJTk42xhgTFRVlWrZsab777jsHV4uMxMTEmBEjRpg6deqYiRMnGmOMmT59uilRooT5/vvvM9wmNTX1dpaIG7h48aLNz3v27DG1atUyixYtMsYYc/r0aVOyZElTpUoVU6tWLbNhwwYHVIlbsWrVKuPq6mreeOMNExkZabNu2bJlpmDBguahhx4yPXv2NC4uLmbHjh0OqhQ3kpaWluHyiIgIc9ddd5lOnTpdd26RvQgV+dC+fftM3bp1zeuvv25d1qNHD+Pq6mr27t1rEhISzMWLF83LL79svL29TXh4uAOrxY3s2rXL+Pj4mPnz55vExETz4osvmmLFipn27dvbtAsODjb16tUzx44dc1Cl+C8nTpwwISEhpmbNmqZFixbGy8srww+gq1evvu21IWMhISGma9euNgEvPDzc9O3b11y4cMEcPXrU+Pv7m2effdZs2LDBVK1a1dSpU+eGQRGOc+jQIVOjRg2zYMECY8yVL9QSExPNunXrTFxcnDHmSujo0aOH6d69u9m1a5cjy0UG0gPFr7/+ahYsWGBCQkJMVFSUuXTpkjHmyuceT09P07lzZ3Pw4EFHlnpHsxjD4LL8JjIyUtOmTdPu3bv1v//9T0OHDtWxY8fUs2dPhYeHq1y5cipevLj++usvff3116pXr56jS8Y1IiIitGzZMp0/f16zZs2SJO3Zs0fDhg1TfHy8OnfurPLly2vz5s1avny5Nm7cqICAAAdXjWuZq4awnThxQgsXLtSiRYvUsmVLffzxx5KuTBHs7OyskJAQTZo0SYcOHZKfn58Dq4Z05TWYkpKi2rVrKyUlRQULFpQkxcTEyNvbW0899ZSSkpK0ePFiubq66sEHH9Qvv/yiqlWr6vvvv5e7uzvDMHKJQ4cOqUOHDlqyZImCgoL0xhtv6Msvv1RERIQKFSqkrVu3qmzZskpISJCTk5NcXFwcXTKuYv5/+Nrq1av19NNPKzAwUDExMUpOTtbYsWPVuXNnlShRQuHh4br33ntVs2ZNvf/++7yP5gTHZhrcDhl1CR48eNAMHjzYBAYGmnnz5lmXL1q0yMyYMcN8+OGH5siRI7ezTNyC1NRUc/LkSdOkSRNz1113mccee8xm/bZt28ywYcNMxYoVTYMGDcwDDzxgdu/e7aBqkZETJ06Y3bt3m8TExOvWRUdHm5CQEFOjRg0TEhJiXT527Fjj7u5utm3bdhsrxY1c/Z4aGhpqWrZsaWJiYqzL4uPjTYMGDcyUKVOMMcakpKSYp59+2rz55pvm5MmTt71e3NyhQ4dMu3btTNOmTY2Pj4/p0qWLmTRpkgkPDzf+/v5m9OjRji4R/+Hnn3823t7e5r333jPGGHPu3DljsVhMtWrVzIIFC8w///xjjDHmzz//NBUqVDBRUVEOrPbORU9FPrF161YdPnxYjz76qHXZwYMHNWfOHG3YsEHPPfecBg4c6MAKcTPmmrnuv/32W02YMEH//POP5s+frzZt2ti0T0hIkLOzs9LS0uTq6nq7y8UN/Pnnn+revbt69+6txx9/XJUqVZIkzZ8/X76+vurSpYuioqK0ZMkSrVixQn379lVqaqpeeeUVbd68WQ0aNHDwEUD69/V45MgRpaSkqGnTpmrSpIk++OADeXl5KTk5WU8++aROnjypQYMGacuWLfrss8/0888/q0yZMo4uP19LP3eJiYnWSS4kKTQ0VH/88YeMMXrsscdUunRpSVKHDh3UrVs3Pfvss44sGzdx+fJlLVq0SEeOHNFrr72mgwcPqm3bturQoYPOnj2rb7/9VjNmzFDXrl1VsmRJJScnq1ChQo4u+87kyESDnJeWlmbOnTtnHnroIVOvXj3z2Wef2aw/ePCgCQoKMhUqVDBvvPGGg6rErQgLCzMDBgwwly9fNsYY88MPP5jGjRubhx56yGzatMnaLiUlxVEl4iYOHTpkSpcubYKDg010dLTNuj59+pgSJUqYM2fOGGOMOX78uHnllVeMp6encXJyoociF1q9erWpXbu2CQ8PN+Hh4aZs2bKmXbt25tSpU8YYY9asWWPat29vfH19TY0aNcz27dsdXDHSe5i+++4706lTJ9OsWTPzyCOPXPd6NObKRfjjxo0z3t7e5sCBA7e7VGTSrl27zN69e83FixdNixYtTL9+/Ywxxly4cMEUK1bMlC1b1rz33nsmNTX1hhd0w36EijtU+osmPj7eGGPM1q1bTa9evcw999xjVqxYYdN2+PDhxs/Pz7Rt29acPn36tteK/5aammpeffVVU716dTN48GBrsPj6669N06ZNzUMPPWR+/vlnB1eJm5k9e7apV69ehusuXrxoOnXqZPPa/Pvvv820adNMRETE7SoR/yH9ffXvv/827dq1M/Pnz7eu27dvnylbtqxp06aNNRyeOnXKHDp0iCFPucgXX3xhihYtaoYNG2Y+++wzU7lyZdO6dWvzyy+/WC+6//zzz81TTz1lfH19meUpF7o6FFw7E96OHTtM7dq1zS+//GKMufK6fOihh8yTTz7JzE+3AfepuAOZq27ANHDgQP31119q1KiRXnzxRfn4+Oitt96yuaGWk5OTnn/+eevc3Mh9nJycNHjwYD311FPasmWLnn/+eaWmpqpTp04aO3asYmJiNHnyZIWFhTm6VNxA0aJFFRUVpffee08nT55URESEdu/erT/++EObN2/WhQsX9NtvvykyMlK///67SpcurZEjR6pq1aqOLh3/z2KxaNOmTXr11Vfl7Oysjh07SpLS0tJUo0YN/fDDD9q/f7969uypU6dOycvLSxUrVlTJkiUdXDkk6cCBAxo3bpymTJmimTNnqm3btkpOTtbWrVv19NNP67fffpMklSxZUpUrV1ZoaCgTleQy6Z9vfvzxRz311FPq0KGDgoODFRERIUk6f/68Tp8+rTNnzujs2bP69NNPZYzR/PnzVblyZQdXnw84ONQgh6xcudJ4eHiYUaNGmb1791qX//7776ZXr16mZs2a5tFHHzVPPfWUKVasGBdl51LXTn134cIFM3XqVNOoUSMzaNAg67c0q1atMm3btjV///23I8rEDRw+fNicPXvWGGPMzp07zciRI42Pj4+pUqWKCQwMNBUqVDBVq1Y1AQEBpnDhwsZisZiaNWuaUqVK8e12LvXBBx8YFxcX4+bmZkJDQ63L01+L4eHhxs3NzXTv3p37ieQyO3fuNFOmTDFJSUnm+PHjplKlSmbw4MHm3LlzpmLFiqZly5bWHl+GkeZeX3zxhSlSpIgZNGiQWbhwoSlevLhp1aqV9f5bbdu2NSVKlDDVqlUzxYsXZ+jhbUSouAP9+eefpnTp0tYbMKU7ceKE9b8zZ840d999t+nWrRtzbucy6V27ERERpl69emb8+PE268+ePWvGjh1rfHx8zKhRo6xDoa69ERccKzk52bRq1cp4e3tbZx4xxpgxY8ZYZ3Y6ffq0SUtLMxcuXDAvvfSS6dKli9m1axczk+RyK1euNKVKlTJ9+vQx+/fvty6/+rX7119/Oao83MDly5et91168sknTc+ePa33MejSpYuxWCymcePG3Ow1F4uJiTENGjQws2bNMsZceZ8tVaqUGTp0qE2If++998z777/PkKfbjOFPd6CTJ0/Kz89PvXv31pkzZ/Tuu++qbdu2atKkiQYOHCgnJycNGzZMP//8s5YtW6a6des6uuR8LS0tTZKUkpIi6coQi0OHDqlSpUpq0qSJ1q1bp1dffdXa3tPTU8OHD5eLi4sWLlyoESNGSJLc3d1vf/G4oYIFC2ru3LkqV66c7r77bp05c0bSlfP93Xff6cyZM9bhhoULF1ZcXJwaN26sunXrqly5co4sHf/P/P/kiOHh4dq4caO+/vprpaWlqXv37po9e7bWrVunt956SwcOHJB05bVrjFHVqlVVpUoVR5aer5krX5hKkv7++28dP35cERERcnZ2VvXq1WWMUVRUlOrUqWN936xcubK2bdumFStWMGNeLjFv3jz9+OOPSk1NtS5LnwXxqaee0tGjR+Xn56euXbtq1qxZcnJy0vr16yVJTz75pPr06cOQp9vNoZEG2SL927GkpCRjjDFbtmwxFovFDBkyxNSuXdt06dLFjBgxwsycOdOUKlXK/PTTT44sFxmIiIgwAwcONKmpqebTTz81zs7O5vjx4yY2NtYMGTLENGnSxEyePNna/tSpU6ZXr15mypQpfKudC6W/JlNTU014eLhp1qyZqVevnjlz5oz5+eefTf369c2LL75ojh49av78808zevRoU6JECe5en4ukn8OVK1caf39/U6tWLRMQEGD8/PysQ0o//vhjU6ZMGTN06FDOXS5x9WQjq1evNgEBAaZ27dqmdOnSZtSoUdYhok2bNjUtWrQwq1evNkOHDjUlSpSw9uYjdwgICDC+vr4mNDTU2iMfHR1tKlSoYN59913j7+9vnnnmGetQtb/++st06NDBbNy40ZFl52uEijzu6inynnzySesb5rJly0zHjh3NqFGjzL59+6ztGzVqZL744guH1Irrpb9Rbt682VgsFtO6dWvj7Oxsli5dam1z8uRJM2TIENO4cWPzwgsvmL1795qXX37ZtG7d2sTFxTmqdGTg6mETycnJ1ucvvviisVgsplGjRubs2bNm2rRppkaNGsZisZgaNWqYOnXqmD/++MMBFeNmNm/ebDw8PKxDSbdu3WosFouZPXu2tc3HH39sXF1dzUsvvWRzznH7nTp1ypQpU8aEh4eb9evXG3d3dzN//nwTExNj3n33XWOxWMyXX35pjDHm6NGjxt/f31SpUsVUrVqVWZ5ykatnd2rdurUpX7682bBhg/WL0xEjRhh3d3fToUMHm+1Gjx5t6tevz7WFDkSouAN8/vnnxtPT0wwfPtzmjTF9rGi64OBg7iSZiyxcuNC8++675sKFC8YYYyZOnGgsFotp3ry5OX/+vE3bU6dOmVdffdX4+/sbX19fU7FiRS4+y2X+/vtv8/DDD5v169fbLH/ttddMiRIlzLvvvmvq1atnGjdubM6cOWNiYmLMypUrza5du0xsbKyDqsbNvPPOO+bpp582xly5z0j58uXNwIEDrevTP/x88sknXEORCxw6dMiULVvW7Nq1y4wZM8a88MILxpgrE15UqVLF9O/f36Z9cnKyOXz4sM01T8gdrr5Q/p577rEGC2OuTBvbuXNnU6dOHbNw4UKzbNkyM3jwYOPh4WF27tzpoIphDKEiz7n2w+bu3btNyZIlzcKFC22Wnzp1yvqiXL58uXn88cdNqVKl+DYmF2nTpo2pXr26+eijj0xycrJ58803TXBwsClUqJB5/PHHzbFjx4wx/35wSUxMNLGxsWbTpk0Z3qwJjpV+I8mOHTuazZs3G2OMmTp1qilevLj58ccfjTFX5kwPCAgw9evX554wucTNZmgaNGiQ6dGjh4mNjTXlypUzzzzzjPX1+PHHH5sJEybcrjJxixo0aGBeeeUV06pVKzNz5kyTmJhoypQpY3Pu5syZwzDgXCz9PKXfSNIYY+69915TtmxZ69CmsLAwM2TIEFOiRAlTv359c//995vdu3c7pF78i1CRh8yaNcsMGDDApKSkWP8h/PLLL01QUJAx5spY0qVLl5r27dubMmXKmNGjR5vjx4+bNWvWmMcee8xmGBQc5+qu3YcfftjUqlXLrFixwjp0IjQ01Bosjh8/bm0bFhZ222tF5qSP6e3atavp37+/KVmypPn+++9t2oSHh5uKFSuapk2bMuVoLnH8+HHz+++/G2OM+eijj6yzc61du9bcd999pkSJEtYei/Q78j7//POmX79+zLqWS6S/lnr06GEmTpxoPvnkE3PfffeZ0qVLm+eee8461DQlJcU89thjZtSoUQxXy4WuHtL9yCOPWL+QMcaYFi1a2AQLY4yJi4szSUlJ143MgGMQKvKA9DfDuXPnWscKpo8t/Pnnn43FYjEvvfSSadiwoenSpYsZMmSIee2114yLi4v1g2j6nbWRO1zdtdutWzdTs2ZN8+GHH1qHQm3cuNEUKlTI9OnTx2zZssW88sorpkiRIiY2NtYmlCD3iYiIMG3btjVubm5mxowZ1uVXB4iIiAhz6NAhR5SHq6SlpZmEhATTqFEj07VrVzNt2jRjsVjMggULjDFXwkaHDh1MhQoVzMqVK40xVz7EjB492pQqVYovahzs4MGDZt68eSY8PNw6rPfDDz80bdu2NWvWrDEBAQEmICDAelf6pKQkM3r0aFO+fHmGq+Viq1atMm5ubmbq1Klmy5YtNuvSg0VoaKj1c5Axhn8XcwlCRS6X/kHk4MGDZtKkScYYY3799Veb4TELFy40QUFBZvjw4Tbdf40aNbruW1I4XkZdu926dTO1a9e2CRY///yzKVWqlAkICDDe3t5m27ZtDqkXmRcZGWnatWtn7r//fuvNtIy5+VAbOE5kZKQpV66csVgs1l6Kq9c1a9bM1K5d25QrV860atXKlCtXjqGkDpacnGweeeQRU758eVOxYkXj4eFhOnToYCpXrmzKli1r/vnnH7Nq1SoTGBhoatasabp27Wruv/9+U7JkSc5dLhYVFWVq1KhhvQ9FuqsDxH333WcKFy5s896K3MFizP9P5oxcJy0tTU5OTtq1a5fq1aunyZMna/To0ZozZ47ee+89NWzYUJMnT5a3t7cuXbqkwoULW7cdPXq0PvnkE/38888qU6aMA48CGfn99981ZcoUvfDCC2rdurUk6cEHH1RkZKReeukldevWTUWKFNGhQ4cUExOjChUqcB7zmAMHDuiFF16QMUbjxo3T3Xff7eiScA3z//cziI+PV82aNZWcnKxWrVpp6NChatKkibVdTEyM9u3bp19++UUBAQEKCAhQhQoVHFg5JCk+Pl7u7u46cOCAwsPDFRUVpU2bNunPP/9UjRo19OGHH+rgwYP65ptvtHfvXgUEBKhbt27cQyQX27Fjhx588EF99dVX1ntoGWNksViUmpoqZ2dnSVKnTp00e/ZszmVu48hEgxtL/0Zz7969xs3N7bpvz+bNm2eaNWtmnnjiCZtx919++aXp06cP38bkcl988YVp2LChefjhh01oaKh1eXqPxccff2ztsUDe9ddff5nOnTubpk2bck1MLpPeY7h3716TlJRkkpOTzZ49e4y/v7/p0aMH5ysPuNGQl9WrV5umTZuaTp06WXuEGR6TO117Xn7//Xfr8KZr2/z000+MvsjluKN2LpTeQ7Fnzx61aNFCfn5+mjBhgiQpMTFRkjRo0CD17NlTkZGRGjNmjGJiYiRJFy9e1OXLlxUaGqp69eo56hDwH7p27aqQkBCdPHlSc+bM0caNGyVJq1evVvXq1TVq1Ch99913Dq4S9qpSpYqmT5+usmXLytfX19Hl4P+Z///mc/Xq1Wrfvr2Cg4OVlJSkWrVqadmyZdq1a5dmzpypsLAwSVd6fidNmuTgqnGt9Lsrp0tLS5MkdenSRUOHDtXFixfVuXNnxcXFXdcWuYPFYtHmzZu1c+dOSVKFChXk7Oys+fPn6+zZs9Y2kvT111/r008/VUJCgvWO6chlHJ1qYCu9h2Lnzp3G3d3dtGzZ0vj6+lrn2zbGdmzh3Llzzd13322efvppExMTY4y5/v4UcKyrvxG99sLOL7/80rRq1cp07drV/PLLL9blvXv3NgcPHrytdSLnXP2aRe7w/fffG1dXV7N48WJz+PBhY8y/r9Vt27aZWrVqmaZNm5p27doZd3d3ei7yiPRzmJaWZt5//31z//33m6NHjzq4KtzI2bNnzQMPPGB8fX2t917asGGDcXV1NQ899JBZs2aN2bx5sxk6dKjx9PQ0e/bscXDFuBmuqciFtm3bpmbNmmnMmDEaO3asFi9erDFjxuh///uf5syZI0lKTk5WoUKFJElvvfWW3n77bbVs2VJz5861jjmEY6T3NF2+fFkFChTQ5cuX9c8//6hdu3aqW7euRo8ererVq1vbf/HFF3r66ad1zz336Pnnn7deYwEgZ1y+fFkDBgxQkSJFNGfOHGvPxeXLl+Xs7CyLxaLdu3drxYoVOn/+vAYOHKiaNWs6umzcovTzaYzRxYsXVbRoUUeXhGuknyNJ2rx5s2bPnq0///xTy5cvV/369fX777+rX79+unjxoiwWi+666y4tXrxYgYGBji0cN0WoyIU2bdqklStXWgPEuXPntGLFipsGi4ULF6pdu3by8/NzVNnQv4Hi4MGDev/993X69Gn17t1bQUFBevvtt/X+++8rMDBQQ4cOVY0aNazbtWvXTrt27dL999+vt99+W25ubnTXAzkkOTlZjRs3VqtWrTRr1ixJth9yzp8/Lw8PD12+fFlOTk5ycmKkcF5z9fmEY6X/uyhJKSkpKliwoBITE+Xq6mptExYWptdee03h4eFatmyZGjRooDNnzujs2bNKTk5WqVKlVKxYMUcdAm4R75S50L333msNDsYYeXp6qmfPnpoyZYqWLVumIUOGSJIKFSqkpKQkSdIzzzxDoHCw9DfOP//8U61bt9bp06dVtmxZ1a9fX5L03HPPqX///tq2bZvmzJmj/fv3S7ryrWnlypX14osvasqUKXJ3d+cfQyCbpX9/ZoyRk5OTAgICFBsbq7i4OEmyfrO9b98+vfzyy/rnn39UoEABAkUexXto7uHk5KSjR4/KGKOCBQvq119/Vdu2bXX48GFrm6CgIL300kvy8/NT7969tXfvXhUrVkwVK1ZUtWrVCBR5RAFHF4CbS39j9PDwUM+ePSVJY8aMkbOzs2bOnCkXFxdHloerpPdQtGvXTk888YSmTZtmXZc+FOrpp5+WdKVnKTg4WK1bt9axY8f0448/KiwsTCVLlnRU+cAd6dpvrC0WiwoUKKCgoCC9+OKLCgoKUs+ePVWyZElZLBZ9+umn2rRpk/ULGwD2SUpKUs+ePRUdHa0jR44oNTVV8fHxevrpp7V48WLrF6JBQUH63//+p759+6pNmzb6/vvvrdPKIm8gVOQh6cHCyclJzzzzjFxcXDR16lRHlwX9O9/94sWLdffdd+vll1+2WV+gQAFrT8bTTz+t4sWLa/ny5XrjjTdUsmRJffbZZwQKIJulB4pNmzbpyy+/1OXLl1W9enUNHDhQzz77rI4fP65JkyZp/fr18vDwUGJiotauXauNGzfKx8fH0eUDd4RChQpp+vTpGjhwoIKCghQWFqY333xTL7/8sp544gktXbpUFStWlCRVq1bNOpT76ntvIW/gmoo86Ny5c/riiy8UFBSkqlWrOrocXOWee+5RtWrV9O677163Lj1UpI8lTUxM1MWLF+Xs7EzXLpBDVq9erb59++qBBx7Q5cuXtWfPHjVu3FiLFy+WJH3wwQfas2ePtm3bpjp16mjAgAFclA3Y4eprKK5etnXrVvXp00clSpRQWFiYNm/erDFjxig1NdUaLF555RUdP35cs2bN4gL7PIhQkUdxEVrukpaWpoSEBDVt2lTdunXTpEmTrEOerhUSEqIHH3yQWSyAHLZt2zY9/PDDevnllzVgwADt379f9957r86dO6eOHTtq9erV1rbp9zjgGgog69IDRUxMjI4cOaKmTZta16WkpOiPP/5Qr169VLJkSW3ZskVbtmzRmDFjtGHDBjVs2FD79u1TWFiY6tSp48CjQFbx7plHEShyFycnJxUuXFiNGzfW0qVLFRkZqQIFCliHRaU7fPiwNm/erMuXLzuwWuDOkh4IjDHW55IUHh6udu3aacCAAYqKilLHjh3VuXNnvf3221q7dq31GidJzPIEZAMnJycdO3ZMtWvXVrNmzdSqVSuNHj1a69evV0JCgho3bqxPPvlEiYmJatSokZo2baoffvhBCxcuVL9+/bRr1y4CRR7GOyiQjTp06KDLly9r3LhxOnjwoCwWi00A/OCDD5SUlMRMXUA2Sf9m9K+//tILL7yghx56SDNmzJAkPf7443r66aeVmpqqAQMG6J577tGSJUvUtWtXlStXTkuWLFHv3r0dfATAnSUtLU3lypVT1apVdfHiRZ04cUKdOnVSixYt1KdPHx0+fFhjxozRuXPn1KZNG+u1hgMGDFDlypUdXT7sQKgAMim95+Hqb0TTPfzww+rTp49++OEHDRgwQD///LPOnDmj3377TYMGDdLs2bP19ttvy8vL63aXDdxx0gPFrl271Lx5c/39999ycXHR6NGj9dprr0mSGjVqpL///lvHjh3TU089JenKt6lNmjTRBx98oEmTJjnyEIA7ToUKFfTZZ5+pZs2aKlOmjAYOHKiIiAi99NJLOnTokN544w09+eSTcnV11fr169W9e3dJEqPx8z5mfwIyYenSpfrjjz80c+ZMOTs721yQlv78tddek4eHh1asWKGWLVuqWLFiKlWqlIoWLaqNGzcyRR6QDdJfb7t371ZQUJCGDRumKVOmKC0tTV5eXoqJibFOiuDq6qqkpCR9/vnnCgwM1PTp0xUREaGZM2cy6xqQA/z9/TV16lQNGTJE48aN05QpU9SzZ0/17NlTZ8+e1VdffaX9+/erQIECGj9+vCSGdd8JuFAbuAVpaWlKSUnRiBEjFBYWpg4dOmjixInXBYvU1FQ5OztLkg4ePKjw8HBFR0erTp06qly5Mh9ggGx07Ngx1a9fX61atdKnn35qXd6zZ09FREQoMTFRfn5+6t69uy5duqTp06fL2dlZycnJ+u6771SvXj0HVg/c+Q4cOKDnn39ekhQcHKwWLVrYrL/RhCbImwgVwC04fvy4ypQpozNnzmjGjBlat26dWrdurUmTJt2wxwJAzjpy5IgeeeQR+fj4aNSoUbr77rs1bdo0TZo0ScHBwfLx8dGMGTPk4uKiN998U15eXjpw4IDq1auncuXKObp8IF84cOCAXnjhBRljNH78eDVr1szRJSGHECqA//D5559r5MiR+vjjj9WsWTOdPXtW06ZNU2ho6A2DBYDbI/0DS6FChVSqVCmtWbNGH374odq1aydJOnr0qCpWrKgFCxaof//+Dq4WyJ8OHDig4cOHKy4uTrNmzbKZahZ3Dj4BAf/Bw8NDderU0dChQxUWFqa77rpLL7/8slq2bKn169dr3LhxSk1NlZOTU4YXbwPIOVWqVNGcOXOUkJCgjz/+WKNGjVK7du1kjFFKSooKFCigOnXqWG8wyfdowO1XpUoVTZ8+XWXLlpWvr6+jy0EOoacCuAUbN27UnDlzdOTIEc2bN8/aY/Haa69pw4YNatWqlSZNmqQCBQrYXFcB4PY4ePCgnnvuOTk7Oys4OFj33HOPJGn8+PH66KOPtHHjRoY8AQ6WnJysQoUKOboM5BBCBXATV9+5fMOGDZo7d66OHj2aYbBo06aNJkyYwEVngINcPXZ76tSp+vHHHxUSEqJff/2Vi7IBIIcRKoBM2Lhxo2bOnKljx47ZBIsZM2bos88+02OPPWadHg/A7Zc+dnvr1q06c+aMwsLC1KBBA0eXBQB3PEIFkIH0Hort27dbb5zVq1cvlShRQlu3btWrr76qqKgoa7A4c+aM3nzzTfXp04e7ZQMOFhERoVGjRunVV19VrVq1HF0OAOQLhArgBlauXKmBAweqXr16ioyMlKenp/r166dBgwYpNDRUc+fO1fHjxzV9+nTde++9NkOlADhWSkqKChYs6OgyACDfYPYnIAM7duzQoEGD9Prrr+v777/X+vXrtXPnTsXHx0uSWrZsqeHDh6tw4cIaP368EhMTHVwxgKsRKADg9qKnAvnatb0L6T9/9tlneuedd7R+/XpFRETo/vvv13333adFixZJkk6ePKlSpUpp8+bN8vPzU9myZR11CAAAAA5HTwXyrbS0NFksFp06dUrbtm3T9u3brQHj+PHj8vDwUGpqqtq2bau2bdtqwYIFkqQ1a9ZowYIFSkpKUvPmzQkUAAAg32PuS+RL6Xe/3rdvn5555hkVLVpU7u7u+vTTT+Xs7KwOHTpo0qRJcnNz08CBAzVnzhzrtuvWrVNUVJSSkpLk4uLiwKMAAADIHQgVyHeMMXJyctLevXvVvHlzPffccxowYIDKli0rJycnGWNUqVIljRo1Sm+++aa1J+Lw4cNatGiRPvroI/3888/y8PBw8JEAAADkDlxTgXzpn3/+UdeuXVW/fn2bXoirr7E4dOiQ3nvvPc2aNUvFihVTsWLFlJycrOXLl3MjLQAAgKsQKpAv7du3T126dNGSJUvUvHlzOTnZXl6UHi5SUlJ0+PBhhYWFqWLFivL395evr6+DqgYAAMidGP6EfGnnzp06evSo7rnnHlksFus1FuksFovi4+O1Z88eNW7cWFWrVnVgtQAAALkbsz8hX/Lz81OBAgW0atUqSbqup0KSlixZorFjxyo5Ofl2lwcAAJCnECqQL1WoUEEeHh764IMPdPToUevyq0cDHjlyRA0aNOAmWgAAAP+BUIF8qUyZMnrnnXf0/fffa9y4cdq3b5+kf4c9jR49Wp9//rn69u1rc3M8AAAAXI8LtZFvpaWladGiRRo8eLD8/f0VFBQkV1dXHT9+XFu2bNHatWuZ5QkAAOAWECqQ723dulXTp09XZGSkihYtqmbNmqlfv36qUqWKo0sDAADIEwgVgKTU1FQ5Ozs7ugwAAIA8iWsqANnO/kTOBgAAyBx6KgAAAADYhZ4KAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXf4Pw+rHMd54OCwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "Cellpose vs CellSAM - Generalist Models by Data Type\n", @@ -247,20 +227,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHfCAYAAADNxk7yAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAe+FJREFUeJzt3XdYU+ffBvA77CEgslFUFHGiuGddRXFVrWjVaq1I1aLWQdW6ce+6rXvWXUfVX+uoKNaBeytSceFgK7JX8rx/+JKSgq2QkMO4P9eVy3AW34SY5D7PODIhhAAREREREZEadKQugIiIiIiIij4GCyIiIiIiUhuDBRERERERqY3BgoiIiIiI1MZgQUREREREamOwICIiIiIitTFYEBERERGR2hgsiIiIiIhIbQwWRERERESkNgYLIiIiIiJSG4MFERERERGpjcGCiIiIiIjUxmBBRERERERqY7AgIiIiIiK1MVgQEREREZHaGCyIiIiIiEhtDBZERERERKQ2PakLIKKiJywsDDExMVKXkStra2uUL19e6jL+1fTp0zFjxgycOXMGrVu3Vi6XyWRo1aoVAgMDJautJODrV318DRNRbhgsiChPwsLCUL1qVSSnpkpdSq5MjIwQHBKikS9n169fx08//YQ///wTr1+/hkKhgKOjI5o1a4YBAwagXbt2GqiYtCksLAxVq1VHakqy1KXkysjYBCEPgzUWLgrLa/jevXtYtGgRzp49i/DwcBgZGcHGxga1a9dGq1atMHLkSMhkslz3/fPPP9GqVSsAwL59+9CrV69ct9u6dSu8vb0BAF5eXti/f3+u261ZswbDhg0DAHz99dfYunWrmo+OiLIwWBBRnsTExCA5NRUr6lSESyljqctREZqYgpG3nyEmJkatL2YKhQJjx47F0qVLoaenh7Zt26Jr167Q19fHkydP8Ntvv2HHjh2YOXMmpk6dqsFHQAUtJiYGqSnJqOA1EUY2hatlIDU6DM8PzFP79QsUrtfwH3/8gS5duiAzMxMeHh74/PPPYWRkhMePH+Ps2bM4dOgQhg8fDj293L+SbNq0CcD71pDNmzd/MFhk0dPTw9GjRxETEwNra+tcj6enp4fMzEz1HxwRqWCwIKJ8cSllDDcLE6nLKBBTpkzB0qVL4e7ujv3796Ny5coq61NSUrBq1SrExsZKVCGpy8imPEwcXaUuo8AUptewr68v5HI5Tp06hTZt2qisE0Lg5MmT0NXVzXXf+Ph47N+/H7Vr14adnR1OnjyJFy9ewMnJ6YO/r2PHjjh69Ch27NiB0aNHq6y7c+cOrl+/jq5du+LIkSNqPzYiUsXB20RE2YSGhmLhwoWwsrLC8ePHc3whAwBjY2OMGzcOM2bMUC5LT0/HkiVLUK9ePZiamsLMzAyffPKJ2l9eBg4cCJlMhidPnmDhwoWoUqUKjIyM4OzsjJkzZyIjIyPX/bZs2YLGjRujVKlSKFWqFBo3bvzBLh8HDhxAq1atYGtrCyMjIzg6OsLDwwMHDhzIse2dO3fQp08fODg4wMDAABUqVMB3333HkFWIFKbXcFRUFB4/foxatWrlCBXA+1YIT0/PD3aD2r17N5KTkzFgwAAMGDAACoXiP7suNWvWDNWqVcOWLVtyrNu8eTN0dXXx9ddf5+vxENG/Y7AgIspm69atkMvlGDp0KOzs7P51W0NDQwBAWloaPD098f3330MIAR8fH/Tv3x/Pnz9Ht27dsGrVKrXrGj16NBYsWAAPDw989913MDQ0hL+/P/r27Ztj25EjR2LQoEF49eoVfHx84OPjg1evXsHb2xujRo1S2XbNmjXo2bMnHj16hM8//xx+fn7o0KEDIiIicOjQIZVtjxw5gkaNGuHIkSNo3bo1Ro8eDTc3N6xatQpNmzbF27dv1X6cpL7C9Bq2sLCAnp4ewsPDkZSUlOf9N23aBF1dXfTr1w89evRAqVKlsGXLFggh/nU/b29vZetElvT0dOzcuROenp5wdHTMcy1E9N/YFYqIKJsLFy4AANq2bfvR+8ycOROBgYGYOnUqZsyYoTz7mpCQgLZt2+L7779Hjx491Poyc+nSJdy+fRvlypUDAMyZMwft2rXDgQMHcODAAXh5eQF4P9B15cqVqF69OoKCgmBhYQHg/Sw+TZo0wYoVK9CzZ0988sknAICNGzfCwMAAt27dgq2trcrvzN4KERsbi6+++grW1ta4cOECKlSooFy3Z88e9O3bF9OmTcPKlSvz/RhJMwrTa9jQ0BBdu3bFwYMH0bRpUwwePBjNmjWDm5sbDAwM/nXfu3fv4urVq/D09IS9vT0AoEePHti+fTtOnz6NTz/99IP7DhgwAJMnT8bmzZtRv359AMDhw4cRExMDHx+fPD0GIvp4bLEgIsomIiICAJRf4P+LQqHAmjVrULlyZZUvZABgZmaGadOmIT09HQcPHlSrrlGjRqnUZGBggDlz5gCASteQbdu2AXgfJLJCBQBYWlrC398/x/YAoK+vD319/Ry/08rKSnl/+/btiI+Px7x581RCBQD06dMH9erVw549e/L34EijCttreP369fjss89w9+5djBw5Eg0aNICZmRmaN2+OFStWICUlJdf9sgZtDxgwQLks637Wug+xt7dHp06dsHv3bqT+/wx2mzdvho2NDT777LN8PQ4i+m9ssSAiUkNISAjevn0LR0dHlf7qWaKjowEADx8+VOv3ZLUwZNe0aVPo6enh5s2bymVZ97NfWyBLVh/3W7duKZf16dMH48ePR61atfDll1+iTZs2aNGiBczNzVX2vXTpEgDg8uXLePz4cY5jp6amIiYm5oMz8VDhVdCvYSsrKxw5cgSPHj3C8ePHceXKFVy6dAkXL17ExYsXsWHDBpw9exZlypRR7pOWloYdO3bAzMwMn3/+uXJ5mzZt4OTkhEOHDuHt27ewtLT84O8dNGgQjhw5gkOHDqFly5Y4efIkRo0alWuIJiLNYLAgIsrG3t4eDx8+xKtXr1C1atX/3P7NmzcAgPv37+P+/fsf3C4//cuzy62vvK6uLqysrPDu3Tvlsvj4eOjo6MDGxibXY8hkMsTHxyuXjR07FlZWVlizZg1+/PFHLF68GHp6eujcuTOWLl0KZ2dnAH8/ztWrV/9rnUlJSQwWEiusr+EqVaqgSpUqyp9v3bqF/v374969e5gxYwaWL1+uXPfrr78iNjYW3t7eMDb+e1prHR0d9OvXD/Pnz8euXbswfPjwD/6+zp07w87ODps3b8aTJ0+gUCgwaNAgtR4DEf07doUiIsqmefPmAICAgICP2j7rzL6XlxeEEB+85TZDTV5ERkbmWCaXyxEbG6vS5cnc3BwKhUJ5ljm7qKgoCCFUWiNkMhkGDRqEq1evIjo6GocOHUKPHj1w+PBhdOnSBXK5XOVx3r17918f5z+7SZH2FdbX8D+5u7srx+ScPn1aZV1WV6ctW7ZAJpOp3ObPn6+yzYfo6elhwIABOH36NFavXo1GjRqhVq1aGn0MRKSKwYKIKJuBAwdCV1cX69evz/XLeXZpaWmoXr06zM3Nce3atQ9O/aoJ586dy7EsKCgImZmZqFu3rnJZ1v3AwMAc22ctc3d3z/V3WFlZoXv37ti7dy/atm2LBw8eIDQ0FADQuHFj5e+kwq2wvoZzU6pUqRzLnj9/joCAANjZ2SlnNfvnzdnZGTdv3lTpBpibQYMGQaFQIDw8nK0VRFrAYEFElI2LiwvGjx+PmJgYdOzYEU+fPs2xTWpqKpYsWYLp06dDT08Pvr6+eP78OcaOHZvrF7N79+4hKipKrbqWL1+Oly9fKn9OT0/H5MmTAbz/Ipkla37+GTNmqHR5evfunbL/fPY5/AMDA3NM3ZmRkaHsHmNkZATg/fSdZmZmmDx5cq7dZZKTk5XjMEhahek1nJSUhDlz5iAmJibHuszMTCxatAgA0KJFC+XyLVu2QKFQYOjQodi4cWOutwkTJgD471aLatWq4dixYzh06BD69euX5/qJKG84xoKI6B9mz56N1NRULF26FFWrVkXbtm1Rq1Yt6Ovr4+nTpzh16hRiY2Mxe/ZsAO+/xN+4cQMrVqzAb7/9hpYtW8LW1havXr3C3bt3cfv2bQQFBeWYzjUvmjRpgjp16qB3794wNTXF0aNHERISgh49eiinmgWAli1b4rvvvsPKlStRq1YtZfeWAwcO4OXLlxg5ciRatmyp3L579+4wNzdHkyZNUKFCBWRkZOCPP/7AgwcP0LNnT2XXJhsbG+zevRu9evVCnTp10KFDB1SrVg1paWl49uwZzp49i2bNmuH48eP5foykOYXlNZyRkYEpU6Zg+vTpaNq0KerUqQNzc3NERkbixIkTePnyJZydnZUzlikUCmX3p+yB+Z969+6N0aNHY+fOnVi8eLEyAOemQ4cOeaqZiPKPwYKI8iU0MfcpIqWkqZp0dHSwZMkSfPnll1izZg3+/PNP/Pnnn1AoFHBwcICnpye8vb3h4eEB4P1c/ceOHcOmTZuwfft2HDhwAGlpabCzs0ONGjXw7bffws3NTa2ali1bhl9++QUbN25EWFgYHBwcMH36dEycODHHtitWrEDdunWxZs0arF+/HgBQs2ZNzJw5E97e3irbzps3TzlTz9GjR2FqaorKlStjzZo1Oeb779y5M27evIlFixbh1KlT+OOPP2Bqaopy5crB29sb/fv3V+sxalNqdJjUJeSgyZoKy2vY3Nwcv//+O06cOIHz58/jl19+QWxsLExMTODq6orBgwdj1KhRynFCp06dQlhYGFq1aqWcOCA3FhYW6NGjB3bu3ImDBw/iyy+/zN8TRUQaJRP/dflKIqJswsLCUL1qVST//9zwhY2JkRGCQ0JQvnx5qUvRiIEDB2Lbtm14+vQpKlasKHU5RV5YWBiqVquO1JRkqUvJlZGxCUIeBheb1y8RlSxssSCiPClfvjyCQ0Jy7TNdGFhbW/NLGX1Q+fLlEfIwmK9fIqICwGBBRHlWvnx5fvmhIouvXyKigsFZoYiIiIiISG0cY0FERERERGpjiwUREREREamNwYKIiIiIiNTGYEFERERERGpjsCAiIiIiIrUxWBARERERkdoYLIiIiIiISG0MFkREREREpDYGCyIiIiIiUhuDRS6EEIiPjwevHUhERERE9HEYLHKRkJAACwsLJCQkSF0KERERUZGSkJCAwMBAfo8qgRgsiIiIiEhjEhMTcfbsWSQmJkpdCmkZgwUREREREamNwYKIiIiINKZ06dLo2bMnSpcuLXUppGV6UhdARERERMWHsbExatasKXUZJAG2WBARERGRxiQmJiIoKIhjLEogBgsiIiIi0piEhAScPHmSs0KVQAwWRERERESkNgYLIiIiIiJSG4MFERERERGpjcGCiIiIiDTG0NAQrq6uMDQ0lLoU0jKZEEJIXURhEx8fDwsLC7x79w7m5uZSl0NEREREVOgVihaL1atXo2LFijAyMkLjxo1x5cqVD267YcMGfPLJJ7C0tISlpSU8PDxybD9w4EDIZDKVW4cOHQr6YRARERGVeHK5HElJSZDL5VKXQlomebDYu3cv/Pz84O/vjxs3bqBOnTrw9PREVFRUrtsHBgaib9++OHPmDIKCguDk5IT27dvj1atXKtt16NAB4eHhytvu3bu18XCIiIiISrSoqCgsXrz4g9/lqPiS/MrbS5YsweDBg+Ht7Q0AWLt2LX777Tds3rwZEyZMyLH9zp07VX7euHEjDhw4gICAAAwYMEC53NDQEPb29gVbPBEVuKyTA3nl4OAABweHAqiIiIiIciNpsEhPT8f169cxceJE5TIdHR14eHggKCjoo46RnJyMjIwMlClTRmV5YGAgbG1tYWlpibZt22L27NmwsrLK9RhpaWlIS0tT/hwfH5+PR0NEBWHdunWYMWNGnvfz9/fH9OnTNV8QERER5UrSYBETEwO5XA47OzuV5XZ2dnj48OFHHeOHH36Ao6MjPDw8lMs6dOiAHj16wNnZGY8fP8akSZPQsWNHBAUFQVdXN8cx5s2bl68vLkRU8IYOHYquXbuqLEtJSUGLFi0AAOfPn4exsXGO/dhaQUREpF2Sd4VSx/z587Fnzx4EBgbCyMhIubxPnz7K+25ubqhduzYqV66MwMBAfPrppzmOM3HiRPj5+Sl/jo+Ph5OTU8EWT0QfJbcuTUlJScr77u7uMDU11XZZRERE9A+SBgtra2vo6uoiMjJSZXlkZOR/jo9YvHgx5s+fj1OnTqF27dr/um2lSpVgbW2N0NDQXIOFoaEh51omIiIi0gA7OztMmDAB+vr6UpdCWibprFAGBgaoX78+AgIClMsUCgUCAgLQtGnTD+63cOFCzJo1C8ePH0eDBg3+8/e8fPkSsbGx7BpBREREVMB0dHRgaGgIHR3JJx8lLZP8L+7n54cNGzZg27ZtCA4Ohq+vL5KSkpSzRA0YMEBlcPeCBQswdepUbN68GRUrVkRERAQiIiKQmJgIAEhMTMS4ceNw6dIlPHv2DAEBAejWrRtcXFzg6ekpyWMkIiIiKiliY2OxY8cOxMbGSl0KaZnkYyx69+6N6OhoTJs2DREREXB3d8fx48eVA7rDwsJUEu+aNWuQnp6Onj17qhwnawYYXV1d3LlzB9u2bUNcXBwcHR3Rvn17zJo1i92diIiIiApYeno6Hj9+jPT0dKlLIS2TCSGE1EUUNvHx8bCwsMC7d+9gbm4udTlE9A9JSUkoVaoUgPetlBy8TURUeISHh2P9+vUYMmQIu6GXMJJ3hSIiIiIioqKPwYKIiIiIiNTGYEFEREREGmNubo6OHTuyO3kJJPngbSIiIiIqPkxNTdGoUSOpyyAJsMWCiIiIiDQmJSUFd+7cQUpKitSlkJYxWBARERGRxsTFxeHQoUOIi4uTuhTSMgYLIiIiIiJSG4MFERERERGpjcGCiIiIiIjUxmBBRERERBqjr6+PcuXKQV9fX+pSSMtkQgghdRGFTXx8PCwsLPDu3TvOwUxUCCUlJaFUqVIAgMTERJiamkpcEREREbHFgoiIiIiI1MZgQUREREQaEx4ejhkzZiA8PFzqUkjLGCyIiIiIiEhtDBZERERERKQ2BgsiIiIiIlIbgwUREREREamN083mgtPNEhVunG6WiKjwyszMRHx8PMzNzaGnpyd1OaRF/GsTERERkcbo6emhTJkyUpdBEmBXKCIiIiLSmLdv3+LgwYN4+/at1KWQljFYEBEREZHGpKam4u7du0hNTZW6FNIydoUiIsmEhYUhJiYmz/ulpKQo79+6dQvGxsb5rsHa2hrly5fP9/5ERET0HoMFEUkiLCwM1atWRbKaZ7RatGih1v4mRkYIDglhuCAiIlITgwURSSImJgbJqalYUaciXErlrcUhVa5Aj0shAICDTarCSDd/vTpDE1Mw8vYzxMTEMFgQERGpicGCiCTlUsoYbhYmedonOVOuvF/T3BgmerqaLouIiPKpVKlSaNWqlXJacCo5GCyIiIiISGPMzMzQunVrqcsgCXBWKCIiIiLSmLS0NISGhiItLU3qUkjLGCyIiIiISGPevHmDnTt34s2bN1KXQlrGYEFERERERGpjsCAiIiIiIrUxWBARERERkdoYLIiIiIhIY3R1dWFpaQldXU4FXtJwulkiIiIi0hhbW1uMHDlS6jJIAmyxICIiIiIitTFYEBEREZHGREZGYtGiRYiMjJS6FNIyBgsiIiIi0hiFQoHk5GQoFAqpSyEtY7AgIiIiIiK1MVgQEREREZHaGCyIiIiIiEhtDBZEREREpDFWVlYYNGgQrKyspC6FtIzXsSAiIiIijTEwMICTk5PUZZAE2GJBRERERBoTHx+PEydOID4+XupSSMsYLIiIiIhIY5KSknDp0iUkJSVJXQppGYMFERERERGpjcGCiIiIiIjUxmBBRERERERqY7AgIiIiIo0xMTFBgwYNYGJiInUppGWcbpaIiIiINMbCwgKdO3eWugySQKFosVi9ejUqVqwIIyMjNG7cGFeuXPngths2bMAnn3wCS0tLWFpawsPDI8f2QghMmzYNDg4OMDY2hoeHBx49elTQD4OIiIioxMvIyEB4eDgyMjKkLoW0TPJgsXfvXvj5+cHf3x83btxAnTp14OnpiaioqFy3DwwMRN++fXHmzBkEBQXByckJ7du3x6tXr5TbLFy4ECtWrMDatWtx+fJlmJqawtPTE6mpqdp6WEREREQlUkxMDNavX4+YmBipSyEtkzxYLFmyBIMHD4a3tzdq1KiBtWvXwsTEBJs3b851+507d2LYsGFwd3dHtWrVsHHjRigUCgQEBAB431qxbNkyTJkyBd26dUPt2rWxfft2vH79Gr/++qsWHxkRERERUckhabBIT0/H9evX4eHhoVymo6MDDw8PBAUFfdQxkpOTkZGRgTJlygAAnj59ioiICJVjWlhYoHHjxh88ZlpaGuLj41VuRERERET08SQdvB0TEwO5XA47OzuV5XZ2dnj48OFHHeOHH36Ao6OjMkhEREQoj/HPY2at+6d58+ZhxowZeS2fiLQgMjUDUWmq/XRT5XLl/fvxyTDS1c2xn62hPuyM9Au8PiIiInqvSM8KNX/+fOzZsweBgYEwMjLK93EmTpwIPz8/5c/x8fFwcnLSRIlEpKadYdFYGhr+wfU9Lv2V6/IxLg7wc3UsqLKIiOgDZDIZDAwMIJPJpC6FtEzSYGFtbQ1dXV1ERkaqLI+MjIS9vf2/7rt48WLMnz8fp06dQu3atZXLs/aLjIyEg4ODyjHd3d1zPZahoSEMDQ3z+SiIqCD1K2+Ddnal87yfrSFbK4iIpGBvb4+JEydKXQZJQNJgYWBggPr16yMgIADdu3cHAOVA7BEjRnxwv4ULF2LOnDk4ceIEGjRooLLO2dkZ9vb2CAgIUAaJ+Ph4XL58Gb6+vgX1UIiogNgZsUsTERFRUSD5rFB+fn7YsGEDtm3bhuDgYPj6+iIpKQne3t4AgAEDBqik3gULFmDq1KnYvHkzKlasiIiICERERCAxMRHA++a30aNHY/bs2Thy5Aju3r2LAQMGwNHRURleiIiIiKhgREdH46effkJ0dLTUpZCWST7Gonfv3oiOjsa0adMQEREBd3d3HD9+XDn4OiwsDDo6f+efNWvWID09HT179lQ5jr+/P6ZPnw4AGD9+PJKSkjBkyBDExcWhRYsWOH78uFrjMIiIiIjov2VmZiI6OhqZmZlSl0JaJnmwAIARI0Z8sOtTYGCgys/Pnj37z+PJZDLMnDkTM2fO1EB1RERERET0XyTvCkVEREREREUfgwUREREREamtUHSFIiIqzMLDwxEe/uFraXyIg4ODyrTXREQlgaWlJfr06QNLS0upSyEtY7AgIvoP69atw4wZM/K8X/ZJJYiISgojIyNUrVpV6jJIAgwWRET/YejQoejatavKspSUFLRo0QIAcP78eRgbG+fYj60VRFQSJSYm4ubNm6hbty5KlSoldTmkRQwWRET/IbcuTUlJScr77u7uMDU11XZZRESFUkJCAk6fPg0XFxcGixKGg7eJiIiIiEhtDBZERERERKQ2BgsiIiIiIlIbgwURERERaYyRkRFq1KgBIyMjqUshLePgbSIiIiLSGEtLS/Tq1UvqMkgCeQ4WCoUCZ8+exblz5/D8+XMkJyfDxsYGdevWhYeHB5ycnAqiTiIiIiIqAuRyOZKSkmBqagpdXV2pyyEt+uiuUCkpKZg9ezacnJzQqVMnHDt2DHFxcdDV1UVoaCj8/f3h7OyMTp064dKlSwVZMxEREREVUlFRUVi6dCmioqKkLoW07KNbLFxdXdG0aVNs2LAB7dq1g76+fo5tnj9/jl27dqFPnz6YPHkyBg8erNFiiYiIiIiocProYHHy5ElUr179X7epUKECJk6ciLFjxyIsLEzt4oiIiIiIqGj46K5Q/xUqstPX10flypXzVRARERERERU9Gp1uNikpCX/++acmD0lEREREREWARqebDQ0NRZs2bSCXyzV5WCIiIiIqIuzt7TF58mTOCFUC8ToWRERERKQxMpkMenr8ilkS5emvXqZMmX9dz5YKIiIiopItNjYWR48exWeffQYrKyupyyEtylOwSEtLg6+vL9zc3HJd//z5c8yYMUMjhRERERFR0ZOeno7nz58jPT1d6lJIy/IULNzd3eHk5ISvv/461/W3b99msCAiIiIiKoHyFCw6d+6MuLi4D64vU6YMBgwYoG5NRERaFRwcnOd9UlJSlPdv3boFY2PjfP1ua2trlC9fPl/7EhERFSZ5ChaTJk361/VOTk7YsmWLWgUREWlLVFoGINNB//791TpOixYt8r2vkbEJQh4GM1wQEVGRxyH7RFRixWdkAkKBCl4TYWSTty/2iow0PNo0GgBQxWcZdPQN8/z7U6PD8PzAPMTExDBYEFGxYWFhgc8++wwWFhZSl0Jalqdg0bJlSxw5cgSlS5cGABw5cgTt2rXLdxcAIqLCwMimPEwcXfO0jzz9765Qxg4u0DXg+yAREQCYmJigXr16UpdBEsjTlbfPnz+vMsK/f//+CA8P13hRRERERFQ0JScn48aNG0hOTpa6FNKyPAWLfxJCaKoOIiIiIioG3r17h6NHj+Ldu3dSl0JaplawICIiIiIiAvIxePvEiRPKwTgKhQIBAQG4d++eyjZdu3bVTHVERERERFQk5DlY/PPieEOHDlX5WSaTQS6Xq1cVEREREREVKXkKFgqFoqDqICIiIqJiwMDAABUqVICBgYHUpZCW8ToWRERERKQxVlZWGDhwoNRlkAQ4eJuIiIiINEYIgczMTM4eWgIxWBARERGRxkRERGDOnDmIiIiQuhTSMgYLIiIiIiJSG4MFERERERGpTe1gMWzYMMTExGiiFiIiIiIiKqLUDhY7duxAfHy8JmohIiIiIqIiSu3pZjnin4iIiIiy2NraYsyYMTA1NZW6FNIyXseCiIiIiDRGV1cX5ubmUpdBElA7WCQkJGiiDiKiQisjIRYZCbEqy+QZacr7yeGh0NU3zLGfvpkV9M2sCrw+IqLC5O3btzh16hQ8PDxgaWkpdTmkRWyxICL6DzFX/4eIwO0fXB+6aXSuy+1bD4BD268LqCoiosIpNTUVDx48QIsWLaQuhbSMwYKI6D9YN+wCi2pN87wfWyuIiKgkYbAgIvoP7NJERET033iBPCIiIiIiUhuDBRERERFpjJmZGdq2bQszMzOpSyEt02iwePz4Mdq2bavJQxIRERFREVKqVCl88sknKFWqlNSlkJZpNFgkJibi7Nmzedpn9erVqFixIoyMjNC4cWNcuXLlg9vev38fXl5eqFixImQyGZYtW5Zjm+nTp0Mmk6ncqlWrlteHQkRERET5kJqaipCQEKSmpkpdCmlZngZvr1ix4l/Xv3r1Kk+/fO/evfDz88PatWvRuHFjLFu2DJ6enggJCYGtrW2O7ZOTk1GpUiX06tULY8aM+eBxa9asiVOnTil/1tPjGHUiIiIibXj79i327NmDIUOGwMHBQepySIvy9I179OjRcHBwgIGBQa7r09PT8/TLlyxZgsGDB8Pb2xsAsHbtWvz222/YvHkzJkyYkGP7hg0bomHDhgCQ6/osenp6sLe3z1MtRERERESUf3nqClWhQgUsXboUT58+zfX222+/ffSx0tPTcf36dXh4ePxdjI4OPDw8EBQUlJeycnj06BEcHR1RqVIl9OvXD2FhYWodj4iIiIiI/l2egkX9+vVx/fr1D66XyWQQQnzUsWJiYiCXy2FnZ6ey3M7ODhEREXkpS0Xjxo2xdetWHD9+HGvWrMHTp0/xySefICEh4YP7pKWlIT4+XuVGREREREQfL09doWbOnInk5OQPrq9RowaePn2qdlHq6Nixo/J+7dq10bhxY1SoUAH79u2Dj49PrvvMmzcPM2bM0FaJRERERMWWnp4ebGxsOMa1BMpTi0WNGjXQoEGDD67X19dHhQoVPupY1tbW0NXVRWRkpMryyMhIjY6PKF26NFxdXREaGvrBbSZOnIh3794pby9evNDY7yciIiIqSWxsbDBs2DDY2NhIXQppmWQXyDMwMED9+vUREBCgXKZQKBAQEICmTZtq7PckJibi8ePH/zorgaGhIczNzVVuRERERET08T46WHTo0AGXLl36z+0SEhKwYMECrF69+j+39fPzw4YNG7Bt2zYEBwfD19cXSUlJylmiBgwYgIkTJyq3T09Px61bt3Dr1i2kp6fj1atXuHXrlkprxNixY3H27Fk8e/YMFy9exOeffw5dXV307dv3Yx8qEREREeVTREQE5s2bp9aYWSqaPrrzW69eveDl5QULCwt89tlnaNCgARwdHWFkZIS3b9/iwYMHOH/+PH7//Xd07twZixYt+s9j9u7dG9HR0Zg2bRoiIiLg7u6O48ePKwd0h4WFQUfn7+zz+vVr1K1bV/nz4sWLsXjxYrRq1QqBgYEAgJcvX6Jv376IjY2FjY0NWrRogUuXLrE5joiIiEgLhBBIT0//6Al9qPj46GDh4+OD/v3745dffsHevXuxfv16vHv3DsD72aBq1KgBT09PXL16FdWrV//oAkaMGIERI0bkui4rLGSpWLHif75I9+zZ89G/myivwsPDER4enuf9HBwceJEgKjL4OiciovzI03B9Q0ND9O/fH/379wcAvHv3DikpKbCysoK+vn6BFEhUmKxbty5fM4j5+/tj+vTpmi+IqADwdU5ERPmh1jxgFhYWsLCw0FQtRIXe0KFD0bVrV5VlKSkpaNGiBQDg/PnzMDY2zrEfz+JSUcLXORER5QcnGC7i2GVBu3J73pKSkpT33d3dYWpqqu2yiDSKr3MiUoe1tTWGDBkCa2trqUshLWOwKOLYZYGIiIgKE319fZ68LKEYLIo4dlkgIiKiwuTdu3c4f/48WrRowS7zJUyeg4VcLseFCxdQu3ZtlC5dugBKorxglwUiIqK8Y1figpOcnIxr166hXr16DBYlTJ6Dha6uLtq3b4/g4GAGCyIiIiqS2JW46AgLC0NMTIxkv9/a2hrly5eX7PcXJfnqClWrVi08efIEzs7Omq6HiIiIqMCxK3HREBYWhupVqyI5NVWyGkyMjBAcEsJw8RHyFSxmz56NsWPHYtasWahfv36Orjbm5uYaKY6IiIioILArcdEQExOD5NRUrKhTES6lcga9ghaamIKRt58hJiaGweIj5CtYdOrUCQDQtWtXyGQy5XIhBGQyGeRyuWaqIyIiIqIixdTUFE2aNNFoMHMpZQw3CxONHY8KRr6CxZkzZzRdB/2DOv0JU1JSlPdv3bqVa1Pux2CfQqLiJ7/vLXxfIaKPZW5uDk9PT6nLIAnkK1i0atVK03VQNprsT5jVVzQ/2KeQqHjR1HuLNt5XOGMPUdGVnp6OyMhI2NnZwcDAQOpySIvyfR2LuLg4bNq0CcHBwQCAmjVrYtCgQZxWTAPU7U+YKlegx6UQAMDBJlVhpKuT52OwTyFR8aPOe4u231c4Yw9R0RUbG4vNmzdjyJAhDPolTL6CxbVr1+Dp6QljY2M0atQIALBkyRLMmTMHJ0+eRL169TRaZEmV3/6EyZl/j3GpaW4MEz1dTZZFREVcft5btP2+whl7iIiKnnwFizFjxqBr167YsGED9PTeHyIzMxPffPMNRo8ejT///FOjRRJpg9R9zwH2PyfKwhl7iIiKnny3WGQPFQCgp6eH8ePHo0GDBhorjkhbCkPfc4DjWoiIiKjoylewMDc3R1hYGKpVq6ay/MWLFzAzM9NIYUTaJHXfc4DjWoiIqHjQ0dGBiYkJdHTy93lIRVe+gkXv3r3h4+ODxYsXo1mzZgCACxcuYNy4cejbt69GCyTSpqLQ95yIiKgws7Ozw7hx46QugySQr2CxePFiyGQyDBgwAJmZmQAAfX19+Pr6Yv78+RotkP5dZGoGotIyVJalZrtA4f34ZBjp5vyia2uoDzsj/QKvj4iIiIhKhjwHC7lcjkuXLmH69OmYN28eHj9+DACoXLkyTEx4RURt2xkWjaWhH57rvcelv3JdPsbFAX6ujgVVFhEREZVQUVFR2LNnD/r06QNbW1upy9GIrMsrSKWoTO6S52Chq6uL9u3bIzg4GM7OznBzcyuIuugj9Stvg3Z2pfO8n60hWyuIiIhI8+RyOd6+fQt5th4URVVUWgYg00H//v0lrcPI2AQhD4MLfbjIV1eoWrVq4cmTJ3B2dtZ0PZRHdkbs0kREmsUulkRE78VnZAJCgQpeE2FkI82X+tToMDw/MK9ITO6Sr2Axe/ZsjB07FrNmzUL9+vVzzCVubm6ukeKIiEj72MWSiEiVkU15mDi6Sl1GoZevYNGpUycAQNeuXSGTyZTLhRCQyWTFoumLiKikYhdLIiLKj3wFizNnzmi6DiIiKiQKuotlfgdBauoq90VlECRRUVWmTBn069cPZcqUkboU0rI8B4uMjAzMnDkTa9euRZUqVQqiJiIiKoY0OQhSnavcF5VBkERFlaGhIVxcXKQugySQ52Chr6+PO3fuFEQtRERUjKk7CFKRkYZHm0YDAKr4LIOOvmGej1GUBkESFVUJCQm4fv066tevDzMzM6nLIS3KV1eo/v37Y9OmTbwYHhER5Vl+B0HK0//uCmXs4AJdg/x1hSKigpWYmIizZ8+iatWqDBYlTL6CRWZmJjZv3oxTp07lOivUkiVLNFIcERERUXEUHh6O8PAPz772IQ4ODnBwcCiAiojUl69gce/ePdSrVw8A8NdfqtMOZp8lioiIiIhyWrduHWbMmJHn/fz9/TF9+nTNF0SkAZwViigPeOEwIiLShKFDh6Jr164qy1JSUpQTE5w/fz7Xmc/YWkGFWb6Cxb+JioqCra2tpg9LVCjwwmFERKQJuXVpSkpKUt53d3fP0dW8qDAyMoKbmxuMjIykLoW0LE/BwsTEBM+fP4eNjQ0AoHPnzti4caPyP0ZkZCQcHR15gTwqtnjhMCIion9naWmJHj16SF0GSSBPwSI1NRVCCOXPf/75p8oFiwCorCcqbgr6wmFERERFXWZmJuLj42Fubg49PY13jqFCTEfTB+TgbSIiIqKSKzo6GitXrkR0dLTUpZCWMUYSERFRsRIWFoaYmJg875e9F8atW7dyHTz9MaytrXkBRiqR8hQsZDKZSovEP38mooLHuc+JiD4sLCwM1atWRXJqqlrHyZqdKT9MjIwQHBLCcEElTp6ChRACrq6uyjCRmJiIunXrQkdHR7meiAoW5z6nkiAjIRYZCbEqy+QZacr7yeGh0NU3zLGfvpkV9M2sCrw+KrxiYmKQnJqKFXUqwqVU3locUuUK9LgUAgA42KQqjHTz3mM8NDEFI28/Q0xMDIMFlTh5ChZbtmwpqDqI6CNx7nMqCWKu/g8Rgds/uD500+hcl9u3HgCHtl8XUFVUlLiUMoabhUme9knO/HtWy5rmxjDRy3ldIiL6sDwFi6+/5ps1kdSK89znRFmsG3aBRbWmed6PrRVE0nNwcIC/v7/UZZAEOHibiIgKHXZpIiIqehgsSC0cSExERETZxcTE4PDhw+jWrRusra2lLoe0iMGC1MKBxERERJRdRkYGXr58iYyMDKlLIS1jsCC1cCAxEREREQEMFqQmDiQmIiLKKTg4OM/7aOoCfQAv0kfSyFewkMvl2Lp1KwICAhAVFQWFQqGy/vTp0xopjqQn5Rsj3xSJiKioiUrLAGQ66N+/v1rHUecCfQBgZGyCkIfB/BwlrcpXsBg1ahS2bt2Kzp07o1atWrz6djFUGN4Y+aZIRERFTXxGJiAUqOA1EUY2efv8UmSk4dH/X6Olis8y6ORyEciPkRodhucH5kl2kb7SpUvj888/R+nSpbX+u0la+QoWe/bswb59+9CpUydN10OFhNRvjFK/KUqJrUREREWfkU15mDi65mkfefrf7+XGDi7QNch/VygpGRsbo3bt2lKXQRLIV7AwMDCAi4uLRgpYvXo1Fi1ahIiICNSpUwcrV65Eo0aNct32/v37mDZtGq5fv47nz59j6dKlGD16tFrHpH9Xkt8YtY2tREREVBwkJSXh/v37qFmzJsdZljD5Chbff/89li9fjlWrVqnVDWrv3r3w8/PD2rVr0bhxYyxbtgyenp4ICQmBra1tju2Tk5NRqVIl9OrVC2PGjNHIMYkKC7YSERFRcRAfH49jx47BycmJwaKEyVewOH/+PM6cOYNjx46hZs2a0NfXV1l/8ODBjzrOkiVLMHjwYHh7ewMA1q5di99++w2bN2/GhAkTcmzfsGFDNGzYEAByXZ+fY5J6MhJikZEQq7JMnpGmvJ8cHgrdXL7k8qq6H8ZWIiIiIiqK8hUssgblqCM9PR3Xr1/HxIkTlct0dHTg4eGBoKCgQnNM+ncxV/+HiMDtH1wf+v9n0f/JvvUAOLT9uoCqIiIiIiJty1ew2LJli9q/OCYmBnK5HHZ2dirL7ezs8PDhQ60eMy0tDWlpf59lj4+Pz9fvL4msG3aBRbWmed6PrRVERERExQsvkAdg3rx5mDFjhtRlFEns0kRERETZGRgYoHLlyjAwMJC6FNKyfAeL/fv3Y9++fQgLC0N6errKuhs3bvzn/tbW1tDV1UVkZKTK8sjISNjb2+erpvwec+LEifDz81P+HB8fDycnp3zVQERERFSSWVlZqT3DIRVNOvnZacWKFfD29oadnR1u3ryJRo0awcrKCk+ePEHHjh0/6hgGBgaoX78+AgIClMsUCgUCAgLQtGneu9aoc0xDQ0OYm5ur3IiIiIgo7xQKBdLS0qBQKKQuhbQsX8Hip59+wvr167Fy5UoYGBhg/Pjx+OOPPzBy5Ei8e/fuo4/j5+eHDRs2YNu2bQgODoavry+SkpKUMzoNGDBAZSB2eno6bt26hVu3biE9PR2vXr3CrVu3EBoa+tHHJCIiIqKCExkZifnz5+foQULFX766QoWFhaFZs2YA3l9dMSEhAQDw1VdfoUmTJli1atVHHad3796Ijo7GtGnTEBERAXd3dxw/flw5+DosLAw6On9nn9evX6Nu3brKnxcvXozFixejVatWCAwM/KhjEhV1nOKXiIiICqN8BQt7e3u8efMGFSpUQPny5XHp0iXUqVMHT58+hRAiT8caMWIERowYkeu6rLCQpWLFih91/H87JlFRxyl+iYiIqDDKV7Bo27Ytjhw5grp168Lb2xtjxozB/v37ce3aNfTo0UPTNRJRNpzil4iIiAqjfAWL9evXKwfkDB8+HFZWVrh48SK6du2KoUOHarRAIlLFLk1ERERUGOUrWOjo6KiMfejTpw/69OmjsaKIiIiIirPiPF7O1tYWY8eOhZGRkdSlkJbl+zoW586dw7p16/D48WPs378fZcuWxc8//wxnZ2e0aNFCkzUSERERFSvFebycrq4uTE1NpS6DJJCvYHHgwAF89dVX6NevH27evIm0tPcJ+927d5g7dy5+//13jRZJREREVJwU5/Fyb968wYkTJ+Dp6YkyZcpIXQ5pUb6CxezZs7F27VoMGDAAe/bsUS5v3rw5Zs+erbHiiIiIiIqjotClKb/S0tLw119/oXXr1lKXQlqWr2AREhKCli1b5lhuYWGBuLg4dWsiIiIiKlCRqRmISstQWZYqlyvv349PhpGubo79bA31YWekX+D1ERVF+b6ORWhoKCpWrKiy/Pz586hUqZIm6iIiIiIqMDvDorE0NPyD63tc+ivX5WNcHODn6lhQZREVafkKFoMHD8aoUaOwefNmyGQyvH79GkFBQRg7diymTp2q6RqJiIiINKpfeRu0syud5/1sDdlaQfQh+QoWEyZMgEKhwKeffork5GS0bNkShoaGGDt2LL777jtN10hERESkUXZG7NJUUMzMzNC+fXuYmZlJXQppWb6ChUwmw+TJkzFu3DiEhoYiMTERNWrUQKlSpTRdHxEREREVIaVKlULTpnmf8YqKvnxfxwIADAwMUKNGDU3VQkRERERFXEpKCp48eYJKlSrB2NhY6nJIi/IULAYNGvRR223evDlfxRARERFR0RYXF4f9+/djyJAhDBYlTJ6CxdatW1GhQgXUrVsXQoiCqomIiIiIiIqYPAULX19f7N69G0+fPoW3tzf69+/PKyoSERERERF08rLx6tWrER4ejvHjx+Po0aNwcnLCF198gRMnTrAFg4iIiIioBMtTsAAAQ0ND9O3bF3/88QcePHiAmjVrYtiwYahYsSISExMLokYiIiIiKiL09PRgb28PPT215giiIkitv7iOjg5kMhmEEJDL5ZqqiYiIiIiKKBsbGwwdOlTqMkgCeW6xSEtLw+7du9GuXTu4urri7t27WLVqFcLCwngdCyIiIiKiEipPLRbDhg3Dnj174OTkhEGDBmH37t2wtrYuqNqIiIiIqIgJDw/Hpk2b4OPjAwcHB6nLIS3KU7BYu3Ytypcvj0qVKuHs2bM4e/ZsrtsdPHhQI8URERERUdHDLvIlU56CxYABAyCTyQqqFiIiIiIiKqLyfIE8IiIiIiKif8rz4G0iIiIiIqJ/4gTDRERERKQx1tbW8PX1haWlpdSlkJYxWBARERGRxujr68PW1lbqMkgC7ApFRERERBoTFxeHI0eOIC4uTupSSMsYLIiIiIhIY1JSUnDz5k2kpKRIXQppGYMFERERERGpjcGCiIiIiIjUxmBBRERERERqY7AgIiIiIo0xNTVF8+bNYWpqKnUppGWcbpaIiIiINMbc3BweHh5Sl0ESYIsFEREREWlMWloanj17hrS0NKlLIS1jsCAiIiIijXnz5g22bduGN2/eSF0KaRmDBRERERERqY3BgoiIiIiI1MZgQUREREREamOwICIiIiKN0dHRgZmZGXR0+DWzpOF0s0RERESkMXZ2dvDz85O6DJIAoyQREREREamNwYKIiIiINCYyMhJLlixBZGSk1KWQljFYEBEREZHGKBQKJCQkQKFQSF0KaRmDBRERERERqY3BgoiIiIiI1MZgQUREREREamOwICIiIiKNKVOmDL7++muUKVNG6lJIy3gdCyIiIiLSGENDQ1SsWFHqMkgCbLEgIiIiIo2Jj4/HqVOnEB8fL3UppGWFIlisXr0aFStWhJGRERo3bowrV6786/a//PILqlWrBiMjI7i5ueH3339XWT9w4EDIZDKVW4cOHQryIRARERERgKSkJFy4cAFJSUlSl0JaJnmw2Lt3L/z8/ODv748bN26gTp068PT0RFRUVK7bX7x4EX379oWPjw9u3ryJ7t27o3v37rh3757Kdh06dEB4eLjytnv3bm08HCIiIiKiEknyYLFkyRIMHjwY3t7eqFGjBtauXQsTExNs3rw51+2XL1+ODh06YNy4cahevTpmzZqFevXqYdWqVSrbGRoawt7eXnmztLTUxsMhIiIiIiqRJA0W6enpuH79Ojw8PJTLdHR04OHhgaCgoFz3CQoKUtkeADw9PXNsHxgYCFtbW1StWhW+vr6IjY39YB1paWmIj49XuRERERER0ceTNFjExMRALpfDzs5OZbmdnR0iIiJy3SciIuI/t+/QoQO2b9+OgIAALFiwAGfPnkXHjh0hl8tzPea8efNgYWGhvDk5Oan5yIiIiIhKJmNjY9StWxfGxsZSl0JaViynm+3Tp4/yvpubG2rXro3KlSsjMDAQn376aY7tJ06cCD8/P+XP8fHxDBdERERE+VC6dGl07dpV6jJIApK2WFhbW0NXVxeRkZEqyyMjI2Fvb5/rPvb29nnaHgAqVaoEa2trhIaG5rre0NAQ5ubmKjciIiIiyruMjAxERUUhIyND6lJIyyQNFgYGBqhfvz4CAgKUyxQKBQICAtC0adNc92natKnK9gDwxx9/fHB7AHj58iViY2Ph4OCgmcKJiIiIKFcxMTFYs2YNYmJipC6FtEzyWaH8/PywYcMGbNu2DcHBwfD19UVSUhK8vb0BAAMGDMDEiROV248aNQrHjx/Hjz/+iIcPH2L69Om4du0aRowYAQBITEzEuHHjcOnSJTx79gwBAQHo1q0bXFxc4OnpKcljJCIiIiIq7iQfY9G7d29ER0dj2rRpiIiIgLu7O44fP64coB0WFgYdnb/zT7NmzbBr1y5MmTIFkyZNQpUqVfDrr7+iVq1aAABdXV3cuXMH27ZtQ1xcHBwdHdG+fXvMmjULhoaGkjxGIiIiIqLiTvJgAQAjRoxQtjj8U2BgYI5lvXr1Qq9evXLd3tjYGCdOnNBkeURERERE9B8k7wpFRERERMWLrq6u1CWQBApFiwURERERFQ8ODg6YMmWK1GWQBNhiQUREREREamOwICIiIiKNiY6Oxrp16xAdHS11KaRlDBZEREREpDGZmZmIiIhAZmam1KWQljFYEBERERGR2hgsiIiIiIhIbQwWRERERESkNgYLIiIiItKY0qVLo2fPnihdurTUpZCW8ToWRERERKQxxsbGqFmzptRlkATYYkFEREREGpOYmIigoCAkJiZKXQppGYMFEREREWlMQkICTp48iYSEBKlLIS1jsCAiIiIiIrUxWBARERERkdoYLIiIiIiISG0MFkRERESkMYaGhnB1dYWhoaHUpZCWcbpZIiIiItKYMmXKoG/fvlKXQRJgiwURERERaYxcLkdSUhLkcrnUpZCWMVgQERERkcZERUVh8eLFiIqKkroU0jIGCyIiIiIiUhuDBRERERERqY3BgoiIiIiI1MZgQUREREREauN0s0RERESkMXZ2dpgwYQL09fWlLoW0jMGCiIiIiDRGR0eHF8crodgVioiIiIg0JjY2Fjt27EBsbKzUpZCWMVgQERERkcakp6fj8ePHSE9Pl7oU0jIGCyIiIiIiUhuDBRERERERqY3BgoiIiIiI1MZgQUREREQaY25ujo4dO8Lc3FzqUkjLON0sEREREWmMqakpGjVqJHUZJAG2WBARERGRxqSkpODOnTtISUmRuhTSMrZYEBERSSw8PBzh4eF53s/BwQEODg4FUBFR/sXFxeHQoUMYMmQIjI2NpS6HtIjBgoiISGLr1q3DjBkz8ryfv78/pk+frvmCiIjygcGCiIhIYkOHDkXXrl1VlqWkpKBFixYAgPPnz+d65petFURUmDBYEBERSSy3Lk1JSUnK++7u7jA1NdV2WUREecJgQUREVIDCwsIQExOT5/2yD3y9detWvvuqW1tbo3z58vnalyg/9PX1Ua5cOejr60tdCmkZgwUREVEBCQsLQ/WqVZGcmqrWcbK6ROWHiZERgkNCGC5Ia6ytreHj4yN1GSQBBgsiIqICEhMTg+TUVKyoUxEupfLW4pAqV6DHpRAAwMEmVWGkm/cZ4kMTUzDy9jPExMQwWBBRgWOwICIiKmAupYzhZmGSp32SM+XK+zXNjWGip6vpslRwylvSlPDwcKxfvx5Dhgzha6OEYbAgIiIiTnlLRGpjsCAiIpJYZGoGotIyVJalyv9usbgfnwwj3ZwtFraG+rAz+u8BssHBwf+5TdOmTbFjxw6VZWlpacq+8ps2bYKhoWGO/aytrXHjxo1/PTYHkBOVDAwWREREEtsZFo2loR/uhtTj0l+5Lh/j4gA/V8cP7heVlgHIdNC/f3+1a1RnMK6RsQlCHgYzXBAVcwwWREREEutX3gbt7ErneT9bw39vrYjPyASEAhW8JsLIJu9f6hUZaXi0aTQAoIrPMujo52yx+C+p0WF4fmAeB5ATlQAMFkRERBKzM/q4Lk35ZWRTHiaOrv+6TUZCLDISYlWWiQ/cz07fzAr6ZlbqFUjFio2NDb777juYm5tLXQppGYMFERERIebq/xARuP2D60P/v+Xin+xbD4BD268LqCoqivT09FCmTBmpyyAJMFgQERERrBt2gUW1pnnej60V9E9v377FmTNn0KZNG1haWkpdDmlR3q+2UwBWr16NihUrwsjICI0bN8aVK1f+dftffvkF1apVg5GREdzc3PD777+rrBdCYNq0aXBwcICxsTE8PDzw6NGjgnwIRERERZq+mRVMHF3zfGOwoH9KTU3F3bt3karmFeep6JE8WOzduxd+fn7w9/fHjRs3UKdOHXh6eiIqKirX7S9evIi+ffvCx8cHN2/eRPfu3dG9e3fcu3dPuc3ChQuxYsUKrF27FpcvX4apqSk8PT35AiciIiIiKiCSB4slS5Zg8ODB8Pb2Ro0aNbB27VqYmJhg8+bNuW6/fPlydOjQAePGjUP16tUxa9Ys1KtXD6tWrQLwvrVi2bJlmDJlCrp164batWtj+/bteP36NX799VctPjIiIiIiopJD0jEW6enpuH79OiZOnKhcpqOjAw8PDwQFBeW6T1BQEPz8/FSWeXp6KkPD06dPERERAQ8PD+V6CwsLNG7cGEFBQejTp0+OY6alpSEtLU3587t37wAA8fHx+X5s6khMTAQA3H2XhORM+X9sXTBCE1IAAMmvH0GenqL1358W8xLA++dCG38HPud8zvmcFzypn2+Az7kU+Jxrn7af839KSEhAamoqEhISYGpqqtax+PeU/u+ZxczMDDKZ7N83EhJ69eqVACAuXryosnzcuHGiUaNGue6jr68vdu3apbJs9erVwtbWVgghxIULFwQA8fr1a5VtevXqJb744otcj+nv7y/wfiY93njjjTfeeOONN9544+0ft3fv3v3nd3vOCgVg4sSJKq0gCoUCb968gZWV1X8ns2IqPj4eTk5OePHiBeeh1hI+59rH51y7+HxrH59z7eNzXrzw7/k3MzOz/9xG0mBhbW0NXV1dREZGqiyPjIyEvb19rvvY29v/6/ZZ/0ZGRsLBwUFlG3d391yPaWhoCEND1auJli5dOi8PpdgyNzcv8f+RtI3PufbxOdcuPt/ax+dc+/icFy/8e34cSQdvGxgYoH79+ggICFAuUygUCAgIQNOmuc+l3bRpU5XtAeCPP/5Qbu/s7Ax7e3uVbeLj43H58uUPHpOIiIiIiNQjeVcoPz8/fP3112jQoAEaNWqEZcuWISkpCd7e3gCAAQMGoGzZspg3bx4AYNSoUWjVqhV+/PFHdO7cGXv27MG1a9ewfv16AIBMJsPo0aMxe/ZsVKlSBc7Ozpg6dSocHR3RvXt3qR4mEREREVGxJnmw6N27N6KjozFt2jRERETA3d0dx48fh52dHQAgLCwMOjp/N6w0a9YMu3btwpQpUzBp0iRUqVIFv/76K2rVqqXcZvz48UhKSsKQIUMQFxeHFi1a4Pjx4zAyMtL64yuqDA0N4e/vn6OLGBUcPufax+dcu/h8ax+fc+3jc1688O+ZNzIhhJC6CCIiIiIiKtokv0AeEREREREVfQwWRERERESkNgYLIiIiIiJSG4MFERERERGpjcGCiIiIiIjUxmBBVMCyT7zGSdi0i883ERGR9jBYEBWQrC+1crlcuUwmk0lVTolx584dTJs2DQCfbyp+oqKiEB0dDQA4dOgQdu3aJXFFJUtu7+tUtCgUCqlLKNYYLEqIrDfD0NBQXLhwAbdu3UJERITEVRVfQgjIZDL88ccf+Prrr9G5c2f4+Pjg9evXfFMrQLdv30aTJk2kLqNEYytRwUlISECNGjWwaNEibNq0CV5eXlKXVOLIZDIcO3YMa9euRXp6utTlUB4pFArlRZf37duHVatWYerUqXj16hX/nhrCYFECZH3JPXjwIDw8PDBs2DD069cPX331FQICAqQur1iSyWQ4fPgwPv/8c9ja2qJv3744deoUunbtihcvXkhdXrF0+/ZtNGvWDGPGjMHMmTOlLqfEyAoSycnJUCgUDM4FyMzMDDt37sTy5csxdOhQrFixAl9++aXUZZUoV69eRe/evVGmTBnlF1QqOrL+ZuPHj8f333+PM2fO4OTJk2jUqBF++eUXtkRpAP9XlAAymQwXL17EoEGDMG7cONy+fRuTJk3C6dOncevWLanLK3aEEIiOjsbcuXMxffp0LF26FJ06dYIQAo0bN0aFChVUtiX13b17F82aNcPYsWMxZ84c5fKtW7fil19+kbCy4i3rpMWxY8fg7e2Nxo0bY8qUKbh06ZLUpRU7QggoFArUqVMHGRkZUCgUCA8PR1RUlNSllRj379/HnTt3MHz4cPTt25fBoojavXs3du7cid9//x0HDhzAwoULER4eDgsLC+jq6kpdXpHH/xXFXNYX1z///BMdO3bE8OHD8eLFC0yZMgVDhw7F999/DwD8cNKArOdaJpPB0NAQiYmJ+Oabb/D69Wu4ubmhY8eOWL16NQDgt99+U25L6omNjUWfPn3g4uKCGTNmKJfPnTsXY8aMQfny5SWsrnjLapnz8vKCq6srunfvjnv37mHYsGEIDAyUurxiIyvARUdHw97eHuHh4Thy5AjmzZuHBQsW8P27gAkhkJSUhCZNmmDw4MEIDw8H8P7sN08OFT3h4eHo0KED3NzcsGvXLnTt2hWrV69Gly5dkJSUhDdv3khdYpHGYFHMZX1xTU9PR/ny5REREYGmTZuiffv2yi+5x44dw4EDB5CSkiJlqUWeTCbDoUOHMGfOHBgbG8PAwACbNm1CixYt8Nlnn2HVqlUAgBcvXmDx4sU4fvy4xBUXD5mZmcoWoawuUIsXL8aSJUuwd+9eNG7cOMc+7K6TP0lJSSo/379/H5MnT8aKFSswa9Ys+Pr64vLly0hMTMSIESMYLjQgK1QcPXoU/fv3x+7du1GmTBl06dIFe/fuxdKlS7F48WJluFi4cCH27NkjcdXFi0wmg6mpKW7cuIFy5crh8uXLuHPnjnIdFV65vdeHhoYiNTUVly5dwrfffov58+fD19cXALBx40asXLmSXaLUIajYev78ufL+0qVLha2trXB0dBTDhw9XLs/MzBSDBg0Sw4YNEykpKVKUWWzcvn1bODg4iLVr14rU1FTx/fffC0tLS+Hp6amy3cSJE0XdunXFixcvJKq0+Hn9+rXw9/cXNWrUEK1atRLW1tbizJkzObY7dOiQ1msrLvz9/UW3bt2EXC5XLgsODhbe3t4iISFBPH/+XLi4uIhvv/1WnDlzRri6ugo3Nzdx4sQJCasuHg4ePCiMjIzEjz/+KEJDQ1XW7dq1S+jr64uePXuKPn36CENDQ3Hjxg2JKi0+FApFrstDQkJE6dKlRefOnXP8Lajwun79uoiLixNCCHH58mVRuXJlIZPJxMaNG5XbJCUlic6dO4vvvvtOqjKLBQaLYurBgweidu3aYuHChcplXl5ewsjISNy/f1+kpKSIxMREMWHCBGFvby+Cg4MlrLboe/jwoZg2bZoYPXq0ctndu3eFh4eHaNasmZg7d67YsWOH+Pbbb4WFhYW4deuWhNUWHwqFQvkF4NWrV8Lf3184OjqKL7/8UrlNZmamEEKIadOmCZlMJp4+fSpFqUXew4cPxd27d4UQQqSnpyuXh4eHCyGE8Pb2Fl9++aXyBEX37t2FjY2NaN68uUhMTPzgFzX6d0+ePBHVq1cX69atE0K8fz2npqaKgIAAERMTI4R4Hzy8vLxEjx49xO3bt6Ust1jIeq1evHhRrFu3Tvj7+4uwsDCRlJQkhHj/+WphYSG6dOkiHj9+LGWp9AHZT4CcPXtWyGQysX79epGYmCji4uLE2LFjRdWqVcW8efNEXFycuHLliujYsaNwd3cXGRkZQogPh0v6dwwWxdSjR4+Ej4+PaNiwoVi6dKkQQoiwsDDRrFkzYWlpKWrXri1at24tHB0deXZLDXK5XERFRYnGjRuL0qVLi379+qmsv3btmhgzZoxwdnYW9evXF5999pm4c+eORNUWD69fvxZ37twRqampOdaFh4cLf39/Ub16deHv769cPmXKFGFiYiKuXbumxUqLj+wfsIGBgaJ169YiIiJCuSw5OVnUr19fzJkzRwghREZGhvjmm2/EypUrRVRUlNbrLU4eP34sqlSpIs6dOycyMzPFggULRLNmzYSVlZVwcHBQtnwmJyfn+n+C8ibrtX7w4EFRpkwZ0bZtW1GjRg3h4uIitm7dqgxzDx48ENbW1qJly5Y8WVHIZH+/WrFihdi4caPQ0dER1tbW4qeffhJCvO/RMX78eOHo6CjMzc1F7dq1hYeHh/KkSdYJKco7BotiIrdk/fjxYzFixAjh7u4uVq1apVy+YcMGsXjxYvHzzz+LZ8+eabPMYuOfz/dvv/0mGjZsKCpXriz++OOPHNsnJyeLtLQ0djdT0507d4SLi4uYPn26ypnCNWvWiMOHDwsh3n9g+Pv7i2rVqokFCxaIuXPnCiMjI4YKNWS93p8+fSr++usvUaZMGdGxY0cRHR0thBAiLS1N9O3bV3z66afi4MGDYvz48cLZ2Vm8fPlSyrKLhSdPnoj27duLJk2aCAcHB9G1a1cxa9YsERwcLFxcXMSkSZOkLrHYOXfunLC3txdbtmwRQgjx7t07IZPJRNWqVcW6devEmzdvhBDvW6UrVKggwsLCJKyWPsTf319YWlqKAwcOiO3btwsfHx+hp6cnVq9eLYR43/IaExMjTp48KR4+fKhs5chqsaD8YbAoRi5fviz27Nmjsiw0NFR89913olatWsqkTpoRFBQkhg4dqjyzcfLkSdGoUSPRs2dP8eeffyq345uUZjx58kTY2dmJiRMnKrvfZBkwYICwsrISb9++FUK87xY1c+ZMYWFhIXR0dBgqNODQoUOiVq1aIjg4WAQHB4ty5cqJ9u3bK8PFkSNHhKenp3B0dBTVq1cX169fl7jioicrwKWkpKi0Ppw5c0YsWbJE/PjjjyotRZ6enmLNmjVar7M4y8jIED/99JMYP368EOL9Z6izs7Pw9fUVffv2FRYWFmLDhg3Klri0tDQpy6UPePv2rahTp45Yvny5yvJx48YJfX19sXbtWuXnRXbZu1BR/jBYFAMKhUK8e/dO9OzZU9StW1f88ssvKusfP34smjZtKipUqCB+/PFHiaosXuRyuZg7d66oVq2aGDFihDJc/O9//xNNmjQRPXv2FOfOnZO4yuJl2bJlom7durmuS0xMFJ07dxZ79+5VLnv58qWYP3++CAkJ0VaJxU7WF92XL1+K9u3bi7Vr1yrXPXjwQJQrV054eHgoP6Cjo6PFkydP2P0pH7Ke62PHjonOnTuLZs2aiS+++CJHiBbi/et96tSpwt7eXjx69EjbpRZ7t2/fFvfv3xeJiYmiVatWwsfHRwghREJCgrC0tBTlypUTW7ZsEXK5nP3wCyGFQiFiYmJEhQoVlK1O2QPgp59+KmxsbMTGjRt54q8AcLrZIkz8//zZqampMDc3x/jx41GtWjWsWLEC+/btU25XqVIlNG3aFDKZDMePH+cczRqgo6ODESNGYNCgQbh06RK+++47yOVydO7cGVOmTEFERARmz56NoKAgqUstNszMzBAWFoYtW7YgKioKISEhuHPnDm7evInz588jISEBly9fRmhoKK5evQo7OzuMGzcOrq6uUpdeZMlkMvz555+YO3cudHV10alTJwDvp3CsXr06Tp48iYcPH6JPnz6Ijo6GtbU1nJ2dYWNjI3HlRU/WNUG++OILuLq6YsyYMbh+/Tr69euHixcvKqfNPHDgAEaOHIlNmzbh999/h4uLi8SVF20i23Uosp7j2rVro0aNGvjrr78QGxuLQYMGAXg/Vfinn34KDw8PfPLJJ9DR0eF0s4XAP6eUlclksLKyQr169bBs2TIkJyfDwMAAmZmZEEKgcuXKKFu2LIYPH678jBa8HonmSJtrKL+yzpL8/vvv4uuvv1aelb127Zr44osvRMuWLcW+ffuU248dO1b8+OOPyoFnlD//nAEkISFBzJs3TzRs2FAMHz5c2Yx68OBB0a5dO/YxV9PTp0+VUwTeunVLjBs3Tjg4OIgqVaoId3d3UaFCBeHq6irq1KkjTE1NhUwmEzVq1BC2trY8a64h27dvF4aGhsLY2FgEBgYql2e91oODg4WxsbHo0aMHuxGo4a+//hJubm5ixYoVQggh4uLihJOTkyhVqpSoXr26uHjxohDi/Qw3c+bMEX/99ZeU5RYLWZ+jJ0+eFN7e3qJdu3ZiwoQJ4uHDh0KI9xMVODg4iP/973/i7du3Yvr06cLLy4uD5AuR7O85N2/eFHfu3FGOgbly5YqoX7++6NSpk/JvJpfLhZeXl7h586bw8vISjRo1YquFhjFYFGEHDhwQ5ubmYvz48eL+/fvK5VevXhV9+/YVNWrUEL179xaDBg0SlpaWHKidT1kfPiEhIaJu3bpi2rRpKuvj4uLElClThIODgxg/fryyW1RiYqLWay1O0tPTRZs2bYS9vb3yg0IIISZPnqyc8Sk2NlYoFAqRkJAgfvjhB9G1a1dx+/ZtDqbUsAMHDghbW1sxYMAA5ZcuIVT/b/CLrnpu3bol5syZI9LS0sSrV69EpUqVxIgRI8S7d++Es7OzaN26tbJ7Jb8Iac6vv/4qSpUqJYYPHy7Wr18vypQpI9q0aaO8DlS7du2ElZWVqFq1qihTpgzHDhVSY8eOFc7OzsLQ0FB4eXmJI0eOCCGEOHz4sKhbt65wcHAQXl5eonbt2qJq1aoiMzNT+Pv7i+bNm0tcefHDYFFE3b17V9jZ2YkNGzaoLH/9+rXy3yVLlojmzZuL7t27c27zPMg6A5J9rv7Hjx+LjIwM8e2334rmzZsrp9XM8ubNG1GxYkVRunRp5bUs2PdWfXfv3hUNGzYU1atXV4aLiRMnikaNGil/zrqWhY+Pj5g9e7aU5RZ5Wa/ZBw8eiMDAQHH06FHl/4ddu3aJsmXLiu+++04lRPB1rhmZmZnK6wkNHDhQ9OnTR3ndhK5duwqZTCYaNWrEmeU0KCIiQtSvX185JXt6erqwtbUVo0ePVjkTvmXLFrFt2zZeEK8Qyf6+8/vvvwtXV1cREBAgDh06JDw9PUWrVq2U401fvXolJk6cKL799lsxfvx45XiLgQMHil69eonU1FS+j2kQg0URFRAQIBo3bixSUlLEmzdvxIYNG4SHh4dwcnIS3377rXLmEIVCIZKTkyWutugJCQkRvr6+Qi6Xi3379gldXV3x6tUrERkZKUaNGiUaN26s8iU2Ojpa9O3bV8yZM4dnyzUg601eLpeL4OBg0axZM1G3bl3x9u1bce7cOVGvXj3x/fffi+fPn4u7d++KSZMmCSsrK17oUQ1Zz/mBAweEi4uLqFmzpqhTp46oWLGiskV0586domzZsmL06NF8rvMp+0UdX7x4IV6+fJmjFaht27YqJy/GjBkjrl+/zuslqGHlypXi5MmTKtcniIyMFPXr1xfv3r0Tz549E46OjmLw4MHK9QEBAVKUSnlw7NgxMWzYMJWLAT948EB4eXmJli1bip07d+bYJzY2VowaNUqUKVNGpbcHaQaDRRGR9UGUlbQvXbokZDKZGDVqlKhVq5bo2rWrGDt2rFiyZImwtbUVp06dkrLcIivrQ+f8+fNCJpOJtm3bCl1dXbF161blNlFRUWLUqFGiUaNGYuTIkeL+/ftiwoQJom3bthzDoqbsZ2Oztxh9//33QiaTiYYNG4q4uDgxf/58Ub16dSGTyUT16tWFm5ubuHnzpgQVFy/nz58X5ubmypbQK1euCJlMJpYtW6bcZufOncLIyEj88MMPKn8j+m+xsbHK+4cOHRJ16tQRtWrVEnZ2dmL8+PHKMVlNmjQRrVq1EocOHRKjR48WVlZWytZoyp86deoIR0dHERgYqHyfDw8PFxUqVBAbN24ULi4uYsiQIcpuZn/99Zfo0KGDOHv2rJRl07948eKFcHNzE8bGxmLEiBEq67LCxaeffqoyJXNYWJiYO3euaNCgAT8zCgiDRRGQfRrCgQMHKj98du3aJTp16iTGjx8vHjx4oNy+YcOG4tdff5Wk1qJs/fr1YuPGjSIhIUEIIcSMGTOETCYTLVq0EPHx8SrbRkdHi7lz5woXFxfh6OgonJ2d2fdWTS9fvhS9evUSp0+fVlm+YMECYWVlJTZu3Cjq1q0rGjVqJN6+fSsiIiLEgQMHxO3bt0VkZKREVRcva9asEd98840Q4v11Q8qXLy98fX2V67Pei/bs2cMxFXkUHR0typYtK4KDg8Xp06eFiYmJWLt2rYiIiBAbN24UMplM5SKPLi4uokqVKsLV1VXcuHFD4uqLruxdXNq2bSvKly8vzpw5ozxJN3bsWGFiYiI6dOigst+kSZNEvXr1OAFHIZL1t8z+N7148aJo2bKlcHd3F7///rvK9sHBwaJ169Y5QseTJ0+U198hzWOwKCL2798vLCwshJ+fn8qHTFYf3CwTJ07klUDzycPDQ1SrVk3s2LFDpKeni5UrV4qJEycKAwMD8dVXX4kXL14IIf5+U0tNTRWRkZHizz//zHWuecqbrOutdOrUSZw/f14IIcS8efNEmTJllFczf/DggahTp46oV6+eytlf+nj/NnPT8OHDhZeXl4iMjBROTk5iyJAhytf7zp07xfTp07VVZrHz5MkTUa5cOXH79m0xefJkMXLkSCHE+9d9lSpVVLrgCPG+xe7p06cqExdQ/mQf7P7JJ58ow4UQQty4cUN06dJFuLm5ifXr14tdu3aJESNGCHNzc3Hr1i2JKqZ/yv6+9erVK/Hq1StlN+8rV66IFi1aiK5du4oTJ06o7Pfs2TPlvpy1TjsYLAqhf54dv3PnjrCxsRHr169XWR4dHa18w9y9e7f46quvhK2tLc9u5VH2sx+9evUSNWvWFHv37lV28wgMDFSGi1evXim3DQoK0nqtxV1W94Nu3bqJwYMHCxsbmxwfFMHBwcLZ2Vk0adKEHxT59OrVK3H16lUhhBA7duxQzrJ1/Phx8emnnworKytly0XWRcC+++474ePjw9nO1FC/fn0xc+ZM0aZNG7FkyRKRmpoqypYtqxLgli9fzq6sGpT1vGY/Q92yZUtRrlw5ZTenoKAgMWrUKGFlZSXq1asnOnbsKO7cuSNJvZRT9s/omTNnivr164vq1asLV1dX8b///U8I8f5v+Mknn4iuXbuKkydP5jgGPyu0h8GikFm6dKkYOnSoyMjIUP5HOHz4sGjatKkQ4n0f3a1btwpPT09RtmxZMWnSJPHq1Stx5MgR0a9fP5UuUfTxsp/R6t69u6hRo4b4+eefld2izp49KwwMDMSAAQPEpUuXxMyZM0WpUqVEZGQkZ5PQsJCQENGuXTthbGwsFi9erFye/YMhJCREPHnyRIryijSFQiFSUlJEw4YNRbdu3cT8+fOFTCYT69atE0K8DxwdOnQQFSpUEAcOHBBCCBETEyMmTZokbG1t+f6ST1mvXS8vLzFjxgyxZ88e8emnnwo7OzsxbNgwZZ//jIwM0a9fPzF+/HiOX9GA7N2Iv/jiC2XLpxBCtGrVSiVcCPH+tZ6WlpajJwAVDtOnTxc2Njbi0KFDIjw8XDRt2lSUL19eeX2pCxcuiNatW4vmzZuLy5cvS1xtycVgUUhkfbCsWLFC2aczqw/ouXPnhEwmEz/88INo0KCB6Nq1qxg1apRYsGCBMDQ0VJ455+xP+ZPbGa3u3buLWrVqqYSLc+fOCVtbW1GnTh1hb28vrl27Jkm9JUFoaKho37696Nixo3LufiF41klTQkNDhZOTk5DJZMrWiuzrmjVrJmrVqiWcnJxEmzZthJOTE1tC8+jx48di1apVIjg4WNk19eeffxbt2rUTR44cEXXq1BF16tRRXtw0LS1NTJo0SZQvX57jVzTo4MGDwtjYWMybN09cunRJZV1WuAgMDFR+3grBKZQLG4VCIWJjY0XLli3F/v37hRBCHD16VJQuXVo5MDvrs+HUqVPKGR1JGgwWhUDWf4DHjx+LWbNmCSHeD0jK3q9//fr1omnTpsLPz0+libZhw4Y5uopQ3l25ckV069ZNZXrB3MLF48ePxYULFzigTwuyukV5enoqx1yQehQKhZDL5SIhIUE4OTkJOzs70adPnxxfuMLDw0VAQICYOXOmOHz4MC+umUfp6eniiy++EOXLlxfOzs7C3NxcdOjQQVSuXFmUK1dOvHnzRhw8eFC4u7uLGjVqiG7duomOHTsKGxsbBjgNCgsLE9WrV1depyJL9hDx6aefClNTU5UTGCQtLy+vHCc8nj59Kuzt7UVMTIw4deqUKFWqlDJUJCYmilmzZom4uDiVfRgupMFgIbGsF/6tW7eETCZTzl2+bNkyUadOHeHj46McGPzPvs0TJ04Uzs7O/JKrAb/++qto0KCB6NWrlwgMDFQuzwoXO3fuVIYL0p6//vpLdOnSRTRp0oRjWtSUdRb2/v37Ii0tTaSnp4t79+4JFxcX4eXlxedXw7K60/z111/i8OHDYuXKlaJXr16iWrVq4vPPPxeJiYni9u3bYu7cuaJfv35i4cKFbKnQsOvXr4vy5curXCA26/9B9utZdOrUic99ITJ37lyhq6ur0hVWCCE+++wz4eXlJUxNTcXGjRuVy589eyaaNWum7L7JFidpMVhIKCtU3L9/XxgbG+dI6KtWrRLNmjUTX3/9tcqg4cOHD4sBAwbw7JaGHT16VLRq1Up8/vnnKuGiZ8+eomzZsmLfvn0SVldyBQcHi549e4rnz59LXUqRlfVBe/DgQVGuXDnh5+enDMpXrlwRLi4uolevXuLixYtCiPcnLWbOnClZvcXBh77cHDp0SDRp0kR07txZ2f2SX4Q045/P49WrV5Vdnf65zalTp9jaX8g8efJE+fdZuXKlkMlkYtGiRSIzM1PI5XIxb948YW9vL7744gvlPklJSaJTp07Cw8NDJSySdBgsJJIVKu7evSusra1F9erVleuyXyRsxYoVonnz5mLgwIHKloudO3eKL7/8kleMzKfsZ27/ORj18OHDok2bNqJbt27iwoULyuX9+/dXDhAj7cvedYHy58SJE8LIyEhs2rRJeQXnrP8L165dEzVr1hRNmjQR7du3FyYmJmzB0LDsU17u2bNHtGrVSjRu3Jjz6WvYuXPnlBc+i4qKEhUqVBB9+vQRb9++Vdlu9OjRwsfHRyQnJzPYFQLDhw8X5cqVEzdv3lT+PVasWCFkMpnyqtrx8fFi0KBBws3NTbRp00YMHjxYNGvWTNSuXVs52QHDhfQYLCSQvfuTiYmJaN26tXB0dFTOay6E6heprHDxzTffiIiICCFEzutX0IdlPd9ZMz9lZGSIyMhIUadOHfHVV1+J4OBgle0PHTokrKysRPfu3VXGXBAVVRkZGWLQoEHK95isD+6MjAzl/du3b4tJkyaJESNG8KRFAcl+ga9t27aJjh07siVOg+Li4sRnn30mHB0dlRcsPXPmjDAyMhI9e/YUR44cEefPnxejR48WFhYW4t69exJXTFni4+OFq6uraNCggbhx40aOcDF//nwhhBDv3r0TO3bsEF9++aXw8fERM2fOVPlsJ+kxWEjk6tWrQl9fX0yfPl1kZmaKdevWCWtr6w+Gi1WrVokaNWqoTE1I/y0rVISGhoqpU6eKYcOGKbt7rF69WjRq1EgMGTIkR8tFu3bthK2trfj6669FUlISz2hRkZaWlibq1KkjRo8erVyW/TX97t07IYRQmeaaCkb2cPHPaxZR/mR/LZ87d054eXkJV1dXZbi4cuWKcHNzE87OzqJSpUqiXr16ylYNkl5WIEhMTBRVqlQR9erV+9dwkRt+Lyo89ECSSE5Ohq+vL/z9/QEAvXv3BgBMnjwZALB8+XIYGBggPT0dBgYGGD58OPT19dG+fXvo6upKVndRolAooKOjg7t376JLly7o0qULypUrh3r16gEAhg0bBgMDA6xZswbLly/H6NGjUa1aNWRmZqJy5crw8PBAv379YGJiIvEjIco7IQRkMhmEENDR0UGdOnUQGRmJmJgYWFtbK9cFBwdj1apVmD17NsqUKSN12cVe1vMuk8lgZmYmdTlFTtb7OgBkZGRAX18faWlpMDIyAgC0aNECurq6WLBgAfr27Ytdu3ahYcOGOHv2LOLi4pCeng5bW1tYWlpK+TAoGz09PWRmZsLU1BQ3btxAvXr18M0332Djxo1wd3fHd999BwAYM2YM9PT0MHr06Bzfg/i9qBCRNteQEH+fbXn37l2uLRepqalSlVbkhYaGCnt7e/HDDz+oLM/eZLphwwbRsGFD0b17d7FixQoxbtw4UblyZREVFaXtconUlv2MeHZr1qwRJiYmYsWKFSqvbX9/f1GzZk3x+vVrrdZJlF/Pnj1Tvr4vXLggWrRokeOCmRcvXhTt27cX1apVY5enQupDraMJCQnCxcUlR8tF1oDuXbt2abNMyiOZEEJIHW7ob/Hx8dizZw8mT56Mr776CkuWLJG6pCJJvO/mhylTpuCvv/7Cxo0bUbp0aZVtsp/5OnjwIHbv3o2rV6/CxsYG69evR926dSWonCj/xP+fCf/zzz9x+PBhZGZmolq1avD19QUATJ06FevWrUPz5s1hbm6O1NRUHD9+HGfPnoW7u7u0xRN9hLS0NLRu3Rrh4eF49uwZzp07h9GjR6N06dLYtGkTKlasqNx227Zt8Pb2hp2dHU6cOIHatWtLVzipyP75++DBAyQlJcHFxQUWFhbQ0dFBYmIi6tatC3Nzc2XLhUwmw/79+9G9e3fo6bHDTWHFYFEIxcfHY9++fRgyZAh++OEHzJs3T+qSiqxPPvkEVatWxcaNG3Osy3pjS01NhZGREVJTU5GYmAhdXV02k1ORdejQIXh7e+Ozzz5DZmYm7t27h0aNGmHTpk0AgO3bt+PevXu4du0a3NzcMHToUNSoUUPiqok+jhACFy5cgK+vL0qVKoWgoCBcvHgREyZMgEwmw9atW+Hs7AwAuHTpEqZPn46KFSti3LhxqFy5ssTVE/D3CRDg/cmOnTt3IiMjAxkZGZg9ezY6duyIsmXLIjExEfXq1UPp0qWxatUqNGrUSHmMzMxMhovCSrK2EvpXcXFxYuvWrSIkJETqUookuVwuEhMTRa1atcSUKVOEEB+eMWLatGkcyEfFwtWrV0XFihXF2rVrhRDvrwFiY2MjDAwMRPfu3VW2lcvlHKhNhV5ur1G5XC6CgoJElSpVRJMmTYQQ7wdtt2zZUjRv3lw8evRIZGZmimnTpgkfHx8Oki+kZs2aJRwdHcWxY8eEEEL06NFDODo6innz5ikv/JuQkCDMzMyEt7e3lKVSHuhIHWwodxYWFhgwYABcXV2lLqVI0tHRgampKRo1aoStW7ciNDQUenp6yi5SWZ4+fYrz588jMzNTwmqJ8kahUAB4f+Yv6z4ABAcHo3379hg6dCjCwsLQqVMndOnSBT/99BOOHz+Ob775Rrmtjo6OsisCUWGU1aocERGBS5cuKZfr6Oigfv362LFjB6KiotCkSRO0aNECCxYsgKGhIVxdXdG0aVP8+OOPGDVqFAfJF0LBwcE4ffo01qxZgw4dOuD3339HQEAAatWqhTlz5mD79u148eIFSpUqhcjISGzYsEHqkukjsSsUFWu//PILRo4cidatW2P27Nk5msJnzJiBP/74A7/++iusra0lqpLo42V92frrr7+wcuVKvHr1Cs2aNcPYsWMBAFevXkW9evXQpUsX2NraYtu2bYiJiUGzZs0QGhqKL7/8Ejt27JD4URB9nBcvXqBu3bp48+YNWrVqhaZNm8LDwwMNGjSAubk5rl69isGDB0NfXx9Xr16FXC7Hli1bIJfL4eHhwe5PhVRkZCTOnDmDzz//HFevXkWvXr0wbdo0+Pr6onv37rhx4wa++uorjBw5EnZ2dgAAuVzO2Z+KAHZQoyJP/H9/zeyDwbL06tUL165dw8aNGxEdHQ1/f3/UqlULf/31F7Zv345du3bh7NmzDBVUJGS9xm/fvo127dqhefPmMDIywqRJkyCXy/HDDz+gYcOGeP78OV68eIEJEyYAeH+Gt3Hjxpg2bRqaN28u8aMg+ngKhQJOTk6wtrZGYmIiXr9+jc6dO6NatWpwc3NDly5dMHnyZEyePBkeHh74448/VFrmSFpZvQT++dlsZ2eHdu3awdDQEFu3bkXnzp2Vfzc7OzsYGxvj0aNHsLW1Ve7DUFE0MFhQkbZ161bcvHkTS5Ysga6urkq4yLq/YMECmJubY+/evWjdujUsLS1ha2sLMzMznD17ljOFUJGQ9Xq+c+cOmjZtijFjxmDOnDlQKBSwtrZGRESEciICIyMjpKWlYf/+/XB3d8eiRYsQEhKCJUuWwMbGRuqHQvTRKlSogF9++QXjx4+HQqGAr68vZs6ciYsXL2LVqlX48ccfce/ePVSuXBmnT59Gjx49cOjQIZUBwiQdmUym/DscOXIEGRkZMDExQceOHWFlZYWMjAxER0ejbNmyym6dcXFx2LZtGxo3bqxy3RcqGtgViookhUKBjIwMjB07FkFBQejQoQNmzJiRI1xkbzp9/PgxgoODER4eDjc3N1SuXJlfsqhIefHiBerVq4c2bdpg3759yuV9+vRBSEgIUlNTUbFiRfTo0QNJSUlYtGgRdHV1kZ6ejmPHjnEKZSqyQkJCMGrUKCgUCsyZMwcNGzYE8P5L6NGjR/Hw4UMcO3YMmzZt4uu8EPjqq69gbW2NpUuXAnh/cbvt27fDwsIC6enp6NGjB1asWAEA8PPzw/bt29GuXTuEhoYiKSkJd+/ezfF5TkUDgwUVSa9evULZsmXx9u1bLF68GAEBAWjbti1mzZr1wZYLoqLu2bNn+OKLL+Dg4IDx48ejefPmmD9/PmbNmoWJEyfCwcEBixcvhqGhIVauXAlra2s8evQIdevWhZOTk9TlE6nl0aNHyqswT5w4Ea1atVJZzylIC4fExEQsWbIEy5Ytw6hRo+Dn5wdPT0+sW7cORkZGCAoKwrBhw/DFF19g8+bNAIAffvgB0dHR0NPTw08//QQ9PT2OqSiiGCyoyNm/fz/GjRuHnTt3olmzZoiLi8P8+fMRGBj4wXBBVFw8evQII0eOhIGBAWxtbXHkyBH8/PPPaN++PQDg+fPncHZ2xrp16zB48GCJqyXSrKzXvxAC06ZNQ7NmzaQuiXLx9u1bbNmyBbNmzUK7du1QqlQprFu3Dvr6+khNTcWvv/6Kb775Br169cKWLVsAqPYwYEgsuviti4occ3NzuLm5YfTo0QgKCkLp0qUxYcIEtG7dGqdPn8bUqVMhl8uho6OjMhUnUXFQpUoVLF++HCkpKdi5cyfGjx+P9u3bQwiBjIwM6Onpwc3NTXmRR547ouKkSpUqWLFiBfT19fH999+rTENL0gsLC8OjR4+QnJyMYcOGwd/fHxcuXMCDBw+gr68PADAyMsLnn3+OTZs24eDBg+jRowcA1cHZDBVFF4MFFTnt27fH999/j3LlymH48OG4ePGiMly0adMGp0+fxpQpU5CZmQkdHR3I5XKpSybSKFdXV6xZswaffPIJAgICcO7cOchkMujr62PdunVISEhA48aNAYCDHqnYqVKlChYtWoRy5crB0dFR6nLo/+3btw+DBw/G999/j4CAABgZGaF///4YN24cbty4galTpyq3NTQ0RPfu3bFs2TLEx8fzJGAxwq5QVKRknx3izJkzWLFiBZ4/f45Vq1Ypu0UtWLAAZ86cgYeHB6ZPn84zH1RsZe8WMm/ePPzxxx/w9/fHxYsXOYCVir309HQYGBhIXQYB2LJlC0aPHo1ly5ahbt26cHd3V67L6hY1c+ZMjBo1CjNmzFCuy8jIULZksPty8cBgQUXa2bNnsWTJErx48UIlXCxevBi//PIL+vXrh2nTpkldJlGBefToEfz8/HDlyhW8ffsWQUFBqF+/vtRlEVEJce7cOfTu3RsLFizAV199pVyePSi8efMG27Ztw6xZszBq1Cj4+/tLVS4VMJ7KpSIhq6Xi+vXrePnyJV68eIG+ffuiVatWMDY2xty5czFixAhluPj+++9hYGCAAQMGSF06UYGqUqUKFi9ejPHjx2Pu3LmoWbOm1CURUQmQ9bl87do1uLu7o3Pnziq9CrK3PpQpUwY+Pj4AoOzKnPUzFS9ssaAi48CBA/D19UXdunURGhoKCwsL+Pj4YPjw4QgMDMSKFSvw6tUrLFq0CC1btuRFdahEyd6lgIhIW7p164akpCScOnUqx7qsz+GnT59CV1cXlpaW+P333+Hl5cVuysUUO7NRkXDjxg0MHz4cCxcuxIkTJ3D69GncunULycnJAIDWrVvDz88PpqammDZtGlJTUyWumEi7GCqISNsUCgVKlSqFlJQU5c/Zz1fLZDKkp6dj0aJFOHfuHMzMzNC7d2/o6ekhMzNTqrKpADFYUKHyzwa0rJ8fP36MGjVqYODAgQgJCUGbNm3g4+ODcePGAQCioqLQokULzJw5Ezt27ICRkRFbK4iIiAqQjo4OPv/8cwQFBWHLli3Q0dGBTCZTmY0xJiYGL168QJkyZVT2ZYtF8cRgQYWGQqGATCZDdHQ0rl27huvXryvDwatXr2Bubg65XI527dqhXbt2WLduHQDgyJEjWLduHdLS0tCiRQuUK1dOyodBRERUYjRq1AhdunTB8OHDsX37dgB/X5Pi7du3+Pbbb5GWlqa8iCcVb4yLVChkzR7x4MEDDBkyBGZmZjAxMcG+ffugq6uLDh06YNasWTA2Noavry+WL1+u3DcgIABhYWFIS0uDoaGhhI+CiIioZClfvjzGjx+PtLQ0DBw4EAEBAahbty7evn2LgIAAJCYm4urVq9DV1eWUsiUAgwVJTggBHR0d3L9/Hy1atMCwYcMwdOhQlCtXDjo6OhBCoFKlShg/fjxWrlypbJF4+vQpNmzYgB07duDcuXMwNzeX+JEQEREVPx+aDCVreYsWLbB48WIcO3YM69evx6lTp1C9enU0atQICxcuVI6pYPen4o+zQlGh8ObNG3Tr1g316tVTaY3I/mb25MkTbNmyBUuXLoWlpSUsLS2Rnp6O3bt382JgREREBSB7K0N4eDgcHBxU1v8zdMTHxyMlJQVlypRRTiohl8uV3aOoeGOwoELhwYMH6Nq1KzZv3owWLVrkaCrNeuPKyMjA06dPERQUBGdnZ7i4uMDR0VGiqomIiIqv7KFi5syZuHjxIhYuXIhatWrl2qUpt5YNTv1esrBNigqFW7du4fnz5/jkk08gk8ly9MOUyWRITk7GvXv30KhRI7i6ukpYLRERUfGX9Tk8YcIEbN++HYsXL4a1tfUHT/7lFiAYKkoWjqChQqFixYrQ09PDwYMHASDXMyGbN2/GlClTkJ6eru3yiIiISqSzZ89i586d2L9/P7788kvY2dkhJiYGly5dQlhYGACGB/obgwUVChUqVIC5uTm2b9+O58+fK5dn76n37Nkz1K9fnxcCIyIi0pK4uDhYWlqiXr16uHbtGqZNm4ZmzZqhS5cuGD16NEJCQqQukQoRBgsqFMqWLYs1a9bgxIkTmDp1Kh48eADg7y5QkyZNwv79++Ht7c0zI0RERAVAoVDkWFajRg3cu3cPHTp0QPv27REREYEZM2Zgx44dOHv2LMLDwyWolAorjrGgQqN79+5Yvnw5RowYgatXr6Jp06YwMjLCq1evcOnSJRw/fpxjK4iIiApA9rGNDx8+hKmpKXR0dFClShVcv34d+/fvx8iRI9GmTRtYWloiLS0NlSpVQmpqqsSVU2HCWaGo0Lly5QoWLVqE0NBQmJmZoVmzZvDx8UGVKlWkLo2IiKhYmzBhAnbu3KkcjD1t2jT4+Pgo16enpyMlJQV9+vTB27dvceHCBU4lS0oMFlQocc5rIiKigpX1FTCri/GxY8fg7e2NzZs3Q6FQ4OrVq5g1axZmzJiBqVOnIi0tDWvXrsW+ffuQmZmJ8+fPQ19fn5/ZpMSuUFQoZZ8VinNgExERaV72z9Zdu3bh+vXrGDVqFDp16gQA6NKlC5ycnDBkyBA0aNAAHTt2RKNGjZCcnIxx48bxitqUA1ssiIiIiEqQdu3aYeDAgejXrx8AICQkBD4+Prhx4wa+//57zJo1C5mZmdDR0YGOjg769euHhIQEHDhwQGVmRrZU0D9xVigiIiKiEuLt27fo2bMnevXqpVxWtWpV+Pn5oV69eti8eTNCQ0Ohp6en7CplbW2NzMzMHNO9M1TQP7HFgoiIiKgEWrRoEVJTUzF16lQAwP/+9z8sXLgQKSkp2LNnDypXroz09HS0a9cOTk5O2LFjh8QVU2HHTnFEREREJUD2rkvPnj3Du3fvsGTJEpiZmWH06NHo0qULMjMzMX/+fLi7u6NWrVqoUqUK3rx5g1OnTgHguEf6dwwWRERERCVAVqj44YcfYGxsjH79+sHY2BjTpk2DQqGAn58funfvDj09PSxduhTPnz/HuHHjsH37dgDgQG36T3x1EBERERVj2VsZLl68iF27duHgwYOoXr06Bg8eDLlcjunTpwMA/Pz80KVLF6SlpWHTpk1YtmwZGjVqhHLlyqnM2EiUGwYLIiIiomIsK1QsX74cb968Qd++fdGwYUMAgK2tLYYOHQoAmDlzJnR0dDB69Gh4eXlBX18fP/30Ezp16oSjR4+iQoUKkj0GKhoYLIiIiIiKoX+OhwgMDMThw4fh6emJ9PR0GBgYAADs7OwwdOhQ6OjowM/PD/b29ujTpw+6du2K9PR07Ny5U6qHQEUMZ4UiIiIiKsZiY2NhZWUFhUKB7777Dps3b8Yvv/yCLl26qGwXHh6O48eP46uvvlIZS5GYmIhSpUppu2wqghgsiIiIiIqpZcuW4dSpU1i4cCFq1KgBAOjfvz9+++03HDhwAG3bts11v8zMTOjq6nIGKMoTjsIhIiIiKqbq1q2L8+fPY968eQgODgYA7NixA506dULPnj1x5syZXPfT09NjqKA8Y7AgIiIiKgYUCoXKz0IItGrVCseOHcPx48cxa9YsZbjYuXMnOnfujE8//RTXr1+Xolwqhjh4m4iIiKgYyJoO9o8//oCbmxvs7e0hhEDTpk1x+PBh5QXwZs6ciWrVquHnn3+Gi4sL6tSpI3HlVFxwjAURERFRMSCEwOPHj+Hq6gpfX1/4+/vD1tZWOTvU+fPn0aZNG3h7e8PX1xd169ZV7suL35Em8BVEREREVERlhYasf11cXLB//3706dMHOjo6mDp1KmxtbQEA9erVQ5UqVbBx40aULVtWJVgwVJAm8FVEREREVAQpFApl96eYmBjo6enBwMAAPXr0wN69e+Hl5QUAmDx5Muzt7SGXy9G5c2esWbMGLVq0kLJ0KqbYFYqIiIioiMl+8bv58+fjt99+Q1JSEvT19bFu3Tq4u7vj6NGj+OKLL9ClSxfUrFkTly9fRlxcHC5evAiZTMbuT6RxDBZERERERdTUqVOxdu1arF69Gs7OzvD29kZiYiIuXrwIR0dHnD59GgsXLkRCQgKsra2xf/9+6Ovr57gqN5EmMKYSERERFQFZXZ+yQkFERAQCAgKwfft2dOzYEUePHsWrV68wd+5cODo6Qi6Xo23btqhfvz6MjIxgYGDAlgoqULyOBREREVEREBERAeB9NygAePv2LUJCQtCyZUucOHECX375JebNmwdfX18kJSVhyZIlSEhIgIWFBQwNDZWDvBkqqKAwWBAREREVcrdu3UK5cuVw4MAB5YDtKlWqoHnz5hg/fjx69uyJpUuX4ttvvwUAvHz5EqdOncLly5dVjsPuT1SQGCyIiIiICjkHBwcMGTIEX375JQ4fPgzg/bUnHB0dsWXLFvTr1w/ffPMNACA5ORl+fn6QyWRo27atlGVTCcPB20RERERFQGRkJObOnYuVK1fiwIED+Pzzz/H27Vv07t0bMTExcHV1hbOzMy5cuIC4uDhcv34d+vr6KtPSEhUkvsqIiIiICqGXL18iNjZW+bOdnR0mTpyI4cOHw8vLC/v374elpSV2796NL774AklJSXj8+DGaNWuGGzduQF9fH5mZmQwVpDVssSAiIiIqZA4cOIBvvvkGjo6OGDx4MOzs7NC3b18AQHp6OsaNG4eVK1di79696NWrV66tEnK5HLq6ulKUTyUUpwUgIiIiKkTS09Nx+vRpZGZmIiYmBocOHcKzZ88wd+5cuLq6YtiwYejevTvMzMzQp08flC5dGu3atctxbQqGCtI2tlgQERERFTKRkZGYN28enj59ipo1a2LMmDE4dOgQjh8/jtu3byM1NRUuLi64ePEi5HI5rl69ivr160tdNpVwDBZEREREhdDr168xd+5cXL58GQMHDsTw4cMBAA8fPkRERAS2bt2Khw8fIjY2FsHBwbw+BUmOwYKIiIiokAoPD8fcuXNx5coVdOvWDZMmTVKuy+r6lPUvr6hNUuM0AURERESFlIODAyZPnoxGjRrhyJEjWLBggXKdXC4H8P6idwqFgqGCJMcWCyIiIqJCLiIiAnPnzsX169fRpk0bzJ49W+qSiHJgiwURERFRIWdvb49JkyahcuXKiIqKAs8LU2HEFgsiIiKiIuLNmzcoXbo0dHR0ckwvSyQ1BgsiIiKiIia3C+IRSY3BgoiIiIiI1MaoS0REREREamOwICIiIiIitTFYEBERERGR2hgsiIiIiIhIbQwWRERERESkNgYLIiIiIiJSG4MFERERERGpjcGCiIiIiIjUxmBBRERERERqY7AgIiIiIiK1/R+ymtBqOrFfkAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "Cellpose vs CellSAM - Generalist Models by Data Type + Neurips Challenge\n", @@ -381,7 +350,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -426,13 +395,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam')\n", - "cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose')\n", - "\n", "cellpose_individual_path = cellpose_path / 'individual'\n", "\n", "# load results from txt files\n", @@ -457,20 +423,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhL1JREFUeJzt3XdYFGfXBvB7QaoKFpSiICiIGBSwt9hrTLDFbjRq1NeSWGKJsSCW2EuMxl5jjTWaYhJJNJJojBqsiGIjKqBrQ3o73x98O7ICKiywsNy/69rLZeaZ4cy4zM6Zp6lEREBERERERKQDI30HQEREREREhR8TCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0lkxfQdARIVPWFgY1Gq1vsPIlI2NDZycnPQdxivNmDED/v7++P3339G8eXNluUqlQrNmzXDs2DG9xVYU8POrO36GiSgzTCyIKFvCwsLg4e6O2Ph4fYeSKUtzcwSHhOTKzdnZs2fx9ddf448//sD9+/eRmpoKBwcHNGrUCP3790ebNm1yIWLKT2FhYXCv5oH4uFh9h5IpcwtLhFwNzrXkoqB8hi9duoSFCxfi+PHjCA8Ph7m5OcqVK4eaNWuiWbNm+OSTT6BSqTLd9o8//kCzZs0AAN9++y26d++eabnNmzdj4MCBAIBu3bph7969mZZbtWoVRowYAQAYMGAANm/erOPREZEGEwsiyha1Wo3Y+Hgs93KGawkLfYejJTQ6Dp+cvw21Wq3TjVlqairGjx+PpUuXolixYmjZsiV8fX1hYmKCmzdv4ocffsC2bdswc+ZMTJs2LRePgPKaWq1GfFwsKnWbDPNyBatmIP5hGO7sm6vz5xcoWJ/hX3/9Fe+++y6Sk5PRunVrdOnSBebm5rhx4waOHz+OAwcOYOTIkShWLPNbkg0bNgBIqw3ZuHFjlomFRrFixXD48GGo1WrY2Nhkur9ixYohOTlZ94MjIi1MLIgoR1xLWKCGtaW+w8gTU6dOxdKlS+Ht7Y29e/eiSpUqWuvj4uKwYsUKPHr0SE8Rkq7MyznB0qGqvsPIMwXpMzx8+HCkpKTg6NGjaNGihdY6EcEvv/wCY2PjTLeNiorC3r17UbNmTdja2uKXX37Bf//9B0dHxyx/X4cOHXD48GFs27YNY8aM0Vp34cIFnD17Fr6+vjh06JDOx0ZE2th5m4gondDQUCxYsABly5bFkSNHMtyQAYCFhQUmTJgAf39/ZVliYiKWLFmCWrVqoXjx4ihZsiTefvttnW9ePvzwQ6hUKty8eRMLFiyAm5sbzM3N4eLigpkzZyIpKSnT7TZt2oT69eujRIkSKFGiBOrXr59lk499+/ahWbNmKF++PMzNzeHg4IDWrVtj3759GcpeuHABvXr1gr29PUxNTVGpUiV8/PHHTLIKkIL0GX7w4AFu3LgBT0/PDEkFkFYL0a5duyybQe3cuROxsbHo378/+vfvj9TU1Nc2XWrUqBGqVauGTZs2ZVi3ceNGGBsbY8CAATk6HiJ6NSYWRETpbN68GSkpKRg2bBhsbW1fWdbMzAwAkJCQgHbt2uHTTz+FiGDw4MHo168f7ty5g06dOmHFihU6xzVmzBjMnz8frVu3xscffwwzMzP4+fmhd+/eGcp+8sknGDRoEO7du4fBgwdj8ODBuHfvHgYOHIjRo0drlV21ahXef/99XL9+HV26dMG4cePQvn17RERE4MCBA1plDx06hHr16uHQoUNo3rw5xowZgxo1amDFihVo2LAhnjx5ovNxku4K0mfY2toaxYoVQ3h4OGJiYrK9/YYNG2BsbIy+ffuia9euKFGiBDZt2gQReeV2AwcOVGonNBITE7F9+3a0a9cODg4O2Y6FiF6PTaGIiNL5888/AQAtW7Z8421mzpyJY8eOYdq0afD391eevj5//hwtW7bEp59+iq5du+p0M3Pq1CmcP38eFStWBADMmTMHbdq0wb59+7Bv3z5069YNQFpH16+++goeHh44efIkrK2tAaSN4tOgQQMsX74c77//Pt5++20AwPr162FqaoqgoCCUL19e63emr4V49OgRPvjgA9jY2ODPP/9EpUqVlHW7du1C7969MX36dHz11Vc5PkbKHQXpM2xmZgZfX1/s378fDRs2xJAhQ9CoUSPUqFEDpqamr9z24sWL+Oeff9CuXTvY2dkBALp27YqtW7fit99+Q6tWrbLctn///pgyZQo2btyI2rVrAwC+++47qNVqDB48OFvHQERvjjUWRETpREREAIByA/86qampWLVqFapUqaJ1QwYAJUuWxPTp05GYmIj9+/frFNfo0aO1YjI1NcWcOXMAQKtpyJYtWwCkJRKapAIASpcuDT8/vwzlAcDExAQmJiYZfmfZsmWV91u3bkVUVBTmzp2rlVQAQK9evVCrVi3s2rUrZwdHuaqgfYbXrl2L9957DxcvXsQnn3yCOnXqoGTJkmjcuDGWL1+OuLi4TLfTdNru37+/skzzXrMuK3Z2dnjnnXewc+dOxP//CHYbN25EuXLl8N577+XoOIjo9VhjQUSkg5CQEDx58gQODg5a7dU1Hj58CAC4evWqTr9HU8OQXsOGDVGsWDH8+++/yjLN+/RzC2ho2rgHBQUpy3r16oWJEyfC09MTffr0QYsWLdCkSRNYWVlpbXvq1CkAwN9//40bN25k2Hd8fDzUanWWI/FQwZXXn+GyZcvi0KFDuH79Oo4cOYLTp0/j1KlT+Ouvv/DXX39h3bp1OH78OMqUKaNsk5CQgG3btqFkyZLo0qWLsrxFixZwdHTEgQMH8OTJE5QuXTrL3zto0CAcOnQIBw4cQNOmTfHLL79g9OjRmSbRRJQ7mFgQEaVjZ2eHq1ev4t69e3B3d39t+cePHwMALl++jMuXL2dZLifty9PLrK28sbExypYti2fPninLoqKiYGRkhHLlymW6D5VKhaioKGXZ+PHjUbZsWaxatQqLFy/GokWLUKxYMXTs2BFLly6Fi4sLgBfHuXLlylfGGRMTw8RCzwrqZ9jNzQ1ubm7Kz0FBQejXrx8uXboEf39/fPnll8q6gwcP4tGjRxg4cCAsLF4Ma21kZIS+ffti3rx52LFjB0aOHJnl7+vYsSNsbW2xceNG3Lx5E6mpqRg0aJBOx0BEr8amUERE6TRu3BgAEBAQ8EblNU/2u3XrBhHJ8pXZCDXZERkZmWFZSkoKHj16pNXkycrKCqmpqcpT5vQePHgAEdGqjVCpVBg0aBD++ecfPHz4EAcOHEDXrl3x3Xff4d1330VKSorWcV68ePGVx/lyMynKfwX1M/wyb29vpU/Ob7/9prVO09Rp06ZNUKlUWq958+ZplclKsWLF0L9/f/z2229YuXIl6tWrB09Pz1w9BiLSxsSCiCidDz/8EMbGxli7dm2mN+fpJSQkwMPDA1ZWVjhz5kyWQ7/mhhMnTmRYdvLkSSQnJ8PHx0dZpnl/7NixDOU1y7y9vTP9HWXLlkXnzp2xe/dutGzZEleuXEFoaCgAoH79+srvpIKtoH6GM1OiRIkMy+7cuYOAgADY2toqo5q9/HJxccG///6r1QwwM4MGDUJqairCw8NZW0GUD5hYEBGl4+rqiokTJ0KtVqNDhw64detWhjLx8fFYsmQJZsyYgWLFimH48OG4c+cOxo8fn+mN2aVLl/DgwQOd4vryyy9x9+5d5efExERMmTIFQNqNpIZmfH5/f3+tJk/Pnj1T2s+nH8P/2LFjGYbuTEpKUprHmJubA0gbvrNkyZKYMmVKps1lYmNjlX4YpF8F6TMcExODOXPmQK1WZ1iXnJyMhQsXAgCaNGmiLN+0aRNSU1MxbNgwrF+/PtPXZ599BuD1tRbVqlXDTz/9hAMHDqBv377Zjp+Isod9LIiIXjJ79mzEx8dj6dKlcHd3R8uWLeHp6QkTExPcunULR48exaNHjzB79mwAaTfx586dw/Lly/HDDz+gadOmKF++PO7du4eLFy/i/PnzOHnyZIbhXLOjQYMG8PLyQs+ePVG8eHEcPnwYISEh6Nq1qzLULAA0bdoUH3/8Mb766it4enoqzVv27duHu3fv4pNPPkHTpk2V8p07d4aVlRUaNGiASpUqISkpCb/++iuuXLmC999/X2naVK5cOezcuRPdu3eHl5cX2rdvj2rVqiEhIQG3b9/G8ePH0ahRIxw5ciTHx0i5p6B8hpOSkjB16lTMmDEDDRs2hJeXF6ysrBAZGYmff/4Zd+/ehYuLizJiWWpqqtL8KX3C/LKePXtizJgx2L59OxYtWqQkwJlp3759tmImopxjYkFEORIanfkQkfqUWzEZGRlhyZIl6NOnD1atWoU//vgDf/zxB1JTU2Fvb4927dph4MCBaN26NYC0sfp/+uknbNiwAVu3bsW+ffuQkJAAW1tbVK9eHf/73/9Qo0YNnWJatmwZ9uzZg/Xr1yMsLAz29vaYMWMGJk+enKHs8uXL4ePjg1WrVmHt2rUAgLfeegszZ87EwIEDtcrOnTtXGann8OHDKF68OKpUqYJVq1ZlGO+/Y8eO+Pfff7Fw4UIcPXoUv/76K4oXL46KFSti4MCB6Nevn07HmJ/iH4bpO4QMcjOmgvIZtrKywo8//oiff/4ZgYGB2LNnDx49egRLS0tUrVoVQ4YMwejRo5V+QkePHkVYWBiaNWumDByQGWtra3Tt2hXbt2/H/v370adPn5ydKCLKVSp53fSVRETphIWFwcPdHbH/PzZ8QWNpbo7gkBA4OTnpO5Rc8eGHH2LLli24desWnJ2d9R1OoRcWFgb3ah6Ij4vVdyiZMrewRMjVYIP5/BJR0cIaCyLKFicnJwSHhGTaZrogsLGx4U0ZZcnJyQkhV4P5+SUiygNMLIgo25ycnHjzQ4UWP79ERHmDo0IREREREZHO2MeCiIiIiIh0xhoLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGRMLIiIiIiLSGROLTIgIoqKiICL6DoWIiIiIqFBgYpGJ58+fw9raGs+fP9d3KEREREREhQITCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0hkTCyIiIiIi0lkxfQdAVNCEh4cjPDw829vZ29vD3t4+DyIiIiIiKviYWBC9ZM2aNfD398/2dn5+fpgxY0buB0RERERUCKhERPQdREETFRUFa2trPHv2DFZWVvoOh/JZZjUWcXFxaNKkCQAgMDAQFhYWGbZjjQUREREVZUwsMsHEgl4WExODEiVKAACio6NRvHhxPUdEREREVLCw8zYREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemsmL4DINKnsLAwqNXq15aLi4tT3gcFBcHCwuK129jY2MDJyUmn+IiIiIgKC5WIiL6DKGiioqJgbW2NZ8+ewcrKSt/hUB4JCwuDezUPxMfF5sn+zS0sEXI1mMkFERERFQmssaAiS61WIz4uFpW6TYZ5uVff/KcmJeD6hjEAALfBy2BkYvbK8vEPw3Bn31yo1WomFkRERFQkMLGgIs+8nBMsHaq+skxK4oumUBb2rjA2fX1TKCIiIqKihJ23iYiIiIhIZwUisVi5ciWcnZ1hbm6O+vXr4/Tp01mWXbduHd5++22ULl0apUuXRuvWrTOU//DDD6FSqbRe7du3z+vDICIiIiIqsvSeWOzevRvjxo2Dn58fzp07By8vL7Rr1w4PHjzItPyxY8fQu3dv/P777zh58iQcHR3Rtm1b3Lt3T6tc+/btER4errx27tyZH4dDRERERFQk6T2xWLJkCYYMGYKBAweievXqWL16NSwtLbFx48ZMy2/fvh0jRoyAt7c3qlWrhvXr1yM1NRUBAQFa5czMzGBnZ6e8SpcunR+HQ0RERERUJOk1sUhMTMTZs2fRunVrZZmRkRFat26NkydPvtE+YmNjkZSUhDJlymgtP3bsGMqXLw93d3cMHz4cjx49ynIfCQkJiIqK0noREREREdGb02tioVarkZKSAltbW63ltra2iIiIeKN9TJo0CQ4ODlrJSfv27bF161YEBARg/vz5OH78ODp06ICUlJRM9zF37lxYW1srL0dHx5wfFBERERFREVSoh5udN28edu3ahWPHjsHc3FxZ3qtXL+V9jRo1ULNmTVSpUgXHjh1Dq1atMuxn8uTJGDdunPJzVFQUkwsiIiIiomzQa42FjY0NjI2NERkZqbU8MjISdnZ2r9x20aJFmDdvHn755RfUrFnzlWUrV64MGxsbhIaGZrrezMwMVlZWWi8iIiIiInpzek0sTE1NUbt2ba2O15qO2A0bNsxyuwULFmDWrFk4cuQI6tSp89rfc/fuXTx69Aj29va5EjcREREREWnT+6hQ48aNw7p167BlyxYEBwdj+PDhiImJwcCBAwEA/fv3x+TJk5Xy8+fPx7Rp07Bx40Y4OzsjIiICERERiI6OBgBER0djwoQJOHXqFG7fvo2AgAB06tQJrq6uaNeunV6OkYiIiIjI0Om9j0XPnj3x8OFDTJ8+HREREfD29saRI0eUDt1hYWEwMnqR/6xatQqJiYl4//33tfbj5+eHGTNmwNjYGBcuXMCWLVvw9OlTODg4oG3btpg1axbMzMzy9diIiIiIiIoKvScWADBq1CiMGjUq03XHjh3T+vn27duv3JeFhQV+/vnnXIqMiIiIiIjehN6bQhERERERUeHHxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHTGxIKIiIiIiHRWICbIIypIkp4/QtLzR1rLUpISlPex4aEwNsk4i7tJybIwKVk2z+MjIiIiKoiYWBC9RP3P94g4tjXL9aEbxmS63K55f9i3HJBHUREREREVbEwsiF5iU/ddWFdrmO3tWFtBRERERRkTC6KXsEkTERERUfax8zYREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemMiQUREREREemsmL4DIMqu8PBwhIeHZ3s7e3t72Nvb50FERERERMTEggqdNWvWwN/fP9vb+fn5YcaMGbkfEBERESn4ALDoYmJBhc6wYcPg6+urtSwuLg5NmjQBAAQGBsLCwiLDdrxYERER5T0+ACy6mFhQoZPZE42YmBjlvbe3N4oXL57fYRERERH4ALAoY2JBRERERLmGDwCLrgIxKtTKlSvh7OwMc3Nz1K9fH6dPn86y7Lp16/D222+jdOnSKF26NFq3bp2hvIhg+vTpsLe3h4WFBVq3bo3r16/n9WEQERERERVZek8sdu/ejXHjxsHPzw/nzp2Dl5cX2rVrhwcPHmRa/tixY+jduzd+//13nDx5Eo6Ojmjbti3u3bunlFmwYAGWL1+O1atX4++//0bx4sXRrl07xMfH59dhEREREREVKXpPLJYsWYIhQ4Zg4MCBqF69OlavXg1LS0ts3Lgx0/Lbt2/HiBEj4O3tjWrVqmH9+vVITU1FQEAAgLTaimXLlmHq1Kno1KkTatasia1bt+L+/fs4ePBgPh4ZEREREVHRodfEIjExEWfPnkXr1q2VZUZGRmjdujVOnjz5RvuIjY1FUlISypQpAwC4desWIiIitPZpbW2N+vXrZ7nPhIQEREVFab2IiIiIiOjN6TWxUKvVSElJga2trdZyW1tbREREvNE+Jk2aBAcHByWR0GyXnX3OnTsX1tbWysvR0TG7h0JEREREVKTpvSmULubNm4ddu3bhwIEDMDc3z/F+Jk+ejGfPnimv//77LxejJCIiIiIyfHodbtbGxgbGxsaIjIzUWh4ZGQk7O7tXbrto0SLMmzcPR48eRc2aNZXlmu0iIyO1hjqLjIyEt7d3pvsyMzODmZlZDo+CiIiIiIj0WmNhamqK2rVrKx2vASgdsRs2bJjldgsWLMCsWbNw5MgR1KlTR2udi4sL7OzstPYZFRWFv//++5X7JCIiIiKinMt2jUVqaiqOHz+OEydO4M6dO4iNjUW5cuXg4+OD1q1bZ7t/wrhx4zBgwADUqVMH9erVw7JlyxATE4OBAwcCAPr3748KFSpg7ty5AID58+dj+vTp2LFjB5ydnZV+EyVKlECJEiWgUqkwZswYzJ49G25ubnBxccG0adPg4OCAzp07Z/dwiYiIiIjoDbxxYhEXF4fFixdj1apVePz4Mby9veHg4AALCwuEhobi4MGDGDJkCNq2bYvp06ejQYMGb7Tfnj174uHDh5g+fToiIiLg7e2NI0eOKJ2vw8LCYGT0omJl1apVSExMxPvvv6+1Hz8/P8yYMQMAMHHiRMTExGDo0KF4+vQpmjRpgiNHjujUD4OIiIiIiLL2xolF1apV0bBhQ6xbtw5t2rSBiYlJhjJ37tzBjh070KtXL0yZMgVDhgx5o32PGjUKo0aNynTdsWPHtH6+ffv2a/enUqkwc+ZMzJw5841+PxERERER6eaNE4tffvkFHh4eryxTqVIlTJ48GePHj0dYWJjOwRERERERUeHwxp23X5dUpGdiYoIqVarkKCAiIiIiIip8cnVUqJiYGPzxxx+5uUsiIiIiIioEcjWxCA0NRYsWLXJzl0REREREVAgU6pm3iYiIiIioYMjWPBZlypR55fqUlBSdgiHKTFhYGNRq9SvLxMXFKe+DgoJgYWHx2v0GBwfrHBsRERERpclWYpGQkIDhw4ejRo0ama6/c+cO/P39cyUwIiAtqfBwd0dsfPwbb9OkSZM8jIiIiIiIMpOtxMLb2xuOjo4YMGBApuvPnz/PxIJylVqtRmx8PJZ7OcO1RNa1EPEpqeh6KgQAsL+BO8yNX9/K7/cHT7HweniuxUpERERUlGUrsejYsSOePn2a5foyZcqgf//+usZElIFrCQvUsLbMcn1s8otmeG9ZWcCymPFr9xkaHffaMkRERJS1N2muDOSsybKNjQ2cnJx0io/yV7YSi88///yV6x0dHbFp0yadAiIiIiKigi8sLAzu1TwQHxebre3etMmyuYUlQq4GM7koRLKVWBARERERAWnNlePjYlGp22SYl3v1zX9qUgKubxgDAHAbvAxGJmavLB//MAx39s2FWq1mYlGIZCuxaNq0KQ4dOoRSpUoBAA4dOoQ2bdq8UXUWERERERke83JOsHSo+soyKYkvmkJZ2LvC2JT3joYoW/NYBAYGIjExUfm5X79+CA9n51ciIiIioqJOpwnyRCS34iAiIiIiokKMM28TEREREZHOst15++eff4a1tTUAIDU1FQEBAbh06ZJWGV9f39yJjoiIiIiICoVsJxYvT443bNgwrZ9VKhVSUlJARERERERFR7YSi9TU1LyKg4iIiIiICjH2sSAiIiIiIp0xsSAiIiIiIp0xsSAiIiIiIp0xsSAiIiIiIp0xsSAiIiIiIp3pnFiMGDECarU6N2IhIiIiIqJCSufEYtu2bYiKisqNWIiIiIiIqJDSObEQkdyIg4iIiIiICjH2sSAiIiIiIp1la+btzDx//jw34iB6Y5HxSXiQkKS1LD4lRXl/OSoW5sbGGbYrb2YCW3OTPI+PiIiIqCjSObEgym/bwx5iaWh4luu7nrqW6fKxrvYYV9Uhr8IiIiIiKtKYWFCh09epHNrYlsr2duXNWFtBRERElFeYWFChY2vOJk1EREREBQ0TCwIAhIeHIzw86+ZFWbG3t4e9vX0eRERERESFUdLzR0h6/khrWUpSgvI+NjwUxiZmGbYzKVkWJiXL5nl8lHeYWBAAYM2aNfD398/2dn5+fpgxY0buB0RERESFkvqf7xFxbGuW60M3jMl0uV3z/rBvOSCPoqL8kKuJxY0bNzBkyBD89ttvublbygfDhg2Dr6+v1rK4uDg0adIEABAYGAgLC4sM27G2goiIiNKzqfsurKs1zPZ2rK0o/HI1sYiOjsbx48dzc5eUTzJr0hQTE6O89/b2RvHixfM7LCIiIipk2KSp6MpWYrF8+fJXrr93755OwRARERERUeGUrcRizJgxsLe3h6mpaabrExMTcyUoIiIiIiIqXLKVWFSqVAnz589Hjx49Ml0fFBSE2rVr50pgRERERERUeBhlp3Dt2rVx9uzZLNerVCqIiM5BERERERFR4ZKtGouZM2ciNjY2y/XVq1fHrVu3dA6KiIiIiIgKl2wlFtWrV3/lehMTE1SqVEmngIiIiIiIqPDhBHlERAYkPDwc4eHh2d4usyGniYiIsuONE4v27dtjxowZaNCgwSvLPX/+HF9//TVKlCiBkSNH6hwgERG9uTVr1sDf3z/b2/n5+WHGjBm5HxARERUZb5xYdO/eHd26dYO1tTXee+891KlTBw4ODjA3N8eTJ09w5coVBAYG4scff0THjh2xcOHCvIybiIgyMWzYMPj6+moti4uLQ5MmTQAAgYGBsLCwyLAdayuIiEhXb5xYDB48GP369cOePXuwe/durF27Fs+ePQOQNhpU9erV0a5dO/zzzz/w8PDIs4Apd4SFhUGtVr+yTFxcnPI+KCgo05uRzNjY2MDJyUmn+IgoZzJr0hQTE6O89/b2RvHixfM7LCIiKgKy1cfCzMwM/fr1Q79+/QAAz549Q1xcHMqWLQsTE5M8CZByX1hYGNyreSA+LusRvl6medr5JswtLBFyNZjJBREREVERolPnbWtra1hbW+dWLJRP1Go14uNiUanbZJiXy/rmPzUpAdc3jAEAuA1eBiMTs9fuO/5hGO7smwu1Ws3EgoiIiKgI4ahQRZh5OSdYOlTNcn1K4oumUBb2rjA2fbOmUERERERU9GRr5m0iIiIiIqLMMLEgIiIiIiKdZTuxSElJwR9//IGnT5/mSgArV66Es7MzzM3NUb9+fZw+fTrLspcvX0a3bt3g7OwMlUqFZcuWZSgzY8YMqFQqrVe1atVyJVYiIiIiIspcthMLY2NjtG3bFk+ePNH5l+/evRvjxo2Dn58fzp07By8vL7Rr1w4PHjzItHxsbCwqV66MefPmwc7OLsv9vvXWW8rss+Hh4QgMDNQ5ViIiIiIiylqOmkJ5enri5s2bOv/yJUuWYMiQIRg4cCCqV6+O1atXw9LSEhs3bsy0fN26dbFw4UL06tULZmZZj1BUrFgx2NnZKS8bGxudYyUiIiIioqzlKLGYPXs2xo8fj++//x7h4eGIiorSer2JxMREnD17Fq1bt34RjJERWrdujZMnT+YkLMX169fh4OCAypUro2/fvggLC3tl+YSEhBwdAxERERERpcnRcLPvvPMOAMDX1xcqlUpZLiJQqVRISUl57T7UajVSUlJga2urtdzW1hZXr17NSVgAgPr162Pz5s1wd3dHeHg4/P398fbbb+PSpUsoWbJkptvMnTsX/v7+Of6dRERERERFXY4Si99//z2348g1HTp0UN7XrFkT9evXR6VKlfDtt99i8ODBmW4zefJkjBs3Tvk5KioKjo6OeR4rEREREZGhyFFi0axZM51/sY2NDYyNjREZGam1PDIy8pUds7OrVKlSqFq1KkJDQ7MsY2Zm9so+G0VB0vNHSHr+SGtZSlKC8j42PBTGmcy8bVKyLExKls3z+IiIiIioYMvxzNtPnz7Fhg0bEBwcDCBtJKZBgwbB2tr6jbY3NTVF7dq1ERAQgM6dOwMAUlNTERAQgFGjRuU0rAyio6Nx48YNfPDBB7m2T0Ok/ud7RBzbmuX60A1jMl1u17w/7FsOyKOoiIiIiKiwyFFicebMGbRr1w4WFhaoV68egLQRnubMmYNffvkFtWrVeqP9jBs3DgMGDECdOnVQr149LFu2DDExMRg4cCAAoH///qhQoQLmzp0LIK3D95UrV5T39+7dQ1BQEEqUKAFXV1cAwPjx4/Hee++hUqVKuH//Pvz8/GBsbIzevXvn5FCLDJu678K6WsNsb8faCiIiIiICcphYjB07Fr6+vli3bh2KFUvbRXJyMj766COMGTMGf/zxxxvtp2fPnnj48CGmT5+OiIgIeHt748iRI0qH7rCwMBgZvRi46v79+/Dx8VF+XrRoERYtWoRmzZrh2LFjAIC7d++id+/eePToEcqVK4cmTZrg1KlTKFeuXE4OtchgkyYiIiIi0kWOayzSJxVA2twREydORJ06dbK1r1GjRmXZ9EmTLGg4OztDRF65v127dmXr9xMRFVZhYWFQq9WvLRcXF6e8DwoKgoWFxRvt38bGBk5OTjmOj4iIipYcJRZWVlYICwtDtWrVtJb/999/WQ7pSkREuScsLAwe7u6IjY/P1nZNmjR547KW5uYIDglhckFERG8kR4lFz549MXjwYCxatAiNGjUCAPz555+YMGEC+zIQEeUDtVqN2Ph4LPdyhmuJV9dAxKekouupEADA/gbuMDd+/dyoodFx+OT8bajVaiYWRET0RnKUWCxatAgqlQr9+/dHcnIyAMDExATDhw/HvHnzcjVAIiLKmmsJC9SwtnxlmdjkF5OWvmVlActixnkdFhERFUHZTixSUlJw6tQpzJgxA3PnzsWNGzcAAFWqVIGl5au/3IiIiIiIyDBlO7EwNjZG27ZtERwcDBcXF9SoUSMv4iIiIiIiokLk9Q1tM+Hp6YmbN2/mdixERERERFRI5SixmD17NsaPH4/vv/8e4eHhiIqK0noREREREVHRkqPO2++88w4AwNfXFyqVSlkuIlCpVEhJSclqUyIiIspH4eHhCA8Pz/Z29vb2sLe3z4OIiMhQ5Six+P3333M7DiIiIsoDa9asgb+/f7a38/Pzw4wZM3I/ICIyWNlOLJKSkjBz5kysXr0abm5ueRETERER5ZJhw4bB19dXa1lcXJwyWWJgYGCms7GztoKIsivbiYWJiQkuXLiQF7EQERFRLsusSVNMTIzy3tvbG8WLF8/vsIjIAOWoKVS/fv2wYcMGToZHRERERIUW+yDlrhwlFsnJydi4cSOOHj2K2rVrZ3jSsWTJklwJjoiIiIgor7APUu7KUWJx6dIl1KpVCwBw7do1rXXpR4kiIiIiIiqo2Acpd3FUKCIiIiIqktgHKXflaIK8V3nw4EFu75KIiIiIiAq4bCUWlpaWePjwofJzx44dtTq8REZGsmqIiIiIiKgIylZiER8fDxFRfv7jjz8QFxenVSb9eiIiIiIiKhpyvSkUO28TERERERU9Oeq8TUREBVNkfBIeJCRpLYtPSVHeX46KhbmxcYbtypuZwNbcJM/jIyLSl7CwMKjV6teWS98aJygoKNNRoV5mY2MDJycnneIzBNlKLFQqlVaNxMs/ExGRfm0Pe4iloVlP9tT11LVMl491tce4qg55FRYRkV6FhYXBw90dsfHx2dpOM+zs61iamyM4JKTIJxfZSixEBFWrVlWSiejoaPj4+MDIyEhZT0RE+tPXqRza2JbK9nblzVhbQUSGS61WIzY+Hsu9nOFa4tU1EPEpqeh6KgQAsL+BO8yNX91zIDQ6Dp+cvw21Ws3EIjuFN23alFdxEBFRLrA1Z5MmIqKsuJawQA1ry1eWiU1+0Xz0LSsLWBbL2HyUMpetxGLAgAF5FQcRERERERVi7LxNRERvJDw8XGvuojeV2cy2ZBj4mSCi9JhYEBHRG1mzZg38/f2zvZ2fnx9mzJiR+wGR3vEzQUTpMbEgIqI3MmzYMPj6+moti4uLU0ZNCQwMzHRYRj6ZNlz8TFBhxyG6cxcTCyIieiOZNV+JiYlR3nt7e6N48eL5HRbpET8TVNhxiO7cxcSCiIiIiIokDtGdu3KUWKSkpGDz5s0ICAjAgwcPkJqaqrX+t99+y5XgiIiIiIjyCofozl05SixGjx6NzZs3o2PHjvD09OTs20RERERERVyOEotdu3bh22+/xTvvvJPb8RARERERUSH06jnKs2BqagpXV9fcjoWIiIiIiAqpHNVYfPrpp/jyyy+xYsUKNoMiIqIihxPDERFllKPEIjAwEL///jt++uknvPXWWzAx0e70sn///lwJjoiIqCDixHBERBnlKLEoVaoUunTpktuxEBERFQqcGI6IKKMcJRabNm3K7TiIiIgKDU4MR0SUESfIIyKiLAUHB79yfVxcnPI+KCgo06f0mbGxsYGTk5NOsRERUcGS48Ri7969+PbbbxEWFobExEStdefOndM5MCIi0p8HCUmAygj9+vV74200zYDehLmFJUKuBjO5yANhYWFQq9WvLMOEkIjyQo4Si+XLl2PKlCn48MMP8d1332HgwIG4ceMG/vnnH4wcOTK3YyQionwWlZQMSCoqdZsM83JZ30imJiXg+oYxAAC3wctgZGL22n3HPwzDnX1zoVareZOay8LCwuDh7o7Y+Pg33iY7CaGluTmCQ0L4/0ZEmcpRYvH1119j7dq16N27NzZv3oyJEyeicuXKmD59Oh4/fpzbMRIRkZ6Yl3OCpUPVLNenJL548m1h7wpj0zd78k15Q61WIzY+Hsu9nOFaIuv/i/iUVHQ9FQIA2N/AHebGr5/WKjQ6Dp+cv82EkIiylKPEIiwsDI0aNQIAWFhY4Pnz5wCADz74AA0aNMCKFStyL0IiIiLKFtcSFqhhbZnl+tjkFOX9W1YWsCxmnB9hERUpRXG+mxwlFnZ2dnj8+DEqVaoEJycnnDp1Cl5eXrh16xZEJLdjJCIiIiIqVIrifDc5SixatmyJQ4cOwcfHBwMHDsTYsWOxd+9enDlzBl27ds3tGImIiKiA4EhhRG+mKM53k6PEYu3atUhNTQUAjBw5EmXLlsVff/0FX19fDBs2LFcDJCIi0qc3GWUJMPwbao4URpQ9RXG+mxwlFkZGRjAyetHRq1evXujVq1euBUVERFQQhIWFwb2aB+LjYrO1nSHeUHOkMCJ6nRzPY3HixAmsWbMGN27cwN69e1GhQgV88803cHFxydYFlYiIqKBSq9WIj4t97c00UHRuqDlSGFHmXtdMEDD8ms0cJRb79u3DBx98gL59++Lff/9FQkICAODZs2f44osv8OOPP+ZqkERERPr0uptpgDfUREVVTpoJAoZZs5mjxGL27NlYvXo1+vfvj127dinLGzdujNmzZ+dacEREREREBdmbNhMEDL9mM0eJRUhICJo2bZphubW1NZ4+faprTEREREREhQprNoHXT7WZCTs7O4SGhmZYHhgYiMqVK2drXytXroSzszPMzc1Rv359nD59Osuyly9fRrdu3eDs7AyVSoVly5bpvE8iInozSc8fIfb+Ne1X+Ivvgtjw0Izr719D0vNHeoyaiEg/iuI1M0c1FkOGDMHo0aOxceNGqFQq3L9/HydPnsT48eMxbdq0N97P7t27MW7cOKxevRr169fHsmXL0K5dO4SEhKB8+fIZysfGxqJy5cro3r07xo4dmyv7JCKiN6P+53tEHNua5frQ/6/ef5ld8/6wbzkgj6IiIiqYiuI1M0eJxWeffYbU1FS0atUKsbGxaNq0KczMzDB+/Hh8/PHHb7yfJUuWYMiQIRg4cCAAYPXq1fjhhx+wceNGfPbZZxnK161bF3Xr1lViyI19EhHRm7Gp+y6sqzXM9nYmJcvmQTRElFPh4eEIDw/P9naZzctAWSuK18wcJRYqlQpTpkzBhAkTEBoaiujoaFSvXh0lSpR4430kJibi7NmzmDx5srLMyMgIrVu3xsmTJ3MSVo73mZCQoIxsBQBRUVE5+v1ERIbMpGTZQv2FR0Rp1qxZA39//2xv5+fnhxkzZuR+QAaqKF4zczyPBQCYmpqievXqOdpWrVYjJSUFtra2WsttbW1x9erVfN3n3Llzc/QHRkRERVPS80cZ2kGnJL14QBUbHgrjTEZ7KYo3GlTwDBs2DL6+vlrL4uLilOFPAwMDM51fgbUV9DrZSiwGDRr0RuU2btyYo2D0ZfLkyRg3bpzyc1RUFBwdHfUYERERFWRFse00GY7MmjTFxMQo7729vVG8ePH8DosMQLYSi82bN6NSpUrw8fGBiOj0i21sbGBsbIzIyEit5ZGRkbCzs8vXfZqZmcHM7PXjCBMREQFFs+00EdHrZCuxGD58OHbu3Ilbt25h4MCB6NevH8qUKZOjX2xqaoratWsjICAAnTt3BgCkpqYiICAAo0aNKjD7JCIiehmbNBERZZSteSxWrlyJ8PBwTJw4EYcPH4ajoyN69OiBn3/+OUc1GOPGjcO6deuwZcsWBAcHY/jw4YiJiVFGdOrfv79WR+zExEQEBQUhKCgIiYmJuHfvHoKCgrTm1HjdPomIiIiIKPdlu/O2mZkZevfujd69e+POnTvYvHkzRowYgeTkZFy+fDlbI0P17NkTDx8+xPTp0xEREQFvb28cOXJE6XwdFhYGI6MXuc/9+/fh4+Oj/Lxo0SIsWrQIzZo1w7Fjx95on0RERERElPt0GhXKyMgIKpUKIoKUlJQc7WPUqFFZNlPSJAsazs7Ob1Qz8qp9EhERERFR7stWUyggbc6HnTt3ok2bNqhatSouXryIFStWICwsLFu1FUREREREZDiyVWMxYsQI7Nq1C46Ojhg0aBB27twJGxubvIqNiIiICjDO50FE6WUrsVi9ejWcnJxQuXJlHD9+HMePH8+03P79+3MlOCIiIiq4OJ9H4RAWFga1Wv3KMnFxccr7oKCgTCfIe1lwcLDOsZFhyVZi0b9/f6hUqryKhYiIiAoRzudR8IWFhcHD3R2x8fFvvI1mBm6i7Mr2BHlEREREAJs0FQZqtRqx8fFY7uUM1xJZ10LEp6Si66kQAMD+Bu4wN359N9zfHzzFwuvhuRYrFX46jQpFRERERAWfawkL1LC2zHJ9bPKL0T3fsrKAZTHj1+4zNDrutWWoaMn2qFBEREREREQvY2JBREREREQ6Y1MoIiIiAxYZn4QHCUlay+LTTWp7OSoW5sYZm72UNzOBrblJnsdHRIaDiQUREZEB2x72EEtDs+5g2/XUtUyXj3W1x7iqDnkVFhEZICYWREREBqyvUzm0sS2V7e3Km7G2goiyh4kFERGRAbM1Z5MmIsofTCwKkfDwcISHZ3+8aHt7e9jb2+dBREREREREaZhYFCJr1qyBv79/trfz8/PDjBkzcj8gIiIiKnTYoZ/yChOLQmTYsGHw9fXVWhYXF4cmTZoAAAIDA2FhkXFWTdZWEBERkQY79FNeYWJRiGTWpCkmJkZ57+3tjeLFi+d3WERERFSIsEM/5RUmFkREREQ6Kkz9INmhn/IKEwsiIiIiHbEfJBETCyIiMlCF6QkyFX7sB0nExIKIiAwUnyBTfmI/SCImFkREZKD4BJmIKH8xsSAiIoPEJ8hERPnLSN8BEBERERFR4ccaiwIqLCwMarX6teXi4uKU90FBQZlW678sODhYp9iIiIiIiF7GxKIACgsLg4e7O2Lj47O1nabdMBEREeWdvHz4BwA2NjZwcnLKcXxE+sLEogBSq9WIjY/Hci9nuJZ49UUoPiUVXU+FAAD2N3CHufHrW7f9/uApFl7P/hCMREQFVV7d6LGGl14WFhYG92oeiI+LzdZ22Xn4Z25hiZCrwUwuqNBhYlGAuZawQA1ry1eWiU1OUd6/ZWUBy2LGr91vaHTca8sQERUWrOWl/KRWqxEfF4tK3SbDvNyrb/xTkxJwfcMYAIDb4GUwMjF77f7jH4bhzr65UKvVTCyo0GFiQUREhVpe1vKyhpeyYl7OCZYOVV9ZJiXxxYM8C3tXGJu+WVMoosKKiQURERmEvKjlZQ0vEdGb43CzRERERESkMyYWRERERESkMzaFIiIigxQZn4QHCUlay+JTXjSFuhwVC3PjjE2hypuZwNbcJM/jo/wXHh6O8PDs95nJbBZ3IsqIiQURERmk7WEPsTQ065vIrqeuZbp8rKs9xlV1yKuwSI/WrFkDf3//bG/n5+eHGTNmvLJM0vNHSHr+SGtZSlKC8j42PBTGmYwKZVKyLExKls12TEQFEROLQoRP34iI3lxfp3JoY1sq29uVN+P10lANGzYMvr6+Wsvi4uKUoYcDAwMzndvkTWor1P98j4hjW7NcH/r/w86+zK55f9i3HPDa/RMVBkwsChE+fSMienO25nyoQtoya9IUExOjvPf29kbx4sVztG+buu/CulrDbG/H2goyJEwsChE+fSMiIiqY2KSJiIlFocKnb0RERERUUHG4WSIiIiIi0hkTCyIiIiIi0hmbQhEREZHBCQsLg1qtfm25uLg45X1QUFCmo0KlFxwcrHNsRIaKiQUREREZlLCwMHi4uyM2Pj5b22mGnSWinGFiQURERAZFrVYjNj4ey72c4Vri1TUQ8Smp6HoqBACwv4E7zI1f3Ur89wdPsfB69mfvJioKmFgQERGRQXItYYEa1pavLBOb/GKi2besLGBZLONEs+mFRse9cj1RUcbO20REREREpDMmFkREREREpDMmFkREREREpDMmFkREREREpDN23iYiIqIiITI+CQ8SkrSWxae86Lx9OSoW5sYZO2+XNzOBrblJnsdHVNgxsSAiIqIiYXvYQywNzXqo2K6nrmW6fKyrPcZVdcirsIgMBhMLIiIiKhL6OpVDG9tS2d6uvBlrK4jeRIHoY7Fy5Uo4OzvD3Nwc9evXx+nTp19Zfs+ePahWrRrMzc1Ro0YN/Pjjj1rrP/zwQ6hUKq1X+/bt8/IQiIiIqICzNTdBDWvLbL/YDIrozeg9sdi9ezfGjRsHPz8/nDt3Dl5eXmjXrh0ePHiQafm//voLvXv3xuDBg/Hvv/+ic+fO6Ny5My5duqRVrn379ggPD1deO3fuzI/DISIiIiIqkvSeWCxZsgRDhgzBwIEDUb16daxevRqWlpbYuHFjpuW//PJLtG/fHhMmTICHhwdmzZqFWrVqYcWKFVrlzMzMYGdnp7xKly6dH4dDRERERFQk6TWxSExMxNmzZ9G6dWtlmZGREVq3bo2TJ09mus3Jkye1ygNAu3btMpQ/duwYypcvD3d3dwwfPhyPHj3KMo6EhARERUVpvYiIiIiI6M3pNbFQq9VISUmBra2t1nJbW1tERERkuk1ERMRry7dv3x5bt25FQEAA5s+fj+PHj6NDhw5ISTekXHpz586FtbW18nJ0dNTxyIiIiIiIihaDHBWqV69eyvsaNWqgZs2aqFKlCo4dO4ZWrVplKD958mSMGzdO+TkqKorJBRERERFRNug1sbCxsYGxsTEiIyO1lkdGRsLOzi7Tbezs7LJVHgAqV64MGxsbhIaGZppYmJmZwczMLAdHQERFgWYQiOyyt7eHvb19HkRERERU8Og1sTA1NUXt2rUREBCAzp07AwBSU1MREBCAUaNGZbpNw4YNERAQgDFjxijLfv31VzRs2DDL33P37l08evSIX/BElCNr1qyBv79/trfz8/PDjBkzcj8gIiKiAkjvTaHGjRuHAQMGoE6dOqhXrx6WLVuGmJgYDBw4EADQv39/VKhQAXPnzgUAjB49Gs2aNcPixYvRsWNH7Nq1C2fOnMHatWsBANHR0fD390e3bt1gZ2eHGzduYOLEiXB1dUW7du30dpxEVHgNGzYMvr6+Wsvi4uLQpEkTAEBgYCAsLCwybMeHGUREVJToPbHo2bMnHj58iOnTpyMiIgLe3t44cuSI0kE7LCwMRkYv+pg3atQIO3bswNSpU/H555/Dzc0NBw8ehKenJwDA2NgYFy5cwJYtW/D06VM4ODigbdu2mDVrFps7EVGOZNakKSYmRnnv7e2N4sWL53dYREREBYreEwsAGDVqVJZNn44dO5ZhWffu3dG9e/dMy1tYWODnn3/OzfCIiIiIiOg19D5BHhERERERFX5MLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGcFYuZtIqKCIiwsDGq1+rXl4uLilPdBQUGwsLB47TY2NjZwcnLSKT4iIqKCiokFEdH/CwsLg3s1D8THxWZruyZNmrxROXMLS4RcDWZyQUREBomJBRHR/1Or1YiPi0WlbpNhXu7VN/+pSQm4vmEMAMBt8DIYmZi9snz8wzDc2TcXarWaiQURERkkJhZERC8xL+cES4eqryyTkviiKZSFvSuMTV/fFIqIiMiQsfM2ERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHpjIkFERERERHprJi+AyAiKuiSnj9C0vNHWstSkhKU97HhoTA2McuwnUnJsjApWTbP4yMiIioImFgQEb2G+p/vEXFsa5brQzeMyXS5XfP+sG85II+iIiIiKliYWBARvYZN3XdhXa1htrdjbQURERUlTCyIiF6DTZqIiIhej523iYiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ0wsiIiIiIhIZ8X0HQAR5Vx4eDjCw8OzvZ29vT3s7e31tm8iIiIyPEwsiAqxNWvWwN/fP9vb+fn5YcaMGXrbNxERERkeJhZEhURYWBjUarXWsoYNG2Lbtm1ayxISEjB48GAAwIYNG2BmZpZhXzY2Njh37lyGZU5OTsrPw4YNg6+vr1aZuLg4NGnSBAAQGBgICwuLDPtmbQUREVHRxMSCqBAICwuDh7s7YuPjs7WdJsF4E+ZmZti7b5/OiUFmTaheTlqIiIjI8DCxICoE1Go1YuPjsdzLGa4lMtYSpBefkoqup0IAAPsbuMPc+PVjNJx+/Bwzrt7Hu++++8YxaWou3oS5hSVCrgYzuSAiIjJgTCyIChHXEhaoYW2p/BwZn4QHCUkvlZIs3r9Q3swEtuYmys+h0XGApKJSt8kwL5f1zX9qUgKubxgDAHAbvAxGJhmbWb0s/mEY7uybC7VazcSCiIjIgDGxICrEtoc9xNLQrEdu6nrqWqbLx7raY1xVhwzLzcs5wdKhKgAg6fkjJD1/pLX+9SkLYFKyLExKln1l3ERERGR4mFgQFWJ9ncqhjW2pbG9X3szktWXU/3yPiGNbs1wf+v81Fy+za94f9i0HZDsmIiIiKtyYWBAVYrbm2k2acpNN3XdhXa1htrdjbQUREVHRxMSCiDJV2Jo0cUI/IiIi/WJiQUQGgRP6ERER6VeBSCxWrlyJhQsXIiIiAl5eXvjqq69Qr169LMvv2bMH06ZNw+3bt+Hm5ob58+fjnXfeUdaLCPz8/LBu3To8ffoUjRs3xqpVq+Dm5pYfh0NEeSyvJgsMDg7Oo4iJiIgMn94Ti927d2PcuHFYvXo16tevj2XLlqFdu3YICQlB+fLlM5T/66+/0Lt3b8ydOxfvvvsuduzYgc6dO+PcuXPw9PQEACxYsADLly/Hli1b4OLigmnTpqFdu3a4cuUKzM3N8/sQiSgX5cdkgURERJR9ek8slixZgiFDhmDgwIEAgNWrV+OHH37Axo0b8dlnn2Uo/+WXX6J9+/aYMGECAGDWrFn49ddfsWLFCqxevRoigmXLlmHq1Kno1KkTAGDr1q2wtbXFwYMH0atXr/w7OCLKdVlNFvg4MQmPE5O1yiakCiZcvAMAWFijEsyMVBn2V8a0GMqYpnWA//3BUyy8nv1+GkRERKTnxCIxMRFnz57F5MmTlWVGRkZo3bo1Tp48mek2J0+exLhx47SWtWvXDgcPHgQA3Lp1CxEREWjdurWy3traGvXr18fJkyczTSwSEhKQkJCg/Pzs2TMAQFRUVI6PTRfR0dEAgIvPYhCbnJLr+w99HgcAiL1/HSmJcbm67wT1XQBpx5Ab5y8vzwXPwwuF8VzEpaRqnYvv7j/GnnuPs9xOk2C8rHuFMuhZ0SYt1pRUAIXrPPAzUXivEwDPhQbPwws8F2l4Hl7I7XORUyVLloRKlfEBnRbRo3v37gkA+euvv7SWT5gwQerVq5fpNiYmJrJjxw6tZStXrpTy5cuLiMiff/4pAOT+/ftaZbp37y49evTIdJ9+fn6CtPm++OKLL7744osvvvjii6+XXs+ePXvtvb3em0IVBJMnT9aqBUlNTcXjx49RtmzZ12dmhVBUVBQcHR3x33//wcrKSt/h6A3Pwws8F2l4Hl7guUjD8/ACz0UanocXeC7SFJXzULJkydeW0WtiYWNjA2NjY0RGRmotj4yMhJ2dXabb2NnZvbK85t/IyEitsekjIyPh7e2d6T7NzMwyjBZTqlSp7BxKoWRlZWXQfwBviufhBZ6LNDwPL/BcpOF5eIHnIg3Pwws8F2l4HgAjff5yU1NT1K5dGwEBAcqy1NRUBAQEoGHDzGf8bdiwoVZ5APj111+V8i4uLrCzs9MqExUVhb///jvLfRIRERERkW703hRq3LhxGDBgAOrUqYN69eph2bJliImJUUaJ6t+/PypUqIC5c+cCAEaPHo1mzZph8eLF6NixI3bt2oUzZ85g7dq1AACVSoUxY8Zg9uzZcHNzU4abdXBwQOfOnfV1mEREREREBk3viUXPnj3x8OFDTJ8+HREREfD29saRI0dga2sLIG3MeiOjFxUrjRo1wo4dOzB16lR8/vnncHNzw8GDB5U5LABg4sSJiImJwdChQ/H06VM0adIER44c4RwW/8/MzAx+fn6ZThZWlPA8vMBzkYbn4QWeizQ8Dy/wXKTheXiB5yINz8MLKhERfQdBRERERESFm177WBARERERkWFgYkFERERERDpjYkFERERERDpjYkFkwNiFioiIiPILEwsiA3Xr1i3s2bMHABMMIiIiynscFYoMlohApVLpOwy9uHLlCmrVqgUXFxcEBwfrO5wCIyEhgcMBEr2kKF8riV6WmpqqNc0BADx48ADly5fXU0SFC2ssyKBcuHAB06dPB4Ai+0UZFBSEunXrwtXVFSYmJkhISNB3SHoTFhaG/fv3AwB2796NKVOmID4+Xs9RFQxF+ZlSUT729BITEwGk3UgVZS9/Hor6+SjqjIyMcP36dXz99dcAgD179mDIkCGIiIjQc2SFAxMLA1UUvzjPnz+PBg0a6DsMvTp//jwaNWqEadOmYefOnbhx4wbCwsL0HZZexMfHY+bMmZg7dy7Gjx+P3r1746233iqyE2W+fLOkSbyL2rUiNTVVOfagoCA8ePBAzxHpx9WrVzF06FC0bt0aM2bMQEhIiL5D0gvN5yE6OhoxMTGIjo7O8LS6qClq14SXpaSk4LvvvsOoUaMwePBg9OzZE127doWdnZ2+QysUivZfjwFIf7OwbNky+Pn5AUi7aShKFwfNDfXYsWMxc+ZMfYejF0FBQWjcuDHGjBmDzz77DCICY2PjIvuE3tzcHJMmTYK5uTmWLFmCESNGYODAgQCK3hPJ9FX7mzZtwsSJE9G/f38cPXq0SF0n0p+HqVOnYvTo0Th+/HiR+xs5f/48GjZsCGNjY9jb2+Onn37Crl27ABStm0rN5+HixYto1aoVmjRpAldXV8ybNw8XL17Ud3h6oWkWFxgYiJkzZ+KTTz7Bvn379B1WvjI2NsaoUaPw/vvvY9OmTejTpw8GDBgAoOh9d+QEE4tCLP2X5N9//43z589j1qxZSvVdUUkuLl68iEaNGmH8+PGYM2eOsnzz5s1K52VDFxoaisaNG+Pjjz/GF198AQBwdnZG2bJlce/ePQBF84Joa2uL4sWLo06dOrh8+TJ27twJIK2quyidD811YuLEiZg+fToePXqE0qVLo23btli+fHmRaS6XPqlYu3YtJk+ejLZt2xapWqwLFy6gcePGGDlyJDZs2IBvvvkGjRs3RnBwMOLj46FWq/UdYr4xMjLCnTt30KJFC9SrVw/Tp0/HyJEjsWnTJkybNg2//vqrvkPMdyqVCvv370enTp1w/vx5pKSkoHv37vj000/x7NkzfYeXb4yNjVGmTBm8++67OHz4MJYsWQIg7TOTkpKi5+gKOKFCb9KkSVK/fn3p3bu3uLi4iJmZmcybN09Zn5qaqsfo8pZarZbq1atLzZo1tZbPmTNHSpUqJadOndJTZPnr+++/lzVr1mgti4uLk4oVK8rXX38tItqfg+PHj8vDhw/zNcb88vLnPSkpSS5fviw9evSQxo0by44dO7TWP3/+PD/D05sff/xRHB0d5cyZMyIi8ueff4pKpZLt27crZQz5WqFx7tw5cXNzkxMnToiIyNOnTyU4OFjWr1+vXC8M9Tzcv39fVCqVDBw4UGv5yJEjxcPDQ9zd3aVq1aqyceNGPUWYfzT/xxs2bJAGDRporfvhhx+kXbt20qZNGzl+/Lg+wtOb69evi4uLi6xatUpERKKjo8XCwkImTpyo58jyXmZ/9zExMTJjxgwpUaKELF68WGvdzZs38yu0QoWJRSG3b98+KVmypAQGBkpycrLcuHFDpkyZIiVLlpQFCxYo5Qz1izIiIkLGjx8vNWrUEH9/fxERWbhwoZQtW1Z+/vnnTLdJSUnJzxD1Ijk5WVJTU6V27doyd+5crXWfffaZuLq6Snh4uJ6iyzuaz/mpU6dk3bp14ufnJyEhISIicuXKFenZs6c0bdpUuZmePn26TJgwQZKSkvQWc37ZunWrdOnSRUREdu/eLSVKlFBuHp48eSK3b9/WZ3h55uW/95CQEKlevbocPnxYzpw5I8OHD5eqVatK1apVxdzcXH777Tc9RZr3nj17Jo0aNZJq1arJxYsXRURk/vz5YmFhIWvXrpU1a9bIwIEDRaVSZXn9NDSbN2+WSpUqyd27d7WWHz16VFq0aCGDBg0StVqtp+jy37///iuNGzcWEZEbN25IhQoVZOjQocp6zfXU0Gi+O37//Xf54osv5IMPPpCff/5ZIiIiJCEhQfz9/cXKykoWLVokIiIzZsyQrl27FpkHU9nBxKKQW7hwodSpU0dr2b1792TkyJGiUqmUp9WG7P79++Ln5yfVq1eXZs2aiY2Njfz+++8Zyh04cCDfY8sP6W+cXr6J6tSpkwwaNEj5efr06WJhYSGnT5/Ot/jy2969e6VcuXLStm1bad68uVaSfe7cOfnggw/ExcVFGjduLObm5gZ5LjJLnteuXSsNGzaU3bt3i5WVlda1YevWrdK9e3d58uRJPkaZ99Kfh9OnT8udO3fkwYMH0qpVK6lbt66YmprKiBEjZP/+/fLff/9JvXr1ZOXKlXqMOG8kJCQo758/fy4tWrSQqlWryujRo6VcuXJaScSVK1fE1tZWpk+fro9Q892vv/4qZcuWle+++05E0h7KaOzatUssLCzkzz//1Fd4+S4wMFCcnZ3l+PHj4uLiIkOHDlXOyZ9//int27c32Cf1mge1Q4YMkS5duoiXl5d069ZNoqOjJTIyUubNmycqlUpq164tJUqUUGp/SRsTi0Ju7969UqFCBQkKCtJaHhAQICYmJmJpaZmh+s5QpKamKk8Z7t27J35+fuLg4CB9+vRRymguiNOnTxeVSiW3bt3SR6h5QnPscXFxWjcOIi9uqD744APp0KGDiIhMmzZNzM3NDfpieOHCBXFwcJBNmzaJSNoNlUqlktmzZytlrl27Jlu2bJFJkybJ1atX9RRp3kl/M3306FE5f/68iIhcvXpVmjZtKiYmJlq1mTExMeLr6yuDBg0yqJrN9Mfy2WefSb169WT9+vUiknYufvzxRzl+/LhyvpKTk6VOnTqyYcMGvcSbV65fvy4jR46Uo0ePKjVzz58/l44dO4pKpZLVq1eLyIvPTVRUlNStW1epzTIUmuNLSkqS+Ph4rXWDBg2SMmXKyIULF0REO7moWbOmTJ06Nf8CzUeav5GLFy/KmTNnJDExUaKjo6VLly5SvHhx6dGjh1b5zz77TJo1ayYPHjzQR7h56vr16+Lu7i7r1q0TkbQmkubm5vL5558rZZKTkyUwMFCWLl0qoaGh+gq1wGNiUUhk1Xzn2rVrUqtWLfnkk0/k2rVryvILFy5Iv379ZObMmVKjRg35999/8ynSvHX//n25cOFChi8GEZHw8HDx8/MTDw8P8fPzU5ZPnTpVLC0tDeqGWvOF8NNPP0nHjh2lUaNG0qtXL7l7967WDdUXX3whXbt2lWnTpomZmZlBnYPMBAQESMuWLUVEJDg4WJycnOSjjz5S1hti86/0Xr6ZrlKliuzcuVOioqJEJK3Zi4eHh3z00Udy+vRp+emnn6R9+/ZSs2ZN5abTkJILEZHZs2eLjY2N/Pbbb/L06dMM6+Pi4uTOnTvSoUMHqV27ttZNZWF3/vx5cXJykvfff182b96ste7p06fStm1bqVy5staDqalTp4qTk5NBPYTRfH9evnxZevfuLQ0bNpT//e9/yjlJTk6Wtm3bSvny5bX65SUmJkqjRo0MshZL83e+f/9+cXBwkKVLlyrNwTZv3ixvvfWW9OrVS06fPi0nT56U8ePHi7W1tZJ8FVaaz8LLD+OCgoKkRo0akpSUJNeuXRNHR0cZMmSIsv706dNs9vSGmFgUAumTipUrV8onn3wi7du3l71790pMTIzs3btXqlatKgMHDpS9e/fKhQsXpH379jJw4ED5559/pGTJkgbRDOjChQvi6uoqM2bMkBs3bijLV61apVRj37lzR/z8/KRatWoyf/58+eKLLwz2Kf3BgwelZMmSMnbsWNmzZ49UqVJFWrVqJX/++afymfnmm29EpVJJ8eLFDe4cXL16VZYtWyYxMTHKso0bN4qXl5c8ePBAnJ2dZejQocq5+OGHH2T48OGZ3lwampkzZ4qtra0cO3ZM4uLitNYtW7ZMmjRpIsWKFZP69evLe++9J4mJiSIiBnVTnZqaKvfv35cGDRrItm3bMqwTSbu2LlmyRNq2bSuNGzc2qPNw7do1sbOzk0mTJmX4DGhER0dL06ZNxdnZWW7cuCH+/v5ibm4uZ8+ezedo815ISIiUKlVK+vfvL59//rm0aNFC3nrrLeXmMSoqSjp16iQlSpSQ6dOny1dffSWffvqplCpVSuuhnSH56aefpESJEvL1119nuC5u2rRJWrZsKcbGxlKzZk2pW7duhpYRhdWtW7dkzJgxWp/z48ePS506deT27dvi7OwsH330kfLdcerUKRk5cqTBfg5yGxOLQmTixIlSrlw5mTVrlnz00Ufi4uIigwcPFpG0NtLvvfeemJmZiZubm/j4+EhiYqLEx8dLzZo15ccff9Rz9Lq5efOm2NrayuTJkzM8de7fv7+ULVtWaR9+7949mTlzplhbW4uRkZHB3VCLpN001KhRQ5YvXy4iaU8fHR0dpUSJEuLh4aEkF4GBgeLp6SnBwcF6jjj3bdy4UVQqlcyfP19iY2NFJG2UsLp160qxYsWUvw3NTeSECROkXbt28vjxY73FnB8iIiKkbt26smXLFhFJq+X766+/ZOzYsbJ27Vql3Pnz5+XRo0fK+THEDuwRERFSsWJF2bt3r4ho18bEx8fL06dPJSwsTLZu3aokE4ZyHj799FPp0aOHVpL0+PFjuXTpkvzyyy9y+fJlERGJjY2Vli1bikqlEktLS4NMKkTSku3OnTsrPz9+/FhWrVolTk5O0q9fP2X5rFmzpEWLFlK9enVp1aqVwdT2vyw+Pl66du0qn3zyiYikJZkhISEya9YsWb16tXJNPXv2rNy/f9+grpsHDhyQ8uXLy7Bhw5SmoiIib731lqhUKvn444+1yk+YMEGaNGlikE3A8gITi0Lit99+kypVqig3yQEBAVKsWDH55ptvlDLx8fESHBwsly9fVr5AP/30U6lcubLcu3dPL3HnlmXLlomPj0+m66Kjo6Vjx46ye/duZdndu3dl3rx5BjuCRVBQkMyZM0cSEhLk3r17UrlyZRk1apQ8e/ZMXFxcpEWLFspwmob0hfCy1atXi0qlkrlz50psbKwkJibKkiVLxMPDQ4YPHy5xcXFy8eJFmTx5spQqVUoZCceQPXjwQOrXry/z58+X/fv3S58+faRhw4ZSq1YtcXNzU9oMp7/JNtSR0sLDw8Xe3l7mzJkjIto1EadPn5YvvvhCq8bLEGoqRNL+b9977z0ZM2aMsuzAgQPSt29fsbKyEnNzc/H29padO3eKSNqDiUGDBhnME+nMDBo0KMOwstHR0bJ582ZxdXWVyZMnK8ufPXsmsbGxBt30JTk5Wbp37y7/+9//5PTp0zJixAhp06aNODo6io+Pj/Ts2TNDc6HC7OUmnnv27JFq1arJRx99JOfOnRORtM7p7u7u0qpVK7l8+bIEBATI+PHjxcrKqtA3ActPTCwKKE2VvMahQ4eUi+KuXbukZMmSyqguUVFRcvz4ceUJg0jakGl9+vSRcuXKKX80hdmGDRukbNmysnHjRomMjJSrV6/K+fPn5dy5c3LkyBFp2rSpjBs3Tq5fvy6nT5+WpKQkg71ZEkn7UtDUQnz44YfSq1cv5QbJ19dXVCqV1KlTJ9O+KIYg/Q3gypUrRaVSKTePT58+ldmzZ4u7u7tYWlqKp6eneHp6GsTfwcuy+oyPGDFCatasKcWKFZOJEyfKb7/9JqmpqdKjRw+ZMGFCPkeZ9171t75o0SIxMjJSbqJF0h7CtGvXTvr06WNwfUo0xo8fL6VKlZL9+/fLmDFjpEKFCjJ48GD5/vvv5dKlS9K+fXut64YhXS/T/59qaqC2b98uderUkZMnT2qVffz4sXz++efSqFEjCQsLExHDOhevMnfuXPHw8BBzc3Pp0aOH7Nq1S+Lj42Xq1KnSqVMnfYeXK171sGDHjh1SrVo1GTx4sFy6dElE0h7a1qhRQ+zs7MTd3V0aNWpksLVWeaWYvifoo4yOHz+O69evo0mTJqhWrRoAICYmBiYmJvj1118xdOhQzJ07F8OHDwcABAQE4Ndff4WbmxssLCwAANWrV4e9vT2OHz8ODw8PvR2LLm7fvo3SpUvD2toatWvXxqBBgzBlyhTMnTsXxYsXx5MnT2BmZgYLCwuEhobixIkTOHLkCNRqNS5duoRy5crp+xB0Jv8/c7pKpcLdu3ehUqkQHR0Nd3d3VKtWDSKCsLAwtGrVCpaWlgCAKlWq4MyZMyhTpgzMzMz0GX6uunbtGlasWIEePXrA3t4eVapUgYhgxIgRSElJwejRo5GSkoJp06Zh4sSJGDVqFI4dOwZXV1fY2NjA1tZW34eQq1JTU5WZpH/88Uc8fvwYCQkJ6NevH1auXInr168jISEBnp6eyjYPHjyAm5ubvkLOE+nPw7p16xASEgK1Wo2hQ4fC29sbQ4cOxf3799GnTx98//33MDIyQlhYGB49eoTDhw9DpVJBRKBSqfR8JLqJjY1FbGwsLly4AHd3d/Tu3RvPnz/HmDFjUKxYMSxduhSNGjVChQoVAACenp747bffYGxsDODFrOSFnebz8PjxY5QpUwbFiqXd5vj4+CAmJgbr1q1DhQoV4OjoCAAoXbo0BgwYgLlz5+LChQtwdHQ0mHOhofl8BwUF4b///sPDhw/Rs2dPfPbZZ+jSpQsePHiAt99+Wzl3T548gbGxMeLj42FmZlao/zaMjY1x+fJlTJo0CT179oSjoyOaN28OAOjduzeKFSuGqVOnQkQwbtw4tGzZEhcuXMCZM2dga2uLEiVKoHTp0vo9iMJGn1kNZbR582ZxcnKS0aNHa42vHxMTI66urqJSqWTr1q3K8ri4OHnnnXekX79+Wh0S0/9bGCUmJkqLFi3Ezs5OqynPlClTlBGfNO3Dnz9/LpMmTRJfX185f/688tSpsHv06JHy/sCBA+Ll5SWenp5ia2srEydOVEbwaNCggTRr1kwOHDggY8aMkbJly8r9+/f1FXaeiIqKkjp16ohKpRInJyfx8fGRLl26yIoVK5Q+N3v37hWVSiULFixQRkEqCj799FMpX768+Pj4iKWlpdSpU0d27dqlPKl7+vSpXLp0STp06KCMemKIJk2aJOXKlZORI0dK8+bNxdvbWxYuXCjR0dEikjZGfbdu3aR3794yceJE5TwYwvkICQmR/v37S7Vq1cTMzEzKlCkjffr0UWpvX56fJDU1VYYMGSKDBg0yqOYuGsHBwWJsbCyffvqp1vJffvlFTExMZMiQIVrNZJ88eSJ16tQx6MkR9+zZI2XKlJGaNWtKyZIlxc3NTdatW6fV3OvGjRsyadIksbKyMphmo4mJidK8eXNRqVTi6ekpJUuWlLZt28qHH34oQUFBkpCQID///LPUqFFDRowYYbB9jPITE4sCZOvWrWJhYSHbtm2TyMjIDOuPHDkiFStWlA4dOkhAQIB8++230rZtW/H09DTIoSIvXrwodevWFQ8PDyW5mDx5stSrV0/5WTOXxeDBg7XmKijsHj58KBUqVJDg4GD57bffxNLSUlavXi0RERGyfv16UalUWiNhubq6ipubm1StWtUgm/zExMTI+vXrpXbt2lKjRg0JDAyU7t27S40aNaR06dLSsmVL2bhxo/Ts2VNKlCghCxcuNOj20Rrbt28XW1tb+ffffyU6OlqePn0qvr6+0qRJEzl48KCIiGzbtk3efvttadeunUGNepTe+vXrxdnZWfns//LLL6JSqaR69eoyZ84cZcSbl2+iDeE8nD9/Xuzt7ZXhU4ODg2XChAni6uoq7u7u8tdff2mVj4uLk88//1xsbW3lypUreoo6b+3atUtKly4ttra2SudkjR9++EFKly4tXbp0kXXr1snFixdl/PjxYmtrazAPpV6+DwgKCpJy5crJ5s2bRa1WS1JSkvTv31/q1q0r69evl+TkZDlx4oS0b99evLy8DK6vzeXLl8Xb21t8fHzkyJEj4u/vL40bNxZnZ2exs7OTL774Qpo3by5ubm7Su3dvgxzsJD8xsSggbt++LfXq1csw1nh8fLyEhITI9evXRSSt74SPj484OTlJ3bp1pUePHgZ3s5C+5iU4OFgaNWokPj4+8uTJEzlx4oTUqlVLPv30U7lz545cvHhRPv/8cylbtqxBXQxu3rwpFStWlPPnz8uUKVOUL8cbN26Im5ub1vjaImlPZW7dumWQHbU1n4fExETZtm2bVKhQQetm4ZtvvhE/Pz9xcXGRhg0bikqlylDTZahmzZolzZs3l6SkJOXhwpMnT6Rp06bSrl07pdxvv/2mNUGYIUlISJAVK1bIwoULRSStZqJUqVKycuVKGTx4sJQtW1a++OILUavVeo40950/f14sLS1l8uTJGf5fd+/eLT4+PlKvXj1lpuTly5fLBx98IBUqVDDIBxAa+/fvV26ay5Urp9WJXSSt43737t3F3t5e3N3dxd3d3SDOR1atFPbs2SPu7u4SERGhlElNTZW+ffuKp6encg8REBAg//33X77Fmx803x9XrlwRe3t76dGjhzK60/nz52Xt2rXSpUsXqVWrlqhUKilfvrzB1fjnNyYWBcT169fF1dVVqyp206ZN0rdvXzE3N5fSpUvLtGnTlHU3b96Ux48fG9RQkenHWk/fef3TTz8VlUoldevWladPn8q8efPEw8NDVCqVeHh4GNQEgOnVrl1bZs6cKS1atJAlS5ZIfHy8VKhQQYYOHar8v3/55Zdy9OhRPUeaNyIjI5UvgH379snevXslOTlZtm3bJnZ2dlpDRIqkDTUbEhIic+fONdgnsRqahwiTJk2SOnXqKMs1f0N//fWXWFhYZBjJpDA3j9S4f/++PHr0SKtW99atWxIRESG3b9+WGjVqyJIlS0Qk7YFNmTJlxNnZWTZu3KivkPNEWFiY2NjYSPfu3ZVlqampWt8Fa9euFSsrK1m7dq3cvXtXpk+fLv/73/8MdrQ8jfDwcOnatatERETIl19+KWXLlpWpU6fK6NGjlSG6o6Oj5f79+3Lt2jWtZqeFleZv+9atW7Jw4UKZNm2aMn/LgQMHxM7OTp49eyYiogz08uzZM7GwsFCGYzZ0ly9fFnt7e2nZsqXWg6eEhASJiYmRXbt2GdTEkPrCxEKPVqxYobw/d+6cVKxYUZYvXy4XL16U/v37i4+PjwwYMEC2bNkiS5culWLFismOHTsy7McQbhbu3r0r3bt3z9DGdf78+VK2bFlZv3698vTtyZMnEhERIfv27ZPz589n2mysMNP8f3br1k38/f1l165d0qpVK7G1tZURI0Zojbfft29fmThxYoZRxAq7qKgoKVu2rEyYMEFp+qX5koyJiZFt27aJg4ODVnJhCMl1VrL6Gz979qwYGRnJ3LlztZYHBATIW2+9ZXBPH7dt2yb169eXypUry7vvvqsMqaxx9OhRcXd3V2ov//rrL+nXr58sWLDAYGp0NW7duiV169YVX1/fDOchfVOYpk2bKslHdHS01uiBhioiIkKqVKki58+fl7i4OPnmm2/E0tJSVCqV3LlzR0QM63qhuT4EBQWJvb29NGnSREqVKiUODg4yefJkiYqKEgcHB2VuH407d+6Ih4eH/PHHH/oIO89oPv/Xr1+XEydOyLlz55RaiMuXL0uFChWkTZs2yr2DIdxDFSRMLPRk69at0q1bN60bwgkTJkipUqXE1tZWqlWrJt9//73yxPbevXvi5uamlYwYkhs3bkjDhg3lnXfekcDAQBFJGwqvTJky8uuvv4pIWlWml5eX1KpVyyCeMKV348YNWbFihQQHByvtfL/55htp06aNHDp0SLy8vMTLy0t50piQkCCff/65ODk5GexsoEeOHBFTU1MxNjaWr776Smtd+uRi4MCBeoowf6S/STxw4IAsW7ZM9u/fr3wWFi9eLKampjJlyhQJCQmRa9euSceOHaVFixYG9YW5evVqMTU1lVWrVsnSpUulTZs2MmLECK0yhw4dEldXV9m0aZOEhITIe++9J//73/+U9YaWXFy7dk3at28v7dq100ou0n9mmjdvLr1799ZHeHqhOfZOnTopNdk9evSQUqVKSenSpWXSpEl6jC73aY73woULYmFhIdOnT5eYmBi5c+eO/O9//5Py5cvLiRMnZO/evWJlZSUDBw6Ue/fuye3bt8XPz08qVqxoUA8gNOdj3759UqlSJalZs6ZUr15dWrdurXUvUbFiRXnnnXcM7sFkQcDEQk8uX76sPDE5cuSIsvzMmTOZzhR99+5dqVu3rkFXWWq+JDt16iRDhgyRcuXKyc8//6xVJjg4WFxcXKRBgwYGc9OUmJgoPXr0ECcnJ3FxcRErKytp3769VKlSRSpWrCiPHz+W/fv3i7e3t1SvXl06deokHTp0MJg5Sl6WmpoqKSkpEh4eLiqVSlQqlXz++ecZvgBiYmJkx44dYmpqqnXzaEjS3yB++umnUrp0aalWrZp4eHiIg4ODHDt2TERE1q1bJ6VLlxYHBwdxdXWVBg0aKA8tDOHvZOPGjWJqaiqHDh1Slk2bNk369u0rV65ckX/++UdE0v6WunbtKk5OTuLg4CB16tRRzoMhDWyRXvrkQvNQRiTt//2///6TDh06KH33DPUcZGbIkCGycuVKGTBggNjb28vx48eV2s8pU6boO7xcFRERIZUrV5ZGjRppLT937pwUL15cfvrpJxEROXjwoDg4OIi9vb24urqKk5OTQY6C9Oeff4q1tbXyIHbbtm1iZGQkixYtUspcuXJFzM3NpWvXrgZxjSxImFjowVdffSWdOnWSJ0+eyJ9//il2dnZanVFffqr2+PFj6dixo7z99tsG98TtZSEhIdKmTRuxsLDQugik/8MPCQlROiMaCs0kVdeuXZPvvvtOvvrqK+nevbtUq1ZNunTpItHR0XL+/Hn54osvpG/fvrJgwQKDrKnQ3PhEREQo/x4+fFhUKpWMGzcuQ3KRmpoqe/bsMcg24+n/1v/88095++235e+//5b4+Hi5cOGCDBkyRExNTZUn1ffu3ZM//vhD/vrrL4PqqP3vv/8q///ptWrVShwdHcXR0VEsLCxk7NixIpJWm3fixAn57bfftJoNGrKsai4mTZokXl5eBvVEOj3N9eLixYvy66+/ynfffacc66JFi0SlUomrq6ty8/zkyRPZsGGDwVwvNM3a7ty5Iz169JCmTZtqtWr4559/pHjx4hIQEKAse/bsmfzwww/y+++/K0OWGwrN52Hu3LnSq1cvEUnri+Ts7CzDhw9Xymm+X65evWqQ36P6xsQin61du1ZUKpVS8xARESGzZ8+Wt956S8aPH69V9uHDh7Jt2zbp0KGD1KpVy+BGf8pKaGiotG3bVjp06KD1JWnITxWyepJ44MABadCggXTs2FEePnz4yrKFnea4Dh06JK1bt5YdO3Yon/lvv/1WVCqVTJgwQUku5s2bJ/v379dbvHnl5RrL7du3S48ePcTX11frBjkyMlL69esnjRo1UppMpmdI14k+ffqIjY2NHD58WEREunfvLlWrVpV//vlHzpw5I0uXLhWVSpVpHzRDOg+vkj65OHfunMyfP19KlChhcEOHvmzfvn1ia2srzZo1EwcHB2ndurXs3LlToqKipHfv3hn+ngzle2Tp0qXyySefKNeEGzduyODBg6V+/fryzTffSGRkpDg4OMjo0aOVbYrK34K/v79MnDhRwsPDMwx48uOPP8rXX3+tPMyj3MfEIh+tXr1aTExMMjRnSkpKknnz5kn16tW1kotNmzZJo0aNZOjQoQY1mdObyKp6v6hIP8nhrl27pFmzZlK/fn0luTBU+/fvF3Nzc1m8eLGEhoZqrduxY4eYmJjI+++/L7169RIzMzODawo2b9488fT0lO+//15ZNmLECClbtqw4OTkpfYs0X5I7duyQChUqyO3bt/USb15LfyPUr18/KVWqlDRo0EBq1qyp9RT+1q1b4ujoKHPmzNFHmAXGtWvX5N1335Xy5cuLiYlJps1qDcnp06fFxsZG1qxZIyJpwyqrVCqZN2+eiBhOEpGZZcuWafW5E0mrzR88eLDUrl1bLC0tZdSoUSLyonmpIdN0yhdJS7rKly8vDg4OMnLkSGV5cnKyDBo0SEaMGKE1CiXlLiYW+SQgIEBrUjONd999Vw4fPiyPHz+WuXPnSvXq1WXChAnK+uvXrys3EUXlaYOG5kuyQYMGcvLkSX2Hk+80/++pqamyZcsW6dChg9bF09DcvHlTPDw8lJuE5ORkiY+Pl4CAAGUOgv3790u3bt2ka9eucv78eX2GmyeOHDkiXbp0kZYtW2r1J5g9e7ZUqFBBxowZozXG+rlz58TFxcXghltOXyuX/v3QoUNFpVLJqlWrtJZHRkZKzZo1M8wDVBRdvXpVfH195dKlS/oOJc+tXr1ama8lNDRUKleuLEOHDlXWG/L1UuOvv/6Sjz76SKm1vHbtmnz00Ufi4uKiNeiFId8/XLlyRWrWrCkLFixQlnXr1k3Mzc3l8uXLEhcXJ9HR0fLZZ5+JnZ2dQc15VRAxscgHSUlJcuDAAWWIRI1u3bqJu7u73LhxQ0TSmj7NmzdPatSoIYMGDdLah6E/bchKcHCwvP/++0XiCyIz6ZOLqKgoPUeTtzST/504cUKSk5Nl/vz50qhRIylbtqzY29srT6hjY2MlPj5ez9HmrvTton///Xfp3LmzNG/eXJk9W0Tks88+Ey8vL+nXr5+cOXNGTp8+Le3atZN69eoZ1PUh/bE8fPgwQ7+avn37irW1tezZs0cp26FDB2nQoIFB3zxlh6ENP52VJUuWyPDhwyU2NlZp8qL5TPzwww/y5ZdfyvPnz/UcZd7S3DMMHz5ceQBz/fp1GTx4sDRo0EC+/vprPUeY9zTHW7duXVm6dKmIpPWtaNSokZQuXVpq1qwpzZs3FwcHB4Or5S6ImFjkoY4dOypPjRISEuSHH34Qd3d36dChg3Tr1k28vb2V5h6aG0i1Wi1TpkyRvn37Gmxb+uzSVPMWVUXlc3Dz5k1p27atNGjQQOzt7cXX11dmzZolwcHB4urqKp9//rm+Q8wTP/zwg9jZ2WmNMZ9VcjFlyhQpXbq0WFlZSefOneWjjz5SkixDSi5E0o61Tp06UqpUKRk0aJBs2rRJWde7d28pVaqU7Nu3Tzp06CBubm5Fpg9aUaW5Dt6+fVv5zH///feiUqmkZMmSMn78eK2/gaFDh0qfPn0kOjpaL/Hml5SUFFmwYIE0bNhQhg4dqiQXISEhMnToUKlWrZqsW7dOz1Hmrsy+E2/cuCGjRo0Sb29vrQc169atk0WLFsk333xjsE1GCxomFnnk5s2bMn78eK2b4tjYWDl8+LAydfzLE/Vo/liePn2qvDe0mwUikRef9bi4OK3ah99//12WLFkiixcvVkbuEBFp166drFq1Kt/jzA/Pnj2Tr776Snx8fLTm5EifXBw4cEBZPnPmTHnrrbdk2rRpyjkyhOQ7/bVuxYoVYmtrKxs2bJDly5fLu+++K7Vq1ZKFCxcqZfr37y8qlUo8PT2VpKKo9EErajTXi++++07q168vy5cvV/6vp0yZIqampvL9999LUlKSREZGymeffSblypWTK1eu6DPsXJd+4rfr168rfSxSUlJk7ty5GZKLK1euyMcff2yQs0n//fffsmvXLq1loaGh8vHHH4unp2eRqKkpqJhY5IPFixcroxvFxMTId999Jx4eHkrbUJHMvxCLypNqKlo0n+uffvpJOnbsKI0aNZIePXpIeHh4hrLR0dEybdo0sbOzk+vXr+d3qHlOcy6eP38uy5cvFy8vrzdKLiZMmCC1atWS6dOna/W5MARnzpyRiRMnyjfffKMsCw0NlfHjx0vdunWVSa5E0jqwMqkoGg4cOCBmZmayfPlyrWvBf//9J4MGDRKVSiXVqlWTOnXqiIuLi8E2edm7d6/Y29tLpUqVxMPDQzZs2CAiaTV1muRi+PDhSp8LQ2sWl5qaKs+ePZP3339ffHx8ZM+ePVrrNZPtVqpUSRYvXqynKIs2JhZ5IP0X3K1bt8TX11dKly4tp0+fFpEXNRfu7u7Stm1bpSxrJ6ioOHjwoJQsWVLGjh0re/bskSpVqkjLli3lzz//VP4O9u7dK4MGDTLYdrEv10o+e/ZMli9fLjVr1syQXHTp0kVatWolO3fuVJZPmzZNXFxcZM6cOQZx7UhNTZWzZ88qkyKuXLlSa/2NGzfEw8Mj05sFJhWG7f79+1KnTh2lM3JCQoI8ffpUDh48KGFhYSIicvToUVm3bp0cOnTI4Obt0FwrIiMjpVKlSrJ+/Xo5ePCgTJo0SYyMjJSmP8nJybJgwQLx8PCQMWPGSEpKisE8oNQch2bujtOnT0vv3r3l7bfflt27d2uVHTdunDg7O0ubNm2UkfQo/zCxyEMzZ86U9evXK38A5cuXl7///ltEXiQX1atXFx8fHz1HSpR/rl27JjVq1JDly5eLSFrTP0dHRylRooR4eHjIX3/9JSIix48flzlz5hjkBEYvJwKaduAxMTGycuVKqVGjhlZycezYMWnatKmMGjVK6yZ61qxZhXqyyPSDE2hs3bpVVCqV9OjRI0NtTLdu3aR3794Gc7NEbyY8PFyqVKki+/fvl+TkZJkxY4Y0atRIrK2ttR7aGbKjR4/KvHnztCaKfPLkifj7+4tKpdJKLpYuXWpQzZ/Sz0ExYMAApQnYmTNnlIkBv/32W6X8+PHjZfHixUqTMMpfTCxyUfqbhf3794u1tbUyJObly5ele/fuGZKLPXv2SO/evQ3iiSPRmwgKCpI5c+ZIQkKC3Lt3TypXriyjRo2SZ8+eiYuLizRv3lxpOmiIT6LT/60vWrRIevfuLe7u7rJw4UK5cuWKJCUlyVdffSVeXl5ao8OdO3fOoGbUTn8eYmNjJTExUVm2Zs0aUalUMnnyZOWJ9PPnz8XHx0drOG4qGp48eSIffPCBVK5cWcqWLSudOnWSxYsXy/Pnz6VevXpaQ8waori4OBk5cqSoVCpp1qyZ1jpNcmFiYqLVB8nQ7Nu3T6ysrGTixIly+fJlZfk///wjvXv3lurVq0vPnj1l0KBBUrp0aXbU1iMmFnlg+/btsmzZMlm0aJHW8kuXLkn37t3F1tZWSS7Sd1xlckFFQXJysjKO+Icffii9evVSZkH19fUVlUol9erVM/gJjD777DOxtbWVJUuWyJo1a6RUqVLStWtXiY6OlqioKKVDd5cuXbS2M4TrRPpjWLp0qXTu3Fnatm0rgwcPVmpvNMmFj4+PDB48WDp16iReXl4G0VGdsqZ5Oh0VFSVPnjxRll+7dk22b98ua9askadPnyrLu3XrJl988UV+h5nvgoOD5dNPPxWVSiX79u3TWvfkyROZNGmSlCpVSh4/fmwQ14j0Ll68KLa2thlGt9LUaN6/f1+WLFkijRs3ls6dOxvkHEeFCROLXJCQkKDcGD1//lzs7e1FpVJpzfiocfnyZenVq5eoVCqtrJvI0KSmpio3Cf/995/cvXtXrl69qrW+ZcuWWrMljx07Vs6ePWtQ1fgvS0lJkdOnT0vVqlWViR//+ecfMTY2li1btijlYmJiZO7cudK/f3+Du1HQmDRpkpQrV06WL18u69evl3Llykm9evWUBy5btmwRlUoljRs31upfYmgdUimN5npx+PBhadq0qXh4eEirVq0kMDAww9w1Dx8+lKlTp4qNjY3WdcUQaM7DkydPtJKrW7duyf/+9z8pWbKk7N+/X2ubp0+fysOHD/MzzHwTEBAg9evXl7i4OHn8+LGsW7dOWrduLY6OjvK///1PGR0vNTVV6YNB+sPEQkd79+6Vrl27io+Pj8ycOVNE0iZmadiwobi5uWV6wQsKCpKpU6dyvHUyWOk7zB04cEC8vLzE09NTbG1tZeLEiXL37l0REWnQoIE0a9ZMDhw4IGPGjJGyZcsa3ChHIml/8wcPHpTAwEARSet4WLduXRER2b17t5QoUUIZHvH58+fyyy+/iEhacmGoQ09funRJatSoIcePHxeRtKFEraysMnTa3rhxo6hUKvHz81Me4JDhOnTokJQsWVKmTJkif/75pzRo0EBq164t27dvV2oxv//+e+nfv784OTkZ5MAOImnXzRo1akitWrXkgw8+UJLp27dvy8iRI8XKykprpDhDornmaWonT506JSqVSkaPHi2enp7i6+sr48ePlyVLlkj58uXl6NGj+gyXXsLEQgerV68WKysrGTt2rIwZM0aMjIyUsfb/++8/8fDwkDp16rxyhAomF2RoHj58KBUqVJDg4GD57bffxNLSUlavXi0RERGyfv16UalU8t1334mIyJ07d8TV1VXc3NykatWqBnmTsG3bNvH29hZfX1+ZPHmyiIicOHFCKlSoIOvWrRNra2utm+mjR49Kly5dlOZiIoY59PSxY8fEyclJRNKSihIlSsjq1atFJC252rhxo3J9XLdunZiYmMj48eO1nuCSYbl165bUqVNHmT35+fPnUqlSJXFwcJAqVarIzp07JSUlRS5fviyrVq1SJpg1NOfPnxc7OzuZNm2azJs3TxwdHaVx48bKQ5fbt2/LJ598IiqVSg4fPqznaHNX+uHIP/zwQ+Uh1I4dO+Sdd96RiRMnas1PUrduXa1JREn/mFjkkOaLLv0Tg969e8vy5cuV8fjDwsLEx8dH6tata3DD3xFl5ebNm1KxYkU5f/68TJkyRT755BMRSRsu1M3NTYYMGaJVPjExUW7duiWPHz/WR7h5asuWLWJhYSE7d+7McEPcu3dvUalU4u/vryyLj4+Xd999V7p162ZQNRTpEyPN+5s3b0r79u1lwYIFUqJECVmzZo1S5u+//5bu3bvL2bNnlWVfffWVlCpVymCbe1Dag4alS5fK48eP5f79+1KlShWlSbGXl5d4e3vLpk2bJCkpyaCS7fTNRkXS+lPMmDFD+fnWrVvi5uYmDRs2VO4vbty4IRMmTDC4ZmAiaS1BrK2tZdy4cVoPm16usZw8ebJUqlRJGeCBCgYmFjnw+++/Z7ghEEm78NWoUUNKliwpjRo1km3btklYWJjUrFlTXFxcJDIyUk8RE+Wv2rVry8yZM6VFixayZMkSiY+PlwoVKsjQoUOVL9Avv/zSoKuwL126JG+99VaGDoea4z9+/Li0bdtWXFxcZMuWLbJs2TJp27atvPXWW0qzB0NILl4+Bk0b6GfPnknTpk1FpVJp3UTFxsZKhw4dpGvXrhm2ZW2FYUtJSVH6V40aNUref/99efbsmYiIDBo0SMzNzaVZs2bKMkOhuSYcO3ZMFi1aJO+++64MGzZMK9m4deuWuLq6yttvvy337t0TEcMYHS4qKkrr5wsXLki5cuVk7dq1WssfPnyoHO/OnTvlgw8+kPLlyxtkLXdhZwTKtgoVKqBJkyY4e/Yszpw5AwDo1q0bYmJiMHXqVHz77bd49uwZ5syZA5VKhUOHDqFBgwYoW7asniMnylupqakAAGdnZ4gIhg0bhh9++AGVKlVCp06d8PXXX0OlUiE5ORmnT5/GL7/8gqSkJD1HnTfu3buH2NhYNG3aFCKiLFepVACApk2b4osvvsA777yDyZMn4+DBg3B0dERQUBBMTEyQnJwMI6PCfYlOTU1VjmHx4sXo06cPfHx8sGjRIjx58gTffvst7O3t8ccff8Df3x/r1q1Dx44dcffuXezatQtGRkZITU1Vzp+1tbU+D4dySUpKClJSUgAAN2/exK1bt3Dr1i0YGRnB2dkZABAREQFbW1sUL14cQNr//XfffYft27fDyspKX6HnCZVKhSNHjqBFixY4cOAATp48iZ9++gl///231jX16NGjuHz5MgYOHIiUlBQUK1ZMz5HrZtmyZZgwYQKSk5OV47x16xZcXV0xZMgQPH78GFu2bEH79u3h7e0NPz8/3L9/H8WLF0dqaiqOHTsGHx8fPR8FZaDnxKbQunbtmrRv3146duwojRs3llq1ammNZKOZQfbltn/sU0GG5saNG7JixQoJDg5WqqS/+eYbadOmjRw6dEi8vLzEy8tLmdQoISFBPv/8c3FycjLIye80vvjiC7GxsVF+Tv/0UXMduHLlily8eDHDdcEQnkSml9nQup07dxaRtGtpv379xNPTU1q3bi2DBw9Wjt/QzkNRt3jxYq3vxD179kiFChXE2dlZPD09lRmUk5KSpFu3blKrVi1ZtmyZjBw5UqytrQ2uyYvmmhARESGDBw+WDRs2SHx8vISHh4u7u7vUrl1bzp07p3XtuHPnjly/fl1fIecKzfVu+fLlSh8KTUftEydOiEqlkkmTJkmdOnXE19dXRo8eLfPnzxczMzNlJD2O/lRwMbHQwbVr16R169ZibW2tzPqYkpIiqampcvbsWalevboy0ReRIUpMTJQePXqIk5OTuLi4iJWVlbRv316qVKkiFStWlMePH8v+/fvF29tbqlevLp06dZIOHTpIuXLlDL4K+9tvvxULCwv5+eefsywzceJEGTJkiNYNtCG1HRdJG0r3dUPrpqSkSGxsrNaQokwqDMujR4+kZ8+eUrx4cTly5IgkJSVJxYoVZe3atbJnzx4ZO3asGBkZycaNG0UkbTb6t99+W+rUqSPe3t7y77//6vcA8sipU6ekSZMmUrduXfnzzz+V5dHR0VK1alWpVauW/PvvvwZzXdA0b7xx44bMmjVLRET++usv+eCDD5S+qGvXrpWGDRvKuHHj5MKFC8q2devWfeX1lAoGJhY6Cg0NlXbt2kmHDh3kjz/+UJa/++670rx5c4NoI030KpoOddeuXZPvvvtOvvrqK+nevbtUq1ZNunTpItHR0XL+/Hn54osvpG/fvrJgwQKDrqnQuHHjhlhbW0u3bt3kzp07ynLNDcKzZ8+kW7dusnz5cn2FmC9OnTolderUEZHMh9b99ddflUnxNAzlJoq0+9jcvXtXRo4cKaVLl5ZFixbJp59+qqx79OiRfP7556JSqZR+SYmJiaJWqw2iT4XmPGgS6Dt37khKSoo8f/5cmjdvLiqVKsO1IDo6WqpXry4uLi4GMemb5hwEBQWJSqVS5jBatmyZeHl5yeDBg5XO6S9fEyZPniwuLi5KDQcVXEwscoGmWdQ777wjJ06ckK5du0rVqlUNqgMmUVayugk8cOCANGjQQDp27KiM5FPUbhh37twpZmZm0qdPH60amnv37kmHDh2kcePGBvVkPjw8XC5cuCDffPONXLx4UR4/fixXrlwRe3t7WbNmTZZD62qayZFh0Xz3hYWFyZ49e+Tbb7+VXbt2ydSpU6V48eLSrFkzrfKPHj2SKVOmiImJSYb5TAozzXm4cuWKdO3aVTw9PaVYsWLi6ekpixYtkpiYGGnTpo3Url1bfvjhB617hufPn0udOnXk5s2b+go/V2iO6fLly2JhYSF+fn5a61esWCGNGjWSAQMGKJ3TRdKGou7fv3+RqOU2FEwscsm1a9ekY8eOYmJiIu7u7kpSYUg3DURvQvMFkpKSIrt27ZJmzZpJ/fr1i+QwocnJycrQ1BUrVpT27dtL27ZtpX79+lK3bl3lOmEIfa/27dsn77zzjtjZ2YmVlZVYWFiIr6+v/P333zJ27NgMoz8Z6tC6lEbzf3r+/HmpXLmyVKtWTUxNTaVGjRri7+8vU6dOFSMjI/nhhx+0tnv8+LGMGTNGSpUqJU+fPi30DyM08V+4cEGsra1l5MiRsn79etm/f7906tRJjIyM5MMPP5R79+5Jq1atpF69ehmSi8J+DjTHcvHiRbGxsREPDw9lnWbSQ5G0PheNGzeWDz/8UKm52L59u/Tp00cuX76cv0FTjjGxyEXBwcHy8ccfs+MhFXmaL8LU1FTZsmWLdOjQQas5UFHz77//yscffyxt27aVwYMHy4oVK5RkwhCuE2vXrlWatxw9elSePHkiM2fOlGrVqom7u7t88cUX0qdPH3F2djbooXUpTfqkwtLSUiZOnCj37t2Tw4cPS+vWraVu3bryyy+/yKBBg8TKykp+/PFHre0fP34sDx480EfoeeLBgwfi4+Mjn332WYblK1asEFNTUxk1apQkJiZK8+bNpWnTpnLgwIFCn1CIaDd/srS0lObNm4uDg4Myv5HIi47bIi+Si48++kgiIiJEJOP8FVSwMbHII4Zws0Cki/TJxctjlVMaQ6ipWLt2rZiamsq+ffsyrNu1a5fUrl1bmjZtKjt37pQRI0aIo6OjtGjRgqM/GbiwsDCxsbGR7t27ay1fvXq1lCxZUkJDQ+W///6TIUOGSKlSpeTIkSN6ijTvnTt3Tjw9PbVGgNPccD99+lRmz54tpqamEhgYKI8ePZLq1atL+/btM/QzKKz++ecfMTExkRkzZkhycrKsWbNGbGxsskwuVqxYIdWrV5cRI0YYxDWyqCncgyAXYIV9fGkiXalUKogIVCoVSpYsqe9w9E5zLtIzNjbWUzS549ixYxg2bBhmzJiBrl27KvNNaMbY79mzJyIjIzF9+nSYmppi5cqVmDFjBsqVK6fsIzk5mddLA5SSkgIXFxckJCQgMDAQTZo0AQBUrlwZpqamiIuLQ5UqVTBp0iQYGxujQ4cO+OWXX9C6dWs9R577zp8/j9DQUHh6egJIuxZo5nextrZGnz59sHDhQvzxxx9o3LgxAgMD8ezZM2UOj8IuNjYWw4cPh5+fHwCgZ8+eAIApU6YAAL788kuYmpoiMTERpqamGDlyJExMTNC2bdtCf40sigr37EtEVKC9fCNdlBniudBMFnru3DmcOHECKpUKKpUKxYoVUya8+uSTT+Do6IijR48CAEqVKqVsLyJMKgyUs7Mztm/fjsTERMyaNQvBwcGIjo5G3759MXjwYOUmu0qVKhg7dqzyOTFErq6uAIB9+/YByHgtcHFxQeXKlfHgwQMAQOnSpZWJAg1B06ZN8eWXXwJI+5u3trZGr169MGfOHOzYsQOjR48GAJiamiIhIQEAMHToUIM6B0UJEwsiIsoRNzc3bNiwAQkJCZgzZw4CAwOVdZqbp6ioKMTHx8Pe3h4AYGJikqEMGSY3NzcsX74cxsbGGD58OJycnNC3b1/Mnz8fAJTZt6tWrYqFCxfC3d1dn+HmGWdnZ1hZWWHr1q24c+eOslyTfD958gQWFhaoXbu2vkLMN5q/eSsrK63kYty4cQAAMzMzfYZHuYCJBRER5Zjm5lGlUmH27Nn4888/tdbfvHkTFStWRIMGDQBAaS5FRYObmxu+/PJLGBsbw8rKCl26dFHWaZoDAdoJp6GpWLEiVq1ahSNHjmDatGm4fPkygBfHv2TJEty/fx9vv/22PsPMd5rkYu7cuVi2bBkmT56s75AoF6iEV3kiItLR9evX8cknn0BEMGXKFLz99ttITk5Gp06dYGRkhO+++07rRpKKltDQUHz88ccQEUybNg2NGzfWd0j5KiUlBevXr8eoUaNQpUoVNG7cGPb29rh16xZ++uknBAQEwMfHR99h6sWzZ89w8OBBNGzYEFWrVtV3OKQjJhZERJQrNMmFkZERPv/8cyxZsgRXr15FUFAQTExMkJqayuSiCLt+/TrGjRsHtVqNpUuXKrVYRcnff/+NBQsWICQkBKVKlYKXlxc+/vhjVKtWTd+h6VVmg1tQ4cTEgoiIcs3169cxduxY/PLLL6hcuTIuXrwIExMTjv5EAICrV69i2rRpWLx4MZycnPQdjl6kpKTAyMgIKpWKyTYZHCYWRESUq65evYqvv/4aS5YsQbFixZhUkBbNsKJFVfqn83xST4aGiQUREeUZJhVEREUHEwsiIiIiItIZG/YREREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHOmFgQEREREZHO/g/2An2zoA+pnwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "Cellpose vs CellSAM - Individual Models by Dataset\n", @@ -527,20 +482,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZlZJREFUeJzt3Xt8zvX/x/HntWEHbMmwzTlnYUNhUqI5pRAdKK3mkK9DkaQcRwiRUymHHPLNKaHUt6gwrCYh51nmNIcNE4Ydbe/fH367soxs1+ba7HG/3a5b1z6f9+ez16drm+t5vQ8fizHGCAAAAACyyMHeBQAAAADI2wgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0K2LsAAHlPZGSkYmJi7F1Ghjw8PFSuXDl7l3Fbo0aN0ujRo7Vx40Y9/vjj1u0Wi0VNmzZVcHCw3WrLD/j5tR0/wwD+iVABIFMiIyNVo1o1xSUk2LuUDLk6OyssPDxb3pjt2LFDn3zyiTZv3qzTp08rNTVV3t7eaty4sQICAtSiRYtsqBh3U2RkpKpVr6GE+Dh7l5IhZxdXhR8My7ZgkVt+hvft26dJkyZp06ZNioqKkrOzs0qUKKE6deqoadOmeuONN2SxWDI8dvPmzWratKkk6csvv9Rzzz2XYbuFCxcqMDBQktSpUyd99dVXGbb79NNP1adPH0nSK6+8ooULF9p4dQAkQgWATIqJiVFcQoJm+FRQ5SIu9i4nnYgr8Xpj9zHFxMTY9KYsNTVVgwYN0tSpU1WgQAE1b95c7dq1U8GCBXXkyBH973//0xdffKH33ntPI0aMyMYrQE6LiYlRQnycyncaIucSuatHIOFcpI6vHG/zz6+Uu36Gf/rpJz311FO6du2a/P399cwzz8jZ2VmHDx/Wpk2btHr1avXt21cFCmT8lmTevHmSrveCzJ8//5ahIk2BAgX07bffKiYmRh4eHhmer0CBArp27ZrtFwfAilABIEsqF3FRbXdXe5eRI4YPH66pU6fK19dXX331lSpVqpRuf3x8vD7++GOdP3/eThXCVs4lysnVu6q9y8gxuelnuHfv3kpJSdHPP/+sZs2apdtnjNGPP/4oR0fHDI+NjY3VV199pTp16qhUqVL68ccfdeLECZUtW/aW369Nmzb69ttv9cUXX2jAgAHp9u3Zs0c7duxQu3bttGbNGpuvDcDfmKgNADeIiIjQBx98oOLFi2vt2rU3vRmTJBcXF7399tsaPXq0dVtSUpKmTJmievXqqXDhwipatKgeffRRm9+4vPrqq7JYLDpy5Ig++OADValSRc7OzqpYsaLee+89JScnZ3jcggUL1LBhQxUpUkRFihRRw4YNbznMY+XKlWratKlKliwpZ2dneXt7y9/fXytXrryp7Z49e9S5c2d5eXmpUKFCKl++vF5//XUCVi6Sm36Gz549q8OHD6tWrVo3BQrpeu9Dq1atbjn0aenSpYqLi1NAQIACAgKUmpr6r8OVGjdurOrVq2vBggU37Zs/f74cHR31yiuvZOl6ANwaoQIAbrBw4UKlpKSoV69eKlWq1G3bOjk5SZISExPVqlUrvfXWWzLGqHv37uratauOHz+u9u3b6+OPP7a5rgEDBmjixIny9/fX66+/LicnJwUFBalLly43tX3jjTfUrVs3nTp1St27d1f37t116tQpBQYGqn///unafvrpp3r22Wd16NAhPfPMMxo4cKBat26t6OhorV69Ol3bNWvWqEGDBlqzZo0ef/xxDRgwQLVr19bHH38sPz8/XbhwwebrhO1y08+wu7u7ChQooKioKF29ejXTx8+bN0+Ojo566aWX1LFjRxUpUkQLFiyQMea2xwUGBlp7JdIkJSVp8eLFatWqlby9vTNdC4DbY/gTANzgl19+kSQ1b978jo957733FBwcrBEjRmj06NHWT10vX76s5s2b66233lLHjh1teiOzdetW7d69W2XKlJEkjRs3Ti1atNDKlSu1cuVKderUSdL1Sa0fffSRatSoodDQULm7u0u6vlpPo0aNNGPGDD377LN69NFHJUmfffaZChUqpF27dqlkyZLpvueNvQ/nz5/Xyy+/LA8PD/3yyy8qX768dd+yZcvUpUsXjRw5Uh999FGWrxHZIzf9DDs5Oaldu3ZatWqV/Pz81LNnTzVu3Fi1a9dWoUKFbnvs3r179fvvv6tVq1by9PSUJHXs2FGLFi3Shg0b9MQTT9zy2ICAAA0bNkzz589X/fr1JUnffPONYmJi1L1790xdA4A7Q08FANwgOjpakqxv3v9NamqqPv30U1WqVCndmzFJKlq0qEaOHKmkpCStWrXKprr69++frqZChQpp3LhxkpRuOMjnn38u6XqISAsUklSsWDEFBQXd1F6SChYsqIIFC970PYsXL259vmjRIsXGxmr8+PHpAoUkde7cWfXq1dOyZcuydnHIVrntZ3jOnDl6+umntXfvXr3xxht66KGHVLRoUT3yyCOaMWOG4uPjMzwubYJ2QECAdVva87R9t+Lp6aknn3xSS5cuVcL/r1Q3f/58lShRQk8//XSWrgPA7dFTAQA2CA8P14ULF+Tt7Z1ufHqac+fOSZIOHjxo0/dJ61m4kZ+fnwoUKKA//vjDui3t+Y33DkiTNqZ9165d1m2dO3fW4MGDVatWLb344otq1qyZmjRpIjc3t3THbt26VZL022+/6fDhwzedOyEhQTExMbdccQe5V07/DBcvXlxr1qzRoUOHtHbtWm3btk1bt27Vr7/+ql9//VVz587Vpk2bdP/991uPSUxM1BdffKGiRYvqmWeesW5v1qyZypYtq9WrV+vChQsqVqzYLb9vt27dtGbNGq1evVqPPfaYfvzxR/Xv3z/DAA3AdoQKALiBp6enDh48qFOnTqlatWr/2v6vv/6SJO3fv1/79++/ZbusjCe/UUZj4x0dHVW8eHFdunTJui02NlYODg4qUaJEhuewWCyKjY21bhs0aJCKFy+uTz/9VB9++KEmT56sAgUKqG3btpo6daoqVqwo6e/rnDlz5m3rvHr1KqHCznLrz3CVKlVUpUoV69e7du1S165dtW/fPo0ePVrTp0+37vv66691/vx5BQYGysXl76WrHRwc9NJLL2nChAlasmSJ+vbte8vv17ZtW5UqVUrz58/XkSNHlJqaqm7dutl0DQBujeFPAHCDRx55RJK0fv36O2qf9ol+p06dZIy55SOjlWgy48yZMzdtS0lJ0fnz59MNc3Jzc1Nqaqr10+UbnT17VsaYdL0QFotF3bp10++//65z585p9erV6tixo7755hs99dRTSklJSXede/fuve11/nNoFO6+3Poz/E++vr7WOTgbNmxIty9teNOCBQtksVjSPSZMmJCuza0UKFBAAQEB2rBhg2bOnKkGDRqoVq1a2XoNAP5GqACAG7z66qtydHTUnDlzMnxjfqPExETVqFFDbm5u2r59+y2Xd80OW7ZsuWlbaGiorl27prp161q3pT0PDg6+qX3aNl9f3wy/R/HixdWhQwctX75czZs314EDBxQRESFJatiwofV7InfLrT/DGSlSpMhN244fP67169erVKlS1tXL/vmoWLGi/vjjj3RD/zLSrVs3paamKioqil4KIIcRKgDgBpUrV9bgwYMVExOjNm3a6OjRoze1SUhI0JQpUzRq1CgVKFBAvXv31vHjxzVo0KAM35Tt27dPZ8+etamu6dOn6+TJk9avk5KSNGzYMEnX30SmSVt/f/To0emGOV26dMk6Xv7GNfqDg4NvWp4zOTnZOiTG2dlZ0vUlOosWLaphw4ZlOEQmLi7OOu8C9pWbfoavXr2qcePGKSYm5qZ9165d06RJkyRJTZo0sW5fsGCBUlNT1atXL3322WcZPt59911J/95bUb16df3www9avXq1XnrppUzXD+DOMacCAP5h7NixSkhI0NSpU1WtWjU1b95ctWrVUsGCBXX06FH9/PPPOn/+vMaOHSvp+hv4nTt3asaMGfrf//6nxx57TCVLltSpU6e0d+9e7d69W6GhoTct2ZoZjRo1ko+Pj1544QUVLlxY3377rcLDw9WxY0frcrKS9Nhjj+n111/XRx99pFq1almHtKxcuVInT57UG2+8occee8zavkOHDnJzc1OjRo1Uvnx5JScn66efftKBAwf07LPPWoczlShRQkuXLtVzzz0nHx8ftW7dWtWrV1diYqKOHTumTZs2qXHjxlq7dm2WrxHZJ7f8DCcnJ2v48OEaNWqU/Pz85OPjIzc3N505c0br1q3TyZMnVbFiRevKZKmpqdYhTzeG5X964YUXNGDAAC1evFiTJ0+2ht+MtG7dOlM1A8gaQgWALIm4kvEykPaUXTU5ODhoypQpevHFF/Xpp59q8+bN2rx5s1JTU+Xl5aVWrVopMDBQ/v7+kq6vxf/DDz9o3rx5WrRokVauXKnExESVKlVKNWvW1H/+8x/Vrl3bppqmTZumFStW6LPPPlNkZKS8vLw0atQoDRky5Ka2M2bMUN26dfXpp59qzpw5kqQHH3xQ7733ngIDA9O1HT9+vHVFnm+//VaFCxdWpUqV9Omnn960nn/btm31xx9/aNKkSfr555/1008/qXDhwipTpowCAwPVtWtXm67xbko4F2nvEm6SnTXllp9hNzc3ff/991q3bp1CQkK0YsUKnT9/Xq6urqpatap69uyp/v37W+cF/fzzz4qMjFTTpk2tiwRkxN3dXR07dtTixYu1atUqvfjii1n7HwUg21jMv92WEgBuEBkZqRrVqinu/9d+z21cnZ0VFh6ucuXK2buUbPHqq6/q888/19GjR1WhQgV7l5PnRUZGqlr1GkqIj7N3KRlydnFV+MGwe+bnF0D+QU8FgEwpV66cwsLDMxwjnRt4eHjwhgy3VK5cOYUfDOPnFwCyGaECQKaVK1eONz7Is/j5BYDsx+pPAAAAAGzCnAoAAAAANqGnAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQkQFjjGJjY2WMsXcpAAAAQK5HqMjA5cuX5e7ursuXL9u7FAAAACDXI1QAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2KSAvQsAANw9UVFRioqKyvRxXl5e8vLyyoGKAAD3AkIFAOQjs2fP1ujRozN9XFBQkEaNGpX9BQEA7gkWY4yxdxG5TWxsrNzd3XXp0iW5ubnZuxwAyDYZ9VTEx8erSZMmkqSQkBC5uLjcdBw9FQCA2yFUZIBQASA/uXr1qooUKSJJunLligoXLmznigAAeQ0TtQEAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANilg7wIAAFkTGRmpmJgYm88THx9vfb5r1y65uLjYfE5J8vDwULly5bLlXACA3M1ijDH2LiK3iY2Nlbu7uy5duiQ3Nzd7lwMAN4mMjFS16jWUEB9n71JuydnFVeEHwwgWAJAP0FMBAHlQTEyMEuLjVL7TEDmXsO1Ne2pyog7NGyBJqtJ9mhwKOtlcX8K5SB1fOV4xMTGECgDIBwgVAJCHOZcoJ1fvqjadIyXp7+FPLl6V5Vgoe4Y/AQDyj1wxUXvmzJmqUKGCnJ2d1bBhQ23btu2WbefOnatHH31UxYoVU7FixeTv739T+1dffVUWiyXdo3Xr1jl9GQAAAEC+ZPdQsXz5cg0cOFBBQUHauXOnfHx81KpVK509ezbD9sHBwerSpYs2btyo0NBQlS1bVi1bttSpU6fStWvdurWioqKsj6VLl96NywEAAADyHbuHiilTpqhnz54KDAxUzZo1NWvWLLm6umr+/PkZtl+8eLH69OkjX19fVa9eXZ999plSU1O1fv36dO2cnJzk6elpfRQrVuxuXA4AAACQ79g1VCQlJWnHjh3y9/e3bnNwcJC/v79CQ0Pv6BxxcXFKTk7W/fffn257cHCwSpYsqWrVqql37946f/58ttYOAAAA4Dq7TtSOiYlRSkqKSpUqlW57qVKldPDgwTs6xzvvvCNvb+90waR169bq2LGjKlasqMOHD2vo0KFq06aNQkND5ejoeNM5EhMTlZiYaP06NjY2i1cEAAAA5D95evWnCRMmaNmyZQoODpazs7N1e+fOna3Pa9eurTp16qhSpUoKDg7WE088cdN5xo8fr9GjR9+VmgEAAIB7jV2HP3l4eMjR0VFnzpxJt/3MmTPy9PS87bGTJ0/WhAkT9OOPP6pOnTq3bfvAAw/Iw8NDERERGe4fMmSILl26ZH2cOHEicxcCAAAA5GN2DRWFChVS/fr1002yTpt07efnd8vjPvjgA40ZM0Zr167VQw899K/f5+TJkzp//ry8vLwy3O/k5CQ3N7d0DwAAAAB3xu6rPw0cOFBz587V559/rrCwMPXu3VtXr15VYGCgJCkgIEBDhgyxtp84caJGjBih+fPnq0KFCoqOjlZ0dLSuXLkiSbpy5Yrefvttbd26VceOHdP69evVvn17Va5cWa1atbLLNQIAAAD3MrvPqXjhhRd07tw5jRw5UtHR0fL19dXatWutk7cjIyPl4PB39vn000+VlJSkZ599Nt15goKCNGrUKDk6OmrPnj36/PPPdfHiRXl7e6tly5YaM2aMnJyc7uq1AQAAAPmB3UOFJPXr10/9+vXLcF9wcHC6r48dO3bbc7m4uGjdunXZVBkAAACAf2P34U8AAAAA8jZCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGySK25+BwC4O5Ivn1fy5fPptqUkJ1qfx0VFyLGg003HFSxaXAWLFs/x+gAAeROhAgDykZjfv1N08KJb7o+YNyDD7Z6PB8ir+Ss5VBUAIK8jVABAPuLx8FNyr+6X6ePopQAA3A6hAgDyEYYxAQByAhO1AQAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbFLB3AQBwr4mKilJUVFSmj/Py8pKXl1cOVAQAQM4iVABANps9e7ZGjx6d6eOCgoI0atSo7C8IAIAcRqgAgGzWq1cvtWvXLt22+Ph4NWnSRJIUEhIiFxeXm46jlwIAkFcRKgAgm2U0jOnq1avW576+vipcuPDdLgsAgBzDRG0AAAAANskVoWLmzJmqUKGCnJ2d1bBhQ23btu2WbefOnatHH31UxYoVU7FixeTv739Te2OMRo4cKS8vL7m4uMjf31+HDh3K6csAAAAA8iW7h4rly5dr4MCBCgoK0s6dO+Xj46NWrVrp7NmzGbYPDg5Wly5dtHHjRoWGhqps2bJq2bKlTp06ZW3zwQcfaMaMGZo1a5Z+++03FS5cWK1atVJCQsLduiwAAAAg37B7qJgyZYp69uypwMBA1axZU7NmzZKrq6vmz5+fYfvFixerT58+8vX1VfXq1fXZZ58pNTVV69evl3S9l2LatGkaPny42rdvrzp16mjRokU6ffq0vv7667t4ZQAAAED+YNdQkZSUpB07dsjf39+6zcHBQf7+/goNDb2jc8TFxSk5OVn333+/JOno0aOKjo5Od053d3c1bNjwjs8JAAAA4M7ZdfWnmJgYpaSkqFSpUum2lypVSgcPHryjc7zzzjvy9va2hojo6GjrOf55zrR9/5SYmKjExETr17GxsXd8DQAAAEB+Z/fhT7aYMGGCli1bptWrV8vZ2TnL5xk/frzc3d2tj7Jly2ZjlQAAAMC9za6hwsPDQ46Ojjpz5ky67WfOnJGnp+dtj508ebImTJigH3/8UXXq1LFuTzsuM+ccMmSILl26ZH2cOHEiK5cDAAAA5EuZHv6UmpqqTZs2acuWLTp+/Lji4uJUokQJ1a1bV/7+/pn6lL9QoUKqX7++1q9frw4dOljPv379evXr1++Wx33wwQcaN26c1q1bp4ceeijdvooVK8rT01Pr16+Xr6+vpOvDmX777Tf17t07w/M5OTnJycnpjusGAAAA8Lc77qmIj4/X2LFjVbZsWT355JP64YcfdPHiRTk6OioiIkJBQUGqWLGinnzySW3duvWOCxg4cKDmzp2rzz//XGFhYerdu7euXr2qwMBASVJAQICGDBlibT9x4kSNGDFC8+fPV4UKFRQdHa3o6GhduXJFkmSxWDRgwACNHTtWa9as0d69exUQECBvb29rcAEAAACQfe64p6Jq1ary8/PT3Llz1aJFCxUsWPCmNsePH9eSJUvUuXNnDRs2TD179vzX877wwgs6d+6cRo4cqejoaPn6+mrt2rXWidaRkZFycPg7+3z66adKSkrSs88+m+48QUFBGjVqlCRp8ODBunr1ql577TVdvHhRTZo00dq1a22adwEAAAAgYxZjjLmThmFhYapRo8YdnTQ5OVmRkZGqVKmSTcXZS2xsrNzd3XXp0iW5ubnZuxwA94CrV6+qSJEikqQrV66ocOHCNp1v586dql+/vqr951O5elfNjhKzVdzpPxU+q7d27NihevXq2bscAEAOu+PhT3caKCSpYMGCeTZQAAAAAMicbF396erVq9q8eXN2nhIAAABALpetoSIiIkLNmjXLzlMCAAAAyOXy9M3vAAAAANhfpu5Tcf/99992f0pKik3FAAAAAMh7MhUqEhMT1bt3b9WuXTvD/cePH9fo0aOzpTAAyA0iIyMVExNj83ni4+Otz3ft2iUXFxebzhcWFmZrSQAAZJtMhQpfX1+VLVtWr7zySob7d+/eTagAcM+IjIxUjWrVFJeQkK3nbdKkSbaeDwAAe8tUqGjbtq0uXrx4y/3333+/AgICbK0JAHKFmJgYxSUkaIZPBVUuYlvPQkJKqjpuDZckrWpUTc6Otk1p23j2oiYdirLpHAAAZJdMhYqhQ4fedn/ZsmW1YMECmwoCgNymchEX1XZ3tekccdf+nnP2oJuLXAs42nS+iCvx/94IAIC7hNWfAAAAANgkU6HiscceSzf8ac2aNekmHwIAAADIfzIVKkJCQpSUlGT9umvXroqKYkwvAAAAkJ/ZNPzJGJNddQAAAADIo5hTAQAAAMAmmVr9SZLWrVsnd3d3SVJqaqrWr1+vffv2pWvTrl277KkOAAAAQK6X6VDxzxvf9erVK93XFotFKSkpAgAAAJA/ZCpUpKam5lQdAAAAAPIo5lQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAm9gcKvr06aOYmJjsqAUAAABAHmRzqPjiiy8UGxubHbUAAAAAyINsDhXGmOyoAwAAAEAexZwKAAAAADbJ1B21M3L58uXsqAMA7hlnEpJ1NjE53baElBTr8/2xcXJ2dLzpuJJOBVXKuWCO14e8LSoqSlFRUZk+zsvLS15eXjlQEQBkQ6gAAKS3OPKcpkbc+k1fx61/Zrj9zcpeGljVO6fKwj1i9uzZGj16dKaPCwoK0qhRo7K/IAAQoQIAst1L5UqoRan7Mn1cSSd6KfDvevXqpXbt2qXbFh8fryZNmkiSQkJC5OLictNx9FIAyEmECgDIZqWcGcaEnJPRMKarV69an/v6+qpw4cJ3uywA+RwTtQEAAADYhFABAAAAwCbZGioOHz6s5s2bZ+cpAQAAAORy2Roqrly5ok2bNmXnKQEAAADkcpmaqD1jxozb7j916pRNxQAAAADIezIVKgYMGCAvLy8VKlQow/1JSUnZUhQAAACAvCNToaJ8+fKaOHGinn/++Qz379q1S/Xr18+WwgAAAADkDZmaU1G/fn3t2LHjlvstFouMMTYXBQAAACDvyFRPxXvvvae4uLhb7q9Zs6aOHj1qc1EAAAAA8o5MhYqaNWvedn/BggVVvnx5mwoCAAAAkLdw8zsAAAAANrnjnorWrVtr1KhRatSo0W3bXb58WZ988omKFCmivn372lwgAAD3ssjISMXExNh0jvj4eOvzXbt2ycXFxdayJEkeHh4qV65ctpwLwL3tjkPFc889p06dOsnd3V1PP/20HnroIXl7e8vZ2VkXLlzQgQMHFBISou+//15t27bVpEmTcrJuAADyvMjISFWrXkMJ8beer5hZTZo0ybZzObu4KvxgGMECwL+641DRvXt3de3aVStWrNDy5cs1Z84cXbp0SdL1VZ9q1qypVq1a6ffff1eNGjVyrGAAAO4VMTExSoiPU/lOQ+RcIutv3FOTE3Vo3gBJUpXu0+RQ0Mnm2hLORer4yvGKiYkhVAD4V5maqO3k5KSuXbuqa9eukqRLly4pPj5exYsXV8GCBXOkQAAA7nXOJcrJ1btqlo9PSfp7+JOLV2U5Fsqe4U8AcKcyFSr+yd3dXe7u7tlVCwAAAIA8iNWfAAAAANiEUAEAAADAJoQKAAAAADbJdKhISUnR5s2bdfHixWwpYObMmapQoYKcnZ3VsGFDbdu27ZZt9+/fr06dOqlChQqyWCyaNm3aTW1GjRoli8WS7lG9evVsqRUAAADAzTIdKhwdHdWyZUtduHDB5m++fPlyDRw4UEFBQdq5c6d8fHzUqlUrnT17NsP2cXFxeuCBBzRhwgR5enre8rwPPvigoqKirI+QkBCbawUAAACQsSwNf6pVq5aOHDli8zefMmWKevbsqcDAQNWsWVOzZs2Sq6ur5s+fn2H7hx9+WJMmTVLnzp3l5HTrNbgLFCggT09P68PDw8PmWgEAAABkLEuhYuzYsRo0aJC+++47RUVFKTY2Nt3jTiQlJWnHjh3y9/f/uxgHB/n7+ys0NDQrZVkdOnRI3t7eeuCBB/TSSy8pMjLytu0TExOzdA0AAAAAsnifiieffFKS1K5dO1ksFut2Y4wsFotSUlL+9RwxMTFKSUlRqVKl0m0vVaqUDh48mJWyJEkNGzbUwoULVa1aNUVFRWn06NF69NFHtW/fPhUtWjTDY8aPH6/Ro0dn+XsCAAAA+VmWQsXGjRuzu45s06ZNG+vzOnXqqGHDhipfvry+/PJLde/ePcNjhgwZooEDB1q/jo2NVdmyZXO8VgAAAOBekKVQ0bRpU5u/sYeHhxwdHXXmzJl028+cOXPbSdiZdd9996lq1aqKiIi4ZRsnJ6fbztEAAAAAcGtZvk/FxYsX9eGHH6pHjx7q0aOHpk6dqkuXLt3x8YUKFVL9+vW1fv1667bU1FStX79efn5+WS3rJleuXNHhw4fl5eWVbecEAAAA8Lcs9VRs375drVq1kouLixo0aCDp+kpO48aN048//qh69erd0XkGDhyoV155RQ899JAaNGigadOm6erVqwoMDJQkBQQEqHTp0ho/fryk65O7Dxw4YH1+6tQp7dq1S0WKFFHlypUlSYMGDdLTTz+t8uXL6/Tp0woKCpKjo6O6dOmSlUsFACBXSb58XsmXz6fblpKcaH0eFxUhx4I3974XLFpcBYsWz/H6AORPWQoVb775ptq1a6e5c+eqQIHrp7h27Zp69OihAQMGaPPmzXd0nhdeeEHnzp3TyJEjFR0dLV9fX61du9Y6eTsyMlIODn93ppw+fVp169a1fj158mRNnjxZTZs2VXBwsCTp5MmT6tKli86fP68SJUqoSZMm2rp1q0qUKJGVSwUAIFeJ+f07RQcvuuX+iHkDMtzu+XiAvJq/kkNVAcjvstxTcWOgkK7fG2Lw4MF66KGHMnWufv36qV+/fhnuSwsKaSpUqCBjzG3Pt2zZskx9fwAA8hKPh5+Se/XMDxOmlwJATspSqHBzc1NkZKSqV6+ebvuJEyduuWwrAACwHcOYAORGWZqo/cILL6h79+5avny5Tpw4oRMnTmjZsmXq0aMHcxcAAACAfCZLPRWTJ0+WxWJRQECArl27JkkqWLCgevfurQkTJmRrgQAAAAByt0yHipSUFG3dulWjRo3S+PHjdfjwYUlSpUqV5Orqmu0FAgAAAMjdMh0qHB0d1bJlS4WFhalixYqqXbt2TtQFAAAAII/I0pyKWrVq6ciRI9ldCwAAAIA8KEuhYuzYsRo0aJC+++47RUVFKTY2Nt0DAAAAQP6RpYnaTz75pCSpXbt2slgs1u3GGFksFqWkpGRPdQAAAMiXoqKiFBUVlenjvLy85OXllQMV4XayFCo2btyY3XUAAAAAVrNnz9bo0aMzfVxQUJBGjRqV/QXhtjIdKpKTk/Xee+9p1qxZqlKlSk7UBAAAgHyuV69eateuXbpt8fHxatKkiSQpJCRELi4uNx1HL4V9ZDpUFCxYUHv27MmJWgAAAABJGQ9junr1qvW5r6+vChcufLfLwi1kafhT165dNW/ePG50l8sw9hAAAAD2kKVQce3aNc2fP18///yz6tevf1NKnDJlSrYUh8xh7CEAAADsIUuhYt++fapXr54k6c8//0y378bVoHB3MfYQAAAA9sDqT/cQxh4CAADAHrJ087vbOXv2bHafEgAAAEAulqlQ4erqqnPnzlm/btu2bbqJwWfOnGEoDQAAAJDPZCpUJCQkyBhj/Xrz5s2Kj49P1+bG/QAAAADufVmaU3E7TNTOHpGRkYqJibH5PDeGvl27dmU4UTsrPDw8VK5cuWw5FwAAAPK2bA8VsF1kZKRqVKumuISEbD1v2ipQ2cHV2Vlh4eEECwAAAGQuVFgslnQ9Ef/8GtkjJiZGcQkJmuFTQZWL2NazkJCSqo5bwyVJqxpVk7Oj7XPzI67E643dxxQTE0OoAAAAQOZChTFGVatWtQaJK1euqG7dunJwcLDuR/apXMRFtd1dbTpH3LUU6/MH3VzkWsDR1rIAAACAdDIVKhYsWJBTdQAAAADIozIVKl555ZWcqgMAAABAHsVEbQAAACCToqKi0t2v7U55eXndk/d1I1QAAAAAmTR79myNHj0608cFBQVp1KhR2V+QnREq7iFnEpJ1NjE53baElL8nau+PjZOz480TtUs6FVQp54I5Xh8AAMC9olevXmrXrl26bfHx8dYl/ENCQjK8P9i92EshESruKYsjz2lqxK274Tpu/TPD7W9W9tLAqt45VRYAAMA9J6NhTFevXrU+9/X1VeHChe92WXZDqLiHvFSuhFqUui/Tx5V0opcCAAAAWZelUJGSkqKFCxdq/fr1Onv2rFJTU9Pt37BhQ7YUh8wp5cwwJgAAANx9WQoV/fv318KFC9W2bVvVqlWLu2oDAAAA+ViWQsWyZcv05Zdf6sknn8zuegAAAADkMQ5ZOahQoUKqXLlydtcCAAAAIA/KUqh46623NH36dBljsrseAAAAAHlMloY/hYSEaOPGjfrhhx/04IMPqmDB9JODV61alS3FAQAAAMj9shQq7rvvPj3zzDPZXQsAAACAPChLoWLBggXZXQcAAACAPCpLcyoAAAAAIE2W76j91Vdf6csvv1RkZKSSkpLS7du5c6fNhQH5UVRUlKKiojJ9nJeXl7y8vHKgovRye30AgNwpMjJSMTExNp8nPj7e+nzXrl1ycXGx+ZyS5OHhoXLlymXLufKrLIWKGTNmaNiwYXr11Vf1zTffKDAwUIcPH9bvv/+uvn37ZneNQL4xe/ZsjR49OtPHBQUFadSoUdlf0D/k9voAALlPZGSkalSrpriEhGw9b5MmTbLtXK7OzgoLDydY2CBLoeKTTz7RnDlz1KVLFy1cuFCDBw/WAw88oJEjR+qvv/7K7hpxj+BT7n/Xq1cvtWvXLt22+Ph46x/OkJCQDD+VuVv/f3J7fQCA3CcmJkZxCQma4VNBlYvY1rOQkJKqjlvDJUmrGlWTs6PtI/kjrsTrjd3HFBMTQ6iwQZZCRWRkpBo3bixJcnFx0eXLlyVJL7/8sho1aqSPP/44+yrEPYNPuf9dRgHq6tWr1ue+vr4qXLjw3S7LKrfXBwDIvSoXcVFtd1ebzhF3LcX6/EE3F7kWcLS1LGSTLIUKT09P/fXXXypfvrzKlSunrVu3ysfHR0ePHuWGeLglPuUGAAC5VVhYmM3nyM9zPrIUKpo3b641a9aobt26CgwM1JtvvqmvvvpK27dvV8eOHbO7Rtwj+JQbAADkNmcTkyWLg7p27Zqt583OOR/OLq4KPxiWq4NFlkLFnDlzlJqaKknq27evihcvrl9//VXt2rVTr169srVAAAAAIKfEJl+TTKrKdxoi5xK2vWlPTU7UoXkDJElVuk+TQ0Enm+tLOBep4yvH5/o5H1kKFQ4ODnJw+HtiTOfOndW5c+dsKwp5A92EeRvL+wEA8DfnEuXk6l3VpnOkJP39b6KLV2U5FsqefxPzgizfp2LLli2aPXu2Dh8+rK+++kqlS5fWf//7X1WsWDFbu3uQ+9BNmPdFRkaqWvUaSoiPy9bz8hoCAJA/ZSlUrFy5Ui+//LJeeukl/fHHH0pMTJQkXbp0Se+//76+//77bC0SuQvdhHlfTEyMEuLjeA0BAEC2yFKoGDt2rGbNmqWAgAAtW7bMuv2RRx7R2LFjM3WumTNnatKkSYqOjpaPj48++ugjNWjQIMO2+/fv18iRI7Vjxw4dP35cU6dO1YABA2w6J7KObsK8j9cQAABkhyyFivDwcD322GM3bXd3d9fFixfv+DzLly/XwIEDNWvWLDVs2FDTpk1Tq1atFB4erpIlS97UPi4uTg888ICee+45vfnmm9lyTtw9yZfPK/ny+XTbUpITrc/joiLkmMGn3AWLFlfBosVzvL6ckB3zFnJizkJ2zIcBAABIk+X7VERERKhChQrptoeEhOiBBx644/NMmTJFPXv2VGBgoCRp1qxZ+t///qf58+fr3Xffvan9ww8/rIcffliSMtyflXPi7on5/TtFBy+65f6I/x9C80+ejwfIq/krOVRVzomMjFSNatUUl5CQbedkvhIAAMiNshQqevbsqf79+2v+/PmyWCw6ffq0QkNDNWjQII0YMeKOzpGUlKQdO3ZoyJAh1m0ODg7y9/dXaGhoVsrKkXMi+3g8/JTcq/tl+ri82ksRExOjuIQEzfCpoMpFst67kJCSqo5bwyVJqxpVk7Ojw78c8e82nr2oSYeibD4PAACAlMVQ8e677yo1NVVPPPGE4uLi9Nhjj8nJyUmDBg3S66+/fkfniImJUUpKikqVKpVue6lSpXTw4MGslJXlcyYmJlonm0tSbGxslr4/bi8vD2OyReUiLqrt7prl4+OupVifP+jmItcCjjbXFHEl/t8bAQAA3KEshQqLxaJhw4bp7bffVkREhK5cuaKaNWuqSJEi2V3fXTF+/HiNHj3a3mUAuV5+nBcDAAD+XZbvUyFJhQoVUs2aNbN0rIeHhxwdHXXmzJl028+cOSNPT8+7es4hQ4Zo4MCB1q9jY2NVtmzZLNUA3Mvy27wYAABwZzIVKrp163ZH7ebPn/+vbQoVKqT69etr/fr16tChgyQpNTVV69evV79+/TJTls3ndHJykpOT7WvrA/e6/DYvBgAA3JlMhYqFCxeqfPnyqlu3rowxNn/zgQMH6pVXXtFDDz2kBg0aaNq0abp69ap15aaAgACVLl1a48ePl3R9IvaBAwesz0+dOqVdu3apSJEiqly58h2dE0DWMYwJAABkJFOhonfv3lq6dKmOHj2qwMBAde3aVffff3+Wv/kLL7ygc+fOaeTIkYqOjpavr6/Wrl1rnWgdGRkpB4e/V7o5ffq06tata/168uTJmjx5spo2barg4OA7OicAAACA7JWptSlnzpypqKgoDR48WN9++63Kli2r559/XuvWrctyz0W/fv10/PhxJSYm6rffflPDhg2t+4KDg7Vw4ULr1xUqVJAx5qZHWqC4k3MCAAAAyF6Znqjt5OSkLl26qEuXLjp+/LgWLlyoPn366Nq1a9q/f3+eXQEKyA3OJCTrbGJyum0JKX8vKbs/Nk7OjjcvKVvSqaBKORfM8foAAAAyYtPqTw4ODrJYLDLGKOWGNz4AsmZx5DlNjbj1Tek6bv0zw+1vVvbSwKreOVUWAAD4B5ZZTy/ToSIxMVGrVq3S/PnzFRISoqeeekoff/yxWrdunW7+A4DMe6lcCbUodV+mjyvpRC8FAAB3E8usp5epUNGnTx8tW7ZMZcuWVbdu3bR06VJ5eHjkVG1AvlPKmWFMQG4QFRWlqKhb9xreipeXl7y8vHKgIgC5Dcusp5epUDFr1iyVK1dODzzwgDZt2qRNmzZl2G7VqlXZUhwAAPYwe/ZsjR49OtPHBQUFadSoUdlfEIBc514dxpRVmQoVAQEBslgsOVULAAC5Qq9evdSuXbt02+Lj49WkSRNJUkhIiFxcXG46jl4KAPlVpm9+BwDAvS6jYUxXr161Pvf19VXhwoXvdlkAkGsxsxoAAACATQgVAAAAAGxi030qAAAAgJzADWHzFkIFAOCeFhkZqZiYGJvPEx8fb32+a9euDCdqZ1ZYWJjN5wDuVdwQNm8hVAAA7lmRkZGqUa2a4hISsvW8aatAAcg53BA2byFUAADuWTExMYpLSNAMnwqqXMS2noWElFR13BouSVrVqJqcHW2flrjx7EVNOpT5m+wB+QE3hM1bCBUAgHte5SIuqu3uatM54q79PZb7QTcXuRa4eSx3ZkVcif/3RgCQB7D6EwAAAACbECoAAAAA2IRQAQAAAMAmzKkAAOAfWB8fADKHUAEAwD+wPj4AZA6hAgCAf2B9fADIHEIFAAD/wPr4AJA5TNQGAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmuSJUzJw5UxUqVJCzs7MaNmyobdu23bb9ihUrVL16dTk7O6t27dr6/vvv0+1/9dVXZbFY0j1at26dk5cAAAAA5Ft2DxXLly/XwIEDFRQUpJ07d8rHx0etWrXS2bNnM2z/66+/qkuXLurevbv++OMPdejQQR06dNC+ffvStWvdurWioqKsj6VLl96NywEAAADyHbuHiilTpqhnz54KDAxUzZo1NWvWLLm6umr+/PkZtp8+fbpat26tt99+WzVq1NCYMWNUr149ffzxx+naOTk5ydPT0/ooVqzY3bgcAAAAIN+xa6hISkrSjh075O/vb93m4OAgf39/hYaGZnhMaGhouvaS1KpVq5vaBwcHq2TJkqpWrZp69+6t8+fP37KOxMRExcbGpnsAAAAAuDN2DRUxMTFKSUlRqVKl0m0vVaqUoqOjMzwmOjr6X9u3bt1aixYt0vr16zVx4kRt2rRJbdq0UUpKSobnHD9+vNzd3a2PsmXL2nhlAAAAQP5RwN4F5ITOnTtbn9euXVt16tRRpUqVFBwcrCeeeOKm9kOGDNHAgQOtX8fGxhIsAAAAgDtk154KDw8POTo66syZM+m2nzlzRp6enhke4+npman2kvTAAw/Iw8NDERERGe53cnKSm5tbugcAAACAO2PXUFGoUCHVr19f69evt25LTU3V+vXr5efnl+Exfn5+6dpL0k8//XTL9pJ08uRJnT9/Xl5eXtlTOAAAAAAru6/+NHDgQM2dO1eff/65wsLC1Lt3b129elWBgYGSpICAAA0ZMsTavn///lq7dq0+/PBDHTx4UKNGjdL27dvVr18/SdKVK1f09ttva+vWrTp27JjWr1+v9u3bq3LlymrVqpVdrhEAAAC4l9l9TsULL7ygc+fOaeTIkYqOjpavr6/Wrl1rnYwdGRkpB4e/s0/jxo21ZMkSDR8+XEOHDlWVKlX09ddfq1atWpIkR0dH7dmzR59//rkuXrwob29vtWzZUmPGjJGTk5NdrhEAAAC4l9k9VEhSv379rD0N/xQcHHzTtueee07PPfdchu1dXFy0bt267CwPAAAAwG3YffgTAAAAgLyNUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2KWDvAgAAAPKbqKgoRUVFZfo4Ly8veXl55UBFgG0IFQAAAHfZ7NmzNXr06EwfFxQUpFGjRmV/QYCNCBUAAAB3Wa9evdSuXbt02+Lj49WkSRNJUkhIiFxcXG46jl4K5FaECgAAgLsso2FMV69etT739fVV4cKF73ZZQJYxURsAAACATQgVAAAAAGxCqAAAAABgE+ZUAAAA2CAyMlIxMTE2nyc+Pt76fNeuXRlO1M4sDw8PlStXzubzAP+GUAEAAJBFkZGRqla9hhLi47L1vGmrQNnK2cVV4QfDCBbIcYQKAACALIqJiVFCfJzKdxoi5xK2vXFPTU7UoXkDJElVuk+TQ0Enm86XcC5Sx1eOV0xMDKECOY5QAQAAYCPnEuXk6l3VpnOkJP09/MnFq7IcC9k+/Am4W5ioDQAAAMAmhAoAAAAANiFUAAAAALAJcyoAAADusuTL55V8+Xy6bSnJidbncVERcsxgonbBosVVsGjxHK8PyCxCBQAAwF0W8/t3ig5edMv9Ef+/CtQ/eT4eIK/mr+RQVUDWESoAAADuMo+Hn5J7db9MH0cvBXIrQgUAAMBdxjAm3GuYqA0AAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBOWlAUAAPecqKgoRUVFZfo4Ly8veXl55UBFwL2NUAEAAHK1yMhIxcTEZOqY2bNna86cOZn+Xq+99pp69ep1x+3DwsIy/T2AexGhAgAA5FqRkZGqUa2a4hIS7sr3mzNnTpbCCJDfESoAAECuFRMTo7iEBM3wqaDKRVzu+Li/kpL1V9K1dNsSU43e3ntckjSpdnk5OVhuOu7+QgV0f6GCd/x9Np69qEmHMj/MCrjXECoAAECuV7mIi2q7u95x+yl/ntbUiFu/2U8LF//0ZmUvDazqfcffJ+JK/B23Be5lhAoAAHDPealcCbUodV+mjyvpdOe9FAD+liuWlJ05c6YqVKggZ2dnNWzYUNu2bbtt+xUrVqh69epydnZW7dq19f3336fbb4zRyJEj5eXlJRcXF/n7++vQoUM5eQkAACAXKeVcULXdXTP9KOVMqACywu6hYvny5Ro4cKCCgoK0c+dO+fj4qFWrVjp79myG7X/99Vd16dJF3bt31x9//KEOHTqoQ4cO2rdvn7XNBx98oBkzZmjWrFn67bffVLhwYbVq1UoJd2mSFwAAAJCf2D1UTJkyRT179lRgYKBq1qypWbNmydXVVfPnz8+w/fTp09W6dWu9/fbbqlGjhsaMGaN69erp448/lnS9l2LatGkaPny42rdvrzp16mjRokU6ffq0vv7667t4ZQAAAED+YNc5FUlJSdqxY4eGDBli3ebg4CB/f3+FhoZmeExoaKgGDhyYblurVq2sgeHo0aOKjo6Wv7+/db+7u7saNmyo0NBQde7c+aZzJiYmKjEx0fr1pUuXJEmxsbFZvjZbXLlyRZK099JVxV1LsUsNtxNx+fqktLjTh5SSlPsmqCXGnJR0/f+jvV7DtO8v5c7XkdfwzvAaZh2v4Z3Jza8jr+Gd4TX8d7yGtsktr2PRokVlsdy8YpqVsaNTp04ZSebXX39Nt/3tt982DRo0yPCYggULmiVLlqTbNnPmTFOyZEljjDG//PKLkWROnz6drs1zzz1nnn/++QzPGRQUZCTx4MGDBw8ePHjw4MEjg8elS5du+76e1Z8kDRkyJF3vR2pqqv766y8VL1789oksn4qNjVXZsmV14sQJubm52bscZAGvYd7Ha3hv4HXM+3gN8z5ewztTtGjR2+63a6jw8PCQo6Ojzpw5k277mTNn5OnpmeExnp6et22f9t8zZ87Iy8srXRtfX98Mz+nk5CQnJ6d02+67777MXEq+5Obmxi9fHsdrmPfxGt4beB3zPl7DvI/X0DZ2nahdqFAh1a9fX+vXr7duS01N1fr16+Xn55fhMX5+funaS9JPP/1kbV+xYkV5enqmaxMbG6vffvvtlucEAAAAkHV2H/40cOBAvfLKK3rooYfUoEEDTZs2TVevXlVgYKAkKSAgQKVLl9b48eMlSf3791fTpk314Ycfqm3btlq2bJm2b9+uOXPmSJIsFosGDBigsWPHqkqVKqpYsaJGjBghb29vdejQwV6XCQAAANyz7B4qXnjhBZ07d04jR45UdHS0fH19tXbtWpUqVUqSFBkZKQeHvztUGjdurCVLlmj48OEaOnSoqlSpoq+//lq1atWythk8eLCuXr2q1157TRcvXlSTJk20du1aOTs73/Xruxc5OTkpKCjopiFjyDt4DfM+XsN7A69j3sdrmPfxGmYPizHG2LsIAAAAAHmX3W9+BwAAACBvI1QAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgVwj7lxQTcWd8vbeP2Au+/s2bM6d+6cJGn16tVasmSJnSuCLdL+jqakpNi5knsfoQLWX7iIiAj98ssv2rVrl6Kjo+1cFTIroz+cFovFXuUgi/bs2aORI0dK4vUD7rbLly+rZs2amjRpkubNm6dOnTrZuyTYyGKx6IcfftCsWbOUlJRk73LuaXa/+R3syxgji8WiVatWaeDAgXJ3d9e1a9fk7e2td999V0888YS9S8QdSHsdf/rpJy1cuFAXL16Up6enxowZI09Pz3Q3kETutXv3bvn5+WnQoEH2LgXZJO13E3lD0aJFtXjxYrVr104pKSmaMWOGXnzxRXuXBRv8/vvveuGFFzR79mz+Lcxh/N/N5ywWi3799Vd169ZNb7/9tnbv3q2hQ4dqw4YN2rVrl73Lwx2yWCz65ptv9Mwzz6hkyZLq0qWLfv75Z7Vr104nTpywd3m4A7t371bjxo315ptv6r333rN3OciitB7DuLg4paamKjU11c4V4U4ZY5SamiofHx8lJycrNTVVUVFROnv2rL1LQxbt379fe/bsUd++fdWlSxdCRQ7j/24+lvaP3+bNm9WmTRv17dtXJ06c0PDhw9WrVy+99dZbksQf1FzOGKNz587p/fff16hRozR16lQ9+eSTMsaoYcOGKl++fLq2yH327t2rxo0ba9CgQRo3bpx1+8KFC7VixQo7VobMSOuV+OGHHxQYGKiGDRtq+PDh2rp1q71Lw79Ie+3OnTsnT09PRUVFac2aNRo/frwmTpzIv4N5jDFGV69eVaNGjdSzZ09FRUVJkhwcHPh3MAcRKvKxtC75pKQklStXTtHR0fLz81PLli01c+ZMSdIPP/yglStXKj4+3p6lIgNpfxgtFoucnJx05coV9ejRQ6dPn1bt2rXVpk0b6+v4v//9z9oWucv58+fVuXNnVa5cWaNHj7Zuf//99/Xmm2+qXLlydqwOmZHWY9ipUydVrVpVHTp00L59+9SnTx8FBwfbuzzcQlqg+Pbbb9W1a1ctXbpU999/v5566iktX75cU6dO1eTJk63B4oMPPtCyZcvsXDVux2KxqHDhwtq5c6fKlCmj3377TXv27LHuQw4xyJeOHz9ufT516lRTsmRJ4+3tbfr27Wvdfu3aNdOtWzfTp08fEx8fb48y8S9WrVplxo4da5KSkoyvr6+ZPHmyqVixounVq5dJSkoyxhgTGRlpHn/8cfPDDz/YuVpkJDo62gwaNMjUrl3bjB492hhjzKRJk0zx4sXNunXrMjwmJSXlbpaIW7hy5Uq6r/ft22cefPBBM3fuXGOMMefPnzclSpQwVapUMQ8++KDZuHGjHarEnVi1apVxdnY2H374oYmIiEi3b8mSJaZgwYLm2WefNZ07dzZOTk5m586ddqoUt5Kamprh9vDwcHPfffeZtm3b3vTaInsRKvKhAwcOmDp16pgPPvjAuq1Tp07G2dnZ7N+/38THx5srV66Yd99913h6epqwsDA7Votb2b17t/Hy8jKzZs0yCQkJ5q233jLFihUzrVq1StduyJAhpm7duubEiRN2qhT/5vTp0yYoKMjUrFnTNG3a1Hh4eGT4BnT16tV3vTZkLCgoyLRv3z5dwAsLCzOBgYHm8uXL5vjx46Zy5crmP//5j9m4caOpWrWqqV279i2DIuznyJEjpkaNGmb27NnGmOsfqCUkJJj169ebmJgYY8z10NGpUyfTsWNHs3v3bnuWiwykBYpff/3VzJ492wQFBZnIyEhz9epVY8z19z3u7u7mqaeeMocPH7Znqfc0izEMLstvIiIiNGHCBO3Zs0cvvviiBgwYoBMnTqhz584KCwtT2bJldf/99+vPP//Ud999p7p169q7ZPxDeHi4lixZotjYWE2dOlWStG/fPr355puKi4vTU089pXLlyikkJERLly7Vpk2b5OPjY+eq8U/mhiFsp0+f1pw5czR37lw9/vjjWrx4saTrSwQ7OjoqKChIY8aM0ZEjR1ShQgU7Vg3p+u9gcnKyatWqpeTkZBUsWFCSFB0dLU9PT3Xr1k2JiYmaN2+enJ2d9cwzz+iXX35R1apVtW7dOrm6ujIMI5c4cuSIWrdurfnz58vPz08ffvihvvnmG4WHh6tQoULatm2bypQpo/j4eDk4OMjJycneJeMG5v+Hr61evVo9evSQr6+voqOjlZSUpOHDh+upp55S8eLFFRYWpscee0w1a9bU559/zt/RnGDfTIO7IaMuwcOHD5t+/foZX19f8/HHH1u3z50710yePNn897//NceOHbubZeIOpKSkmLNnz5qGDRua++67z7z00kvp9m/fvt28+eabpmLFiqZ+/frm6aefNnv27LFTtcjI6dOnzZ49e0xCQsJN+6KiokxQUJCpUaOGCQoKsm4fPny4cXV1Ndu3b7+LleJWbvybGhwcbB5//HETHR1t3RYXF2fq169vxo0bZ4wxJjk52fTo0cN89NFH5uzZs3e9XtzekSNHTMuWLU2jRo2Ml5eXadeunRkzZowJCwszlStXNkOHDrV3ifgXW7ZsMZ6enmbBggXGGGMuXbpkLBaLqVatmpk9e7b566+/jDHG7N2715QvX95ERkbasdp7Fz0V+cS2bdt09OhRvfDCC9Zthw8f1vTp07Vx40b16dNHvXv3tmOFuB3zj7Xuv//+e40aNUp//fWXZs2aJX9//3Tt4+Pj5ejoqNTUVDk7O9/tcnELe/fuVceOHdW1a1e9/PLLeuCBByRJs2bNkre3t9q1a6fIyEjNnz9fy5cvV2BgoFJSUvTee+8pJCRE9evXt/MVQPr79/HYsWNKTk5Wo0aN1LBhQy1atEgeHh5KSkrSq6++qrNnz6pv377aunWrVqxYoS1btqh06dL2Lj9fS3vtEhISrItcSFJwcLD++OMPGWP00ksvqVSpUpKk1q1bq0OHDvrPf/5jz7JxG9euXdPcuXN17NgxTZw4UYcPH1aLFi3UunVrXbx4Ud9//70mT56s9u3bq0SJEkpKSlKhQoXsXfa9yZ6JBjkvNTXVXLp0yTz77LOmbt26ZsWKFen2Hz582Pj5+Zny5cubDz/80E5V4k6EhoaaXr16mWvXrhljjPnxxx9NgwYNzLPPPms2b95sbZecnGyvEnEbR44cMaVKlTJDhgwxUVFR6fYFBASY4sWLmwsXLhhjjDl16pR57733jLu7u3FwcKCHIhdavXq1qVWrlgkLCzNhYWGmTJkypmXLlubcuXPGGGPWrFljWrVqZby9vU2NGjXMjh077Fwx0nqYfvjhB9O2bVvTuHFj8/zzz9/0+2jM9Un4I0aMMJ6enubQoUN3u1Rk0u7du83+/fvNlStXTNOmTU337t2NMcZcvnzZFCtWzJQpU8YsWLDApKSk3HJCN2xHqLhHpf3SxMXFGWOM2bZtm+nSpYt59NFHzfLly9O1HThwoKlQoYJp0aKFOX/+/F2vFf8uJSXFvP/++6Z69eqmX79+1mDx3XffmUaNGplnn33WbNmyxc5V4namTZtm6tatm+G+K1eumLZt26b73Tx58qSZMGGCCQ8Pv1sl4l+k/V09efKkadmypZk1a5Z134EDB0yZMmWMv7+/NRyeO3fOHDlyhCFPucjXX39tihYtat58802zYsUKU6lSJdO8eXPzyy+/WCfdf/XVV6Zbt27G29ubVZ5yoRtDwT9Xwtu5c6epVauW+eWXX4wx138vn332WfPqq6+y8tNdwH0q7kHmhhsw9e7dW3/++acefvhhvfXWW/Ly8tLMmTPT3VDLwcFBr7/+unVtbuQ+Dg4O6tevn7p166atW7fq9ddfV0pKitq2bavhw4crOjpaY8eOVWhoqL1LxS0ULVpUkZGRWrBggc6ePavw8HDt2bNHf/zxh0JCQnT58mX99ttvioiI0O+//65SpUrp7bffVtWqVe1dOv6fxWLR5s2b9f7778vR0VFPPvmkJCk1NVU1atTQjz/+qIMHD6pz5846d+6cPDw8VLFiRZUoUcLOlUOSDh06pBEjRmjcuHGaMmWKWrRooaSkJG3btk09evTQb7/9JkkqUaKEKlWqpODgYBYqyWXS3t/89NNP6tatm1q3bq0hQ4YoPDxckhQbG6vz58/rwoULunjxor788ksZYzRr1ixVqlTJztXnA3YONcghK1euNG5ubmbw4MFm//791u2///676dKli6lZs6Z54YUXTLdu3UyxYsWYlJ1L/XPpu8uXL5vx48ebhx9+2PTt29f6Kc2qVatMixYtzMmTJ+1RJm7h6NGj5uLFi8YYY3bt2mXefvtt4+XlZapUqWJ8fX1N+fLlTdWqVY2Pj48pXLiwsVgspmbNmqZkyZJ8up1LLVq0yDg5ORkXFxcTHBxs3Z72uxgWFmZcXFxMx44duZ9ILrNr1y4zbtw4k5iYaE6dOmUeeOAB069fP3Pp0iVTsWJF8/jjj1t7fBlGmnt9/fXXpkiRIqZv375mzpw55v777zfNmjWz3n+rRYsWpnjx4qZatWrm/vvvZ+jhXUSouAft3bvXlCpVynoDpjSnT5+2/nfKlCnmkUceMR06dGDN7VwmrWs3PDzc1K1b14wcOTLd/osXL5rhw4cbLy8vM3jwYOtQqH/eiAv2lZSUZJo1a2Y8PT2tK48YY8ywYcOsKzudP3/epKammsuXL5t33nnHtGvXzuzevZuVSXK5lStXmpIlS5qAgABz8OBB6/Ybf3f//PNPe5WHW7h27Zr1vkuvvvqq6dy5s/U+Bu3atTMWi8U0aNCAm73mYtHR0aZ+/fpm6tSpxpjrf2dLlixpBgwYkC7EL1iwwHz++ecMebrLGP50Dzp79qwqVKigrl276sKFC/rss8/UokULNWzYUL1795aDg4PefPNNbdmyRUuWLFGdOnXsXXK+lpqaKklKTk6WdH2IxZEjR/TAAw+oYcOGWr9+vd5//31re3d3dw0cOFBOTk6aM2eOBg0aJElydXW9+8XjlgoWLKgZM2aobNmyeuSRR3ThwgVJ11/vH374QRcuXLAONyxcuLBiYmLUoEED1alTR2XLlrVn6fh/5v8XRwwLC9OmTZv03XffKTU1VR07dtS0adO0fv16zZw5U4cOHZJ0/XfXGKOqVauqSpUq9iw9XzPXPzCVJJ08eVKnTp1SeHi4HB0dVb16dRljFBkZqdq1a1v/blaqVEnbt2/X8uXLWTEvl/j444/1008/KSUlxbotbRXEbt266fjx46pQoYLat2+vqVOnysHBQRs2bJAkvfrqqwoICGDI091m10iDbJH26VhiYqIxxpitW7cai8Vi+vfvb2rVqmXatWtnBg0aZKZMmWJKlixpfv75Z3uWiwyEh4eb3r17m5SUFPPll18aR0dHc+rUKXPmzBnTv39/07BhQzN27Fhr+3PnzpkuXbqYcePG8al2LpT2O5mSkmLCwsJM48aNTd26dc2FCxfMli1bTL169cxbb71ljh8/bvbu3WuGDh1qihcvzt3rc5G013DlypWmcuXK5sEHHzQ+Pj6mQoUK1iGlixcvNqVLlzYDBgzgtcslblxsZPXq1cbHx8fUqlXLlCpVygwePNg6RLRRo0amadOmZvXq1WbAgAGmePHi1t585A4+Pj7G29vbBAcHW3vko6KiTPny5c1nn31mKleubF577TXrULU///zTtG7d2mzatMmeZedrhIo87sYl8l599VXrH8wlS5aYJ5980gwePNgcOHDA2v7hhx82X3/9tV1qxc3S/lCGhIQYi8VimjdvbhwdHc3ChQutbc6ePWv69+9vGjRoYN544w2zf/9+8+6775rmzZubmJgYe5WODNw4bCIpKcn6/K233jIWi8U8/PDD5uLFi2bChAmmRo0axmKxmBo1apjatWubP/74ww4V43ZCQkKMm5ubdSjptm3bjMViMdOmTbO2Wbx4sXF2djbvvPNOutccd9+5c+dM6dKlTVhYmNmwYYNxdXU1s2bNMtHR0eazzz4zFovFfPPNN8YYY44fP24qV65sqlSpYqpWrcoqT7nIjas7NW/e3JQrV85s3LjR+sHpoEGDjKurq2ndunW644YOHWrq1avH3EI7IlTcA7766ivj7u5uBg4cmO4PY9pY0TRDhgzhTpK5yJw5c8xnn31mLl++bIwxZvTo0cZisZgmTZqY2NjYdG3PnTtn3n//fVO5cmXj7e1tKlasyOSzXObkyZPmueeeMxs2bEi3feLEiaZ48eLms88+M3Xr1jUNGjQwFy5cMNHR0WblypVm9+7d5syZM3aqGrfz6aefmh49ehhjrt9npFy5cqZ3797W/WlvfpYtW8YcilzgyJEjpkyZMmb37t1m2LBh5o033jDGXF/wokqVKqZnz57p2iclJZmjR4+mm/OE3OHGifKPPvqoNVgYc33Z2KeeesrUrl3bzJkzxyxZssT069fPuLm5mV27dtmpYhhDqMhz/vlmc8+ePaZEiRJmzpw56bafO3fO+ku5dOlS8/LLL5uSJUvyaUwu4u/vb6pXr26++OILk5SUZD766CMzZMgQU6hQIfPyyy+bEydOGGP+fuOSkJBgzpw5YzZv3pzhzZpgX2k3knzyySdNSEiIMcaY8ePHm/vvv9/89NNPxpjra6b7+PiYevXqcU+YXOJ2KzT17dvXdOrUyZw5c8aULVvWvPbaa9bfx8WLF5tRo0bdrTJxh+rXr2/ee+8906xZMzNlyhSTkJBgSpcune61mz59OsOAc7G01yntRpLGGPPYY4+ZMmXKWIc2hYaGmv79+5vixYubevXqmTZt2pg9e/bYpV78jVCRh0ydOtX06tXLJCcnW/8h/Oabb4yfn58x5vpY0oULF5pWrVqZ0qVLm6FDh5pTp06ZNWvWmJdeeindMCjYz41du88995x58MEHzfLly61DJ4KDg63B4tSpU9a2oaGhd71WZE7amN727dubnj17mhIlSph169alaxMWFmYqVqxoGjVqxJKjucSpU6fM77//bowx5osvvrCuzrV27VrzxBNPmOLFi1t7LNLuyPv666+b7t27s+paLpH2u9SpUyczevRos2zZMvPEE0+YUqVKmT59+liHmiYnJ5uXXnrJDB48mOFqudCNQ7qff/556wcyxhjTtGnTdMHCGGNiYmJMYmLiTSMzYB+Eijwg7Y/hjBkzrGMF08YWbtmyxVgsFvPOO++Yhx56yLRr187079/fTJw40Tg5OVnfiKbdWRu5w41dux06dDA1a9Y0//3vf61DoTZt2mQKFSpkAgICzNatW817771nihQpYs6cOZMulCD3CQ8PNy1atDAuLi5m8uTJ1u03Bojw8HBz5MgRe5SHG6Smppr4+Hjz8MMPm/bt25sJEyYYi8ViZs+ebYy5HjZat25typcvb1auXGmMuf4mZujQoaZkyZJ8UGNnhw8fNh9//LEJCwuzDuv973//a1q0aGHWrFljfHx8jI+Pj/Wu9ImJiWbo0KGmXLlyDFfLxVatWmVcXFzM+PHjzdatW9PtSwsWwcHB1vdBxhj+XcwlCBW5XNobkcOHD5sxY8YYY4z59ddf0w2PmTNnjvHz8zMDBw5M1/338MMP3/QpKewvo67dDh06mFq1aqULFlu2bDElS5Y0Pj4+xtPT02zfvt0u9SLzIiIiTMuWLU2bNm2sN9My5vZDbWA/ERERpmzZssZisVh7KW7c17hxY1OrVi1TtmxZ06xZM1O2bFmGktpZUlKSef755025cuVMxYoVjZubm2ndurWpVKmSKVOmjPnrr7/MqlWrjK+vr6lZs6Zp3769adOmjSlRogSvXS4WGRlpatSoYb0PRZobA8QTTzxhChcunO5vK3IHizH/v5gzcp3U1FQ5ODho9+7dqlu3rsaOHauhQ4dq+vTpWrBggR566CGNHTtWnp6eunr1qgoXLmw9dujQoVq2bJm2bNmi0qVL2/EqkJHff/9d48aN0xtvvKHmzZtLkp555hlFRETonXfeUYcOHVSkSBEdOXJE0dHRKl++PK9jHnPo0CG98cYbMsZoxIgReuSRR+xdEv7B/P/9DOLi4lSzZk0lJSWpWbNmGjBggBo2bGhtFx0drQMHDuiXX36Rj4+PfHx8VL58eTtWDkmKi4uTq6urDh06pLCwMEVGRmrz5s3au3evatSoof/+9786fPiw/ve//2n//v3y8fFRhw4duIdILrZz504988wz+vbbb6330DLGyGKxKCUlRY6OjpKktm3batq0abyWuY09Ew1uLe0Tzf379xsXF5ebPj37+OOPTePGjc0rr7ySbtz9N998YwICAvg0Jpf7+uuvzUMPPWSee+45ExwcbN2e1mOxePFia48F8q4///zTPPXUU6ZRo0bMicll0noM9+/fbxITE01SUpLZt2+fqVy5sunUqROvVx5wqyEvq1evNo0aNTJt27a19ggzPCZ3+ufr8vvvv1uHN/2zzc8//8zoi1yOO2rnQmk9FPv27VPTpk1VoUIFjRo1SpKUkJAgSerbt686d+6siIgIDRs2TNHR0ZKkK1eu6Nq1awoODlbdunXtdQn4F+3bt1dQUJDOnj2r6dOna9OmTZKk1atXq3r16ho8eLB++OEHO1cJW1WpUkWTJk1SmTJl5O3tbe9y8P/M/3/yuXr1arVq1UpDhgxRYmKiHnzwQS1ZskS7d+/WlClTFBoaKul6z++YMWPsXDX+Ke3uymlSU1MlSe3atdOAAQN05coVPfXUU4qJibmpLXIHi8WikJAQ7dq1S5JUvnx5OTo6atasWbp48aK1jSR99913+vLLLxUfH2+9YzpyGXunGqSX1kOxa9cu4+rqah5//HHj7e1tXW/bmPRjC2fMmGEeeeQR06NHDxMdHW2Mufn+FLCvGz8R/efEzm+++cY0a9bMtG/f3vzyyy/W7V27djWHDx++q3Ui59z4O4vcYd26dcbZ2dnMmzfPHD161Bjz9+/q9u3bzYMPPmgaNWpkWrZsaVxdXem5yCPSXsPU1FTz+eefmzZt2pjjx4/buSrcysWLF83TTz9tvL29rfde2rhxo3F2djbPPvusWbNmjQkJCTEDBgww7u7uZt++fXauGLfDnIpcaPv27WrcuLGGDRum4cOHa968eRo2bJhefPFFTZ8+XZKUlJSkQoUKSZJmzpypTz75RI8//rhmzJhhHXMI+0jrabp27ZoKFCiga9eu6a+//lLLli1Vp04dDR06VNWrV7e2//rrr9WjRw89+uijev31161zLADkjGvXrqlXr14qUqSIpk+fbu25uHbtmhwdHWWxWLRnzx4tX75csbGx6t27t2rWrGnvsnGH0l5PY4yuXLmiokWL2rsk/EPaayRJISEhmjZtmvbu3aulS5eqXr16+v3339W9e3dduXJFFotF9913n+bNmydfX1/7Fo7bIlTkQps3b9bKlSutAeLSpUtavnz5bYPFnDlz1LJlS1WoUMFeZUN/B4rDhw/r888/1/nz59W1a1f5+fnpk08+0eeffy5fX18NGDBANWrUsB7XsmVL7d69W23atNEnn3wiFxcXuuuBHJKUlKQGDRqoWbNmmjp1qqT0b3JiY2Pl5uama9euycHBQQ4OjBTOa258PWFfaf8uSlJycrIKFiyohIQEOTs7W9uEhoZq4sSJCgsL05IlS1S/fn1duHBBFy9eVFJSkkqWLKlixYrZ6xJwh/hLmQs99thj1uBgjJG7u7s6d+6scePGacmSJerfv78kqVChQkpMTJQkvfbaawQKO0v7w7l37141b95c58+fV5kyZVSvXj1JUp8+fdSzZ09t375d06dP18GDByVd/9S0UqVKeuuttzRu3Di5urryjyGQzdI+PzPGyMHBQT4+Pjpz5oxiYmIkyfrJ9oEDB/Tuu+/qr7/+UoECBQgUeRR/Q3MPBwcHHT9+XMYYFSxYUL/++qtatGiho0ePWtv4+fnpnXfeUYUKFdS1a1ft379fxYoVU8WKFVWtWjUCRR5RwN4F4PbS/jC6ubmpc+fOkqRhw4bJ0dFRU6ZMkZOTkz3Lww3SeihatmypV155RRMmTLDuSxsK1aNHD0nXe5aGDBmi5s2b68SJE/rpp58UGhqqEiVK2Kt84J70z0+sLRaLChQoID8/P7311lvy8/NT586dVaJECVksFn355ZfavHmz9QMbALZJTExU586dFRUVpWPHjiklJUVxcXHq0aOH5s2bZ/1A1M/PTy+++KICAwPl7++vdevWWZeVRd5AqMhD0oKFg4ODXnvtNTk5OWn8+PH2Lgv6e737efPm6ZFHHtG7776bbn+BAgWsPRk9evTQ/fffr6VLl+rDDz9UiRIltGLFCgIFkM3SAsXmzZv1zTff6Nq1a6pevbp69+6t//znPzp16pTGjBmjDRs2yM3NTQkJCVq7dq02bdokLy8ve5cP3BMKFSqkSZMmqXfv3vLz81NoaKg++ugjvfvuu3rllVe0cOFCVaxYUZJUrVo161DuG++9hbyBORV50KVLl/T111/Lz89PVatWtXc5uMGjjz6qatWq6bPPPrtpX1qoSBtLmpCQoCtXrsjR0ZGuXSCHrF69WoGBgXr66ad17do17du3Tw0aNNC8efMkSYsWLdK+ffu0fft21a5dW7169WJSNmCDG+dQ3Lht27ZtCggIUPHixRUaGqqQkBANGzZMKSkp1mDx3nvv6dSpU5o6dSoT7PMgQkUexSS03CU1NVXx8fFq1KiROnTooDFjxliHPP1TUFCQnnnmGVaxAHLY9u3b9dxzz+ndd99Vr169dPDgQT322GO6dOmSnnzySa1evdraNu0eB8yhALIuLVBER0fr2LFjatSokXVfcnKy/vjjD3Xp0kUlSpTQ1q1btXXrVg0bNkwbN27UQw89pAMHDig0NFS1a9e241Ugq/jrmUcRKHIXBwcHFS5cWA0aNNDChQsVERGhAgUKWIdFpTl69KhCQkJ07do1O1YL3FvSAoExxvpcksLCwtSyZUv16tVLkZGRevLJJ/XUU0/pk08+0dq1a61znCSxyhOQDRwcHHTixAnVqlVLjRs3VrNmzTR06FBt2LBB8fHxatCggZYtW6aEhAQ9/PDDatSokX788UfNmTNH3bt31+7duwkUeRh/QYFs1Lp1a127dk0jRozQ4cOHZbFY0gXARYsWKTExkZW6gGyS9snon3/+qTfeeEPPPvusJk+eLEl6+eWX1aNHD6WkpKhXr1569NFHNX/+fLVv315ly5bV/Pnz1bVrVztfAXBvSU1NVdmyZVW1alVduXJFp0+fVtu2bdW0aVMFBATo6NGjGjZsmC5duiR/f3/rXMNevXqpUqVK9i4fNiBUAJmU1vNw4yeiaZ577jkFBAToxx9/VK9evbRlyxZduHBBv/32m/r27atp06bpk08+kYeHx90uG7jnpAWK3bt3q0mTJjp58qScnJw0dOhQTZw4UZL08MMP6+TJkzpx4oS6desm6fqnqQ0bNtSiRYs0ZswYe14CcM8pX768VqxYoZo1a6p06dLq3bu3wsPD9c477+jIkSP68MMP9eqrr8rZ2VkbNmxQx44dJUmMxs/7WP0JyISFCxfqjz/+0JQpU+To6JhuQlra84kTJ8rNzU3Lly/X448/rmLFiqlkyZIqWrSoNm3axBJ5QDZI+33bs2eP/Pz89Oabb2rcuHFKTU2Vh4eHoqOjrYsiODs7KzExUV999ZV8fX01adIkhYeHa8qUKay6BuSAypUra/z48erfv79GjBihcePGqXPnzurcubMuXryob7/9VgcPHlSBAgU0cuRISQzrvhcwURu4A6mpqUpOTtagQYMUGhqq1q1ba/To0TcFi5SUFDk6OkqSDh8+rLCwMEVFRal27dqqVKkSb2CAbHTixAnVq1dPzZo105dffmnd3rlzZ4WHhyshIUEVKlRQx44ddfXqVU2aNEmOjo5KSkrSDz/8oLp169qxeuDed+jQIb3++uuSpCFDhqhp06bp9t9qQRPkTYQK4A6cOnVKpUuX1oULFzR58mStX79ezZs315gxY27ZYwEgZx07dkzPP/+8vLy8NHjwYD3yyCOaMGGCxowZoyFDhsjLy0uTJ0+Wk5OTPvroI3l4eOjQoUOqW7euypYta+/ygXzh0KFDeuONN2SM0ciRI9W4cWN7l4QcQqgA/sVXX32lt99+W4sXL1bjxo118eJFTZgwQcHBwbcMFgDujrQ3LIUKFVLJkiW1Zs0a/fe//1XLli0lScePH1fFihU1e/Zs9ezZ087VAvnToUOHNHDgQMXExGjq1KnplprFvYN3QMC/cHNzU+3atTVgwACFhobqvvvu07vvvqvHH39cGzZs0IgRI5SSkiIHB4cMJ28DyDlVqlTR9OnTFR8fr8WLF2vw4MFq2bKljDFKTk5WgQIFVLt2besNJvkcDbj7qlSpokmTJqlMmTLy9va2dznIIfRUAHdg06ZNmj59uo4dO6aPP/7Y2mMxceJEbdy4Uc2aNdOYMWNUoECBdPMqANwdhw8fVp8+feTo6KghQ4bo0UcflSSNHDlSX3zxhTZt2sSQJ8DOkpKSVKhQIXuXgRxCqABu48Y7l2/cuFEzZszQ8ePHMwwW/v7+GjVqFJPOADu5cez2+PHj9dNPPykoKEi//vork7IBIIcRKoBM2LRpk6ZMmaITJ06kCxaTJ0/WihUr9NJLL1mXxwNw96WN3d62bZsuXLig0NBQ1a9f395lAcA9j1ABZCCth2LHjh3WG2d16dJFxYsX17Zt2/T+++8rMjLSGiwuXLigjz76SAEBAdwtG7Cz8PBwDR48WO+//74efPBBe5cDAPkCoQK4hZUrV6p3796qW7euIiIi5O7uru7du6tv374KDg7WjBkzdOrUKU2aNEmPPfZYuqFSAOwrOTlZBQsWtHcZAJBvsPoTkIGdO3eqb9+++uCDD7Ru3Tpt2LBBu3btUlxcnCTp8ccf18CBA1W4cGGNHDlSCQkJdq4YwI0IFABwd9FTgXztn70LaV+vWLFCn376qTZs2KDw8HC1adNGTzzxhObOnStJOnv2rEqWLKmQkBBVqFBBZcqUsdclAAAA2B09Fci3UlNTZbFYdO7cOW3fvl07duywBoxTp07Jzc1NKSkpatGihVq0aKHZs2dLktasWaPZs2crMTFRTZo0IVAAAIB8j7UvkS+l3f36wIEDeu2111S0aFG5urrqyy+/lKOjo1q3bq0xY8bIxcVFvXv31vTp063Hrl+/XpGRkUpMTJSTk5MdrwIAACB3IFQg3zHGyMHBQfv371eTJk3Up08f9erVS2XKlJGDg4OMMXrggQc0ePBgffTRR9aeiKNHj2ru3Ln64osvtGXLFrm5udn5SgAAAHIH5lQgX/rrr7/Uvn171atXL10vxI1zLI4cOaIFCxZo6tSpKlasmIoVK6akpCQtXbqUG2kBAADcgFCBfOnAgQNq166d5s+fryZNmsjBIf30orRwkZycrKNHjyo0NFQVK1ZU5cqV5e3tbaeqAQAAcieGPyFf2rVrl44fP65HH31UFovFOscijcViUVxcnPbt26cGDRqoatWqdqwWAAAgd2P1J+RLFSpUUIECBbRq1SpJuqmnQpLmz5+v4cOHKykp6W6XBwAAkKcQKpAvlS9fXm5ublq0aJGOHz9u3X7jaMBjx46pfv363EQLAADgXxAqkC+VLl1an376qdatW6cRI0bowIEDkv4e9jR06FB99dVXCgwMTHdzPAAAANyMidrIt1JTUzV37lz169dPlStXlp+fn5ydnXXq1Clt3bpVa9euZZUnAACAO0CoQL63bds2TZo0SRERESpatKgaN26s7t27q0qVKvYuDQAAIE8gVACSUlJS5OjoaO8yAAAA8iTmVABKv/oTORsAACBz6KkAAAAAYBN6KgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADb5P+TQYbDhdBWUAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "Cellpose vs CellSAM - Individual Models by Data Type\n", @@ -629,7 +573,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -670,7 +614,6 @@ "c3 = '#deebf7'\n", "c4 = '#3182bd'\n", "\n", - "cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam')\n", "cellsam_generalist_path = cellsam_path / 'general'\n", "cellsam_individual_path = cellsam_path / 'individual'\n", "\n", @@ -695,20 +638,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiN1JREFUeJzs3XdYFGfXBvB7QaoKFqQpKAoKBgUUe1diiQm2WDBGY38tiSU2bNixxxhN7C2JvcWSmEQSjC32LvZCVECxIR3hfH/w7cgKKrDAynL/rovLZeaZ4cy4OztnnqYSEQEREREREZEWDHQdABERERER5X9MLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGtMLIiIiIiISGuFdB0AEeW90NBQREZG6jqMDFlZWcHR0VHXYejMF198gbVr1+L27dsoV65ctvYRHByMJk2aICAgAJMmTVKWN27cGAcOHICI5Eyw+QDf6wVXRu/3N302iChnMLEgKmBCQ0Ph5uaG2NhYXYeSIXNzc4SEhGh9wxUTE4Nvv/0WW7duxbVr15CUlIRSpUrByckJ9evXR58+fVChQoUcilr/5ccbstDQUFRydUN83Pv5Xjc1M8fVK9q/19XOnj2LJUuW4J9//sG9e/cQHx+PEiVKoEqVKmjZsiW6d++OUqVK5cjfKqgKYnJOlBVMLIgKmMjISMTGxmL+D6vg7OKq63A03Lh+BcMH9EJkZKRWN1svXrxA/fr1cf78eTg7O6Nbt24oWbIkIiMjcfz4ccycORMVKlR4LxOLwMBAjBkzBqVLl87xfa9bt+69TShzQ2RkJOLjYlG2gz9MS71fNQPxj0Jxd1ug1u91AEhJScGoUaMwb948GBoaomHDhmjevDkKFy6Mhw8f4ujRoxgxYgQCAgJw9erVXHlv5Rc1a9ZESEgIrKysdB0KkV5iYkFUQDm7uMLdw0vXYeSKBQsW4Pz58+jTpw+WLVsGlUqlsf727dtISEjQUXRvZ2dnBzs7u1zZd0FtdmNayhHm9hV1HUauGTduHObNm4dq1aph06ZNcHZ2Tlfm9OnTGD16NOLi4nQQ4fvD3Nwcrq7v1wMVIn3CzttEpHeOHj0KABg0aFC6pAIAnJycNG4uypUrh3LlyuHZs2fo378/bG1tYWpqCi8vL2zYsCHDvyEiWLVqFerVqwcLCwuYm5vD29sbq1atemP51atXo0GDBihWrBjMzc3h4uKC/v37IzQ0VCn3xRdfQKVS4c6dO8qyxMREfPfdd2jRogUcHBxgYmICa2trtG/fHmfOnMn0eWncuHG685GSkoIVK1agZs2aKFGiBMzMzFCmTBl88sknCA4OBgBMmjQJTZo0AQBMnjwZKpVK+UkbJ+W9a9euYc6cOShVqhT27duXYVIBANWqVcOff/6Zrt/O+fPn0aVLF9jZ2cHY2Bhly5bFl19+icePH2uUu3PnDlQqFb744gvcuHED7dq1Q/HixVG4cGH4+Pjg3LlzGf7dhw8fYtiwYXB2doaJiQmsrKzQoUMHXLx4MV3ZtJ/DwYMHw8HBAYUKFcKaNWsAAKdOncLgwYPh7u4OS0tLmJmZoUqVKpg5cyaSkpIydb6Cg4OhUqnSNee7fv06evbsCScnJ5iYmKBEiRLw8PDA0KFDlWZPKpUKBw4cUF6rf7744otM/W2igoA1FkSkd0qWLAkg9abL09MzU9skJibCx8cH0dHR+PzzzxETE4PNmzeja9euiIyMxJdffqmUFRF89tln2LBhA1xcXNC1a1cYGxvjzz//RO/evXH58mXMnTtXKZ+SkoLOnTtj69atKF26NPz8/GBhYYE7d+5g8+bNaNWq1VtrE548eYKhQ4eiQYMG+Oijj1C8eHHcunULu3btwm+//YZ//vkHNWrUyNa58vf3x+zZs1GhQgV07doVRYsWxf3793Ho0CHs378fjRs3RuPGjXHnzh2sXbsWjRo1QuPGjZXtixUrlq2/Szlj7dq1SE5ORv/+/TPVf6JQoVdf+7t27UKnTp1gYGCANm3awMHBAZcvX8aiRYvw+++/49ixYyhevLjG9nfu3EHt2rXxwQcfoFevXrh58yZ++eUXNGnSBCEhIbCxsVHK3rx5E40bN8a9e/fQvHlztG3bFg8fPsS2bdvw+++/IygoCLVq1dLYf0JCApo2bYro6Gj4+vqiUKFCyj6XL1+O3bt3o2HDhvjoo48QGxuL4OBg+Pv748SJE9i2bVu2zuGDBw9Qs2ZNxMTEoHXr1ujcuTNiYmJw/fp1fP/995g7dy4KFSqEgIAArFmzBnfv3kVAQICyfWavMUQFARMLItI7HTt2xE8//YQ+ffrg+PHjaN68OapXr64kHBkJCwuDi4sLjhw5AmNjYwDA2LFj4eXlhZEjR6J9+/ZK2/QVK1Zgw4YN6NmzJ5YuXQojIyMAqcnJp59+innz5sHPzw/Vq1cHAHz//ffYunUrmjVrht27d8PMzEz5u3Fxce9snlK8eHGEhoamaxt/6dIl1K5dG2PHjsWff/6Z9RP1/8dib2+P8+fPw9zcXGPdkydPAEBJJNauXYvGjRvnm87bBYG6dk5do5RZjx8/xueffw4rKyscPnwYZcuWVdZt3LgRfn5+mDhxIr777juN7Q4cOICZM2di9OjRyrIJEyZg2rRpWL16NcaMGaMs7969O8LCwrBv3z60aNFCWT5+/Hh4e3ujb9++OH/+vMb+w8PD4eHhgcOHD2t8ToDUz+PixYthaGioLBMR9OnTB6tWrcLhw4dRr169LJ0HANi2bRuePXuGBQsWYMiQIRrrnjx5oiRjkyZNQnBwMO7evcvPANEbsCkUEekdX19fzJs3DyKCefPmoUWLFrCysoKzszMGDx6M69evZ7jdjBkzlKQCAMqUKYMhQ4YgISEBGzduVJYvWrQIhQsXxuLFi5WkAgCMjY0xffp0ANBoQvX999/D0NAQP/zwQ7qbJTMzM5QoUeKtx2NiYpJhh9sPPvgATZo0wT///JPppiAZMTY21rhZU3tXXKR74eHhAAB7e/t064KDgzFp0iSNH3XztnXr1iEqKgqBgYEaSQUAdOnSBdWqVdN4z6s5OTlh5MiRGst69+4NADhx4oSy7MyZMzhy5Ah69OihkVQAQMWKFdG3b19cuHAhwyZRs2fPTvc5AVL7CL3+PlWpVBg0aBAAYP/+/em2yYqM/iY/A0RZwxoLItJLw4cPR9++fbFv3z4cOXIEJ0+exLFjx7B48WKsXLkSmzZtgq+vr1K+UKFCqFOnTrr9NGjQAACUvgyxsbG4cOEC7O3tMWvWrHTl1Tf4V65cAQBER0cjJCQEzs7OcHFxyfbxnD17FrNnz8ahQ4cQHh6eLpGIjIzMVqfvLl264Pvvv4e7uzu6dOmCJk2aoE6dOhneZFH+EhwcjMmTJ6db3rhxY/z7778AgGPHjuHmzZvpysTHxyMyMhKRkZEaIyh5enrCwEDzmWSZMmUAAM+ePVOWqfcfERGR4dN99efjypUrcHd3V5abmpqiSpUqGR5PYmIiFi1ahI0bN+LKlSuIjo7WGPb1wYMHGW73Lp988gn8/f0xaNAgBAUFoWXLlmjUqBHKly+frf0RFWRMLIhIbxUtWhQdO3ZEx44dAQDPnz/H2LFj8f3336N37964f/++UkNhZWWV7oYJgNK++/nz5wCAp0+fQkRw//79DG/a1GJiYjS202aIzyNHjqBp06YAgObNm8PFxQVFihSBSqXCzp07ce7cuWyPcvXtt9/CyckJq1evxrRp0zBt2jSYmpqiU6dOmDdvHoflfM/Z2NggJCQEDx48SDfakbqWAnjVvElN3cxt8eLFb91/TEyMxnvAwsIiXRl1U6Hk5OR0+9+7dy/27t371v2nZW1tneGACwDw6aefYvfu3ahYsSI6d+4Ma2trGBkZ4dmzZ/j222+z/RkoV64c/v33X0yaNAm//vorNm/eDABwdXXFlClTlOsHEb0bEwsiKjAsLS2xaNEi7N27F3fv3sWFCxeUfhCRkZFISUlJl1xEREQo2wKvbqyqV6+OkydPZupvAsD9+/ezHff06dORkJCAgwcPon79+hrr/v333zeOyJMZhQoVwogRIzBixAg8ePAABw4cwOrVq7Fu3TqEh4fj999/z/a+KffVrVsXwcHB+Pvvv5XkMzPU7+MLFy5o1BjkFPX+v/vuOwwePDjT270pqThx4gR2796NFi1aYO/evRpNov799198++23WsXr7u6OrVu3IikpCadOncJvv/2GhQsXonPnzrC3t89W3w2igoh9LIioQFGpVChcuHC65S9fvlQ6wqZ18OBBAICXV+qcH0WLFoWbmxtCQkI0mn68SZEiRVC5cmXcvn37jX073uXmzZsoUaJEuqQiNjYWp0+fztY+M2Jvbw8/Pz9l2NL9+/crHcvVN3Jpn0qT7vXo0QMGBgZYtmwZIiMjM72dejSmjN7zOSGn969urtW6det0/SzUn9GcYGRkhNq1a2Py5MlYuHAhRAR79uxR1vNzQPR2TCyISO8sXbpUoyNpWjt37kRISAiKFSuW7knt2LFjkZiYqPx+7949fPvttzAxMUGXLl2U5V999RViY2PRt2/fdE05gNQJ+NLO7zBo0CAkJydj4MCB6UaAio+PV5qNvEnZsmXx9OlTXLp0SVmWnJyMESNG4NGjR2/d9m0SEhJw5MiRdMtjYmIQHR0NIyMjpQZH3Yn1v//+y/bfo5xXsWJFjBo1Cg8fPkSrVq1w48aNDMu9ngT37NkTRYsWxbhx4zTeV2qxsbFKP4nsqFmzJmrVqoUNGzZg06ZN6danpKQoc0JkhrqD+aFDhzSWX7p0CYGBgdmOE0idHyMqKirdcnVtpampqbKMnwOit2NTKCLSO7/99hv+97//wdnZGfXq1YO9vT1iYmJw5swZHDx4EAYGBvj+++9hYmKibGNnZ4eYmBhUrVoVn3zyiTKPxePHj7Fw4UKNPhL9+/fHv//+i7Vr1+Lw4cPw8fGBvb09IiIicOXKFRw7dgzr169XJiMbMGAADhw4gM2bN8PFxQW+vr6wsLBAaGgofv/9d6xcuRJt27Z94/F8+eWX+OOPP1C/fn106tQJpqamCA4Oxv3799G4cWNlpJ+siouLQ7169VCxYkVUr14djo6OiI6Oxp49exAeHo4RI0Yo58jV1RX29vbYuHEjTExMUKZMGahUKnz55ZdKcy/SjenTpyMxMRHz58+Hq6srGjZsCA8PD5ibm+Phw4c4f/48jh8/jiJFiihzLpQqVQobNmxAx44d4eHhgZYtW8LV1RUJCQm4c+cODhw4gLp162Lfvn3ZjmvDhg1o0qQJunTpggULFqBatWowMzNDaGgojh49ikePHiE+Pj5T+6pZsyZq1qyJzZs3IywsDLVr10ZoaCh27dqF1q1bY+vWrdmO88cff8TSpUvRsGFDVKhQARYWFrh8+TJ+/fVXlChRAj179lTKNm3aFFu3bkWHDh3QqlUrmJqawsPDA5988km2/z6RPmFiQVRA3bh+RdchpJNTMc2aNQv16tXDn3/+iX/++QdhYWEAUjtQ9+jRA19++aXSt0JNPcHdmDFj8OOPP+LZs2dwdXXFd999p9HpFUhtTrVmzRp89NFHWL58Ofbs2YPo6GhYW1vDxcUFc+fOhY+Pj0b5jRs3onnz5lixYgXWrVsHEUHp0qXRqVOndLG87uOPP8bWrVsxY8YM/PTTTzA3N0fTpk2xY8cOTJkyJdvnqXDhwpg1axaCgoJw8OBBPHz4EMWLF0elSpUQGBioUUtjaGiI7du3Y/To0diwYQNevHgBAOjWrdt7n1jEPwp9d6E8lpMxGRgYYN68eejWrRuWLFmCf/75BydOnEBCQgJKlCiBDz74AHPmzEH37t1hbW2tbNe6dWucOXMGc+bMwf79+/Hnn3+icOHCKFOmDHr27Ilu3bppFZeTkxPOnDmD+fPnY+fOnVi9ejUMDQ1hZ2eHhg0b4tNPP830vgwNDbFnzx6MGTMG+/btw4kTJ5TPWqtWrbRKLPz8/BAfH4/Dhw/j+PHjSEhIQJkyZTBgwACMHDlSY/LKvn374s6dO9i4cSNmzZqFly9fokePHkwsiP6fStKO1UZEei80NBRubm6IjY3VdSgZMjc3R0hIyFtnos5p6pqFtM2XKP8LDQ1FJVc3xMe9n+91UzNzXL2St+91IqLcxMSCqAAKDQ3NUkfPvGRlZZXnN1pMLPQX3+tERHmHiQURFXhMLIiIiLTHUaGIiIiIiEhrrLEgIiIiIiKtscaCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsSCiIiIiIi0xsQiAyKCqKgoiIiuQyEiIiIiyheYWGTgxYsXsLS0xIsXL3QdChERERFRvsDEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItMbEgoiIiIiItFZI1wEQZVVYWBjCwsKyvJ2dnR3s7OxyISIiIiIiYmJB+c7SpUsxefLkLG8XEBCASZMm5XxARERERASViIiug3jfREVFwdLSEs+fP4eFhYWuw6HXZFRjERcXh/r16wMADh06BDMzs3TbscaCiIiIKPcwscgAE4v8JyYmBkWKFAEAREdHo3DhwjqOiIiIiKhgYedtIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSGhMLIiIiIiLSWiFdB0D0LqGhoYiMjHxrmbi4OOX12bNnYWZmlql9W1lZwdHRUav4iIiIiAhQiYjoOoj3TVRUFCwtLfH8+XNYWFjoOpwCLTQ0FG5uboiNjc2V/ZubmyMkJITJBREREZGWWGNB77XIyEjExsZi/g+r4Ozi+sZy8XFx6PRJMwDA5t1BMM1EjcWN61cwfEAvREZGMrEgIiIi0hITC8oXnF1c4e7h9cb1sTExyuvKVTxgXrhwXoRFRERERP+PnbeJiIiIiEhr70VisXjxYpQrVw6mpqaoVasWjh8//sayy5cvR4MGDVC8eHEUL14cPj4+6cp/8cUXUKlUGj8tW7bM7cMgIiIiIiqwdJ5YbNq0CcOHD0dAQABOnz4NDw8PtGjRAg8fPsywfHBwMPz8/PD333/j6NGjcHBwQPPmzXH//n2Nci1btkRYWJjys2HDhrw4HCIiIiKiAknnicX8+fPRt29f9OzZE5UrV8aSJUtgbm6OVatWZVj+559/xsCBA+Hp6QlXV1esWLECKSkpCAoK0ihnYmICW1tb5ad48eJ5cThERERERAWSThOLxMREnDp1Cj4+PsoyAwMD+Pj44OjRo5naR2xsLJKSklCiRAmN5cHBwbC2tkalSpUwYMAAPH78+I37SEhIQFRUlMYPERERERFlnk4Ti8jISCQnJ8PGxkZjuY2NDcLDwzO1j9GjR8Pe3l4jOWnZsiXWrVuHoKAgzJo1CwcOHECrVq2QnJyc4T4CAwNhaWmp/Dg4OGT/oIiIiIiICqB8PdzszJkzsXHjRgQHB8PU1FRZ3qVLF+V1lSpVULVqVVSoUAHBwcFo1qxZuv34+/tj+PDhyu9RUVFMLoiIiIiIskCnNRZWVlYwNDRERESExvKIiAjY2tq+ddu5c+di5syZ+OOPP1C1atW3li1fvjysrKxw48aNDNebmJjAwsJC44eIiIiIiDJPp4mFsbExqlevrtHxWt0Ru06dOm/cbvbs2Zg6dSr27dsHb2/vd/6de/fu4fHjx7Czs8uRuImIiIiISJPOR4UaPnw4li9fjrVr1yIkJAQDBgxATEwMevbsCQDo3r07/P39lfKzZs3ChAkTsGrVKpQrVw7h4eEIDw9HdHQ0ACA6OhojR47Ev//+izt37iAoKAht2rSBs7MzWrRooZNjJCIiIiLSdzrvY9G5c2c8evQIEydORHh4ODw9PbFv3z6lQ3doaCgMDF7lPz/88AMSExPx6aefauwnICAAkyZNgqGhIc6fP4+1a9fi2bNnsLe3R/PmzTF16lSYmJjk6bERERERERUUOk8sAGDw4MEYPHhwhuuCg4M1fr9z585b92VmZobff/89hyIjIiIiIqLM0HlTKCIiIiIiyv+YWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdbeiwnyiLLiYXgYHkaEayyLj49TXl++eA6mpmbptrO2sYW1rV2ux0dERERUEDGxoHxn/bqVWDhn+hvXd/q4WYbLvxo5DkNHjc+tsIiIiIgKNCYWlO907d4bPi1aZ3k7axvbXIiGiIiIiAAmFpQPWdvasUkTERER0XuGnbeJiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrhXQdABERERHlnbCwMISFhWV5Ozs7O9jZ2eVCRKQvmFgQERERFSBLly7F5MmTs7xdQEAAJk2alPMBkd5gYkFERERUgPTv3x++vr4ay+Li4lC/fn0AwKFDh2BmZpZuO9ZW0LswsSAiIiIqQDJq0hQTE6O89vT0ROHChfM6LNID70Xn7cWLF6NcuXIwNTVFrVq1cPz48TeWXb58ORo0aIDixYujePHi8PHxSVdeRDBx4kTY2dnBzMwMPj4+uH79em4fBhERERFRgaXzxGLTpk0YPnw4AgICcPr0aXh4eKBFixZ4+PBhhuWDg4Ph5+eHv//+G0ePHoWDgwOaN2+O+/fvK2Vmz56NhQsXYsmSJTh27BgKFy6MFi1aID4+Pq8Oi4iIiIioQNF5YjF//nz07dsXPXv2ROXKlbFkyRKYm5tj1apVGZb/+eefMXDgQHh6esLV1RUrVqxASkoKgoKCAKTWVixYsADjx49HmzZtULVqVaxbtw4PHjzAzp078/DIiIiIiIgKDp0mFomJiTh16hR8fHyUZQYGBvDx8cHRo0cztY/Y2FgkJSWhRIkSAIDbt28jPDxcY5+WlpaoVavWG/eZkJCAqKgojR8iIiIiIso8nSYWkZGRSE5Oho2NjcZyGxsbhIeHZ2ofo0ePhr29vZJIqLfLyj4DAwNhaWmp/Dg4OGT1UIiIiIiICjSdN4XSxsyZM7Fx40bs2LEDpqam2d6Pv78/nj9/rvz8999/ORglEREREZH+0+lws1ZWVjA0NERERITG8oiICNja2r5127lz52LmzJnYv38/qlatqixXbxcREaExlFpERAQ8PT0z3JeJiQlMTEyyeRRERERERKTTGgtjY2NUr15d6XgNQOmIXadOnTduN3v2bEydOhX79u2Dt7e3xjonJyfY2tpq7DMqKgrHjh176z6JiIiIiCj7slxjkZKSggMHDuDgwYO4e/cuYmNjUapUKXh5ecHHxyfL/ROGDx+OHj16wNvbGzVr1sSCBQsQExODnj17AgC6d++O0qVLIzAwEAAwa9YsTJw4EevXr0e5cuWUfhNFihRBkSJFoFKpMHToUEybNg0uLi5wcnLChAkTYG9vj7Zt22b1cImIiIiIKBMynVjExcVh3rx5+OGHH/DkyRN4enrC3t4eZmZmuHHjBnbu3Im+ffuiefPmmDhxImrXrp2p/Xbu3BmPHj3CxIkTER4eDk9PT+zbt0/pfB0aGgoDg1cVKz/88AMSExPx6aefauwnICAAkyZNAgCMGjUKMTEx6NevH549e4b69etj3759WvXDICIiIiKiN1OJiGSmoIODA+rUqYMvvvgCH374IYyMjNKVuXv3LtavX4+lS5di3Lhx6Nu3b44HnBeioqJgaWmJ58+fw8LCQtfhFGinT59G9erVsWv/Ebh7eOXovi+eOwNfn7o4deoUqlWrlqP7JiIiyk9iYmJQpEgRAEB0dDQKFy6s44goP8p0jcUff/wBNze3t5YpW7Ys/P39MWLECISGhmodHBERERER5Q+Z7rz9rqQiLSMjI1SoUCFbARERERERUf6To8PNxsTE4NSpU2jYsGFO7pYoT4WFhSEsLCzL29nZ2WkMcUxERERUkORoYnHjxg00adIEycnJOblbojy1dOlSTJ48OcvbpR1AgIiIiKig0ekEeUTvo/79+8PX11djWVxcHOrXrw8AOHToEMzMzNJtx9oKIiIiKsiylFiUKFHiretZU0H6IKMmTTExMcprT09PjpZBRERE9JosJRYJCQkYMGAAqlSpkuH6u3fvZqsJCRERERER5W9ZSiw8PT3h4OCAHj16ZLj+3LlzTCyIiIiIiAqgLCUWrVu3xrNnz964vkSJEujevbu2MRERERFRDgkNDUVkZORby8TFxSmvz549m2FfwoxYWVnB0dFRq/hIf2QpsRg7duxb1zs4OGD16tVaBUREREREOSM0NBRubm6IjY3N9DbqwUoyw9zcHCEhIUwuCABHhSIiIiLSW5GRkYiNjcX8H1bB2cX1jeXi4+LQ6ZNmAIDNu4NgmokaixvXr2D4gF6IjIxkYkEAsphYNGzYELt27UKxYsUAALt27cKHH36Y6eoyIiIiIsp7zi6ucPfweuP62DSjH1au4gFzjn5I2WCQlcKHDh1CYmKi8nu3bt2yNUMxERERERHplywlFq8TkZyKg4iIiIiI8jGtEgsiIiIiIiIgG523f//9d1haWgIAUlJSEBQUhIsXL2qU8fX1zZnoiIiIiIgoX8hyYvH65Hj9+/fX+F2lUiE5OVm7qIiIiIiIKF/JUmKRkpKSW3EQEREREVE+xj4WRERERESkNSYWRERERESkNSYWRERERESkNSYWRERERESktSyPCkWkb0JCQt5ZJi4uTnl99uxZmJmZvXMbKysrODo6ahUbERERUX6hdWIxcOBATJkyBVZWVjkRD1GeeRQRDqgM0K1btyxtV79+/UyVMzUzx9UrIUwuiIiIqEDQOrH46aefMGLECCYWlO9ERT0HJAVlO/jDtNTbb/5TkhJwfeVQAIBL7wUwMDJ5a/n4R6G4uy0QkZGRTCyIiIioQNA6sRCRnIiDSGdMSznC3L7iW8skJ75qCmVm5wxD43c3hSIiIiIqSNh5m4iIiIiItKZ1jcWLFy9yIg4iIiIiIsrHWGNBRERERERa43CzRERERJRjwsLCEBYWluXt7OzsYGdnlwsRUV5hYkFEREREOWbp0qWYPHlylrcLCAjApEmTcj4gyjNMLPIRPgEgIiIibT0MD8PDiHCNZfHxr0Y/vHzxHExN049+aG1jC2vbd99P9O/fH76+vhrL4uLilHmgDh06lOFEs7xXyf+YWOQjfAJARERE2lq/biUWzpn+xvWdPm6W4fKvRo7D0FHj37n/jB5oxsTEKK89PT1RuHDhTEZL+UmOJhY3b95E37598ddff+Xkbun/8QkAERERaatr997wadE6y9tZ29jmQjSkT3I0sYiOjsaBAwdycpeUBp8AEBERkbasbe0y1aSJKKuylFgsXLjwrevv37+vVTBERERERJQ/ZSmxGDp0KOzs7GBsbJzh+sTExBwJioiIiIiI8pcsJRZly5bFrFmz0KlTpwzXnz17FtWrV8+RwIiIiIiIKP/I0szb1atXx6lTp964XqVSQUS0DoqIiIiIiPKXLNVYTJkyBbGxsW9cX7lyZdy+fVvroIiIiIiIKH/JUmJRuXLlt643MjJC2bJltQqIiIiIiIjynyw1hSIiIiIiIspIpmssWrZsiUmTJqF27dpvLffixQt8//33KFKkCAYNGqR1gER5LenFYyS9eKyxLDkpQXkdG3YDhkYm6bYzKloSRkVL5np8RERERO+jTCcWHTt2RIcOHWBpaYlPPvkE3t7esLe3h6mpKZ4+fYrLly/j0KFD+PXXX9G6dWvMmTMnN+MmyjWRJ/YgPHjdG9ffWDk0w+W2jbvDrmmPXIqKiIiI6P2W6cSid+/e6NatG7Zs2YJNmzZh2bJleP78OYDU0aAqV66MFi1a4MSJE3Bzc8u1gAuK0NBQREZGvrNcXFyc8vrs2bMwMzPL1P6trKzg6OiY7fj0mVWNj2HpWifL27G2goiIiAqyLHXeNjExQbdu3dCtWzcAwPPnzxEXF4eSJUvCyMgoVwIsiEJDQ+Hm5vbWEbgyUr9+/UyXNTc3R0hICJOLDLBJExEREVHWZSmxeJ2lpSUsLS1zKhb6f5GRkYiNjcX8H1bB2cX1rWXj4+LQ6ZNmAIDNu4NgmokaixvXr2D4gF6IjIxkYkFEREREOUKrxIJyl7OLK9w9vN5aJjYmRnlduYoHzAsXzu2wiIiIiIjS4XCzRERERESkNdZYEBEREVG2hYSEvLNMdgab4UAz+U+WE4vk5GQcPnwYVatWRbFixbQOYPHixZgzZw7Cw8Ph4eGB7777DjVr1syw7KVLlzBx4kScOnUKd+/exTfffIOhQ4dqlJk0aRImT56ssaxSpUq4cuWK1rESERERUapHEeGAykAZ1CezMjvYjKmZOa5e4UAz+UmWEwtDQ0M0b94cISEhWicWmzZtwvDhw7FkyRLUqlULCxYsQIsWLXD16lVYW1unKx8bG4vy5cujY8eOGDZs2Bv3+8EHH2D//v3K74UKsWKGiIiIKCdFRT0HJAVlO/jDtNTbb/5TkhJw/f/ngXLpvQAGGUw0m1b8o1Dc3RbIgWbymWzdcbu7u+PWrVtwcnLS6o/Pnz8fffv2Rc+ePQEAS5Yswd69e7Fq1SqMGTMmXfkaNWqgRo0aAJDherVChQrB1tZWq9iIiIiI6N1MSznC3L7iW8skJ75qCmVm5wxD48zNu0X5S7YSi2nTpmHEiBGYOnUqqlevjsKvjURkYWHxzn0kJibi1KlT8Pf3V5YZGBjAx8cHR48ezU5YiuvXryuzgtepUweBgYFvzXYTEhKQkJCg/B4VFaXV3yci0kdhYWEICwvL8nZ2dnaws7PLhYiIiOh9kq3E4qOPPgIA+Pr6QqVSKctFBCqVCsnJye/cR2RkJJKTk2FjY6Ox3MbGRqv+ELVq1cKaNWtQqVIlhIWFYfLkyWjQoAEuXryIokWLZrhNYGBgun4ZRESkaenSpdm6VgYEBGDSpEk5HxAREb1XspVY/P333zkdR45p1aqV8rpq1aqoVasWypYti82bN6N3794ZbuPv74/hw4crv0dFRcHBwSHXYyUiyk/69+8PX19fjWVxcXFKR8xDhw5lONILayuIiAqGbCUWjRo10voPW1lZwdDQEBERERrLIyIicrR/RLFixVCxYkXcuHHjjWVMTExgYvL2TkTvg4fhYXgYEa6xLD7+VZvFyxfPwdQ0/Ze6tY0trG35xU5E2smoSVNMmkk6PT090zWNJSKigiPbwyU9e/YMK1euVMYu/uCDD9CrVy9YWlpmantjY2NUr14dQUFBaNu2LQAgJSUFQUFBGDx4cHbDSic6Oho3b97E559/nmP71JX161Zi4Zzpb1zf6eNmGS7/auQ4DB01PrfCIiIiIiLKXmJx8uRJtGjRAmZmZsqcE/Pnz8f06dPxxx9/oFq1apnaz/Dhw9GjRw94e3ujZs2aWLBgAWJiYpRRorp3747SpUsjMDAQQGqH78uXLyuv79+/j7Nnz6JIkSJwdnYGAIwYMQKffPIJypYtiwcPHiAgIACGhobw8/PLzqG+V7p27w2fFq2zvJ21DUfIIiIiIqLcla3EYtiwYfD19cXy5cuVOSJevnyJPn36YOjQofjnn38ytZ/OnTvj0aNHmDhxIsLDw+Hp6Yl9+/YpHbpDQ0NhYGCglH/w4AG8vLyU3+fOnYu5c+eiUaNGCA4OBgDcu3cPfn5+ePz4MUqVKoX69evj33//RalSpbJzqO8Va1s7NmkiIiIiovdStmss0iYVQOrcEaNGjYK3t3eW9jV48OA3Nn1SJwtq5cqVg4i8dX8bN27M0t8nIiIiIiLtGby7SHoWFhYIDQ1Nt/y///5745CuRERERESkv7KVWHTu3Bm9e/fGpk2b8N9//+G///7Dxo0b0adPH73oy0BERERERFmTraZQc+fOhUqlQvfu3fHy5UsAgJGREQYMGICZM2fmaIBERERERPT+y3JikZycjH///ReTJk1CYGAgbt68CQCoUKECzM3NczxAIiIiIiJ6/2U5sTA0NETz5s0REhICJycnVKlSJTfiIiIiIiKifCRbfSzc3d1x69atnI6FiIiIiIjyqWwlFtOmTcOIESOwZ88ehIWFISoqSuOHiIiIiIgKlmx13v7oo48AAL6+vlCpVMpyEYFKpUJycnLOREdERERERPlCthKLv//+O6fjICIiIiI9kPTiMZJePNZYlpyUoLyODbsBQyOTdNsZFS0Jo6Ilcz0+yj1ZTiySkpIwZcoULFmyBC4uLrkRExERERHlU5En9iA8eN0b199YOTTD5baNu8OuaY9cioryQpYTCyMjI5w/fz43YiEiIiKifM6qxsewdK2T5e1YW5H/ZaspVLdu3bBy5UpOhkdEREREGtikqeDKVmLx8uVLrFq1Cvv370f16tVRuHBhjfXz58/PkeCIiEh3QkNDERkZ+dYycXFxyuuzZ8/CzMwsU/u2srKCo6OjVvEREdH7JVuJxcWLF1GtWjUAwLVr1zTWpR0lioiI8qfQ0FBUcnVDfFxsprepX79+psuampnj6pUQJhdERHqEo0IREVE6kZGRiI+LRdkO/jAt9eab/5SkBFz//46YLr0XwCCDkV5eF/8oFHe3BSIyMpKJBRGRHslWYvE2Dx8+hLW1dU7vloiIdMC0lCPM7Su+cX1y4qumUGZ2zjA0zlxTKCIi0j9Zmnnb3Nwcjx49Un5v3bo1wsLClN8jIiJgZ2eXc9EREREREVG+kKXEIj4+HiKi/P7PP/9odNwDoLGeiIiIiIgKhiwlFpnBzttERERERAVPjicWRERERERU8GQpsVCpVBo1Eq//TkREREREBVOWRoUSEVSsWFFJJqKjo+Hl5QUDAwNlPRERERERFTxZSixWr16dW3EQEREREVE+lqXEokePHrkVBxERERER5WM5PkEeERHpTlhYmMb8QpllZ2fHeYj0FN8TRJRXmFgQEemRpUuXYvLkyVneLiAgAJMmTcr5gEjn+J4gorzCxIKISI/0798fvr6+Gsvi4uJQv359AMChQ4dgZmaWbjs+mdZffE8QUV5hYkFEpEcyar4SExOjvPb09EThwoXzOizSIb4niCivMLEgIiKibGH/DSJKK1uJRXJyMtasWYOgoCA8fPgQKSkpGuv/+uuvHAmOiIiI3l/sv0FEaWUrsRgyZAjWrFmD1q1bw93dnbNvExERFUDsv0FEaWUrsdi4cSM2b96Mjz76KKfjISIionyC/TeIKK1sJRbGxsZwdnbO6ViIiOg9lvTiMZJePNZYlpyUoLyODbsBQyOTdNsZFS0Jo6Ilcz0+IiLSrWwlFl9//TW+/fZbLFq0iM2giIgKiMgTexAevO6N62+sHJrhctvG3WHXtEcuRfVm7FhMRJS3spVYHDp0CH///Td+++03fPDBBzAyMtJYv3379hwJjoiI3h9WNT6GpWudLG+nq9oKdiwmIspb2UosihUrhnbt2uV0LERE9B7Lb02a2LGYiChvZSuxWL16dU7HQURElKPYsZiIKG9xgjwionwqNDQUkZGR7ywXFxenvD579myGT+lfFxISolVsRERU8GQ7sdi6dSs2b96M0NBQJCYmaqw7ffq01oEREdGbhYaGws3NDbGxsVnaTt0MiIiIKKdlK7FYuHAhxo0bhy+++AK//PILevbsiZs3b+LEiRMYNGhQTsdIRESviYyMRGxsLOb/sArOLq5vLRsfF4dOnzQDAGzeHQTTTNRYBAf9jvmBWe/4TEREBVe2Eovvv/8ey5Ytg5+fH9asWYNRo0ahfPnymDhxIp48eZLTMRIR0Rs4u7jC3cPrrWVi0/QrqFzFA+aZ6Fdw8/pVrWMjIqKCJVuJRWhoKOrWrQsAMDMzw4sXLwAAn3/+OWrXro1FixblXIRERERERLmA893krGwlFra2tnjy5AnKli0LR0dH/Pvvv/Dw8MDt27chIjkdIxERERFRjsvN+W4KYtKSrcSiadOm2LVrF7y8vNCzZ08MGzYMW7duxcmTJ9G+ffucjpGIiIgyKTOjhWVnpDAAsLKygqOjo1bxEb1PcnO+m4I4SWe2Eotly5YhJSUFADBo0CCULFkSR44cga+vL/r375+jARIREb1Lbg69m59uprMzWlhWRgozNzdHSEhIvjkfRO+Sm/PdFMRJOrOVWBgYGMDAwED5vUuXLujSpUuOBUVERJRZuT30bn66mc7saGHZGSnsxvUrGD6gFw4ePAg3N7c3lmNtCFGqgjhJZ7bnsTh48CCWLl2KmzdvYuvWrShdujR+/PFHODk5cZx0IiLKM7k59K76ZjoyMjJf3fS+a7Sw7IwU9igiHFAZoFu3bpmOIyv3A6Zm5rh6JX8kcJQ/5WbNZkJCAkxMTHJl30D+SbyzlVhs27YNn3/+OT777DOcOXMGCQkJAIDnz59jxowZ+PXXX3M0SCIionfJraF3KVVU1HNAUlC2gz9MS735BiclKQHXVw4FALj0XgADo3ffbMU/CsXdbYH5LoGj/CPXJxVVGQCSkjv7Rv5JvLOVWEybNg1LlixB9+7dsXHjRmV5vXr1MG3atBwLjoiIiN4vpqUcYW5f8Y3rkxNfPZE1s3OGoXHmnsgS5abcrNlUTyj6rqQb0P/EO1uJxdWrV9GwYcN0yy0tLfHs2TNtYyIiIiIiynG5UbOpnlD0XUk3oP+Jd7bnsbhx4wbKlSunsfzQoUMoX758lva1ePFizJkzB+Hh4fDw8MB3332HmjVrZlj20qVLmDhxIk6dOoW7d+/im2++wdChQ7XaJxGRPnkYHoaHEeEay+LjX32RXb54Dqam6b/IrG1sYW2bf0ciISLKDl4zc1a2Eou+fftiyJAhWLVqFVQqFR48eICjR49ixIgRmDBhQqb3s2nTJgwfPhxLlixBrVq1sGDBArRo0QJXr16FtbV1uvKxsbEoX748OnbsiGHDhuXIPomI9Mn6dSuxcM70N67v9HGzDJd/NXIcho4an1thERG9l3Lzmpn04jGSXjzWWJaclKC8jg27AcMMmkIZFS0Jo6Il37rv91W2EosxY8YgJSUFzZo1Q2xsLBo2bAgTExOMGDECX375Zab3M3/+fPTt2xc9e/YEACxZsgR79+7FqlWrMGbMmHTla9SogRo1aigx5MQ+iYj0SdfuveHTonWWt7O2sc2FaIiI3m+5ec2MPLEH4cHr3rj+xv/3tXidbePusGvaI8sxvQ+ylVioVCqMGzcOI0eOxI0bNxAdHY3KlSujSJEimd5HYmIiTp06BX9/f2WZgYEBfHx8cPTo0eyEle19JiQkKCNbAUBUVFS2/j4Rka5Z29qxep6IKJNy85ppVeNjWLrWyfJ2+bW2AtBiHgsAMDY2RuXKlbO1bWRkJJKTk2FjY6Ox3MbGBleuXMnTfQYGBmZrynUiInp/se00EelSfm7SlF1ZSix69eqVqXKrVq3KVjC64u/vj+HDhyu/R0VFwcHBQYcRERGRttjfhIgob2UpsVizZg3Kli0LLy8viIhWf9jKygqGhoaIiIjQWB4REQFb2+y19c3uPk1MTDI1WyIREeUf7G9CRJS3spRYDBgwABs2bMDt27fRs2dPdOvWDSVKlMjWHzY2Nkb16tURFBSEtm3bAgBSUlIQFBSEwYMHvzf7LCjCwsIQFhaW5e3s7OxgZ8cmA0T0/mF/EyKivJWlxGLx4sWYP38+tm/fjlWrVsHf3x+tW7dG79690bx5c6hUqiz98eHDh6NHjx7w9vZGzZo1sWDBAsTExCgjOnXv3h2lS5dGYGAggNTO2ZcvX1Ze379/H2fPnkWRIkXg7OycqX1SxpYuXZqtfiYBAQGYNGlSzgdERERERPlKljtvm5iYwM/PD35+frh79y7WrFmDgQMH4uXLl7h06VKWRobq3LkzHj16hIkTJyI8PByenp7Yt2+f0vk6NDQUBgYGSvkHDx7Ay+vVbIlz587F3Llz0ahRIwQHB2dqn5Sx/v37w9fXV2NZXFwc6tevDyB18kOzDKa0Z20FEREREQFajgplYGAAlUoFEUFycnK29jF48OA3NlNSJwtq5cqVy1TfjrftkzKWUZOmmDRT2nt6eqLwO6a0JyIiIqKCy+DdRTQlJCRgw4YN+PDDD1GxYkVcuHABixYtQmhoaJZqK4iIiIiISH9kqcZi4MCB2LhxIxwcHNCrVy9s2LABVlZWuRUbERERaYnzeRBRXslSYrFkyRI4OjqifPnyOHDgAA4cOJBhue3bt+dIcERERKSd3JzPI+nFYyS9eKyxLDkpQXkdG3YDhkbph3MviBOHERUEWUosunfvnuWRn4iIiEh3cnM+j8gTexAevO6N62+sHJrhctvG3WHXtEeWYyKi91uWJ8gjIiKi/CM35/OwqvExLF3rZHk71lYQ6SetRoUiIiKigotNmogoLSYWBVhISMhb18fFvercd/bs2QznsciIlZUVHB0dtYqNiIiIiPIXJhYF0KOIcEBlgG7dumV6G/VEeZlhamaOq1dCmFwQERERFSBMLAqgqKjngKSgbAd/mJZ6881/SlICrv9/xzuX3gtgkMHIHq+LfxSKu9sCERkZycSCiIiIqABhYlGAmZZyhLl9xTeuT0581RTKzM4ZhsaZawpFRERERAVPlmfeJiIiIiIieh0TCyIiIiIi0hoTCyIiIiIi0hoTCyIiIiIi0ho7bxMRERFpKSwsDGFhYVnezs7ODnZ2uTMzOlFeY2JBREREpKWlS5di8uTJWd4uICAAkyZNyvmAiHSAiQUBAJJePEbSi8cay5KTEpTXsWE3YJjBPBZGRUvCqGjJXI+PiIhIW7lZq9C/f3/4+vpqLIuLi1MmmD106BDMzNIP287aCtInTCwIABB5Yg/Cg9e9cf2N/58o73W2jbvDrmmPXIqKiIgo5+RmrUJGyUdMTIzy2tPTE4ULF87y3ybKT5hYEADAqsbHsHStk+XtWFtBRET5BWsViHIXEwsCwCZNRESk/1irQJS7ONwsERERERFpjYkFERERERFpjU2hiIiIsohzFhARpcfEgoiIKIs4Z0HBFhoaisjIyHeWi4uLU16fPXs2w47hGbGysoKjo2O24yPSFSYWREREWcTRhd5/uXXzHxYWhg6fdkRCfNxby71O/d7IDFMzc1y9EsLkgvIdJhZERERZxNGF3m+hoaFwc3NDbGxslrbLys1/2Q7+MC319hv/lKQEXP//eaBcei+AQQYTzb4u/lEo7m4LRGRkJBMLyneYWBAREZFeiYyMRGxsLOb/sArOLq5vLRsfF4dOnzQDAGzeHQTTd9RYBAf9jvmBk2FayhHm9hXfWjY58VWthpmdMwyNM9cUiii/YmJBREREesnZxRXuHl5vLRObpqapchUPmL+jpunm9as5EhuRPuJws0REREREpDXWWBAREb1DSEjIO8twBCAiKuiYWBAREb3Bo4hwQGWAbt26ZWk7jgBERAUREwsiIqI3iIp6DkgKRwAiIsoEJhZERETvwBGA9MPD8DA8jAjXWBafZj6KyxfPwdQ0/f+btY0trG3fPgdJ0ovHSHrxWGNZclKC8jo27AYMM0g2jYqWhFHRkpmKn+h9x8SCiIiICoT161Zi4Zzpb1zf6eNmGS7/auQ4DB01/q37jjyxB+HB6964/sb/12a9zrZxd9g17fHWfRPlF0wsiIiIqEDo2r03fFq0zvJ21ja27yxjVeNjWLrWyfK+WVtB+oSJBRERERUI1rZ272zSlF1s0kTEeSyIiIiIiCgHsMaCiIgoi9hRl4goPSYWREREWcSOukRE6TGxICIiyiJ21CUiSo+JBRERURaxSRMRUXrsvE1ERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFp7LxKLxYsXo1y5cjA1NUWtWrVw/Pjxt5bfsmULXF1dYWpqiipVquDXX3/VWP/FF19ApVJp/LRs2TI3D4GIiIiIqEDTeWKxadMmDB8+HAEBATh9+jQ8PDzQokULPHz4MMPyR44cgZ+fH3r37o0zZ86gbdu2aNu2LS5evKhRrmXLlggLC1N+NmzYkBeHQ0RERERUIOk8sZg/fz769u2Lnj17onLlyliyZAnMzc2xatWqDMt/++23aNmyJUaOHAk3NzdMnToV1apVw6JFizTKmZiYwNbWVvkpXrx4XhwOEREREVGBpNPEIjExEadOnYKPj4+yzMDAAD4+Pjh69GiG2xw9elSjPAC0aNEiXfng4GBYW1ujUqVKGDBgAB4/fvzGOBISEhAVFaXxQ0REREREmafTxCIyMhLJycmwsbHRWG5jY4Pw8PAMtwkPD39n+ZYtW2LdunUICgrCrFmzcODAAbRq1QrJyckZ7jMwMBCWlpbKj4ODg5ZHRkRERERUsBTSdQC5oUuXLsrrKlWqoGrVqqhQoQKCg4PRrFmzdOX9/f0xfPhw5feoqCgmF0REREREWaDTxMLKygqGhoaIiIjQWB4REQFbW9sMt7G1tc1SeQAoX748rKyscOPGjQwTCxMTE5iYmGTjCIjofaEeqCGr7OzsYGdnlwsRERERFSw6TSyMjY1RvXp1BAUFoW3btgCAlJQUBAUFYfDgwRluU6dOHQQFBWHo0KHKsj///BN16tR549+5d+8eHj9+zJsHIj22dOlSTJ48OcvbBQQEYNKkSTkfEBERUQGj86ZQw4cPR48ePeDt7Y2aNWtiwYIFiImJQc+ePQEA3bt3R+nSpREYGAgAGDJkCBo1aoR58+ahdevW2LhxI06ePIlly5YBAKKjozF58mR06NABtra2uHnzJkaNGgVnZ2e0aNFCZ8dJRLmrf//+8PX11VgWFxeH+vXrAwAOHToEMzOzdNvxgQMREVHO0Hli0blzZzx69AgTJ05EeHg4PD09sW/fPqWDdmhoKAwMXvUxr1u3LtavX4/x48dj7NixcHFxwc6dO+Hu7g4AMDQ0xPnz57F27Vo8e/YM9vb2aN68OaZOncrmTkR6LKMmTTExMcprT09PFC5cOK/DIiIiKjB0nlgAwODBg9/Y9Ck4ODjdso4dO6Jjx44ZljczM8Pvv/+ek+EREREREdE76HyCPCIiIiIiyv+YWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdaYWBARERERkdbei5m3iYiyIjQ0FJGRke8sFxcXp7w+e/YszMzM3rmNlZUVHB0dtYqPiIioIGJiQUT5SmhoKNzc3BAbG5ul7erXr5+pcubm5ggJCWFyQURElEVMLIgoX4mMjERsbCzm/7AKzi6uby0bHxeHTp80AwBs3h0E03fUWNy4fgXDB/RCZGQkEwsiIqIsYmJBRPmSs4sr3D283lomNiZGeV25igfMCxfO7bCIiIgKLHbeJiIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirTGxICIiIiIirRXSdQBERDnhYXgYHkaEayyLj49TXl++eA6mpmbptrO2sYW1rV2ux0dERKTvmFgQkV5Yv24lFs6Z/sb1nT5uluHyr0aOw9BR43MrLCIiogKDiQUR6YWu3XvDp0XrLG9nbWObC9EQEREVPEwsiEgvWNvasUkTERGRDrHzNhERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaa2QrgMgovdTWFgYwsLCsrydnZ0d7OzsciEiIiIiep8xsSCiDC1duhSTJ0/O8nYBAQGYNGlSzgdERERE7zUmFkT5WG7WKvTv3x++vr4ay+Li4lC/fn0AwKFDh2BmZpbhvomIiKjgYWJBlI/lZq1CRslHTEyM8trT0xOFCxfO8t8mIiIi/cTEgigfy8lahdDQUERGRr7178XFxSmvz549m+G+M2JlZQVHR8dMlSUiIqL8iYkFUT6RmRv/zHq9CVVYWBg6fNoRCfFxb9lKkzp5yQxTM3NcvRLC5IKIiEiPMbEgygdCQ0Ph5uaG2NjYLG2XlZt/ACjbwR+mpd5885+SlIDrK4cCAFx6L4CBkck79xn/KBR3twUiMjIy3yYWHCGLiIjo3ZhYEOUDkZGRiI2NxfwfVsHZxfWtZePj4tDpk2YAgM27g2CaieZKwUG/Y37gZJiWcoS5fUUAQNKLx0h68VijnLzhdVpGRUvCqGjJd/7N/IQjZBEREb0bEwuifMTZxRXuHl7K7w/Dw/AwIlyzkOoNr9OwtrGFte2rJ+k3r19NVybyxB6EB697Yyw3/r/m4nW2jbvDrmmPN26XH3GELCIiondjYkGUj61ftxIL50x/4/pOHzfLcPlXI8dh6Kjxb923VY2PYelaJ8sx6VttBcARsoiIiDKDiQVRPta1e2/4tGid5e2sbWzfWUYfmzRlVkhIyDvLZGeELI6ORURE+oyJBVE+Zm1rp9GkibTzKCIcUBmgW7duWdous53kOToWERHpMyYWRET/LyrqOSAp7xwdC8j6CFn6MDoWERHR2xjoOgAAWLx4McqVKwdTU1PUqlULx48ff2v5LVu2wNXVFaampqhSpQp+/fVXjfUigokTJ8LOzg5mZmbw8fHB9evXc/MQiEiPqEfHetuPmZ2zUt7Mzvmd5d+VqBAREeV3Ok8sNm3ahOHDhyMgIACnT5+Gh4cHWrRogYcPH2ZY/siRI/Dz80Pv3r1x5swZtG3bFm3btsXFixeVMrNnz8bChQuxZMkSHDt2DIULF0aLFi0QHx+fV4dFRHok6cVjxD64pvkTdkNZHxt2I/36B9fSDddLRESkz3TeFGr+/Pno27cvevbsCQBYsmQJ9u7di1WrVmHMmDHpyn/77bdo2bIlRo4cCQCYOnUq/vzzTyxatAhLliyBiGDBggUYP3482rRpAwBYt24dbGxssHPnTnTp0iXvDo6I9AKH3iUiIno3nSYWiYmJOHXqFPz9/ZVlBgYG8PHxwdGjRzPc5ujRoxg+fLjGshYtWmDnzp0AgNu3byM8PBw+Pj7KektLS9SqVQtHjx7NMLFISEhAQkKC8vvz588BAFFRUdk+Nm1ER0cDAC6eP4PYNENa5pQb/z9nQeyD60hOjHtH6axJiLwHIPUYcuL85ea54Hl4heci1ZvOg5lNeTj4Dn/TZm9UyMwCL+6cA5C/zgPA94Rabp4HgOdCjefhFZ6LVDwPr+T0uciuokWLQqV6wwRZaqJD9+/fFwBy5MgRjeUjR46UmjVrZriNkZGRrF+/XmPZ4sWLxdraWkREDh8+LADkwYMHGmU6duwonTp1ynCfAQEBgtSJhPnDH/7whz/84Q9/+MMf/rz28/z583fe2+u8KdT7wN/fX6MWJCUlBU+ePEHJkiXfnZnlQ1FRUXBwcMB///0HCwsLXYejMzwPr/BcpOJ5eIXnIhXPwys8F6l4Hl7huUhVUM5D0aJF31lGp4mFlZUVDA0NERERobE8IiICtrYZT+Bla2v71vLqfyMiIjRmyo2IiICnp2eG+zQxMYGJieZQkcWKFcvKoeRLFhYWev0ByCyeh1d4LlLxPLzCc5GK5+EVnotUPA+v8Fyk4nnQ8ahQxsbGqF69OoKCgpRlKSkpCAoKQp06dTLcpk6dOhrlAeDPP/9Uyjs5OcHW1lajTFRUFI4dO/bGfRIRERERkXZ03hRq+PDh6NGjB7y9vVGzZk0sWLAAMTExyihR3bt3R+nSpREYGAgAGDJkCBo1aoR58+ahdevW2LhxI06ePIlly5YBAFQqFYYOHYpp06bBxcUFTk5OmDBhAuzt7dG2bVtdHSYRERERkV7TeWLRuXNnPHr0CBMnTkR4eDg8PT2xb98+2NjYAABCQ0NhYPCqYqVu3bpYv349xo8fj7Fjx8LFxQU7d+6Eu7u7UmbUqFGIiYlBv3798OzZM9SvXx/79u2Dqalpnh/f+8jExAQBAQHpmn8VNDwPr/BcpOJ5eIXnIhXPwys8F6l4Hl7huUjF8/CKSkRE10EQEREREVH+pvOZt4mIiIiIKP9jYkFERERERFpjYkFERERERFpjYkGkx9iFioiIiPIKEwsiPXX79m1s2bIFABMMIiIiyn0cFYr0lohApVLpOgyduHz5MqpVqwYnJyeEhIToOpz3RkJCAocDJHpNQb5WEr0uJSVFY5oDAHj48CGsra11FFH+whoL0ivnz5/HxIkTAaDAflGePXsWNWrUgLOzM4yMjJCQkKDrkHQmNDQU27dvBwBs2rQJ48aNQ3x8vI6jej8U5GdKBfnY00pMTASQeiNVkL3+fijo56OgMzAwwPXr1/H9998DALZs2YK+ffsiPDxcx5HlD0ws9FRB/OI8d+4cateureswdOrcuXOoW7cuJkyYgA0bNuDmzZsIDQ3VdVg6ER8fjylTpiAwMBAjRoyAn58fPvjggwI7UebrN0vqxLugXStSUlKUYz979iwePnyo44h048qVK+jXrx98fHwwadIkXL16Vdch6YT6/RAdHY2YmBhER0ene1pd0BS0a8LrkpOT8csvv2Dw4MHo3bs3OnfujPbt28PW1lbXoeULBfvTowfS3iwsWLAAAQEBAFJvGgrSxUF9Qz1s2DBMmTJF1+HoxNmzZ1GvXj0MHToUY8aMgYjA0NCwwD6hNzU1xejRo2Fqaor58+dj4MCB6NmzJ4CC90QybdX+6tWrMWrUKHTv3h379+8vUNeJtOdh/PjxGDJkCA4cOFDgPiPnzp1DnTp1YGhoCDs7O/z222/YuHEjgIJ1U6l+P1y4cAHNmjVD/fr14ezsjJkzZ+LChQu6Dk8n1M3iDh06hClTpuCrr77Ctm3bdB1WnjI0NMTgwYPx6aefYvXq1ejatSt69OgBoOB9d2QHE4t8LO2X5LFjx3Du3DlMnTpVqb4rKMnFhQsXULduXYwYMQLTp09Xlq9Zs0bpvKzvbty4gXr16uHLL7/EjBkzAADlypVDyZIlcf/+fQAF84JoY2ODwoULw9vbG5cuXcKGDRsApFZ1F6Tzob5OjBo1ChMnTsTjx49RvHhxNG/eHAsXLiwwzeXSJhXLli2Dv78/mjdvXqBqsc6fP4969eph0KBBWLlyJX788UfUq1cPISEhiI+PR2RkpK5DzDMGBga4e/cumjRpgpo1a2LixIkYNGgQVq9ejQkTJuDPP//UdYh5TqVSYfv27WjTpg3OnTuH5ORkdOzYEV9//TWeP3+u6/DyjKGhIUqUKIGPP/4Yu3fvxvz58wGkvmeSk5N1HN17TijfGz16tNSqVUv8/PzEyclJTExMZObMmcr6lJQUHUaXuyIjI6Vy5cpStWpVjeXTp0+XYsWKyb///qujyPLWnj17ZOnSpRrL4uLipEyZMvL999+LiOb74MCBA/Lo0aM8jTGvvP5+T0pKkkuXLkmnTp2kXr16sn79eo31L168yMvwdObXX38VBwcHOXnypIiIHD58WFQqlfz8889KGX2+VqidPn1aXFxc5ODBgyIi8uzZMwkJCZEVK1Yo1wt9PQ8PHjwQlUolPXv21Fg+aNAgcXNzk0qVKknFihVl1apVOoow76j/j1euXCm1a9fWWLd3715p0aKFfPjhh3LgwAFdhKcz169fFycnJ/nhhx9ERCQ6OlrMzMxk1KhROo4s92X0uY+JiZFJkyZJkSJFZN68eRrrbt26lVeh5StMLPK5bdu2SdGiReXQoUPy8uVLuXnzpowbN06KFi0qs2fPVsrp6xdleHi4jBgxQqpUqSKTJ08WEZE5c+ZIyZIl5ffff89wm+Tk5LwMUSdevnwpKSkpUr16dQkMDNRYN2bMGHF2dpawsDAdRZd71O/zf//9V5YvXy4BAQFy9epVERG5fPmydO7cWRo2bKjcTE+cOFFGjhwpSUlJOos5r6xbt07atWsnIiKbNm2SIkWKKDcPT58+lTt37ugyvFzz+uf96tWrUrlyZdm9e7ecPHlSBgwYIBUrVpSKFSuKqamp/PXXXzqKNPc9f/5c6tatK66urnLhwgUREZk1a5aYmZnJsmXLZOnSpdKzZ09RqVRvvH7qmzVr1kjZsmXl3r17Gsv3798vTZo0kV69eklkZKSOost7Z86ckXr16omIyM2bN6V06dLSr18/Zb36eqpv1N8df//9t8yYMUM+//xz+f333yU8PFwSEhJk8uTJYmFhIXPnzhURkUmTJkn79u0LzIOprGBikc/NmTNHvL29NZbdv39fBg0aJCqVSnlarc8ePHggAQEBUrlyZWnUqJFYWVnJ33//na7cjh078jy2vJD2xun1m6g2bdpIr169lN8nTpwoZmZmcvz48TyLL69t3bpVSpUqJc2bN5fGjRtrJNmnT5+Wzz//XJycnKRevXpiamqql+cio+R52bJlUqdOHdm0aZNYWFhoXBvWrVsnHTt2lKdPn+ZhlLkv7Xk4fvy43L17Vx4+fCjNmjWTGjVqiLGxsQwcOFC2b98u//33n9SsWVMWL16sw4hzR0JCgvL6xYsX0qRJE6lYsaIMGTJESpUqpZFEXL58WWxsbGTixIm6CDXP/fnnn1KyZEn55ZdfRCT1oYzaxo0bxczMTA4fPqyr8PLcoUOHpFy5cnLgwAFxcnKSfv36Kefk8OHD0rJlS719Uq9+UNu3b19p166deHh4SIcOHSQ6OloiIiJk5syZolKppHr16lKkSBGl9pc0MbHI57Zu3SqlS5eWs2fPaiwPCgoSIyMjMTc3T1d9py9SUlKUpwz379+XgIAAsbe3l65duypl1BfEiRMnikqlktu3b+si1FyhPva4uDiNGweRVzdUn3/+ubRq1UpERCZMmCCmpqZ6fTE8f/682Nvby+rVq0Uk9YZKpVLJtGnTlDLXrl2TtWvXyujRo+XKlSs6ijT3pL2Z3r9/v5w7d05ERK5cuSINGzYUIyMjjdrMmJgY8fX1lV69eulVzWbaYxkzZozUrFlTVqxYISKp5+LXX3+VAwcOKOfr5cuX4u3tLStXrtRJvLnl+vXrMmjQINm/f79SM/fixQtp3bq1qFQqWbJkiYi8et9ERUVJjRo1lNosfaE+vqSkJImPj9dY16tXLylRooScP39eRDSTi6pVq8r48ePzLtA8pP6MXLhwQU6ePCmJiYkSHR0t7dq1k8KFC0unTp00yo8ZM0YaNWokDx8+1EW4uer69etSqVIlWb58uYikNpE0NTWVsWPHKmVevnwphw4dkm+++UZu3Lihq1Dfe0ws8ok3Nd+5du2aVKtWTb766iu5du2asvz8+fPSrVs3mTJlilSpUkXOnDmTR5HmrgcPHsj58+fTfTGIiISFhUlAQIC4ublJQECAsnz8+PFibm6uVzfU6i+E3377TVq3bi1169aVLl26yL179zRuqGbMmCHt27eXCRMmiImJiV6dg4wEBQVJ06ZNRUQkJCREHB0dpU+fPsp6fWz+ldbrN9MVKlSQDRs2SFRUlIikNntxc3OTPn36yPHjx+W3336Tli1bStWqVZWbTn1KLkREpk2bJlZWVvLXX3/Js2fP0q2Pi4uTu3fvSqtWraR69eoaN5X53blz58TR0VE+/fRTWbNmjca6Z8+eSfPmzaV8+fIaD6bGjx8vjo6OevUQRv39eenSJfHz85M6derI//73P+WcvHz5Upo3by7W1tYa/fISExOlbt26elmLpf6cb9++Xezt7eWbb75RmoOtWbNGPvjgA+nSpYscP35cjh49KiNGjBBLS0sl+cqv1O+F1x/GnT17VqpUqSJJSUly7do1cXBwkL59+yrrjx8/zmZPmcTEIh9Im1QsXrxYvvrqK2nZsqVs3bpVYmJiZOvWrVKxYkXp2bOnbN26Vc6fPy8tW7aUnj17yokTJ6Ro0aJ60Qzo/Pnz4uzsLJMmTZKbN28qy3/44QelGvvu3bsSEBAgrq6uMmvWLJkxY4bePqXfuXOnFC1aVIYNGyZbtmyRChUqSLNmzeTw4cPKe+bHH38UlUolhQsX1rtzcOXKFVmwYIHExMQoy1atWiUeHh7y8OFDKVeunPTr1085F3v37pUBAwZkeHOpb6ZMmSI2NjYSHBwscXFxGusWLFgg9evXl0KFCkmtWrXkk08+kcTERBERvbqpTklJkQcPHkjt2rXlp59+SrdOJPXaOn/+fGnevLnUq1dPr87DtWvXxNbWVkaPHp3uPaAWHR0tDRs2lHLlysnNmzdl8uTJYmpqKqdOncrjaHPf1atXpVixYtK9e3cZO3asNGnSRD744APl5jEqKkratGkjRYoUkYkTJ8p3330nX3/9tRQrVkzjoZ0++e2336RIkSLy/fffp7surl69Wpo2bSqGhoZStWpVqVGjRrqWEfnV7du3ZejQoRrv8wMHDoi3t7fcuXNHypUrJ3369FG+O/79918ZNGiQ3r4PchoTi3xk1KhRUqpUKZk6dar06dNHnJycpHfv3iKS2kb6k08+ERMTE3FxcREvLy9JTEyU+Ph4qVq1qvz66686jl47t27dEhsbG/H390/31Ll79+5SsmRJpX34/fv3ZcqUKWJpaSkGBgZ6d0MtknrTUKVKFVm4cKGIpD59dHBwkCJFioibm5uSXBw6dEjc3d0lJCRExxHnvFWrVolKpZJZs2ZJbGysiKSOElajRg0pVKiQ8tlQ30SOHDlSWrRoIU+ePNFZzHkhPDxcatSoIWvXrhWR1Fq+I0eOyLBhw2TZsmVKuXPnzsnjx4+V86OPHdjDw8OlTJkysnXrVhHRrI2Jj4+XZ8+eSWhoqKxbt05JJvTlPHz99dfSqVMnjSTpyZMncvHiRfnjjz/k0qVLIiISGxsrTZs2FZVKJebm5nqZVIikJttt27ZVfn/y5In88MMP4ujoKN26dVOWT506VZo0aSKVK1eWZs2a6U1t/+vi4+Olffv28tVXX4lIapJ59epVmTp1qixZskS5pp46dUoePHigV9fNHTt2iLW1tfTv319pKioi8sEHH4hKpZIvv/xSo/zIkSOlfv36etkELDcwscgn/vrrL6lQoYJykxwUFCSFChWSH3/8USkTHx8vISEhcunSJeUL9Ouvv5by5cvL/fv3dRJ3TlmwYIF4eXlluC46Olpat24tmzZtUpbdu3dPZs6cqbcjWJw9e1amT58uCQkJcv/+fSlfvrwMHjxYnj9/Lk5OTtKkSRNlOE19+kJ43ZIlS0SlUklgYKDExsZKYmKizJ8/X9zc3GTAgAESFxcnFy5cEH9/fylWrJgyEo4+e/jwodSqVUtmzZol27dvl65du0qdOnWkWrVq4uLiorQZTnuTra8jpYWFhYmdnZ1Mnz5dRDRrIo4fPy4zZszQqPHSh5oKkdT/208++USGDh2qLNuxY4d89tlnYmFhIaampuLp6SkbNmwQkdQHE7169dKbJ9IZ6dWrV7phZaOjo2XNmjXi7Ows/v7+yvLnz59LbGysXjd9efnypXTs2FH+97//yfHjx2XgwIHy4YcfioODg3h5eUnnzp3TNRfKz15v4rllyxZxdXWVPn36yOnTp0UktXN6pUqVpFmzZnLp0iUJCgqSESNGiIWFRb5vApaXmFi8p9RV8mq7du1SLoobN26UokWLKqO6REVFyYEDB5QnDCKpQ6Z17dpVSpUqpXxo8rOVK1dKyZIlZdWqVRIRESFXrlyRc+fOyenTp2Xfvn3SsGFDGT58uFy/fl2OHz8uSUlJenuzJJL6paCuhfjiiy+kS5cuyg2Sr6+vqFQq8fb2zrAvij5IewO4ePFiUalUys3js2fPZNq0aVKpUiUxNzcXd3d3cXd314vPweve9B4fOHCgVK1aVQoVKiSjRo2Sv/76S1JSUqRTp04ycuTIPI4y973tsz537lwxMDBQbqJFUh/CtGjRQrp27ap3fUrURowYIcWKFZPt27fL0KFDpXTp0tK7d2/Zs2ePXLx4UVq2bKlx3dCn62Xa/1N1DdTPP/8s3t7ecvToUY2yT548kbFjx0rdunUlNDRURPTrXLxNYGCguLm5iampqXTq1Ek2btwo8fHxMn78eGnTpo2uw8sRb3tYsH79enF1dZXevXvLxYsXRST1oW2VKlXE1tZWKlWqJHXr1tXbWqvcUkjXE/RRegcOHMD169dRv359uLq6AgBiYmJgZGSEP//8E/369UNgYCAGDBgAAAgKCsKff/4JFxcXmJmZAQAqV64MOzs7HDhwAG5ubjo7Fm3cuXMHxYsXh6WlJapXr45evXph3LhxCAwMROHChfH06VOYmJjAzMwMN27cwMGDB7Fv3z5ERkbi4sWLKFWqlK4PQWvy/zOnq1Qq3Lt3DyqVCtHR0ahUqRJcXV0hIggNDUWzZs1gbm4OAKhQoQJOnjyJEiVKwMTERJfh56hr165h0aJF6NSpE+zs7FChQgWICAYOHIjk5GQMGTIEycnJmDBhAkaNGoXBgwcjODgYzs7OsLKygo2Nja4PIUelpKQoM0n/+uuvePLkCRISEtCtWzcsXrwY169fR0JCAtzd3ZVtHj58CBcXF12FnCvSnofly5fj6tWriIyMRL9+/eDp6Yl+/frhwYMH6Nq1K/bs2QMDAwOEhobi8ePH2L17N1QqFUQEKpVKx0eindjYWMTGxuL8+fOoVKkS/Pz88OLFCwwdOhSFChXCN998g7p166J06dIAAHd3d/z1118wNDQE8GpW8vxO/X548uQJSpQogUKFUm9zvLy8EBMTg+XLl6N06dJwcHAAABQvXhw9evRAYGAgzp8/DwcHB705F2rq9/fZs2fx33//4dGjR+jcuTPGjBmDdu3a4eHDh2jQoIFy7p4+fQpDQ0PEx8fDxMQkX382DA0NcenSJYwePRqdO3eGg4MDGjduDADw8/NDoUKFMH78eIgIhg8fjqZNm+L8+fM4efIkbGxsUKRIERQvXly3B5Hf6DKrofTWrFkjjo6OMmTIEI3x9WNiYsTZ2VlUKpWsW7dOWR4XFycfffSRdOvWTaNDYtp/86PExERp0qSJ2NraajTlGTdunDLik7p9+IsXL2T06NHi6+sr586dU5465XePHz9WXu/YsUM8PDzE3d1dbGxsZNSoUcoIHrVr15ZGjRrJjh07ZOjQoVKyZEl58OCBrsLOFVFRUeLt7S0qlUocHR3Fy8tL2rVrJ4sWLVL63GzdulVUKpXMnj1bGQWpIPj666/F2tpavLy8xNzcXLy9vWXjxo3Kk7pnz57JxYsXpVWrVsqoJ/po9OjRUqpUKRk0aJA0btxYPD09Zc6cORIdHS0iqWPUd+jQQfz8/GTUqFHKedCH83H16lXp3r27uLq6iomJiZQoUUK6du2q1N6+Pj9JSkqK9O3bV3r16qVXzV3UQkJCxNDQUL7++muN5X/88YcYGRlJ3759NZrJPn36VLy9vfV6csQtW7ZIiRIlpGrVqlK0aFFxcXGR5cuXazT3unnzpowePVosLCz0ptloYmKiNG7cWFQqlbi7u0vRokWlefPm8sUXX8jZs2clISFBfv/9d6lSpYoMHDhQb/sY5SUmFu+RdevWiZmZmfz0008SERGRbv2+ffukTJky0qpVKwkKCpLNmzdL8+bNxd3dXS+Hirxw4YLUqFFD3NzclOTC399fatasqfyunsuid+/eGnMV5HePHj2S0qVLS0hIiPz1119ibm4uS5YskfDwcFmxYoWoVCqNkbCcnZ3FxcVFKlasqJdNfmJiYmTFihVSvXp1qVKlihw6dEg6duwoVapUkeLFi0vTpk1l1apV0rlzZylSpIjMmTNHr9tHq/38889iY2MjZ86ckejoaHn27Jn4+vpK/fr1ZefOnSIi8tNPP0mDBg2kRYsWejXqUVorVqyQcuXKKe/9P/74Q1QqlVSuXFmmT5+ujHjz+k20PpyHc+fOiZ2dnTJ8akhIiIwcOVKcnZ2lUqVKcuTIEY3ycXFxMnbsWLGxsZHLly/rKOrctXHjRilevLjY2NgonZPV9u7dK8WLF5d27drJ8uXL5cKFCzJixAixsbHRm4dSr98HnD17VkqVKiVr1qyRyMhISUpKku7du0uNGjVkxYoV8vLlSzl48KC0bNlSPDw89K6vzaVLl8TT01O8vLxk3759MnnyZKlXr56UK1dObG1tZcaMGdK4cWNxcXERPz8/vRzsJC8xsXhP3LlzR2rWrJlurPH4+Hi5evWqXL9+XURS+054eXmJo6Oj1KhRQzp16qR3Nwtpa15CQkKkbt264uXlJU+fPpWDBw9KtWrV5Ouvv5a7d+/KhQsXZOzYsVKyZEm9uhjcunVLypQpI+fOnZNx48YpX443b94UFxcXjfG1RVKfyty+fVsvO2qr3w+JiYny008/SenSpTVuFn788UcJCAgQJycnqVOnjqhUqnQ1Xfpq6tSp0rhxY0lKSlIeLjx9+lQaNmwoLVq0UMr99ddfGhOE6ZOEhARZtGiRzJkzR0RSayaKFSsmixcvlt69e0vJkiVlxowZEhkZqeNIc965c+fE3Nxc/P390/2/btq0Sby8vKRmzZrKTMkLFy6Uzz//XEqXLq2XDyDUtm/frtw0lypVSqMTu0hqx/2OHTuKnZ2dVKpUSSpVqqQX5+NNrRS2bNkilSpVkvDwcKVMSkqKfPbZZ+Lu7q7cQwQFBcl///2XZ/HmBfX3x+XLl8XOzk46deqkjO507tw5WbZsmbRr106qVasmKpVKrK2t9a7GP68xsXhPXL9+XZydnTWqYlevXi2fffaZmJqaSvHixWXChAnKulu3bsmTJ0/0aqjItGOtp+28/vXXX4tKpZIaNWrIs2fPZObMmeLm5iYqlUrc3Nz0agLAtKpXry5TpkyRJk2ayPz58yU+Pl5Kly4t/fr1U/7fv/32W9m/f7+OI80dERERyhfAtm3bZOvWrfLy5Uv56aefxNbWVmOISJHUoWavXr0qgYGBevskVk39EGH06NHi7e2tLFd/ho4cOSJmZmbpRjLJz80j1R48eCCPHz/WqNW9ffu2hIeHy507d6RKlSoyf/58EUl9YFOiRAkpV66crFq1Slch54rQ0FCxsrKSjh07KstSUlI0vguWLVsmFhYWsmzZMrl3755MnDhR/ve//+ntaHlqYWFh0r59ewkPD5dvv/1WSpYsKePHj5chQ4YoQ3RHR0fLgwcP5Nq1axrNTvMr9Wf79u3bMmfOHJkwYYIyf8uOHTvE1tZWnj9/LiKiDPTy/PlzMTMzU4Zj1neXLl0SOzs7adq0qcaDp4SEBImJiZGNGzfq1cSQusLEQocWLVqkvD59+rSUKVNGFi5cKBcuXJDu3buLl5eX9OjRQ9auXSvffPONFCpUSNavX59uP/pws3Dv3j3p2LFjujaus2bNkpIlS8qKFSuUp29Pnz6V8PBw2bZtm5w7dy7DZmP5mfr/s0OHDjJ58mTZuHGjNGvWTGxsbGTgwIEa4+1/9tlnMmrUqHSjiOV3UVFRUrJkSRk5cqTS9Ev9JRkTEyM//fST2NvbayQX+pBcv8mbPuOnTp0SAwMDCQwM1FgeFBQkH3zwgd49ffzpp5+kVq1aUr58efn444+VIZXV9u/fL5UqVVJqL48cOSLdunWT2bNn602Nrtrt27elRo0a4uvrm+48pG0K07BhQyX5iI6O1hg9UF+Fh4dLhQoV5Ny5cxIXFyc//vijmJubi0qlkrt374qIfl0v1NeHs2fPip2dndSvX1+KFSsm9vb24u/vL1FRUWJvb6/M7aN29+5dcXNzk3/++UcXYeca9fv/+vXrcvDgQTl9+rRSC3Hp0iUpXbq0fPjhh8q9gz7cQ71PmFjoyLp166RDhw4aN4QjR46UYsWKiY2Njbi6usqePXuUJ7b3798XFxcXjWREn9y8eVPq1KkjH330kRw6dEhEUofCK1GihPz5558iklqV6eHhIdWqVdOLJ0xp3bx5UxYtWiQhISFKO98ff/xRPvzwQ9m1a5d4eHiIh4eH8qQxISFBxo4dK46Ojno7G+i+ffvE2NhYDA0N5bvvvtNYlza56Nmzp44izBtpbxJ37NghCxYskO3btyvvhXnz5omxsbGMGzdOrl69KteuXZPWrVtLkyZN9OoLc8mSJWJsbCw//PCDfPPNN/Lhhx/KwIEDNcrs2rVLnJ2dZfXq1XL16lX55JNP5H//+5+yXt+Si2vXrknLli2lRYsWGslF2vdM48aNxc/PTxfh6YT62Nu0aaPUZHfq1EmKFSsmxYsXl9GjR+swupynPt7z58+LmZmZTJw4UWJiYuTu3bvyv//9T6ytreXgwYOydetWsbCwkJ49e8r9+/flzp07EhAQIGXKlNGrBxDq87Ft2zYpW7asVK1aVSpXriw+Pj4a9xJlypSRjz76SO8eTL4PmFjoyKVLl5QnJvv27VOWnzx5MsOZou/duyc1atTQ6ypL9ZdkmzZtpG/fvlKqVCn5/fffNcqEhISIk5OT1K5dW29umhITE6VTp07i6OgoTk5OYmFhIS1btpQKFSpImTJl5MmTJ7J9+3bx9PSUypUrS5s2baRVq1Z6M0fJ61JSUiQ5OVnCwsJEpVKJSqWSsWPHpvsCiImJkfXr14uxsbHGzaM+SXuD+PXXX0vx4sXF1dVV3NzcxN7eXoKDg0VEZPny5VK8eHGxt7cXZ2dnqV27tvLQQh8+J6tWrRJjY2PZtWuXsmzChAny2WefyeXLl+XEiRMikvpZat++vTg6Ooq9vb14e3sr50GfBrZIK21yoX4oI5L6//7ff/9Jq1atlL57+noOMtK3b19ZvHix9OjRQ+zs7OTAgQNK7ee4ceN0HV6OCg8Pl/Lly0vdunU1lp8+fVoKFy4sv/32m4iI7Ny5U+zt7cXOzk6cnZ3F0dFRL0dBOnz4sFhaWioPYn/66ScxMDCQuXPnKmUuX74spqam0r59e724Rr5PmFjowHfffSdt2rSRp0+fyuHDh8XW1lajM+rrT9WePHkirVu3lgYNGujdE7fXXb16VT788EMxMzPTuAik/eBfvXpV6YyoL9STVF27dk1++eUX+e6776Rjx47i6uoq7dq1k+joaDl37pzMmDFDPvvsM5k9e7Ze1lSob3zCw8OVf3fv3i0qlUqGDx+eLrlISUmRLVu26GWb8bSf9cOHD0uDBg3k2LFjEh8fL+fPn5e+ffuKsbGx8qT6/v378s8//8iRI0f0qqP2mTNnlP//tJo1ayYODg7i4OAgZmZmMmzYMBFJrc07ePCg/PXXXxrNBvXZm2ouRo8eLR4eHnr1RDot9fXiwoUL8ueff8ovv/yiHOvcuXNFpVKJs7OzcvP89OlTWblypd5cL9TN2u7evSudOnWShg0barRqOHHihBQuXFiCgoKUZc+fP5e9e/fK33//rQxZri/U74fAwEDp0qWLiKT2RSpXrpwMGDBAKaf+frly5Ypefo/qGhOLPLZs2TJRqVRKzUN4eLhMmzZNPvjgAxkxYoRG2UePHslPP/0krVq1kmrVqund6E9vcuPGDWnevLm0atVK40tSn58qvOlJ4o4dO6R27drSunVrefTo0VvL5nfq49q1a5f4+PjI+vXrlff85s2bRaVSyciRI5XkYubMmbJ9+3adxZtbXq+x/Pnnn6VTp07i6+urcYMcEREh3bp1k7p16ypNJtPSp+tE165dxcrKSnbv3i0iIh07dpSKFSvKiRMn5OTJk/LNN9+ISqXKsA+aPp2Ht0mbXJw+fVpmzZolRYoU0buhQ1+3bds2sbGxkUaNGom9vb34+PjIhg0bJCoqSvz8/NJ9nvTle+Sbb76Rr776Srkm3Lx5U3r37i21atWSH3/8USIiIsTe3l6GDBmibFNQPguTJ0+WUaNGSVhYWLoBT3799Vf5/vvvlYd5lPOYWOShJUuWiJGRUbrmTElJSTJz5kypXLmyRnKxevVqqVu3rvTr10+vJnPKjDdV7xcUaSc53LhxozRq1Ehq1aqlJBf6avv27WJqairz5s2TGzduaKxbv369GBkZyaeffipdunQRExMTvWsKNnPmTHF3d5c9e/YoywYOHCglS5YUR0dHpW+R+kty/fr1Urp0ablz545O4s1taW+EunXrJsWKFZPatWtL1apVNZ7C3759WxwcHGT69Om6CPO9ce3aNfn444/F2tpajIyMMmxWq0+OHz8uVlZWsnTpUhFJHVZZpVLJzJkzRUR/koiMLFiwQKPPnUhqbX7v3r2levXqYm5uLoMHDxaRV81L9Zm6U75IatJlbW0t9vb2MmjQIGX5y5cvpVevXjJw4ECNUSgpZzGxyCNBQUEak5qpffzxx7J792558uSJBAYGSuXKlWXkyJHK+uvXrys3EQXlaYOa+kuydu3acvToUV2Hk+fU/+8pKSmydu1aadWqlcbFU9/cunVL3NzclJuEly9fSnx8vAQFBSlzEGzfvl06dOgg7du3l3Pnzuky3Fyxb98+adeunTRt2lSjP8G0adOkdOnSMnToUI0x1k+fPi1OTk56N9xy2lq5tK/79esnKpVKfvjhB43lERERUrVq1XTzABVEV65cEV9fX7l48aKuQ8l1S5YsUeZruXHjhpQvX1769eunrNfn66XakSNHpE+fPkqt5bVr16RPnz7i5OSkMeiFPt8/XL58WapWrSqzZ89WlnXo0EFMTU3l0qVLEhcXJ9HR0TJmzBixtbXVqzmv3kdMLPJAUlKS7NixQxkiUa1Dhw5SqVIluXnzpoikNn2aOXOmVKlSRXr16qWxD31/2vAmISEh8umnnxaIL4iMpE0uoqKidBxN7lJP/nfw4EF5+fKlzJo1S+rWrSslS5YUOzs75Ql1bGysxMfH6zjanJW2XfTff/8tbdu2lcaNGyuzZ4uIjBkzRjw8PKRbt25y8uRJOX78uLRo0UJq1qypV9eHtMfy6NGjdP1qPvvsM7G0tJQtW7YoZVu1aiW1a9fW65unrNC34affZP78+TJgwACJjY1Vmryo3xN79+6Vb7/9Vl68eKHjKHOX+p5hwIABygOY69evS+/evaV27dry/fff6zjC3Kc+3ho1asg333wjIql9K+rWrSvFixeXqlWrSuPGjcXe3l7varnfR0wsclHr1q2Vp0YJCQmyd+9eqVSpkrRq1Uo6dOggnp6eSnMP9Q1kZGSkjBs3Tj777DO9bUufVepq3oKqoLwPbt26Jc2bN5fatWuLnZ2d+Pr6ytSpUyUkJEScnZ1l7Nixug4xV+zdu1dsbW01xph/U3Ixbtw4KV68uFhYWEjbtm2lT58+SpKlT8mFSOqxent7S7FixaRXr16yevVqZZ2fn58UK1ZMtm3bJq1atRIXF5cC0wetoFJfB+/cuaO85/fs2SMqlUqKFi0qI0aM0PgM9OvXT7p27SrR0dE6iTevJCcny+zZs6VOnTrSr18/Jbm4evWq9OvXT1xdXWX58uU6jjJnZfSdePPmTRk8eLB4enpqPKhZvny5zJ07V3788Ue9bTL6vmFikUtu3bolI0aM0Lgpjo2Nld27dytTx78+UY/6w/Ls2TPltb7dLBCJvHqvx8XFadQ+/P333zJ//nyZN2+eMnKHiEiLFi3khx9+yPM488Lz58/lu+++Ey8vL405OdImFzt27FCWT5kyRT744AOZMGGCco70IflOe61btGiR2NjYyMqVK2XhwoXy8ccfS7Vq1WTOnDlKme7du4tKpRJ3d3clqSgofdAKGvX14pdffpFatWrJwoULlf/rcePGibGxsezZs0eSkpIkIiJCxowZI6VKlZLLly/rMuwcl3bit+vXryt9LJKTkyUwMDBdcnH58mX58ssv9XI26WPHjsnGjRs1lt24cUO+/PJLcXd3LxA1Ne8rJhZ5YN68ecroRjExMfLLL7+Im5ub0jZUJOMvxILypJoKFvX7+rfffpPWrVtL3bp1pVOnThIWFpaubHR0tEyYMEFsbW3l+vXreR1qrlOfixcvXsjChQvFw8MjU8nFyJEjpVq1ajJx4kSNPhf64OTJkzJq1Cj58ccflWU3btyQESNGSI0aNZRJrkRSO7AyqSgYduzYISYmJrJw4UKNa8F///0nvXr1EpVKJa6uruLt7S1OTk562+Rl69atYmdnJ2XLlhU3NzdZuXKliKTW1KmTiwEDBih9LvStWVxKSoo8f/5cPv30U/Hy8pItW7ZorFdPtlu2bFmZN2+ejqIs2JhY5IK0X3C3b98WX19fKV68uBw/flxEXtVcVKpUSZo3b66UZe0EFRQ7d+6UokWLyrBhw2TLli1SoUIFadq0qRw+fFj5HGzdulV69eqlt+1iX6+VfP78uSxcuFCqVq2aLrlo166dNGvWTDZs2KAsnzBhgjg5Ocn06dP14tqRkpIip06dUiZFXLx4scb6mzdvipubW4Y3C0wq9NuDBw/E29tb6YyckJAgz549k507d0poaKiIiOzfv1+WL18uu3bt0rt5O9TXioiICClbtqysWLFCdu7cKaNHjxYDAwOl6c/Lly9l9uzZ4ubmJkOHDpXk5GS9eUCpPg713B3Hjx8XPz8/adCggWzatEmj7PDhw6VcuXLy4YcfKiPpUd5hYpGLpkyZIitWrFA+ANbW1nLs2DEReZVcVK5cWby8vHQcKVHeuXbtmlSpUkUWLlwoIqlN/xwcHKRIkSLi5uYmR44cERGRAwcOyPTp0/VyAqPXEwF1O/CYmBhZvHixVKlSRSO5CA4OloYNG8rgwYM1bqKnTp2aryeLTDs4gdq6detEpVJJp06d0tXGdOjQQfz8/PTmZokyJywsTCpUqCDbt2+Xly9fyqRJk6Ru3bpiaWmp8dBOn+3fv19mzpypMVHk06dPZfLkyaJSqTSSi2+++Uavmj+lnYOiR48eShOwkydPKhMDbt68WSk/YsQImTdvntIkjPIWE4sclPZmYfv27WJpaakMiXnp0iXp2LFjuuRiy5Yt4ufnpxdPHIky4+zZszJ9+nRJSEiQ+/fvS/ny5WXw4MHy/PlzcXJyksaNGytNB/XxSXTaz/rcuXPFz89PKlWqJHPmzJHLly9LUlKSfPfdd+Lh4aExOtzp06f1akbttOchNjZWEhMTlWVLly4VlUol/v7+yhPpFy9eiJeXl8Zw3FQwPH36VD7//HMpX768lCxZUtq0aSPz5s2TFy9eSM2aNTWGmNVHcXFxMmjQIFGpVNKoUSONderkwsjISKMPkr7Ztm2bWFhYyKhRo+TSpUvK8hMnToifn59UrlxZOnfuLL169ZLixYuzo7YOMbHIBT///LMsWLBA5s6dq7H84sWL0rFjR7GxsVGSi7QdV5lcUEHw8uVLZRzxL774Qrp06aLMgurr6ysqlUpq1qyp9xMYjRkzRmxsbGT+/PmydOlSKVasmLRv316io6MlKipK6dDdrl07je304TqR9hi++eYbadu2rTRv3lx69+6t1N6okwsvLy/p3bu3tGnTRjw8PPSiozq9mfrpdFRUlDx9+lRZfu3aNfn5559l6dKl8uzZM2V5hw4dZMaMGXkdZp4LCQmRr7/+WlQqlWzbtk1j3dOnT2X06NFSrFgxefLkiV5cI9K6cOGC2NjYpBvdSl2j+eDBA5k/f77Uq1dP2rZtq5dzHOUnTCxyQEJCgnJj9OLFC7GzsxOVSqUx46PapUuXpEuXLqJSqTSybiJ9k5KSotwk/Pfff3Lv3j25cuWKxvqmTZtqzJY8bNgwOXXqlF5V478uOTlZjh8/LhUrVlQmfjxx4oQYGhrK2rVrlXIxMTESGBgo3bt317sbBbXRo0dLqVKlZOHChbJixQopVaqU1KxZU3ngsnbtWlGpVFKvXj2N/iX61iGVUqmvF7t375aGDRuKm5ubNGvWTA4dOpRu7ppHjx7J+PHjxcrKSuO6og/U5+Hp06caydXt27flf//7nxQtWlS2b9+usc2zZ8/k0aNHeRlmngkKCpJatWpJXFycPHnyRJYvXy4+Pj7i4OAg//vf/5TR8VJSUpQ+GKQ7TCy0tHXrVmnfvr14eXnJlClTRCR1YpY6deqIi4tLhhe8s2fPyvjx4zneOumttB3mduzYIR4eHuLu7i42NjYyatQouXfvnoiI1K5dWxo1aiQ7duyQoUOHSsmSJfVulCOR1M/8zp075dChQyKS2vGwRo0aIiKyadMmKVKkiDI84osXL+SPP/4QkdTkQl+Hnr548aJUqVJFDhw4ICKpQ4laWFik67S9atUqUalUEhAQoDzAIf21a9cuKVq0qIwbN04OHz4stWvXlurVq8vPP/+s1GLu2bNHunfvLo6Ojno5sINI6nWzSpUqUq1aNfn888+VZPrOnTsyaNAgsbCw0BgpTp+or3nq2sl///1XVCqVDBkyRNzd3cXX11dGjBgh8+fPF2tra9m/f78uw6XXMLHQwpIlS8TCwkKGDRsmQ4cOFQMDA2Ws/f/++0/c3NzE29v7rSNUMLkgffPo0SMpXbq0hISEyF9//SXm5uayZMkSCQ8PlxUrVohKpZJffvlFRETu3r0rzs7O4uLiIhUrVtTLm4SffvpJPD09xdfXV/z9/UVE5ODBg1K6dGlZvny5WFpaatxM79+/X9q1a6c0FxPRz6Gng4ODxdHRUURSk4oiRYrIkiVLRCQ1uVq1apVyfVy+fLkYGRnJiBEjNJ7gkn65ffu2eHt7K7Mnv3jxQsqWLSv29vZSoUIF2bBhgyQnJ8ulS5fkhx9+UCaY1Tfnzp0TW1tbmTBhgsycOVMcHBykXr16ykOXO3fuyFdffSUqlUp2796t42hzVtrhyL/44gvlIdT69evlo48+klGjRmnMT1KjRg2NSURJ95hYZJP6iy7tEwM/Pz9ZuHChMh5/aGioeHl5SY0aNfRu+DuiN7l165aUKVNGzp07J+PGjZOvvvpKRFKHC3VxcZG+fftqlE9MTJTbt2/LkydPdBFurlq7dq2YmZnJhg0b0t0Q+/n5iUqlksmTJyvL4uPj5eOPP5YOHTroVQ1F2sRI/frWrVvSsmVLmT17thQpUkSWLl2qlDl27Jh07NhRTp06pSz77rvvpFixYnrb3INSHzR888038uTJE3nw4IFUqFBBaVLs4eEhnp6esnr1aklKStKrZDtts1GR1P4UkyZNUn6/ffu2uLi4SJ06dZT7i5s3b8rIkSP1rhmYSGpLEEtLSxk+fLjGw6bXayz9/f2lbNmyygAP9H5gYpENf//9d7obApHUC1+VKlWkaNGiUrduXfnpp58kNDRUqlatKk5OThIREaGjiInyVvXq1WXKlCnSpEkTmT9/vsTHx0vp0qWlX79+yhfot99+q9dV2BcvXpQPPvggXYdD9fEfOHBAmjdvLk5OTrJ27VpZsGCBNG/eXD744AOl2YM+JBevH4O6DfTz58+lYcOGolKpNG6iYmNjpVWrVtK+fft027K2Qr8lJycr/asGDx4sn376qTx//lxERHr16iWmpqbSqFEjZZm+UF8TgoODZe7cufLxxx9L//79NZKN27dvi7OzszRo0EDu378vIvoxOlxUVJTG7+fPn5dSpUrJsmXLNJY/evRIOd4NGzbI559/LtbW1npZy53fGYCyrHTp0qhfvz5OnTqFkydPAgA6dOiAmJgYjB8/Hps3b8bz588xffp0qFQq7Nq1C7Vr10bJkiV1HDlR7kpJSQEAlCtXDiKC/v37Y+/evShbtizatGmD77//HiqVCi9fvsTx48fxxx9/ICkpScdR54779+8jNjYWDRs2hIgoy1UqFQCgYcOGmDFjBj766CP4+/tj586dcHBwwNmzZ2FkZISXL1/CwCB/X6JTUlKUY5g3bx66du0KLy8vzJ07F0+fPsXmzZthZ2eHf/75B5MnT8by5cvRunVr3Lt3Dxs3boSBgQFSUlKU82dpaanLw6EckpycjOTkZADArVu3cPv2bdy+fRsGBgYoV64cACA8PBw2NjYoXLgwgNT/+19++QU///wzLCwsdBV6rlCpVNi3bx+aNGmCHTt24OjRo/jtt99w7NgxjWvq/v37cenSJfTs2RPJyckoVKiQjiPXzoIFCzBy5Ei8fPlSOc7bt2/D2dkZffv2xZMnT7B27Vq0bNkSnp6eCAgIwIMHD1C4cGGkpKQgODgYXl5eOj4KSkfHiU2+de3aNWnZsqW0bt1a6tWrJ9WqVdMYyUY9g+zrbf/Yp4L0zc2bN2XRokUSEhKiVEn/+OOP8uGHH8quXbvEw8NDPDw8lEmNEhISZOzYseLo6KiXk9+pzZgxQ6ysrJTf0z59VF8HLl++LBcuXEh3XdCHJ5FpZTS0btu2bUUk9VrarVs3cXd3Fx8fH+ndu7dy/Pp2Hgq6efPmaXwnbtmyRUqXLi3lypUTd3d3ZQblpKQk6dChg1SrVk0WLFgggwYNEktLS71r8qK+JoSHh0vv3r1l5cqVEh8fL2FhYVKpUiWpXr26nD59WuPacffuXbl+/bquQs4R6uvdwoULlT4U6o7aBw8eFJVKJaNHjxZvb2/x9fWVIUOGyKxZs8TExEQZSY+jP72/mFho4dq1a+Lj4yOWlpbKrI/JycmSkpIip06dksqVKysTfRHpo8TEROnUqZM4OjqKk5OTWFhYSMuWLaVChQpSpkwZefLkiWzfvl08PT2lcuXK0qZNG2nVqpWUKlVK76uwN2/eLGZmZvL777+/scyoUaOkb9++GjfQ+tR2XCR1KN13Da2bnJwssbGxGkOKMqnQL48fP5bOnTtL4cKFZd++fZKUlCRlypSRZcuWyZYtW2TYsGFiYGAgq1atEpHU2egbNGgg3t7e4unpKWfOnNHtAeSSf//9V+rXry81atSQw4cPK8ujo6OlYsWKUq1aNTlz5ozeXBfUzRtv3rwpU6dOFRGRI0eOyOeff670RV22bJnUqVNHhg8fLufPn1e2rVGjxluvp/R+YGKhpRs3bkiLFi2kVatW8s8//yjLP/74Y2ncuLFetJEmeht1h7pr167JL7/8It9995107NhRXF1dpV27dhIdHS3nzp2TGTNmyGeffSazZ8/W65oKtZs3b4qlpaV06NBB7t69qyxX3yA8f/5cOnToIAsXLtRViHni33//FW9vbxHJeGjdP//8U5kUT01fbqJIs4/NvXv3ZNCgQVK8eHGZO3eufP3118q6x48fy9ixY0WlUin9khITEyUyMlIv+lSoz4M6gb57964kJyfLixcvpHHjxqJSqdJdC6Kjo6Vy5cri5OSkF5O+qc/B2bNnRaVSKXMYLViwQDw8PKR3795K5/TXrwn+/v7i5OSk1HDQ+4uJRQ5QN4v66KOP5ODBg9K+fXupWLGiXnXAJHqTN90E7tixQ2rXri2tW7dWRvIpaDeMGzZsEBMTE+natatGDc39+/elVatWUq9ePb16Mh8WFibnz5+XH3/8US5cuCBPnjyRy5cvi52dnSxduvSNQ+uqm8mRflF/94WGhsqWLVtk8+bNsnHjRhk/frwULlxYGjVqpFH+8ePHMm7cODEyMko3n0l+pj4Ply9flvbt24u7u7sUKlRI3N3dZe7cuRITEyMffvihVK9eXfbu3atxz/DixQvx9vaWW7du6Sr8HKE+pkuXLomZmZkEBARorF+0aJHUrVtXevTooXROF0kdirp79+4FopZbXzCxyCHXrl2T1q1bi5GRkVSqVElJKvTppoEoM9RfIMnJybJx40Zp1KiR1KpVq0AOE/ry5UtlaOoyZcpIy5YtpXnz5lKrVi2pUaOGcp3Qh75X27Ztk48++khsbW3FwsJCzMzMxNfXV44dOybDhg1LN/qTvg6tS6nU/6fnzp2T8uXLi6urqxgbG0uVKlVk8uTJMn78eDEwMJC9e/dqbPfkyRMZOnSoFCtWTJ49e5bvH0ao4z9//rxYWlrKoEGDZMWKFbJ9+3Zp06aNGBgYyBdffCH379+XZs2aSc2aNdMlF/n9HKiP5cKFC2JlZSVubm7KOvWkhyKpfS7q1asnX3zxhVJz8fPPP0vXrl3l0qVLeRs0ZRsTixwUEhIiX375JTseUoGn/iJMSUmRtWvXSqtWrTSaAxU0Z86ckS+//FKaN28uvXv3lkWLFinJhD5cJ5YtW6Y0b9m/f788ffpUpkyZIq6urlKpUiWZMWOGdO3aVcqVK6fXQ+tSqrRJhbm5uYwaNUru378vu3fvFh8fH6lRo4b88ccf0qtXL7GwsJBff/1VY/snT57Iw4cPdRF6rnj48KF4eXnJmDFj0i1ftGiRGBsby+DBgyUxMVEaN24sDRs2lB07duT7hEJEs/mTubm5NG7cWOzt7ZX5jUReddwWeZVc9OnTR8LDw0Uk/fwV9H5jYpFL9OFmgUgbaZOL18cqp1T6UFOxbNkyMTY2lm3btqVbt3HjRqlevbo0bNhQNmzYIAMHDhQHBwdp0qQJR3/Sc6GhoWJlZSUdO3bUWL5kyRIpWrSo3LhxQ/777z/p27evFCtWTPbt26ejSHPf6dOnxd3dXWMEOPUN97Nnz2TatGlibGwshw4dksePH0vlypWlZcuW6foZ5FcnTpwQIyMjmTRpkrx8+VKWLl0qVlZWb0wuFi1aJJUrV5aBAwfqxTWyoMnfgyC/x/L7+NJE2lKpVBARqFQqFC1aVNfh6Jz6XKRlaGioo2hyRnBwMPr3749Jkyahffv2ynwT6jH2O3fujIiICEycOBHGxsZYvHgxJk2ahFKlSin7ePnyJa+Xeig5ORlOTk5ISEjAoUOHUL9+fQBA+fLlYWxsjLi4OFSoUAGjR4+GoaEhWrVqhT/++AM+Pj46jjznnTt3Djdu3IC7uzuA1GuBen4XS0tLdO3aFXPmzME///yDevXq4dChQ3j+/Lkyh0d+FxsbiwEDBiAgIAAA0LlzZwDAuHHjAADffvstjI2NkZiYCGNjYwwaNAhGRkZo3rx5vr9GFkT5e/YlInqvvX4jXZDp47lQTxZ6+vRpHDx4ECqVCiqVCoUKFVImvPrqq6/g4OCA/fv3AwCKFSumbC8iTCr0VLly5fDzzz8jMTERU6dORUhICKKjo/HZZ5+hd+/eyk12hQoVMGzYMOV9oo+cnZ0BANu2bQOQ/lrg5OSE8uXL4+HDhwCA4sWLKxMF6oOGDRvi22+/BZD6mbe0tESXLl0wffp0rF+/HkOGDAEAGBsbIyEhAQDQr18/vToHBQkTCyIiyhYXFxesXLkSCQkJmD59Og4dOqSsU988RUVFIT4+HnZ2dgAAIyOjdGVIP7m4uGDhwoUwNDTEgAED4OjoiM8++wyzZs0CAGX27YoVK2LOnDmoVKmSLsPNNeXKlYOFhQXWrVuHu3fvKsvVyffTp09hZmaG6tWr6yrEPKP+zFtYWGgkF8OHDwcAmJiY6DI8ygFMLIiIKNvUN48qlQrTpk3D4cOHNdbfunULZcqUQe3atQFAaS5FBYOLiwu+/fZbGBoawsLCAu3atVPWqZsDAZoJp74pU6YMfvjhB+zbtw8TJkzApUuXALw6/vnz5+PBgwdo0KCBLsPMc+rkIjAwEAsWLIC/v7+uQ6IcoBJe5YmISEvXr1/HV199BRHBuHHj0KBBA7x8+RJt2rSBgYEBfvnlF40bSSpYbty4gS+//BIiggkTJqBevXq6DilPJScnY8WKFRg8eDAqVKiAevXqwc7ODrdv38Zvv/2GoKAgeHl56TpMnXj+/Dl27tyJOnXqoGLFiroOh7TExIKIiHKEOrkwMDDA2LFjMX/+fFy5cgVnz56FkZERUlJSmFwUYNevX8fw4cMRGRmJb775RqnFKkiOHTuG2bNn4+rVqyhWrBg8PDzw5ZdfwtXVVdeh6VRGg1tQ/sTEgoiIcsz169cxbNgw/F87d2zDIBRDUfSBYA0K9mQEKBmGNWj+MkipIiW1EyEl50zg9lqWj+PIPM85zzPjOPr+RJKktZZlWbKua6ZpunucW1zXlb7v03Wd2ObnCAsAPqq1ln3fs21bhmEQFbx5vhX9V6/beZt6fo2wAOBrRAXA/xAWAABAmcM+AACgTFgAAABlwgIAACgTFgAAQJmwAAAAyoQFAABQJiwAAIAyYQEAAJQJCwAAoExYAAAAZQ+Owt3ekjv/2QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "CellSAM Specialist vs Generalist by Dataset\n", @@ -775,20 +707,9 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaP9JREFUeJzt3Xt8zvX/x/HntWEHIcxsc84I0RxyTIWWY6GDUCKnfEUlIUNGCDmEIoccK6dI6US1DMvkTBg5z2HD5LQz2/v3h9+uXBltuzbXZo/77XbdXPsc3ntdrl3b9bzeh4/FGGMEAAAAABnk5OgCAAAAAORshAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALnkcXQCAuy88PFxRUVGOLiNVHh4eKl26tKPLcJhXX31VCxcu1LFjx1S2bNkMtREcHKzGjRsrMDBQI0aMsG5v1KiR1q9fL2NM5hSbA/Cznnul9vN+u9cGAPsRKoBcJjw8XJUrV1ZsbKyjS0mVu7u7wsLC7H6zFRMTo6lTp2rFihX666+/dO3aNRUrVkzlypVTw4YN1aNHD5UvXz6Tqr735cQ3Y+Hh4XqwUmXFx2XPn3VXN3cdPGD/z3qKXbt2aebMmdqwYYNOnTql+Ph4FSlSRNWqVVPz5s3VuXNnFStWLFO+V26VG4M5kFaECiCXiYqKUmxsrCZ/Ok++FSo5uhwbhw8dUP/e3RQVFWXXG62rV6+qYcOG2rNnj3x9fdWpUycVLVpUUVFR2rJli8aNG6fy5ctny1AxduxYDR48WCVKlMj0thctWpRtw2RWiIqKUnxcrMo8HyDXYtmrRyD+fLhOrBxr98+6JCUnJ2vQoEGaNGmSnJ2d9fjjj6tp06bKnz+/zp07p9DQUA0YMECBgYE6ePBglvxs5RR16tRRWFiYPDw8HF0KcM8hVAC5lG+FSqrqV8PRZWSJKVOmaM+ePerRo4dmz54ti8Vis//YsWNKSEhwUHV35u3tLW9v7yxpO7cOtXEtVlruPhUdXUaWGTp0qCZNmqSaNWtq2bJl8vX1veWYHTt26N1331VcXJwDKsw+3N3dValS9vowBbhXMFEbwD0nNDRUktSnT59bAoUklStXzuaNRdmyZVW2bFldunRJvXr1kpeXl1xdXVWjRg0tWbIk1e9hjNG8efP06KOPqmDBgnJ3d9cjjzyiefPm3fb4+fPn67HHHtP9998vd3d3VahQQb169VJ4eLj1uFdffVUWi0XHjx+3bktMTNTHH3+sZs2aqVSpUnJxcZGnp6eee+457dy5M83/L40aNbrl/yM5OVmfffaZ6tSpoyJFisjNzU0lS5bUM888o+DgYEnSiBEj1LhxY0nSyJEjZbFYrLeb68Td99dff2nChAkqVqyY1qxZk2qgkKSaNWvql19+uWWezp49e9ShQwd5e3srX758KlOmjN544w1duHDB5rjjx4/LYrHo1Vdf1eHDh/Xss8+qcOHCyp8/v/z9/bV79+5Uv++5c+f09ttvy9fXVy4uLvLw8NDzzz+vvXv33nLsza/Dvn37qlSpUsqTJ48WLFggSdq+fbv69u2rqlWrqlChQnJzc1O1atU0btw4Xbt2LU3/X8HBwbJYLLcM4Tt06JC6du2qcuXKycXFRUWKFJGfn5/69etnHepksVi0fv166/2U26uvvpqm7w3c6+ipAHDPKVq0qKQbb7iqV6+epnMSExPl7++v6OhovfLKK4qJidHy5cv10ksvKSoqSm+88Yb1WGOMXn75ZS1ZskQVKlTQSy+9pHz58umXX35R9+7dtX//fk2cONF6fHJystq3b68VK1aoRIkS6tixowoWLKjjx49r+fLlatGixR17Ef7++2/169dPjz32mFq2bKnChQvr6NGjWr16tX766Sdt2LBBtWvXztD/VUBAgD788EOVL19eL730kgoUKKDTp08rJCREv/76qxo1aqRGjRrp+PHjWrhwoZ544gk1atTIev7999+foe+LzLFw4UIlJSWpV69eaZovkSfPP3/2V69erRdffFFOTk5q06aNSpUqpf379+uTTz7R2rVr9ccff6hw4cI25x8/flz16tXTQw89pG7duunIkSP69ttv1bhxY4WFhal48eLWY48cOaJGjRrp1KlTatq0qdq2batz585p5cqVWrt2rYKCglS3bl2b9hMSEtSkSRNFR0erdevWypMnj7XNOXPm6LvvvtPjjz+uli1bKjY2VsHBwQoICNDWrVu1cuXKDP0fnjlzRnXq1FFMTIxatWql9u3bKyYmRocOHdKMGTM0ceJE5cmTR4GBgVqwYIFOnDihwMBA6/lp/R0D3OsIFQDuOe3atdMXX3yhHj16aMuWLWratKlq1aplDRupiYiIUIUKFbRp0ybly5dPkjRkyBDVqFFDAwcO1HPPPWcdi/7ZZ59pyZIl6tq1q2bNmqW8efNKuhFMXnjhBU2aNEkdO3ZUrVq1JEkzZszQihUr9OSTT+q7776Tm5ub9fvGxcX955CUwoULKzw8/Jax8Pv27VO9evU0ZMgQ/fLLL+n/j/r/x+Lj46M9e/bI3d3dZt/ff/8tSdYQsXDhQjVq1CjHTNTODVJ65VJ6ktLqwoULeuWVV+Th4aHff/9dZcqUse5bunSpOnbsqOHDh+vjjz+2OW/9+vUaN26c3n33Xeu29957T6NHj9b8+fM1ePBg6/bOnTsrIiJCa9asUbNmzazbhw0bpkceeUQ9e/bUnj17bNqPjIyUn5+ffv/9d5vXiXTj9Th9+nQ5Oztbtxlj1KNHD82bN0+///67Hn300XT9P0jSypUrdenSJU2ZMkVvvfWWzb6///7bGsRGjBih4OBgnThxgtcAkAqGPwG457Ru3VqTJk2SMUaTJk1Ss2bN5OHhIV9fX/Xt21eHDh1K9bwPPvjAGigkqWTJknrrrbeUkJCgpUuXWrd/8sknyp8/v6ZPn24NFJKUL18+jRkzRpJshk3NmDFDzs7O+vTTT295o+Tm5qYiRYrc8fG4uLikOrn2oYceUuPGjbVhw4Y0D/9ITb58+WzeqKX4r7rgeJGRkZIkHx+fW/YFBwdrxIgRNreUIW2LFi3SlStXNHbsWJtAIUkdOnRQzZo1bX7mU5QrV04DBw602da9e3dJ0tatW63bdu7cqU2bNqlLly42gUKSKlasqJ49e+rPP/9MdRjUhx9+eMvrRLoxJ+jfP6cWi0V9+vSRJP3666+3nJMeqX1PXgNA2tFTAeCe1L9/f/Xs2VNr1qzRpk2btG3bNv3xxx+aPn265s6dq2XLlql169bW4/PkyaP69evf0s5jjz0mSda5C7Gxsfrzzz/l4+Oj8ePH33J8ypv7AwcOSJKio6MVFhYmX19fVahQIcOPZ9euXfrwww8VEhKiyMjIW0JEVFRUhiZ4d+jQQTNmzFDVqlXVoUMHNW7cWPXr10/1DRZyluDgYI0cOfKW7Y0aNdLmzZslSX/88YeOHDlyyzHx8fGKiopSVFSUzUpJ1atXl5OT7eeRJUuWlCRdunTJui2l/bNnz6b6qX7K6+PAgQOqWrWqdburq6uqVauW6uNJTEzUJ598oqVLl+rAgQOKjo62Wdr1zJkzqZ73X5555hkFBASoT58+CgoKUvPmzfXEE0/ogQceyFB7QG5FqABwzypQoIDatWundu3aSZIuX76sIUOGaMaMGerevbtOnz5t7Znw8PC45c2SJOt47suXL0uSLl68KGOMTp8+neobthQxMTE259mzjOemTZvUpEkTSVLTpk1VoUIF3XfffbJYLPrmm2+0e/fuDK9mNXXqVJUrV07z58/X6NGjNXr0aLm6uurFF1/UpEmTWHozmytevLjCwsJ05syZW1Y1SumdkP4Z0pQiZWjb9OnT79h+TEyMzc9AwYIFbzkmZXhQUlLSLe3/8MMP+uGHH+7Y/s08PT1TXVxBkl544QV99913qlixotq3by9PT0/lzZtXly5d0tSpUzP8Gihbtqw2b96sESNG6Mcff9Ty5cslSZUqVdL7779v/f0B4M4IFQByjUKFCumTTz7RDz/8oBMnTujPP/+0znuIiopScnLyLcHi7Nmz1nOlf95U1apVS9u2bUvT95Sk06dPZ7juMWPGKCEhQRs3blTDhg1t9m3evPm2K++kRZ48eTRgwAANGDBAZ86c0fr16zV//nwtWrRIkZGRWrt2bYbbRtZr0KCBgoODtW7dOmvwTIuUn+M///zTpqcgs6S0//HHH6tv375pPu92gWLr1q367rvv1KxZM/3www82w6A2b96sqVOn2lVv1apVtWLFCl27dk3bt2/XTz/9pGnTpql9+/by8fHJ0FwNILdhTgWAXMVisSh//vy3bL9+/bp10uvNNm7cKEmqUePGNT0KFCigypUrKywszGa4x+3cd999qlKlio4dO3bbuRz/5ciRIypSpMgtgSI2NlY7duzIUJup8fHxUceOHa1Lk/7666/WSeQpb+Ju/jQajtelSxc5OTlp9uzZioqKSvN5KasupfYznxkyu/2UIVqtWrW6ZV5Fyms0M+TNm1f16tXTyJEjNW3aNBlj9P3331v38zoAbo9QAeCeM2vWLJtJozf75ptvFBYWpvvvv/+WT2iHDBmixMRE69enTp3S1KlT5eLiog4dOli3v/nmm4qNjVXPnj1vGb4h3bi43s3Xb+jTp4+SkpL0+uuv37LSU3x8vHWoyO2UKVNGFy9e1L59+6zbkpKSNGDAAJ0/f/6O595JQkKCNm3adMv2mJgYRUdHK2/evNaem5QJqydPnszw90Pmq1ixogYNGqRz586pRYsWOnz4cKrH/TsAd+3aVQUKFNDQoUNtfq5SxMbGWudFZESdOnVUt25dLVmyRMuWLbtlf3JysvWaD2mRMpk8JCTEZvu+ffs0duzYDNcp3bj+xZUrV27ZntJL6erqat3G6wC4PYY/Abjn/PTTT/rf//4nX19fPfroo/Lx8VFMTIx27typjRs3ysnJSTNmzJCLi4v1HG9vb8XExOjhhx/WM888Y71OxYULFzRt2jSbORG9evXS5s2btXDhQv3+++/y9/eXj4+Pzp49qwMHDuiPP/7Q4sWLrRca6927t9avX6/ly5erQoUKat26tQoWLKjw8HCtXbtWc+fOVdu2bW/7eN544w39/PPPatiwoV588UW5uroqODhYp0+fVqNGjawr+qRXXFycHn30UVWsWFG1atVS6dKlFR0dre+//16RkZEaMGCA9f+oUqVK8vHx0dKlS+Xi4qKSJUvKYrHojTfesA7xgmOMGTNGiYmJmjx5sipVqqTHH39cfn5+cnd317lz57Rnzx5t2bJF9913n/WaCsWKFdOSJUvUrl07+fn5qXnz5qpUqZISEhJ0/PhxrV+/Xg0aNNCaNWsyXNeSJUvUuHFjdejQQVOmTFHNmjXl5uam8PBwhYaG6vz584qPj09TW3Xq1FGdOnW0fPlyRUREqF69egoPD9fq1avVqlUrrVixIsN1fv7555o1a5Yef/xxlS9fXgULFtT+/fv1448/qkiRIuratav12CZNmmjFihV6/vnn1aJFC7m6usrPz0/PPPNMhr8/cK8gVAC51OFDBxxdwi0yq6bx48fr0Ucf1S+//KINGzYoIiJC0o3J0l26dNEbb7xhnUuRIuXidYMHD9bnn3+uS5cuqVKlSvr4449tJrhKN4ZQLViwQC1bttScOXP0/fffKzo6Wp6enqpQoYImTpwof39/m+OXLl2qpk2b6rPPPtOiRYtkjFGJEiX04osv3lLLvz399NNasWKFPvjgA33xxRdyd3dXkyZNtGrVKr3//vsZ/n/Knz+/xo8fr6CgIG3cuFHnzp1T4cKF9eCDD2rs2LE2vTPOzs76+uuv9e6772rJkiW6evWqJKlTp07ZPlTEnw//74PussysycnJSZMmTVKnTp00c+ZMbdiwQVu3blVCQoKKFCmihx56SBMmTFDnzp3l6elpPa9Vq1bauXOnJkyYoF9//VW//PKL8ufPr5IlS6pr167q1KmTXXWVK1dOO3fu1OTJk/XNN99o/vz5cnZ2lre3tx5//HG98MILaW7L2dlZ33//vQYPHqw1a9Zo69at1tdaixYt7AoVHTt2VHx8vH7//Xdt2bJFCQkJKlmypHr37q2BAwfaXJiyZ8+eOn78uJYuXarx48fr+vXr6tKlC6ECkGQxN6/HBuCeFx4ersqVKys2NtbRpaTK3d1dYWFhd7zCdGZL6VG4ecgScr7w8HA9WKmy4uOy58+6q5u7Dh64uz/rAJBVCBVALhQeHp6uSZ13k4eHx11/k0WouHfxsw4AdwehAkCuR6gAAMA+rP4EAAAAwC70VAAAAACwCz0VAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoSKVBhjdOXKFRljHF0KAAAAkO0RKlJx9epVFSpUSFevXnV0KQAAAEC2R6gAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsEseRxcAAPeaiIgIRUREpPs8b29veXt7Z0FFAABkLUIFAGSyWbNmaeTIkek+LzAwUCNGjMj8ggAAyGIWY4xxdBHZzZUrV1SoUCFdvnxZBQsWdHQ5AHKY1Hoq4uLi1LBhQ0lSSEiI3NzcbjmPngoAQE5FqEgFoQJAZouJidF9990nSYqOjlb+/PkdXBEAAJmHidoAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALvkcXQBAJCdhYeHKyoqyu524uLirPd37dolNzc3u9v08PBQ6dKl7W4HAAB7WYwxxtFFZDdXrlxRoUKFdPnyZRUsWNDR5QBwkPDwcFWuXFmxsbGOLiVV7u7uCgsLI1gAAByOngoAuI2oqCjFxsZq8qfz5Fuhkl1txcfF6cVnnpQkLf8uSK529lQcPnRA/Xt3U1RUFKECAOBwhAoA+A++FSqpql8Nu9qIjYmx3q9SzU/u+fPbWxYAANlGtpioPX36dJUtW1aurq6qW7eutmzZcttj58yZo8cee0yFCxdW4cKF5e/vf8vxr776qiwWi82tefPmWf0wAAAAgFzJ4aFi2bJl6t+/vwIDA7Vjxw75+fmpWbNmOnfuXKrHBwcHq2PHjlq3bp1CQ0NVqlQpNW3aVKdPn7Y5rnnz5oqIiLDelixZcjceDgAAAJDrODxUTJ48WT179lTXrl1VpUoVzZw5U+7u7po3b16qx3/55Zd6/fXXVb16dVWqVEmfffaZkpOTFRQUZHOci4uLvLy8rLfChQvfjYcDAAAA5DoODRWJiYnavn27/P39rducnJzk7++v0NDQNLURGxura9euqUiRIjbbg4OD5enpqQcffFC9e/fWhQsXMrV2AAAAADc4dKJ2VFSUkpKSVLx4cZvtxYsX14EDB9LUxrvvvisfHx+bYNK8eXM999xzKleunI4cOaIhQ4aoRYsWCg0NlbOz8y1tJCQkKCEhwfr1lStXMviIAAAAgNwnR6/+NG7cOC1dulTBwcFydXW1bu/QoYP1frVq1fTwww+rfPnyCg4O1pNPPnlLO2PHjtXIkSPvSs0AAADAvcahw588PDzk7Oyss2fP2mw/e/asvLy87njuxIkTNW7cOP388896+OGH73jsAw88IA8PDx0+fDjV/QEBAbp8+bL1dvLkyfQ9EAAAACAXc2ioyJcvn2rVqmUzyTpl0nX9+vVve96HH36oUaNGac2aNXrkkUf+8/ucOnVKFy5ckLe3d6r7XVxcVLBgQZsbAAAAgLRx+OpP/fv315w5c7Rw4UKFhYWpd+/eiomJUdeuXSVJnTt3VkBAgPX48ePH67333tO8efNUtmxZRUZGKjIyUtHR0ZKk6OhoDRw4UJs3b9bx48cVFBSkNm3ayNfXV82aNXPIYwQAAADuZQ6fU9G+fXudP39ew4cPV2RkpKpXr641a9ZYJ2+Hh4fLyemf7PPpp58qMTFRL7zwgk07gYGBGjFihJydnbVnzx4tXLhQly5dko+Pj5o2bapRo0bJxcXlrj42AAAAIDdweKiQpL59+6pv376p7gsODrb5+vjx43dsy83NTWvXrs2kygAAAAD8F4cPfwIAAACQsxEqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYJdscfE7ALiXnIuM0LmzkTbb4uPjrPf3790tV1e3W87zLO4lTy/vLK8PAIDMRqgAgEy2eNFcTZsw5rb7X3z6yVS3vzlwqPoNGpZVZQEAkGUIFQCQyV7q3F3+zVql+zzP4l5ZUA0AAFmPUAEAmczTy5thTACAXIWJ2gAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC7ZIlRMnz5dZcuWlaurq+rWrastW7bc9tg5c+boscceU+HChVW4cGH5+/vfcrwxRsOHD5e3t7fc3Nzk7++vQ4cOZfXDAAAAAHIlh4eKZcuWqX///goMDNSOHTvk5+enZs2a6dy5c6keHxwcrI4dO2rdunUKDQ1VqVKl1LRpU50+fdp6zIcffqhp06Zp5syZ+uOPP5Q/f341a9ZM8fHxd+thAQAAALmGw0PF5MmT1bNnT3Xt2lVVqlTRzJkz5e7urnnz5qV6/JdffqnXX39d1atXV6VKlfTZZ58pOTlZQUFBkm70UkyZMkXDhg1TmzZt9PDDD2vRokU6c+aMvvnmm7v4yAAAAIDcwaGhIjExUdu3b5e/v791m5OTk/z9/RUaGpqmNmJjY3Xt2jUVKVJEknTs2DFFRkbatFmoUCHVrVs3zW0CAAAASLs8jvzmUVFRSkpKUvHixW22Fy9eXAcOHEhTG++++658fHysISIyMtLaxr/bTNn3bwkJCUpISLB+feXKlTQ/BgAAACC3c/jwJ3uMGzdOS5cu1apVq+Tq6prhdsaOHatChQpZb6VKlcrEKgEAAIB7m0NDhYeHh5ydnXX27Fmb7WfPnpWXl9cdz504caLGjRunn3/+WQ8//LB1e8p56WkzICBAly9ftt5OnjyZkYcDAAAA5ErpHv6UnJys9evXa+PGjTpx4oRiY2NVrFgx1ahRQ/7+/un6lD9fvnyqVauWgoKC1LZtW2v7QUFB6tu3723P+/DDDzVmzBitXbtWjzzyiM2+cuXKycvLS0FBQapevbqkG8OZ/vjjD/Xu3TvV9lxcXOTi4pLmugEAAAD8I809FXFxcRo9erRKlSqlli1b6qefftKlS5fk7Oysw4cPKzAwUOXKlVPLli21efPmNBfQv39/zZkzRwsXLlRYWJh69+6tmJgYde3aVZLUuXNnBQQEWI8fP3683nvvPc2bN09ly5ZVZGSkIiMjFR0dLUmyWCzq16+fRo8erdWrV+vPP/9U586d5ePjYw0uAAAAADJPmnsqKlasqPr162vOnDl66qmnlDdv3luOOXHihBYvXqwOHTpo6NCh6tmz53+22759e50/f17Dhw9XZGSkqlevrjVr1lgnWoeHh8vJ6Z/s8+mnnyoxMVEvvPCCTTuBgYEaMWKEJGnQoEGKiYnRa6+9pkuXLqlhw4Zas2aNXfMuAAAAAKTOYowxaTkwLCxMlStXTlOj165dU3h4uMqXL29XcY5y5coVFSpUSJcvX1bBggUdXQ4AB9mxY4dq1aql1b9uUlW/Go4ux8be3TvV2r+Btm/frpo1azq6HABALpfm4U9pDRSSlDdv3hwbKAAAAACkT6au/hQTE6MNGzZkZpMAAAAAsrlMDRWHDx9W48aNM7NJAAAAANmcQ6+oDQC4uyIiIhQREZHu87y9veXt7Z0FFQEA7gXpChVFihS54/6kpCS7igEAZK1Zs2Zp5MiR6T7v5hX2AAD4t3SFioSEBPXu3VvVqlVLdf+JEycy9McKAHB39OrVS61bt7bZFhcXp4YNG0qSQkJC5Obmdst59FIAAO4kXaGievXqKlWqlLp06ZLq/t27dxMqACAbS20YU0xMjPV+9erVlT9//rtdFgAgh0vXRO1WrVrp0qVLt91fpEgRde7c2d6aAAAAAOQg6eqpGDJkyB33lypVSvPnz7erIAAAAAA5S6YuKQsAAAAg90lXqHj88cdthj+tXr1acXFxmV0TAAAAgBwkXaEiJCREiYmJ1q87deqUofXOAQAAANw77Br+ZIzJrDoAAAAA5FDMqQAAAABgl3St/iRJa9euVaFChSRJycnJCgoK0t69e22O+feFlQAAAADcu9IdKv594btevXrZfG2xWJSUlGRfVQAAAAByjHSFiuTk5KyqAwAAAEAOxZwKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYJd0Lyn7b6+//rref/99eXh4ZEY9AIB0CAsLs7uNuLg46/1du3bJzc3N7jYlycPDQ6VLl86UtgAA2ZvdoeKLL77QgAEDCBUAcBedPxspWZzUqVOnTG23YcOGmdaWq5u7Dh4II1gAQC5gd6gwxmRGHQCAdLhy5bJkklXm+QC5FrPvTXvytQQdmttPklSh+xQ55XWxu7748+E6sXKsoqKiCBUAkAvYHSoAAI7jWqy03H0q2tVGUuI/w5/cvH3lnC9zhj8BAHIPu0PF1atXM6MOAACyjYiICEVERKT7PG9vb3l7e2dBRQCQvdFTAQDAv8yaNUsjR45M93mBgYEaMWJE5hcEANkcoQIAgH/p1auXWrdubbMtLi7OOpE9JCQk1VWy6KUAkFsRKgAA+JfUhjHFxMRY71evXl358+e/22UBQLbFxe8AAAAA2IVQAQAAAMAumRoqjhw5oiZNmmRmkwAAAACyuUwNFdHR0Vq/fn1mNgkAAAAgm0vXRO1p06bdcf/p06ftKgYAAABAzpOuUNGvXz95e3srX758qe5PTEzMlKIAAAAA5BzpChVlypTR+PHj9eKLL6a6f9euXapVq1amFAYAAAAgZ0jXnIpatWpp+/btt91vsVhkjLG7KAAAAAA5R7p6Kt5//33Fxsbedn+VKlV07Ngxu4sCAAAAkHOkK1RUqVLljvvz5s2rMmXK2FUQAAAAgJyFi98BAAAAsEuaeyqaN2+uESNGqF69enc87urVq5oxY4buu+8+9enTx+4CAQCwR3h4uKKiouxuJy4uznp/165dcnNzs7tNSfLw8FDp0qUzpS0AcJQ0h4p27drp+eefV6FChfTMM8/okUcekY+Pj1xdXXXx4kXt379fISEh+vHHH9WqVStNmDAhK+sGAGTAtasXdO3qBZttSdcSrPdjIw7LOa/LLeflLVBUeQsUzfL6Mlt4eLgqV658x/mAGdGwYcNMa8vd3V1hYWEECwA5WppDRffu3dWpUyd99dVXWrZsmWbPnq3Lly9LurHqU5UqVdSsWTNt3bpVlStXzrKCAQAZF7X1e0UGL7rt/sNz+6W63atRZ3k36ZJFVWWdqKgoxcbGavKn8+RboZJdbcXHxenFZ56UJC3/LkiumdBTcfjQAfXv3U1RUVGECgA5Wromaru4uKhTp07q1KmTJOny5cuKi4tT0aJFlTdv3iwpEACQeTxqP61Cleqn+7yc2EtxM98KlVTVr4ZdbcTGxFjvV6nmJ/f8+e0tCwDuGekKFf9WqFAhFSpUKLNqAQBksZw6jAkAkL2x+hMAAAAAuxAqAAAAANiFUAEAAADALukOFUlJSdqwYYMuXbqUKQVMnz5dZcuWlaurq+rWrastW7bc9th9+/bp+eefV9myZWWxWDRlypRbjhkxYoQsFovNrVIl+1b8AAAAAHB76Q4Vzs7Oatq0qS5evGj3N1+2bJn69++vwMBA7dixQ35+fmrWrJnOnTuX6vGxsbF64IEHNG7cOHl5ed223YceekgRERHWW0hIiN21AgAAAEhdhoY/Va1aVUePHrX7m0+ePFk9e/ZU165dVaVKFc2cOVPu7u6aN29eqsfXrl1bEyZMUIcOHeTicuvFmVLkyZNHXl5e1puHh4fdtQIAAABIXYZCxejRozVgwAB9//33ioiI0JUrV2xuaZGYmKjt27fL39//n2KcnOTv76/Q0NCMlGV16NAh+fj46IEHHtDLL7+s8PDwOx6fkJCQoccAAAAAIIPXqWjZsqUkqXXr1rJYLNbtxhhZLBYlJSX9ZxtRUVFKSkpS8eLFbbYXL15cBw4cyEhZkqS6detqwYIFevDBBxUREaGRI0fqscce0969e1WgQIFUzxk7dqxGjhyZ4e8JAAAA5GYZChXr1q3L7DoyTYsWLaz3H374YdWtW1dlypTR8uXL1b1791TPCQgIUP/+/a1fX7lyRaVKlcryWgEAAIB7QYZCxRNPPGH3N/bw8JCzs7POnj1rs/3s2bN3nISdXvfff78qVqyow4cP3/YYFxeXO87RAAAAAHB7Gb5OxaVLlzRp0iT16NFDPXr00EcffaTLly+n+fx8+fKpVq1aCgoKsm5LTk5WUFCQ6tevn9GybhEdHa0jR47I29s709oEAAAA8I8M9VRs27ZNzZo1k5ubm+rUqSPpxkpOY8aM0c8//6yaNWumqZ3+/furS5cueuSRR1SnTh1NmTJFMTEx6tq1qySpc+fOKlGihMaOHSvpxuTu/fv3W++fPn1au3bt0n333SdfX19J0oABA/TMM8+oTJkyOnPmjAIDA+Xs7KyOHTtm5KECAHKhc5EROnc20mZbfHyc9f7+vbvl6up2y3mexb3k6cWHWABynwyFirffflutW7fWnDlzlCfPjSauX7+uHj16qF+/ftqwYUOa2mnfvr3Onz+v4cOHKzIyUtWrV9eaNWusk7fDw8Pl5PRPZ8qZM2dUo0YN69cTJ07UxIkT9cQTTyg4OFiSdOrUKXXs2FEXLlxQsWLF1LBhQ23evFnFihXLyEMFAORCixfN1bQJY267/8Wnn0x1+5sDh6rfoGFZVRYAZFsZ7qm4OVBIN64NMWjQID3yyCPpaqtv377q27dvqvtSgkKKsmXLyhhzx/aWLl2aru8PAMC/vdS5u/ybtUr3eZ7FM29OIADkJBkKFQULFlR4eLgqVapks/3kyZO3XbYVAICcwtPLm2FMAJAOGZqo3b59e3Xv3l3Lli3TyZMndfLkSS1dulQ9evRg7gIAAACQy2Sop2LixImyWCzq3Lmzrl+/LknKmzevevfurXHjxmVqgQAAAACyt3SHiqSkJG3evFkjRozQ2LFjdeTIEUlS+fLl5e7unukFAgAAAMje0h0qnJ2d1bRpU4WFhalcuXKqVq1aVtQFAAAAIIfI0JyKqlWr6ujRo5ldCwAAAIAcKEOhYvTo0RowYIC+//57RURE6MqVKzY3AAAAALlHhiZqt2zZUpLUunVrWSwW63ZjjCwWi5KSkjKnOgAAAADZXoZCxbp16zK7DgAAAAA5VLpDxbVr1/T+++9r5syZqlChQlbUBAAAACAHSXeoyJs3r/bs2ZMVtQAAgP8QERGhiIiIdJ/n7e0tb2+uEg4ga2Ro+FOnTp00d+5cLnQHAMBdNmvWLI0cOTLd5wUGBmrEiBGZXxAAKIOh4vr165o3b55+/fVX1apVS/nz57fZP3ny5EwpDgAA2OrVq5dat25tsy0uLk4NGzaUJIWEhMjNze2W8+ilAJCVMhQq9u7dq5o1a0qS/vrrL5t9N68GBQAAMldqw5hiYmKs96tXr37Lh30AkNVY/QkAAACAXTJ08bs7OXfuXGY3CQAAACAbS1eocHd31/nz561ft2rVymYFirNnzzJmEwAAAMhl0hUq4uPjZYyxfr1hwwbFxcXZHHPzfgAAAAD3vkwf/sREbQAAACB3yfRQAQAAACB3SVeosFgsNj0R//4aAAAAQO6TriVljTGqWLGiNUhER0erRo0acnJysu4HAAAAkLukK1TMnz8/q+oAAAAAkEOlK1R06dIlq+oAAAAAkENl6IraAAAg84SFhdl1/s3Lu+/atUtubm72liRJ8vDwUOnSpTOlLSC9IiIibK6Hllbe3t5cN80BCBUAADjI+bORksVJnTp1yrQ2GzZsmGltubq56+CBMIIFHGLWrFkaOXJkus8LDAzUiBEjMr8g3BGhAgAAB7ly5bJkklXm+QC5Fsv4G/fkawk6NLefJKlC9ylyyutid23x58N1YuVYRUVFESrgEL169VLr1q1ttsXFxVmDc0hISKq9cvRSOAahAgAAB3MtVlruPhUzfH5S4j/Dn9y8feWcL3OGPwGOlNowppiYGOv96tWrK3/+/He7LNwGoQIAAABIJ+Z82MpQqEhKStKCBQsUFBSkc+fOKTk52Wb/b7/9linFAQAAANkRcz5sZShUvPXWW1qwYIFatWqlqlWrclVtAAAA5CrM+bCVoVCxdOlSLV++XC1btszsegAAAIBsjzkftpwyclK+fPnk6+ub2bUAAAAAyIEyFCreeecdTZ06VcaYzK4HAAAAQA6ToeFPISEhWrdunX766Sc99NBDyps3r83+r7/+OlOKAwAAAJD9ZShU3H///Xr22WczuxYAAAAAOVCGQsX8+fMzuw4AOQBrcgMAgNRw8TsAacaa3IDjXbt6QdeuXrDZlnQtwXo/NuKwnPO63HJe3gJFlbdA0SyvD0DulOFQsWLFCi1fvlzh4eFKTEy02bdjxw67CwNyo+zeE8Ca3IDjRW39XpHBi267//Dcfqlu92rUWd5NumRRVQByuwyFimnTpmno0KF69dVX9e2336pr1646cuSItm7dqj59+mR2jUCukd17AliTG3A8j9pPq1Cl+uk+j14KAFkpQ6FixowZmj17tjp27KgFCxZo0KBBeuCBBzR8+HD9/fffmV0j0ii7f8qN/0ZPAID/wjAmANlRhkJFeHi4GjRoIElyc3PT1atXJUmvvPKK6tWrp08++STzKkSaZfdPuQk9/42eAAAAkBNlKFR4eXnp77//VpkyZVS6dGlt3rxZfn5+OnbsGBfEc6Ds/il3dg89AAAga4SHhysqKsruduLi4qz3d+3aler7mozw8PBQ6dKlM6Wt3CpDoaJJkyZavXq1atSooa5du+rtt9/WihUrtG3bNj333HOZXSPSKLt/yp3dQw8AAMh84eHhqly5smJjYzO13ZT3D5nB3d1dYWFhBAs7ZChUzJ49W8nJyZKkPn36qGjRotq0aZNat26tXr16ZWqBuHdk99ADAAAyX1RUlGJjYzX503nyrVDJrrbi4+L04jNPSpKWfxck10zoqTh86ID69+6mjRs3qnLlyna1lZt7UjIUKpycnOTk5GT9ukOHDurQoUOmFYXs302YkJAgF5db10FPr3v9xZcZz+O9/n8EAMgdfCtUUlW/Gna1EXvTh5FVqvnJPRM+jDx/NlKyOKlTp052t3WzzOxJcXVz18ED2bsnJcPXqdi4caNmzZqlI0eOaMWKFSpRooQ+//xzlStXLlP/E3OjnNBNKIuTZJIzrz3dey++rHge6eoFACBzXblyWTLJKvN8gFyL2fc3Mflagg79/7ViKnSfIqdULkSZXvHnw3Vi5VhFRUVl67/ZGQoVK1eu1CuvvKKXX35ZO3fuVELCjSt5Xr58WR988IF+/PHHTC0yt8nu3YTBQWs1eexIXnz/IbOeR7p6AQDIeq7FSsvdp6JdbSQl/vM30c3bV875MudvYk6QoVAxevRozZw5U507d9bSpUut2x999FGNHj06XW1Nnz5dEyZMUGRkpPz8/PTxxx+rTp06qR67b98+DR8+XNu3b9eJEyf00UcfqV+/fna1mZ1l127CI4cOSuLFl1b2Po909RIsAADI7jIUKg4ePKjHH3/8lu2FChXSpUuX0tzOsmXL1L9/f82cOVN169bVlClT1KxZMx08eFCenp63HB8bG6sHHnhA7dq109tvv50pbd5LzkVG6NzZSJtt8fH/vGnfv3e3XF1vfdPuWdxLnl6ssJSb0NULAAAyU4avU3H48GGVLVvWZntISIgeeOCBNLczefJk9ezZU127dpUkzZw5Uz/88IPmzZunwYMH33J87dq1Vbt2bUlKdX9G2ryXLF40V9MmjLnt/heffjLV7W8OHKp+g4ZlVVlW165e0LWrF2y2JV1LsN6PjTgs51TekHL12KxDbxMAAMgMGQoVPXv21FtvvaV58+bJYrHozJkzCg0N1YABA/Tee++lqY3ExERt375dAQEB1m1OTk7y9/dXaGhoRsrKkjZzkpc6d5d/s1bpPs+zuFcWVHOrqK3fKzJ40W33H/7/T7v/zatRZ3k36ZJFVQEAAMBeGQoVgwcPVnJysp588knFxsbq8ccfl4uLiwYMGKA33ngjTW1ERUUpKSlJxYsXt9levHhxHThwICNlZbjNhIQE62RzSbpy5UqGvr+jeXp5Z+thTB61n1ahSvXTfR69FAAAANlbhkKFxWLR0KFDNXDgQB0+fFjR0dGqUqWK7rvvvsyu764YO3asRo4c6egy7nkMY/pvzIsBAAA5UYavUyFJ+fLlU5UqVTJ0roeHh5ydnXX27Fmb7WfPnpWXV8aG42S0zYCAAPXv39/69ZUrV1SqVKkM1QDYI7vPiwEAAEhNukJFt27d0nTcvHnz/vOYfPnyqVatWgoKClLbtm0lScnJyQoKClLfvn3TU5bdbbq4uGTK1aEBe2X3eTEAAACpSVeoWLBggcqUKaMaNWrIGGP3N+/fv7+6dOmiRx55RHXq1NGUKVMUExNjXbmpc+fOKlGihMaOHSvpxkTs/fv3W++fPn1au3bt0n333SdfX980tQlkZ9l9XgwAAEBq0hUqevfurSVLlujYsWPq2rWrOnXqpCJFimT4m7dv317nz5/X8OHDFRkZqerVq2vNmjXWidbh4eFycnKyHn/mzBnVqPHPRcQmTpyoiRMn6oknnlBwcHCa2gSQcSwLDAAAUpOuUDF9+nRNnjxZX3/9tebNm6eAgAC1atVK3bt3V9OmTWWxWNJdQN++fW87NCklKKQoW7ZsmnpI7tQmgIxjWWAAAJCadE/UdnFxUceOHdWxY0edOHFCCxYs0Ouvv67r169r3759OXYFKAD/jWWBAQBAauxa/cnJyUkWi0XGGCUlJWVWTQCyKYYxAQDuFpZZz1nSHSoSEhKsw59CQkL09NNP65NPPlHz5s1t5j8AAAAAGZXdl1lnnqGtdIWK119/XUuXLlWpUqXUrVs3LVmyRB4eHllVGwAAAHKp7L7MOvMMbaUrVMycOVOlS5fWAw88oPXr12v9+vWpHvf1119nSnEAAADInbL7MuvMM7SVrlDRuXPnDK3wBAAAANxL7tVhTBmV7ovfAQAAAMDNmFkNAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdskWoWL69OkqW7asXF1dVbduXW3ZsuWOx3/11VeqVKmSXF1dVa1aNf344482+1999VVZLBabW/PmzbPyIQAAAAC5lsNDxbJly9S/f38FBgZqx44d8vPzU7NmzXTu3LlUj9+0aZM6duyo7t27a+fOnWrbtq3atm2rvXv32hzXvHlzRUREWG9Lliy5Gw8HAAAAyHUcHiomT56snj17qmvXrqpSpYpmzpwpd3d3zZs3L9Xjp06dqubNm2vgwIGqXLmyRo0apZo1a+qTTz6xOc7FxUVeXl7WW+HChe/GwwEAAAByHYeGisTERG3fvl3+/v7WbU5OTvL391doaGiq54SGhtocL0nNmjW75fjg4GB5enrqwQcfVO/evXXhwoXb1pGQkKArV67Y3AAAAACkjUNDRVRUlJKSklS8eHGb7cWLF1dkZGSq50RGRv7n8c2bN9eiRYsUFBSk8ePHa/369WrRooWSkpJSbXPs2LEqVKiQ9VaqVCk7HxkAAACQe+RxdAFZoUOHDtb71apV08MPP6zy5csrODhYTz755C3HBwQEqH///tavr1y5QrAAAAAA0sihPRUeHh5ydnbW2bNnbbafPXtWXl5eqZ7j5eWVruMl6YEHHpCHh4cOHz6c6n4XFxcVLFjQ5gYAAAAgbRwaKvLly6datWopKCjIui05OVlBQUGqX79+qufUr1/f5nhJ+uWXX257vCSdOnVKFy5ckLe3d+YUDgAAAMDK4as/9e/fX3PmzNHChQsVFham3r17KyYmRl27dpUkde7cWQEBAdbj33rrLa1Zs0aTJk3SgQMHNGLECG3btk19+/aVJEVHR2vgwIHavHmzjh8/rqCgILVp00a+vr5q1qyZQx4jAAAAcC9z+JyK9u3b6/z58xo+fLgiIyNVvXp1rVmzxjoZOzw8XE5O/2SfBg0aaPHixRo2bJiGDBmiChUq6JtvvlHVqlUlSc7OztqzZ48WLlyoS5cuycfHR02bNtWoUaPk4uLikMcIAAAA3MscHiokqW/fvtaehn8LDg6+ZVu7du3Url27VI93c3PT2rVrM7M8AAAAAHfg8OFPAAAAAHI2QgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYJY+jCwAAAMhsERERioiISPd53t7e8vb2zoKKgHsboQIAANxzZs2apZEjR6b7vMDAQI0YMSLzCwLucYQKAABwz+nVq5dat25tsy0uLk4NGzaUJIWEhMjNze2W8+ilADKGUAEAAO45qQ1jiomJsd6vXr268ufPf7fLAu5ZTNQGAAAAYBdCBQAAAAC7ECoAAAAA2IU5FQAAIFsLDw9XVFSU3e3ExcVZ7+/atSvVidoZ4eHhodKlS2dKW0BORagAAADZVnh4uCpXrqzY2NhMbTdlFajM4O7urrCwMIIFcjVCBQAAyLaioqIUGxuryZ/Ok2+FSna1FR8XpxefeVKStPy7ILlmQk/F4UMH1L93N0VFRREqkKsRKgAAQLbnW6GSqvrVsKuN2JuWlK1SzU/uLCkLZBomagMAAACwC6ECAAAAgF0IFQAAAADswpwKAABwzzkXGaFzZyNttsXH/7Ok7P69u+XqeutEbc/iXvL08s7y+oB7DaECAADccxYvmqtpE8bcdv+LTz+Z6vY3Bw5Vv0HDsqos4J5FqAAAAPeclzp3l3+zVuk+z7O4VxZUA9z7CBUAAOCe4+nlzTAm4C5iojYAAAAAuxAqAAAAANiFUAEAAADALsypAAAAuMsiIiIUERGR7vO8vb3l7c1cEWQ/hAoAAIC7bNasWRo5cmS6zwsMDNSIESMyvyDAToQKAACAu6xXr15q3bq1zba4uDg1bNhQkhQSEiI3t1svzkcvBbIrQgUAAICdwsLC7sr3Se+wKQ8PD5UuXToLKwJuIFQAAABk0PmzkZLFSZ06dcrUdlN6LOzl6uaugwfCCBbIcoQKAACADLpy5bJkklXm+QC5Fkv7G/frMZd1Pfayzbbk64k6+e0kSVKpNu/IKU++W87L415IefIXStP3iD8frhMrxyoqKopQgSxHqAAAALCTa7HScvepmObjI35bqMjgRbfdnxIu/s2rUWd5N+mS7vqArEaoAAAAuMs8aj+tQpXqp/u8vAWKZkE1gP0IFQAAAHdZ3gJFCQi4p2SLK2pPnz5dZcuWlaurq+rWrastW7bc8fivvvpKlSpVkqurq6pVq6Yff/zRZr8xRsOHD5e3t7fc3Nzk7++vQ4cOZeVDAAAAAHIth4eKZcuWqX///goMDNSOHTvk5+enZs2a6dy5c6kev2nTJnXs2FHdu3fXzp071bZtW7Vt21Z79+61HvPhhx9q2rRpmjlzpv744w/lz59fzZo1U3x8/N16WAAAAECu4fBQMXnyZPXs2VNdu3ZVlSpVNHPmTLm7u2vevHmpHj916lQ1b95cAwcOVOXKlTVq1CjVrFlTn3zyiaQbvRRTpkzRsGHD1KZNGz388MNatGiRzpw5o2+++eYuPjIAAAAgd3DonIrExERt375dAQEB1m1OTk7y9/dXaGhoqueEhoaqf//+NtuaNWtmDQzHjh1TZGSk/P39rfsLFSqkunXrKjQ0VB06dLilzYSEBCUkJFi/vnz5xhJvV65cyfBjs0d0dLQkae+enYqNiXFIDXdy+NBBSVLsmUNKSoxzcDW3Sog6JenG/6OjnsOU7y9lz+eR5zBteA4zjucwbbLz88hzmDY8h/+N59A+2eV5LFCggCwWy+0PMA50+vRpI8ls2rTJZvvAgQNNnTp1Uj0nb968ZvHixTbbpk+fbjw9PY0xxvz+++9Gkjlz5ozNMe3atTMvvvhiqm0GBgYaSdy4cePGjRs3bty4cUvldvny5Tu+r2f1J0kBAQE2vR/Jycn6+++/VbRo0TsnslzqypUrKlWqlE6ePKmCBQs6uhxkAM9hzsdzeG/gecz5eA5zPp7DtClQoMAd9zs0VHh4eMjZ2Vlnz5612X727Fl5eXmleo6Xl9cdj0/59+zZs/L29rY5pnr16qm26eLiIhcXF5tt999/f3oeSq5UsGBBXnw5HM9hzsdzeG/gecz5eA5zPp5D+zh0ona+fPlUq1YtBQUFWbclJycrKChI9eunfkGY+vXr2xwvSb/88ov1+HLlysnLy8vmmCtXruiPP/64bZsAAAAAMs7hw5/69++vLl266JFHHlGdOnU0ZcoUxcTEqGvXrpKkzp07q0SJEho7dqwk6a233tITTzyhSZMmqVWrVlq6dKm2bdum2bNnS5IsFov69eun0aNHq0KFCipXrpzee+89+fj4qG3bto56mAAAAMA9y+Ghon379jp//ryGDx+uyMhIVa9eXWvWrFHx4sUlSeHh4XJy+qdDpUGDBlq8eLGGDRumIUOGqEKFCvrmm29UtWpV6zGDBg1STEyMXnvtNV26dEkNGzbUmjVr5Orqetcf373IxcVFgYGBtwwZQ87Bc5jz8RzeG3gecz6ew5yP5zBzWIwxxtFFAAAAAMi5HH7xOwAAAAA5G6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECqAe8zNC7qxuFvOxvMH3H3nzp3T+fPnJUmrVq3S4sWLHVwR7JHyezQpKcnBldz7CBWwvuAOHz6s33//Xbt27VJkZKSDq0J6pfaL02KxOKocZNCePXs0fPhwSTx/wN129epVValSRRMmTNDcuXP1/PPPO7ok2Mliseinn37SzJkzlZiY6Ohy7mkOv/gdHMsYI4vFoq+//lr9+/dXoUKFdP36dfn4+Gjw4MF68sknHV0i0iDlefzll1+0YMECXbp0SV5eXho1apS8vLxsLiCJ7Gv37t2qX7++BgwY4OhSkElSXpvIGQoUKKAvv/xSrVu3VlJSkqZNm6aXXnrJ0WXBDlu3blX79u01a9Ys/hZmMf53czmLxaJNmzapW7duGjhwoHbv3q0hQ4bot99+065duxxdHtLIYrHo22+/1bPPPitPT0917NhRv/76q1q3bq2TJ086ujykwe7du9WgQQO9/fbbev/99x1dDjIopccwNjZWycnJSk5OdnBFSCtjjJKTk+Xn56dr164pOTlZEREROnfunKNLQwbt27dPe/bsUZ8+fdSxY0dCRRbjfzcXS/njt2HDBrVo0UJ9+vTRyZMnNWzYMPXq1UvvvPOOJPELNZszxuj8+fP64IMPNGLECH300Udq2bKljDGqW7euypQpY3Mssp8///xTDRo00IABAzRmzBjr9gULFuirr75yYGVIj5ReiZ9++kldu3ZV3bp1NWzYMG3evNnRpeE/pDx358+fl5eXlyIiIrR69WqNHTtW48eP5+9gDmOMUUxMjOrVq6eePXsqIiJCkuTk5MTfwSxEqMjFUrrkExMTVbp0aUVGRqp+/fpq2rSppk+fLkn66aeftHLlSsXFxTmyVKQi5RejxWKRi4uLoqOj1aNHD505c0bVqlVTixYtrM/jDz/8YD0W2cuFCxfUoUMH+fr6auTIkdbtH3zwgd5++22VLl3agdUhPVJ6DJ9//nlVrFhRbdu21d69e/X6668rODjY0eXhNlICxXfffadOnTppyZIlKlKkiJ5++mktW7ZMH330kSZOnGgNFh9++KGWLl3q4KpxJxaLRfnz59eOHTtUsmRJ/fHHH9qzZ491H7KIQa504sQJ6/2PPvrIeHp6Gh8fH9OnTx/r9uvXr5tu3bqZ119/3cTFxTmiTPyHr7/+2owePdokJiaa6tWrm4kTJ5py5cqZXr16mcTERGOMMeHh4aZRo0bmp59+cnC1SE1kZKQZMGCAqVatmhk5cqQxxpgJEyaYokWLmrVr16Z6TlJS0t0sEbcRHR1t8/XevXvNQw89ZObMmWOMMebChQumWLFipkKFCuahhx4y69atc0CVSIuvv/7auLq6mkmTJpnDhw/b7Fu8eLHJmzeveeGFF0yHDh2Mi4uL2bFjh4Mqxe0kJyenuv3gwYPm/vvvN61atbrluUXmIlTkQvv37zcPP/yw+fDDD63bnn/+eePq6mr27dtn4uLiTHR0tBk8eLDx8vIyYWFhDqwWt7N7927j7e1tZs6caeLj480777xjChcubJo1a2ZzXEBAgKlRo4Y5efKkgyrFfzlz5owJDAw0VapUMU888YTx8PBI9Q3oqlWr7nptSF1gYKBp06aNTcALCwszXbt2NVevXjUnTpwwvr6+5n//+59Zt26dqVixoqlWrdptgyIc5+jRo6Zy5cpm1qxZxpgbH6jFx8eboKAgExUVZYy5ETqef/5589xzz5ndu3c7slykIiVQbNq0ycyaNcsEBgaa8PBwExMTY4y58b6nUKFC5umnnzZHjhxxZKn3NIsxDC7LbQ4fPqxx48Zpz549eumll9SvXz+dPHlSHTp0UFhYmEqVKqUiRYror7/+0vfff68aNWo4umT8y8GDB7V48WJduXJFH330kSRp7969evvttxUbG6unn35apUuXVkhIiJYsWaL169fLz8/PwVXj38xNQ9jOnDmj2bNna86cOWrUqJG+/PJLSTeWCHZ2dlZgYKBGjRqlo0ePqmzZsg6sGtKN1+C1a9dUtWpVXbt2TXnz5pUkRUZGysvLS926dVNCQoLmzp0rV1dXPfvss/r9999VsWJFrV27Vu7u7gzDyCaOHj2q5s2ba968eapfv74mTZqkb7/9VgcPHlS+fPm0ZcsWlSxZUnFxcXJycpKLi4ujS8ZNzP8PX1u1apV69Oih6tWrKzIyUomJiRo2bJiefvppFS1aVGFhYXr88cdVpUoVLVy4kN+jWcGxmQZ3Q2pdgkeOHDF9+/Y11atXN5988ol1+5w5c8zEiRPN559/bo4fP343y0QaJCUlmXPnzpm6deua+++/37z88ss2+7dt22befvttU65cOVOrVi3zzDPPmD179jioWqTmzJkzZs+ePSY+Pv6WfRERESYwMNBUrlzZBAYGWrcPGzbMuLu7m23btt3FSnE7N/9ODQ4ONo0aNTKRkZHWbbGxsaZWrVpmzJgxxhhjrl27Znr06GE+/vhjc+7cubteL+7s6NGjpmnTpqZevXrG29vbtG7d2owaNcqEhYUZX19fM2TIEEeXiP+wceNG4+XlZebPn2+MMeby5cvGYrGYBx980MyaNcv8/fffxhhj/vzzT1OmTBkTHh7uwGrvXfRU5BJbtmzRsWPH1L59e+u2I0eOaOrUqVq3bp1ef/119e7d24EV4k7Mv9a6//HHHzVixAj9/fffmjlzpvz9/W2Oj4uLk7Ozs5KTk+Xq6nq3y8Vt/Pnnn3ruuefUqVMnvfLKK3rggQckSTNnzpSPj49at26t8PBwzZs3T8uWLVPXrl2VlJSk999/XyEhIapVq5aDHwGkf16Px48f17Vr11SvXj3VrVtXixYtkoeHhxITE/Xqq6/q3Llz6tOnjzZv3qyvvvpKGzduVIkSJRxdfq6W8tzFx8dbF7mQpODgYO3cuVPGGL388ssqXry4JKl58+Zq27at/ve//zmybNzB9evXNWfOHB0/flzjx4/XkSNH9NRTT6l58+a6dOmSfvzxR02cOFFt2rRRsWLFlJiYqHz58jm67HuTIxMNsl5ycrK5fPmyeeGFF0yNGjXMV199ZbP/yJEjpn79+qZMmTJm0qRJDqoSaREaGmp69eplrl+/bowx5ueffzZ16tQxL7zwgtmwYYP1uGvXrjmqRNzB0aNHTfHixU1AQICJiIiw2de5c2dTtGhRc/HiRWOMMadPnzbvv/++KVSokHFycqKHIhtatWqVqVq1qgkLCzNhYWGmZMmSpmnTpub8+fPGGGNWr15tmjVrZnx8fEzlypXN9u3bHVwxUnqYfvrpJ9OqVSvToEED8+KLL97yejTmxiT89957z3h5eZlDhw7d7VKRTrt37zb79u0z0dHR5oknnjDdu3c3xhhz9epVU7hwYVOyZEkzf/58k5SUdNsJ3bAfoeIelfKiiY2NNcYYs2XLFtOxY0fz2GOPmWXLltkc279/f1O2bFnz1FNPmQsXLtz1WvHfkpKSzAcffGAqVapk+vbtaw0W33//valXr5554YUXzMaNGx1cJe5kypQppkaNGqnui46ONq1atbJ5bZ46dcqMGzfOHDx48G6ViP+Q8nv11KlTpmnTpmbmzJnWffv37zclS5Y0/v7+1nB4/vx5c/ToUYY8ZSPffPONKVCggHn77bfNV199ZcqXL2+aNGlifv/9d+uk+xUrVphu3boZHx8fVnnKhm4OBf9eCW/Hjh2matWq5vfffzfG3HhdvvDCC+bVV19l5ae7gOtU3IPMTRdg6t27t/766y/Vrl1b77zzjry9vTV9+nSbC2o5OTnpjTfesK7NjezHyclJffv2Vbdu3bR582a98cYbSkpKUqtWrTRs2DBFRkZq9OjRCg0NdXSpuI0CBQooPDxc8+fP17lz53Tw4EHt2bNHO3fuVEhIiK5evao//vhDhw8f1tatW1W8eHENHDhQFStWdHTp+H8Wi0UbNmzQBx98IGdnZ7Vs2VKSlJycrMqVK+vnn3/WgQMH1KFDB50/f14eHh4qV66cihUr5uDKIUmHDh3Se++9pzFjxmjy5Ml66qmnlJiYqC1btqhHjx76448/JEnFihVT+fLlFRwczEIl2UzK+5tffvlF3bp1U/PmzRUQEKCDBw9Kkq5cuaILFy7o4sWLunTpkpYvXy5jjGbOnKny5cs7uPpcwMGhBllk5cqVpmDBgmbQoEFm37591u1bt241HTt2NFWqVDHt27c33bp1M4ULF2ZSdjb176Xvrl69asaOHWtq165t+vTpY/2U5uuvvzZPPfWUOXXqlCPKxG0cO3bMXLp0yRhjzK5du8zAgQONt7e3qVChgqlevbopU6aMqVixovHz8zP58+c3FovFVKlSxXh6evLpdja1aNEi4+LiYtzc3ExwcLB1e8prMSwszLi5uZnnnnuO64lkM7t27TJjxowxCQkJ5vTp0+aBBx4wffv2NZcvXzblypUzjRo1svb4Mow0+/rmm2/MfffdZ/r06WNmz55tihQpYho3bmy9/tZTTz1lihYtah588EFTpEgRhh7eRYSKe9Cff/5pihcvbr0AU4ozZ85Y/508ebJ59NFHTdu2bVlzO5tJ6do9ePCgqVGjhhk+fLjN/kuXLplhw4YZb29vM2jQIOtQqH9fiAuOlZiYaBo3bmy8vLysK48YY8zQoUOtKztduHDBJCcnm6tXr5p3333XtG7d2uzevZuVSbK5lStXGk9PT9O5c2dz4MAB6/abX7t//fWXo8rDbVy/ft163aVXX33VdOjQwXodg9atWxuLxWLq1KnDxV6zscjISFOrVi3z0UcfGWNu/J719PQ0/fr1swnx8+fPNwsXLmTI013G8Kd70Llz51S2bFl16tRJFy9e1GeffaannnpKdevWVe/eveXk5KS3335bGzdu1OLFi/Xwww87uuRcLTk5WZJ07do1STeGWBw9elQPPPCA6tatq6CgIH3wwQfW4wsVKqT+/fvLxcVFs2fP1oABAyRJ7u7ud7943FbevHk1bdo0lSpVSo8++qguXrwo6cbz/dNPP+nixYvW4Yb58+dXVFSU6tSpo4cfflilSpVyZOn4f+b/F0cMCwvT+vXr9f333ys5OVnPPfecpkyZoqCgIE2fPl2HDh2SdOO1a4xRxYoVVaFCBUeWnquZGx+YSpJOnTql06dP6+DBg3J2dlalSpVkjFF4eLiqVatm/b1Zvnx5bdu2TcuWLWPFvGzik08+0S+//KKkpCTrtpRVELt166YTJ06obNmyatOmjT766CM5OTnpt99+kyS9+uqr6ty5M0Oe7jaHRhpkipRPxxISEowxxmzevNlYLBbz1ltvmapVq5rWrVubAQMGmMmTJxtPT0/z66+/OrJcpOLgwYOmd+/eJikpySxfvtw4Ozub06dPm7Nnz5q33nrL1K1b14wePdp6/Pnz503Hjh3NmDFj+FQ7G0p5TSYlJZmwsDDToEEDU6NGDXPx4kWzceNGU7NmTfPOO++YEydOmD///NMMGTLEFC1alKvXZyMpz+HKlSuNr6+veeihh4yfn58pW7asdUjpl19+aUqUKGH69evHc5dN3LzYyKpVq4yfn5+pWrWqKV68uBk0aJB1iGi9evXME088YVatWmX69etnihYtau3NR/bg5+dnfHx8THBwsLVHPiIiwpQpU8Z89tlnxtfX17z22mvWoWp//fWXad68uVm/fr0jy87VCBU53M1L5L366qvWX5iLFy82LVu2NIMGDTL79++3Hl+7dm3zzTffOKRW3CrlF2VISIixWCymSZMmxtnZ2SxYsMB6zLlz58xbb71l6tSpY958802zb98+M3jwYNOkSRMTFRXlqNKRipuHTSQmJlrvv/POO8ZisZjatWubS5cumXHjxpnKlSsbi8ViKleubKpVq2Z27tzpgIpxJyEhIaZgwYLWoaRbtmwxFovFTJkyxXrMl19+aVxdXc27775r85zj7jt//rwpUaKECQsLM7/99ptxd3c3M2fONJGRkeazzz4zFovFfPvtt8YYY06cOGF8fX1NhQoVTMWKFVnlKRu5eXWnJk2amNKlS5t169ZZPzgdMGCAcXd3N82bN7c5b8iQIaZmzZrMLXQgQsU9YMWKFaZQoUKmf//+Nr8YU8aKpggICOBKktnI7NmzzWeffWauXr1qjDFm5MiRxmKxmIYNG5orV67YHHv+/HnzwQcfGF9fX+Pj42PKlSvH5LNs5tSpU6Zdu3bmt99+s9k+fvx4U7RoUfPZZ5+ZGjVqmDp16piLFy+ayMhIs3LlSrN7925z9uxZB1WNO/n0009Njx49jDE3rjNSunRp07t3b+v+lDc/S5cuZQ5FNnD06FFTsmRJs3v3bjN06FDz5ptvGmNuLHhRoUIF07NnT5vjExMTzbFjx2zmPCF7uHmi/GOPPWYNFsbcWDb26aefNtWqVTOzZ882ixcvNn379jUFCxY0u3btclDFMIZQkeP8+83mnj17TLFixczs2bNttp8/f976olyyZIl55ZVXjKenJ5/GZCP+/v6mUqVK5osvvjCJiYnm448/NgEBASZfvnzmlVdeMSdPnjTG/PPGJT4+3pw9e9Zs2LAh1Ys1wbFSLiTZsmVLExISYowxZuzYsaZIkSLml19+McbcWDPdz8/P1KxZk2vCZBN3WqGpT58+5vnnnzdnz541pUqVMq+99pr19fjll1+aESNG3K0ykUa1atUy77//vmncuLGZPHmyiY+PNyVKlLB57qZOncow4Gws5XlKuZCkMcY8/vjjpmTJktahTaGhoeatt94yRYsWNTVr1jQtWrQwe/bscUi9+AehIgf56KOPTK9evcy1a9esfwi//fZbU79+fWPMjbGkCxYsMM2aNTMlSpQwQ4YMMadPnzarV682L7/8ss0wKDjOzV277dq1Mw899JBZtmyZdehEcHCwNVicPn3aemxoaOhdrxXpkzKmt02bNqZnz56mWLFiZu3atTbHhIWFmXLlypl69eqx5Gg2cfr0abN161ZjjDFffPGFdXWuNWvWmCeffNIULVrU2mORckXeN954w3Tv3p1V17KJlNfS888/b0aOHGmWLl1qnnzySVO8eHHz+uuvW4eaXrt2zbz88stm0KBBDFfLhm4e0v3iiy9aP5AxxpgnnnjCJlgYY0xUVJRJSEi4ZWQGHINQkQOk/DKcNm2adaxgytjCjRs3GovFYt59913zyCOPmNatW5u33nrLjB8/3ri4uFjfiKZcWRvZw81du23btjVVqlQxn3/+uXUo1Pr1602+fPlM586dzebNm837779v7rvvPnP27FmbUILs5+DBg+app54ybm5uZuLEidbtNweIgwcPmqNHjzqiPNwkOTnZxMXFmdq1a5s2bdqYcePGGYvFYmbNmmWMuRE2mjdvbsqUKWNWrlxpjLnxJmbIkCHG09OTD2oc7MiRI+aTTz4xYWFh1mG9n3/+uXnqqafM6tWrjZ+fn/Hz87NelT4hIcEMGTLElC5dmuFq2djXX39t3NzczNixY83mzZtt9qUEi+DgYOv7IGMMfxezCUJFNpfyRuTIkSNm1KhRxhhjNm3aZDM8Zvbs2aZ+/fqmf//+Nt1/tWvXvuVTUjheal27bdu2NVWrVrUJFhs3bjSenp7Gz8/PeHl5mW3btjmkXqTf4cOHTdOmTU2LFi2sF9My5s5DbeA4hw8fNqVKlTIWi8XaS3HzvgYNGpiqVauaUqVKmcaNG5tSpUoxlNTBEhMTzYsvvmhKly5typUrZwoWLGiaN29uypcvb0qWLGn+/vtv8/XXX5vq1aubKlWqmDZt2pgWLVqYYsWK8dxlY+Hh4aZy5crW61CkuDlAPPnkkyZ//vw2v1uRPViM+f/FnJHtJCcny8nJSbt371aNGjU0evRoDRkyRFOnTtX8+fP1yCOPaPTo0fLy8lJMTIzy589vPXfIkCFaunSpNm7cqBIlSjjwUSA1W7du1ZgxY/Tmm2+qSZMmkqRnn31Whw8f1rvvvqu2bdvqvvvu09GjRxUZGakyZcrwPOYwhw4d0ptvviljjN577z09+uijji4J/2L+/3oGsbGxqlKlihITE9W4cWP169dPdevWtR4XGRmp/fv36/fff5efn5/8/PxUpkwZB1YOSYqNjZW7u7sOHTqksLAwhYeHa8OGDfrzzz9VuXJlff755zpy5Ih++OEH7du3T35+fmrbti3XEMnGduzYoWeffVbfffed9RpaxhhZLBYlJSXJ2dlZktSqVStNmTKF5zK7cWSiwe2lfKK5b98+4+bmdsunZ5988olp0KCB6dKli824+2+//dZ07tyZT2OyuW+++cY88sgjpl27diY4ONi6PaXH4ssvv7T2WCDn+uuvv8zTTz9t6tWrx5yYbCalx3Dfvn0mISHBJCYmmr179xpfX1/z/PPP83zlALcb8rJq1SpTr14906pVK2uPMMNjsqd/Py9bt261Dm/69zG//voroy+yOa6onQ2l9FDs3btXTzzxhMqWLasRI0ZIkuLj4yVJffr0UYcOHXT48GENHTpUkZGRkqTo6Ghdv35dwcHBqlGjhqMeAv5DmzZtFBgYqHPnzmnq1Klav369JGnVqlWqVKmSBg0apJ9++snBVcJeFSpU0IQJE1SyZEn5+Pg4uhz8P/P/n3yuWrVKzZo1U0BAgBISEvTQQw9p8eLF2r17tyZPnqzQ0FBJN3p+R40a5eCq8W8pV1dOkZycLElq3bq1+vXrp+joaD399NOKioq65VhkDxaLRSEhIdq1a5ckqUyZMnJ2dtbMmTN16dIl6zGS9P3332v58uWKi4uzXjEd2YyjUw1spfRQ7Nq1y7i7u5tGjRoZHx8f63rbxtiOLZw2bZp59NFHTY8ePUxkZKQx5tbrU8Cxbv5E9N8TO7/99lvTuHFj06ZNG/P7779bt3fq1MkcOXLkrtaJrHPzaxbZw9q1a42rq6uZO3euOXbsmDHmn9fqtm3bzEMPPWTq1atnmjZtatzd3em5yCFSnsPk5GSzcOFC06JFC3PixAkHV4XbuXTpknnmmWeMj4+P9dpL69atM66uruaFF14wq1evNiEhIaZfv36mUKFCZu/evQ6uGHfCnIpsaNu2bWrQoIGGDh2qYcOGae7cuRo6dKheeuklTZ06VZKUmJiofPnySZKmT5+uGTNmqFGjRpo2bZp1zCEcI6Wn6fr168qTJ4+uX7+uv//+W02bNtXDDz+sIUOGqFKlStbjv/nmG/Xo0UOPPfaY3njjDescCwBZ4/r16+rVq5fuu+8+TZ061dpzcf36dTk7O8tisWjPnj1atmyZrly5ot69e6tKlSqOLhtplPJ8GmMUHR2tAgUKOLok/EvKcyRJISEhmjJliv78808tWbJENWvW1NatW9W9e3dFR0fLYrHo/vvv19y5c1W9enXHFo47IlRkQxs2bNDKlSutAeLy5ctatmzZHYPF7Nmz1bRpU5UtW9ZRZUP/BIojR45o4cKFunDhgjp16qT69etrxowZWrhwoapXr65+/fqpcuXK1vOaNm2q3bt3q0WLFpoxY4bc3NzorgeySGJiourUqaPGjRvro48+kmT7JufKlSsqWLCgrl+/LicnJzk5MVI4p7n5+YRjpfxdlKRr164pb968io+Pl6urq/WY0NBQjR8/XmFhYVq8eLFq1aqlixcv6tKlS0pMTJSnp6cKFy7sqIeANOI3ZTb0+OOPW4ODMUaFChVShw4dNGbMGC1evFhvvfWWJClfvnxKSEiQJL322msECgdL+cX5559/qkmTJrpw4YJKliypmjVrSpJef/119ezZU9u2bdPUqVN14MABSTc+NS1fvrzeeecdjRkzRu7u7vwxBDJZyudnxhg5OTnJz89PZ8+eVVRUlCRZP9nev3+/Bg8erL///lt58uQhUORQ/A7NPpycnHTixAkZY5Q3b15t2rRJTz31lI4dO2Y9pn79+nr33XdVtmxZderUSfv27VPhwoVVrlw5PfjggwSKHCKPowvAnaX8YixYsKA6dOggSRo6dKicnZ01efJkubi4OLI83CSlh6Jp06bq0qWLxo0bZ92XMhSqR48ekm70LAUEBKhJkyY6efKkfvnlF4WGhqpYsWKOKh+4J/37E2uLxaI8efKofv36euedd1S/fn116NBBxYoVk8Vi0fLly7VhwwbrBzYA7JOQkKAOHTooIiJCx48fV1JSkmJjY9WjRw/NnTvX+oFo/fr19dJLL6lr167y9/fX2rVrrcvKImcgVOQgKcHCyclJr732mlxcXDR27FhHlwX9s9793Llz9eijj2rw4ME2+/PkyWPtyejRo4eKFCmiJUuWaNKkSSpWrJi++uorAgWQyVICxYYNG/Ttt9/q+vXrqlSpknr37q3//e9/On36tEaNGqXffvtNBQsWVHx8vNasWaP169fL29vb0eUD94R8+fJpwoQJ6t27t+rXr6/Q0FB9/PHHGjx4sLp06aIFCxaoXLlykqQHH3zQOpT75mtvIWdgTkUOdPnyZX3zzTeqX7++Klas6OhycJPHHntMDz74oD777LNb9qWEipSxpPHx8YqOjpazszNdu0AWWbVqlbp27apnnnlG169f1969e1WnTh3NnTtXkrRo0SLt3btX27ZtU7Vq1dSrVy8mZQN2uHkOxc3btmzZos6dO6to0aIKDQ1VSEiIhg4dqqSkJGuweP/993X69Gl99NFHTLDPgQgVORST0LKX5ORkxcXFqV69emrbtq1GjRplHfL0b4GBgXr22WdZxQLIYtu2bVO7du00ePBg9erVSwcOHNDjjz+uy5cvq2XLllq1apX12JRrHDCHAsi4lEARGRmp48ePq169etZ9165d086dO9WxY0cVK1ZMmzdv1ubNmzV06FCtW7dOjzzyiPbv36/Q0FBVq1bNgY8CGcVvzxyKQJG9ODk5KX/+/KpTp44WLFigw4cPK0+ePNZhUSmOHTumkJAQXb9+3YHVAveWlEBgjLHel6SwsDA1bdpUvXr1Unh4uFq2bKmnn35aM2bM0Jo1a6xznCSxyhOQCZycnHTy5ElVrVpVDRo0UOPGjTVkyBD99ttviouLU506dbR06VLFx8erdu3aqlevnn7++WfNnj1b3bt31+7duwkUORi/QYFM1Lx5c12/fl3vvfeejhw5IovFYhMAFy1apISEBFbqAjJJyiejf/31l95880298MILmjhxoiTplVdeUY8ePZSUlKRevXrpscce07x589SmTRuVKlVK8+bNU6dOnRz8CIB7S3JyskqVKqWKFSsqOjpaZ86cUatWrfTEE0+oc+fOOnbsmIYOHarLly/L39/fOtewV69eKl++vKPLhx0IFUA6pfQ83PyJaIp27dqpc+fO+vnnn9WrVy9t3LhRFy9e1B9//KE+ffpoypQpmjFjhjw8PO522cA9JyVQ7N69Ww0bNtSpU6fk4uKiIUOGaPz48ZKk2rVr69SpUzp58qS6desm6canqXXr1tWiRYs0atQoRz4E4J5TpkwZffXVV6pSpYpKlCih3r176+DBg3r33Xd19OhRTZo0Sa+++qpcXV3122+/6bnnnpMkMRo/52P1JyAdFixYoJ07d2ry5Mlydna2mZCWcn/8+PEqWLCgli1bpkaNGqlw4cLy9PRUgQIFtH79epbIAzJByuttz549ql+/vt5++22NGTNGycnJ8vDwUGRkpHVRBFdXVyUkJGjFihWqXr26JkyYoIMHD2ry5MmsugZkAV9fX40dO1ZvvfWW3nvvPY0ZM0YdOnRQhw4ddOnSJX333Xc6cOCA8uTJo+HDh0tiWPe9gInaQBokJyfr2rVrGjBggEJDQ9W8eXONHDnylmCRlJQkZ2dnSdKRI0cUFhamiIgIVatWTeXLl+cNDJCJTp48qZo1a6px48Zavny5dXuHDh108OBBxcfHq2zZsnruuecUExOjCRMmyNnZWYmJifrpp59Uo0YNB1YP3PsOHTqkN954Q5IUEBCgJ554wmb/7RY0Qc5EqADS4PTp0ypRooQuXryoiRMnKigoSE2aNNGoUaNu22MBIGsdP35cL774ory9vTVo0CA9+uijGjdunEaNGqWAgAB5e3tr4sSJcnFx0ccffywPDw8dOnRINWrUUKlSpRxdPpArHDp0SG+++aaMMRo+fLgaNGjg6JKQRQgVwH9YsWKFBg4cqC+//FINGjTQpUuXNG7cOAUHB982WAC4O1LesOTLl0+enp5avXq1Pv/8czVt2lSSdOLECZUrV06zZs1Sz549HVwtkDsdOnRI/fv3V1RUlD766CObpWZx7+AdEPAfChYsqGrVqqlfv34KDQ3V/fffr8GDB6tRo0b67bff9N577ykpKUlOTk6pTt4GkHUqVKigqVOnKi4uTl9++aUGDRqkpk2byhija9euKU+ePKpWrZr1ApN8jgbcfRUqVNCECRNUsmRJ+fj4OLocZBF6KoA0WL9+vaZOnarjx4/rk08+sfZYjB8/XuvWrVPjxo01atQo5cmTx2ZeBYC748iRI3r99dfl7OysgIAAPfbYY5Kk4cOH64svvtD69esZ8gQ4WGJiovLly+foMpBFCBXAHdx85fJ169Zp2rRpOnHiRKrBwt/fXyNGjGDSGeAgN4/dHjt2rH755RcFBgZq06ZNTMoGgCxGqADSYf369Zo8ebJOnjxpEywmTpyor776Si+//LJ1eTwAd1/K2O0tW7bo4sWLCg0NVa1atRxdFgDc8wgVQCpSeii2b99uvXBWx44dVbRoUW3ZskUffPCBwsPDrcHi4sWL+vjjj9W5c2eulg042MGDBzVo0CB98MEHeuihhxxdDgDkCoQK4DZWrlyp3r17q0aNGjp8+LAKFSqk7t27q0+fPgoODta0adN0+vRpTZgwQY8//rjNUCkAjnXt2jXlzZvX0WUAQK7B6k9AKnbs2KE+ffroww8/1Nq1a/Xbb79p165dio2NlSQ1atRI/fv3V/78+TV8+HDFx8c7uGIANyNQAMDdRU8FcrV/9y6kfP3VV1/p008/1W+//aaDBw+qRYsWevLJJzVnzhxJ0rlz5+Tp6amQkBCVLVtWJUuWdNRDAAAAcDh6KpBrJScny2Kx6Pz589q2bZu2b99uDRinT59WwYIFlZSUpKeeekpPPfWUZs2aJUlavXq1Zs2apYSEBDVs2JBAAQAAcj3WvkSulHL16/379+u1115TgQIF5O7uruXLl8vZ2VnNmzfXqFGj5Obmpt69e2vq1KnWc4OCghQeHq6EhAS5uLg48FEAAABkD4QK5DrGGDk5OWnfvn1q2LChXn/9dfXq1UslS5aUk5OTjDF64IEHNGjQIH388cfWnohjx45pzpw5+uKLL7Rx40YVLFjQwY8EAAAge2BOBXKlv//+W23atFHNmjVteiFunmNx9OhRzZ8/Xx999JEKFy6swoULKzExUUuWLOFCWgAAADchVCBX2r9/v1q3bq158+apYcOGcnKynV6UEi6uXbumY8eOKTQ0VOXKlZOvr698fHwcVDUAAED2xPAn5Eq7du3SiRMn9Nhjj8lisVjnWKSwWCyKjY3V3r17VadOHVWsWNGB1QIAAGRvrP6EXKls2bLKkyePvv76a0m6padCkubNm6dhw4YpMTHxbpcHAACQoxAqkCuVKVNGBQsW1KJFi3TixAnr9ptHAx4/fly1atXiIloAAAD/gVCBXKlEiRL69NNPtXbtWr333nvav3+/pH+GPQ0ZMkQrVqxQ165dbS6OBwAAgFsxURu5VnJysubMmaO+ffvK19dX9evXl6urq06fPq3NmzdrzZo1rPIEAACQBoQK5HpbtmzRhAkTdPjwYRUoUEANGjRQ9+7dVaFCBUeXBgAAkCMQKgBJSUlJcnZ2dnQZAAAAORJzKgDZrv5EzgYAAEgfeioAAAAA2IWeCgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF3+D2pknZ0l7pkXAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "CellSAM Specialist vs Generalist by Data Type\n", @@ -877,7 +798,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -917,8 +838,6 @@ "c3 = '#deebf7'\n", "c4 = '#3182bd'\n", "\n", - "\n", - "cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose')\n", "cellpose_generalist_path = cellpose_path / 'general'\n", "cellpose_individual_path = cellpose_path / 'individual'\n", "\n", @@ -943,20 +862,9 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiUdJREFUeJzs3XdYFGfXBvB7QbqCBUFQEBREbIC991gTjBoL1thfWyyxN+y9RxNb7LHEmmI0iSQascRYUKPYy0YFFBvSFc73B9+OrKACCyws9++6uFxmnhnOjLuzc+ZpKhEREBERERER6cBI3wEQEREREVHux8SCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0xsSCiIiIiIh0lk/fARBR9lOr1QgPD9d3GKmytbWFs7OzvsPQm88//xybNm3CnTt34OLikqF9HDlyBI0aNYK/vz+mTp2qLG/YsCGOHj0KEcmcYHMBvtfzrtTe7+/6bBBR5mBiQZTHqNVqeHqWRXR0jL5DSZWlpQWCg6/qfMMVFRWFZcuWYffu3bh+/TpevXqFokWLwtXVFXXr1kXfvn1RunTpTIra8OXGGzK1Wg1PDw9Ex8bqO5RUWZqbI/jatUxLLoKCgrBq1Sr89ddfuH//PmJjY1G4cGFUrFgRLVq0QI8ePVC0aNFM+Vt5VV5MzonSg4kFUR4THh6O6OgYbB73GTyd7fQdjpZg9SP0mLsb4eHhOt1svXz5EnXr1sXFixfh5uaGbt26oUiRIggPD8fp06cxd+5clC5dOkcmFnPmzMG4ceNQvHjxTN/35s2bER0dnen7zanCw8MRHRuL5V4ucMtvoe9wtNyMjMEXF+7q/F4HgMTERIwZMwaLFi2CsbEx6tevj2bNmsHKygqPHj3CyZMnMWrUKPj7++PatWtZ8t7KLapXr47g4GDY2trqOxQig8TEgiiP8nS2Q2V3R32HkSWWLl2Kixcvom/fvlizZg1UKpXW+jt37iAuLk5P0b2fg4MDHBwcsmTfebXZjVt+C1S0sdR3GFlm4sSJWLRoESpXroydO3fCzc0tRZlz585h7NixiInJmTWV2cXS0hJly5bVdxhEBoudt4nI4Jw8eRIAMHjw4BRJBQC4urpq3Vy4uLjAxcUFz58/x4ABA1CsWDGYm5vDx8cH27dvT/VviAjWr1+POnXqwNraGpaWlqhatSrWr1//zvIbNmxAvXr1ULBgQVhaWsLd3R0DBgyAWq1Wyn3++edQqVS4e/eusiw+Ph5fffUVmjdvDicnJ5iZmcHOzg7t2rXD+fPn03xeGjZsmOJ8JCYmYt26dahevToKFy4MCwsLlChRAp988gmOHDkCAJg6dSoaNWoEAJg2bRpUKpXykzxOyn7Xr1/HggULULRoURw6dCjVpAIAKleujN9//z1Fv52LFy+ic+fOcHBwgKmpKUqWLImhQ4fiyZMnWuXu3r0LlUqFzz//HDdv3kTbtm1RqFAhWFlZoWnTprhw4UKqf/fRo0cYMWIE3NzcYGZmBltbW7Rv3x7//vtvirLJP4dDhgyBk5MT8uXLh40bNwIAzp49iyFDhqBChQqwsbGBhYUFKlasiLlz5+LVq1dpOl9HjhyBSqVK0Zzvxo0b6NWrF1xdXWFmZobChQvDy8sLw4cPV5o9qVQqHD16VHmt+fn888/T9LeJ8gLWWBCRwSlSpAiApJsub2/vNG0THx+Ppk2bIjIyEt27d0dUVBS+//57dOnSBeHh4Rg6dKhSVkTQtWtXbN++He7u7ujSpQtMTU3x+++/o0+fPrhy5QoWLlyolE9MTESnTp2we/duFC9eHH5+frC2tsbdu3fx/fffo2XLlu+tTXj69CmGDx+OevXqoVWrVihUqBBu376NH3/8EQcPHsRff/2FatWqZehcjR8/HvPnz0fp0qXRpUsXFChQAA8ePEBgYCAOHz6Mhg0bomHDhrh79y42bdqEBg0aoGHDhsr2BQsWzNDfpcyxadMmJCQkYMCAAWnqP5Ev35uv/R9//BEdO3aEkZER2rRpAycnJ1y5cgUrVqzAr7/+ir///huFChXS2v7u3buoWbMmypcvj969e+PWrVv44Ycf0KhRIwQHB8Pe3l4pe+vWLTRs2BD3799Hs2bN8Omnn+LRo0fYs2cPfv31VwQEBKBGjRpa+4+Li0Pjxo0RGRkJX19f5MuXT9nn2rVr8dNPP6F+/fpo1aoVoqOjceTIEYwfPx7//PMP9uzZk6Fz+PDhQ1SvXh1RUVFo3bo1OnXqhKioKNy4cQNff/01Fi5ciHz58sHf3x8bN27EvXv34O/vr2yf1msMUV7AxIKIDE6HDh2wdetW9O3bF6dPn0azZs1QpUoVJeFITUhICNzd3XHixAmYmpoCACZMmAAfHx+MHj0a7dq1U9qmr1u3Dtu3b0evXr2wevVqmJiYAEhKTj777DMsWrQIfn5+qFKlCgDg66+/xu7du9GkSRP89NNPsLB4094/Jibmg81TChUqBLVanaJt/OXLl1GzZk1MmDABv//+e/pP1P8fi6OjIy5evAhLS+3mQk+fPgUAJZHYtGkTGjZsmGs6b+cFmto5TY1SWj158gTdu3eHra0tjh8/jpIlSyrrduzYAT8/P0yZMgVfffWV1nZHjx7F3LlzMXbsWGXZ5MmTMXPmTGzYsAHjxo1Tlvfo0QMhISE4dOgQmjdvriyfNGkSqlatin79+uHixYta+w8NDYWXlxeOHz+u9TkBkj6PK1euhLGxsbJMRNC3b1+sX78ex48fR506ddJ1HgBgz549eP78OZYuXYphw4ZprXv69KmSjE2dOhVHjhzBvXv3+Bkgegc2hSIig+Pr64tFixZBRLBo0SI0b94ctra2cHNzw5AhQ3Djxo1Ut5s9e7aSVABAiRIlMGzYMMTFxWHHjh3K8hUrVsDKygorV65UkgoAMDU1xaxZswBAqwnV119/DWNjY3zzzTcpbpYsLCxQuHDh9x6PmZlZqh1uy5cvj0aNGuGvv/5Kc1OQ1JiammrdrGl8KC7Sv9DQUACAo2PK/lJHjhzB1KlTtX40zds2b96MiIgIzJkzRyupAIDOnTujcuXKWu95DVdXV4wePVprWZ8+fQAA//zzj7Ls/PnzOHHiBHr27KmVVABAmTJl0K9fP1y6dCnVJlHz589P8TkBkvoIvf0+ValUGDx4MADg8OHDKbZJj9T+Jj8DROnDGgsiMkgjR45Ev379cOjQIZw4cQJnzpzB33//jZUrV+Lbb7/Fzp074evrq5TPly8fatWqlWI/9erVAwClL0N0dDQuXboER0dHzJs3L0V5zQ3+1atXAQCRkZEIDg6Gm5sb3N3dM3w8QUFBmD9/PgIDAxEaGpoikQgPD89Qp+/OnTvj66+/RoUKFdC5c2c0atQItWrVSvUmi3KXI0eOYNq0aSmWN2zYEKdOnQIA/P3337h161aKMrGxsQgPD0d4eLjWCEre3t4wMtJ+JlmiRAkAwPPnz5Vlmv2HhYWl+nRf8/m4evUqKlSooCw3NzdHxYoVUz2e+Ph4rFixAjt27MDVq1cRGRmpNezrw4cPU93uQz755BOMHz8egwcPRkBAAFq0aIEGDRqgVKlSGdofUV7GxIKIDFaBAgXQoUMHdOjQAQDw4sULTJgwAV9//TX69OmDBw8eKDUUtra2KW6YACjtu1+8eAEAePbsGUQEDx48SPWmTSMqKkprO12G+Dxx4gQaN24MAGjWrBnc3d2RP39+qFQq7N+/HxcuXMjwKFfLli2Dq6srNmzYgJkzZ2LmzJkwNzdHx44dsWjRIg7LmcPZ29sjODgYDx8+TDHakaaWAnjTvElD08xt5cqV791/VFSU1nvA2to6RRlNU6GEhIQU+z9w4AAOHDjw3v0nZ2dnl+qACwDw2Wef4aeffkKZMmXQqVMn2NnZwcTEBM+fP8eyZcsy/BlwcXHBqVOnMHXqVPzyyy/4/vvvAQBly5bF9OnTlesHEX0YEwsiyjNsbGywYsUKHDhwAPfu3cOlS5eUfhDh4eFITExMkVyEhYUp2wJvbqyqVKmCM2fOpOlvAsCDBw8yHPesWbMQFxeHY8eOoW7dulrrTp069c4RedIiX758GDVqFEaNGoWHDx/i6NGj2LBhAzZv3ozQ0FD8+uuvGd43Zb3atWvjyJEj+PPPP5XkMy007+NLly5p1RhkFs3+v/rqKwwZMiTN270rqfjnn3/w008/oXnz5jhw4IBWk6hTp05h2bJlOsVboUIF7N69G69evcLZs2dx8OBBLF++HJ06dYKjo2OG+m4Q5UXsY0FEeYpKpYKVlVWK5a9fv1Y6wiZ37NgxAICPjw+ApFoQT09PBAcHazX9eJf8+fOjXLlyuHPnzjv7dnzIrVu3ULhw4RRJRXR0NM6dO5ehfabG0dERfn5+yrClhw8fVjqWa27kkj+VJv3r2bMnjIyMsGbNGoSHh6d5O81oTKm95zNDZu9f01yrdevWKfpZaD6jmcHExAQ1a9bEtGnTsHz5cogIfv75Z2U9PwdE78fEgogMzurVq7U6kia3f/9+BAcHo2DBgime1E6YMAHx8fHK7/fv38eyZctgZmaGzp07K8u/+OILREdHo1+/fimacgBJE/Aln99h8ODBSEhIwKBBg1KMABUbG6s0G3mXkiVL4tmzZ7h8+bKyLCEhAaNGjcLjx4/fu+37xMXF4cSJEymWR0VFITIyEiYmJkoNjqYT63///Zfhv0eZr0yZMhgzZgwePXqEli1b4ubNm6mWezsJ7tWrFwoUKICJEydqva80oqOjlX4SGVG9enXUqFED27dvx86dO1OsT0xMVOaESAtNB/PAwECt5ZcvX8acOXMyHCeQND9GREREiuWa2kpzc3NlGT8HRO/HplBEZHAOHjyI//3vf3Bzc0OdOnXg6OiIqKgonD9/HseOHYORkRG+/vprmJmZKds4ODggKioKlSpVwieffKLMY/HkyRMsX75cq4/EgAEDcOrUKWzatAnHjx9H06ZN4ejoiLCwMFy9ehV///03tm3bpkxGNnDgQBw9ehTff/893N3d4evrC2tra6jVavz666/49ttv8emnn77zeIYOHYrffvsNdevWRceOHWFubo4jR47gwYMHaNiwoTLST3rFxMSgTp06KFOmDKpUqQJnZ2dERkbi559/RmhoKEaNGqWco7Jly8LR0RE7duyAmZkZSpQoAZVKhaFDhyrNvUg/Zs2ahfj4eCxevBhly5ZF/fr14eXlBUtLSzx69AgXL17E6dOnkT9/fmXOhaJFi2L79u3o0KEDvLy80KJFC5QtWxZxcXG4e/cujh49itq1a+PQoUMZjmv79u1o1KgROnfujKVLl6Jy5cqwsLCAWq3GyZMn8fjxY8TGxqZpX9WrV0f16tXx/fffIyQkBDVr1oRarcaPP/6I1q1bY/fu3RmOc8uWLVi9ejXq16+P0qVLw9raGleuXMEvv/yCwoULo1evXkrZxo0bY/fu3Wjfvj1atmwJc3NzeHl54ZNPPsnw3ycyJEwsiPKoYPUjfYeQQmbFNG/ePNSpUwe///47/vrrL4SEhABI6kDds2dPDB06VOlboaGZ4G7cuHHYsmULnj9/jrJly+Krr77S6vQKJDWn2rhxI1q1aoW1a9fi559/RmRkJOzs7ODu7o6FCxeiadOmWuV37NiBZs2aYd26ddi8eTNEBMWLF0fHjh1TxPK2jz/+GLt378bs2bOxdetWWFpaonHjxti3bx+mT5+e4fNkZWWFefPmISAgAMeOHcOjR49QqFAheHh4YM6cOVq1NMbGxti7dy/Gjh2L7du34+XLlwCAbt265fjE4mbk++cJ0YfMjMnIyAiLFi1Ct27dsGrVKvz111/4559/EBcXh8KFC6N8+fJYsGABevToATs7O2W71q1b4/z581iwYAEOHz6M33//HVZWVihRogR69eqFbt266RSXq6srzp8/j8WLF2P//v3YsGEDjI2N4eDggPr16+Ozzz5L876MjY3x888/Y9y4cTh06BD++ecf5bPWsmVLnRILPz8/xMbG4vjx4zh9+jTi4uJQokQJDBw4EKNHj9aavLJfv364e/cuduzYgXnz5uH169fo2bMnEwui/6eS5GO1EZHBU6vV8PQsi+jonHezBQCWlhYIDr763pmoM5umZiF58yXK/dRqNTw9PBCdxqfi2c3S3BzB165l63udiCgrMbEgyoPUanW6OnpmJ1tb22y/0WJiYbj4Xiciyj5MLIgoz2NiQUREpDuOCkVERERERDpjjQUREREREemMNRZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhZERERERKQzJhapEBFERERARPQdChERERFRrsDEIhUvX76EjY0NXr58qe9QiIiIiIhyBSYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESksxyRWKxcuRIuLi4wNzdHjRo1cPr06XeWXbt2LerVq4dChQqhUKFCaNq0aYryn3/+OVQqldZPixYtsvowiIiIiIjyLL0nFjt37sTIkSPh7++Pc+fOwcvLC82bN8ejR49SLX/kyBH4+fnhzz//xMmTJ+Hk5IRmzZrhwYMHWuVatGiBkJAQ5Wf79u3ZcThERERERHmSSkREnwHUqFED1apVw4oVKwAAiYmJcHJywtChQzFu3LgPbp+QkIBChQphxYoV6NGjB4CkGovnz59j//79GYopIiICNjY2ePHiBaytrTO0D8q9NMloejk4OMDBwSELIiIiIiLK+fLp84/Hx8fj7NmzGD9+vLLMyMgITZs2xcmTJ9O0j+joaLx69QqFCxfWWn7kyBHY2dmhUKFCaNy4MWbOnIkiRYqkuo+4uDjExcUpv0dERGTgaMhQrF69GtOmTUv3dv7+/pg6dWrmB0RERESUC+g1sQgPD0dCQgLs7e21ltvb2+Pq1atp2sfYsWPh6OiIpk2bKstatGiBdu3awdXVFbdu3cKECRPQsmVLnDx5EsbGxin2MWfOnAzdSJJhGjBgAHx9fbWWxcTEoG7dugCAwMBAWFhYpNiOtRVERESUl+k1sdDV3LlzsWPHDhw5cgTm5ubK8s6dOyuvK1asiEqVKqF06dI4cuQImjRpkmI/48ePx8iRI5XfIyIi4OTklLXBU46VWpOmqKgo5bW3tzesrKyyOywiIiKiHE2vnbdtbW1hbGyMsLAwreVhYWEoVqzYe7dduHAh5s6di99++w2VKlV6b9lSpUrB1tYWN2/eTHW9mZkZrK2ttX6IiIiIiCjt9JpYmJqaokqVKggICFCWJSYmIiAgALVq1XrndvPnz8eMGTNw6NAhVK1a9YN/5/79+3jy5AmbqhARERERZRG9Dzc7cuRIrF27Fps2bUJwcDAGDhyIqKgo9OrVCwDQo0cPrc7d8+bNw+TJk7F+/Xq4uLggNDQUoaGhiIyMBABERkZi9OjROHXqFO7evYuAgAC0adMGbm5uaN68uV6OkYiIiIjI0Om9j0WnTp3w+PFjTJkyBaGhofD29sahQ4eUDt1qtRpGRm/yn2+++Qbx8fH47LPPtPajGZHH2NgYFy9exKZNm/D8+XM4OjqiWbNmmDFjBszMzLL12IiIiIiI8gq9z2ORE3EeC3pbVFQU8ufPDyCpVoydt4mIiIi06b0pFBERERER5X5MLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGdMLIiIiIiISGf59B0AkT6p1WqEh4d/sFxMTIzyOigoCBYWFh/cxtbWFs7OzjrFR0RERJRbqERE9B1EThMREQEbGxu8ePEC1tbW+g6HsoharYanhweiY2OzZP+W5uYIvnaNyQURERHlCayxoDwrPDwc0bGxWO7lArf876+BiE1IRLtT1wAAe2t6wNz4/a0Ib0bG4IsLdxEeHs7EgoiIiPIEJhaU57nlt0BFG8v3lol+naC8Lm9tAct8xlkdFhEREVGuws7bRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESks3z6DoCIiHKHkJAQhISEpHs7BwcHODg4ZEFERESUkzCxICKiNFm9ejWmTZuW7u38/f0xderUzA+IiIhyFCYWRESUJgMGDICvr6/WspiYGNStWxcAEBgYCAsLixTbsbaCiChvYGJBRERpklqTpqioKOW1t7c3rKyssjssIiLKIdh5m4iIiIiIdMbEgoiIiIiIdMamUJTrcGQaIiIiopyHiQXlOhyZhoiIiCjnYWJBuQ5HpiEiIiLKeZhYUK7DkWmIiIiIch523iYiIiIiIp0xsSAiIiIiIp3liMRi5cqVcHFxgbm5OWrUqIHTp0+/s+zatWtRr149FCpUCIUKFULTpk1TlBcRTJkyBQ4ODrCwsEDTpk1x48aNrD4MIiIiIqI8S++Jxc6dOzFy5Ej4+/vj3Llz8PLyQvPmzfHo0aNUyx85cgR+fn74888/cfLkSTg5OaFZs2Z48OCBUmb+/PlYvnw5Vq1ahb///htWVlZo3rw5YmNjs+uwiIiIiIjyFL0nFosXL0a/fv3Qq1cvlCtXDqtWrYKlpSXWr1+favnvvvsOgwYNgre3N8qWLYt169YhMTERAQEBAJJqK5YuXYpJkyahTZs2qFSpEjZv3oyHDx9i//792XhkRERERER5h14Ti/j4eJw9exZNmzZVlhkZGaFp06Y4efJkmvYRHR2NV69eoXDhwgCAO3fuIDQ0VGufNjY2qFGjxjv3GRcXh4iICK0fIiIiIiJKO70ONxseHo6EhATY29trLbe3t8fVq1fTtI+xY8fC0dFRSSRCQ0OVfby9T826t82ZMydDE66RYQqLfYVHca+0lsUmJCivL0dEw9zYOMV2dmYmsDc3yfL4iIiIiHKiXD2Pxdy5c7Fjxw4cOXIE5ubmGd7P+PHjMXLkSOX3iIgIODk5ZUaIlAt9p36MJTdD3rm+3anrqS4f4eaAkWUcsyosIiIiohxNr4mFra0tjI2NERYWprU8LCwMxYoVe++2CxcuxNy5c3H48GFUqlRJWa7ZLiwsTGsStbCwMHh7e6e6LzMzM5iZmWXwKMjQdHUuio/sC6Z7Ozsz1lYQERFR3qXXxMLU1BRVqlRBQEAAPv30UwBQOmIPGTLkndvNnz8fs2bNwq+//oqqVatqrXN1dUWxYsUQEBCgJBIRERH4+++/MXDgwKw6FDIg9uZs0kRERESUXnpvCjVy5Ej07NkTVatWRfXq1bF06VJERUWhV69eAIAePXqgePHimDNnDgBg3rx5mDJlCrZt2wYXFxel30T+/PmRP39+qFQqDB8+HDNnzoS7uztcXV0xefJkODo6KskLERERERFlLr0nFp06dcLjx48xZcoUhIaGwtvbG4cOHVI6X6vVahgZvRm86ptvvkF8fDw+++wzrf34+/tj6tSpAIAxY8YgKioK/fv3x/Pnz1G3bl0cOnRIp34YRERERET0bioREX0HkdNERETAxsYGL168gLW1tb7DoTSIiopC/vz5AQCRkZGwsrL64Dbnzp1DlSpV8EsdT1S0sczUeC69iEar48E4e/YsKleunKn7JspJMvLZIyIiw6T3CfKIiIiIiCj3Y2JBREREREQ6Y2JBREREREQ6Y2JBREREREQ6Y2JBREREREQ6Y2JBREREREQ6Y2JBREREREQ60/sEeUQfolarER4e/t4yMTExyuugoCBYWFh8cL/BwcE6x0ZERERESZhYUI6mVqvh6VkW0dExHy78/+rWrZuFERERERFRaphYUI4WHh6O6OgYbB73GTyd7d5ZLibuFeqPWAsA+GtJP1iYmXxw3wdPX8OUjQGZFisRERFRXsbEgnIFT2c7VHZ3fOf6qJh45bV3aQdYWZh+cJ9X1Y8zJTYiIiIiYmJBRETvkFX9mwDA1tYWzs7OOsVHREQ5CxMLIiJKQa1Ww9PDA9GxsWneJj39myzNzRF87RqTCyIiA8LEgoiIUggPD0d0bCyWe7nALf+7ayFiExLR7tQ1AMDemh4wN/7wKOY3I2PwxYW7CA8PZ2JBRGRAmFgQEdE7ueW3QEUby3euj36doLwub20By3zG2REWERHlQJwgj4iIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdJbu4WYTExNx9OhRHDt2DPfu3UN0dDSKFi0KHx8fNG3aFE5OTlkRJxERERER5WBprrGIiYnBzJkz4eTkhFatWuHgwYN4/vw5jI2NcfPmTfj7+8PV1RWtWrXCqVOnsjJmIiIiIiLKYdJcY1GmTBnUqlULa9euxUcffQQTE5MUZe7du4dt27ahc+fOmDhxIvr165epwRIRERERUc6U5sTit99+g6en53vLlCxZEuPHj8eoUaOgVqt1Do6IiIiIiHKHNDeF+lBSkZyJiQlKly6doYCIiIiIiCj3SXfn7feJiorC2bNnUb9+/czcLRERERHlEiEhIQgJCUn3dg4ODnBwcMiCiCi7ZGpicfPmTTRq1AgJCQmZuVsiIiIiyiVWr16NadOmpXs7f39/TJ06NfMDomyTqYkFEREREeVtAwYMgK+vr9aymJgY1K1bFwAQGBgICwuLFNuxtiL3S1diUbhw4feuZ00FERERUd6WWpOmqKgo5bW3tzesrKyyOyzKBulKLOLi4jBw4EBUrFgx1fX37t3LUNUXUXqEPHmJkKcvtZbFxL1SXgfdCoGFWcrhkB0KF4BDkQJZHh8RERFRXpSuxMLb2xtOTk7o2bNnqusvXLjAxIKy3JoDpzF9y5/vXF9/xNpUl0/p3gj+PZpkVVhEREREeVq6EovWrVvj+fPn71xfuHBh9OjRQ9eYiN6rf+vq+KRW2oc/1nAozNoKIiIioqySrsRiwoQJ713v5OSEDRs26BQQ0Yc4FGGTJiIiIqKcJs0T5BEREREREb1LuhKL+vXrazWF+vHHHxETE5PZMRERERERUS6TrsQiMDAQ8fHxyu/dunXL0MyKRERERERkWHRqCiUimRUHERERERHlYuxjQUREREREOkvXqFAA8Ouvv8LGxgYAkJiYiICAAPz7779aZd6exp2IiIiIiAxbuhOLtyfHGzBggNbvKpUKCQkJukVFRERERES5SroSi8TExKyKg4iIiIiIcjH2sSAiIiIiIp0xsSAiIiIiIp2lu48FEREREREAqNVqhIeHf7Bc8gmVg4KCYGFh8cFtbG1t4ezsrFN8lL2YWBARGZCQkJAMTVzq4OAABweH95YJi32FR3GvtJbFJhus43JENMyNjVNsZ2dmAntzk3THREQ5m1qthqeHB6JjY9O1Xd26ddNUztLcHMHXrjG5yEWYWBARGZDVq1dj2rRp6d7O398fU6dOfW+Z79SPseTmu5OWdqeup7p8hJsDRpZxTHdMRJSzhYeHIzo2Fsu9XOCW//01ELEJiWh36hoAYG9ND5gbv781/s3IGHxx4S7Cw8OZWOQiOicWgwYNwvTp02Fra5sZ8RARkQ4GDBiQYi6hmJgY5QlhYGBgqk0QPlRbAQBdnYviI/uC6Y7Jzoy1FUSGzC2/BSraWL63TPTrN7Wb5a0tYJkvZe0m5X46JxZbt27FqFGjmFgQEeUAqTVpioqKUl57e3vDysoqQ/u2N2eTJiIiejedR4USkcyIg4iIiIiIcjEON0tERERERDrTuSnUy5cvMyMOIiIiIiLKxVhjQUREREREOmNiQUREREREOmNiQUREREREOmNiQUREREREOtN7YrFy5Uq4uLjA3NwcNWrUwOnTp99Z9vLly2jfvj1cXFygUqmwdOnSFGWmTp0KlUql9VO2bNksPAIiIiIiIsrUxOLWrVto3Lhxmsvv3LkTI0eOhL+/P86dOwcvLy80b94cjx49SrV8dHQ0SpUqhblz56JYsWLv3G/58uUREhKi/AQGBqb7WIiIiIiIKO0yNbGIjIzE0aNH01x+8eLF6NevH3r16oVy5cph1apVsLS0xPr161MtX61aNSxYsACdO3eGmZnZO/ebL18+FCtWTPnhrOBERERERFkrXfNYLF++/L3rHzx4kOZ9xcfH4+zZsxg/fryyzMjICE2bNsXJkyfTE1YKN27cgKOjI8zNzVGrVi3MmTMHzs7O7ywfFxeHuLg45feIiAid/j4RERERUV6TrsRi+PDhcHBwgKmpaarr4+Pj07yv8PBwJCQkwN7eXmu5vb09rl69mp6wtNSoUQMbN26Eh4cHQkJCMG3aNNSrVw///vsvChQokOo2c+bMwbRp0zL8N4mIiIiI8rp0JRYlS5bEvHnz0LFjx1TXBwUFoUqVKpkSWEa1bNlSeV2pUiXUqFEDJUuWxPfff48+ffqkus348eMxcuRI5feIiAg4OTlleaxEREREhiYs9hUexb3SWhabkKC8vhwRDXNj4xTb2ZmZwN7cJMvjo6yTrsSiSpUqOHv27DsTC5VKBRFJ075sbW1hbGyMsLAwreVhYWHv7ZidXgULFkSZMmVw8+bNd5YxMzN7b58NIiIiIkqb79SPseRmyDvXtzt1PdXlI9wcMLKMY1aFRdkgXYnF9OnTER0d/c715cqVw507d9K0L1NTU1SpUgUBAQH49NNPAQCJiYkICAjAkCFD0hPWe0VGRuLWrVvo3r17pu2TiIiIiFLX1bkoPrIvmO7t7MxYW5HbpSuxKFeu3HvXm5iYoGTJkmne38iRI9GzZ09UrVoV1atXx9KlSxEVFYVevXoBAHr06IHixYtjzpw5AJL6cFy5ckV5/eDBAwQFBSF//vxwc3MDAIwaNQqffPIJSpYsiYcPH8Lf3x/Gxsbw8/NLz6ESERERUQbYm7NJU16VrsQis3Xq1AmPHz/GlClTEBoaCm9vbxw6dEjp0K1Wq2Fk9GZE3IcPH8LHx0f5feHChVi4cCEaNGiAI0eOAADu378PPz8/PHnyBEWLFkXdunVx6tQpFC1aNFuPjYiIiIgoL0lzYtGiRQtMnToVNWvWfG+5ly9f4uuvv0b+/PkxePDgD+53yJAh72z6pEkWNFxcXD7Yh2PHjh0f/JtERERERJS50pxYdOjQAe3bt4eNjQ0++eQTVK1aVZkr4tmzZ7hy5QoCAwPxyy+/oHXr1liwYEFWxk1ElOep1WqEh4d/sFxMTIzyOigoCBYWFh/cJjg4WKfYiIgo70lzYtGnTx9069YNu3btws6dO7FmzRq8ePECQNJoUOXKlUPz5s3xzz//wNPTM8sCpqwREhKCkJB3j+DwLg4ODnBwcMiCiIjofdRqNTw9yyI6OubDhZOpW7duFkVERER5Xbr6WJiZmaFbt27o1q0bAODFixeIiYlBkSJFYGLCTjq52erVqzM0SaC/vz+mTp2a+QER0XuFh4cjOjoGm8d9Bk9nu/eWjYl7hfoj1gIA/lrSDxZpGHnl4OlrmLIxIFNiJSKivEGnzts2NjawsbHJrFhIjwYMGABfX1+tZTExMcrTzcDAwFSbT7C2gki/PJ3tUNn9/eO+R8XEK6+9SzvAysL0g/u9qn6sc2xERHlZXmwNotdRoSjnSO1NHBUVpbz29vaGlZVVdodFRERElCvlxdYgTCyIiIiIiDJZXmwNwsSCiIiIMiQvNvUgSqu82Bok3YlFQkICjh8/jkqVKqFgwYJZEBIRERHlBnmxqQcRvVu6EwtjY2M0a9YMwcHBTCyIiIjysLzY1IOI3i1DTaEqVKiA27dvw9XVNbPjISIiokyUlc2V8mJTDyJ6twwlFjNnzsSoUaMwY8YMVKlSJcVFw9raOlOCIyIiIt2wuRIRZZcMJRatWrUCAPj6+kKlUinLRQQqlQoJCQmZEx0RERHphM2ViCi7ZCix+PPPPzM7DiIiIsoCbK5ElPXUajXCw8M/WC4mJkZ5HRQUlGpSnxpbW1s4OztnOL7skqHEokGDBpkdBxERERFRtsqMPkhqtRqeHh6Ijo1N1z40tYZpYWlujuBr13J8cpHheSyeP3+Ob7/9FsHBwQCA8uXLo3fv3rCxscm04IiIiIiIskpm9EEKDw9HdGwslnu5wC3/+2sgYhMS0e7UNQDA3poeMDc2+uDfuhkZgy8u3EV4eLhhJhZnzpxB8+bNYWFhgerVqwMAFi9ejFmzZuG3335D5cqVMzVIynxpqbIz9Oo6IiIiytsysw+SW34LVLSxfO/fi379ph9yeWsLWOYzzkjYOVaGEosRI0bA19cXa9euRb58Sbt4/fo1+vbti+HDh+Ovv/7K1CApc2Wkys4Qq+uIiIgob2MfpMyV4RqL5EkFAOTLlw9jxoxB1apVMy04yhpprbIz9Oo6IiIiIso8GUosrK2toVarUbZsWa3l//33HwoUKJApgVHW+1CVnaFX1xERERFR5vnwI+hUdOrUCX369MHOnTvx33//4b///sOOHTvQt29f+Pn5ZXaMRERERESUw2WoxmLhwoVQqVTo0aMHXr9+DQAwMTHBwIEDMXfu3EwNkIiIiIgotwmLfYVHca+0lsUmm0T6ckQ0zI1TtgaxMzOBvblJlseXFdKdWCQkJODUqVOYOnUq5syZg1u3bgEASpcuDUvL9/eEJyIiIiLSh6yaxE4z9cLbvlM/xpKb754jo92p66kuH+HmgJFlHD8YZ06U7sTC2NgYzZo1Q3BwMFxdXVGxYsWsiIuIiDIg5MlLhDx9qbUsJtkTs6BbIbAwS/kkzKFwATgUYR85IjJMarUanp5lER0d8+HCyaRnVMy3dXUuio/sC6Z7O7tUrtG5RYaaQlWoUAG3b9+Gq6trZsdDREQ6WHPgNKZv+fOd6+uPWJvq8indG8G/R5OsCouISK/Cw8MRHR2DzeM+g6ez3XvLxsS9Uq6Vfy3pl+rDmOQOnr6GKRsDUiy3N8+9TZoyKkOJxcyZMzFq1CjMmDEDVapUSTG+r7W1daYER0RE6dO/dXV8Ussz3ds5FGZtBREZPk9nO1R2f38zo6iYeOW1d2kHWFmYvrf8VfXjTInNEGQosWjVqhUAwNfXFyqVSlkuIlCpVEhI1jGFiIiyj0MRNmkiIiL9yFBi8eef765mJyIiIiKivCfdicWrV68wffp0rFq1Cu7u7lkRExERERER5TLpniDPxMQEFy9ezIpYiIiIiIgol8pQU6hu3brh22+/5WR4BiQvTuJCRERERJknQ4nF69evsX79ehw+fDjVUaEWL16cKcFR9smLk7gQERFR3sa5fzJXhhKLf//9F5UrVwYAXL+ufcOZfJQoyj3y4iQuRERElLdx7p/MxVGhCEDenMSFiIiI8jbO/ZO5MpRYvM+jR49gZ/f+GQ2JiIiIiPSNc/9krnSNCmVpaYnHj9/MLti6dWuEhLxplx8WFgYHB4fMi46IiIiIiHKFdCUWsbGxEBHl97/++gsxMTFaZZKvJyIiIiKivCHd81h8CDtvExERERHlPZmeWBARERERUd6TrsRCpVJp1Ui8/TsREREREeVN6RoVSkRQpkwZJZmIjIyEj48PjIyMlPVERERERJT3pCux2LBhQ1bFQURERDmcWq1GeHj4e8skH9QlKCgIFhYWadq3ra0tnJ2ddYqPiPQrXYlFz549syoOIiIiysHUajU8PTwQHRub5m3q1q2b5rKW5uYIvnaNyQVRLpbpE+QRERGR4QkPD0d0bCyWe7nALf+7ayFiExLR7tQ1AMDemh4wN/5wd86bkTH44sJdhIeHM7EgysWYWBARERmQrGquFBwcDABwy2+BijaW7ywX/TpBeV3e2gKW+Yw/uG8iMgxMLIiIiAyEWq2Gp2dZREfHfLjw/0tPcyUiovdhYkFERGQgwsPDER0dg83jPoOns907y8XEvUL9EWsBAH8t6QcLM5MP7vvg6WuYsjEg02IlIsPDxIKIiMjAeDrbobK74zvXR8XEK6+9SzvAysL0g/u8qn6cKbERkeHKUGKRkJCAjRs3IiAgAI8ePUJiYqLW+j/++CNTgiMiIiIiotwhQ4nFsGHDsHHjRrRu3RoVKlTg7NtERERERHlchhKLHTt24Pvvv0erVq0yOx4iIiIiIsqFPjy4dCpMTU3h5uaW2bEQEREREVEulaHE4ssvv8SyZcsgIpkdDxERERER5UIZagoVGBiIP//8EwcPHkT58uVhYqI9TN3evXszJTgiIiIiIsodMpRYFCxYEG3bts3sWIiIiIiIKJfKUGKxYcOGzI6DiIiIiIhysQz1sSAiIiIiIkouw4nF7t270bFjR9SsWROVK1fW+kmPlStXwsXFBebm5qhRowZOnz79zrKXL19G+/bt4eLiApVKhaVLl+q8TyIiIiIi0l2GEovly5ejV69esLe3x/nz51G9enUUKVIEt2/fRsuWLdO8n507d2LkyJHw9/fHuXPn4OXlhebNm+PRo0eplo+OjkapUqUwd+5cFCtWLFP2SUREREREustQH4uvv/4aa9asgZ+fHzZu3IgxY8agVKlSmDJlCp4+fZrm/SxevBj9+vVDr169AACrVq3CgQMHsH79eowbNy5F+WrVqqFatWoAkOr6jOyTiIiIKC8JCQlBSEhIurdzcHCAg4NDFkREhiJDiYVarUbt2rUBABYWFnj58iUAoHv37qhZsyZWrFjxwX3Ex8fj7NmzGD9+vLLMyMgITZs2xcmTJzMSVob3GRcXh7i4OOX3iIiIDP19IiIiopxu9erVmDZtWrq38/f3x9SpUzM/IDIYGUosihUrhqdPn6JkyZJwdnbGqVOn4OXlhTt37qR50rzw8HAkJCTA3t5ea7m9vT2uXr2akbAyvM85c+Zk6ANGRERElNsMGDAAvr6+WstiYmJQt25dAEnzlVlYWKTYjrUV9CEZSiwaN26MH3/8ET4+PujVqxdGjBiB3bt348yZM2jXrl1mx5jlxo8fj5EjRyq/R0REwMnJSY8REREREWWN1Jo0RUVFKa+9vb1hZWWV3WGRAchQYrFmzRokJiYCAAYPHowiRYrgxIkT8PX1xYABA9K0D1tbWxgbGyMsLExreVhY2Ds7ZmfVPs3MzGBmZpahv0lERERERBkcFcrIyAj58r3JSTp37ozly5dj6NChMDU1TdM+TE1NUaVKFQQEBCjLEhMTERAQgFq1amUkrCzZJxERERERfViG57E4duwYunXrhlq1auHBgwcAgC1btiAwMDDN+xg5ciTWrl2LTZs2ITg4GAMHDkRUVJQyolOPHj20OmLHx8cjKCgIQUFBiI+Px4MHDxAUFISbN2+meZ9ERERERJT5MtQUas+ePejevTu6du2K8+fPKyMqvXjxArNnz8Yvv/ySpv106tQJjx8/xpQpUxAaGgpvb28cOnRI6XytVqthZPQm93n48CF8fHyU3xcuXIiFCxeiQYMGOHLkSJr2SUREREREmS9DicXMmTOxatUq9OjRAzt27FCW16lTBzNnzkzXvoYMGYIhQ4akuk6TLGi4uLikadSp9+2TiIiIiIgyX4YSi2vXrqF+/fopltvY2OD58+e6xkRERJSjcYIxIqKUMjyPxc2bN+Hi4qK1PDAwEKVKlcqMuIiIiHIsTjBGRJRShhKLfv36YdiwYVi/fj1UKhUePnyIkydPYtSoUZg8eXJmx0hERJSjcIIxIqKUMpRYjBs3DomJiWjSpAmio6NRv359mJmZYdSoURg6dGhmx0hERJSjcIIxyk3UajXCw8PfWyYmJkZ5HRQUlGpi/Lbg4GCdYyPDkqHEQqVSYeLEiRg9ejRu3ryJyMhIlCtXDvnz58/s+IiIiIgog9RqNTw9yyI6OubDhf+fpuaNKL0ylFhomJqaoly5cpkVCxERERFlovDwcERHx2DzuM/g6Wz3znIxca9Qf8RaAMBfS/rBwszkg/s+ePoapmwM+GA5yjvSlVj07t07TeXWr1+foWCIiIiIKPN5OtuhsrvjO9dHxcQrr71LO8DKwvSD+7yqfpwpsZHhSFdisXHjRpQsWRI+Pj5pmk+CiIiIDFdY7Cs8inultSw2IUF5fTkiGubGxim2szMzgb35h5+IE1Hukq7EYuDAgdi+fTvu3LmDXr16oVu3bihcuHBWxUZEREQ52Hfqx1hy893zebQ7dT3V5SPcHDCyzLufnhNR7pSuxGLlypVYvHgx9u7di/Xr12P8+PFo3bo1+vTpg2bNmkGlUmVVnERERHqRlhF1gIyNqgMAtra2cHZ2znB8+tTVuSg+si+Y7u3s0tB+n4hyn3R33jYzM4Ofnx/8/Pxw7949bNy4EYMGDcLr169x+fJljgxFREQGQ61Ww9PDA9GxsenaLj2j6liamyP42rUsSy5CnrxEyNOXWstikjVfCroVkmpHXYfCBeBQpMB7921vziZNRPSGTqNCGRkZQaVSQUSQkKxNJRERkSEIDw9HdGwslnu5wC3/+2sgYhMS0e7UNQDA3poeMDc2+uD+b0bG4IsLdxEeHp5licWaA6cxfcuf71yvGQnobVO6N4J/jyZZEhMRGaZ0JxZxcXFKU6jAwEB8/PHHWLFiBVq0aAEjow9fRImIiHIbt/wWqGhj+d4y0a/fPGArb20By3wpOy3rQ//W1fFJLc90b+dQ+P21FUREb0tXYjFo0CDs2LEDTk5O6N27N7Zv3w5bW9usio2IiIh05FDkw02aiIgyQ7oSi1WrVsHZ2RmlSpXC0aNHcfTo0VTL7d27N1OCI20hISEICXn36Bvv4uDgAAcHhyyIiIiIiIgoSboSix49enDkJz1avXo1pk2blu7t/P39MXXq1MwPiIiIiHKdrOzQT3lbuifII/0ZMGAAfH19tZbFxMQoo48EBgamOrwhayuIiIhIgx36KavoNCoUZa/UmjRFRUUpr729vWFlZZXdYREREVEuwg79lFWYWBAREaVTWOwrPErWdAQAYpMNu345IhrmxilHhbIz47wPpH/s0E9ZhYkFERFROn2nfowlN989mEa7U9dTXT7CzQEjyzhmVVhERHrFxIKIiCidujoXxUf2BdO9nV0qHWKJiAwFEwsiIjJIWTlEt705mzQREb2NiQURERkkDtFNRJS9mFgQEZFB4hDdRETZi4kFEREZJA7RTUSUvYz0HQAREREREeV+rLHIodRqNcLDwz9YLiYmRnkdFBSUarX+24KDg3WKjYiIiIjobUwsciC1Wg1Pz7KIjo75cOFkNO2GiYiIiIiyGxOLHCg8PBzR0THYPO4zeDrbvbdsTNwr1B+xFgDw15J+sEjDGOkHT1/DlI0BmRIrEVFOkFW1vKzhJSJKOyYWOZinsx0qu79/htaomHjltXdpB1hZmH5wv1fVj3WOjYgop2AtLxFRzsDEgoiIcrWsrOVlDS8RUdoxsSAiIoOQFbW8rOElIko7DjdLREREREQ6Y40FERERkY5CQkIQEhKS7u1Sm8iRKLdiYkFERESko9WrV2PatGnp3s7f3x9Tp07N/ICI9ICJBRERGaSQJy8R8vSl1rKYuFfK66BbIal23nYoXAAORQpkeXyU/bKyVmHAgAHw9fXVWhYTE6OMPhYYGJjq8MasrSBDwsSCiIgM0poDpzF9y5/vXK8ZHeptU7o3gn+PJlkVFulRVtYqpJZ8REVFKa+9vb1hZWWV7r9NlJswschF+PSNiCjt+reujk9qeaZ7O4fCvF4aKtYqEGUtJha5CJ++ERGlnUMRPlQhbaxVIMpaTCxyET59IyIiIqKciolFLsKnb0RERESUUzGxICIiIkoHtVqN8PDwD5aLiYlRXgcFBaXafyM1tra2cHZ2znB8RPrCxIKIiIgojdRqNTw9PBAdG5uu7TQdxNPC0twcwdeuMbmgXIeJBREREVEahYeHIzo2Fsu9XOCW//01ELEJiWh36hoAYG9ND5gbG31w/zcjY/DFhbsIDw9nYkG5DhMLIiIiMjhZ1VwpODgYAOCW3wIVbSzfWzb6dYLyury1BSzzGX8wHqLcjIkFERERGRS1Wg1Pz7KIjo75cOFk0tNciYhSYmJBREREBiU8PBzR0THYPO4zeDrbvbdsTNwrZR6ov5b0S3Wi2eQOnr6GKRsDMi1WIkPCxIKIiIgMkqezHSq7O763TFRMvPLau7QDrCxM31v+qvpxpsRGZIg+3IuIiIiIiIjoA5hYEBERERGRztgUioiIiEhHYbGv8Cjulday2IQ3o0JdjoiGuXHKUaHszExgb/7+fh1EuQUTCyIiIiIdfad+jCU3Q965vt2p66kuH+HmgJFl3t8PhCi3YGJBREREeULIk5cIefpSa1lMslqGoFshqY4K5VC4AByKFHjvvrs6F8VH9gXTHZPdB0ahIspNmFgQERFRnrDmwGlM3/LnO9drhp1925TujeDfo8l7921vziZNREwsiIiIKE/o37o6Pqnlme7tHAq/v7aCiJIwsSAiIqI8waHIh5s0EVHG5YjhZleuXAkXFxeYm5ujRo0aOH369HvL79q1C2XLloW5uTkqVqyIX375RWv9559/DpVKpfXTokWLrDwEIiIiIqI8Te+Jxc6dOzFy5Ej4+/vj3Llz8PLyQvPmzfHo0aNUy584cQJ+fn7o06cPzp8/j08//RSffvop/v33X61yLVq0QEhIiPKzffv27DgcIiIiIqI8Se+JxeLFi9GvXz/06tUL5cqVw6pVq2BpaYn169enWn7ZsmVo0aIFRo8eDU9PT8yYMQOVK1fGihUrtMqZmZmhWLFiyk+hQoWy43CIiIiIiPIkvSYW8fHxOHv2LJo2baosMzIyQtOmTXHy5MlUtzl58qRWeQBo3rx5ivJHjhyBnZ0dPDw8MHDgQDx58uSdccTFxSEiIkLrh4iIiIiI0k6viUV4eDgSEhJgb2+vtdze3h6hoaGpbhMaGvrB8i1atMDmzZsREBCAefPm4ejRo2jZsiUSks2AmdycOXNgY2Oj/Dg5Oel4ZEREREREeYtBjgrVuXNn5XXFihVRqVIllC5dGkeOHEGTJinHoR4/fjxGjhyp/B4REcHkgoiIiIgoHfRaY2FrawtjY2OEhYVpLQ8LC0OxYsVS3aZYsWLpKg8ApUqVgq2tLW7evJnqejMzM1hbW2v9EBERERFR2uk1sTA1NUWVKlUQEBCgLEtMTERAQABq1aqV6ja1atXSKg8Av//++zvLA8D9+/fx5MkTODg4ZE7gRERERESkRe+jQo0cORJr167Fpk2bEBwcjIEDByIqKgq9evUCAPTo0QPjx49Xyg8bNgyHDh3CokWLcPXqVUydOhVnzpzBkCFDAACRkZEYPXo0Tp06hbt37yIgIABt2rSBm5sbmjdvrpdjJCIiIiIydHrvY9GpUyc8fvwYU6ZMQWhoKLy9vXHo0CGlg7ZarYaR0Zv8p3bt2ti2bRsmTZqECRMmwN3dHfv370eFChUAAMbGxrh48SI2bdqE58+fw9HREc2aNcOMGTNgZmaml2MkIiIiIjJ0ek8sAGDIkCFKjcPbjhw5kmJZhw4d0KFDh1TLW1hY4Ndff83M8IiIiIiI6AP03hSKiIiIiIhyPyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESkMyYWRERERESks3z6DoCIKKcLCQlBSEhIurdzcHCAg4NDFkRERESU8zCxICL6gNWrV2PatGnp3s7f3x9Tp07N/ICIiIhyICYWREQfMGDAAPj6+moti4mJQd26dQEAgYGBsLCwSLEdayuIiCgvYWJBRPQBqTVpioqKUl57e3vDysoqu8MiIiLKUdh5m4iIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbEgoiIiIiIdMbhZomIklGr1QgPD/9guZiYGOV1UFBQqvNYvM3W1hbOzs46xUdERJRTMbEgIvp/arUanh4eiI6NTdd2monyPsTS3BzB164xuSAiIoPExIKIUhUSEoKQkJB0b5faZHK5RXh4OKJjY7HcywVu+d9fAxGbkIh2p64BAPbW9IC58ftblt6MjMEXF+4iPDyciQURERkkJhZEuVhW3vyvXr0a06ZNS/e+/f39MXXq1HRvl5O45bdARRvL95aJfp2gvC5vbQHLfMZZHRYREVGOxsSCKBfLypv/AQMGwNfXV2tZTEyM0uwnMDAw1X4FubW2goiIiHTDxIIoF8vKm//UajWioqKU197e3rCysspI2ERERGSAmFgQ5RJpHa0oLVJrQhUXFwczM7P3bpeRkZAAjoZERESUFzCxIMoF1Go1PD3LIjo65sOFk0nraEUAYKQCEiVr9s3RkIiIiAwfEwuiXCA8PBzR0THYPO4zeDrbvbdsTNwr1B+xFgDw15J+sDAz+eD+D56+hikbAz44GlJ6R0ICOBoSERFRXsHEgigX8XS2Q2V3R+X3kCcvEfL0Zbr341C4AByKFFB+v6p+DEB7NKSw2Fd4FPfqrS3lHa/fsDMzgb35h5MZIiIiMixMLIhysTUHTmP6lj/fuV5Tc/G2Kd0bwb9Hk/fu+zv1Yyy5+e6hbNudup7q8hFuDhhZxjHVdURERGS4mFgQ5WL9W1fHJ7U8072dQ+ECHyzT1bkoPrIvmO5926Wh6VVuk1rtTWzCm3ksLkdEw9w45TwWrL0hIqK8hIkFUS7mUES7SVNmsjfnTbEGa2+IiIg+jIkFERmErJyFnLU3REREH8bEgogMQlbOQs7aGyIiog9jYkFEuU5qkwXWqlULW7du1VoWFxeHPn36AAC+/fbbVCcAtLW1xblz5wAAwcHBWRQxERGR4csRicXKlSuxYMEChIaGwsvLC1999RWqV6/+zvK7du3C5MmTcffuXbi7u2PevHlo1aqVsl5E4O/vj7Vr1+L58+eoU6cOvvnmG7i7u2fH4RBRFsroZIGaBIOIiIiyht4Ti507d2LkyJFYtWoVatSogaVLl6J58+a4du0a7OxSTgR24sQJ+Pn5Yc6cOfj444+xbds2fPrppzh37hwqVKgAAJg/fz6WL1+OTZs2wdXVFZMnT0bz5s1x5coVmJubZ/chElEmysrJAjUTBRIREVH6fXja3Cy2ePFi9OvXD7169UK5cuWwatUqWFpaYv369amWX7ZsGVq0aIHRo0fD09MTM2bMQOXKlbFixQoASbUVS5cuxaRJk9CmTRtUqlQJmzdvxsOHD7F///5sPDIiykqayQI1P2kZQjc1DoULKPtwLVY4k6MkIiLKO/RaYxEfH4+zZ89i/PjxyjIjIyM0bdoUJ0+eTHWbkydPYuTIkVrLmjdvriQNd+7cQWhoKJo2baqst7GxQY0aNXDy5El07tw5xT7j4uIQFxen/P7ixQsAQERERIaPTReRkZEAgHM3HiAyJj7T9x+sfgQAuPQiCtGvEz5QOn1uRcUCSDqGzDh/WXkueB7eMIRzsfHQWWz6/fw7t3vXZIE9P/LB5y2qADCM85BZeC6SZOV5AHguNHge3uC5SMLz8EZmn4uMKlCgAFQq1fsLiR49ePBAAMiJEye0lo8ePVqqV6+e6jYmJiaybds2rWUrV64UOzs7ERE5fvy4AJCHDx9qlenQoYN07Ngx1X36+/sLAP7whz/84Q9/+MMf/vCHP6n8vHjx4oP39nrvY5ETjB8/XqsWJDExEU+fPkWRIkU+nJnlQhEREXBycsJ///0Ha2trfYejNzwPb/BcJOF5eIPnIgnPwxs8F0l4Ht7guUiSV85DgQIfbnKs18TC1tYWxsbGCAsL01oeFhaGYsWKpbpNsWLF3lte829YWJjWpFdhYWHw9vZOdZ9mZmYphqEsWLBgeg4lV7K2tjboD0Ba8Ty8wXORhOfhDZ6LJDwPb/BcJOF5eIPnIgnPg547b5uamqJKlSoICHgzCktiYiICAgJQq1atVLepVauWVnkA+P3335Xyrq6uKFasmFaZiIgI/P333+/cJxERERER6UbvTaFGjhyJnj17omrVqqhevTqWLl2KqKgo9OrVCwDQo0cPFC9eHHPmzAEADBs2DA0aNMCiRYvQunVr7NixA2fOnMGaNWsAACqVCsOHD8fMmTPh7u6uDDfr6OiITz/9VF+HSURERERk0PSeWHTq1AmPHz/GlClTEBoaCm9vbxw6dAj29vYAkibDMjJ6U7FSu3ZtbNu2DZMmTcKECRPg7u6O/fv3K3NYAMCYMWMQFRWF/v374/nz56hbty4OHTrEOSz+n5mZGfz9/VOdhTgv4Xl4g+ciCc/DGzwXSXge3uC5SMLz8AbPRRKehzdUIiL6DoKIiIiIiHI3vU+QR0REREREuR8TCyIiIiIi0hkTCyIiIiIi0hkTCyIDxi5URERElF2YWBAZqDt37mDXrl0AmGAQERFR1uOoUGSwRAQqlUrfYejFlStXULlyZbi6uiI4OFjf4eQYcXFxHA6Q6C15+VpJ9LbExEStaQ4A4NGjR7Czs9NTRLkLayzIoFy8eBFTpkwBgDz7RRkUFIRq1arBzc0NJiYmiIuL03dIeqNWq7F3714AwM6dOzFx4kTExsbqOaqcIS8/U8rLx55cfHw8gKQbqbzs7fdDXj8feZ2RkRFu3LiBr7/+GgCwa9cu9OvXD6GhoXqOLHdgYmGg8uIX54ULF1CzZk19h6FXFy5cQO3atTF58mRs374dt27dglqt1ndYehEbG4vp06djzpw5GDVqFPz8/FC+fPk8O1Hm2zdLmsQ7r10rEhMTlWMPCgrCo0eP9ByRfly9ehX9+/dH06ZNMXXqVFy7dk3fIemF5v0QGRmJqKgoREZGpnhandfktWvC2xISEvDDDz9gyJAh6NOnDzp16oR27dqhWLFi+g4tV8jbnx4DkPxmYenSpfD39weQdNOQly4OmhvqESNGYPr06foORy+CgoJQp04dDB8+HOPGjYOIwNjYOM8+oTc3N8fYsWNhbm6OxYsXY9CgQejVqxeAvPdEMnnV/oYNGzBmzBj06NEDhw8fzlPXieTnYdKkSRg2bBiOHj2a5z4jFy5cQK1atWBsbAwHBwccPHgQO3bsAJC3bio174dLly6hSZMmqFu3Ltzc3DB37lxcunRJ3+HphaZZXGBgIKZPn44vvvgCe/bs0XdY2crY2BhDhgzBZ599hg0bNqBLly7o2bMngLz33ZERTCxyseRfkn///TcuXLiAGTNmKNV3eSW5uHTpEmrXro1Ro0Zh1qxZyvKNGzcqnZcN3c2bN1GnTh0MHToUs2fPBgC4uLigSJEiePDgAYC8eUG0t7eHlZUVqlatisuXL2P79u0Akqq689L50FwnxowZgylTpuDJkycoVKgQmjVrhuXLl+eZ5nLJk4o1a9Zg/PjxaNasWZ6qxbp48SLq1KmDwYMH49tvv8WWLVtQp04dBAcHIzY2FuHh4foOMdsYGRnh3r17aNSoEapXr44pU6Zg8ODB2LBhAyZPnozff/9d3yFmO5VKhb1796JNmza4cOECEhIS0KFDB3z55Zd48eKFvsPLNsbGxihcuDA+/vhj/PTTT1i8eDGApPdMQkKCnqPL4YRyvbFjx0qNGjXEz89PXF1dxczMTObOnausT0xM1GN0WSs8PFzKlSsnlSpV0lo+a9YsKViwoJw6dUpPkWWvn3/+WVavXq21LCYmRkqUKCFff/21iGi/D44ePSqPHz/O1hizy9vv91evXsnly5elY8eOUqdOHdm2bZvW+pcvX2ZneHrzyy+/iJOTk5w5c0ZERI4fPy4qlUq+++47pYwhXys0zp07J+7u7nLs2DEREXn+/LkEBwfLunXrlOuFoZ6Hhw8fikqlkl69emktHzx4sHh6eoqHh4eUKVNG1q9fr6cIs4/m//jbb7+VmjVraq07cOCANG/eXD766CM5evSoPsLTmxs3boirq6t88803IiISGRkpFhYWMmbMGD1HlvVS+9xHRUXJ1KlTJX/+/LJo0SKtdbdv386u0HIVJha53J49e6RAgQISGBgor1+/llu3bsnEiROlQIECMn/+fKWcoX5RhoaGyqhRo6RixYoybdo0ERFZsGCBFClSRH799ddUt0lISMjOEPXi9evXkpiYKFWqVJE5c+ZorRs3bpy4ublJSEiInqLLOpr3+alTp2Tt2rXi7+8v165dExGRK1euSKdOnaR+/frKzfSUKVNk9OjR8urVK73FnF02b94sbdu2FRGRnTt3Sv78+ZWbh2fPnsndu3f1GV6Wefvzfu3aNSlXrpz89NNPcubMGRk4cKCUKVNGypQpI+bm5vLHH3/oKdKs9+LFC6ldu7aULVtWLl26JCIi8+bNEwsLC1mzZo2sXr1aevXqJSqV6p3XT0OzceNGKVmypNy/f19r+eHDh6VRo0bSu3dvCQ8P11N02e/8+fNSp04dERG5deuWFC9eXPr376+s11xPDY3mu+PPP/+U2bNnS/fu3eXXX3+V0NBQiYuLk2nTpom1tbUsXLhQRESmTp0q7dq1yzMPptKDiUUut2DBAqlatarWsgcPHsjgwYNFpVIpT6sN2cOHD8Xf31/KlSsnDRo0EFtbW/nzzz9TlNu3b1+2x5Ydkt84vX0T1aZNG+ndu7fy+5QpU8TCwkJOnz6dbfFlt927d0vRokWlWbNm0rBhQ60k+9y5c9K9e3dxdXWVOnXqiLm5uUGei9SS5zVr1kitWrVk586dYm1trXVt2Lx5s3To0EGePXuWjVFmveTn4fTp03Lv3j159OiRNGnSRKpVqyampqYyaNAg2bt3r/z3339SvXp1WblypR4jzhpxcXHK65cvX0qjRo2kTJkyMmzYMClatKhWEnHlyhWxt7eXKVOm6CPUbPf7779LkSJF5IcffhCRpIcyGjt27BALCws5fvy4vsLLdoGBgeLi4iJHjx4VV1dX6d+/v3JOjh8/Li1atDDYJ/WaB7X9+vWTtm3bipeXl7Rv314iIyMlLCxM5s6dKyqVSqpUqSL58+dXan9JGxOLXG737t1SvHhxCQoK0loeEBAgJiYmYmlpmaL6zlAkJiYqTxkePHgg/v7+4ujoKF26dFHKaC6IU6ZMEZVKJXfu3NFHqFlCc+wxMTFaNw4ib26ounfvLi1bthQRkcmTJ4u5ublBXwwvXrwojo6OsmHDBhFJuqFSqVQyc+ZMpcz169dl06ZNMnbsWLl69aqeIs06yW+mDx8+LBcuXBARkatXr0r9+vXFxMREqzYzKipKfH19pXfv3gZVs5n8WMaNGyfVq1eXdevWiUjSufjll1/k6NGjyvl6/fq1VK1aVb799lu9xJtVbty4IYMHD5bDhw8rNXMvX76U1q1bi0qlklWrVonIm/dNRESEVKtWTanNMhSa43v16pXExsZqrevdu7cULlxYLl68KCLayUWlSpVk0qRJ2RdoNtJ8Ri5duiRnzpyR+Ph4iYyMlLZt24qVlZV07NhRq/y4ceOkQYMG8ujRI32Em6Vu3LghHh4esnbtWhFJaiJpbm4uEyZMUMq8fv1aAgMDZcmSJXLz5k19hZrjMbHIJd7VfOf69etSuXJl+eKLL+T69evK8osXL0q3bt1k+vTpUrFiRTl//nw2RZq1Hj58KBcvXkzxxSAiEhISIv7+/uLp6Sn+/v7K8kmTJomlpaVB3VBrvhAOHjworVu3ltq1a0vnzp3l/v37WjdUs2fPlnbt2snkyZPFzMzMoM5BagICAqRx48YiIhIcHCzOzs7St29fZb0hNv9K7u2b6dKlS8v27dslIiJCRJKavXh6ekrfvn3l9OnTcvDgQWnRooVUqlRJuek0pORCRGTmzJlia2srf/zxhzx//jzF+piYGLl37560bNlSqlSponVTmdtduHBBnJ2d5bPPPpONGzdqrXv+/Lk0a9ZMSpUqpfVgatKkSeLs7GxQD2E035+XL18WPz8/qVWrlvzvf/9Tzsnr16+lWbNmYmdnp9UvLz4+XmrXrm2QtViaz/nevXvF0dFRlixZojQH27hxo5QvX146d+4sp0+flpMnT8qoUaPExsZGSb5yK8174e2HcUFBQVKxYkV59eqVXL9+XZycnKRfv37K+tOnT7PZUxoxscgFkicVK1eulC+++EJatGghu3fvlqioKNm9e7eUKVNGevXqJbt375aLFy9KixYtpFevXvLPP/9IgQIFDKIZ0MWLF8XNzU2mTp0qt27dUpZ/8803SjX2vXv3xN/fX8qWLSvz5s2T2bNnG+xT+v3790uBAgVkxIgRsmvXLildurQ0adJEjh8/rrxntmzZIiqVSqysrAzuHFy9elWWLl0qUVFRyrL169eLl5eXPHr0SFxcXKR///7KuThw4IAMHDgw1ZtLQzN9+nSxt7eXI0eOSExMjNa6pUuXSt26dSVfvnxSo0YN+eSTTyQ+Pl5ExKBuqhMTE+Xhw4dSs2ZN2bp1a4p1IknX1sWLF0uzZs2kTp06BnUerl+/LsWKFZOxY8emeA9oREZGSv369cXFxUVu3bol06ZNE3Nzczl79mw2R5v1rl27JgULFpQePXrIhAkTpFGjRlK+fHnl5jEiIkLatGkj+fPnlylTpshXX30lX375pRQsWFDroZ0hOXjwoOTPn1++/vrrFNfFDRs2SOPGjcXY2FgqVaok1apVS9EyIre6c+eODB8+XOt9fvToUalatarcvXtXXFxcpG/fvsp3x6lTp2Tw4MEG+z7IbEwscpExY8ZI0aJFZcaMGdK3b19xdXWVPn36iEhSG+lPPvlEzMzMxN3dXXx8fCQ+Pl5iY2OlUqVK8ssvv+g5et3cvn1b7O3tZfz48SmeOvfo0UOKFCmitA9/8OCBTJ8+XWxsbMTIyMjgbqhFkm4aKlasKMuXLxeRpKePTk5Okj9/fvH09FSSi8DAQKlQoYIEBwfrOeLMt379elGpVDJv3jyJjo4WkaRRwqpVqyb58uVTPhuam8jRo0dL8+bN5enTp3qLOTuEhoZKtWrVZNOmTSKSVMt34sQJGTFihKxZs0Ypd+HCBXny5IlyfgyxA3toaKiUKFFCdu/eLSLatTGxsbHy/PlzUavVsnnzZiWZMJTz8OWXX0rHjh21kqSnT5/Kv//+K7/99ptcvnxZRESio6OlcePGolKpxNLS0iCTCpGkZPvTTz9Vfn/69Kl888034uzsLN26dVOWz5gxQxo1aiTlypWTJk2aGExt/9tiY2OlXbt28sUXX4hIUpJ57do1mTFjhqxatUq5pp49e1YePnxoUNfNffv2iZ2dnQwYMEBpKioiUr58eVGpVDJ06FCt8qNHj5a6desaZBOwrMDEIpf4448/pHTp0spNckBAgOTLl0+2bNmilImNjZXg4GC5fPmy8gX65ZdfSqlSpeTBgwd6iTuzLF26VHx8fFJdFxkZKa1bt5adO3cqy+7fvy9z58412BEsgoKCZNasWRIXFycPHjyQUqVKyZAhQ+TFixfi6uoqjRo1UobTNKQvhLetWrVKVCqVzJkzR6KjoyU+Pl4WL14snp6eMnDgQImJiZFLly7J+PHjpWDBgspIOIbs0aNHUqNGDZk3b57s3btXunTpIrVq1ZLKlSuLu7u70mY4+U22oY6UFhISIg4ODjJr1iwR0a6JOH36tMyePVurxssQaipEkv5vP/nkExk+fLiybN++fdK1a1extrYWc3Nz8fb2lu3bt4tI0oOJ3r17G8wT6dT07t07xbCykZGRsnHjRnFzc5Px48cry1+8eCHR0dEG3fTl9evX0qFDB/nf//4np0+flkGDBslHH30kTk5O4uPjI506dUrRXCg3e7uJ565du6Rs2bLSt29fOXfunIgkdU738PCQJk2ayOXLlyUgIEBGjRol1tbWub4JWHZiYpFDaarkNX788Uflorhjxw4pUKCAMqpLRESEHD16VHnCIJI0ZFqXLl2kaNGiyocmN/v222+lSJEisn79egkLC5OrV6/KhQsX5Ny5c3Lo0CGpX7++jBw5Um7cuCGnT5+WV69eGezNkkjSl4KmFuLzzz+Xzp07KzdIvr6+olKppGrVqqn2RTEEyW8AV65cKSqVSrl5fP78ucycOVM8PDzE0tJSKlSoIBUqVDCIz8Hb3vUeHzRokFSqVEny5csnY8aMkT/++EMSExOlY8eOMnr06GyOMuu977O+cOFCMTIyUm6iRZIewjRv3ly6dOlicH1KNEaNGiUFCxaUvXv3yvDhw6V48eLSp08f+fnnn+Xff/+VFi1aaF03DOl6mfz/VFMD9d1330nVqlXl5MmTWmWfPn0qEyZMkNq1a4tarRYRwzoX7zNnzhzx9PQUc3Nz6dixo+zYsUNiY2Nl0qRJ0qZNG32Hlyne97Bg27ZtUrZsWenTp4/8+++/IpL00LZixYpSrFgx8fDwkNq1axtsrVVWyafvCfoopaNHj+LGjRuoW7cuypYtCwCIioqCiYkJfv/9d/Tv3x9z5szBwIEDAQABAQH4/fff4e7uDgsLCwBAuXLl4ODggKNHj8LT01Nvx6KLu3fvolChQrCxsUGVKlXQu3dvTJw4EXPmzIGVlRWePXsGMzMzWFhY4ObNmzh27BgOHTqE8PBw/PvvvyhatKi+D0Fn8v8zp6tUKty/fx8qlQqRkZHw8PBA2bJlISJQq9Vo0qQJLC0tAQClS5fGmTNnULhwYZiZmekz/Ex1/fp1rFixAh07doSDgwNKly4NEcGgQYOQkJCAYcOGISEhAZMnT8aYMWMwZMgQHDlyBG5ubrC1tYW9vb2+DyFTJSYmKjNJ//LLL3j69Cni4uLQrVs3rFy5Ejdu3EBcXBwqVKigbPPo0SO4u7vrK+Qskfw8rF27FteuXUN4eDj69+8Pb29v9O/fHw8fPkSXLl3w888/w8jICGq1Gk+ePMFPP/0ElUoFEYFKpdLzkegmOjoa0dHRuHjxIjw8PODn54eXL19i+PDhyJcvH5YsWYLatWujePHiAIAKFSrgjz/+gLGxMYA3s5Lndpr3w9OnT1G4cGHky5d0m+Pj44OoqCisXbsWxYsXh5OTEwCgUKFC6NmzJ+bMmYOLFy/CycnJYM6Fhub9HRQUhP/++w+PHz9Gp06dMG7cOLRt2xaPHj1CvXr1lHP37NkzGBsbIzY2FmZmZrn6s2FsbIzLly9j7Nix6NSpE5ycnNCwYUMAgJ+fH/Lly4dJkyZBRDBy5Eg0btwYFy9exJkzZ2Bvb4/8+fOjUKFC+j2I3EafWQ2ltHHjRnF2dpZhw4Zpja8fFRUlbm5uolKpZPPmzcrymJgYadWqlXTr1k2rQ2Lyf3Oj+Ph4adSokRQrVkyrKc/EiROVEZ807cNfvnwpY8eOFV9fX7lw4YLy1Cm3e/LkifJ637594uXlJRUqVBB7e3sZM2aMMoJHzZo1pUGDBrJv3z4ZPny4FClSRB4+fKivsLNERESEVK1aVVQqlTg7O4uPj4+0bdtWVqxYofS52b17t6hUKpk/f74yClJe8OWXX4qdnZ34+PiIpaWlVK1aVXbs2KE8qXv+/Ln8+++/0rJlS2XUE0M0duxYKVq0qAwePFgaNmwo3t7esmDBAomMjBSRpDHq27dvL35+fjJmzBjlPBjC+bh27Zr06NFDypYtK2ZmZlK4cGHp0qWLUnv79vwkiYmJ0q9fP+ndu7dBNXfRCA4OFmNjY/nyyy+1lv/2229iYmIi/fr102om++zZM6latapBT464a9cuKVy4sFSqVEkKFCgg7u7usnbtWq3mXrdu3ZKxY8eKtbW1wTQbjY+Pl4YNG4pKpZIKFSpIgQIFpFmzZvL5559LUFCQxMXFya+//ioVK1aUQYMGGWwfo+zExCIH2bx5s1hYWMjWrVslLCwsxfpDhw5JiRIlpGXLlhIQECDff/+9NGvWTCpUqGCQQ0VeunRJqlWrJp6enkpyMX78eKlevbryu2Yuiz59+mjNVZDbPX78WIoXLy7BwcHyxx9/iKWlpaxatUpCQ0Nl3bp1olKptEbCcnNzE3d3dylTpoxBNvmJioqSdevWSZUqVaRixYoSGBgoHTp0kIoVK0qhQoWkcePGsn79eunUqZPkz59fFixYYNDtozW+++47sbe3l/Pnz0tkZKQ8f/5cfH19pW7durJ//34REdm6davUq1dPmjdvblCjHiW3bt06cXFxUd77v/32m6hUKilXrpzMmjVLGfHm7ZtoQzgPFy5cEAcHB2X41ODgYBk9erS4ubmJh4eHnDhxQqt8TEyMTJgwQezt7eXKlSt6ijpr7dixQwoVKiT29vZK52SNAwcOSKFChaRt27aydu1auXTpkowaNUrs7e0N5qHU2/cBQUFBUrRoUdm4caOEh4fLq1evpEePHlKtWjVZt26dvH79Wo4dOyYtWrQQLy8vg+trc/nyZfH29hYfHx85dOiQTJs2TerUqSMuLi5SrFgxmT17tjRs2FDc3d3Fz8/PIAc7yU5MLHKIu3fvSvXq1VOMNR4bGyvXrl2TGzduiEhS3wkfHx9xdnaWatWqSceOHQ3uZiF5zUtwcLDUrl1bfHx85NmzZ3Ls2DGpXLmyfPnll3Lv3j25dOmSTJgwQYoUKWJQF4Pbt29LiRIl5MKFCzJx4kTly/HWrVvi7u6uNb62SNJTmTt37hhkR23N+yE+Pl62bt0qxYsX17pZ2LJli/j7+4urq6vUqlVLVCpVipouQzVjxgxp2LChvHr1Snm48OzZM6lfv740b95cKffHH39oTRBmSOLi4mTFihWyYMECEUmqmShYsKCsXLlS+vTpI0WKFJHZs2dLeHi4niPNfBcuXBBLS0sZP358iv/XnTt3io+Pj1SvXl2ZKXn58uXSvXt3KV68uEE+gNDYu3evctNctGhRrU7sIkkd9zt06CAODg7i4eEhHh4eBnE+3tVKYdeuXeLh4SGhoaFKmcTEROnatatUqFBBuYcICAiQ//77L9vizQ6a748rV66Ig4ODdOzYURnd6cKFC7JmzRpp27atVK5cWVQqldjZ2RlcjX92Y2KRQ9y4cUPc3Ny0qmI3bNggXbt2FXNzcylUqJBMnjxZWXf79m15+vSpQQ0VmXys9eSd17/88ktRqVRSrVo1ef78ucydO1c8PT1FpVKJp6enQU0AmFyVKlVk+vTp0qhRI1m8eLHExsZK8eLFpX///sr/+7Jly+Tw4cN6jjRrhIWFKV8Ae/bskd27d8vr169l69atUqxYMa0hIkWShpq9du2azJkzx2CfxGpoHiKMHTtWqlatqizXfIZOnDghFhYWKUYyyc3NIzUePnwoT5480arVvXPnjoSGhsrdu3elYsWKsnjxYhFJemBTuHBhcXFxkfXr1+sr5CyhVqvF1tZWOnTooCxLTEzU+i5Ys2aNWFtby5o1a+T+/fsyZcoU+d///mewo+VphISESLt27SQ0NFSWLVsmRYoUkUmTJsmwYcOUIbojIyPl4cOHcv36da1mp7mV5rN9584dWbBggUyePFmZv2Xfvn1SrFgxefHihYiIMtDLixcvxMLCQhmO2dBdvnxZHBwcpHHjxloPnuLi4iQqKkp27NhhUBND6gsTCz1asWKF8vrcuXNSokQJWb58uVy6dEl69OghPj4+0rNnT9m0aZMsWbJE8uXLJ9u2bUuxH0O4Wbh//7506NAhRRvXefPmSZEiRWTdunXK07dnz55JaGio7NmzRy5cuJBqs7HcTPP/2b59e5k2bZrs2LFDmjRpIvb29jJo0CCt8fa7du0qY8aMSTGKWG4XEREhRYoUkdGjRytNvzRfklFRUbJ161ZxdHTUSi4MIbl+l3d9xs+ePStGRkYyZ84creUBAQFSvnx5g3v6uHXrVqlRo4aUKlVKPv74Y2VIZY3Dhw+Lh4eHUnt54sQJ6datm8yfP99ganQ17ty5I9WqVRNfX98U5yF5U5j69esryUdkZKTW6IGGKjQ0VEqXLi0XLlyQmJgY2bJli1haWopKpZJ79+6JiGFdLzTXh6CgIHFwcJC6detKwYIFxdHRUcaPHy8RERHi6OiozO2jce/ePfH09JS//vpLH2FnGc37/8aNG3Ls2DE5d+6cUgtx+fJlKV68uHz00UfKvYMh3EPlJEws9GTz5s3Svn17rRvC0aNHS8GCBcXe3l7Kli0rP//8s/LE9sGDB+Lu7q6VjBiSW7duSa1ataRVq1YSGBgoIklD4RUuXFh+//13EUmqyvTy8pLKlSsbxBOm5G7duiUrVqyQ4OBgpZ3vli1b5KOPPpIff/xRvLy8xMvLS3nSGBcXJxMmTBBnZ2eDnQ300KFDYmpqKsbGxvLVV19prUueXPTq1UtPEWaP5DeJ+/btk6VLl8revXuV98KiRYvE1NRUJk6cKNeuXZPr169L69atpVGjRgb1hblq1SoxNTWVb775RpYsWSIfffSRDBo0SKvMjz/+KG5ubrJhwwa5du2afPLJJ/K///1PWW9oycX169elRYsW0rx5c63kIvl7pmHDhuLn56eP8PRCc+xt2rRRarI7duwoBQsWlEKFCsnYsWP1GF3m0xzvxYsXxcLCQqZMmSJRUVFy7949+d///id2dnZy7Ngx2b17t1hbW0uvXr3kwYMHcvfuXfH395cSJUoY1AMIzfnYs2ePlCxZUipVqiTlypWTpk2bat1LlChRQlq1amVwDyZzAiYWenL58mXlicmhQ4eU5WfOnEl1puj79+9LtWrVDLrKUvMl2aZNG+nXr58ULVpUfv31V60ywcHB4urqKjVr1jSYm6b4+Hjp2LGjODs7i6urq1hbW0uLFi2kdOnSUqJECXn69Kns3btXvL29pVy5ctKmTRtp2bKlwcxR8rbExERJSEiQkJAQUalUolKpZMKECSm+AKKiomTbtm1iamqqdfNoSJLfIH755ZdSqFAhKVu2rHh6eoqjo6McOXJERETWrl0rhQoVEkdHR3Fzc5OaNWsqDy0M4XOyfv16MTU1lR9//FFZNnnyZOnatatcuXJF/vnnHxFJ+iy1a9dOnJ2dxdHRUapWraqcB0Ma2CK55MmF5qGMSNL/+3///SctW7ZU+u4Z6jlITb9+/WTlypXSs2dPcXBwkKNHjyq1nxMnTtR3eJkqNDRUSpUqJbVr19Zafu7cObGyspKDBw+KiMj+/fvF0dFRHBwcxM3NTZydnQ1yFKTjx4+LjY2N8iB269atYmRkJAsXLlTKXLlyRczNzaVdu3YGcY3MSZhY6MFXX30lbdq0kWfPnsnx48elWLFiWp1R336q9vTpU2ndurXUq1fP4J64ve3atWvy0UcfiYWFhdZFIPkH/9q1a0pnREOhmaTq+vXr8sMPP8hXX30lHTp0kLJly0rbtm0lMjJSLly4ILNnz5auXbvK/PnzDbKmQnPjExoaqvz7008/iUqlkpEjR6ZILhITE2XXrl0G2WY8+Wf9+PHjUq9ePfn7778lNjZWLl68KP369RNTU1PlSfWDBw/kr7/+khMnThhUR+3z588r///JNWnSRJycnMTJyUksLCxkxIgRIpJUm3fs2DH5448/tJoNGrJ31VyMHTtWvLy8DOqJdHKa68WlS5fk999/lx9++EE51oULF4pKpRI3Nzfl5vnZs2fy7bffGsz1QtOs7d69e9KxY0epX7++VquGf/75R6ysrCQgIEBZ9uLFCzlw4ID8+eefypDlhkLzfpgzZ4507txZRJL6Irm4uMjAgQOVcprvl6tXrxrk96i+MbHIZmvWrBGVSqXUPISGhsrMmTOlfPnyMmrUKK2yjx8/lq1bt0rLli2lcuXKBjf607vcvHlTmjVrJi1bttT6kjTkpwrvepK4b98+qVmzprRu3VoeP3783rK5nea4fvzxR2natKls27ZNec9///33olKpZPTo0UpyMXfuXNm7d6/e4s0qb9dYfvfdd9KxY0fx9fXVukEOCwuTbt26Se3atZUmk8kZ0nWiS5cuYmtrKz/99JOIiHTo0EHKlCkj//zzj5w5c0aWLFkiKpUq1T5ohnQe3id5cnHu3DmZN2+e5M+f3+CGDn3bnj17xN7eXho0aCCOjo7StGlT2b59u0RERIifn1+Kz5OhfI8sWbJEvvjiC+WacOvWLenTp4/UqFFDtmzZImFhYeLo6CjDhg1Ttskrn4Vp06bJmDFjJCQkJMWAJ7/88ot8/fXXysM8ynxMLLLRqlWrxMTEJEVzplevXsncuXOlXLlyWsnFhg0bpHbt2tK/f3+DmswpLd5VvZ9XJJ/kcMeOHdKgQQOpUaOGklwYqr1794q5ubksWrRIbt68qbVu27ZtYmJiIp999pl07txZzMzMDK4p2Ny5c6VChQry888/K8sGDRokRYoUEWdnZ6VvkeZLctu2bVK8eHG5e/euXuLNaslvhLp16yYFCxaUmjVrSqVKlbSewt+5c0ecnJxk1qxZ+ggzx7h+/bp8/PHHYmdnJyYmJqk2qzUkp0+fFltbW1m9erWIJA2rrFKpZO7cuSJiOElEapYuXarV504kqTa/T58+UqVKFbG0tJQhQ4aIyJvmpYZM0ylfJCnpsrOzE0dHRxk8eLCy/PXr19K7d28ZNGiQ1iiUlLmYWGSTgIAArUnNND7++GP56aef5OnTpzJnzhwpV66cjB49Wll/48YN5SYirzxt0NB8SdasWVNOnjyp73Cyneb/PTExUTZt2iQtW7bUungamtu3b4unp6dyk/D69WuJjY2VgIAAZQ6CvXv3Svv27aVdu3Zy4cIFfYabJQ4dOiRt27aVxo0ba/UnmDlzphQvXlyGDx+uNcb6uXPnxNXV1eCGW05eK5f8df/+/UWlUsk333yjtTwsLEwqVaqUYh6gvOjq1avi6+sr//77r75DyXKrVq1S5mu5efOmlCpVSvr376+sN+TrpcaJEyekb9++Sq3l9evXpW/fvuLq6qo16IUh3z9cuXJFKlWqJPPnz1eWtW/fXszNzeXy5csSExMjkZGRMm7cOClWrJhBzXmVEzGxyAavXr2Sffv2KUMkarRv3148PDzk1q1bIpLU9Gnu3LlSsWJF6d27t9Y+DP1pw7sEBwfLZ599lie+IFKTPLmIiIjQczRZSzP537Fjx+T169cyb948qV27thQpUkQcHByUJ9TR0dESGxur52gzV/J20X/++ad8+umn0rBhQ2X2bBGRcePGiZeXl3Tr1k3OnDkjp0+flubNm0v16tUN6vqQ/FgeP36col9N165dxcbGRnbt2qWUbdmypdSsWdOgb57Sw9CGn36XxYsXy8CBAyU6Olpp8qJ5Txw4cECWLVsmL1++1HOUWUtzzzBw4EDlAcyNGzekT58+UrNmTfn666/1HGHW0xxvtWrVZMmSJSKS1Leidu3aUqhQIalUqZI0bNhQHB0dDa6WOydiYpGFWrdurTw1iouLkwMHDoiHh4e0bNlS2rdvL97e3kpzD80NZHh4uEycOFG6du1qsG3p00tTzZtX5ZX3we3bt6VZs2ZSs2ZNcXBwEF9fX5kxY4YEBweLm5ubTJgwQd8hZokDBw5IsWLFtMaYf1dyMXHiRClUqJBYW1vLp59+Kn379lWSLENKLkSSjrVq1apSsGBB6d27t2zYsEFZ5+fnJwULFpQ9e/ZIy5Ytxd3dPc/0QcurNNfBu3fvKu/5n3/+WVQqlRQoUEBGjRql9Rno37+/dOnSRSIjI/USb3ZJSEiQ+fPnS61ataR///5KcnHt2jXp37+/lC1bVtauXavnKDNXat+Jt27dkiFDhoi3t7fWg5q1a9fKwoULZcuWLQbbZDSnYWKRRW7fvi2jRo3SuimOjo6Wn376SZk6/u2JejQflufPnyuvDe1mgUjkzXs9JiZGq/bhzz//lMWLF8uiRYuUkTtERJo3by7ffPNNtseZHV68eCFfffWV+Pj4aM3JkTy52Ldvn7J8+vTpUr58eZk8ebJyjgwh+U5+rVuxYoXY29vLt99+K8uXL5ePP/5YKleuLAsWLFDK9OjRQ1QqlVSoUEFJKvJKH7S8RnO9+OGHH6RGjRqyfPly5f964sSJYmpqKj///LO8evVKwsLCZNy4cVK0aFG5cuWKPsPOdMknfrtx44bSxyIhIUHmzJmTIrm4cuWKDB061CBnk/77779lx44dWstu3rwpQ4cOlQoVKuSJmpqciolFNli0aJEyulFUVJT88MMP4unpqbQNFUn9CzGvPKmmvEXzvj548KC0bt1aateuLR07dpSQkJAUZSMjI2Xy5MlSrFgxuXHjRnaHmuU05+Lly5eyfPly8fLySlNyMXr0aKlcubJMmTJFq8+FIThz5oyMGTNGtmzZoiy7efOmjBo1SqpVq6ZMciWS1IGVSUXesG/fPjEzM5Ply5drXQv+++8/6d27t6hUKilbtqxUrVpVXF1dDbbJy+7du8XBwUFKliwpnp6e8u2334pIUk2dJrkYOHCg0ufC0JrFJSYmyosXL+Szzz4THx8f2bVrl9Z6zWS7JUuWlEWLFukpyryNiUUWSP4Fd+fOHfH19ZVChQrJ6dOnReRNzYWHh4c0a9ZMKcvaCcor9u/fLwUKFJARI0bIrl27pHTp0tK4cWM5fvy48jnYvXu39O7d22Dbxb5dK/nixQtZvny5VKpUKUVy0bZtW2nSpIls375dWT558mRxdXWVWbNmGcS1IzExUc6ePatMirhy5Uqt9bdu3RJPT89UbxaYVBi2hw8fStWqVZXOyHFxcfL8+XPZv3+/qNVqERE5fPiwrF27Vn788UeDm7dDc60ICwuTkiVLyrp162T//v0yduxYMTIyUpr+vH79WubPny+enp4yfPhwSUhIMJgHlJrj0Mzdcfr0afHz85N69erJzp07tcqOHDlSXFxc5KOPPlJG0qPsw8QiC02fPl3WrVunfADs7Ozk77//FpE3yUW5cuXEx8dHz5ESZZ/r169LxYoVZfny5SKS1PTPyclJ8ufPL56ennLixAkRETl69KjMmjXLICcwejsR0LQDj4qKkpUrV0rFihW1kosjR45I/fr1ZciQIVo30TNmzMjVk0UmH5xAY/PmzaJSqaRjx44pamPat28vfn5+BnOzRGkTEhIipUuXlr1798rr169l6tSpUrt2bbGxsdF6aGfIDh8+LHPnztWaKPLZs2cybdo0UalUWsnFkiVLDKr5U/I5KHr27Kk0ATtz5owyMeD333+vlB81apQsWrRIaRJG2YuJRSZKfrOwd+9esbGxUYbEvHz5snTo0CFFcrFr1y7x8/MziCeORGkRFBQks2bNkri4OHnw4IGUKlVKhgwZIi9evBBXV1dp2LCh0nTQEJ9EJ/+sL1y4UPz8/MTDw0MWLFggV65ckVevXslXX30lXl5eWqPDnTt3zqBm1E5+HqKjoyU+Pl5Ztnr1alGpVDJ+/HjlifTLly/Fx8dHazhuyhuePXsm3bt3l1KlSkmRIkWkTZs2smjRInn58qVUr15da4hZQxQTEyODBw8WlUolDRo00FqnSS5MTEy0+iAZmj179oi1tbWMGTNGLl++rCz/559/xM/PT8qVKyedOnWS3r17S6FChdhRW4+YWGSB7777TpYuXSoLFy7UWv7vv/9Khw4dxN7eXkkukndcZXJBecHr16+VccQ///xz6dy5szILqq+vr6hUKqlevbrBT2A0btw4sbe3l8WLF8vq1aulYMGC0q5dO4mMjJSIiAilQ3fbtm21tjOE60TyY1iyZIl8+umn0qxZM+nTp49Se6NJLnx8fKRPnz7Spk0b8fLyMoiO6vRumqfTERER8uzZM2X59evX5bvvvpPVq1fL8+fPleXt27eX2bNnZ3eY2S44OFi+/PJLUalUsmfPHq11z549k7Fjx0rBggXl6dOnBnGNSO7SpUtib2+fYnQrTY3mw4cPZfHixVKnTh359NNPDXKOo9yEiUUmiIuLU26MXr58KQ4ODqJSqbRmfNS4fPmydO7cWVQqlVbWTWRoEhMTlZuE//77T+7fvy9Xr17VWt+4cWOt2ZJHjBghZ8+eNahq/LclJCTI6dOnpUyZMsrEj//8848YGxvLpk2blHJRUVEyZ84c6dGjh8HdKGiMHTtWihYtKsuXL5d169ZJ0aJFpXr16soDl02bNolKpZI6depo9S8xtA6plERzvfjpp5+kfv364unpKU2aNJHAwMAUc9c8fvxYJk2aJLa2tlrXFUOgOQ/Pnj3TSq7u3Lkj//vf/6RAgQKyd+9erW2eP38ujx8/zs4ws01AQIDUqFFDYmJi5OnTp7J27Vpp2rSpODk5yf/+9z9ldLzExESlDwbpDxMLHe3evVvatWsnPj4+Mn36dBFJmpilVq1a4u7unuoFLygoSCZNmsTx1slgJe8wt2/fPvHy8pIKFSqIvb29jBkzRu7fvy8iIjVr1pQGDRrIvn37ZPjw4VKkSBGDG+VIJOkzv3//fgkMDBSRpI6H1apVExGRnTt3Sv78+ZXhEV++fCm//fabiCQlF4Y69PS///4rFStWlKNHj4pI0lCi1tbWKTptr1+/XlQqlfj7+ysPcMhw/fjjj1KgQAGZOHGiHD9+XGrWrClVqlSR7777TqnF/Pnnn6VHjx7i7OxskAM7iCRdNytWrCiVK1eW7t27K8n03bt3ZfDgwWJtba01Upwh0VzzNLWTp06dEpVKJcOGDZMKFSqIr6+vjBo1ShYvXix2dnZy+PBhfYZLb2FioYNVq1aJtbW1jBgxQoYPHy5GRkbKWPv//fefeHp6StWqVd87QgWTCzI0jx8/luLFi0twcLD88ccfYmlpKatWrZLQ0FBZt26dqFQq+eGHH0RE5N69e+Lm5ibu7u5SpkwZg7xJ2Lp1q3h7e4uvr6+MHz9eRESOHTsmxYsXl7Vr14qNjY3WzfThw4elbdu2SnMxEcMcevrIkSPi7OwsIklJRf78+WXVqlUikpRcrV+/Xrk+rl27VkxMTGTUqFFaT3DJsNy5c0eqVq2qzJ788uVLKVmypDg6Okrp0qVl+/btkpCQIJcvX5ZvvvlGmWDW0Fy4cEGKFSsmkydPlrlz54qTk5PUqVNHeehy9+5d+eKLL0SlUslPP/2k52gzV/LhyD///HPlIdS2bdukVatWMmbMGK35SapVq6Y1iSjpHxOLDNJ80SV/YuDn5yfLly9XxuNXq9Xi4+Mj1apVM7jh74je5fbt21KiRAm5cOGCTJw4Ub744gsRSRou1N3dXfr166dVPj4+Xu7cuSNPnz7VR7hZatOmTWJhYSHbt29PcUPs5+cnKpVKpk2bpiyLjY2Vjz/+WNq3b29QNRTJEyPN69u3b0uLFi1k/vz5kj9/flm9erVS5u+//5YOHTrI2bNnlWVfffWVFCxY0GCbe1DSg4YlS5bI06dP5eHDh1K6dGmlSbGXl5d4e3vLhg0b5NWrVwaVbCdvNiqS1J9i6tSpyu937twRd3d3qVWrlnJ/cevWLRk9erTBNQMTSWoJYmNjIyNHjtR62PR2jeX48eOlZMmSygAPlDMwsciAP//8M8UNgUjSha9ixYpSoEABqV27tmzdulXUarVUqlRJXF1dJSwsTE8RE2WvKlWqyPTp06VRo0ayePFiiY2NleLFi0v//v2VL9Bly5YZdBX2v//+K+XLl0/R4VBz/EePHpVmzZqJq6urbNq0SZYuXSrNmjWT8uXLK80eDCG5ePsYNG2gX7x4IfXr1xeVSqV1ExUdHS0tW7aUdu3apdiWtRWGLSEhQelfNWTIEPnss8/kxYsXIiLSu3dvMTc3lwYNGijLDIXmmnDkyBFZuHChfPzxxzJgwACtZOPOnTvi5uYm9erVkwcPHoiIYYwOFxERofX7xYsXpWjRorJmzRqt5Y8fP1aOd/v27dK9e3exs7MzyFru3M4IlG7FixdH3bp1cfbsWZw5cwYA0L59e0RFRWHSpEn4/vvv8eLFC8yaNQsqlQo//vgjatasiSJFiug5cqKslZiYCABwcXGBiGDAgAE4cOAASpYsiTZt2uDrr7+GSqXC69evcfr0afz222949eqVnqPOGg8ePEB0dDTq168PEVGWq1QqAED9+vUxe/ZstGrVCuPHj8f+/fvh5OSEoKAgmJiY4PXr1zAyyt2X6MTEROUYFi1ahC5dusDHxwcLFy7Es2fP8P3338PBwQF//fUXpk2bhrVr16J169a4f/8+duzYASMjIyQmJirnz8bGRp+HQ5kkISEBCQkJAIDbt2/jzp07uHPnDoyMjODi4gIACA0Nhb29PaysrAAk/d//8MMP+O6772Btba2v0LOESqXCoUOH0KhRI+zbtw8nT57EwYMH8ffff2tdUw8fPozLly+jV69eSEhIQL58+fQcuW6WLl2K0aNH4/Xr18px3rlzB25ubujXrx+ePn2KTZs2oUWLFvD29oa/vz8ePnwIKysrJCYm4siRI/Dx8dHzUVAKek5scq3r169LixYtpHXr1lKnTh2pXLmy1kg2mhlk3277xz4VZGhu3bolK1askODgYKVKesuWLfLRRx/Jjz/+KF5eXuLl5aVMahQXFycTJkwQZ2dng5z8TmP27Nlia2ur/J786aPmOnDlyhW5dOlSiuuCITyJTC61oXU//fRTEUm6lnbr1k0qVKggTZs2lT59+ijHb2jnIa9btGiR1nfirl27pHjx4uLi4iIVKlRQZlB+9eqVtG/fXipXrixLly6VwYMHi42NjcE1edFcE0JDQ6VPnz7y7bffSmxsrISEhIiHh4dUqVJFzp07p3XtuHfvnty4cUNfIWcKzfVu+fLlSh8KTUftY8eOiUqlkrFjx0rVqlXF19dXhg0bJvPmzRMzMzNlJD2O/pRzMbHQwfXr16Vp06ZiY2OjzPqYkJAgiYmJcvbsWSlXrpwy0ReRIYqPj5eOHTuKs7OzuLq6irW1tbRo0UJKly4tJUqUkKdPn8revXvF29tbypUrJ23atJGWLVtK0aJFDb4K+/vvvxcLCwv59ddf31lmzJgx0q9fP60baENqOy6SNJTuh4bWTUhIkOjoaK0hRZlUGJYnT55Ip06dxMrKSg4dOiSvXr2SEiVKyJo1a2TXrl0yYsQIMTIykvXr14tI0mz09erVk6pVq4q3t7ecP39evweQRU6dOiV169aVatWqyfHjx5XlkZGRUqZMGalcubKcP3/eYK4LmuaNt27dkhkzZoiIyIkTJ6R79+5KX9Q1a9ZIrVq1ZOTIkXLx4kVl22rVqr33eko5AxMLHd28eVOaN28uLVu2lL/++ktZ/vHHH0vDhg0Noo000ftoOtRdv35dfvjhB/nqq6+kQ4cOUrZsWWnbtq1ERkbKhQsXZPbs2dK1a1eZP3++QddUaNy6dUtsbGykffv2cu/ePWW55gbhxYsX0r59e1m+fLm+QswWp06dkqpVq4pI6kPr/v7778qkeBqGchNF2n1s7t+/L4MHD5ZChQrJwoUL5csvv1TWPXnyRCZMmCAqlUrplxQfHy/h4eEG0adCcx40CfS9e/ckISFBXr58KQ0bNhSVSpXiWhAZGSnlypUTV1dXg5j0TXMOgoKCRKVSKXMYLV26VLy8vKRPnz5K5/S3rwnjx48XV1dXpYaDci4mFplA0yyqVatWcuzYMWnXrp2UKVPGoDpgEr3Lu24C9+3bJzVr1pTWrVsrI/nktRvG7du3i5mZmXTp0kWrhubBgwfSsmVLqVOnjkE9mQ8JCZGLFy/Kli1b5NKlS/L06VO5cuWKODg4yOrVq985tK6mmRwZFs13n1qtll27dsn3338vO3bskEmTJomVlZU0aNBAq/yTJ09k4sSJYmJikmI+k9xMcx6uXLki7dq1kwoVKki+fPmkQoUKsnDhQomKipKPPvpIqlSpIgcOHNC6Z3j58qVUrVpVbt++ra/wM4XmmC5fviwWFhbi7++vtX7FihVSu3Zt6dmzp9I5XSRpKOoePXrkiVpuQ8HEIpNcv35dWrduLSYmJuLh4aEkFYZ000CUFpovkISEBNmxY4c0aNBAatSokSeHCX39+rUyNHWJEiWkRYsW0qxZM6lRo4ZUq1ZNuU4YQt+rPXv2SKtWraRYsWJibW0tFhYW4uvrK3///beMGDEixehPhjq0LiXR/J9euHBBSpUqJWXLlhVTU1OpWLGiTJs2TSZNmiRGRkZy4MABre2ePn0qw4cPl4IFC8rz589z/cMITfwXL14UGxsbGTx4sKxbt0727t0rbdq0ESMjI/n888/lwYMH0qRJE6levXqK5CK3nwPNsVy6dElsbW3F09NTWaeZ9FAkqc9FnTp15PPPP1dqLr777jvp0qWLXL58OXuDpgxjYpGJgoODZejQoex4SHme5oswMTFRNm3aJC1bttRqDpTXnD9/XoYOHSrNmjWTPn36yIoVK5RkwhCuE2vWrFGatxw+fFiePXsm06dPl7Jly4qHh4fMnj1bunTpIi4uLgY9tC4lSZ5UWFpaypgxY+TBgwfy008/SdOmTaVatWry22+/Se/evcXa2lp++eUXre2fPn0qjx490kfoWeLRo0fi4+Mj48aNS7F8xYoVYmpqKkOGDJH4+Hhp2LCh1K9fX/bt25frEwoR7eZPlpaW0rBhQ3F0dFTmNxJ503Fb5E1y0bdvXwkNDRWRlPNXUM7GxCKLGMLNApEukicXb49VTkkMoaZizZo1YmpqKnv27EmxbseOHVKlShWpX7++bN++XQYNGiROTk7SqFEjjv5k4NRqtdja2kqHDh20lq9atUoKFCggN2/elP/++0/69esnBQsWlEOHDukp0qx37tw5qVChgtYIcJob7ufPn8vMmTPF1NRUAgMD5cmTJ1KuXDlp0aJFin4GudU///wjJiYmMnXqVHn9+rWsXr1abG1t35lcrFixQsqVKyeDBg0yiGtkXpO7B0HOwXL7+NJEulKpVBARqFQqFChQQN/h6J3mXCRnbGysp2gyx5EjRzBgwABMnToV7dq1U+ab0Iyx36lTJ4SFhWHKlCkwNTXFypUrMXXqVBQtWlTZx+vXr3m9NEAJCQlwdXVFXFwcAgMDUbduXQBAqVKlYGpqipiYGJQuXRpjx46FsbExWrZsid9++w1NmzbVc+SZ78KFC7h58yYqVKgAIOlaoJnfxcbGBl26dMGCBQvw119/oU6dOggMDMSLFy+UOTxyu+joaAwcOBD+/v4AgE6dOgEAJk6cCABYtmwZTE1NER8fD1NTUwwePBgmJiZo1qxZrr9G5kW5e/YlIsrR3r6RzssM8VxoJgs9d+4cjh07BpVKBZVKhXz58ikTXn3xxRdwcnLC4cOHAQAFCxZUthcRJhUGysXFBd999x3i4+MxY8YMBAcHIzIyEl27dkWfPn2Um+zSpUtjxIgRyvvEELm5uQEA9uzZAyDltcDV1RWlSpXCo0ePAACFChVSJgo0BPXr18eyZcsAJH3mbWxs0LlzZ8yaNQvbtm3DsGHDAACmpqaIi4sDAPTv39+gzkFewsSCiIgyxN3dHd9++y3i4uIwa9YsBAYGKus0N08RERGIjY2Fg4MDAMDExCRFGTJM7u7uWL58OYyNjTFw4EA4Ozuja9eumDdvHgAos2+XKVMGCxYsgIeHhz7DzTIuLi6wtrbG5s2bce/ePWW5Jvl+9uwZLCwsUKVKFX2FmG00n3lra2ut5GLkyJEAADMzM32GR5mAiQUREWWY5uZRpVJh5syZOH78uNb627dvo0SJEqhZsyYAKM2lKG9wd3fHsmXLYGxsDGtra7Rt21ZZp2kOBGgnnIamRIkS+Oabb3Do0CFMnjwZly9fBvDm+BcvXoyHDx+iXr16+gwz22mSizlz5mDp0qUYP368vkOiTKASXuWJiEhHN27cwBdffAERwcSJE1GvXj28fv0abdq0gZGREX744QetG0nKW27evImhQ4dCRDB58mTUqVNH3yFlq4SEBKxbtw5DhgxB6dKlUadOHTg4OODOnTs4ePAgAgIC4OPjo+8w9eLFixfYv38/atWqhTJlyug7HNIREwsiIsoUmuTCyMgIEyZMwOLFi3H16lUEBQXBxMQEiYmJTC7ysBs3bmDkyJEIDw/HkiVLlFqs/2vnjk0kBIMAjI6iuRUYGG1mZQZbgA0IGlqMHRhvoljLwkUHd3DZv4vc+l4Fk37DMFeyrmsMwxD7vkdVVdG2bXRdF7fb7ezRTvXXcwv+J2EBwMscxxH3+z2WZYmmaeLxeERZlr4/ERER27ZF3/cxjmPUdX32OKd4Pp+R53lkWSa2+TjCAoCX2rYt5nmOaZqiKApRwS/fb0Wv6ud23qaeTyMsAHgbUQFwHcICAABI5rAPAABIJiwAAIBkwgIAAEgmLAAAgGTCAgAASCYsAACAZMICAABIJiwAAIBkwgIAAEgmLAAAgGRfG32uF0JK/YgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "Cellpose Specialist vs Generalist by Dataset\n", @@ -1021,20 +929,9 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAai5JREFUeJzt3Xt8zvX/x/HntWEHTJixOW05ziFzCJOEnBUSoaSEfEWFkEMZIeQsyqGcKqdUOqKSYZqcQhg5T2yYnHZme//+8NuVZbTt2lw7PO6323Vz7XN473W5XJfreb3f78/bYowxAgAAAIB0crB3AQAAAACyN0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYJM89i4AwP0XGhqqiIgIe5eRInd3d5UpU8beZdjNiy++qKVLl+rkyZPy9vZOVxuBgYFq0qSJAgICNGbMGOv2xo0ba/PmzTLGZEyx2QD/1nOvlP693+21AcB2hAoglwkNDZWvb2VFR8fYu5QUubq6KCTksM0ftqKiojRr1iytWbNGf/75p27cuKFixYrJx8dHDRs2VO/evVWuXLkMqjrny44fxkJDQ+VbqZKiY2PtXUqKXJ2dFXLkSIYFi71792revHnasmWL/vrrL8XGxqpIkSKqXr26WrVqpR49eqhYsWIZ8rtyq9wYzIHUIlQAuUxERISio2O0bHgn+ZbxsHc5yYSEXlCPSWsUERFh0wet69evq2HDhtq/f7/Kly+v7t27q2jRooqIiNCOHTs0adIklStXLkuGiokTJ2r48OEqWbJkhre9bNkyRUdHZ3i7WVVERISiY2M1u4a3yhdwsXc5yRyLjNFr+07Z/G9dkhITEzVs2DBNmzZNjo6OatSokVq0aKH8+fPrwoULCg4O1pAhQxQQEKAjR45kyr+t7KJu3boKCQmRu7u7vUsBchxCBZBL+ZbxUK0KXvYuI1PMnDlT+/fvV+/evbVgwQJZLJZk+0+ePKm4uDg7VXdvnp6e8vT0zJS2c+tQm/IFXFS9kKu9y8g0o0aN0rRp01SrVi2tWrVK5cuXv+OYPXv26M0331RMTNbsobxfXF1dVblyZXuXAeRITNQGkOMEBwdLkvr3739HoJAkHx+fZB8svL295e3trStXrqhv374qUaKEnJ2dVbNmTa1YsSLF32GM0aJFi/TII4/Izc1Nrq6uqlOnjhYtWnTX4xcvXqxHH31UDzzwgFxdXVWhQgX17dtXoaGh1uNefPFFWSwWnTp1yrotPj5e77//vlq2bKnSpUvLyclJHh4e6tixo37//fdU/700btz4jr+PxMREffTRR6pbt66KFCkiFxcXlSpVSk8++aQCAwMlSWPGjFGTJk0kSWPHjpXFYrHebq8T99+ff/6pKVOmqFixYlq/fn2KgUKSatWqpZ9++umOeTr79+9X165d5enpqXz58qls2bJ69dVXdenSpWTHnTp1ShaLRS+++KKOHTump556SoULF1b+/PnVrFkz7du3L8Xfe+HCBQ0aNEjly5eXk5OT3N3d9fTTT+vAgQN3HHv763DAgAEqXbq08uTJoyVLlkiSdu/erQEDBqhatWoqVKiQXFxcVL16dU2aNEk3btxI1d9XYGCgLBbLHUP4jh49qp49e8rHx0dOTk4qUqSIatSooYEDB1qHOlksFm3evNl6P+n24osvpup3AzkdPRUAcpyiRYtKuvWBy8/PL1XnxMfHq1mzZoqMjNTzzz+vqKgorV69Ws8++6wiIiL06quvWo81xui5557TihUrVKFCBT377LPKly+ffvrpJ/Xq1UuHDh3S1KlTrccnJiaqS5cuWrNmjUqWLKlu3brJzc1Np06d0urVq9W6det79iL8/fffGjhwoB599FG1adNGhQsX1okTJ/TNN99o3bp12rJlix5++OF0/V2NGDFC7733nsqVK6dnn31WBQsW1NmzZxUUFKSff/5ZjRs3VuPGjXXq1CktXbpUjz32mBo3bmw9/4EHHkjX70XGWLp0qRISEtS3b99UzZfIk+ef//a/+eYbPfPMM3JwcFD79u1VunRpHTp0SHPmzNGGDRv022+/qXDhwsnOP3XqlOrXr6+qVavqpZde0vHjx/X111+rSZMmCgkJUfHixa3HHj9+XI0bN9Zff/2lFi1aqEOHDrpw4YK++OILbdiwQRs3blS9evWStR8XF6emTZsqMjJS7dq1U548eaxtLly4UN9++60aNWqkNm3aKDo6WoGBgRoxYoR27typL774Il1/h+fOnVPdunUVFRWltm3bqkuXLoqKitLRo0f1wQcfaOrUqcqTJ48CAgK0ZMkSnT59WgEBAdbzU/seA+R0hAoAOU7nzp316aefqnfv3tqxY4datGih2rVrW8NGSsLCwlShQgX9+uuvypcvnyRp5MiRqlmzpoYOHaqOHTtax6J/9NFHWrFihXr27Kn58+crb968km4Fk06dOmnatGnq1q2bateuLUn64IMPtGbNGj3++OP69ttv5eLyz/j+mJiY/xySUrhwYYWGht4xFv7gwYOqX7++Ro4cqZ9++intf1H//1i8vLy0f/9+ubomHyL0999/S5I1RCxdulSNGzfONhO1c4OkXrmknqTUunTpkp5//nm5u7tr27ZtKlu2rHXfypUr1a1bN40ePVrvv/9+svM2b96sSZMm6c0337Rue/vttzV+/HgtXrxYw4cPt27v0aOHwsLCtH79erVs2dK6/a233lKdOnXUp08f7d+/P1n74eHhqlGjhrZt25bsdSLdej3OnTtXjo6O1m3GGPXu3VuLFi3Stm3b9Mgjj6Tp70GSvvjiC125ckUzZ87U66+/nmzf33//bQ1iY8aMUWBgoE6fPs1rAEgBw58A5Djt2rXTtGnTZIzRtGnT1LJlS7m7u6t8+fIaMGCAjh49muJ57777rjVQSFKpUqX0+uuvKy4uTitXrrRunzNnjvLnz6+5c+daA4Uk5cuXTxMmTJCkZMOmPvjgAzk6OurDDz+844OSi4uLihQpcs/H4+TklOLk2qpVq6pJkybasmVLqod/pCRfvnzJPqgl+a+6YH/h4eGSJC+vO+dHBQYGasyYMcluSUPali1bpmvXrmnixInJAoUkde3aVbVq1Ur2bz6Jj4+Phg4dmmxbr169JEk7d+60bvv999/166+/6oUXXkgWKCSpYsWK6tOnj/74448Uh0G99957d7xOpFtzgv7979Risah///6SpJ9//vmOc9Iipd/JawBIPXoqAORIgwcPVp8+fbR+/Xr9+uuv2rVrl3777TfNnTtXH3/8sVatWqV27dpZj8+TJ4/8/f3vaOfRRx+VJOvchejoaP3xxx/y8vLS5MmT7zg+6cP94cOHJUmRkZEKCQlR+fLlVaFChXQ/nr179+q9995TUFCQwsPD7wgRERER6Zrg3bVrV33wwQeqVq2aunbtqiZNmsjf3z/FD1jIXgIDAzV27Ng7tjdu3Fjbt2+XJP322286fvz4HcfExsYqIiJCERERya6U5OfnJweH5N9HlipVSpJ05coV67ak9s+fP5/it/pJr4/Dhw+rWrVq1u3Ozs6qXr16io8nPj5ec+bM0cqVK3X48GFFRkYmu7TruXPnUjzvvzz55JMaMWKE+vfvr40bN6pVq1Z67LHH9OCDD6arPSC3IlQAyLEKFiyozp07q3PnzpKkq1evauTIkfrggw/Uq1cvnT171toz4e7ufseHJUnW8dxXr16VJF2+fFnGGJ09ezbFD2xJoqKikp1ny2U8f/31VzVt2lSS1KJFC1WoUEEFChSQxWLR2rVrtW/fvnRfzWrWrFny8fHR4sWLNX78eI0fP17Ozs565plnNG3aNC69mcUVL15cISEhOnfu3B1XNUrqnZD+GdKUJGlo29y5c+/ZflRUVLJ/A25ubncckzQ8KCEh4Y72v//+e33//ff3bP92Hh4eKV5cQZI6deqkb7/9VhUrVlSXLl3k4eGhvHnz6sqVK5o1a1a6XwPe3t7avn27xowZox9++EGrV6+WJFWuXFnvvPOO9f0DwL0RKgDkGoUKFdKcOXP0/fff6/Tp0/rjjz+s8x4iIiKUmJh4R7A4f/689Vzpnw9VtWvX1q5du1L1OyXp7Nmz6a57woQJiouL09atW9WwYcNk+7Zv337XK++kRp48eTRkyBANGTJE586d0+bNm7V48WItW7ZM4eHh2rBhQ7rbRuZr0KCBAgMDtWnTJmvwTI2kf8d//PFHsp6CjJLU/vvvv68BAwak+ry7BYqdO3fq22+/VcuWLfX9998nGwa1fft2zZo1y6Z6q1WrpjVr1ujGjRvavXu31q1bp9mzZ6tLly7y8vJK11wNILdhTgWAXMVisSh//vx3bL9586Z10uvttm7dKkmqWbOmpFu9H76+vgoJCUk23ONuChQooCpVqujkyZN3ncvxX44fP64iRYrcESiio6O1Z8+edLWZEi8vL3Xr1s16adKff/7ZOok86UPc7d9Gw/5eeOEFOTg4aMGCBYqIiEj1eUlXXUrp33xGyOj2k4ZotW3b9o55FUmv0YyQN29e1a9fX2PHjtXs2bNljNF3331n3c/rALg7QgWAHGf+/PnJJo3ebu3atQoJCdEDDzxwxze0I0eOVHx8vPXnv/76S7NmzZKTk5O6du1q3f7aa68pOjpaffr0uWP4hnRrcb3b12/o37+/EhIS9Morr9xxpafY2FjrUJG7KVu2rC5fvqyDBw9atyUkJGjIkCG6ePHiPc+9l7i4OP366693bI+KilJkZKTy5s1r7blJmrB65syZdP8+ZLyKFStq2LBhunDhglq3bq1jx46leNy/A3DPnj1VsGBBjRo1Ktm/qyTR0dHWeRHpUbduXdWrV08rVqzQqlWr7tifmJhoXfMhNZImkwcFBSXbfvDgQU2cODHddUq31r+4du3aHduTeimdnZ2t23gdAHfH8CcAOc66dev0v//9T+XLl9cjjzwiLy8vRUVF6ffff9fWrVvl4OCgDz74QE5OTtZzPD09FRUVpYceekhPPvmkdZ2KS5cuafbs2cnmRPTt21fbt2/X0qVLtW3bNjVr1kxeXl46f/68Dh8+rN9++03Lly+3LjTWr18/bd68WatXr1aFChXUrl07ubm5KTQ0VBs2bNDHH3+sDh063PXxvPrqq/rxxx/VsGFDPfPMM3J2dlZgYKDOnj2rxo0bW6/ok1YxMTF65JFHVLFiRdWuXVtlypRRZGSkvvvuO4WHh2vIkCHWv6PKlSvLy8tLK1eulJOTk0qVKiWLxaJXX33VOsQL9jFhwgTFx8dr+vTpqly5sho1aqQaNWrI1dVVFy5c0P79+7Vjxw4VKFDAuqZCsWLFtGLFCnXu3Fk1atRQq1atVLlyZcXFxenUqVPavHmzGjRooPXr16e7rhUrVqhJkybq2rWrZs6cqVq1asnFxUWhoaEKDg7WxYsXFRsbm6q26tatq7p162r16tUKCwtT/fr1FRoaqm+++UZt27bVmjVr0l3nJ598ovnz56tRo0YqV66c3NzcdOjQIf3www8qUqSIevbsaT22adOmWrNmjZ5++mm1bt1azs7OqlGjhp588sl0/34gpyBUALlUSOgFe5dwh4yqafLkyXrkkUf0008/acuWLQoLC5N0a7L0Cy+8oFdffdU6lyJJ0uJ1w4cP1yeffKIrV66ocuXKev/995NNcJVuDaFasmSJ2rRpo4ULF+q7775TZGSkPDw8VKFCBU2dOlXNmjVLdvzKlSvVokULffTRR1q2bJmMMSpZsqSeeeaZO2r5tyeeeEJr1qzRu+++q08//VSurq5q2rSpvvrqK73zzjvp/nvKnz+/Jk+erI0bN2rr1q26cOGCChcurEqVKmnixInJemccHR315Zdf6s0339SKFSt0/fp1SVL37t2zfKg4FnnvdUDsISNrcnBw0LRp09S9e3fNmzdPW7Zs0c6dOxUXF6ciRYqoatWqmjJlinr06CEPDw/reW3bttXvv/+uKVOm6Oeff9ZPP/2k/Pnzq1SpUurZs6e6d+9uU10+Pj76/fffNX36dK1du1aLFy+Wo6OjPD091ahRI3Xq1CnVbTk6Ouq7777T8OHDtX79eu3cudP6WmvdurVNoaJbt26KjY3Vtm3btGPHDsXFxalUqVLq16+fhg4dmmxhyj59+ujUqVNauXKlJk+erJs3b+qFF14gVACSLOb267EByPFCQ0Pl61tZ0dFZ74OWJLm6uigk5PA9V5jOaEk9CrcPWUL2FxoaKt9KlRSdym/D7zdXZ2eFHDlyX/+tA0BmIVQAuVBoaGiaJnXeT+7u7vf9QxahIufi3zoA3B+ECgC5HqECAADbcPUnAAAAADahpwIAAACATeipAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUpMAYo2vXrskYY+9SAAAAgCyPUJGC69evq1ChQrp+/bq9SwEAAACyPEIFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADbJEqFi7ty58vb2lrOzs+rVq6cdO3bc9diFCxfq0UcfVeHChVW4cGE1a9bsjuNffPFFWSyWZLdWrVpl9sMAAAAAciW7h4pVq1Zp8ODBCggI0J49e1SjRg21bNlSFy5cSPH4wMBAdevWTZs2bVJwcLBKly6tFi1a6OzZs8mOa9WqlcLCwqy3FStW3I+HAwAAAOQ6FmOMsWcB9erV08MPP6w5c+ZIkhITE1W6dGm9+uqrGj58+H+en5CQoMKFC2vOnDnq0aOHpFs9FVeuXNHatWvTVdO1a9dUqFAhXb16VW5ubulqAwCyoqQvWtLK09NTnp6emVARACAnyGPPXx4fH6/du3drxIgR1m0ODg5q1qyZgoODU9VGdHS0bty4oSJFiiTbHhgYKA8PDxUuXFhNmzbV+PHjVbRo0QytHwCym/nz52vs2LFpPi8gIEBjxozJ+IIAADmCXUNFRESEEhISVLx48WTbixcvrsOHD6eqjTfffFNeXl5q1qyZdVurVq3UsWNH+fj46Pjx4xo5cqRat26t4OBgOTo63tFGXFyc4uLirD9fu3YtnY8IALK2vn37ql27dsm2xcTEqGHDhpKkoKAgubi43HEevRQAgHuxa6iw1aRJk7Ry5UoFBgbK2dnZur1r167W+9WrV9dDDz2kcuXKKTAwUI8//vgd7UycODFd39wBQHaT0jCmqKgo630/Pz/lz5//fpcFAMjm7DpR293dXY6Ojjp//nyy7efPn1eJEiXuee7UqVM1adIk/fjjj3rooYfueeyDDz4od3d3HTt2LMX9I0aM0NWrV623M2fOpO2BAAAAALmYXUNFvnz5VLt2bW3cuNG6LTExURs3bpS/v/9dz3vvvfc0btw4rV+/XnXq1PnP3/PXX3/p0qVLd+2+d3JykpubW7IbAAAAgNSx+yVlBw8erIULF2rp0qUKCQlRv379FBUVpZ49e0qSevTokWwi9+TJk/X2229r0aJF8vb2Vnh4uMLDwxUZGSlJioyM1NChQ7V9+3adOnVKGzduVPv27VW+fHm1bNnSLo8RAAAAyMnsPqeiS5cuunjxokaPHq3w8HD5+flp/fr11snboaGhcnD4J/t8+OGHio+PV6dOnZK1k3RlEkdHR+3fv19Lly7VlStX5OXlpRYtWmjcuHFycnK6r48NAAAAyA3svk5FVsQ6FQByk6ioKBUoUEDSrd5eJmoDANLK7sOfAAAAAGRvhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmeexdAAAgfUJDQxUREWFzOzExMdb7e/fulYuLi81tSpK7u7vKlCmTIW0BALI2izHG2LuIrObatWsqVKiQrl69Kjc3N3uXAwB3CA0NlW+lSoqOjbV3KXfl6uyskCNHCBYAkAvQUwEA2VBERISiY2M1u4a3yhewrWchNiFRHbcfkSR9Wb+SnB1tHxl7LDJGr+07pYiICEIFAOQChAoAyMbKF3BR9UKuNrURfTPBer+qm4tc8zjaWhYAIJdhojYAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2yWPvAgAgpwkLC1NYWFiaz/P09JSnp2cmVAQAQOYiVABABps/f77Gjh2b5vMCAgI0ZsyYjC8IAIBMRqgAgAzWt29ftWvXLtm2mJgYNWzYUJIUFBQkFxeXO86jlwIAkF0RKgAgg6U0jCkqKsp638/PT/nz57/fZQEAkGmYqA0AAADAJoQKAAAAADbJEqFi7ty58vb2lrOzs+rVq6cdO3bc9diFCxfq0UcfVeHChVW4cGE1a9bsjuONMRo9erQ8PT3l4uKiZs2a6ejRo5n9MAAAAIBcye6hYtWqVRo8eLACAgK0Z88e1ahRQy1bttSFCxdSPD4wMFDdunXTpk2bFBwcrNKlS6tFixY6e/as9Zj33ntPs2fP1rx58/Tbb78pf/78atmypWJjY+/XwwIAAAByDbuHiunTp6tPnz7q2bOnqlSponnz5snV1VWLFi1K8fjPPvtMr7zyivz8/FS5cmV99NFHSkxM1MaNGyXd6qWYOXOm3nrrLbVv314PPfSQli1bpnPnzmnt2rX38ZEBAAAAuYNdQ0V8fLx2796tZs2aWbc5ODioWbNmCg4OTlUb0dHRunHjhooUKSJJOnnypMLDw5O1WahQIdWrV++ubcbFxenatWvJbgAAAABSx66XlI2IiFBCQoKKFy+ebHvx4sV1+PDhVLXx5ptvysvLyxoiwsPDrW38u82kff82ceLEdC1UBQDZzfnYG7oQdyPZttiEBOv9g9ei5ezoeMd5Hk55Vdw5b6bXBwDInrL1OhWTJk3SypUrFRgYKGdn53S3M2LECA0ePNj687Vr11S6dOmMKBEAspTPQi9qxrGwu+7vuP3PFLcPKu+pwRW9MqssAEA2Z9dQ4e7uLkdHR50/fz7Z9vPnz6tEiRL3PHfq1KmaNGmSfv75Zz300EPW7UnnnT9/PtniU+fPn5efn1+KbTk5OcnJySmdjwIAso/nyhRT8+IPpPk8Dyd6KQAAd2fXUJEvXz7Vrl1bGzduVIcOHSTJOul6wIABdz3vvffe04QJE7RhwwbVqVMn2T4fHx+VKFFCGzdutIaIa9eu6bffflO/fv0y66EAQLZQ3JlhTACAjGf34U+DBw/WCy+8oDp16qhu3bqaOXOmoqKi1LNnT0lSjx49VLJkSU2cOFGSNHnyZI0ePVrLly+Xt7e3dZ5EgQIFVKBAAVksFg0cOFDjx49XhQoV5OPjo7ffflteXl7W4AIAAAAg49g9VHTp0kUXL17U6NGjFR4eLj8/P61fv9460To0NFQODv9cpOrDDz9UfHy8OnXqlKydgIAAjRkzRpI0bNgwRUVF6eWXX9aVK1fUsGFDrV+/3qZ5FwAAAABSZjHGGHsXkdVcu3ZNhQoV0tWrV+Xm5mbvcgDkAFFRUSpQoIAkKTIyUvnz57epvT179qh27dr64RFfVS/kmhElZqg/rkarzbYQ7d69W7Vq1bJ3OQCATGb3xe8AAAAAZG+ECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATu69TAQBZWWhoqCIiImxuJyYmxnp/7969cnFxsam9kJAQW0sCACDDECoA4C5CQ0Pl61tZ0dEx/31wGjRs2DBD2wMAwN4IFQBwFxEREYqOjtGy4Z3kW8bDprZi4m6o0aCFkqQtM/rIxSmvTe2t23FEo5dstKkNAAAyCqECAP6DbxkP1argZVMbUTHx1vt+5TyV3yWfTe0dDr1o0/kAAGQkJmoDAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwSZpX1E5MTNTmzZu1detWnT59WtHR0SpWrJhq1qypZs2aqXTp0plRJwAAAIAsKtU9FTExMRo/frxKly6tNm3aaN26dbpy5YocHR117NgxBQQEyMfHR23atNH27dszs2YAAAAAWUiqeyoqVqwof39/LVy4UM2bN1fevHnvOOb06dNavny5unbtqlGjRqlPnz4ZWiwAAACArCfVoeLHH3+Ur6/vPY8pW7asRowYoSFDhig0NNTm4gAAAABkfake/vRfgeJ2efPmVbly5dJVEAAAAIDsJUOv/hQVFaUtW7ZkZJMAAAAAsrgMDRXHjh1TkyZNMrJJAAAAAFkc61QAAAAAsEma1qkoUqTIPfcnJCTYVAwAAACA7CdNoSIuLk79+vVT9erVU9x/+vRpjR07NkMKAwAAAJA9pClU+Pn5qXTp0nrhhRdS3L9v3z5CBYBcL+zSdYX9fT3Ztpi4G9b7e4+HycXpzrV+PIsUlGfRgpleHwAAGS1NoaJt27a6cuXKXfcXKVJEPXr0sLUmAMjWFny/Q+98sumu+xsNWpji9tHPN1FAj8czqywAADJNmkLFyJEj77m/dOnSWrx4sU0FAUB293LbunrSP/Vr+yTxLEIvBQAge0pTqAAA/DfPogxjAgDkLmm6pGyjRo2SDX/65ptvFBMTk9E1AQAAAMhG0hQqgoKCFB8fb/25e/fuCgsLy/CiAAAAAGQfNi1+Z4zJqDoAAAAAZFOsqA0AAADAJmmeqL1hwwYVKlRIkpSYmKiNGzfqwIEDyY5p165dxlQHAAAAIMtLc6j498J3ffv2TfazxWJRQkKCbVUBAAAAyDbSFCoSExMzqw4AAAAA2RRzKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNbA4Vr7zyiiIiIjKiFgAAAADZkM2h4tNPP9W1a9cyohYAAAAA2ZDNocIYkxF1AAAAAMimmFMBAAAAwCZpWlE7JdevX8+IOgAAAABkU/RUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE7uHirlz58rb21vOzs6qV6+eduzYcddjDx48qKefflre3t6yWCyaOXPmHceMGTNGFosl2a1y5cqZ+AgAAACA3C1DQ8Xx48fVtGnTVB+/atUqDR48WAEBAdqzZ49q1Kihli1b6sKFCykeHx0drQcffFCTJk1SiRIl7tpu1apVFRYWZr0FBQWl+bEAAAAASJ0MDRWRkZHavHlzqo+fPn26+vTpo549e6pKlSqaN2+eXF1dtWjRohSPf/jhhzVlyhR17dpVTk5Od203T548KlGihPXm7u6e5scCAAAAIHXStE7F7Nmz77n/7NmzqW4rPj5eu3fv1ogRI6zbHBwc1KxZMwUHB6elrDscPXpUXl5ecnZ2lr+/vyZOnKgyZcrY1CYAAACAlKUpVAwcOFCenp7Kly9fivvj4+NT3VZERIQSEhJUvHjxZNuLFy+uw4cPp6WsZOrVq6clS5aoUqVKCgsL09ixY/Xoo4/qwIEDKliwYIrnxMXFKS4uzvrztWvX0v37AQAAgNwmTaGibNmymjx5sp555pkU9+/du1e1a9fOkMLSq3Xr1tb7Dz30kOrVq6eyZctq9erV6tWrV4rnTJw4UWPHjr1fJQIAAAA5SprmVNSuXVu7d+++636LxSJjTKracnd3l6Ojo86fP59s+/nz5+85CTutHnjgAVWsWFHHjh276zEjRozQ1atXrbczZ85k2O8HAAAAcro0hYp33nlHnTt3vuv+KlWq6OTJk6lqK1++fKpdu7Y2btxo3ZaYmKiNGzfK398/LWXdU2RkpI4fPy5PT8+7HuPk5CQ3N7dkNwAAAACpk6bhT1WqVLnn/rx586ps2bKpbm/w4MF64YUXVKdOHdWtW1czZ85UVFSUevbsKUnq0aOHSpYsqYkTJ0q6NWfj0KFD1vtnz57V3r17VaBAAZUvX16SNGTIED355JMqW7aszp07p4CAADk6Oqpbt25peagAAAAAUilNoSKjdenSRRcvXtTo0aMVHh4uPz8/rV+/3jp5OzQ0VA4O/3SmnDt3TjVr1rT+PHXqVE2dOlWPPfaYAgMDJUl//fWXunXrpkuXLqlYsWJq2LChtm/frmLFit3XxwYAAADkFqkOFa1atdKYMWNUv379ex53/fp1ffDBBypQoID69+//n+0OGDBAAwYMSHFfUlBI4u3t/Z9zNlauXPmfvxNA+iQtKJlWnp6e9xyCCAAAsrdUh4rOnTvr6aefVqFChfTkk0+qTp061rUgLl++rEOHDikoKEg//PCD2rZtqylTpmRm3QDsYP78+em6UlpAQIDGjBmT8QUBuRDhHkBWlOpQ0atXL3Xv3l2ff/65Vq1apQULFujq1auSbl31qUqVKmrZsqV27twpX1/fTCsYgP307dtX7dq1S7YtJiZGDRs2lCQFBQXJxcXljvP4IANkHMI9gKwoTXMqnJyc1L17d3Xv3l2SdPXqVcXExKho0aLKmzdvphQIIOtI6ZvOqKgo630/Pz/lz5//fpcF5CqEewBZkU0TtQsVKqRChQplVC3I4eiyBwDbEe4BZEV2vfoTche67AEAAHImQgXuG7rsAQAAciZCBe4buuwBAEBOwbDu5NIcKhISErRt2zY99NBDeuCBBzKhJAAAACBrY1h3cmkOFY6OjmrRooVCQkIIFQAAAMiVGNadXLqGP1WrVk0nTpyQj49PRtcDAAAAZPnhRQzrTi5doWL8+PEaMmSIxo0bp9q1a9/xF+bm5pYhxQEAACB3YnhR9pKuUNGmTRtJUrt27WSxWKzbjTGyWCxKSEjImOoAAACQKzG8KHtJV6jYtGlTRteBbCY0NFQRERE2txMTE2O9v3fv3hTfHNLD3d1dZcqUyZC2ACAzZcT7Ke+lyIkYXpS9pCtUPPbYYxldBzLA/Rp7GBoaKt9KlRQdG5vm33UvSd88ZARXZ2eFHDnCf4YAsrTMeD/lvRSAPaR7nYorV67o448/VkhIiCSpatWqeumll1SoUKEMKw5pc7/GHkZERCg6Nlaza3irfAHbvg2LTUhUx+1HJElf1q8kZ0cHm9qTpGORMXpt3ylFRETwHyGALC2j3k95LwVgb+kKFbt27VLLli3l4uKiunXrSpKmT5+uCRMm6Mcff1StWrUytEikzv0ee1i+gIuqF3JN17lJom/+M/+mqpuLXPM42tQeAGRHtr6f8l4KwN7SFSoGDRqkdu3aaeHChcqT51YTN2/eVO/evTVw4EBt2bIlQ4tE6jD2EGnBvBgAAJBR0t1TcXugkKQ8efJo2LBhqlOnToYVByBzMC8GAABkpHSFCjc3N4WGhqpy5crJtp85c0YFCxbMkMIAZB7mxQAAgIyUrlDRpUsX9erVS1OnTlWDBg0kSdu2bdPQoUPVrVu3DC0QQOZhXgwAAMgI6QoVU6dOlcViUY8ePXTz5k1JUt68edWvXz9NmjQpQwtEznE+9oYuxN1Iti32toUSD16LlrPjnR9IPZzyqrhz3kyvDwAAAOmT5lCRkJCg7du3a8yYMZo4caKOHz8uSSpXrpxcXW37xhP/yMqTaJMuI5xWn4Ve1Ixjd19Ho+P2P1PcPqi8pwZX9ErX7wQAAEDmS3OocHR0VIsWLRQSEiIfHx9Vr149M+rK1UJDQ+XrW1nR0TH/fXAaZOQk2vR4rkwxNS/+QJrP83CilwIAACArS9fwp2rVqunEiRPy8fHJ6Hqg/59EGx2jZcM7ybeMh01txcTdUKNBCyVJW2b0kUsGfEBft+OIRi/ZmObzijszjAkAACAnSleoGD9+vIYMGaJx48apdu3ad6x94ObmliHF5Xa+ZTxUq4Jtw36iYuKt9/3KeSq/Sz5by9Lh0Is2twEASB/mpwHIitIVKtq0aSNJateunSwWi3W7MUYWi0UJt725AQCAjMP8NABZUbpCxaZNmzK6DgAAkArMTwOQFaU5VNy4cUPvvPOO5s2bpwoVKmRGTQAA4C6YnwYgK0rz0rd58+bV/v37M6MWAAAAANlQuoY/de/eXR9//DEL3WUxYZeuK+zv68m2xdw2mW/v8bAUr/7kWaSgPIsWzPT6AAAAkDOlK1TcvHlTixYt0s8//5zi1Z+mT5+eIcUhbRZ8v0PvfHL3+S5Jl5b9t9HPN1FAj8czqywAAADkcOkKFQcOHFCtWrUkSX/+mfwqE7dfDQr318tt6+pJf980n+dZhF4KAAAApB9Xf8pBPIsyjAkAAAD3X5onav+XCxcuZHSTAAAAALKwNPVUuLq66vTp0ypWrJgkqW3btvroo4/k6ekpSTp//ry8vLxY/A7IoVjJFwAApCRNoSI2NlbGGOvPW7ZsUUxMTLJjbt8PIGdhJV8AAJCSdM2puBcmagM5Fyv5AgCAlGR4qACQc7GSLwAASEmaJmpbLJZkPRH//hkAAABA7pOmngpjjCpWrGgNEpGRkapZs6YcHBys+wEAAIDsJDQ0VBERETa3c/tc471798rFxcXmNiXJ3d1dZcqUyZC2MkuaQsXixYszqw4AAADgvgsNDZVvpUqKjo3N0HYbNmyYYW25Ojsr5MiRLB0s0hQqXnjhhcyqAwAAALjvIiIiFB0bq9k1vFW+gG09C7EJieq4/Ygk6cv6leTsaPuScMciY/TavlOKiIjIOaECAAAASKusPLwoJCREklS+gIuqF3K1qa3om/+s3VTVzUWuee5cuymnIlQAWUhYWJjCwu6+DsTdeHp6WhehBAAgKwkNDZWvb2VFR8f898FpkJHDi2A7QgWQhcyfP19jx45N83kBAQEaM2ZMxhcEAICNIiIiFB0do2XDO8m3jIdNbcXE3VCjQQslSVtm9JFLBqyDtG7HEY1estHmdnI7QgWQhfTt21ft2rVLti0mJsb6bUxQUFCKXb30UgAAsjrfMh6qVcHLpjaiYuKt9/3KeSq/Sz5by9Lh0Is2twFCBZClpDSMKSoqynrfz89P+fPnv99lAQAA3FO6QkVCQoKWLFmijRs36sKFC0pMTEy2/5dffsmQ4gAAAABkfekKFa+//rqWLFmitm3bqlq1aqyqDQAAAORi6QoVK1eu1OrVq9WmTZuMrgcAAABANpOuFTny5cun8uXLZ3QtAAAAALKhdIWKN954Q7NmzZIxJqPrAQAAAJDNpGv4U1BQkDZt2qR169apatWqyps3+TWCv/zyywwpDgAAAEDWl65Q8cADD+ipp57K6FoAAAAAZEPpChWLFy/O6DoAAAAAZFN2X/xu7ty5mjJlisLDw1WjRg29//77qlu3borHHjx4UKNHj9bu3bt1+vRpzZgxQwMHDrSpTSAzhYaGKiIiwqY2YmJirPf37t2b4oraaRUSEmJzGwAAAEnSHSrWrFmj1atXKzQ0VPHx8cn27dmzJ1VtrFq1SoMHD9a8efNUr149zZw5Uy1bttSRI0fk4eFxx/HR0dF68MEH1blzZw0aNChD2gQyS2hoqHx9Kys6Oua/D06lhg0bZlhbAAAAGSVdoWL27NkaNWqUXnzxRX399dfq2bOnjh8/rp07d6p///6pbmf69Onq06ePevbsKUmaN2+evv/+ey1atEjDhw+/4/iHH35YDz/8sCSluD89bQKZJSIiQtHRMVo2vJN8y6Q/0MbE3VCjQQslSVtm9JGLU97/OOO/rdtxRKOXbLS5HQAAACmdoeKDDz7QggUL1K1bNy1ZskTDhg3Tgw8+qNGjR+vvv/9OVRvx8fHavXu3RowYYd3m4OCgZs2aKTg4OD1lpbvNuLg4xcXFWX++du1aun4/kBLfMh6qVcEr3edHxfzTE+hXzlP5XfLZXNPh0Is2twEAAJAkXetUhIaGqkGDBpIkFxcXXb9+XZL0/PPPa8WKFalqIyIiQgkJCSpevHiy7cWLF1d4eHh6ykp3mxMnTlShQoWst9KlS6fr9wMAAAC5UbpCRYkSJaw9EmXKlNH27dslSSdPnsyWC+KNGDFCV69etd7OnDlj75IAAACAbCNdw5+aNm2qb775RjVr1lTPnj01aNAgrVmzRrt27VLHjh1T1Ya7u7scHR11/vz5ZNvPnz+vEiVKpKesdLfp5OQkJyendP1OAAAAILdLV0/FggULNGrUKElS//79tWjRIvn6+uqdd97Rhx9+mKo28uXLp9q1a2vjxn8miyYmJmrjxo3y9/dPT1mZ0iYAAACAe0tXT4WDg4McHP7JI127dlXXrl3T3M7gwYP1wgsvqE6dOqpbt65mzpypqKgo65WbevTooZIlS2rixImSbk3EPnTokPX+2bNntXfvXhUoUEDly5dPVZsAAAAAMla616nYunWr5s+fr+PHj2vNmjUqWbKkPvnkE/n4+KT6WvpdunTRxYsXNXr0aIWHh8vPz0/r16+3TrQODQ1NFl7OnTunmjVrWn+eOnWqpk6dqscee0yBgYGpahMAAABAxkpXqPjiiy/0/PPP67nnntPvv/9uvRzr1atX9e677+qHH35IdVsDBgzQgAEDUtyXFBSSeHt7p2oi+L3aBAAAAJCx0hUqxo8fr3nz5qlHjx5auXKldfsjjzyi8ePHZ1hxQG4Tdum6wv6+nmxbTNwN6/29x8NSXPzOs0hBeRYtmOn1AQAApCRdoeLIkSNq1KjRHdsLFSqkK1eu2FoTkGst+H6H3vlk0133J62s/W+jn2+igB6PZ1ZZAAAA95SuUFGiRAkdO3ZM3t7eybYHBQXpwQcfzIi6gFzp5bZ19aS/b5rP8yxCLwUAALCfdIWKPn366PXXX9eiRYtksVh07tw5BQcHa8iQIXr77bczukYg1/AsyjAmICsICwtTWFhYms/z9PSUp6dnJlQEAFlbukLF8OHDlZiYqMcff1zR0dFq1KiRnJycNGTIEL366qsZXSMAAPfV/PnzNXbs2DSfFxAQoDFjxmR8QQCQxaUrVFgsFo0aNUpDhw7VsWPHFBkZqSpVqqhAgQIZXR8AAPdd37591a5du2TbYmJirJdMDwoKkouLyx3n0UsBILdK9zoV0q0VrKtUqZJRtQAAkCWkNIwpKirKet/Pz0/58+e/32UBQJaVplDx0ksvpeq4RYsWpasYAAAAIDs4H3tDF2677LskxSYkWO8fvBYtZ0fHO87zcMqr4s53Xh4+u0tTqFiyZInKli2rmjVrpmoROgAAACAn+iz0omYcu/sFHTpu/zPF7YPKe2pwRa/MKstu0hQq+vXrpxUrVujkyZPq2bOnunfvriJFimRWbQAAAECW9FyZYmpe/IE0n+eRwiK2OUGaQsXcuXM1ffp0ffnll1q0aJFGjBihtm3bqlevXmrRooUsFktm1QkAAIBcJOzSdYX9fT3ZtpjbhhvtPR4mlxQ+oHsWuT+XZy/unDOHMaVXmidqOzk5qVu3burWrZtOnz6tJUuW6JVXXtHNmzd18OBBrgAFAMhSQkNDFRERYXM7MTEx1vt79+5N8epPaRUSEmJzG0BOteD7HXrnk0133d9o0MIUt49+vokCejyeWWXhLmy6+pODg4MsFouMMUq4bWIKAABZQWhoqHx9Kys6Oua/D06DpEvLAsg8L7etqyf9fdN8nmcRFpG1hzSHiri4OOvwp6CgID3xxBOaM2eOWrVqJQcHh8yoEQCAdImIiFB0dIyWDe8k3zIeNrUVE3fD+s3olhl9Uhx2kVbrdhzR6CUbbW4HyIk8i96fYUzIGGkKFa+88opWrlyp0qVL66WXXtKKFSvk7u6eWbUBAJAhfMt4qFYF2662EhUTb73vV85T+V3y2VqWDodetLkNAMgK0hQq5s2bpzJlyujBBx/U5s2btXnz5hSP+/LLLzOkOAAAAABZX5pCRY8ePbjCEwAAAIBk0rz4HQAAAADcjpnVAAAAAGxi0yVlAQDIibL6olsAkNUQKgAA+BcW3QKAtCFUAADwLyy6BQBpQ6gAAOBfWHQLANKGidoAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwSZYIFXPnzpW3t7ecnZ1Vr1497dix457Hf/7556pcubKcnZ1VvXp1/fDDD8n2v/jii7JYLMlurVq1ysyHAAAAAORadg8Vq1at0uDBgxUQEKA9e/aoRo0aatmypS5cuJDi8b/++qu6deumXr166ffff1eHDh3UoUMHHThwINlxrVq1UlhYmPW2YsWK+/FwAAAAgFzH7qFi+vTp6tOnj3r27KkqVapo3rx5cnV11aJFi1I8ftasWWrVqpWGDh0qX19fjRs3TrVq1dKcOXOSHefk5KQSJUpYb4ULF74fDwcAAADIdewaKuLj47V79241a9bMus3BwUHNmjVTcHBwiucEBwcnO16SWrZsecfxgYGB8vDwUKVKldSvXz9dunQp4x8AAAAAAOWx5y+PiIhQQkKCihcvnmx78eLFdfjw4RTPCQ8PT/H48PBw68+tWrVSx44d5ePjo+PHj2vkyJFq3bq1goOD5ejoeEebcXFxiouLs/587do1Wx4WAAAAkKvYNVRklq5du1rvV69eXQ899JDKlSunwMBAPf7443ccP3HiRI0dO/Z+lggAAADkGHYd/uTu7i5HR0edP38+2fbz58+rRIkSKZ5TokSJNB0vSQ8++KDc3d117NixFPePGDFCV69etd7OnDmTxkcCAAAA5F52DRX58uVT7dq1tXHjRuu2xMREbdy4Uf7+/ime4+/vn+x4Sfrpp5/uerwk/fXXX7p06ZI8PT1T3O/k5CQ3N7dkNwAAAACpY/erPw0ePFgLFy7U0qVLFRISon79+ikqKko9e/aUJPXo0UMjRoywHv/6669r/fr1mjZtmg4fPqwxY8Zo165dGjBggCQpMjJSQ4cO1fbt23Xq1Clt3LhR7du3V/ny5dWyZUu7PEYAAAAgJ7P7nIouXbro4sWLGj16tMLDw+Xn56f169dbJ2OHhobKweGf7NOgQQMtX75cb731lkaOHKkKFSpo7dq1qlatmiTJ0dFR+/fv19KlS3XlyhV5eXmpRYsWGjdunJycnOzyGAEAAICczO6hQpIGDBhg7Wn4t8DAwDu2de7cWZ07d07xeBcXF23YsCEjywMAAABwD3Yf/gQAAAAgeyNUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADYhVAAAAACwCaECAAAAgE0IFQAAAABsQqgAAAAAYBNCBQAAAACbECoAAAAA2IRQAQAAAMAmhAoAAAAANiFUAAAAALAJoQIAAACATQgVAAAAAGxCqAAAAABgE0IFAAAAAJsQKgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGCTPPYuAAAAILcJCwtTWFhYms/z9PSUp6dnJlQE2IZQAQAAcJ/Nnz9fY8eOTfN5AQEBGjNmTMYXBNiIUAEAAHCf9e3bV+3atUu2LSYmRg0bNpQkBQUFycXF5Y7z6KVAVkWoAAAAuM9SGsYUFRVlve/n56f8+fPf77KAdGOiNgAAAACbECoAAAAA2IThTwAAADYIDQ1VRESEze3ExMRY7+/duzfFORVp5e7urjJlytjcDvBfCBUAAADpFBoaKt9KlRQdG5uh7SZN2LaVq7OzQo4cIVgg0xEqAAAA0ikiIkLRsbGaXcNb5QvY1rMQm5CojtuPSJK+rF9Jzo62jVI/Fhmj1/adUkREBKECmY5QAQAAYKPyBVxUvZCrTW1E30yw3q/q5iLXPI62lgXcN0zUBgAAAGATeioAAECOExYWprCwsDSfl9L6EZnhfOwNXYi7kWxbbMI/PRUHr0XL2fHOngoPp7wq7pw30+sD0opQAQAAcpz58+dr7NixaT4vICBAY8aMyfiC/uWz0Iuacezuoafj9j9T3D6ovKcGV/TKrLKAdCNUAACALC09l2z19/fXp59+mmxbXFycevXqJUn6+OOP5eTkdMd57u7u2rNnT6p/T0hISJrqSvJcmWJqXvyBNJ/n4UQvBbImQgUAAMiyQkND5etbWdHRMf99cBokhQt7Ke7MMCbkLIQKAACQZUVERCg6OkbLhneSbxmP1J93NUoRV6OTbYuNv6k+07+SJC0c/JSc8935Mci9kKvcC+VP9e9Zt+OIRi/ZmOrjgZyKUAEAALI83zIeqlUh9XMJxi7bqHc+2XTX/Unh4t9GP99EAT0eT/XvORx6MdXHAjkZoQIAAOQ4L7etqyf9fdN8nmeRgplQDZDzZYl1KubOnStvb285OzurXr162rFjxz2P//zzz1W5cmU5OzurevXq+uGHH5LtN8Zo9OjR8vT0lIuLi5o1a6ajR49m5kMAAABZiGfRgqpVwSvNN8+ihAogPeweKlatWqXBgwcrICBAe/bsUY0aNdSyZUtduHAhxeN//fVXdevWTb169dLvv/+uDh06qEOHDjpw4ID1mPfee0+zZ8/WvHnz9Ntvvyl//vxq2bKlYmNj79fDAgAAAHINu4eK6dOnq0+fPurZs6eqVKmiefPmydXVVYsWLUrx+FmzZqlVq1YaOnSofH19NW7cONWqVUtz5syRdKuXYubMmXrrrbfUvn17PfTQQ1q2bJnOnTuntWvX3sdHBgAAAOQOdp1TER8fr927d2vEiBHWbQ4ODmrWrJmCg4NTPCc4OFiDBw9Otq1ly5bWwHDy5EmFh4erWbNm1v2FChVSvXr1FBwcrK5du97RZlxcnOLi4qw/X716VZJ07dq1dD82W0RGRkqS9hw9q8iYeLvUcC8hobd6kf64GqXomwn/cfT9dzzqVo9UZGSk3Z7DpN8vZc3nkecwdXgO04/nMHWy8vPIc5g6PIf/jefQNlnleSxYsKAsFsvdDzB2dPbsWSPJ/Prrr8m2Dx061NStWzfFc/LmzWuWL1+ebNvcuXONh4eHMcaYbdu2GUnm3LlzyY7p3LmzeeaZZ1JsMyAgwEjixo0bN27cuHHjxo1bCrerV6/e83M9V3+SNGLEiGS9H4mJifr7779VtGjReyeyXOratWsqXbq0zpw5Izc3N3uXg3TgOcz+eA5zBp7H7I/nMPvjOUydggXvfREDu4YKd3d3OTo66vz588m2nz9/XiVKlEjxnBIlStzz+KQ/z58/L09Pz2TH+Pn5pdimk5OTnJyckm174IEH0vJQciU3NzdefNkcz2H2x3OYM/A8Zn88h9kfz6Ft7DpRO1++fKpdu7Y2bvxnJcrExERt3LhR/v7+KZ7j7++f7HhJ+umnn6zH+/j4qESJEsmOuXbtmn777be7tgkAAAAg/ew+/Gnw4MF64YUXVKdOHdWtW1czZ85UVFSUevbsKUnq0aOHSpYsqYkTJ0qSXn/9dT322GOaNm2a2rZtq5UrV2rXrl1asGCBJMlisWjgwIEaP368KlSoIB8fH7399tvy8vJShw4d7PUwAQAAgBzL7qGiS5cuunjxokaPHq3w8HD5+flp/fr1Kl68uCQpNDRUDg7/dKg0aNBAy5cv11tvvaWRI0eqQoUKWrt2rapVq2Y9ZtiwYYqKitLLL7+sK1euqGHDhlq/fr2cnZ3v++PLiZycnBQQEHDHkDFkHzyH2R/PYc7A85j98RxmfzyHGcNijDH2LgIAAABA9mX3xe8AAAAAZG+ECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAHKY2y/oxsXdsjeeP+D+u3Dhgi5evChJ+uqrr7R8+XI7VwRbJL2PJiQk2LmSnI9QAesL7tixY9q2bZv27t2r8PBwO1eFtErpjdNisdirHKTT/v37NXr0aEk8f8D9dv36dVWpUkVTpkzRxx9/rKefftreJcFGFotF69at07x58xQfH2/vcnI0uy9+B/syxshisejLL7/U4MGDVahQId28eVNeXl4aPny4Hn/8cXuXiFRIeh5/+uknLVmyRFeuXFGJEiU0btw4lShRItkCksi69u3bJ39/fw0ZMsTepSCDJL02kT0ULFhQn332mdq1a6eEhATNnj1bzz77rL3Lgg127typLl26aP78+fxfmMn4283lLBaLfv31V7300ksaOnSo9u3bp5EjR+qXX37R3r177V0eUslisejrr7/WU089JQ8PD3Xr1k0///yz2rVrpzNnzti7PKTCvn371KBBAw0aNEjvvPOOvctBOiX1GEZHRysxMVGJiYl2rgipZYxRYmKiatSooRs3bigxMVFhYWG6cOGCvUtDOh08eFD79+9X//791a1bN0JFJuNvNxdL+s9vy5Ytat26tfr3768zZ87orbfeUt++ffXGG29IEm+oWZwxRhcvXtS7776rMWPGaMaMGWrTpo2MMapXr57Kli2b7FhkPX/88YcaNGigIUOGaMKECdbtS5Ys0eeff27HypAWSb0S69atU8+ePVWvXj299dZb2r59u71Lw39Ieu4uXryoEiVKKCwsTN98840mTpyoyZMn8/9gNmOMUVRUlOrXr68+ffooLCxMkuTg4MD/g5mIUJGLJXXJx8fHq0yZMgoPD5e/v79atGihuXPnSpLWrVunL774QjExMfYsFSlIemO0WCxycnJSZGSkevfurXPnzql69epq3bq19Xn8/vvvrccia7l06ZK6du2q8uXLa+zYsdbt7777rgYNGqQyZcrYsTqkRVKP4dNPP62KFSuqQ4cOOnDggF555RUFBgbauzzcRVKg+Pbbb9W9e3etWLFCRYoU0RNPPKFVq1ZpxowZmjp1qjVYvPfee1q5cqWdq8a9WCwW5c+fX3v27FGpUqX022+/af/+/dZ9yCQGudLp06et92fMmGE8PDyMl5eX6d+/v3X7zZs3zUsvvWReeeUVExMTY48y8R++/PJLM378eBMfH2/8/PzM1KlTjY+Pj+nbt6+Jj483xhgTGhpqGjdubNatW2fnapGS8PBwM2TIEFO9enUzduxYY4wxU6ZMMUWLFjUbNmxI8ZyEhIT7WSLuIjIyMtnPBw4cMFWrVjULFy40xhhz6dIlU6xYMVOhQgVTtWpVs2nTJjtUidT48ssvjbOzs5k2bZo5duxYsn3Lly83efPmNZ06dTJdu3Y1Tk5OZs+ePXaqFHeTmJiY4vYjR46YBx54wLRt2/aO5xYZi1CRCx06dMg89NBD5r333rNue/rpp42zs7M5ePCgiYmJMZGRkWb48OGmRIkSJiQkxI7V4m727dtnPD09zbx580xsbKx54403TOHChU3Lli2THTdixAhTs2ZNc+bMGTtViv9y7tw5ExAQYKpUqWIee+wx4+7unuIH0K+++uq+14aUBQQEmPbt2ycLeCEhIaZnz57m+vXr5vTp06Z8+fLmf//7n9m0aZOpWLGiqV69+l2DIuznxIkTxtfX18yfP98Yc+sLtdjYWLNx40YTERFhjLkVOp5++mnTsWNHs2/fPnuWixQkBYpff/3VzJ8/3wQEBJjQ0FATFRVljLn1uadQoULmiSeeMMePH7dnqTmaxRgGl+U2x44d06RJk7R//349++yzGjhwoM6cOaOuXbsqJCREpUuXVpEiRfTnn3/qu+++U82aNe1dMv7lyJEjWr58ua5du6YZM2ZIkg4cOKBBgwYpOjpaTzzxhMqUKaOgoCCtWLFCmzdvVo0aNexcNf7N3DaE7dy5c1qwYIEWLlyoxo0b67PPPpN06xLBjo6OCggI0Lhx43TixAl5e3vbsWpIt16DN27cULVq1XTjxg3lzZtXkhQeHq4SJUropZdeUlxcnD7++GM5Ozvrqaee0rZt21SxYkVt2LBBrq6uDMPIIk6cOKFWrVpp0aJF8vf317Rp0/T111/ryJEjypcvn3bs2KFSpUopJiZGDg4OcnJysnfJuI35/+FrX331lXr37i0/Pz+Fh4crPj5eb731lp544gkVLVpUISEhatSokapUqaKlS5fyPpoZ7JtpcD+k1CV4/PhxM2DAAOPn52fmzJlj3b5w4UIzdepU88knn5hTp07dzzKRCgkJCebChQumXr165oEHHjDPPfdcsv27du0ygwYNMj4+PqZ27drmySefNPv377dTtUjJuXPnzP79+01sbOwd+8LCwkxAQIDx9fU1AQEB1u1vvfWWcXV1Nbt27bqPleJubn9PDQwMNI0bNzbh4eHWbdHR0aZ27dpmwoQJxhhjbty4YXr37m3ef/99c+HChfteL+7txIkTpkWLFqZ+/frG09PTtGvXzowbN86EhISY8uXLm5EjR9q7RPyHrVu3mhIlSpjFixcbY4y5evWqsVgsplKlSmb+/Pnm77//NsYY88cff5iyZcua0NBQO1abc9FTkUvs2LFDJ0+eVJcuXazbjh8/rlmzZmnTpk165ZVX1K9fPztWiHsx/7rW/Q8//KAxY8bo77//1rx589SsWbNkx8fExMjR0VGJiYlydna+3+XiLv744w917NhR3bt31/PPP68HH3xQkjRv3jx5eXmpXbt2Cg0N1aJFi7Rq1Sr17NlTCQkJeueddxQUFKTatWvb+RFA+uf1eOrUKd24cUP169dXvXr1tGzZMrm7uys+Pl4vvviiLly4oP79+2v79u36/PPPtXXrVpUsWdLe5edqSc9dbGys9SIXkhQYGKjff/9dxhg999xzKl68uCSpVatW6tChg/73v//Zs2zcw82bN7Vw4UKdOnVKkydP1vHjx9W8eXO1atVKV65c0Q8//KCpU6eqffv2KlasmOLj45UvXz57l50z2TPRIPMlJiaaq1evmk6dOpmaNWuazz//PNn+48ePG39/f1O2bFkzbdo0O1WJ1AgODjZ9+/Y1N2/eNMYY8+OPP5q6deuaTp06mS1btliPu3Hjhr1KxD2cOHHCFC9e3IwYMcKEhYUl29ejRw9TtGhRc/nyZWOMMWfPnjXvvPOOKVSokHFwcKCHIgv66quvTLVq1UxISIgJCQkxpUqVMi1atDAXL140xhjzzTffmJYtWxovLy/j6+trdu/ebeeKkdTDtG7dOtO2bVvToEED88wzz9zxejTm1iT8t99+25QoUcIcPXr0fpeKNNq3b585ePCgiYyMNI899pjp1auXMcaY69evm8KFC5tSpUqZxYsXm4SEhLtO6IbtCBU5VNKLJjo62hhjzI4dO0y3bt3Mo48+alatWpXs2MGDBxtvb2/TvHlzc+nSpfteK/5bQkKCeffdd03lypXNgAEDrMHiu+++M/Xr1zedOnUyW7dutXOVuJeZM2eamjVrprgvMjLStG3bNtlr86+//jKTJk0yR44cuV8l4j8kva/+9ddfpkWLFmbevHnWfYcOHTKlSpUyzZo1s4bDixcvmhMnTjDkKQtZu3atKViwoBk0aJD5/PPPTbly5UzTpk3Ntm3brJPu16xZY1566SXj5eXFVZ6yoNtDwb+vhLdnzx5TrVo1s23bNmPMrddlp06dzIsvvsiVn+4D1qnIgcxtCzD169dPf/75px5++GG98cYb8vT01Ny5c5MtqOXg4KBXX33Vem1uZD0ODg4aMGCAXnrpJW3fvl2vvvqqEhIS1LZtW7311lsKDw/X+PHjFRwcbO9ScRcFCxZUaGioFi9erAsXLujIkSPav3+/fv/9dwUFBen69ev67bffdOzYMe3cuVPFixfX0KFDVbFiRXuXjv9nsVi0ZcsWvfvuu3J0dFSbNm0kSYmJifL19dWPP/6ow4cPq2vXrrp48aLc3d3l4+OjYsWK2blySNLRo0f19ttva8KECZo+fbqaN2+u+Ph47dixQ71799Zvv/0mSSpWrJjKlSunwMBALlSSxSR9vvnpp5/00ksvqVWrVhoxYoSOHDkiSbp27ZouXbqky5cv68qVK1q9erWMMZo3b57KlStn5+pzATuHGmSSL774wri5uZlhw4aZgwcPWrfv3LnTdOvWzVSpUsV06dLFvPTSS6Zw4cJMys6i/n3pu+vXr5uJEyeahx9+2PTv39/6Lc2XX35pmjdvbv766y97lIm7OHnypLly5Yoxxpi9e/eaoUOHGk9PT1OhQgXj5+dnypYtaypWrGhq1Khh8ufPbywWi6lSpYrx8PDg2+0satmyZcbJycm4uLiYwMBA6/ak12JISIhxcXExHTt2ZD2RLGbv3r1mwoQJJi4uzpw9e9Y8+OCDZsCAAebq1avGx8fHNG7c2NrjyzDSrGvt2rWmQIECpn///mbBggWmSJEipkmTJtb1t5o3b26KFi1qKlWqZIoUKcLQw/uIUJED/fHHH6Z48eLWBZiSnDt3zvrn9OnTzSOPPGI6dOjANbezmKSu3SNHjpiaNWua0aNHJ9t/5coV89ZbbxlPT08zbNgw61Cofy/EBfuKj483TZo0MSVKlLBeecQYY0aNGmW9stOlS5dMYmKiuX79unnzzTdNu3btzL59+7gySRb3xRdfGA8PD9OjRw9z+PBh6/bbX7t//vmnvcrDXdy8edO67tKLL75ounbtal3HoF27dsZisZi6deuy2GsWFh4ebmrXrm1mzJhhjLn1Puvh4WEGDhyYLMQvXrzYLF26lCFP9xnDn3KgCxcuyNvbW927d9fly5f10UcfqXnz5qpXr5769esnBwcHDRo0SFu3btXy5cv10EMP2bvkXC0xMVGSdOPGDUm3hlicOHFCDz74oOrVq6eNGzfq3XfftR5fqFAhDR48WE5OTlqwYIGGDBkiSXJ1db3/xeOu8ubNq9mzZ6t06dJ65JFHdPnyZUm3nu9169bp8uXL1uGG+fPnV0REhOrWrauHHnpIpUuXtmfp+H/m/y+OGBISos2bN+u7775TYmKiOnbsqJkzZ2rjxo2aO3eujh49KunWa9cYo4oVK6pChQr2LD1XM7e+MJUk/fXXXzp79qyOHDkiR0dHVa5cWcYYhYaGqnr16tb3zXLlymnXrl1atWoVV8zLIubMmaOffvpJCQkJ1m1JV0F86aWXdPr0aXl7e6t9+/aaMWOGHBwc9Msvv0iSXnzxRfXo0YMhT/ebXSMNMkTSt2NxcXHGGGO2b99uLBaLef311021atVMu3btzJAhQ8z06dONh4eH+fnnn+1ZLlJw5MgR069fP5OQkGBWr15tHB0dzdmzZ8358+fN66+/burVq2fGjx9vPf7ixYumW7duZsKECXyrnQUlvSYTEhJMSEiIadCggalZs6a5fPmy2bp1q6lVq5Z54403zOnTp80ff/xhRo4caYoWLcrq9VlI0nP4xRdfmPLly5uqVauaGjVqGG9vb+uQ0s8++8yULFnSDBw4kOcui7j9YiNfffWVqVGjhqlWrZopXry4GTZsmHWIaP369c1jjz1mvvrqKzNw4EBTtGhRa28+soYaNWoYLy8vExgYaO2RDwsLM2XLljUfffSRKV++vHn55ZetQ9X+/PNP06pVK7N582Z7lp2rESqyudsvkffiiy9a3zCXL19u2rRpY4YNG2YOHTpkPf7hhx82a9eutUutuFPSG2VQUJCxWCymadOmxtHR0SxZssR6zIULF8zrr79u6tata1577TVz8OBBM3z4cNO0aVMTERFhr9KRgtuHTcTHx1vvv/HGG8ZisZiHH37YXLlyxUyaNMn4+voai8VifH19TfXq1c3vv/9uh4pxL0FBQcbNzc06lHTHjh3GYrGYmTNnWo/57LPPjLOzs3nzzTeTPee4/y5evGhKlixpQkJCzC+//GJcXV3NvHnzTHh4uPnoo4+MxWIxX3/9tTHGmNOnT5vy5cubChUqmIoVK3KVpyzk9qs7NW3a1JQpU8Zs2rTJ+sXpkCFDjKurq2nVqlWy80aOHGlq1arF3EI7IlTkAGvWrDGFChUygwcPTvbGmDRWNMmIESNYSTILWbBggfnoo4/M9evXjTHGjB071lgsFtOwYUNz7dq1ZMdevHjRvPvuu6Z8+fLGy8vL+Pj4MPksi/nrr79M586dzS+//JJs++TJk03RokXNRx99ZGrWrGnq1q1rLl++bMLDw80XX3xh9u3bZ86fP2+nqnEvH374oendu7cx5tY6I2XKlDH9+vWz7k/68LNy5UrmUGQBJ06cMKVKlTL79u0zo0aNMq+99pox5tYFLypUqGD69OmT7Pj4+Hhz8uTJZHOekDXcPlH+0UcftQYLY25dNvaJJ54w1atXNwsWLDDLly83AwYMMG5ubmbv3r12qhjGECqynX9/2Ny/f78pVqyYWbBgQbLtFy9etL4oV6xYYZ5//nnj4eHBtzFZSLNmzUzlypXNp59+auLj4837779vRowYYfLly2eef/55c+bMGWPMPx9cYmNjzfnz582WLVtSXKwJ9pW0kGSbNm1MUFCQMcaYiRMnmiJFipiffvrJGHPrmuk1atQwtWrVYk2YLOJeV2jq37+/efrpp8358+dN6dKlzcsvv2x9PX722WdmzJgx96tMpFLt2rXNO++8Y5o0aWKmT59uYmNjTcmSJZM9d7NmzWIYcBaW9DwlLSRpjDGNGjUypUqVsg5tCg4ONq+//ropWrSoqVWrlmndurXZv3+/XerFPwgV2ciMGTNM3759zY0bN6z/EX799dfG39/fGHNrLOmSJUtMy5YtTcmSJc3IkSPN2bNnzTfffGOee+65ZMOgYD+3d+127tzZVK1a1axatco6dCIwMNAaLM6ePWs9Njg4+L7XirRJGtPbvn1706dPH1OsWDGzYcOGZMeEhIQYHx8fU79+fS45mkWcPXvW7Ny50xhjzKeffmq9Otf69evN448/booWLWrtsUhakffVV181vXr14qprWUTSa+npp582Y8eONStXrjSPP/64KV68uHnllVesQ01v3LhhnnvuOTNs2DCGq2VBtw/pfuaZZ6xfyBhjzGOPPZYsWBhjTEREhImLi7tjZAbsg1CRDSS9Gc6ePds6VjBpbOHWrVuNxWIxb775pqlTp45p166def31183kyZONk5OT9YNo0srayBpu79rt0KGDqVKlivnkk0+sQ6E2b95s8uXLZ3r06GG2b99u3nnnHVOgQAFz/vz5ZKEEWc+RI0dM8+bNjYuLi5k6dap1++0B4siRI+bEiRP2KA+3SUxMNDExMebhhx827du3N5MmTTIWi8XMnz/fGHMrbLRq1cqULVvWfPHFF8aYWx9iRo4caTw8PPiixs6OHz9u5syZY0JCQqzDej/55BPTvHlz880335gaNWqYGjVqWFelj4uLMyNHjjRlypRhuFoW9uWXXxoXFxczceJEs3379mT7koJFYGCg9XOQMYb/F7MIQkUWl/RB5Pjx42bcuHHGGGN+/fXXZMNjFixYYPz9/c3gwYOTdf89/PDDd3xLCvtLqWu3Q4cOplq1asmCxdatW42Hh4epUaOGKVGihNm1a5dd6kXaHTt2zLRo0cK0bt3aupiWMfceagP7OXbsmCldurSxWCzWXorb9zVo0MBUq1bNlC5d2jRp0sSULl2aoaR2Fh8fb5555hlTpkwZ4+PjY9zc3EyrVq1MuXLlTKlSpczff/9tvvzyS+Pn52eqVKli2rdvb1q3bm2KFSvGc5eFhYaGGl9fX+s6FEluDxCPP/64yZ8/f7L3VmQNFmP+/2LOyHISExPl4OCgffv2qWbNmho/frxGjhypWbNmafHixapTp47Gjx+vEiVKKCoqSvnz57eeO3LkSK1cuVJbt25VyZIl7fgokJKdO3dqwoQJeu2119S0aVNJ0lNPPaVjx47pzTffVIcOHVSgQAGdOHFC4eHhKlu2LM9jNnP06FG99tprMsbo7bff1iOPPGLvkvAv5v/XM4iOjlaVKlUUHx+vJk2aaODAgapXr571uPDwcB06dEjbtm1TjRo1VKNGDZUtW9aOlUOSoqOj5erqqqNHjyokJEShoaHasmWL/vjjD/n6+uqTTz7R8ePH9f333+vgwYOqUaOGOnTowBoiWdiePXv01FNP6dtvv7WuoWWMkcViUUJCghwdHSVJbdu21cyZM3kusxp7JhrcXdI3mgcPHjQuLi53fHs2Z84c06BBA/PCCy8kG3f/9ddfmx49evBtTBa3du1aU6dOHdO5c2cTGBho3Z7UY/HZZ59ZeyyQff3555/miSeeMPXr12dOTBaT1GN48OBBExcXZ+Lj482BAwdM+fLlzdNPP83zlQ3cbcjLV199ZerXr2/atm1r7RFmeEzW9O/nZefOndbhTf8+5ueff2b0RRbHitpZUFIPxYEDB/TYY4/J29tbY8aMkSTFxsZKkvr376+uXbvq2LFjGjVqlMLDwyVJkZGRunnzpgIDA1WzZk17PQT8h/bt2ysgIEAXLlzQrFmztHnzZknSV199pcqVK2vYsGFat26dnauErSpUqKApU6aoVKlS8vLysnc5+H/m/7/5/Oqrr9SyZUuNGDFCcXFxqlq1qpYvX659+/Zp+vTpCg4OlnSr53fcuHF2rhr/lrS6cpLExERJUrt27TRw4EBFRkbqiSeeUERExB3HImuwWCwKCgrS3r17JUlly5aVo6Oj5s2bpytXrliPkaTvvvtOq1evVkxMjHXFdGQx9k41SC6ph2Lv3r3G1dXVNG7c2Hh5eVmvt21M8rGFs2fPNo888ojp3bu3CQ8PN8bcuT4F7Ov2b0T/PbHz66+/Nk2aNDHt27c327Zts27v3r27OX78+H2tE5nn9tcssoYNGzYYZ2dn8/HHH5uTJ08aY/55re7atctUrVrV1K9f37Ro0cK4urrSc5FNJD2HiYmJZunSpaZ169bm9OnTdq4Kd3PlyhXz5JNPGi8vL+vaS5s2bTLOzs6mU6dO5ptvvjFBQUFm4MCBplChQubAgQN2rhj3wpyKLGjXrl1q0KCBRo0apbfeeksff/yxRo0apWeffVazZs2SJMXHxytfvnySpLlz5+qDDz5Q48aNNXv2bOuYQ9hHUk/TzZs3lSdPHt28eVN///23WrRooYceekgjR45U5cqVrcevXbtWvXv31qOPPqpXX33VOscCQOa4efOm+vbtqwIFCmjWrFnWnoubN2/K0dFRFotF+/fv16pVq3Tt2jX169dPVapUsXfZSKWk59MYo8jISBUsWNDeJeFfkp4jSQoKCtLMmTP1xx9/aMWKFapVq5Z27typXr16KTIyUhaLRQ888IA+/vhj+fn52bdw3BOhIgvasmWLvvjiC2uAuHr1qlatWnXPYLFgwQK1aNFC3t7e9iob+idQHD9+XEuXLtWlS5fUvXt3+fv764MPPtDSpUvl5+engQMHytfX13peixYttG/fPrVu3VoffPCBXFxc6K4HMkl8fLzq1q2rJk2aaMaMGZKSf8i5du2a3NzcdPPmTTk4OMjBgZHC2c3tzyfsK+n/RUm6ceOG8ubNq9jYWDk7O1uPCQ4O1uTJkxUSEqLly5erdu3aunz5sq5cuaL4+Hh5eHiocOHC9noISCXeKbOgRo0aWYODMUaFChVS165dNWHCBC1fvlyvv/66JClfvnyKi4uTJL388ssECjtLeuP8448/1LRpU126dEmlSpVSrVq1JEmvvPKK+vTpo127dmnWrFk6fPiwpFvfmpYrV05vvPGGJkyYIFdXV/4zBDJY0vdnxhg5ODioRo0aOn/+vCIiIiTJ+s32oUOHNHz4cP3999/KkycPgSKb4j0063BwcNDp06dljFHevHn166+/qnnz5jp58qT1GH9/f7355pvy9vZW9+7ddfDgQRUuXFg+Pj6qVKkSgSKbyGPvAnBvSW+Mbm5u6tq1qyRp1KhRcnR01PTp0+Xk5GTP8nCbpB6KFi1a6IUXXtCkSZOs+5KGQvXu3VvSrZ6lESNGqGnTpjpz5ox++uknBQcHq1ixYvYqH8iR/v2NtcViUZ48eeTv76833nhD/v7+6tq1q4oVKyaLxaLVq1dry5Yt1i9sANgmLi5OXbt2VVhYmE6dOqWEhARFR0erd+/e+vjjj61fiPr7++vZZ59Vz5491axZM23YsMF6WVlkD4SKbCQpWDg4OOjll1+Wk5OTJk6caO+yoH+ud//xxx/rkUce0fDhw5Ptz5Mnj7Uno3fv3ipSpIhWrFihadOmqVixYvr8888JFEAGSwoUW7Zs0ddff62bN2+qcuXK6tevn/73v//p7NmzGjdunH755Re5ubkpNjZW69ev1+bNm+Xp6Wnv8oEcIV++fJoyZYr69esnf39/BQcH6/3339fw4cP1wgsvaMmSJfLx8ZEkVapUyTqU+/a1t5A9MKciG7p69arWrl0rf39/VaxY0d7l4DaPPvqoKlWqpI8++uiOfUmhImksaWxsrCIjI+Xo6EjXLpBJvvrqK/Xs2VNPPvmkbt68qQMHDqhu3br6+OOPJUnLli3TgQMHtGvXLlWvXl19+/ZlUjZgg9vnUNy+bceOHerRo4eKFi2q4OBgBQUFadSoUUpISLAGi3feeUdnz57VjBkzmGCfDREqsikmoWUtiYmJiomJUf369dWhQweNGzfOOuTp3wICAvTUU09xFQsgk+3atUudO3fW8OHD1bdvXx0+fFiNGjXS1atX1aZNG3311VfWY5PWOGAOBZB+SYEiPDxcp06dUv369a37bty4od9//13dunVTsWLFtH37dm3fvl2jRo3Spk2bVKdOHR06dEjBwcGqXr26HR8F0ot3z2yKQJG1ODg4KH/+/Kpbt66WLFmiY8eOKU+ePNZhUUlOnjypoKAg3bx5047VAjlLUiAwxljvS1JISIhatGihvn37KjQ0VG3atNETTzyhDz74QOvXr7fOcZLEVZ6ADODg4KAzZ86oWrVqatCggZo0aaKRI0fql19+UUxMjOrWrauVK1cqNjZWDz/8sOrXr68ff/xRCxYsUK9evbRv3z4CRTbGOyiQgVq1aqWbN2/q7bff1vHjx2WxWJIFwGXLlikuLo4rdQEZJOmb0T///FOvvfaaOnXqpKlTp0qSnn/+efXu3VsJCQnq27evHn30US1atEjt27dX6dKltWjRInXv3t3OjwDIWRITE1W6dGlVrFhRkZGROnfunNq2bavHHntMPXr00MmTJzVq1ChdvXpVzZo1s8417Nu3r8qVK2fv8mEDQgWQRkk9D7d/I5qkc+fO6tGjh3788Uf17dtXW7du1eXLl/Xbb7+pf//+mjlzpj744AO5u7vf77KBHCcpUOzbt08NGzbUX3/9JScnJ40cOVKTJ0+WJD388MP666+/dObMGb300kuSbn2bWq9ePS1btkzjxo2z50MAcpyyZcvq888/V5UqVVSyZEn169dPR44c0ZtvvqkTJ05o2rRpevHFF+Xs7KxffvlFHTt2lCQxGj/74+pPQBosWbJEv//+u6ZPny5HR8dkE9KS7k+ePFlubm5atWqVGjdurMKFC8vDw0MFCxbU5s2buUQekAGSXm/79++Xv7+/Bg0apAkTJigxMVHu7u4KDw+3XhTB2dlZcXFxWrNmjfz8/DRlyhQdOXJE06dP56prQCYoX768Jk6cqNdff11vv/22JkyYoK5du6pr1666cuWKvv32Wx0+fFh58uTR6NGjJTGsOydgojaQComJibpx44aGDBmi4OBgtWrVSmPHjr0jWCQkJMjR0VGSdPz4cYWEhCgsLEzVq1dXuXLl+AADZKAzZ86oVq1aatKkiVavXm3d3rVrVx05ckSxsbHy9vZWx44dFRUVpSlTpsjR0VHx8fFat26datasacfqgZzv6NGjevXVVyVJI0aM0GOPPZZs/90uaILsiVABpMLZs2dVsmRJXb58WVOnTtXGjRvVtGlTjRs37q49FgAy16lTp/TMM8/I09NTw4YN0yOPPKJJkyZp3LhxGjFihDw9PTV16lQ5OTnp/fffl7u7u44ePaqaNWuqdOnS9i4fyBWOHj2q1157TcYYjR49Wg0aNLB3ScgkhArgP6xZs0ZDhw7VZ599pgYNGujKlSuaNGmSAgMD7xosANwfSR9Y8uXLJw8PD33zzTf65JNP1KJFC0nS6dOn5ePjo/nz56tPnz52rhbInY4eParBgwcrIiJCM2bMSHapWeQcfAIC/oObm5uqV6+ugQMHKjg4WA888ICGDx+uxo0b65dfftHbb7+thIQEOTg4pDh5G0DmqVChgmbNmqWYmBh99tlnGjZsmFq0aCFjjG7cuKE8efKoevXq1gUm+R4NuP8qVKigKVOmqFSpUvLy8rJ3Ocgk9FQAqbB582bNmjVLp06d0pw5c6w9FpMnT9amTZvUpEkTjRs3Tnny5Ek2rwLA/XH8+HG98sorcnR01IgRI/Too49KkkaPHq1PP/1UmzdvZsgTYGfx8fHKly+fvctAJiFUAPdw+8rlmzZt0uzZs3X69OkUg0WzZs00ZswYJp0BdnL72O2JEyfqp59+UkBAgH799VcmZQNAJiNUAGmwefNmTZ8+XWfOnEkWLKZOnarPP/9czz33nPXyeADuv6Sx2zt27NDly5cVHBys2rVr27ssAMjxCBVACpJ6KHbv3m1dOKtbt24qWrSoduzYoXfffVehoaHWYHH58mW9//776tGjB6tlA3Z25MgRDRs2TO+++66qVq1q73IAIFcgVAB38cUXX6hfv36qWbOmjh07pkKFCqlXr17q37+/AgMDNXv2bJ09e1ZTpkxRo0aNkg2VAmBfN27cUN68ee1dBgDkGlz9CUjBnj171L9/f7333nvasGGDfvnlF+3du1fR0dGSpMaNG2vw4MHKnz+/Ro8erdjYWDtXDOB2BAoAuL/oqUCu9u/ehaSfP//8c3344Yf65ZdfdOTIEbVu3VqPP/64Fi5cKEm6cOGCPDw8FBQUJG9vb5UqVcpeDwEAAMDu6KlArpWYmCiLxaKLFy9q165d2r17tzVgnD17Vm5ubkpISFDz5s3VvHlzzZ8/X5L0zTffaP78+YqLi1PDhg0JFAAAINfj2pfIlZJWvz506JBefvllFSxYUK6urlq9erUcHR3VqlUrjRs3Ti4uLurXr59mzZplPXfjxo0KDQ1VXFycnJyc7PgoAAAAsgZCBXIdY4wcHBx08OBBNWzYUK+88or69u2rUqVKycHBQcYYPfjggxo2bJjef/99a0/EyZMntXDhQn366afaunWr3Nzc7PxIAAAAsgbmVCBX+vvvv9W+fXvVqlUrWS/E7XMsTpw4ocWLF2vGjBkqXLiwChcurPj4eK1YsYKFtAAAAG5DqECudOjQIbVr106LFi1Sw4YN5eCQfHpRUri4ceOGTp48qeDgYPn4+Kh8+fLy8vKyU9UAAABZE8OfkCvt3btXp0+f1qOPPiqLxWKdY5HEYrEoOjpaBw4cUN26dVWxYkU7VgsAAJC1cfUn5Ere3t7KkyePvvzyS0m6o6dCkhYtWqS33npL8fHx97s8AACAbIVQgVypbNmycnNz07Jly3T69Gnr9ttHA546dUq1a9dmES0AAID/QKhArlSyZEl9+OGH2rBhg95++20dOnRI0j/DnkaOHKk1a9aoZ8+eyRbHAwAAwJ2YqI1cKzExUQsXLtSAAQNUvnx5+fv7y9nZWWfPntX27du1fv16rvIEAACQCoQK5Ho7duzQlClTdOzYMRUsWFANGjRQr169VKFCBXuXBgAAkC0QKgBJCQkJcnR0tHcZAAAA2RJzKgAlv/oTORsAACBt6KkAAAAAYBN6KgAAAADYhFABAAAAwCaECgAAAAA2IVQAAAAAsAmhAgAAAIBNCBUAAAAAbEKoAAAAAGATQgUAAAAAmxAqAAAAANiEUAEAAADAJoQKAAAAADb5PzrZmtw6GZzOAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "Cellpose Specialist vs Generalist by Data Type\n", @@ -1117,7 +1014,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1160,12 +1057,10 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "cellsam_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellsam')\n", - "cellpose_path = Path('/home/ulisrael/cellSAM/paper_figures/eval_results/cellpose')\n", "\n", "cellpose_generalist_path = cellpose_path / 'cyto3'\n", "cellsam_generalist_path = cellsam_path / 'general'\n", @@ -1192,20 +1087,9 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHlCAYAAABoJ2o5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgeNJREFUeJzt3XdUFPfbBfC7dCyggiIqKIoiBkUUC2rs3cT6sxuNYokl9t41tsQao7GjJtZYozExRoxdY9SADbGLBVBEQXp73j94d2QFFVxgYbmfczjC7Mzy7MjOzp35FpWICIiIiIiIiLRgoOsCiIiIiIgo92OwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFoz0nUBRJQsICAAISEhui4jTdbW1rC3t9d1Gekyc+ZMzJo1C3///TcaNmyoLFepVGjQoAGOHz+us9qIUuJ7Xnt8vxPlLAwWRDlAQEAAnJ2cEBUTo+tS0pTPzAx+/v6ZdqJx6dIl/Pjjjzh58iSePn2KpKQklChRAnXq1EHv3r3RrFmzTPk9lDEign379mHLli24cOECnj9/DhMTE5QtWxaNGzfGgAEDUKlSpY967k2bNqFv377YuHEjvvzyS61r/eOPP7B582b4+PggKCgIcXFxsLe3R926dTFhwgRUqFBB69+RlQICAuBU0Rkx0VG6LiVNZub54H/TT+/e89euXcPChQtx4sQJBAYGwszMDEWLFkWVKlXQoEEDDB8+HCqVKs1tT548iQYNGgAAfvnlF3Tu3DnN9dR/6wDQqVMn7N69O831Vq1ahSFDhgAA+vTpg02bNmn56oh0j8GCKAcICQlBVEwMlruWgWMBc12Xo+FORDSG+z5ASEiI1icZSUlJGDt2LJYuXQojIyM0btwYbdu2hbGxMe7du4dDhw5hy5YtmD17NqZNm5ZJr4DSIzQ0FJ07d8axY8dQqFAhNGvWDGXLlkVcXByuX7+OH3/8EcuXL4e3t7fGlWFd+f3333H+/HnUqlULrVq1grGxMfz8/LB582Zs3boVv//+Oxo3bqzrMt8pJCQEMdFRKN1pEsyK5qw7AzHPA/Bwz3y9e8//9ddf+Oyzz5CQkICmTZuiQ4cOMDMzw927d3HixAns27cPQ4cOhZFR2qdGGzZsAJB8N8TLy+udwULNyMgIBw8eREhICKytrdN8PiMjIyQkJGj/4ohyCAYLohzEsYA5Klvm03UZWWbq1KlYunQpqlatit27d6NcuXIaj0dHR2PFihV48eKFjirMmxISEtChQwecPHkSvXr1wsqVK2FhYaGxTmBgIKZMmYKwsDAdValp4cKF+OGHH1It9/b2RtOmTTFhwgT8+++/OqgsY8yK2iNfiZx9d0UbOek9P3jwYCQmJuLo0aNo1KiRxmMigiNHjsDQ0DDNbcPDw7F7925UqVIFNjY2OHLkCB49egQ7O7t3/r5WrVrh4MGD2LJlC0aOHKnx2JUrV3Dp0iW0bdsWBw4c0Pq1EeUU7LxNRNnizp07+O6772BlZYXDhw+nOsEAAHNzc4wbNw6zZs3SWB4XF4clS5agWrVqyJ8/PwoWLIhPP/1U6w/kL7/8EiqVCvfu3cN3332H8uXLw8zMDA4ODpg9ezbi4+PT3G7jxo2oVasWChQogAIFCqBWrVrvbMawZ88eNGjQAMWKFYOZmRlKlCiBpk2bYs+ePanWvXLlCrp16wZbW1uYmJigdOnS+Prrr7P8pOvnn3/GyZMnUb9+fWzevDlVqAAAW1tbeHl5oWXLlkhKSkLp0qVhZWWF2NjYNJ+zfv36MDIywuPHj/Hll18qTUP69u0LlUqlfKX08OFDeHp6omTJkjAxMUGpUqXg6emJgICAVM9vZmaW5u9t0qQJChcujDt37mR0N1Am+9j3fFa83589e4a7d+/CxcUlVagAku9CtGjR4p3NoLZv346oqCj07t0bvXv3RlJS0gebLtWpUwcVK1bExo0bUz3m5eUFQ0ND9OnT56NeD1FOxWBBRNli06ZNSExMxKBBg2BjY/PedU1NTZXvY2Nj0aJFC4wZMwYiAk9PT/Tq1QsPHz5Eu3btsGLFCq1rGzlyJL799ls0bdoUX3/9NUxNTTFjxgx079491brDhw9Hv3798OTJE3h6esLT0xNPnjxB3759MWLECI11V61ahf/973+4ffs2OnTogNGjR6Nly5YICgrCvn37NNY9cOAAatasiQMHDqBhw4YYOXIkKleujBUrVsDDwwMvX77U+nW+i7qJx9SpU2Fg8P6PBVNTUxgYGKB///4IDQ1NMyD5+/vj1KlTaNmyJUqVKoX27dujXbt2AIB27dphxowZypfarVu3UKNGDXh5eaF69eoYM2YM3Nzc4OXlBXd3d9y6dStdr+XcuXN4+fIlXFxc0vvyKYt8zHs+q97vlpaWMDIyQmBgICIjIzO8/YYNG2BoaIiePXuiY8eOKFCgADZu3AgRee92ffv2Ve5OqMXFxWHr1q1o0aIFSpQokeFaiHIyNoUiomxx5swZAMhwu/fZs2fj+PHjmDZtGmbNmqVcUXz9+jUaN26MMWPGoGPHjlp9QJ8/fx6+vr4oVaoUAGDu3Llo1qwZ9uzZgz179qBTp04Akjtv/vDDD3B2dsa5c+dgaWkJIHlkmtq1a2P58uX43//+h08//RQAsH79epiYmMDHxwfFihXT+J0p70K8ePECX3zxBaytrXHmzBmULl1aeWzHjh3o3r07pk+fnmbTH20lJCTgwoULMDIyUupOD09PT8yePRvr1q1Djx49NB5bv349AGDAgAEAgPbt2+PVq1f49ddf0b59+zQ7b3/11Vd4/vw51qxZg4EDByrLf/zxRwwdOhSDBw+Gt7d3qu2OHDmCs2fPIjY2Frdv38Zvv/0Ga2trLF26NN2vhbLGx7zns+r9bmpqirZt22Lv3r3w8PDAgAEDUKdOHVSuXBkmJibv3fbq1av4999/0aJFCxQvXhwA0LFjR/z00084duwYmjRp8s5te/fujSlTpiiBGQB+/fVXhISEwNPTM0OvgSg34B0LIsoWQUFBAKCcvKdHUlISVq1ahXLlymmcZABAwYIFMX36dMTFxWHv3r1a1TZixAiNukxMTDB37lwA0GjusHnzZgDJQUIdKgCgcOHCytX3t5tHGBsbw9jYONXvtLKyUr7/6aefEB4ejvnz52uECgDo1q0bqlWrhh07dnzci/uAFy9eID4+HtbW1u9sXpSWEiVK4PPPP8eJEyc0mh3Fx8fjp59+gq2tLdq0aZOu5woICMDff/+NSpUqKWFE7auvvkLFihVx7NgxPHr0KNW2R44cwaxZs7BgwQLs2bMHdnZ2OHz4MNzd3dP9WihrZPQ9n9Xv97Vr1+Lzzz/H1atXMXz4cLi7u6NgwYKoW7culi9fjujo6DS3U9/R6927t7JM/b36sXcpXrw4Wrduje3btyPm/0f98/LyQtGiRfH5559/1Osgysl4x4KIcix/f3+8fPkSJUqUSNXvAgCeP38OALh586ZWvyetK/UeHh4wMjLCf//9pyxTf5/WqEjqdts+Pj7Ksm7dumH8+PFwcXFBjx490KhRI9SrVy9VH4bz588DAP755x/cvXs31XPHxMQgJCTknaPLqO3fv1/j96trzapRnAYNGoR9+/Zh/fr1WLBgAYDkJl3Pnj3D5MmT3zm6ztvUNTdo0CBVG3cDAwPUr18fN2/ehI+PT6rOsosWLcKiRYsQERGBGzduYPbs2ahbty68vLxS3UmhnC2r3+9WVlY4cOAAbt++jcOHD+PChQs4f/48zp49i7Nnz2LdunU4ceIEihQpomwTGxuLLVu2oGDBgujQoYOyvFGjRrCzs8O+ffvw8uVLFC5c+J2/t1+/fjhw4AD27duH+vXr48iRIxgxYkSaFxyIcjsGCyLKFsWLF8fNmzfx5MkTODk5pWub0NBQAMD169dx/fr1d673MW2mU0qr/behoSGsrKw0RkEKDw+HgYEBihYtmuZzqFQqhIeHK8vGjh0LKysrrFq1CosXL8aiRYtgZGSENm3aYOnSpXBwcADw5nWuXLnyvXVGRkZ+MFio76qk9L5gYWVlBWNjY7x48QKxsbEa/Vs+pHnz5nBwcMDmzZsxZ84cGBkZYf369VCpVBlq5qHeZ+9qh29ra6uxXloKFCiAmjVrYv/+/XB3d8fAgQPRrFmzNP+vKHtk9D2fXe/38uXLo3z58srPPj4+6NWrF65du4ZZs2bh+++/Vx7bv38/Xrx4gb59+8Lc/M1Q4AYGBujZsycWLFiAbdu2YejQoe/8fW3atIGNjQ28vLxw7949JCUloV+/flq9BqKcik2hiChb1K1bFwDSbCf/Luor+506dYKIvPMrrVFXMiI4ODjVssTERLx48UKjyZOFhQWSkpKUK6cpPXv2DCKicTdCpVKhX79++Pfff/H8+XPs27cPHTt2xK+//orPPvsMiYmJGq/z6tWr732dbzeTetumTZtSbTNz5sz3bmNkZISaNWsiPj4eJ0+efO+6b1OpVBg4cCCCgoJw8OBBPHr0CEeOHEGTJk1QtmzZdD+P+vWn9f8AvGlSk9ZoVW8zMjJCo0aNEBkZiYsXL6a7Bsp8GX3PZ9f7/W1Vq1ZV+i8dO3ZM4zF1U6eNGzdqjGamUqmUu3Qfag5lZGSE3r1749ixY1i5ciVq1qzJwQVIbzFYEFG2+PLLL2FoaIi1a9emeWKeknoIU2dnZ1hYWODixYvvHPo1M5w6dSrVsnPnziEhIQFubm7KMvX3x48fT7W+elnVqlXT/B1WVlZo3749du7cicaNG+PGjRtK34RatWopv1MX1HcX5s2b98FRbt4eXrZv374wNjbG+vXr4eXlhaSkpFT9JAAo8wOow1RK6n128uTJVL9fRJTA8659+7anT58CAJua6FhG3/PZ9X5PS4ECBVIte/jwIby9vWFjY6OMAPf2l4ODA/777z+NJpNp6devH5KSkhAYGMi7FaTXGCyIKFs4Ojpi/PjxCAkJQatWrXD//v1U68TExGDJkiXKVXYjIyMMHjwYDx8+xNixY9M82bh27RqePXumVW3ff/89Hj9+rPwcFxeHKVOmAIDGCEbqMednzZql0SwnLCxMaROeclz648ePpzpRjo+PV5p8qDtL9+3bFwULFsSUKVPSbAISFRWl9MPICl988QU+/fRTHD9+HH379sXr169TrRMcHIwBAwbg8OHDGsttbGzQvn17HD58GKtWrYK1tTXat2+fant1u/W0OmDb29ujUaNGuH79Ory8vDQeW7t2Lfz8/NC4cWON/hXvuhvx559/Yt++fShUqBA8PDw++Nop62T0PZ+V7/fIyEjMnTsXISEhqR5LSEjAwoULAQD16tVTlm/cuBFJSUkYNGgQ1q9fn+bXxIkTAXz4rkXFihXxxx9/YN++fejZs2eG6yfKLdjHgoiyzZw5cxATE4OlS5fCyckJjRs3houLC4yNjXH//n0cPXoUL168wJw5c5RtZs2ahcuXL2P58uU4dOgQ6tevj2LFiuHJkye4evUqfH19ce7cuVTDuWZE7dq14erqiq5duyJ//vw4ePAg/P390bFjR2WoWSB50revv/4aP/zwA1xcXJQmG3v27MHjx48xfPhw1K9fX1m/ffv2sLCwQO3atVG6dGnEx8fjr7/+wo0bN/C///1PadpUtGhRbN++HZ07d4arqytatmyJihUrIjY2Fg8ePMCJEydQp06dVCf1mcXIyAj79+9H586dsXnzZhw4cEDpPxEXF4cbN27g+PHjiI+PR69evVJt/9VXX2HXrl0IDg7GmDFj0hy+08PDA+bm5li2bBlevnyp9H2YOnUqgOQ5P+rVq4cBAwbg4MGDqFSpEq5fv44DBw6gaNGiWLVqlcbz1ahRAy4uLqhSpQpKlSqFyMhIXLlyBadOnYKxsTG8vLyQP3/+LNhblBEZfc9n1fs9Pj4eU6dOxcyZM+Hh4QFXV1dYWFggODgYf/75Jx4/fgwHBwdldLekpCSl+VNawyOrde3aFSNHjsTWrVuxaNGi946s1rJlywzVTJQbMVgQ5SB3ItIe7lCXMrMmAwMDLFmyBD169MCqVatw8uRJnDx5EklJSbC1tUWLFi3Qt29fNG3aVNnG1NQUf/zxBzZs2ICffvoJe/bsQWxsLGxsbFCpUiV89dVXqFy5slZ1LVu2DLt27cL69esREBAAW1tbzJw5E5MmTUq17vLly+Hm5oZVq1Zh7dq1AIBPPvkEs2fPVmaXVps/f74y+szBgweRP39+lCtXDqtWrUrVublNmzb477//sHDhQhw9ehR//fUX8ufPj1KlSqFv375pntBnpiJFiuDo0aPYu3cvtmzZglOnTmHfvn0wMjJC2bJlMXDgQHz11VdwdnZOtW2jRo1gb2+PgIAA9O/f/53Pv3v3bsycORPr1q1ThvZUBwsnJydcvHgRs2bNwuHDh3Ho0CEULVoUffv2xYwZM1L1L5k3bx7+/vtvnDhxAs+fP4eBgQHs7e0xcOBAjBw5Ms06c6KY56lnFde1zKwpo+/5rHq/W1hY4Pfff8eff/6J06dPY9euXXjx4gXy5cuHChUqYMCAARgxYoTSp+ro0aMICAhAgwYNlEEW0mJpaYmOHTti69at2Lt3L0ciozxPJR9qUEtEWS4gIADOTk6I+v9xznOafGZm8PP3h729va5LyVRffvklNm/ejPv376NMmTK6LifXCgwMhL29PTw8PDLcATyvCggIgFNFZ8RER+m6lDSZmeeD/00/vXvPE1HW4h0LohzA3t4efv7+abb/zQmsra15gkHvtGzZMiQkJGDw4MG6LiXXsLe3h/9NP77niUivMFgQ5RD29vb8IKdcIywsDKtWrcLDhw+xfv16VKpUCV26dNF1WbkK3/NEpG8YLIiIKMNevnyJSZMmwczMDPXq1cPq1auVIWWJiChvYh8LIiIiIiLSGuexICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWlNp8Hi5MmT+Pzzz1GiRAmoVCrs37//g9scP34c1apVg6mpKRwdHbFp06YM/U4RQXh4OETk44omIiIiIqJUdBosIiMj4erqipUrV6Zr/fv376NNmzZo1KgRfHx8MHLkSPTv3x9//vlnun/n69evYWlpidevX39s2URERERE9BaV5JBL9yqVCvv27UP79u3fuc6ECRNw6NAhXLt2TVnWrVs3vHr1CocPH07X7wkPD4elpSXCwsJgYWGhbdlERERERIRc1sfi3LlzaNq0qcayFi1a4Ny5c+/cJjY2FuHh4RpfRERERESUuXJVsAgKCoKNjY3GMhsbG4SHhyM6OjrNbebPnw9LS0vly87OLjtKJSIiIiLKU3JVsPgYkyZNQlhYmPL16NEjXZdERERERKR3jHRdQEYUL14cwcHBGsuCg4NhYWEBc3PzNLcxNTWFqalpdpRHRERERJRn5ao7Fh4eHvD29tZY9tdff8HDw0NHFREREREREaDjYBEREQEfHx/4+PgASB5O1sfHBwEBAQCSmzH17t1bWf+rr77CvXv3MH78eNy8eRM//vgjfvnlF4waNUoX5RMRERER0f/TabC4ePEi3Nzc4ObmBgAYPXo03NzcMH36dABAYGCgEjIAwMHBAYcOHcJff/0FV1dXLF68GOvXr0eLFi10Uj8RERERESXLMfNYZBfOY0FERERElPlyVR8LIiIiIiLKmRgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0ZqTrAuiNwMBABAYGZng7W1tb2NraZkFFRERERETpw2CRg6xZswazZs3K8HYzZszAzJkzM78gIiIiIqJ04gR5OUhadyyio6NRr149AMDp06dhbm6eajvesSAiIiIiXWOwyOEiIyNRoEABAEBERATy58+v44qIiIiIiFJjUygdCQgIQEhIyAfXi46OVr738fFJ845FWqytrWFvb//R9RERERERZQTvWOhAQEAAnJ2cEBUTk2W/I5+ZGfz8/RkuiIiIiChb8I6FDoSEhCAqJgbLXcvAscD770DEJCah43l/AMDe2k4wM/zwCMF3IqIx3PcBQkJCGCyIiIiIKFswWOiQYwFzVLbM9951ohISle8/sTBHPiPDrC6LiIiIiCjDGCxykOCYeDyLjddYFpP4JlhcD4+CmWHqYFHM1Bg2ZsZZXh8RERER0bswWOQgWwOeY+mdd0+Q1/H8rTSXj3K0xegKJbKqLCIiIiKiD2KwyEF62hdFM5tCGd6umCnvVhARERGRbjFY5CA2ZmzSRERERES504eHGCIiIiIiIvoABgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNZ0Hi5UrV6JMmTIwMzNDrVq1cOHChfeuv2zZMjg5OcHc3Bx2dnYYNWoUYmJisqlaIiIiIiJKi06Dxc6dOzF69GjMmDEDly9fhqurK1q0aIFnz56luf62bdswceJEzJgxA35+ftiwYQN27tyJyZMnZ3PlRERERESUkk6DxZIlSzBgwAD07dsXlSpVwurVq5EvXz54eXmluf7Zs2dRt25d9OjRA2XKlEHz5s3RvXv3D97lICIiIiKirKWzYBEXF4dLly6hadOmb4oxMEDTpk1x7ty5NLepU6cOLl26pASJe/fu4ffff0fr1q3f+XtiY2MRHh6u8UVERERERJnLSFe/OCQkBImJibCxsdFYbmNjg5s3b6a5TY8ePRASEoJ69epBRJCQkICvvvrqvU2h5s+fj1mzZmVq7UREREREpEnnnbcz4vjx45g3bx5+/PFHXL58GXv37sWhQ4fwzTffvHObSZMmISwsTPl69OhRNlZMRERERJQ36OyOhbW1NQwNDREcHKyxPDg4GMWLF09zm2nTpuGLL75A//79AQCVK1dGZGQkBg4ciClTpsDAIHVOMjU1hampaea/ACIiIiIiUujsjoWJiQmqV68Ob29vZVlSUhK8vb3h4eGR5jZRUVGpwoOhoSEAQESyrlgiIiIiInovnd2xAIDRo0ejT58+cHd3R82aNbFs2TJERkaib9++AIDevXujZMmSmD9/PgDg888/x5IlS+Dm5oZatWrhzp07mDZtGj7//HMlYBARERERUfbTabDo2rUrnj9/junTpyMoKAhVq1bF4cOHlQ7dAQEBGncopk6dCpVKhalTp+LJkycoWrQoPv/8c8ydO1dXL4GIiIiIiACoJI+1IQoPD4elpSXCwsJgYWGhkxouX76M6tWr4/e6zqhsmS/Tn/9qWBRan/HDpUuXUK1atUx/fiIiIiKit+WqUaGIiIiIiChnYrAgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFozysjKSUlJOHHiBE6dOoWHDx8iKioKRYsWhZubG5o2bQo7O7usqpOIiIiIiHKwdN2xiI6Oxpw5c2BnZ4fWrVvjjz/+wKtXr2BoaIg7d+5gxowZcHBwQOvWrXH+/PmsrpmIiIiIiHKYdN2xqFChAjw8PLBu3To0a9YMxsbGqdZ5+PAhtm3bhm7dumHKlCkYMGBAphdLREREREQ5U7qCxZEjR+Ds7PzedUqXLo1JkyZh7NixCAgIyJTiiIiIiIgod0hXU6gPhYqUjI2NUa5cuY8uiIiIiIiIcp9MGxUqMjISJ0+ezKynIyIiIiKiXCTTgsWdO3fQqFGjzHo6IiIiIiLKRTiPBRERERERaS3d81gUKVLkvY8nJiZqXQwREREREeVO6Q4WsbGxGDx4MCpXrpzm4w8fPsSsWbMyrTAiIiIiIso90h0sqlatCjs7O/Tp0yfNx319fRksiIiIiIjyqHT3sWjTpg1evXr1zseLFCmC3r17Z0ZNRERERESUy6T7jsXkyZPf+7idnR02btyodUFERERERJT7cFQoIiIiIiLSWrqDRf369TWaQh04cADR0dFZURMREREREeUy6Q4Wp0+fRlxcnPJzr169EBgYmCVFERERERFR7vLRTaFEJDPrICIiIiKiXIx9LIiIiIiISGvpHhUKAP78809YWloCAJKSkuDt7Y1r165prNO2bdvMq46IiIiIiHKFDAWLtyfHGzRokMbPKpUKiYmJ2ldFRERERES5SrqDRVJSUlbWQUREREREuRj7WBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERaU2rYDFkyBCEhIRoVcDKlStRpkwZmJmZoVatWrhw4cJ713/16hWGDh0KW1tbmJqaokKFCvj999+1qoGIiIiIiLSjVbDYsmULwsPDP3r7nTt3YvTo0ZgxYwYuX74MV1dXtGjRAs+ePUtz/bi4ODRr1gwPHjzA7t274e/vj3Xr1qFkyZIfXQMREREREWkvQxPkvU1EtPrlS5YswYABA9C3b18AwOrVq3Ho0CF4eXlh4sSJqdb38vJCaGgozp49C2NjYwBAmTJltKqBiIiIiIi0p7M+FnFxcbh06RKaNm36phgDAzRt2hTnzp1Lc5sDBw7Aw8MDQ4cOhY2NDVxcXDBv3rz3zvYdGxuL8PBwjS8iIiIiIspcWgWL169fo2zZsh+1bUhICBITE2FjY6Ox3MbGBkFBQWluc+/ePezevRuJiYn4/fffMW3aNCxevBhz5sx55++ZP38+LC0tlS87O7uPqpeIiIiIiN4tV40KlZSUhGLFimHt2rWoXr06unbtiilTpmD16tXv3GbSpEkICwtTvh49epSNFRMRERER5Q1a9bHQhrW1NQwNDREcHKyxPDg4GMWLF09zG1tbWxgbG8PQ0FBZ5uzsjKCgIMTFxcHExCTVNqampjA1Nc3c4omIiIiISIPO7liYmJigevXq8Pb2VpYlJSXB29sbHh4eaW5Tt25d3LlzB0lJScqyW7duwdbWNs1QQURERERE2UOnTaFGjx6NdevWYfPmzfDz88PgwYMRGRmpjBLVu3dvTJo0SVl/8ODBCA0NxYgRI3Dr1i0cOnQI8+bNw9ChQ3X1EoiIiIiICDpsCgUAXbt2xfPnzzF9+nQEBQWhatWqOHz4sNKhOyAgAAYGb7KPnZ0d/vzzT4waNQpVqlRByZIlMWLECEyYMEFXL4GIiIiIiJCJweLu3bsYMGAAjh07lqHthg0bhmHDhqX52PHjx1Mt8/DwwPnz5z+mRCIiIiIiyiKZFiwiIiJw4sSJzHo6yuMCAwMRGBiY4e1sbW1ha2ubBRURERER0fukO1gsX778vY8/efJE62KI1NasWYNZs2ZleLsZM2Zg5syZmV8QEREREb1XuoPFyJEj3zv6UlxcXKYVRTRo0CC0bdtWY1l0dDTq1asHADh9+jTMzc1Tbce7FURERES6ke5gUbp0aXz77bfo0qVLmo/7+PigevXqmVYY5W1pNWmKjIxUvq9atSry58+f3WURERER0Tuke7jZ6tWr49KlS+98XKVSQUQypSgiIiIiIspd0n3HYvbs2YiKinrn45UqVcL9+/czpSgiIiIiIspd0h0sKlWq9N7HjY2NUbp0aa0LIiIiIiKi3EenM28TEREREZF+SFewaNmyZbompXv9+jW+/fZbrFy5UuvCiIiIiIgo90hXU6jOnTujU6dOsLS0xOeffw53d3eUKFECZmZmePnyJW7cuIHTp0/j999/R5s2bbBw4cKsrpuIiIiIiHKQdAULT09P9OrVC7t27cLOnTuxdu1ahIWFAUgeDapSpUpo0aIF/v33Xzg7O2dpwURERERElPOku/O2qakpevXqhV69egEAwsLCEB0dDSsrKxgbG2dZgURERERElPOlO1i8zdLSEpaWlplZCxERERER5VIfHSyIMktAQABCQkI+uF50dLTyvY+PD8zNzdP1/NbW1rC3t//o+oiIiIjowxgsSKcCAgLg7OSEqJiYDG1Xr169dK+bz8wMfv7+DBdEREREWYjBgnQqJCQEUTExWO5aBo4F3n8HIiYxCR3P+wMA9tZ2gpnhh0dLvhMRjeG+DxASEsJgQURERJSFMhQsEhMTcebMGVSpUgWFChXKopIoL3IsYI7Klvneu05UQqLy/ScW5shnZJjVZRERERFROmVo5m1DQ0M0b94cL1++zKp6iIiIiIgoF8pQsAAAFxcX3Lt3LytqISIiIiKiXCrDwWLOnDkYO3YsfvvtNwQGBiI8PFzji4iIiIiI8p4Md95u3bo1AKBt27ZQqVTKchGBSqVCYmLiuzYlIiIiIiI9leFg8ffff2dFHURERERElItlOFg0aNAgK+ogIiIiIqJc7KPmsXj16hU2bNgAPz8/AMAnn3yCfv36wdLSMlOLIyIiIiKi3CHDnbcvXryIcuXKYenSpQgNDUVoaCiWLFmCcuXK4fLly1lRIxERERER5XAZvmMxatQotG3bFuvWrYORUfLmCQkJ6N+/P0aOHImTJ09mepFERERERJSzZThYXLx4USNUAICRkRHGjx8Pd3f3TC2O8q7gmHg8i43XWBaTYsSx6+FRMDNMPfN2MVNj2JgZZ3l9RERERKQpw8HCwsICAQEBqFixosbyR48eoWDBgplWGOVtWwOeY+mdwHc+3vH8rTSXj3K0xegKJbKqLCIiIiJ6hwwHi65du8LT0xOLFi1CnTp1AABnzpzBuHHj0L1790wvkPKmnvZF0cymUIa3K2bKuxVEREREupDhYLFo0SKoVCr07t0bCQkJAABjY2MMHjwYCxYsyPQCKW+yMWOTJiIiIqLcJEPBIjExEefPn8fMmTMxf/583L17FwBQrlw55MuXL0sKJCIiIiKinC9DwcLQ0BDNmzeHn58fHBwcULly5ayqi4iIiIiIcpEMz2Ph4uKCe/fuZUUtRERERESUS2U4WMyZMwdjx47Fb7/9hsDAQISHh2t8ERERERFR3pPhztutW7cGALRt2xYqlUpZLiJQqVRITDHXABERERER5Q0ZDhZ///13VtRBRERERES5WIaCRXx8PGbPno3Vq1ejfPnyWVUTERERERHlMhnqY2FsbIwrV65kVS1ERERERJRLZbjzdq9evbBhw4asqIWIiIiIiHKpDPexSEhIgJeXF44ePYrq1asjf/78Go8vWbIk04ojIiIiIqLcIcPB4tq1a6hWrRoA4NatWxqPpRwlioiIiIiI8g6OCkVERERERFrLcB+L93n27FlmPh0REREREeUS6Q4W+fLlw/Pnz5Wf27Rpg8DAQOXn4OBg2NraZm51RERERESUK6Q7WMTExEBElJ9PnjyJ6OhojXVSPk5ERERERHlHpjaFYudtIiIiIqK8KVODBRERERER5U3pDhYqlUrjjsTbPxMRERERUd6V7uFmRQQVKlRQwkRERATc3NxgYGCgPE5ERERERHlTuoPFxo0bs7IOIiIiIiLKxdIdLPr06ZOVdRARERERUS7GzttERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpL96hQaomJidi0aRO8vb3x7NkzJCUlaTx+7NixTCuOiIiIiIhyhwwHixEjRmDTpk1o06YNXFxcOPs2ERERERFlPFjs2LEDv/zyC1q3bp0V9RARERERUS6U4T4WJiYmcHR0zNQiVq5ciTJlysDMzAy1atXChQsX0rXdjh07oFKp0L59+0yth4iIiIiIMibDwWLMmDH4/vvvISKZUsDOnTsxevRozJgxA5cvX4arqytatGiBZ8+evXe7Bw8eYOzYsfj0008zpQ4iIiIiIvp4GW4Kdfr0afz999/4448/8Mknn8DY2Fjj8b1792bo+ZYsWYIBAwagb9++AIDVq1fj0KFD8PLywsSJE9PcJjExET179sSsWbNw6tQpvHr1KqMvg4iIiIiIMlGGg0WhQoXQoUOHTPnlcXFxuHTpEiZNmqQsMzAwQNOmTXHu3Ll3bjd79mwUK1YMnp6eOHXq1Ht/R2xsLGJjY5Wfw8PDtS+ciIiIiIg0ZDhYbNy4MdN+eUhICBITE2FjY6Ox3MbGBjdv3kxzm9OnT2PDhg3w8fFJ1++YP38+Zs2apW2pRERERET0HrlqgrzXr1/jiy++wLp162BtbZ2ubSZNmoSwsDDl69GjR1lcJRERERFR3pPhOxYAsHv3bvzyyy8ICAhAXFycxmOXL19O9/NYW1vD0NAQwcHBGsuDg4NRvHjxVOvfvXsXDx48wOeff64sU0/QZ2RkBH9/f5QrV05jG1NTU5iamqa7JiIiIiIiyrgM37FYvnw5+vbtCxsbG/z333+oWbMmrKyscO/ePbRq1SpDz2ViYoLq1avD29tbWZaUlARvb294eHikWr9ixYq4evUqfHx8lK+2bduiUaNG8PHxgZ2dXUZfDhERERERZYIM37H48ccfsXbtWnTv3h2bNm3C+PHjUbZsWUyfPh2hoaEZLmD06NHo06cP3N3dUbNmTSxbtgyRkZHKKFG9e/dGyZIlMX/+fJiZmcHFxUVj+0KFCgFAquVEpJ8CAwMRGBiY4e1sbW1ha2ubBRURERER8BHBIiAgAHXq1AEAmJub4/Xr1wCAL774ArVr18aKFSsy9Hxdu3bF8+fPMX36dAQFBaFq1ao4fPiw0qE7ICAABga5qisIEWWhNWvWfNSADDNmzMDMmTMzvyAiIiIC8BHBonjx4ggNDUXp0qVhb2+P8+fPw9XVFffv3//oSfOGDRuGYcOGpfnY8ePH37vtpk2bPup3ElHuNGjQILRt21ZjWXR0NOrVqwcgeeQ4c3PzVNvxbgUREVHWynCwaNy4MQ4cOAA3Nzf07dsXo0aNwu7du3Hx4kV07NgxK2okIlKk1aQpMjJS+b5q1arInz9/dpdFRESU52U4WKxdu1YZiWno0KGwsrLC2bNn0bZtWwwaNCjTCyQiIiIiopwvw8HCwMBAo89Dt27d0K1bt0wtioiIiIiIcpeP6hV96tQp9OrVCx4eHnjy5AkA4Oeff8bp06cztTgiIiIiIsodMhws9uzZgxYtWsDc3Bz//fcfYmNjAQBhYWGYN29ephdIREREREQ5X4aDxZw5c7B69WqsW7cOxsbGyvK6detmaNZtIiIiIiLSHxkOFv7+/qhfv36q5ZaWlnj16lVm1ERERERERLlMhoNF8eLFcefOnVTLT58+jbJly2ZKUURERERElLtkOFgMGDAAI0aMwD///AOVSoWnT59i69atGDt2LAYPHpwVNRIRERERUQ6X4eFmJ06ciKSkJDRp0gRRUVGoX78+TE1NMXbsWHz99ddZUSMREREREeVwGQ4WKpUKU6ZMwbhx43Dnzh1ERESgUqVKKFCgQFbUR0REREREuUCGg4WaiYkJKlWqlJm1EBERERFRLpXuYNGvX790refl5fXRxRARERERUe6U7mCxadMmlC5dGm5ubhCRrKyJiAgAEBAQgJCQkA+uFx0drXzv4+MDc3PzdD2/tbU17O3tP7o+IiIieiPdwWLw4MHYvn077t+/j759+6JXr14oUqRIVtZGRHlYQEAAnJ2cEBUTk6Ht6tWrl+5185mZwc/fn+GCiIgoE6Q7WKxcuRJLlizB3r174eXlhUmTJqFNmzbw9PRE8+bNoVKpsrJOIspjQkJCEBUTg+WuZeBY4P13IGISk9DxvD8AYG9tJ5gZfngk7TsR0Rju+wAhISEMFkRERJkgQ523TU1N0b17d3Tv3h0PHz7Epk2bMGTIECQkJOD69escGYqIMp1jAXNUtsz33nWiEhKV7z+xMEc+I8OsLouIiIjekuEJ8pQNDQygUqkgIkhMTPzwBkREREREpLcyFCxiY2Oxfft2NGvWDBUqVMDVq1exYsUKBAQE8G4FEREREVEelu6mUEOGDMGOHTtgZ2eHfv36Yfv27bC2ts7K2oiIiIiIKJdId7BYvXo17O3tUbZsWZw4cQInTpxIc729e/dmWnFERERERJQ7pDtY9O7dmyM/ERERERFRmjI0QR4REREREVFaPnpUKCIiIiIiIjUGCyIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1tI9jwURUU4QHBOPZ7HxGstiEhOV76+HR8HM0DDVdsVMjWFjZpzl9REREeVVDBZElKtsDXiOpXcC3/l4x/O30lw+ytEWoyuUyKqyiIiI8jwGCyLKVXraF0Uzm0IZ3q6YKe9WEBERZSUGCyLKVWzM2KSJiIgoJ2LnbSIiIiIi0hqDBRERERERaY3BgoiIiIiItMZgQUREREREWmOwICIiIiIirTFYEBERERGR1hgsiIiIiIhIawwWRERERESkNQYLIiIiIiLSGoMFERERERFpjcGCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0lqOCBYrV65EmTJlYGZmhlq1auHChQvvXHfdunX49NNPUbhwYRQuXBhNmzZ97/pERERERJT1dB4sdu7cidGjR2PGjBm4fPkyXF1d0aJFCzx79izN9Y8fP47u3bvj77//xrlz52BnZ4fmzZvjyZMn2Vw5ERERERGpGem6gCVLlmDAgAHo27cvAGD16tU4dOgQvLy8MHHixFTrb926VePn9evXY8+ePfD29kbv3r2zpWYiIiLKHQIDAxEYGJjh7WxtbWFra5sFFRHpL50Gi7i4OFy6dAmTJk1SlhkYGKBp06Y4d+5cup4jKioK8fHxKFKkSJqPx8bGIjY2Vvk5PDxcu6KJiIgo11izZg1mzZqV4e1mzJiBmTNnZn5BRHpMp8EiJCQEiYmJsLGx0VhuY2ODmzdvpus5JkyYgBIlSqBp06ZpPj5//vyPOqAQERFR7jdo0CC0bdtWY1l0dDTq1asHADh9+jTMzc1Tbce7FUQZp/OmUNpYsGABduzYgePHj8PMzCzNdSZNmoTRo0crP4eHh8POzi67SiQiIiIdSqtJU2RkpPJ91apVkT9//uwui0gv6TRYWFtbw9DQEMHBwRrLg4ODUbx48fduu2jRIixYsABHjx5FlSpV3rmeqakpTE1NM6Ve0h9sc0tERESUuXQaLExMTFC9enV4e3ujffv2AICkpCR4e3tj2LBh79zuu+++w9y5c/Hnn3/C3d09m6olfcI2t0RERESZS+dNoUaPHo0+ffrA3d0dNWvWxLJlyxAZGamMEtW7d2+ULFkS8+fPBwB8++23mD59OrZt24YyZcogKCgIAFCgQAEUKFBAZ6+Dche2uSUi0j8BAQEICQn54HrR0dHK9z4+Pmke79NibW0Ne3v7j66PSN/pPFh07doVz58/x/Tp0xEUFISqVavi8OHDSofugIAAGBi8mW5j1apViIuLw//+9z+N5+GVZMoItrklItIvAQEBcHZyQlRMTIa2U19QSo98Zmbw8/dnuCB6B50HCwAYNmzYO5s+HT9+XOPnBw8eZH1BRERElKuEhIQgKiYGy13LwLHA++9AxCQmoeN5fwDA3tpOMDP88HzBdyKiMdz3AUJCQhgsiN4hRwQLIiLKOA5CQJSaYwFzVLbM9951ohISle8/sTBHPiPDrC6LKE9gsKA8wc/P74PrfEybW7a3JV3iIARERJSTMFiQXnsWGw+oDNCrV68MbZfeNrdm5vngf9OP4YJ0goMQEBFRTsJgQXotPD4BkCSU7jQJZkXff/KfFB+L2xtGAgDKey6DgfH75z+JeR6Ah3vms70t6QwHISCinITNM4nBgvIEs6L2yFeiwnvXSYx70xTK3NYRhibpG36QiIhyruCY+OS71ynEJL7pY3E9PApmhqn7WBQzNYaNmXGW16dP2DyTGCyIiIhIb20NeI6ld959Fb3j+VtpLh/laIvRFUpkVVl6ic0zicGCiIiI9FZP+6JoZlMow9sVM+Xdioxi80xisKA8Kf71C8S/fqGxLDE+Vvk+KvAODNPoY2Fc0ArGBa2yvD6it3FGYaKPY2PGJk1E2YXBgvKkkH9/Q9Dxn975+J3/78T9tuINe8O2cZ8sqooobZxRmIhyGl7soLQwWFCeZF3jM1hW9MjwdrxbQbrAGYWJKCcJCAiAU0VnxERHZWi7jFzs4HDuuRODBeVJbNJEuVF2zyjMoSOJKC0hISGIiY7KkqHcAQ7nnpsxWBARUZo4dCQRvQ+Hcqe3MVgQEVGaOHQkERFlBIMFERGliUNHEhFRRjBYEBER6Rn2jyFd4FDuxGBBRJRLBcfE41lsvMaymMQ3nbevh0fBzDB15+1ipmmP6+/n5/fB38mhI3MH9o8hXeBQ7sRgQUSUS20NeI6ld959Vbrj+VtpLh/laIvRFUooPz+LjQdUBujVq1eGfj+Hjsy52D+GdIFDuRODBRFRLtXTviia2RTK8HbFTDXvVoTHJwCSxKEj9Qj7x5AusEkTMVgQEeVSNmZpN2n6WBw6kojyEvZFynwMFkRERESk1wICAhASEqKxbM2aNVi7dm2Gn2vgwIEYNGiQxjL2I0vGYEFERETpxqu8lNsEBATA2ckJUTExmfJ8a9euTRVI8pmZwc/fP8+HCwYLIiJKE4eOpLRwxCnKbUJCQhAVE4PlrmXgWOBN883QuHiExiVorBubJBh39SEAYGHl0jA1UKV6viImRihi8qYZ6p2IaAz3fcB+ZGCwICKid+DQkZQWjjiVu+XlO06OBcxR2TKf8vOSW0/fO7KeOmC87e2R9egNBgsiIkoTh47MHdJqO56WzJqDhCNO5W684/RGZo2sR28wWBARUZrYpCnn+9i24xmZg4Rtx/UL7zi9kdkj670tL94dYrAgIiLKpd7VdjwtMYlJ6HjeHwCwt7YTzAwNPvj86rbjp06dgrOz8zvX44zsuQfvOGUdPz8/jZ8za9Sp3PQ+YbAgIiLK5d5uO56WqIRE5ftPLMyRz8jwg8/7MbOyc0b2nCOrmsm9fQKd133M++R93h51Kje9TxgsiIiIKE3pnZWdM7LnPNnRTI6Svet9EvLvb3hx6VCGn8+qehtY1/gMQO57nzBY5BF5sZ0fERFljg/Nys4Z2XOerGwm9/ezV1h4O+PnFPru7feJbeM+SkDIiNzcv43BIo/gKBBERER5z9vN5IJj4pOb7miQd3z/RjHTNx2d70REp7kOacrNAeFjMVjkERwFgoj0He/MZg9OnJi7bQ14/t65Gzqev5Xmcs7dQOnBYKHHMqNzVVof1LlpdAIiyjt4ZzZ7cOLE3I1zN1BWYrDQQxzFg4j0XVqj3Xh4eGDLli0ay2JjY+Hp6QkA2LBhA0xNU19Jt7a2xuXLlzV+zu3Ht7Sau8QkvhkV6np4FMwMU48KlbK5y7tw4sTcLavnbqC8jcFCD3EUDyLSZx872o06YHyIPkwIl5XNXdikiYjehcFCj6UcnSCtNrEf7qrFDxAiynneNdpNaFw8QuMSNNaNTRKMu/oQALCwcmmYGqhSPV8REyMUMXnTKXW474Ncf/GEzV2yD/v2EL3BYJFHsE0sEembt0e7WXLr6Xuv0qsDxtv0sVMqm7tkH/btIXqDwSKPYJtYItJ3WXmVnlelSe3tgVEyq2+PelluvlNGxGCRR7BJExHpu6y8Ss+r0vQxA6MA6e/bA3BwFMr9GCyIiIjewqvS9Lb0DowCcHAUyrsYLIiIiP4fr0rTh6QcGAXg4ChEKTFYEBER/b93XZVOiAxDQlSYxrpJCXF49OtiAIBduzEwMDJJ9XxG+SxhlN9S+ZlXpfUPB0cheoPBgoiI6C1vX5UOPLb5vSeP6oDxNp486j8OjkL0BoMFERHRB/Dkkd6FTZqI3mCwICIi+gCePBIRfZiBrgsgIiIiIqLcj8GCiIiIiIi0xmBBRERERERaY7AgIiIiIiKtMVgQEREREZHWGCyIiIiIiEhrDBZERERERKQ1BgsiIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdaMdF0AEb1fYGAgAgMDM7ydra0tbG1ts6AiIiIiotQYLIhymICAAISEhCg/r1mzBmvXrs3w8wwcOBCDBg3SWGZtbQ17e3uNZQwuRERElBlyRLBYuXIlFi5ciKCgILi6uuKHH35AzZo137n+rl27MG3aNDx48ADly5fHt99+i9atW2djxURZIyAgAM5OToiKidH6udauXZsqkJiZmmL3nj0agSCrg0tuwpBFRET08XQeLHbu3InRo0dj9erVqFWrFpYtW4YWLVrA398fxYoVS7X+2bNn0b17d8yfPx+fffYZtm3bhvbt2+Py5ctwcXHRwSsgyjwhISGIionBctcycCxgDgDYEvAc2x6FfGDL1HrYWaOXfVHl5wuhrzHz5lN89tlnmVJrmsHFPB/8b/rlqnDh5+enfM+QRURE9PF0HiyWLFmCAQMGoG/fvgCA1atX49ChQ/Dy8sLEiRNTrf/999+jZcuWGDduHADgm2++wV9//YUVK1Zg9erV2Vo7UVZxLGCOypb5AACjy5fQCAjpVczUGDZmxsrPdyKiAUlC6U6TYFb0zQlvyL+/4cWlQxl+fqvqbWBd401IiXkegId75iMkJCRXnFA/i40HVAbo1auX1s+lLyGLiIhIGzoNFnFxcbh06RImTZqkLDMwMEDTpk1x7ty5NLc5d+4cRo8erbGsRYsW2L9/f5rrx8bGIjY2Vvk5LCwMABAeHq5l9R8vIiICAHA1LBJRCYmZ/vx3XkcDAKKe3kZiXHSmPndsyGMAya8hM/Yh94WmzNwfDxIS8SDyTZMq9b5Iio/V2BcWjjWQr6RThp/fyNxC43mS4pPfZ7nlb+Ny6GtAklC0bheYWCYHt/Bb/+D1nYsZfq6Cju6wqFBL+Tku7Dmen/kFDx48QKFChbSuNTe/T4DcddzgvtCUm46huXlfALlrf3BfaMpN7xNtFCxYECqV6v0riQ49efJEAMjZs2c1lo8bN05q1qyZ5jbGxsaybds2jWUrV66UYsWKpbn+jBkzBAC/+MUvfvGLX/ziF7/4xa+P/AoLC/vgub3Om0JltUmTJmnc4UhKSkJoaCisrKw+nLpyqfDwcNjZ2eHRo0ewsLDQdTk6xX3xBveFJu6PN7gv3uC+0MT98Qb3xRvcF5ryyv4oWLDgB9fRabCwtraGoaEhgoODNZYHBwejePHiaW5TvHjxDK1vamoKU1NTjWWZ0TQhN7CwsNDrP/CM4L54g/tCE/fHG9wXb3BfaOL+eIP74g3uC03cHzqeedvExATVq1eHt7e3siwpKQne3t7w8PBIcxsPDw+N9QHgr7/+euf6RERERESU9XTeFGr06NHo06cP3N3dUbNmTSxbtgyRkZHKKFG9e/dGyZIlMX/+fADAiBEj0KBBAyxevBht2rTBjh07cPHixY8aIpKIiIiIiDKHzoNF165d8fz5c0yfPh1BQUGoWrUqDh8+DBsbGwDJE4YZGLy5sVKnTh1s27YNU6dOxeTJk1G+fHns37+fc1ikYGpqihkzZqRqApYXcV+8wX2hifvjDe6LN7gvNHF/vMF98Qb3hSbujzdUIiK6LoKIiIiIiHI3nfaxICIiIiIi/cBgQUREREREWmOwICIiIiIirTFYEOkBdpUiIiIiXWOwIMrl7t+/j127dgFgwCAiIiLd4ahQlKuJCFQqla7L0JkbN26gWrVqcHBwgJ+fn67LyVFiY2M59B/RO+T1YyfRuyQlJWlMcwAAz549Q7FixXRUUe7COxaU61y5cgXTp08HgDz9wejj44MaNWrA0dERxsbGiI2N1XVJOhUQEIC9e/cCAHbu3IkpU6YgJiZGx1XlDHn9+lFef/0pxcXFAUg+ecrL3v6byOv7g94wMDDA7du38eOPPwIAdu3ahQEDBiAoKEjHleUODBa5VF79oPT19UXt2rV1XYbO+fr6ok6dOpg2bRq2b9+Ou3fvIiAgQNdl6UxMTAxmz56N+fPnY+zYsejevTs++eQTmJmZ6bo0nXj7JEkdwPPicSMpKUl5/T4+Pnj27JmOK9KdmzdvYuDAgWjatClmzpwJf39/XZekE+q/iYiICERGRiIiIiLVFeq8KC8eH9KSmJiIX3/9FcOGDYOnpye6du2Kjh07onjx4rouLVfgOymHS3mCsGzZMsyYMQNA8olCXjsIqE+mR40ahdmzZ+u6HJ3x8fFB3bp1MXLkSEycOBEiAkNDwzx9dd7MzAwTJkyAmZkZlixZgiFDhqBv374A8t6VyJS38Tdu3Ijx48ejd+/eOHr0aJ47ZqTcF1OnTsWIESNw4sSJPPle8fX1hYeHBwwNDWFra4s//vgDO3bsAJC3TijVfxNXr15FkyZNUK9ePTg6OmLBggW4evWqrsvTGXXTuNOnT2P27NkYPnw49uzZo+uydMLQ0BDDhg3D//73P2zcuBE9evRAnz59AOS9z5OPwWCRg6X8UPznn3/g6+uLb775Rrk9l5fCxdWrV1GnTh2MHTsWc+fOVZZv2rRJ6bicF9y5cwd169bF119/jXnz5gEAypQpAysrKzx58gRA3j3w2djYIH/+/HB3d8f169exfft2AMm3tfPSPlEfM8aPH4/p06fjxYsXKFy4MJo3b47ly5fnqSZzKUPF2rVrMWnSJDRv3jzP3cm6cuUK6tati6FDh2LDhg34+eefUbduXfj5+SEmJgYhISG6LjHbGBgY4OHDh2jUqBFq1qyJ6dOnY+jQodi4cSOmTZuGv/76S9cl6oRKpcLevXvRrl07+Pr6IjExEZ07d8aYMWMQFham6/KynaGhIYoUKYLPPvsMBw8exJIlSwAk//0kJibquLocTijHmzBhgtSqVUu6d+8uDg4OYmpqKgsWLFAeT0pK0mF1WS8kJEQqVaokVapU0Vg+d+5cKVSokJw/f15HlWW/3377TdasWaOxLDo6WkqVKiU//vijiGj+PZw4cUKeP3+erTVmp7f/9uPj4+X69evSpUsXqVu3rmzbtk3j8devX2dneTrz+++/i52dnVy8eFFERM6cOSMqlUq2bt2qrKPvxw21y5cvS/ny5eXUqVMiIvLq1Svx8/OT9evXK8cOfd4XT58+FZVKJX379tVYPnToUHF2dhYnJyepUKGCeHl56ajC7KP+f96wYYPUrl1b47FDhw5JixYtpFmzZnLixAldlKdTt2/fFgcHB1m1apWIiERERIi5ubmMHz9ex5Vln7SOA5GRkTJz5kwpUKCALF68WOOxe/fuZVdpuQqDRQ63Z88eKViwoJw+fVoSEhLk7t27MmXKFClYsKB89913ynr6/MEYFBQkY8eOlcqVK8usWbNERGThwoViZWUlf/75Z5rbJCYmZmeJOpOQkCBJSUlSvXp1mT9/vsZjEydOFEdHRwkMDNRRdVlL/Td//vx5WbduncyYMUP8/f1FROTGjRvStWtXqV+/vnIyPX36dBk3bpzEx8frrObs8tNPP0mHDh1ERGTnzp1SoEAB5YTh5cuX8uDBA12Wl6Xefu/7+/tLpUqV5ODBg3Lx4kUZPHiwVKhQQSpUqCBmZmZy7NgxHVWaPcLCwqROnTpSsWJFuXr1qoiIfPvtt2Jubi5r166VNWvWSN++fUWlUr3zeKpvNm3aJKVLl5bHjx9rLD969Kg0atRI+vXrJyEhITqqTjf+++8/qVu3roiI3L17V0qWLCkDBw5UHlcfW/WV+vPk77//lnnz5skXX3whf/75pwQFBUlsbKzMmjVLLCwsZNGiRSIiMnPmTOnYsWOeuViVEQwWOdzChQvF3d1dY9mTJ09k6NCholKplKvU+u7p06cyY8YMqVSpkjRo0ECsra3l77//TrXevn37sr227JLyhOntk6d27dpJv379lJ+nT58u5ubmcuHChWyrTxd2794tRYsWlebNm0vDhg01Avfly5fliy++EAcHB6lbt66YmZnp5f5IK0SvXbtWPDw8ZOfOnWJhYaFxnPjpp5+kc+fO8vLly2ysMnuk3BcXLlyQhw8fyrNnz6RJkyZSo0YNMTExkSFDhsjevXvl0aNHUrNmTVm5cqUOK846sbGxyvevX7+WRo0aSYUKFWTEiBFStGhRjRBx48YNsbGxkenTp+ui1Gz3119/iZWVlfz6668iknyBRm3Hjh1ibm4uZ86c0VV5OnH69GkpU6aMnDhxQhwcHGTgwIHKfjlz5oy0bNlS76/Qqy/kDhgwQDp06CCurq7SqVMniYiIkODgYFmwYIGoVCqpXr26FChQQLkjTJoYLHK43bt3S8mSJcXHx0djube3txgbG0u+fPlS3Z7TJ0lJScqVhCdPnsiMGTOkRIkS0qNHD2Ud9cFv+vTpolKp5P79+7ooNcuoX390dLTGyYLImxOpL774Qlq1aiUiItOmTRMzMzO9P+hduXJFSpQoIRs3bhSR5BMplUolc+bMUda5deuWbN68WSZMmCA3b97UUaVZJ+WJ9NGjR8XX11dERG7evCn169cXY2NjjTubkZGR0rZtW+nXr5/e3eVM+XomTpwoNWvWlPXr14tI8v74/fff5cSJE8o+S0hIEHd3d9mwYYNO6s1Kt2/flqFDh8rRo0eVO3SvX7+WNm3aiEqlktWrV4vIm7+f8PBwqVGjhnJXS1+oX198fLzExMRoPNavXz8pUqSIXLlyRUQ0w0WVKlVk6tSp2VdoNlO/V65evSoXL16UuLg4iYiIkA4dOkj+/PmlS5cuGutPnDhRGjRoIM+ePdNFudni9u3b4uTkJOvWrROR5CaTZmZmMnnyZGWdhIQEOX36tCxdulTu3Lmjq1JzPAaLHOJdTXdu3bol1apVk+HDh8utW7eU5VeuXJFevXrJ7NmzpXLlyvLff/9lU6VZ7+nTp3LlypVUHwQiIoGBgTJjxgxxdnaWGTNmKMunTp0q+fLl07uTafUHwB9//CFt2rSROnXqSLdu3eTx48caJ1Lz5s2Tjh07yrRp08TU1FTv9kNavL29pXHjxiIi4ufnJ/b29tK/f3/lcX1tAqb29ol0uXLlZPv27RIeHi4iyc1dnJ2dpX///nLhwgX5448/pGXLllKlShXlZFPfwoWIyJw5c8Ta2lqOHTsmr169SvV4dHS0PHz4UFq1aiXVq1fXOKHUB76+vmJvby//+9//ZNOmTRqPvXr1Spo3by5ly5bVuFg1depUsbe316uLMurP1OvXr0v37t3Fw8NDvvrqK2WfJCQkSPPmzaVYsWIa/fTi4uKkTp06ensnS/2e37t3r5QoUUKWLl2qNAnbtGmTfPLJJ9KtWze5cOGCnDt3TsaOHSuWlpZKAMvt1H8Xb1+k8/HxkcqVK0t8fLzcunVL7OzsZMCAAcrjFy5cYLOndGKwyAFShoqVK1fK8OHDpWXLlrJ7926JjIyU3bt3S4UKFaRv376ye/duuXLlirRs2VL69u0r//77rxQsWFBvmgBduXJFHB0dZebMmXL37l1l+apVq5Tb1g8fPpQZM2ZIxYoV5dtvv5V58+bp9RX6/fv3S8GCBWXUqFGya9cuKVeunDRp0kTOnDmj/O38/PPPolKpJH/+/Hq5H27evCnLli2TyMhIZZmXl5e4urrKs2fPpEyZMjJw4EBlfxw6dEgGDx6c5omlvpk9e7bY2NjI8ePHJTo6WuOxZcuWSb169cTIyEhq1aoln3/+ucTFxYmI6N0JdVJSkjx9+lRq164tW7ZsSfWYSPKxdsmSJdK8eXOpW7eu3u2LW7duSfHixWXChAmp/hbUIiIipH79+lKmTBm5e/euzJo1S8zMzOTSpUvZXG3W8/f3l0KFCknv3r1l8uTJ0qhRI/nkk0+UE8bw8HBp166dFChQQKZPny4//PCDjBkzRgoVKqRxIU/f/PHHH1KgQAH58ccfUx0jN27cKI0bNxZDQ0OpUqWK1KhRI1WLidzu/v37MnLkSI2/+RMnToi7u7s8ePBAypQpI/3791c+T86fPy9Dhw7V67+JzMRgkYOMHz9eihYtKt988430799fHBwcxNPTU0SS20V//vnnYmpqKuXLlxc3NzeJi4uTmJgYqVKlivz+++86rl579+7dExsbG5k0aVKqq829e/cWKysrpV34kydPZPbs2WJpaSkGBgZ6eTItknyiULlyZVm+fLmIJF9xtLOzkwIFCoizs7MSLk6fPi0uLi7i5+en44qzhpeXl6hUKvn2228lKipKRJJHC6tRo4YYGRkp7xP1CeS4ceOkRYsWEhoaqrOas0NQUJDUqFFDNm/eLCLJd/vOnj0ro0aNkrVr1yrr+fr6yosXL5T9o68d2IOCgqRUqVKye/duEdG8IxMTEyOvXr2SgIAA+emnn5QwoU/7YsyYMdKlSxeNoBQaGirXrl2TI0eOyPXr10VEJCoqSho3biwqlUry5cunl6FCJDl0t2/fXvk5NDRUVq1aJfb29tKrVy9l+TfffCONGjWSSpUqSZMmTfSqBcDbYmJipGPHjjJ8+HARSQ6a/v7+8s0338jq1auV4+ulS5fk6dOnenkM3bdvnxQrVkwGDRqkNB8VEfnkk09EpVLJ119/rbH+uHHjpF69enrdFCwzMVjkEMeOHZNy5copJ8je3t5iZGQkP//8s7JOTEyM+Pn5yfXr15UPzDFjxkjZsmXlyZMnOqk7My1btkzc3NzSfCwiIkLatGkjO3fuVJY9fvxYFixYoNejVfj4+MjcuXMlNjZWnjx5ImXLlpVhw4ZJWFiYODg4SKNGjZRhNPXxAyCl1atXi0qlkvnz50tUVJTExcXJkiVLxNnZWQYPHizR0dFy9epVmTRpkhQqVEgZAUefPXv2TGrVqiXffvut7N27V3r06CEeHh5SrVo1KV++vNI+OOUJtj6PmBYYGCi2trYyd+5cEdG8E3HhwgWZN2+exl0vfblTIZL8f/z555/LyJEjlWX79u2Tnj17ioWFhZiZmUnVqlVl+/btIpJ8kaJfv356dzU6pX79+qUaVjYiIkI2bdokjo6OMmnSJGV5WFiYREVF6X1zl4SEBOncubN89dVXcuHCBRkyZIg0a9ZM7OzsxM3NTbp27ZqqmZA+eLvZ565du6RixYrSv39/uXz5sogkd1J3cnKSJk2ayPXr18Xb21vGjh0rFhYWetMULDswWOiI+ha82oEDB5QD4I4dO6RgwYLKSC7h4eFy4sQJ5UqCSPKQaD169JCiRYsqb4rcbsOGDWJlZSVeXl4SHBwsN2/eFF9fX7l8+bIcPnxY6tevL6NHj5bbt2/LhQsXJD4+Xq9PkkSSPwTUdyG+/PJL6datm3Ji1LZtW1GpVOLu7p5mfxR9kfLkb+XKlaJSqZQTx1evXsmcOXPEyclJ8uXLJy4uLuLi4qI374mU3vW3PmTIEKlSpYoYGRnJ+PHj5dixY5KUlCRdunSRcePGZXOV2eN97/tFixaJgYGBcgItknxRpkWLFtKjRw+97FeiNnbsWClUqJDs3btXRo4cKSVLlhRPT0/57bff5Nq1a9KyZUuNY4g+HT9T/r+q70Jt3bpV3N3d5dy5cxrrhoaGyuTJk6VOnToSEBAgIvq1Lz5k/vz54uzsLGZmZtKlSxfZsWOHxMTEyNSpU6Vdu3a6Li9Tve/iwbZt26RixYri6ekp165dE5Hki7qVK1eW4sWLi5OTk9SpU0ev72BlBSNdT9CXF504cQK3b99GvXr1ULFiRQBAZGQkjI2N8ddff2HgwIGYP38+Bg8eDADw9vbGX3/9hfLly8Pc3BwAUKlSJdja2uLEiRNwdnbW2WvR1oMHD1C4cGFYWlqievXq6NevH6ZMmYL58+cjf/78ePnyJUxNTWFubo47d+7g1KlTOHz4MEJCQnDt2jUULVpU1y8hU8j/z6CuUqnw+PFjqFQqREREwMnJCRUrVoSIICAgAE2aNEG+fPkAAOXKlcPFixdRpEgRmJqa6rL8THfr1i2sWLECXbp0ga2tLcqVKwcRwZAhQ5CYmIgRI0YgMTER06ZNw/jx4zFs2DAcP34cjo6OsLa2ho2Nja5fQqZKSkpSZpH+/fffERoaitjYWPTq1QsrV67E7du3ERsbCxcXF2WbZ8+eoXz58roqOcuk3Bfr1q2Dv78/QkJCMHDgQFStWhUDBw7E06dP0aNHD/z2228wMDBAQEAAXrx4gYMHD0KlUkFEoFKpdPxKtBcVFYWoqChcuXIFTk5O6N69O16/fo2RI0fCyMgIS5cuRZ06dVCyZEkAgIuLC44dOwZDQ0MAb2Ymz+3UfxOhoaEoUqQIjIyST23c3NwQGRmJdevWoWTJkrCzswMAFC5cGH369MH8+fNx5coV2NnZ6c2+SEn9d+7j44NHjx7h+fPn6Nq1KyZOnIgOHTrg2bNn+PTTT5X99/LlSxgaGiImJgampqZ68R4xNDTE9evXMWHCBHTt2hV2dnZo2LAhAKB79+4wMjLC1KlTISIYPXo0GjdujCtXruDixYuwsbFBgQIFULhwYd2+iNxGl6kmL9q0aZPY29vLiBEjNMbUj4yMFEdHR1GpVPLTTz8py6Ojo6V169bSq1cvjQ6IKf/NreLi4qRRo0ZSvHhxjWY8U6ZMUUZ8UrcLf/36tUyYMEHatm0rvr6+ylUmffDixQvl+3379omrq6u4uLiIjY2NjB8/Xhmxo3bt2tKgQQPZt2+fjBw5UqysrOTp06e6KjvLhIeHi7u7u6hUKrG3txc3Nzfp0KGDrFixQul7s3v3blGpVPLdd98poyDlBWPGjJFixYqJm5ub5MuXT9zd3WXHjh3KVblXr17JtWvXpFWrVsoIJ/pqwoQJUrRoURk6dKg0bNhQqlatKgsXLpSIiAgRSR6TvlOnTtK9e3cZP368si/0ZZ/4+/tL7969pWLFimJqaipFihSRHj16KHdz356nJCkpSQYMGCD9+vXTy6Yufn5+YmhoKGPGjNFYfuTIETE2NpYBAwZoNJt9+fKluLu76/0Eibt27ZIiRYpIlSpVpGDBglK+fHlZt26dRpOvu3fvyoQJE8TCwkLvmpDGxcVJw4YNRaVSiYuLixQsWFCaN28uX375pfj4+EhsbKz8+eefUrlyZRkyZIje9jfKTgwW2einn34Sc3Nz2bJliwQHB6d6/PDhw1KqVClp1aqVeHt7yy+//CLNmzcXFxcXvR0e8urVq1KjRg1xdnZWwsWkSZOkZs2ays/quSw8PT015ijQB8+fP5eSJUuKn5+fHDt2TPLlyyerV6+WoKAgWb9+vahUKo3RsBwdHaV8+fJSoUIFvWzuI5IcstevXy/Vq1eXypUry+nTp6Vz585SuXJlKVy4sDRu3Fi8vLyka9euUqBAAVm4cKHet4sWSW7WYWNjI//9959ERETIq1evpG3btlKvXj3Zv3+/iIhs2bJFPv30U2nRooXejXiU0vr166VMmTLKe+DIkSOiUqmkUqVKMnfuXGWkm7dPoPVlX/j6+oqtra0yfKqfn5+MGzdOHB0dxcnJSc6ePauxfnR0tEyePFlsbGzkxo0bOqo6a+3YsUMKFy4sNjY2SsdktUOHDknhwoWlQ4cOsm7dOrl69aqMHTtWbGxs9Ooi1dvnBz4+PlK0aFHZtGmThISESHx8vPTu3Vtq1Kgh69evl4SEBDl16pS0bNlSXF1d9ba/zfXr16Vq1ari5uYmhw8fllmzZkndunWlTJkyUrx4cZk3b540bNhQypcvL927d9fbQVCyC4NFNnnw4IHUrFkz1bjiMTEx4u/vL7dv3xaR5L4Tbm5uYm9vLzVq1JAuXbro5QlCyrsvfn5+UqdOHXFzc5OXL1/KqVOnpFq1ajJmzBh5+PChXL16VSZPnixWVlZ694a/d++elCpVSnx9fWXKlCnKB+Ldu3elfPnyGuNoiyRffbl//77edtRW/13ExcXJli1bpGTJkhonCT///LPMmDFDHBwcxMPDQ1QqVao7Xvrqm2++kYYNG0p8fLxyoeHly5dSv359adGihbLesWPHNCYG0zexsbGyYsUKWbhwoYgk35koVKiQrFy5Ujw9PcXKykrmzZsnISEhOq40a/j6+kq+fPlk0qRJqf5/d+7cKW5ublKzZk1lluTly5fLF198ISVLltTbixEiyfMyqE+YixYtqtGJXSS5837nzp3F1tZWnJycxMnJSW/2x7taL+zatUucnJwkKChIWScpKUl69uwpLi4uyrmFt7e3PHr0KNvqzU7qz5QbN26Ira2tdOnSRRndydfXV9auXSsdOnSQatWqiUqlkmLFiullS4DsxGCRTW7fvi2Ojo4at103btwoPXv2FDMzMylcuLBMmzZNeezevXsSGhqqd8NDphxbPWUH9jFjxohKpZIaNWrIq1evZMGCBeLs7CwqlUqcnZ31bhLAlKpXry6zZ8+WRo0ayZIlSyQmJkZKliwpAwcOVP7/v//+ezl69KiOK806wcHBysF+z549snv3bklISJAtW7ZI8eLFNYaGFEkeatbf31/mz5+vt1dg1dQXFCZMmCDu7u7KcvV76ezZs2Jubp5q1JLc3lRS7enTp/LixQuNu7z379+XoKAgefDggVSuXFmWLFkiIskXcIoUKSJlypQRLy8vXZWcZQICAsTa2lo6d+6sLEtKStL4fFi7dq1YWFjI2rVr5fHjxzJ9+nT56quv9Hr0PJHkEcE6duwoQUFB8v3334uVlZVMnTpVRowYoQzXHRERIU+fPpVbt25pNEHNzdTv8/v378vChQtl2rRpyjwu+/btk+LFi0tYWJiIiDIATFhYmJibmyvDMucV169fF1tbW2ncuLHGxajY2FiJjIyUHTt26NUkkbrCYJGFVqxYoXx/+fJlKVWqlCxfvlyuXr0qvXv3Fjc3N+nTp49s3rxZli5dKkZGRrJt27ZUz6MvJwiPHz+Wzp07p2rT+u2334qVlZWsX79eudr28uVLCQoKkj179oivr2+aTcdyO/X/a6dOnWTWrFmyY8cOadKkidjY2MiQIUM0xtnv2bOnjB8/PtVoYvogPDxcrKysZNy4cUrzL/UHY2RkpGzZskVKlCihES70JWin5V3v90uXLomBgYHMnz9fY7m3t7d88sknennFccuWLVKrVi0pW7asfPbZZ8rQympHjx4VJycn5U7m2bNnpVevXvLdd9/p1R1etfv370uNGjWkbdu2qfZFymYw9evXV8JHRESExoiC+iooKEjKlSsnvr6+Eh0dLT///LPky5dPVCqVPHz4UET077ihPlb4+PiIra2t1KtXTwoVKiQlSpSQSZMmSXh4uJQoUUKZ50ft4cOH4uzsLCdPntRF2VlO/V64ffu2nDp1Si5fvqzchbh+/bqULFlSmjVrppxX6Ms5Vk7BYJFFfvrpJ+nUqZPGieC4ceOkUKFCYmNjIxUrVpTffvtNuUr75MkTKV++vEYY0Td3794VDw8Pad26tZw+fVpEkoe9K1KkiPz1118ikny70tXVVapVq6Y3V5RSunv3rqxYsUL8/PyUtr0///yzNGvWTA4cOCCurq7i6uqqXF2MjY2VyZMni729vV7P+nn48GExMTERQ0ND+eGHHzQeSxku+vbtq6MKs0fKk8N9+/bJsmXLZO/evcrfw+LFi8XExESmTJki/v7+cuvWLWnTpo00atRI7z4cV69eLSYmJrJq1SpZunSpNGvWTIYMGaKxzoEDB8TR0VE2btwo/v7+8vnnn8tXX32lPK6P4eLWrVvSsmVLadGihUa4SPm307BhQ+nevbsuytMJ9Wtv166dcme7S5cuUqhQISlcuLBMmDBBh9VlDfVrvnLlipibm8v06dMlMjJSHj58KF999ZUUK1ZMTp06Jbt37xYLCwvp27evPHnyRB48eCAzZsyQUqVK6eXFCPV+2bNnj5QuXVqqVKkilSpVkqZNm2qcZ5QqVUpat26tlxctdY3BIotcv35duTpy+PBhZfnFixfTnCX68ePHUqNGDb2/Nan+UGzXrp0MGDBAihYtKn/++afGOn5+fuLg4CC1a9fWq5OluLg46dKli9jb24uDg4NYWFhIy5YtpVy5clKqVCkJDQ2VvXv3StWqVaVSpUrSrl07adWqlV7NVfK2pKQkSUxMlMDAQFGpVKJSqWTy5MmpDvaRkZGybds2MTEx0Thx1CcpTwzHjBkjhQsXlooVK4qzs7OUKFFCjh8/LiIi69atk8KFC0uJEiXE0dFRateurVzA0Jf3i5eXl5iYmMiBAweUZdOmTZOePXvKjRs35N9//xWR5PdUx44dxd7eXkqUKCHu7u7KvtC3gS5SShku1BdpRJL//x89eiStWrVS+vPp835424ABA2TlypXSp08fsbW1lRMnTih3QadMmaLr8jJdUFCQlC1bVurUqaOx/PLly5I/f375448/RERk//79UqJECbG1tRVHR0ext7fX69GPzpw5I5aWlsqF2i1btoiBgYEsWrRIWefGjRtiZmYmHTt21JvjZk7BYJEFfvjhB2nXrp28fPlSzpw5I8WLF9fogPr2VbTQ0FBp06aNfPrpp3p5he1t/v7+0qxZMzE3N9d4o6d8c/v7+yudD/WJemKqW7duya+//io//PCDdO7cWSpWrCgdOnSQiIgI8fX1lXnz5knPnj3lu+++09s7FeoTnqCgIOXfgwcPikqlktGjR6cKF0lJSbJr1y69bCue8n1/5swZ+fTTT+Wff/6RmJgYuXLligwYMEBMTEyUK9RPnjyRkydPytmzZ/Wuo/Z///2n/A2k1KRJE7GzsxM7OzsxNzeXUaNGiUjyXb1Tp07JsWPHNJoP6rt33bmYMGGCuLq66uXVaJE3x42rV6/KX3/9Jb/++qvyWhctWiQqlUocHR2VE+eXL1/Khg0b9Oq4oW7a9vDhQ+nSpYvUr19fo7XDv//+K/nz5xdvb29lWVhYmBw6dEj+/vtvZQhzfaP+25g/f75069ZNRJL7JZUpU0YGDx6srKf+zLl586befr7qEoNFJlu7dq2oVCrlzkNQUJDMmTNHPvnkExk7dqzGus+fP5ctW7ZIq1atpFq1ano5+tO73LlzR5o3by6tWrXS+FDU9ysH77p6uG/fPqldu7a0adNGnj9//t519YH6tR04cECaNm0q27ZtU/7+f/nlF1GpVDJu3DglXCxYsED27t2rs3qzytt3L7du3SpdunSRtm3bapwcBwcHS69evaROnTpK88mU9O2Y0aNHD7G2tpaDBw+KiEjnzp2lQoUK8u+//8rFixdl6dKlolKp0uyTpm/74n1ShovLly/Lt99+KwUKFNDbYUPV9uzZIzY2NtKgQQMpUaKENG3aVLZv3y7h4eHSvXv3VO8rffpcWbp0qQwfPlw5Pty9e1c8PT2lVq1a8vPPP0twcLCUKFFCRowYoWyTl94TIiKzZs2S8ePHS2BgYKqBUH7//Xf58ccflYt8lPkYLDLR6tWrxdjYOFVzpvj4eFmwYIFUqlRJI1xs3LhR6tSpIwMHDtS7yZvS41238/OSlJMd7tixQxo0aCC1atVSwoU+27t3r5iZmcnixYvlzp07Go9t27ZNjI2N5X//+59069ZNTE1N9a452IIFC8TFxUV+++03ZdmQIUPEyspK7O3tlT5G6g/Ebdu2ScmSJeXBgwc6qTc7pDwB6tWrlxQqVEhq164tVapU0bgCf//+fbGzs5O5c+fqoswc5datW/LZZ59JsWLFxNjYOM2mtvrkwoULYm1tLWvWrBGR5OGVVSqVLFiwQET0K0SkZdmyZRp98ESS7/B7enpK9erVJV++fDJs2DARedPUNC9Qd9AXSQ5fxYoVkxIlSsjQoUOV5QkJCdKvXz8ZMmSIxgiVlLkYLDKJt7e3xmRmap999pkcPHhQQkNDZf78+VKpUiUZN26c8vjt27eVE4e8dlVB5M2HYu3ateXcuXO6Lkcn1P//SUlJsnnzZmnVqpXGQVIf3bt3T5ydnZWTg4SEBImJiRFvb29l/oG9e/dKp06dpGPHjuLr66vLcrPE4cOHpUOHDtK4cWONvgRz5syRkiVLysiRIzXGU798+bI4ODjo5bDLKe/Opfx+4MCBolKpZNWqVRrLg4ODpUqVKqnmBcqrbt68KW3btpVr167pupQst3r1amXeljt37kjZsmVl4MCByuP6fuxUO3v2rPTv31+5g3nr1i3p37+/ODg4aAyAkRfOK27cuCFVqlSR7777TlnWqVMnMTMzk+vXr0t0dLRERETIxIkTpXjx4no3H1ZOw2CRCeLj42Xfvn3KkIhqnTp1EicnJ7l7966IJDd9WrBggVSuXFn69eun8Rx55apCWvz8/OR///tfnvlASEvKcBEeHq7jarKeegLAU6dOSUJCgnz77bdSp04dsbKyEltbW+XqdFRUlMTExOi42syVsi3033//Le3bt5eGDRsqs2eLiEycOFFcXV2lV69ecvHiRblw4YK0aNFCatasqXfHipSv5/nz56n61vTs2VMsLS1l165dyrqtWrWS2rVr54mTpvTSx6Go07JkyRIZPHiwREVFKc1c1H8Xhw4dku+//15ev36t4yqznvpcYvDgwcrFmNu3b4unp6fUrl1bfvzxRx1XmH3Ur7tGjRqydOlSEUnuW1GnTh0pXLiwVKlSRRo2bCglSpTQuzvfORGDhRbatGmjXCGKjY2VQ4cOiZOTk7Rq1Uo6deokVatWVZp4qE8cQ0JCZMqUKdKzZ0+9bkOfUepbunlZXvp7uHfvnjRv3lxq164ttra20rZtW/nmm2/Ez89PHB0dZfLkybouMUscOnRIihcvrjGu/LvCxZQpU6Rw4cJiYWEh7du3l/79+yshS9/ChUjy63V3d5dChQpJv379ZOPGjcpj3bt3l0KFCsmePXukVatWUr58+TzVJy2vUh8THzx4oPzt//bbb6JSqaRgwYIyduxYjffCwIEDpUePHhIREaGTerNTYmKifPfdd+Lh4SEDBw5UwoW/v78MHDhQKlasKOvWrdNxlVkjrc/Ku3fvyrBhw6Rq1aoaF2/WrVsnixYtkp9//lmvm5HmJAwWH+nevXsyduxYjRPiqKgoOXjwoDI1/NuT8qjfDK9evVK+18cTBKKU1H/r0dHRGncf/v77b1myZIksXrxYGaVDRKRFixayatWqbK8zO4SFhckPP/wgbm5uGnNypAwX+/btU5bPnj1bPvnkE5k2bZqyj/QlhKc89q1YsUJsbGxkw4YNsnz5cvnss8+kWrVqsnDhQmWd3r17i0qlEhcXFyVU5KU+aXmN+rjx66+/Sq1atWT58uXK//eUKVPExMREfvvtN4mPj5fg4GCZOHGiFC1aVG7cuKHLsrNEygnfbt++rfSxSExMlPnz56cKFzdu3JCvv/5ar2eR/ueff2THjh0ay+7cuSNff/21uLi45Kk7NjkNg0UmWLx4sTKyUWRkpPz666/i7OystAMVSfsDMC9doaa8Sf03/scff0ibNm2kTp060qVLFwkMDEy1bkREhEybNk2KFy8ut2/fzu5Ss5x6X7x+/VqWL18urq6u6QoX48aNk2rVqsn06dM1+lzoi4sXL8r48ePl559/VpbduXNHxo4dKzVq1FAmtRJJ7rjKUJF37Nu3T0xNTWX58uUax4RHjx5Jv379RKVSScWKFcXd3V0cHBz0upnL7t27xdbWVkqXLi3Ozs6yYcMGEUm+Y6cOF4MHD1b6XOhr07ikpCQJCwuT//3vf+Lm5ia7du3SeFw9EW/p0qVl8eLFOqoyb2Ow+AgpP9Du378vbdu2lcKFC8uFCxdE5M2dCycnJ2nevLmyLu9OUF60f/9+KViwoIwaNUp27dol5cqVk8aNG8uZM2eU98Tu3bulX79+etsG9u07lGFhYbJ8+XKpUqVKqnDRoUMHadKkiWzfvl1ZPm3aNHFwcJC5c+fqzXEkKSlJLl26pEyMuHLlSo3H7969K87OzmmeHDBU6L+nT5+Ku7u70hE5NjZWXr16Jfv375eAgAARETl69KisW7dODhw4oJfzdqiPG8HBwVK6dGlZv3697N+/XyZMmCAGBgZKk5+EhAT57rvvxNnZWUaOHCmJiYl6d+FS/XrUc3hcuHBBunfvLp9++qns3LlTY93Ro0dLmTJlpFmzZsroepR9GCy0MHv2bFm/fr3yB16sWDH5559/RORNuKhUqZK4ubnpuFIi3bh165ZUrlxZli9fLiLJzQDt7OykQIEC4uzsLGfPnhURkRMnTsjcuXP1crKit4OAuv13ZGSkrFy5UipXrqwRLo4fPy7169eXYcOGaZxAf/PNN7l+0siUgxSo/fTTT6JSqaRLly6p7sh06tRJunfvrncnSfRhgYGBUq5cOdm7d68kJCTIzJkzpU6dOmJpaalxIU/fHT16VBYsWKAxYeTLly9l1qxZolKpNMLF0qVL9bL5U8o5KPr06aM0Bbt48aIyQeAvv/yirD927FhZvHix0jSMsheDRQakPEHYu3evWFpaKsNgXr9+XTp37pwqXOzatUu6d++uN1cZiTLCx8dH5s6dK7GxsfLkyRMpW7asDBs2TMLCwsTBwUEaNmyoNCPUx6vQKd/3ixYtku7du4uTk5MsXLhQbty4IfHx8fLDDz+Iq6urxkhxly9f1rsZtVPui6ioKImLi1OWrVmzRlQqlUyaNEm5Gv369Wtxc3PTGJ6b8o6XL1/KF198IWXLlhUrKytp166dLF68WF6/fi01a9bUGGJWX0VHR8vQoUNFpVJJgwYNNB5ThwtjY2ONvkj6as+ePWJhYSHjx4+X69evK8v//fdf6d69u1SqVEm6du0q/fr1k8KFC7Ojtg4xWHyErVu3yrJly2TRokUay69duyadO3cWGxsbJVyk7KzKcEF5TUJCgjJm+JdffindunVTZjxt27atqFQqqVmzpt5PVjRx4kSxsbGRJUuWyJo1a6RQoULSsWNHiYiIkPDwcKVDd4cOHTS205djRsrXsXTpUmnfvr00b95cPD09lTs46nDh5uYmnp6e0q5dO3F1ddWbzur0buor0uHh4fLy5Utl+a1bt2Tr1q2yZs0aefXqlbK8U6dOMm/evOwuUyf8/PxkzJgxolKpZM+ePRqPvXz5UiZMmCCFChWS0NBQvTlevO3q1atiY2OTapQr9R3Op0+fypIlS6Ru3brSvn17vZz3KDdhsEiH2NhY5WTo9evXYmtrKyqVSmNGR7Xr169Lt27dRKVSaaRqIn2WlJSknBw8evRIHj9+LDdv3tR4vHHjxhozJY8aNUouXbqkl7fu1RITE+XChQtSoUIFZQLIf//9VwwNDWXz5s3KepGRkTJ//nzp3bu33p4ciIhMmDBBihYtKsuXL5f169dL0aJFpWbNmsoFmM2bN4tKpZK6detq9DHR146o9CZUHDx4UOrXry/Ozs7SpEkTOX36dKo5bJ4/fy5Tp04Va2trjeOLvlDvi5cvX2oErPv378tXX30lBQsWlL1792ps8+rVK3n+/Hl2lpntvL29pVatWhIdHS2hoaGybt06adq0qdjZ2clXX32ljJiXlJSk9MEg3WGw+IDdu3dLx44dxc3NTWbPni0iyROveHh4SPny5dM8uPn4+MjUqVM5vjrlCSk7x+3bt09cXV3FxcVFbGxsZPz48fL48WMREaldu7Y0aNBA9u3bJyNHjhQrKyu9HOXIx8dH9u/fL6dPnxaR5E6GNWrUEBGRnTt3SoECBZShEF+/fi1HjhwRkeRwoc/DUF+7dk0qV64sJ06cEJHkYUQtLCxSddr28vISlUolM2bMUC7okH47cOCAFCxYUKZMmSJnzpyR2rVrS/Xq1WXr1q3K3czffvtNevfuLfb29no5wIPavn37pHLlylKtWjX54osvlFD94MEDGTp0qFhYWGiMGqeP1MdB9d3K8+fPi0qlkhEjRoiLi4u0bdtWxo4dK0uWLJFixYrJ0aNHdVkuvYXB4j1Wr14tFhYWMmrUKBk5cqQYGBgo4+s/evRInJ2dxd3d/b2jUTBckD57/vy5lCxZUvz8/OTYsWOSL18+Wb16tQQFBcn69etFpVLJr7/+KiIiDx8+FEdHRylfvrxUqFBBL08OtmzZIlWrVpW2bdvKpEmTRETk1KlTUrJkSVm3bp1YWlpqnEgfPXpUOnTooDQXE9HfYaiPHz8u9vb2IpIcKgoUKCCrV68WkeSA5eXlpRwv161bJ8bGxjJ27FiNK7ekf+7fvy/u7u7KjMmvX7+W0qVLS4kSJaRcuXKyfft2SUxMlOvXr8uqVauUSWf1ka+vrxQvXlymTZsmCxYsEDs7O6lbt65yAebBgwcyfPhwUalUcvDgQR1XmzVSDlH+5ZdfKhemtm3bJq1bt5bx48drzFVSo0YNjYlFSfcYLN5B/cGW8spA9+7dZfny5coY/AEBAeLm5iY1atTQy6HuiD7k3r17UqpUKfH19ZUpU6bI8OHDRSR5qNDy5cvLgAEDNNaPi4uT+/fvS2hoqC7KzVKbN28Wc3Nz2b59e6qT4e7du4tKpZJZs2Ypy2JiYuSzzz6TTp066d0dipThSP39vXv3pGXLlvLdd99JgQIFZM2aNco6//zzj3Tu3FkuXbqkLPvhhx+kUKFCet/MI697+PChLF26VEJDQ+Xp06dSrlw5pZmxq6urVK1aVTZu3Cjx8fF6F7pTNiEVSe5PMXPmTOXn+/fvS/ny5cXDw0M577h7966MGzdOL5uCqe3evVssLS1l9OjRGheg3r6DOWnSJCldurQy4APlDAwWafj7779TnQSIJB/kKleuLAULFpQ6derIli1bJCAgQKpUqSIODg4SHByso4qJdKd69eoye/ZsadSokSxZskRiYmKkZMmSMnDgQOVD8/vvv9fr29XXrl2TTz75JFXnQvXrP3HihDRv3lwcHBxk8+bNsmzZMmnevLl88sknSlMHfQkXb78OdZvnsLAwqV+/vqhUKo2Tp6ioKGnVqpV07Ngx1ba8W6H/EhMTlX5Ww4YNk//9738SFhYmIiL9+vUTMzMzadCggbJMn6iPD8ePH5dFixbJZ599JoMGDdIIG/fv3xdHR0f59NNP5cmTJyKiPyPFiSR32E/pypUrUrRoUVm7dq3G8ufPnyuve/v27fLFF19IsWLF9PLOd25nAEqlZMmSqFevHi5duoSLFy8CADp16oTIyEhMnToVv/zyC8LCwjB37lyoVCocOHAAtWvXhpWVlY4rJ8o+SUlJAIAyZcpARDBo0CAcOnQIpUuXRrt27fDjjz9CpVIhISEBFy5cwJEjRxAfH6/jqrPGkydPEBUVhfr160NElOUqlQoAUL9+fcybNw+tW7fGpEmTsH//ftjZ2cHHxwfGxsZISEiAgUHuPxwnJSUpr2Px4sXo0aMH3NzcsGjRIrx8+RK//PILbG1tcfLkScyaNQvr1q1DmzZt8PjxY+zYsQMGBgZISkpS9qGlpaUuXw5losTERCQmJgIA7t27h/v37+P+/fswMDBAmTJlAABBQUGwsbFB/vz5AST////666/YunUrLCwsdFV6llGpVDh8+DAaNWqEffv24dy5c/jjjz/wzz//aBxfjx49iuvXr6Nv375ITEyEkZGRjivPHMuWLcO4ceOQkJCgvN779+/D0dERAwYMQGhoKDZv3oyWLVuiatWqmDFjBp4+fYr8+fMjKSkJx48fh5ubm45fBaWi42CTY926dUtatmwpbdq0kbp160q1atU0Rq9Rzxj7dts+9qkgfXb37l1ZsWKF+Pn5Kbeff/75Z2nWrJkcOHBAXF1dxdXVVZnAKDY2ViZPniz29vZ6Ofmd2rx588Ta2lr5OeUVR/Ux4caNG3L16tVUxwh9uvqoltbwuu3btxeR5GNrr169xMXFRZo2bSqenp7KPtDHfZHXLV68WONzcteuXVKyZEkpU6aMuLi4KLMmx8fHS6dOnaRatWqybNkyGTp0qFhaWuplMxf18SEoKEg8PT1lw4YNEhMTI4GBgeLk5CTVq1eXy5cvaxxHHj58KLdv39ZVyZlKfQxcvny50odC3VH71KlTolKpZMKECeLu7i5t27aVESNGyLfffiumpqbK6Hoc/SnnYrB4j1u3bknTpk3F0tJSmdUxMTFRkpKS5NKlS1KpUiVlci8ifRcXFyddunQRe3t7cXBwEAsLC2nZsqWUK1dOSpUqJaGhobJ3716pWrWqVKpUSdq1ayetWrWSokWL6v3t6l9++UXMzc3lzz//fOc648ePlwEDBmicPOtbm3GR5OF0PzS8bmJiokRFRWkMJ8pQoX9evHghXbt2lfz588vhw4clPj5eSpUqJWvXrpVdu3bJqFGjxMDAQLy8vEQkeVb6Tz/9VNzd3aVq1ary33//6fYFZKHz589LvXr1pEaNGnLmzBlleUREhFSoUEGqVasm//33n94dI9TNHe/evSvffPONiIicPXtWvvjiC6Wv6tq1a8XDw0NGjx4tV65cUbatUaPGe4+xlDMwWHzAnTt3pEWLFtKqVSs5efKksvyzzz6Thg0b6k27aKL0UHeeu3Xrlvz666/yww8/SOfOnaVixYrSoUMHiYiIEF9fX5k3b5707NlTvvvuO72+U6F29+5dsbS0lE6dOsnDhw+V5eqTgrCwMOnUqZMsX75cVyVmm/Pnz4u7u7uIpD287l9//aVMiqembydPeV3Kz8XHjx/L0KFDpXDhwrJo0SIZM2aM8tiLFy9k8uTJolKplP5JcXFxEhISojd9KtT7Qh2kHz58KImJifL69Wtp2LChqFSqVMeFiIgIqVSpkjg4OOjVZG/qfeHj4yMqlUqZ12jZsmXi6uoqnp6eSif1t48RkyZNEgcHB+UOB+VcDBbpoG4W1bp1azl16pR07NhRKlSooHedLok+5F0ngPv27ZPatWtLmzZtlFF88trJ4vbt28XU1FR69OihcYfmyZMn0qpVK6lbt67eXZUPDAyUK1euyM8//yxXr16V0NBQuXHjhtja2sqaNWveObyuuqkc6R/152FAQIDs2rVLfvnlF9mxY4dMnTpV8ufPLw0aNNBY/8WLFzJlyhQxNjZONadJbqfeFzdu3JCOHTuKi4uLGBkZiYuLiyxatEgiIyOlWbNmUr16dTl06JDGucTr16/F3d1d7t27p6vyM5X6tV2/fl3Mzc1lxowZGo+vWLFC6tSpI3369FE6qYskD03du3fvPHHnW18wWKTTrVu3pE2bNmJsbCxOTk5KqNC3EwWijFB/WCQmJsqOHTukQYMGUqtWrTw5RGhCQoIyTHWpUqWkZcuW0rx5c6lVq5bUqFFDOWboSz+sPXv2SOvWraV48eJiYWEh5ubm0rZtW/nnn39k1KhRqUZ/0ufhdSmZ+v/V19dXypYtKxUrVhQTExOpXLmyzJo1S6ZOnSoGBgZy6NAhje1CQ0Nl5MiRUqhQIXn16pVeXJRQv4YrV66IpaWlDB06VNavXy979+6Vdu3aiYGBgXz55Zfy5MkTadKkidSsWTNVuNCH/SDy5u/i6tWrYm1tLc7Ozspj6gkQRZL7XNStW1e+/PJL5c7F1q1bpUePHnL9+vXsLZo+GoNFBvj5+cnXX3/NjoZEKag//JKSkmTz5s3SqlUrjeZAec1///0nX3/9tTRv3lw8PT1lxYoVSpjQl2PG2rVrlaYtR48elZcvX8rs2bOlYsWK4uTkJPPmzZMePXpImTJl9H54XUqWMlTky5dPxo8fL0+ePJGDBw9K06ZNpUaNGnLkyBHp16+fWFhYyO+//66xfWhoqDx79kwXpWeZZ8+eiZubm0ycODHV8hUrVoiJiYkMGzZM4uLipGHDhlK/fn3Zt2+f3gQKEc3mT/ny5ZOGDRtKiRIllDmPRN503BZ5Ey769+8vQUFBIpJ6/grK2RgsPpK+nCAQZYaU4eLtcckpmb7cqVi7dq2YmJjInj17Uj22Y8cOqV69utSvX1+2b98uQ4YMETs7O2nUqBFHf8oDAgICxNraWjp37qyxfPXq1VKwYEG5c+eOPHr0SAYMGCCFChWSw4cP66jS7HH58mVxcXHRGA1OfaL96tUrmTNnjpiYmMjp06flxYsXUqlSJWnZsmWq/gW53b///ivGxsYyc+ZMSUhIkDVr1oi1tfU7w8WKFSukUqVKMmTIEL05buYl+jEYsg7oyzjSRJlBpVJBRKBSqVCwYEFdl6Nz6n2RkqGhoY6qyTzHjx/HoEGDMHPmTHTs2FGZb0I9tn7Xrl0RHByM6dOnw8TEBCtXrsTMmTNRtGhR5TkSEhJ4/NRTiYmJcHBwQGxsLE6fPo169eoBAMqWLQsTExNER0ejXLlymDBhAgwNDdGqVSscOXIETZs21XHlWcPX1xd37tyBi4sLgOTjgnqeF0tLS/To0QMLFy7EyZMnUbduXZw+fRphYWHKPB76IioqCoMHD8aMGTMAAF27dgUATJkyBQDw/fffw8TEBHFxcTAxMcHQoUNhbGyM5s2b68VxM6/J/TMyEVGO8PaJdF6mr/tCPXno5cuXcerUKahUKqhUKhgZGSkTXA0fPhx2dnY4evQoAKBQoULK9iLCUKHHypQpg61btyIuLg7ffPMN/Pz8EBERgZ49e8LT01M5wS5XrhxGjRql/K3oK0dHRwDAnj17AKQ+Ljg4OKBs2bJ49uwZAKBw4cLKZIH6pH79+vj+++8BJB8DLC0t0a1bN8ydOxfbtm3DiBEjAAAmJiaIjY0FAAwcOFAv90VewGBBRETpUr58eWzYsAGxsbGYO3cuTp8+rTymPmkKDw9HTEwMbG1tAQDGxsap1iH9Vb58eSxfvhyGhoYYPHgw7O3t0bNnT3z77bcAoMy+XaFCBSxcuBBOTk66LDdLlSlTBhYWFvjpp5/w8OFDZbk6hL98+RLm5uaoXr26rkrMdupjgIWFhUa4GD16NADA1NRUl+VRJmCwICKidFOfOKpUKsyZMwdnzpzRePzevXsoVaoUateuDQBKcynKO8qXL4/vv/8ehoaGsLCwQIcOHZTH1E2BAM3QqY9KlSqFVatW4fDhw5g2bRquX78O4M0+WLJkCZ4+fYpPP/1Ul2XqjDpczJ8/H8uWLcOkSZN0XRJlApXwqE9ERBl0+/ZtDB8+HCKCKVOm4NNPP0VCQgLatWsHAwMD/PrrrxonkZT33LlzB19//TVEBNOmTUPdunV1XVK2S0xMxPr16zFs2DCUK1cOdevWha2tLe7fv48//vgD3t7ecHNz03WZOhUWFob9+/fDw8MDFSpU0HU5pCUGCyIi+ijqcGFgYIDJkydjyZIluHnzJnx8fGBsbIykpCSGizzu9u3bGD16NEJCQrB06VLlTlZe888//+C7776Dv78/ChUqBFdXV3z99deoWLGirkvLEdIa8IJyJwYLIiL6aLdv38aoUaNw5MgRlC1bFlevXoWxsTFHfyLFzZs3MW3aNCxevBj29va6LkdnEhMTYWBgAJVKxdBNeovBgoiItHLz5k38+OOPWLJkCYyMjBgqKBX1UKJ5Wcqr8rxCT/qKwYKIiDINQwURUd7FYEFERERERFpjAz8iIiIiItIagwUREREREWmNwYKIiIiIiLTGYEFERERERFpjsCAiIiIiIq0xWBARERERkdYYLIiIiIiISGsMFkREREREpDUGCyIiIiIi0hqDBRERERERae3/ALH3PsCHfaeAAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "CellSAM vs Cellpose - Cyto3 Comparision by Dataset\n", @@ -1263,20 +1147,9 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHkCAYAAABITAKfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaNxJREFUeJzt3XdY1XX/x/HXYbswE0EcqLlNU3Ni5spVlprVrZZhODKz0shMtJyleWuuMnGhVlpWatmygbv0NjU3khszUHDhYJ/P7w9/nETQwAMewOfjus4VfMc57+O3cziv81kWY4wRAAAAANwiJ0cXAAAAACB/I1QAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdnFxdAEAroqMjFRsbKyjy8iUl5eX/Pz8HF1GlowZM0Zjx47V2rVr1apVK9t2i8Wili1bat26dQ6rDbgWr3n78XoH8g5CBZAHREZGqmb16rqSkODoUjJV2MND4REROfYhY/v27frwww+1YcMG/f3337JarSpTpoyaNWumgIAAtWvXLkceB9ljjNHKlSv1ySefaOvWrYqJiZGbm5vuuecetWnTRv3791etWrVu6b4XLVqkwMBALVy4UM8995zdtf7www9avHixdu7cqejoaCUlJcnPz08PPPCA3njjDVWrVs3ux8hNkZGRql6jphLirzi6lEx5FCqsiAPhBe41v3fvXk2ePFnr169XVFSUPDw8VKpUKd13331q2bKlXnnlFVkslkzP3bBhg1q2bClJ+vzzz/XUU09lelza/+uS9MQTT+jLL7/M9LjZs2frxRdflCT17t1bixYtsvPZAY5FqADygNjYWF1JSNDMuhVVpWghR5eTzqFL8Xpl1zHFxsba/QHDarVq6NChmjZtmlxcXNSmTRt17txZrq6uOnLkiL777jt98sknGjdunN56660cegbIirNnz+qpp57SmjVrdNddd6ldu3a65557lJSUpH379unDDz/UzJkzFRYWlu4bYUf5/vvvtWXLFjVp0kQPP/ywXF1dFR4ersWLF2vJkiX6/vvv1aZNG0eXeUOxsbFKiL+iCk8Ey6NU3moRSIiJ1PHlEwvca/7nn3/Wo48+qpSUFLVt21aPP/64PDw8dPjwYa1fv14rV67UoEGD5OKS+UejBQsWSLraChIaGnrDUJHGxcVF33zzjWJjY+Xl5ZXp/bm4uCglJcX+JwfkAYQKIA+pUrSQ6hQv7Ogycs2bb76padOmqV69evryyy9VuXLldPvj4+P1wQcf6MyZMw6q8M6UkpKixx9/XBs2bFCvXr00a9YseXp6pjsmKipKI0eO1IULFxxUZXqTJ0/W+++/n2F7WFiY2rZtqzfeeEO///67AyrLHo9SfipcJm+3qtgjL73mBw4cqNTUVP3yyy9q3bp1un3GGP30009ydnbO9Ny4uDh9+eWXuu++++Tj46OffvpJJ06cUPny5W/4eA8//LC++eYbffLJJxoyZEi6fbt379b27dvVuXNnrVq1yu7nBuQFDNQGcFscOnRI//3vf1WyZEmtXr06w4cLSSpUqJBef/11jR07Nt32pKQkTZ06Vffff7+KFCmiYsWK6cEHH7T7j/Fzzz0ni8WiI0eO6L///a+qVq0qDw8PVapUSePGjVNycnKm5y1cuFBNmjRR0aJFVbRoUTVp0uSGXReWL1+uli1bytvbWx4eHipTpozatm2r5cuXZzh29+7d6tGjh3x9feXm5qYKFSro5ZdfzvUPXB9//LE2bNigFi1aaPHixRkChST5+voqNDRUHTt2lNVqVYUKFVSyZEklJiZmep8tWrSQi4uL/vrrLz333HO27iCBgYGyWCy227WOHz+uvn37qmzZsnJzc1O5cuXUt29fRUZGZrh/Dw+PTB/3oYceUokSJXTo0KHs/jMgh93qaz43Xu+nT5/W4cOHVbt27QyBQrra+tChQ4cbdn369NNPdeXKFQUEBCggIEBWq/Vfuys1a9ZMNWrU0MKFCzPsCw0NlbOzs3r37n1LzwfIiwgVAG6LRYsWKTU1VQMGDJCPj89Nj3V3d7f9nJiYqA4dOui1116TMUZ9+/ZVr169dPz4cXXp0kUffPCB3bUNGTJEkyZNUtu2bfXyyy/L3d1do0ePVs+ePTMc+8orr6hPnz46efKk+vbtq759++rkyZMKDAzU4MGD0x07e/ZsPfnkkzp48KAef/xxBQUFqWPHjoqOjtbKlSvTHbtq1So1btxYq1atUqtWrTRkyBDVqVNHH3zwgfz9/XXu3Dm7n+eNpHXrePPNN+XkdPM/C+7u7nJyclK/fv109uzZTMNRRESENm7cqI4dO6pcuXLq2rWrunTpIknq0qWLRo8ebbul+fPPP9WoUSOFhoaqQYMGeu2111S/fn2FhoaqYcOG+vPPP7P0XDZv3qxz586pdu3aWX36yCW38prPrdd78eLF5eLioqioKF2+fDnb5y9YsEDOzs565pln1K1bNxUtWlQLFy6UMeam5wUGBtpaJdIkJSVpyZIl6tChg8qUKZPtWoC8iu5PAG6LX3/9VZKy3c993LhxWrdund566y2NHTvW9k3ixYsX1aZNG7322mvq1q2bXX+ct2zZol27dqlcuXKSpHfeeUft2rXT8uXLtXz5cj3xxBOSrg7UfP/991WzZk1t3rxZxYsXl3R1BpqmTZtq5syZevLJJ/Xggw9KkubPny83Nzft3LlT3t7e6R7z2taHM2fO6Nlnn5WXl5d+/fVXVahQwbbvs88+U8+ePTVq1KhMu/vYKyUlRVu3bpWLi4ut7qzo27evxo0bp3nz5unpp59Ot2/+/PmSpP79+0uSunbtqvPnz+vrr79W165dMx2o/cILLygmJkZz5szR888/b9v+4YcfatCgQRo4cKDCwsIynPfTTz/pt99+U2Jiog4ePKhvv/1WXl5emjZtWpafC3LHrbzmc+v17u7urs6dO2vFihXy9/dX//791axZM9WpU0dubm43PXfPnj36/fff1aFDB5UuXVqS1K1bN3300Udas2aNHnrooRueGxAQoJEjR9rCsiR9/fXXio2NVd++fbP1HIC8jpYKALdFdHS0JNk+uGeF1WrV7NmzVbly5XQfMCSpWLFiGjVqlJKSkrRixQq7ahs8eHC6utzc3PTOO+9IUrouDosXL5Z0NUSkBQpJKlGihO1b9+u7RLi6usrV1TXDY5YsWdL280cffaS4uDhNnDgxXaCQpB49euj+++/XZ599dmtP7l+cOXNGycnJ8vLyumGXosyUKVNGjz32mNavX5+uq1FycrI++ugj+fr6qlOnTlm6r8jISK1du1a1atWyBZE0L7zwgmrUqKE1a9boxIkTGc796aefNHbsWL377rtavny5ypcvr9WrV6thw4ZZfi7IHdl9zef2633u3Ll67LHHtGfPHr3yyitq2LChihUrpgceeEAzZ85UfHx8puelteQFBATYtqX9nLbvRkqXLq1HHnlEn376qRL+f3a/0NBQlSpVSo899tgtPQ8gr6KlAkCeFRERoXPnzqlMmTIZxllIUkxMjCTpwIEDdj1OZt/Q+/v7y8XFRX/88YdtW9rPmc1+lNZPe+fOnbZtPXr00LBhw1S7dm09/fTTat26tZo3b55hzMKWLVskSf/73/90+PDhDPedkJCg2NjYG84ik+arr75K9/hptebWbE0DBgzQypUrNX/+fL377ruSrnbjOn36tEaMGHHDWXSul1Zzy5YtM/Rpd3JyUosWLXTgwAHt3Lkzw8DYKVOmaMqUKbp06ZL279+vcePG6YEHHlBoaGiGFhTkbbn9ei9ZsqRWrVqlgwcPavXq1dq6dau2bNmi3377Tb/99pvmzZun9evX6+6777adk5iYqE8++UTFihXT448/btveunVrlS9fXitXrtS5c+dUokSJGz5unz59tGrVKq1cuVItWrTQTz/9pMGDB2f6ZQOQnxEqANwWpUuX1oEDB3Ty5ElVr149S+ecPXtWkrRv3z7t27fvhsfdSh/pa2XW39vZ2VklS5ZMN9tRXFycnJycVKpUqUzvw2KxKC4uzrZt6NChKlmypGbPnq333ntPU6ZMkYuLizp16qRp06apUqVKkv55nrNmzbppnZcvX/7XUJHWmnKtm4WKkiVLytXVVWfOnFFiYmK68Sz/pn379qpUqZIWL16st99+Wy4uLpo/f74sFku2unak/ZvdqN+9r69vuuMyU7RoUTVu3FhfffWVGjZsqOeff17t2rXL9Frh9sjua/52vd6rVq2qqlWr2n7fuXOnevXqpb1792rs2LGaMWOGbd9XX32lM2fOKDAwUIUK/TPdt5OTk5555hm9++67Wrp0qQYNGnTDx+vUqZN8fHwUGhqqI0eOyGq1qk+fPnY9ByAvovsTgNvigQcekKRM+8XfSNo3+k888YSMMTe8ZTa7SnacOnUqw7bU1FSdOXMmXTcnT09PWa1W2zem1zp9+rSMMelaISwWi/r06aPff/9dMTExWrlypbp166avv/5ajz76qFJTU9M9zz179tz0eV7fNep6ixYtynDOmDFjbnqOi4uLGjdurOTkZG3YsOGmx17PYrHo+eefV3R0tL755hudOHFCP/30kx566CHdc889Wb6ftOef2XWQ/ulGk9msVNdzcXFR69atdfnyZW3bti3LNSDnZfc1f7te79erV6+ebbzSmjVr0u1L6960cOHCdLOWWSwWW+vcv3WBcnFxUUBAgNasWaNZs2apcePGTCSAAolQAeC2eO655+Ts7Ky5c+dm+qH8WmnTlNasWVOenp7atm3bDad3zQkbN27MsG3z5s1KSUlR/fr1bdvSfl63bl2G49O21atXL9PHKFmypLp27aply5apTZs22r9/v20sQpMmTWyP6QhprQoTJkz419lsrp9CNjAwUK6urpo/f75CQ0NltVozjIuQZJv/Py1IXSvt32zDhg0ZHt8YYws7N/q3vd7ff/8tSXQvcbDsvuZv1+s9M0WLFs2w7fjx4woLC5OPj49tprfrb5UqVdIff/yRrptkZvr06SOr1aqoqChaKVBgESoA3BZVqlTRsGHDFBsbq4cfflhHjx7NcExCQoKmTp1q+3bdxcVFAwcO1PHjxzV06NBMP2js3btXp0+ftqu2GTNm6K+//rL9npSUpJEjR0pSupmK0uaUHzt2bLquOBcuXLD1Ab923vl169Zl+JCcnJxs6+aRNjA6MDBQxYoV08iRIzPt9nHlyhXbuIvc8Oyzz+rBBx/UunXrFBgYqIsXL2Y45tSpU+rfv79Wr16dbruPj4+6du2q1atXa/bs2fLy8lLXrl0znJ/WTz2zwdZ+fn5q3bq19u3bp9DQ0HT75s6dq/DwcLVp0ybdeIobtUL8+OOPWrlype666y75+/v/63NH7snuaz43X++XL1/WO++8o9jY2Az7UlJSNHnyZElS8+bNbdsXLlwoq9WqAQMGaP78+Znehg8fLunfWytq1KihH374QStXrtQzzzyT7fqB/IAxFQBum7ffflsJCQmaNm2aqlevrjZt2qh27dpydXXV0aNH9csvv+jMmTN6++23beeMHTtWO3bs0MyZM/Xdd9+pRYsW8vb21smTJ7Vnzx7t2rVLmzdvzjBla3Y0bdpUdevWVffu3VWkSBF98803ioiIULdu3WzTyUpXF3R7+eWX9f7776t27dq2bhrLly/XX3/9pVdeeUUtWrSwHd+1a1d5enqqadOmqlChgpKTk/Xzzz9r//79evLJJ23dmUqVKqVPP/1UTz31lOrWrauOHTuqRo0aSkxM1LFjx7R+/Xo1a9Yswwf6nOLi4qKvvvpKTz31lBYvXqxVq1bZxkskJSVp//79WrdunZKTk9WrV68M57/wwgv64osvdOrUKb322muZTtHp7++vQoUKafr06Tp37pxtrMObb74p6eqaHs2bN1f//v31zTffqFatWtq3b59WrVqlUqVKafbs2enur1GjRqpdu7buu+8+lStXTpcvX9bu3bu1ceNGubq6KjQ0VEWKFMmFfy1kR3Zf87n1ek9OTtabb76pMWPGyN/fX3Xr1pWnp6dOnTqlH3/8UX/99ZcqVapkm8XNarXaujxlNgVymu7du2vIkCFasmSJpkyZctMZ1Dp27JitmoH8hlAB5CGHLmU+paEj5WRNTk5Omjp1qp5++mnNnj1bGzZs0IYNG2S1WuXr66sOHTooMDBQbdu2tZ3j7u6uH374QQsWLNBHH32k5cuXKzExUT4+PqpVq5ZeeOEF1alTx666pk+fri+++ELz589XZGSkfH19NWbMGAUHB2c4dubMmapfv75mz56tuXPnSpLuvfdejRs3zrZqdJqJEyfaZpn55ptvVKRIEVWuXFmzZ8/OMJC5U6dO+uOPPzR58mT98ssv+vnnn1WkSBGVK1dOgYGBmX6Yz0l33323fvnlF61YsUKffPKJNm7cqJUrV8rFxUX33HOPnn/+eb3wwguqWbNmhnNbt24tPz8/RUZGql+/fje8/y+//FJjxozRvHnzbNN3poWK6tWra9u2bRo7dqxWr16t7777TqVKlVJgYKBGjx6dYTzJhAkTtHbtWq1fv14xMTFycnKSn5+fnn/+eQ0ZMiTTOvOihJiMq4U7Wk7WlN3XfG693j09PfX999/rxx9/1KZNm/TFF1/ozJkzKly4sKpVq6b+/ftr8ODBtjFUv/zyiyIjI9WyZUvbhAqZKV68uLp166YlS5ZoxYoVzDiGO5rF/FsHWgC5LjIyUjWrV9eV/5/HPK8p7OGh8IgI+fn5ObqUHPXcc89p8eLFOnr0qCpWrOjocvKtqKgo+fn5yd/fP9uDve9UkZGRql6jphLirzi6lEx5FCqsiAPhBe41DyD30FIB5AF+fn4Kj4jItL9vXuDl5cWHC9zQ9OnTlZKSooEDBzq6lHzDz89PEQfCec0DKDAIFUAe4efnxx9x5BsXLlzQ7Nmzdfz4cc2fP1+1atXSf/7zH0eXla/wmgdQkBAqAADZdu7cOQUHB8vDw0PNmzdXSEiIbdpYAMCdhzEVAAAAAOzCOhUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuDg8Vs2bNUsWKFeXh4aEmTZpo69atNz3+/PnzGjRokHx9feXu7q5q1arp+++/z/LjGWMUFxcnY4y9pQMAAACQ5OLIB1+2bJmCgoIUEhKiJk2aaPr06erQoYMiIiLk7e2d4fikpCS1a9dO3t7e+vLLL1W2bFkdP35cd911V5Yf8+LFiypevLguXLggT0/PHHw2AAAAwJ3JYhz4lX2TJk3UqFEjffDBB5Ikq9Wq8uXL6+WXX9bw4cMzHB8SEqLJkyfrwIEDcnV1vaXHjIuLI1QAAAAAOchh3Z+SkpK0fft2tW3b9p9inJzUtm1bbd68OdNzVq1aJX9/fw0aNEg+Pj6qXbu2JkyYoNTU1NtVNgAAAIDrOKz7U2xsrFJTU+Xj45Nuu4+Pjw4cOJDpOUeOHNGaNWv0zDPP6Pvvv9ehQ4f04osvKjk5WaNHj870nMTERCUmJtp+j4uLy7knAQAAAMDxA7Wzw2q1ytvbW3PnzlWDBg3UvXt3jRw5UiEhITc8Z+LEiSpevLjtVr58+dtYMQAAAFDwOSxUeHl5ydnZWadOnUq3/dSpUypdunSm5/j6+qpatWpydna2batZs6aio6OVlJSU6TnBwcG6cOGC7XbixImcexIAAAAAHBcq3Nzc1KBBA4WFhdm2Wa1WhYWFyd/fP9NzHnjgAR06dEhWq9W27c8//5Svr6/c3NwyPcfd3V2enp7pbgAAAAByjkO7PwUFBWnevHlavHixwsPDNXDgQF2+fFmBgYGSpICAAAUHB9uOHzhwoM6ePavBgwfrzz//1HfffacJEyZo0KBBjnoKAAAAwB3PoetUdO/eXTExMRo1apSio6NVr149rV692jZ4OzIyUk5O/+Se8uXL68cff9Srr76q++67T2XLltXgwYP1xhtvOOopAAAAAHc8h65T4QisUwEAAADkrHw1+xMAAACAvIdQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXRw6pSwA5GdRUVGKiorK9nm+vr7y9fXNhYoAAHAMQgUA3KI5c+Zo7Nix2T5v9OjRGjNmTM4XBACAg7BOBQDcosxaKuLj49W8eXNJ0qZNm1SoUKEM59FSAQAoaAgVAJCDLl++rKJFi0qSLl26pCJFiji4IgAAch8DtQEAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2MXF0QUAQF4QGRmp2NhYu+8nPj7e9vPOnTtVqFAhu+9Tkry8vOTn55cj9wUAQE6zGGOMo4u4neLi4lS8eHFduHBBnp6eji4HQB4QGRmpmtWr60pCgqNLuaHCHh4Kj4ggWAAA8iRaKgDc8WJjY3UlIUEz61ZUlaL2tSwkpFrVbUuEJGlF0+rycLa/l+mhS/F6ZdcxxcbGEioAAHkSoQIA/l+VooVUp3hhu+7jSkqq7ed7PQupsIuzvWUBAJDnMVAbAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsEueCBWzZs1SxYoV5eHhoSZNmmjr1q03PHbRokWyWCzpbh4eHrexWgAAAADXcnF0AcuWLVNQUJBCQkLUpEkTTZ8+XR06dFBERIS8vb0zPcfT01MRERG23y0Wy+0qFwBsTiUk63RicrptCamptp/3xV2Rh7NzhvO83V3l4+Ga6/UBAHC7ODxUTJ06Vf3791dgYKAkKSQkRN99951CQ0M1fPjwTM+xWCwqXbr07SwTADJYEhmjaYeibri/25Y/M93+ahVfBVUrk1tlAQBw2zk0VCQlJWn79u0KDg62bXNyclLbtm21efPmG5536dIlVahQQVarVffff78mTJige++9N9NjExMTlZiYaPs9Li4u554AgDvaM36l1M7nrmyf5+1OKwUAoGBxaKiIjY1VamqqfHx80m338fHRgQMHMj2nevXqCg0N1X333acLFy5oypQpatasmfbt26dy5cplOH7ixIkaO3ZsrtQP4M7m40E3JgAApDwyUDs7/P39FRAQoHr16qlly5ZasWKFSpUqpTlz5mR6fHBwsC5cuGC7nThx4jZXDAAAABRsDm2p8PLykrOzs06dOpVu+6lTp7I8ZsLV1VX169fXoUOHMt3v7u4ud3d3u2sFAAAAkDmHtlS4ubmpQYMGCgsLs22zWq0KCwuTv79/lu4jNTVVe/bska+vb26VCQAAAOAmHD77U1BQkHr37q2GDRuqcePGmj59ui5fvmybDSogIEBly5bVxIkTJUnjxo1T06ZNVaVKFZ0/f16TJ0/W8ePH1a9fP0c+DQAAAOCO5fBQ0b17d8XExGjUqFGKjo5WvXr1tHr1atvg7cjISDk5/dOgcu7cOfXv31/R0dEqUaKEGjRooN9++021atVy1FMAAAAA7mgWY4xxdBG3U1xcnIoXL64LFy7I09PT0eUAyAN27NihBg0a6PsHaqpO8cKOLieDPReu6JFfw7V9+3bdf//9ji4HAIAM8t3sTwAAAADyFkIFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7uGTnYKvVqvXr12vjxo06fvy4rly5olKlSql+/fpq27atypcvn1t1AgAAAMijstRSER8fr7ffflvly5fXI488oh9++EHnz5+Xs7OzDh06pNGjR6tSpUp65JFHtGXLltyuGQAAAEAekqWWimrVqsnf31/z5s1Tu3bt5OrqmuGY48ePa+nSperRo4dGjhyp/v3753ixAAAAAPKeLIWKn376STVr1rzpMRUqVFBwcLCGDh2qyMjIHCkOAAAAQN6Xpe5P/xYoruXq6qrKlStnq4hZs2apYsWK8vDwUJMmTbR169YsnffZZ5/JYrGoa9eu2Xo8AAAAADknx2Z/unz5sjZs2JDt85YtW6agoCCNHj1aO3bsUN26ddWhQwedPn36pucdO3ZMQ4cO1YMPPnirJQMAAADIATkWKg4dOqTWrVtn+7ypU6eqf//+CgwMVK1atRQSEqLChQsrNDT0huekpqbqmWee0dixY3XPPffYUzYAAAAAOzl0nYqkpCRt375dbdu2tW1zcnJS27ZttXnz5hueN27cOHl7e6tv377/+hiJiYmKi4tLdwMAAACQc7K8TsXdd9990/2pqanZfvDY2FilpqbKx8cn3XYfHx8dOHAg03M2bdqkBQsWaOfOnVl6jIkTJ2rs2LHZrg0AAABA1mQ5VCQmJmrgwIGqU6dOpvuPHz+e6x/eL168qGeffVbz5s2Tl5dXls4JDg5WUFCQ7fe4uDgW6QMAAAByUJZDRb169VS+fHn17t070/27du3Kdqjw8vKSs7OzTp06lW77qVOnVLp06QzHHz58WMeOHdNjjz1m22a1WiVJLi4uioiIyDDzlLu7u9zd3bNVFwAAAICsy/KYik6dOun8+fM33H/33XcrICAgWw/u5uamBg0aKCwszLbNarUqLCxM/v7+GY6vUaOG9uzZo507d9punTt3VuvWrbVz505aIAAAAAAHyHJLxYgRI266v3z58lq4cGG2CwgKClLv3r3VsGFDNW7cWNOnT9fly5cVGBgoSQoICFDZsmU1ceJEeXh4qHbt2unOv+uuuyQpw3YAAAAAt0eWQ0Vu6d69u2JiYjRq1ChFR0erXr16Wr16tW3wdmRkpJycHDpJFQAAAICbyHKoaNGihVatWmVrGVi1apXatWunQoUK2V3ESy+9pJdeeinTfevWrbvpuYsWLbL78QEAAADcuiw3AWzatElJSUm233v16qWoqKhcKQoAAABA/nHL/YqMMTlZBwAAAIB8isEKAAAAAOySrYHaP/74o4oXLy7pn6lf9+7dm+6Yzp0751x1AAAAAPK8bIWK6xe+GzBgQLrfLRaLUlNT7a8KAAAAQL6R5VCRtnI1AAAAAFyLMRUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALnaFihdffFGxsbE5VQsAAACAfMiuUPHJJ58oLi4up2oBAAAAkA/ZFSqMMTlVBwAAAIB8ijEVAAAAAOyS5RW1M3Px4sWcqgMAAABAPkVLBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALBLjoWKw4cPq02bNjl1dwAAAADyiRwLFZcuXdL69etz6u4AAAAA5BNZXqdi5syZN91/8uRJu4sBAAAAkP9kOVQMGTJEvr6+cnNzy3R/UlJSjhUFAAAAIP/IcqioUKGCJk2apP/85z+Z7t+5c6caNGiQY4UBAAAAyB+yPKaiQYMG2r59+w33WywWGWNypCgAAAAA+UeWWyrGjRunK1eu3HB/rVq1dPTo0RwpCgAAAED+keVQUatWrZvud3V1VYUKFewuCAAAAED+wuJ3AAAAAOySpVDRsWNHbdmy5V+Pu3jxoiZNmqRZs2bZXRgAAACA/CFL3Z+eeuopPfHEEypevLgee+wxNWzYUGXKlJGHh4fOnTun/fv3a9OmTfr+++/VqVMnTZ48ObfrBgAAAJBHZClU9O3bV7169dIXX3yhZcuWae7cubpw4YKkq7M+1apVSx06dNDvv/+umjVr5mrBAAAAAPKWLA/Udnd3V69evdSrVy9J0oULFxQfH6+SJUvK1dU11woEAAAAkLdlOVRcr3jx4ipevHhO1gIAAAAgH2L2JwAAAAB2IVQAAAAAsAuhAgAAAIBdshUqUlNTtWHDBp0/fz6XygEAAACQ32QrVDg7O6t9+/Y6d+5cbtUDAAAAIJ/Jdven2rVr68iRI7lRCwAAAIB8KNtTyr799tsaOnSoxo8frwYNGqhIkSLp9nt6euZYcUBBFRUVpaioqGyf5+vrK19f31yoCAAA4NZlO1Q88sgjkqTOnTvLYrHYthtjZLFYlJqamnPVAQXUnDlzNHbs2GyfN3r0aI0ZMybnCwIAALBDtkPF2rVrc6MO4I4yYMAAde7cOd22+Ph4NW/eXJK0adMmFSpUKMN5tFIAAIC8KNuhomXLlrlRB3BHyawb0+XLl20/16tXL0PXQgAAgLwq26FCks6fP68FCxYoPDxcknTvvfeqT58+Kl68eI4WBwAAACDvy/bsT9u2bVPlypU1bdo0nT17VmfPntXUqVNVuXJl7dix45aKmDVrlipWrCgPDw81adJEW7duveGxK1asUMOGDXXXXXepSJEiqlevnj7++ONbelwAAAAA9st2S8Wrr76qzp07a968eXJxuXp6SkqK+vXrpyFDhmjDhg3Zur9ly5YpKChIISEhatKkiaZPn64OHTooIiJC3t7eGY6/++67NXLkSNWoUUNubm769ttvFRgYKG9vb3Xo0CG7TwcAAACAnW6ppeKNN96wBQpJcnFx0bBhw7Rt27ZsFzB16lT1799fgYGBqlWrlkJCQlS4cGGFhoZmenyrVq30+OOPq2bNmqpcubIGDx6s++67T5s2bcr2YwMAAACwX7ZDhaenpyIjIzNsP3HihIoVK5at+0pKStL27dvVtm3bfwpyclLbtm21efPmfz3fGKOwsDBFRESoRYsWmR6TmJiouLi4dDcAAAAAOSfboaJ79+7q27evli1bphMnTujEiRP67LPP1K9fP/Xs2TNb9xUbG6vU1FT5+Pik2+7j46Po6OgbnnfhwgUVLVpUbm5u6tSpk95//321a9cu02MnTpyo4sWL227ly5fPVo0AAAAAbi7bYyqmTJkii8WigIAApaSkSJJcXV01cOBAvfvuuzleYGaKFSumnTt36tKlSwoLC1NQUJDuuecetWrVKsOxwcHBCgoKsv0eFxdHsAAAAAByULZCRWpqqrZs2aIxY8Zo4sSJOnz4sCSpcuXKKly4cLYf3MvLS87Ozjp16lS67adOnVLp0qVveJ6Tk5OqVKki6ep8/uHh4Zo4cWKmocLd3V3u7u7Zrg0AAABA1mSr+5Ozs7Pat2+v8+fPq3DhwqpTp47q1KlzS4FCktzc3NSgQQOFhYXZtlmtVoWFhcnf3z/L92O1WpWYmHhLNQAAAACwT7a7P9WuXVtHjhxRpUqVcqSAoKAg9e7dWw0bNlTjxo01ffp0Xb58WYGBgZKkgIAAlS1bVhMnTpR0dYxEw4YNVblyZSUmJur777/Xxx9/rNmzZ+dIPQAAAACyJ9uh4u2339bQoUM1fvx4NWjQQEWKFEm339PTM1v31717d8XExGjUqFGKjo5WvXr1tHr1atvg7cjISDk5/dOgcvnyZb344ov666+/VKhQIdWoUUOffPKJunfvnt2nAgAAACAHWIwxJjsnXPsB32Kx2H42xshisSg1NTXnqssFcXFxKl68uC5cuJDtAARkJjIyUrGxsXbfT3x8vJo3by5J2rRpkwoVKmT3fUpXxy75+fnlyH0VVDt27FCDBg30/QM1Vaf4rXXnzE17LlzRI7+Ga/v27br//vsdXQ4AABlku6Vi7dq1uVEHkC9FRkaqZvXqupKQkKP3mxYuckJhDw+FR0QQLAAAQK7JVqhITk7WuHHjFBISoqpVq+ZWTUC+ERsbqysJCZpZt6KqFLWvZSEh1apuWyIkSSuaVpeHc7aXkcng0KV4vbLrmGJjYwkVAAAg12QrVLi6umr37t25VQuQb1UpWsjubjNXUv7pOnivZyEVdnG2tywAAIDbIttfhfbq1UsLFizIjVoAAAAA5EPZHlORkpKi0NBQ/fLLL5nO/jR16tQcKw4AAABA3pftULF3717b7CN//vlnun3XzgYFAAAA4M7A7E8AAAAA7GL/9DLXOH36dE7eHQAAAIB8IMuhonDhwoqJibH93qlTJ0VFRdl+P3XqlHx9fXO2OgAAAAB5XpZDRUJCgq5dfHvDhg2Kj49Pd0w2F+cGAAAAUADkaPcnBmoDAAAAd54cDRUAAAAA7jxZDhUWiyVdS8T1vwMAAAC4M2V5SlljjKpVq2YLEpcuXVL9+vXl5ORk2w8AAADgzpPlULFw4cLcrAO4o5xKSNbpxOR02xJSU20/74u7Ig9n5wznebu7ysfDNdfrAwAAyI4sh4revXvnZh3AHWVJZIymHYq64f5uW/7MdPurVXwVVK1MbpUFAABwS7K9ojYA+z3jV0rtfO7K9nne7rRSAACAvIdQATiAjwfdmAAAQMHBlLIAAAAA7EKoAAAAAGAXQgUAAAAAu2R7TEVqaqoWLVqksLAwnT59WlarNd3+NWvW5FhxAAAAAPK+bIeKwYMHa9GiRerUqZNq167NqtoAAADAHS7boeKzzz7T559/rkceeSQ36gEAAACQz2R7TIWbm5uqVKmSG7UAAAAAyIeyHSpee+01zZgxQ8aY3KgHAAAAQD6T7e5PmzZt0tq1a/XDDz/o3nvvlatr+gW8VqxYkWPFAQAAAMj7sh0q7rrrLj3++OO5UQsAAACAfCjboWLhwoW5UQcAAACAfIrF7wAAAADYJdstFZL05Zdf6vPPP1dkZKSSkpLS7duxY0eOFAYAAAAgf8h2S8XMmTMVGBgoHx8f/fHHH2rcuLFKliypI0eO6OGHH86NGgEAAADkYdkOFR9++KHmzp2r999/X25ubho2bJh+/vlnvfLKK7pw4UJu1AgAAAAgD8t2qIiMjFSzZs0kSYUKFdLFixclSc8++6w+/fTTnK0OAAAAQJ6X7VBRunRpnT17VpLk5+enLVu2SJKOHj3KgngAAADAHSjboaJNmzZatWqVJCkwMFCvvvqq2rVrp+7du7N+BQAAAHAHyvbsT3PnzpXVapUkDRo0SCVLltRvv/2mzp07a8CAATleIAAAAIC8LduhwsnJSU5O/zRw9OjRQz169MjRogAAAADkH7e0+N3GjRvVq1cv+fv76+TJk5Kkjz/+WJs2bcrR4gAAAADkfdkOFcuXL1eHDh1UqFAh/fHHH0pMTJQkXbhwQRMmTMjxAgEAAADkbdkOFW+//bZCQkI0b948ubq62rY/8MADrKYNAAAA3IGyHSoiIiLUokWLDNuLFy+u8+fP50RNAAAAAPKRW1qn4tChQxm2b9q0Sffcc0+OFAUAAAAg/8h2qOjfv78GDx6s//3vf7JYLPr777+1ZMkSDR06VAMHDsyNGgEAAADkYdmeUnb48OGyWq166KGHdOXKFbVo0ULu7u4aOnSoXn755dyoEQAAAEAelu1QYbFYNHLkSL3++us6dOiQLl26pFq1aqlo0aK5UR8AAACAPO6W1qmQJDc3N9WqVUuNGze2O1DMmjVLFStWlIeHh5o0aaKtW7fe8Nh58+bpwQcfVIkSJVSiRAm1bdv2pscDAAAAyF1Zbqno06dPlo4LDQ3NVgHLli1TUFCQQkJC1KRJE02fPl0dOnRQRESEvL29Mxy/bt069ezZU82aNZOHh4cmTZqk9u3ba9++fSpbtmy2HhsAAACA/bIcKhYtWqQKFSqofv36MsbkWAFTp05V//79FRgYKEkKCQnRd999p9DQUA0fPjzD8UuWLEn3+/z587V8+XKFhYUpICAgx+oCAAD5T1RUlKKiorJ9nq+vr3x9fXOhIuDOkOVQMXDgQH366ac6evSoAgMD1atXL9199912PXhSUpK2b9+u4OBg2zYnJye1bdtWmzdvztJ9XLlyRcnJyTesJTEx0bbqtyTFxcXZVTMAAMi75syZo7Fjx2b7vNGjR2vMmDE5XxBwh8hyqJg1a5amTp2qFStWKDQ0VMHBwerUqZP69u2r9u3by2KxZPvBY2NjlZqaKh8fn3TbfXx8dODAgSzdxxtvvKEyZcqobdu2me6fOHHiLb25AACA/GfAgAHq3Llzum3x8fFq3ry5pKvrahUqVCjDebRSAPbJ1uxP7u7u6tmzp3r27Knjx49r0aJFevHFF5WSkqJ9+/bd9hmg3n33XX322Wdat26dPDw8Mj0mODhYQUFBtt/j4uJUvnz521UiAAC4jTLrxnT58mXbz/Xq1VORIkVud1lAgZftKWXTODk5yWKxyBij1NTUW7oPLy8vOTs769SpU+m2nzp1SqVLl77puVOmTNG7776rX375Rffdd98Nj3N3d5e7u/st1QcAAADg32VrStnExER9+umnateunapVq6Y9e/bogw8+UGRk5C21Uri5ualBgwYKCwuzbbNarQoLC5O/v/8Nz/vvf/+r8ePHa/Xq1WrYsGG2HxcAAABAzslyS8WLL76ozz77TOXLl1efPn306aefysvLy+4CgoKC1Lt3bzVs2FCNGzfW9OnTdfnyZdtsUAEBASpbtqwmTpwoSZo0aZJGjRqlpUuXqmLFioqOjpYkFS1alAX4AOAazIIDALhdshwqQkJC5Ofnp3vuuUfr16/X+vXrMz1uxYoV2Sqge/fuiomJ0ahRoxQdHa169epp9erVtsHbkZGRcnL6p0Fl9uzZSkpK0pNPPpnufpi1AQDSYxYcAMDtkuVQERAQcEszPGXFSy+9pJdeeinTfevWrUv3+7Fjx3KlBgAoaJgFBwBwu2Rr8TsAQP7BLDgAgNslWwO1AQAAAOB6hAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOyS5dmfAACOFR4ebvd9xMfH237euXNnplPK3govLy/5+fnlyH0BAPIfQgUA5HGnE5Mli5N69eqVo/ebtl5FTvAoVFgRB8IJFgBwhyJUAEAeF5ecIhmrKjwRLI9S9n1otyYn6uCCIZKkqn2ny8nV3e76EmIidXz5RMXGxhIqAOAORagAgHzCo5SfCpepZtd9pCb90/2pkG8VObvlTPcnAMCdjYHaAAAAAOxCqAAAAABgF7o/AQCAPCcyMlKxsbE5cl/MegbkPkIFAADIUyIjI1WzenVdSUjI8fvOyVnPCnt4KDwigmABiFABAADymNjYWF1JSNDMuhVVpaj9rQoJqVZ12xIhSVrRtLo8nO3v/X3oUrxe2XWMWc+A/0eoAAAAeVKVooVUp3hhu+/nSkqq7ed7PQupsIuz3fcJID1CBQAUUMkXzyj54pl021KTE20/X4k6JOdM1qlwLVZSrsVK5np9AICCg1ABAAVU7O/fKnrdRzfcf+j/F8G7XulWAfJt0zuXqgIAFESECgAooLwaPariNfyzfR6tFACA7CJUAEABRTcmAMDtwuJ3AAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdWPwOAAAAeUpUVJSioqKyfZ6vr698fX1zoSL8G0IFAAB5HB+wcKeZM2eOxo4dm+3zRo8erTFjxuR8QfhXhAoAAPI4PmDhTjNgwAB17tw53bb4+Hg1b95ckrRp0yYVKlQow3mEaMchVAAAkMfxAQt3msxa2S5fvmz7uV69eipSpMjtLgs3QagAACCP4wMWgLyOUAEAAAqMUwnJOp2YnG5bQmqq7ed9cVfk4eyc4Txvd1f5eLjmen1AQUWoyEcYqAcAwM0tiYzRtEM3/lvZbcufmW5/tYqvgqqVya2ygAKPUJGPMFAPAICbe8avlNr53JXt87zdaaUA7EGocJDIyEjFxsZm6xx/f3998skn6bYlJiaqb9++kqQFCxbI3d09w3leXl7asWNHth7Ly8tLfn5+2ToHAPDvbuX9PzPx8fG2n3fu3JnpQO1bkd/f/3086MYEOAKhwgEiIyNVs3p1XUlIyNH7TQsXOaGwh4fCIyLy9R8WAMhrIiMjVb1GTSXEX8nR+02bBSoneBQqrIgD4bz/A8gWQoUDxMbG6kpCgmbWragqRbP+zdLZpGSdTUpJty3RavT6nuOSpMl1KsjdyZLhvLvdXHS3W9a/tTl0KV6v7Dqm2NhY/qgAQA6KjY1VQvwVVXgiWB6l7Ht/tSYn6uCCIZKkqn2ny8k1Y0t1diXEROr48om8/wP/gnGuGREqHKhK0UKqU7xwlo+f+uffNx18lhYursfgMwDIWzxK+alwmWp23Udq0j/dnwr5VpGzW850fwLw7xjnmhGhIh9h8BkAAIDjsSBlRoSKfITBZwAAAI7HgpQZESoAZEBfUSBvSb54RskXz6TblpqcaPv5StQhOWcypsK1WEm5FiuZ6/UBN8OMZ3cGQgWADOgrCuQtsb9/q+h1H91w/6H/H7B9vdKtAuTbpncuVQX8u9ya8TInZzxjxsucQahAjuHb7YKDvqJA3uLV6FEVr+Gf7fNopYCj3eqMl5lJSLWq25YISdKKptXl4exkd33MeJlzCBXIMXy7XXDQVxTIW+jGhPwuuzNeZuZKSqrt53s9C6mwi7O9ZSEHOTxUzJo1S5MnT1Z0dLTq1q2r999/X40bN8702H379mnUqFHavn27jh8/rmnTpmnIkCG3t+A7SHh4eLaOZ8VvAACQH2X3M09m7vQxHw4NFcuWLVNQUJBCQkLUpEkTTZ8+XR06dFBERIS8vb0zHH/lyhXdc889euqpp/Tqq686oOI7w+nEZMnipF69euXo/ebkit+s+Jo9vFkCN0f3TeDOlFufee7EVe4dGiqmTp2q/v37KzAwUJIUEhKi7777TqGhoRo+fHiG4xs1aqRGjRpJUqb7kTPiklMkY832iq8ply8o5cqFdNusKUk68fV7kqTyXV6Tk4tbhvNcCheXS5HiWX4cVnzNOt4sgayh+yZwZ7rVzzyZudNXuXdYqEhKStL27dsVHBxs2+bk5KS2bdtq8+bNOfY4iYmJSkz8Z9q9uLi4HLvvgi67K75GrVl809lJ0sLF9ZidJPfwZglkDZMTAHc2Vrm3n8NCRWxsrFJTU+Xj45Nuu4+Pjw4cOJBjjzNx4sRb+vYJ2cfsJHkXb5a4k+TUnPhZkd1uUznRFREA8iKHD9TObcHBwQoKCrL9HhcXp/LlyzuwooKL2UkAOFp+mBMfAAoih4UKLy8vOTs769SpU+m2nzp1SqVLl86xx3F3d890xiEAN8bqvciv8vqc+GtPn9fkg9kfEA4AeZ3DQoWbm5saNGigsLAwde3aVZJktVoVFhaml156yVFlARCr9yL/y6tz4h+6FP/vBwFAPuTQ7k9BQUHq3bu3GjZsqMaNG2v69Om6fPmybTaogIAAlS1bVhMnTpR0dXD3/v37bT+fPHlSO3fuVNGiRVWlShWHPQ+goGF8DO40pxKSr86Wdo2E1H9Cxb64K/JwzhgqvN1d5ePhmuv1AchbaNHPyKGhonv37oqJidGoUaMUHR2tevXqafXq1bbB25GRkXJy+qe5+e+//1b9+vVtv0+ZMkVTpkxRy5YttW7duttdPlBgFeQ3PSAzSyJjNO3QjbslddvyZ6bbX63iq6BqZXKrLAB5FC36GTl8oPZLL710w+5O1weFihUryhhzG6oCANxJnvErpXY+d2X7PG93WimAOxEt+hk5PFQAAOBoPh50YwLykrzeJZEW/YwIFQAAAMhT6JKY/xAqAAAAkKfQJTH/IVQAAAAgT6FLYv5j/0o+AAAAAO5ohAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7ECoAAAAA2IVQAQAAAMAuhAoAAAAAdiFUAAAAALALoQIAAACAXQgVAAAAAOxCqAAAAABgF0IFAAAAALsQKgAAAADYhVABAAAAwC6ECgAAAAB2IVQAAAAAsAuhAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAu7g4ugAAAIA7RVRUlKKiorJ9nq+vr3x9fXOhIiBnECoAAABukzlz5mjs2LHZPm/06NEaM2ZMzhcE5BBCBQAAwC0KDw/P1vH+/v765JNP0m1LTExU3759JUkLFiyQu7t7hvO8vLy0Y8eObD2Wl5eX/Pz8snUOcKvyRKiYNWuWJk+erOjoaNWtW1fvv/++GjdufMPjv/jiC7311ls6duyYqlatqkmTJumRRx65jRUDAIA72enEZMnipF69euXo/aaFi5zgUaiwIg6EEyxwWzg8VCxbtkxBQUEKCQlRkyZNNH36dHXo0EERERHy9vbOcPxvv/2mnj17auLEiXr00Ue1dOlSde3aVTt27FDt2rUd8AwAAMCdJi45RTJWVXgiWB6lsv6hPfb3b3Vm+3fZfrySDTrJq9GjWT4+ISZSx5dPVGxsLKECt4XDQ8XUqVPVv39/BQYGSpJCQkL03XffKTQ0VMOHD89w/IwZM9SxY0e9/vrrkqTx48fr559/1gcffKCQkJDbWjsAALizeZTyU+Ey1bJ8vG+b3tkKB2lci5WUa7GS2T4PuF0cGiqSkpK0fft2BQcH27Y5OTmpbdu22rx5c6bnbN68WUFBQem2dejQQV999VWmxycmJioxMdH2+4ULFyRJcXFxdlZ/6y5duiRJ2nPhsq6kpDqsjhs5dDFeknTl74NKTYp3cDUZJcb+Jenqv6Mjr2NaDRLX8lbllWvJdbRPXrmOaTVIXMtblVeuZV6/jtLtv5apZ/5Swpm/snw81zJreE1mXbFixWSxWG58gHGgkydPGknmt99+S7f99ddfN40bN870HFdXV7N06dJ022bNmmW8vb0zPX706NFGEjdu3Lhx48aNGzdu3G7xduHChZt+rnd496fcFhwcnK5lw2q16uzZsypZsuTN09YdLC4uTuXLl9eJEyfk6enp6HJgB65lwcB1LDi4lgUH17Jg4DpmXbFixW6636GhwsvLS87Ozjp16lS67adOnVLp0qUzPad06dLZOt7d3T3D1Gx33XXXrRd9B/H09OQFVkBwLQsGrmPBwbUsOLiWBQPX0X5OjnxwNzc3NWjQQGFhYbZtVqtVYWFh8vf3z/Qcf3//dMdL0s8//3zD4wEAAADkLod3fwoKClLv3r3VsGFDNW7cWNOnT9fly5dts0EFBASobNmymjhxoiRp8ODBatmypd577z116tRJn332mbZt26a5c+c68mkAAAAAdyyHh4ru3bsrJiZGo0aNUnR0tOrVq6fVq1fLx8dHkhQZGSknp38aVJo1a6alS5fqzTff1IgRI1S1alV99dVXrFGRg9zd3TV69OhMV/RE/sK1LBi4jgUH17Lg4FoWDFzHnGMxxhhHFwEAAAAg/3LomAoAAAAA+R+hAgAAAIBdCBUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqgHzo2knbmMAt/+MaAo53+vRpxcTESJJWrlyppUuXOrgi2CvtvTU1NdXBldwZCBV3gLQX1aFDh/Trr79q586dio6OdnBVuBWZvUFaLBZHlQM77N69W6NGjZLENQQc7eLFi6pVq5YmT56sBQsW6IknnnB0ScgBFotFP/zwg0JCQpSUlOTocgo8hy9+h9xljJHFYtGKFSsUFBSk4sWLKyUlRWXKlNHw4cP10EMPObpEZFHatfz555+1aNEinT9/XqVLl9b48eNVunTpdItEIm/btWuX/P39NXToUEeXghyW9jpF/lKsWDEtWbJEnTt3VmpqqmbOnKmnn37a0WXBTr///ru6d++uOXPm8DfyNuBfuICzWCz67bff1KdPH73++uvatWuXRowYoTVr1mjnzp2OLg/ZYLFY9PXXX+vxxx+Xt7e3evbsqV9++UWdO3fWiRMnHF0esmjXrl1q1qyZXn31VY0bN87R5cBOaa2HV65ckdVqldVqdXBFyC5jjKxWq+rWravk5GRZrVZFRUXp9OnTji4Ndti3b592796tQYMGqWfPnoSK24B/4QIs7Y/dhg0b9PDDD2vQoEE6ceKE3nzzTQ0YMECvvfaaJPHGmQ8YYxQTE6MJEyZozJgxmjZtmh555BEZY9SkSRNVqFAh3bHIm/bs2aNmzZpp6NCheuedd2zbFy1apC+++MKBleFWpLVK/PDDDwoMDFSTJk305ptvasuWLY4uDVmUdg1jYmJUunRpRUVFadWqVZo4caImTZrE38d8yBijy5cvq2nTpurfv7+ioqIkSU5OTvx9zGWEigIsrQk+KSlJfn5+io6Olr+/v9q3b69Zs2ZJkn744QctX75c8fHxjiwVN5D2BmixWOTu7q5Lly6pX79++vvvv1WnTh09/PDDtmv53Xff2Y5F3nPmzBn16NFDVapU0dixY23bJ0yYoFdffVV+fn4OrA63Iq318IknnlC1atXUtWtX7d27Vy+++KLWrVvn6PLwL9ICxTfffKNevXrp008/1d13361HH31Uy5Yt07Rp0zRlyhRbsPjvf/+rzz77zMFV499YLBYVKVJEO3bsULly5fS///1Pu3fvtu1DLjIokI4fP277edq0acbb29uUKVPGDBo0yLY9JSXF9OnTx7z44osmPj7eEWUiC1asWGHefvttk5SUZOrVq2emTJliKlWqZAYMGGCSkpKMMcZERkaaVq1amR9++MHB1eJGoqOjzdChQ02dOnXM2LFjjTHGTJ482ZQsWdL8+OOPmZ6Tmpp6O0vEv7h06VK63/fu3WvuvfdeM2/ePGOMMWfOnDGlSpUyVatWNffee69Zu3atA6pEdqxYscJ4eHiY9957zxw6dCjdvqVLlxpXV1fz5JNPmh49ehh3d3ezY8cOB1WKm7FarZluj4iIMHfddZfp1KlThuuLnEeoKID2799v7rvvPvPf//7Xtu2JJ54wHh4eZt++fSY+Pt5cunTJDB8+3JQuXdqEh4c7sFrczK5du4yvr68JCQkxCQkJ5rXXXjMlSpQwHTp0SHdccHCwqV+/vjlx4oSDKkVW/P3332b06NGmVq1apmXLlsbLyyvTD54rV6687bXh5kaPHm26dOmSLuiFh4ebwMBAc/HiRXP8+HFTpUoV88ILL5i1a9eaatWqmTp16twwMMLxjhw5YmrWrGnmzJljjLn6RVtCQoIJCwszsbGxxpiroeOJJ54w3bp1M7t27XJkubiBtEDx22+/mTlz5pjRo0ebyMhIc/nyZWPM1c9ExYsXN48++qg5fPiwI0st8CzG0MGsoDl06JDeffdd7d69W08//bSGDBmiEydOqEePHgoPD1f58uV19913688//9S3336r+vXrO7pkZCIiIkJLly5VXFycpk2bJknau3evXn31VV25ckWPPvqo/Pz8tGnTJn366adav3696tat6+CqkRlzTTe2v//+W3PnztW8efPUqlUrLVmyRNLVaYKdnZ01evRojR8/XkeOHFHFihUdWDWuFRERoeTkZNWuXVvJyclydXWVJEVHR6t06dLq06ePEhMTtWDBAnl4eOjxxx/Xr7/+qmrVqunHH39U4cKF6XqRxxw5ckQdO3ZUaGio/P399d577+nrr79WRESE3NzctHXrVpUrV07x8fFycnKSu7u7o0vGdcz/d2FbuXKl+vXrp3r16ik6OlpJSUl688039eijj6pkyZIKDw9XixYtVKtWLS1evJj31tzi2EyDnJBZs9/hw4fNSy+9ZOrVq2c++OAD2/Z58+aZKVOmmI8//tgcO3bsdpaJLEpNTTWnT582TZo0MXfddZd55pln0u3ftm2befXVV02lSpVMgwYNzGOPPWZ2797toGpxI3///bfZvXu3SUhIyLAvKirKjB492tSsWdOMHj3atv3NN980hQsXNtu2bbuNleLfXPseu27dOtOqVSsTHR1t23blyhXToEED88477xhjjElOTjb9+vUz77//vjl9+vRtrxdZc+TIEdO+fXvTtGlT4+vrazp37mzGjx9vwsPDTZUqVcyIESMcXSKyYOPGjaZ06dJm4cKFxhhjLly4YCwWi6levbqZM2eOOXv2rDHGmD179pgKFSqYyMhIB1ZbsNFSUUBs3bpVR48eVffu3W3bDh8+rBkzZmjt2rV68cUXNXDgQAdWiH9jrpvf/vvvv9eYMWN09uxZhYSEqG3btumOj4+Pl7Ozs6xWqzw8PG53ubiJPXv2qFu3burVq5eeffZZ3XPPPZKkkJAQlSlTRp07d1ZkZKRCQ0O1bNkyBQYGKjU1VePGjdOmTZvUoEEDBz8DXCvttXns2DElJyeradOmatKkiT766CN5eXkpKSlJzz33nE6fPq1BgwZpy5Yt+uKLL7Rx40aVLVvW0eVD/1zDhIQE28QXkrRu3Tr98ccfMsbomWeekY+PjySpY8eO6tq1q1544QVHlo1/kZKSonnz5unYsWOaNGmSDh8+rHbt2qljx446f/68vv/+e02ZMkVdunRRqVKllJSUJDc3N0eXXXA5MtHAflar1Vy4cME8+eSTpn79+uaLL75It//w4cPG39/fVKhQwbz33nsOqhJZtXnzZjNgwACTkpJijDHmp59+Mo0bNzZPPvmk2bBhg+245ORkR5WIf3HkyBHj4+NjgoODTVRUVLp9AQEBpmTJkubcuXPGGGNOnjxpxo0bZ4oXL26cnJxoocjDVq5caWrXrm3Cw8NNeHi4KVeunGnfvr2JiYkxxhizatUq06FDB1OmTBlTs2ZNs337dgdXjDRpLU0//PCD6dSpk2nWrJn5z3/+k+H1aczVwfhvvfWWKV26tDl48ODtLhW3YNeuXWbfvn3m0qVLpmXLlqZv377GGGMuXrxoSpQoYcqVK2cWLlxoUlNTbzigGzmDUJFPpb0wrly5YowxZuvWraZnz57mwQcfNMuWLUt3bFBQkKlYsaJp166dOXPmzG2vFVmTmppqJkyYYGrUqGFeeuklW7D49ttvTdOmTc2TTz5pNm7c6OAq8W+mT59u6tevn+m+S5cumU6dOqV7jf7111/m3XffNREREberRGRR2vvsX3/9Zdq3b29CQkJs+/bv32/KlStn2rZtawuJMTEx5siRI3R5yoO++uorU6xYMfPqq6+aL774wlSuXNm0adPG/Prrr7bB919++aXp06ePKVOmDLM85VHXhoLrZ8fbsWOHqV27tvn111+NMVdfo08++aR57rnnmPnpNmGdinzIXLPg0sCBA/Xnn3+qUaNGeu211+Tr66tZs2alW0jLyclJL7/8sm0ObuRNTk5Oeumll9SnTx9t2bJFL7/8slJTU9WpUye9+eabio6O1ttvv63Nmzc7ulTcRLFixRQZGamFCxfq9OnTioiI0O7du/XHH39o06ZNunjxov73v//p0KFD+v333+Xj46PXX39d1apVc3TpuI7FYtGGDRs0YcIEOTs765FHHpEkWa1W1axZUz/99JMOHDigHj16KCYmRl5eXqpUqZJKlSrl4MpxrYMHD+qtt97SO++8o6lTp6pdu3ZKSkrS1q1b1a9fP/3vf/+TJJUqVUqVK1fWunXrmMAkD0r77PPzzz+rT58+6tixo4KDgxURESFJiouL05kzZ3Tu3DmdP39en3/+uYwxCgkJUeXKlR1c/R3CwaEGt2j58uXG09PTDBs2zOzbt8+2/ffffzc9e/Y0tWrVMt27dzd9+vQxJUqUYFB2Hnb9FHcXL140EydONI0aNTKDBg2yfRuzYsUK065dO/PXX385okzcxNGjR8358+eNMcbs3LnTvP7668bX19dUrVrV1KtXz1SoUMFUq1bN1K1b1xQpUsRYLBZTq1Yt4+3tzbfaedxHH31k3N3dTaFChcy6dets29Nel+Hh4aZQoUKmW7durCuSR+3cudO88847JjEx0Zw8edLcc8895qWXXjIXLlwwlSpVMq1atbK1AtO1NG/76quvTNGiRc2gQYPM3Llzzd13321at25tW5urXbt2pmTJkqZ69erm7rvvphvibUaoyIf27NljfHx8bAsupfn7779t/506dap54IEHTNeuXZlbOw9Ka8KNiIgw9evXN6NGjUq3//z58+bNN980vr6+ZtiwYbauUNcvvgXHS0pKMq1btzalS5e2zTJijDEjR460zex05swZY7VazcWLF80bb7xhOnfubHbt2sUsJPnE8uXLjbe3twkICDAHDhywbb/2dfznn386qjz8i5SUFNt6TM8995zp0aOHbQ2Dzp07G4vFYho3bswisHlcdHS0adCggZk2bZox5up7r7e3txkyZEi6QL9w4UKzePFiujw5AN2f8qHTp0+rYsWK6tWrl86dO6f58+erXbt2atKkiQYOHCgnJye9+uqr2rhxo5YuXar77rvP0SXf8axWqyQpOTlZ0tVuFUeOHNE999yjJk2aKCwsTBMmTLAdX7x4cQUFBcnd3V1z587V0KFDJUmFCxe+/cXjplxdXTVz5kyVL19eDzzwgM6dOyfp6jX/4YcfdO7cOVu3wyJFiig2NlaNGzfWfffdp/LlyzuydFzH/P9kiOHh4Vq/fr2+/fZbWa1WdevWTdOnT1dYWJhmzZqlgwcPSrr6OjbGqFq1aqpataojS4euXr+0a/jXX3/p5MmTioiIkLOzs2rUqCFjjCIjI1WnTh3be2nlypW1bds2LVu2jFn08pAPPvhAP//8s1JTU23b0mZH7NOnj44fP66KFSuqS5cumjZtmpycnLRmzRpJ0nPPPaeAgAC6PDmCQyMNsiTt27DExERjjDFbtmwxFovFDB482NSuXdt07tzZDB061EydOtV4e3ubX375xZHl4gYiIiLMwIEDTWpqqvn888+Ns7OzOXnypDl16pQZPHiwadKkiXn77bdtx8fExJiePXuad955h2+086i012ZqaqoJDw83zZo1M/Xr1zfnzp0zGzduNPfff7957bXXzPHjx82ePXvMiBEjTMmSJVnFPg9Ku5bLly83VapUMffee6+pW7euqVixoq2L6ZIlS0zZsmXNkCFDuIZ5zLWTkKxcudLUrVvX1K5d2/j4+Jhhw4bZuo02bdrUtGzZ0qxcudIMGTLElCxZ0tbKj7yjbt26pkyZMmbdunW2lvqoqChToUIFM3/+fFOlShXz/PPP27qr/fnnn6Zjx45m/fr1jiz7jkeoyOOunQrvueees70xLl261DzyyCNm2LBhZv/+/bbjGzVqZL766iuH1IrMpb0hbtq0yVgsFtOmTRvj7OxsFi1aZDvm9OnTZvDgwaZx48bmlVdeMfv27TPDhw83bdq0MbGxsY4qHTdwbTeJpKQk28+vvfaasVgsplGjRub8+fPm3XffNTVr1jQWi8XUrFnT1KlTx/zxxx8OqBhZsWnTJuPp6WnrWrp161ZjsVjM9OnTbccsWbLEeHh4mDfeeCPdtYfjxMTEmLJly5rw8HCzZs0aU7hwYRMSEmKio6PN/PnzjcViMV9//bUxxpjjx4+bKlWqmKpVq5pq1aoxy1Mec+3sTm3atDF+fn5m7dq1ti9Vhw4dagoXLmw6duyY7rwRI0aY+++/nzGHDkaoyAe+/PJLU7x4cRMUFJTuDTCtT2ia4OBgVovMY+bOnWvmz59vLl68aIwxZuzYscZisZjmzZubuLi4dMfGxMSYCRMmmCpVqpgyZcqYSpUqMcgsD/rrr7/MU089ZdasWZNu+6RJk0zJkiXN/PnzTf369U3jxo3NuXPnTHR0tFm+fLnZtWuXOXXqlIOqRlbMnj3b9OvXzxhzdb0RPz8/M3DgQNv+tA88n332GWMo8pAjR46YcuXKmV27dpmRI0eaV155xRhzdRKMqlWrmv79+6c7PikpyRw9ejTdGCjkHdcOln/wwQdtwcKYq9PGPvroo6ZOnTpm7ty5ZunSpeall14ynp6eZufOnQ6qGGkIFXnM9R80d+/ebUqVKmXmzp2bbntMTIzthffpp5+aZ5991nh7e/OtSx7Ttm1bU6NGDfPJJ5+YpKQk8/7775vg4GDj5uZmnn32WXPixAljzD8fVhISEsypU6fMhg0bMl2YCY6XtqDkI488YjZt2mSMMWbixInm7rvvNj///LMx5ur86HXr1jX3338/a8PkMTeboWnQoEHmiSeeMKdOnTLly5c3zz//vO21uWTJEjNmzJjbVSayqUGDBmbcuHGmdevWZurUqSYhIcGULVs23TWcMWMG3YPzuLRrlbaopDHGtGjRwpQrV87WtWnz5s1m8ODBpmTJkub+++83Dz/8sNm9e7dD6kV6hIo8ZNq0aWbAgAEmOTnZ9ofv66+/Nv7+/saYq31GFy1aZDp06GDKli1rRowYYU6ePGlWrVplnnnmmXTdoOBY1zbhPvXUU+bee+81y5Yts3WXWLdunS1YnDx50nbs5s2bb3utyL60/rtdunQx/fv3N6VKlTI//vhjumPCw8NNpUqVTNOmTZlqNI85efKk+f33340xxnzyySe2WbpWr15tHnroIVOyZElbi0XaKrwvv/yy6du3LzOw5TFpr60nnnjCjB071nz22WfmoYceMj4+PubFF1+0dT9NTk42zzzzjBk2bBjd1vKoa7t7/+c//7F9SWOMMS1btkwXLIwxJjY21iQmJmbotQHHIVTkAWlvejNnzrT1B0zrP7hx40ZjsVjMG2+8YRo2bGg6d+5sBg8ebCZNmmTc3d1tH0LTVtZG3nFtE27Xrl1NrVq1zMcff2zrCrV+/Xrj5uZmAgICzJYtW8y4ceNM0aJFzalTp9KFEuRNERERpl27dqZQoUJmypQptu3XBoiIiAhz5MgRR5SHTFitVhMfH28aNWpkunTpYt59911jsVjMnDlzjDFXw0bHjh1NhQoVzPLly40xVz+4jBgxwnh7e/PFTR5x+PBh88EHH5jw8HBbd9+PP/7YtGvXzqxatcrUrVvX1K1b17ZKfWJiohkxYoTx8/Oj21oet2LFClOoUCEzceJEs2XLlnT70oLFunXrbJ+RjDH8vcxDCBUOlvYB5PDhw2b8+PHGGGN+++23dF1j5s6da/z9/U1QUFC6Jr5GjRpl+HYUeUNmTbhdu3Y1tWvXThcsNm7caLy9vU3dunVN6dKlzbZt2xxSL27NoUOHTPv27c3DDz9sWzzLmJt3sYHjHTp0yJQvX95YLBZbK8W1+5o1a2Zq165typcvb1q3bm3Kly9P19I8IikpyfznP/8xfn5+plKlSsbT09N07NjRVK5c2ZQrV86cPXvWrFixwtSrV8/UqlXLdOnSxTz88MOmVKlSXMM8LjIy0tSsWdO2DkWaawPEQw89ZIoUKZLu/RZ5h8WY/5/UGbed1WqVk5OTdu3apfr16+vtt9/WiBEjNGPGDC1cuFANGzbU22+/rdKlS+vy5csqUqSI7dwRI0bos88+08aNG1W2bFkHPgvcyO+//6533nlHr7zyitq0aSNJevzxx3Xo0CG98cYb6tq1q4oWLaojR44oOjpaFSpU4FrmQwcPHtQrr7wiY4zeeustPfDAA44uCTdg/n8dgytXrqhWrVpKSkpS69atNWTIEDVp0sR2XHR0tPbv369ff/1VdevWVd26dVWhQgUHVo5rXblyRYULF9bBgwcVHh6uyMhIbdiwQXv27FHNmjX18ccf6/Dhw/ruu++0b98+1a1bV127dmUtkTxux44devzxx/XNN9/Y1tcyxshisSg1NVXOzs6SpE6dOmn69Olcz7zIkYnmTpb2Tea+fftMoUKFMnxb9sEHH5hmzZqZ3r17p+tz//XXX5uAgAC+dckHvvrqK9OwYUPz1FNPmXXr1tm2p7VYLFmyxNZigfztzz//NI8++qhp2rQp42LyqLTWw3379pnExESTlJRk9u7da6pUqWKeeOIJrls+cqPuLitXrjRNmzY1nTp1srUS0zUm77r+2vz++++27k3XH/PLL7/QMyMfYEVtB0hrodi7d69atmypihUrasyYMZKkhIQESdKgQYPUo0cPHTp0SCNHjlR0dLQk6dKlS0pJSdG6detUv359Rz0FZEGXLl00evRonT59WjNmzND69eslSStXrlSNGjU0bNgw/fDDDw6uEjmhatWqmjx5ssqVK6cyZco4uhxcx/z/t50rV65Uhw4dFBwcrMTERN17771aunSpdu3apalTp2rz5s2SrrYEjx8/3sFV40bSVlZOY7VaJUmdO3fWkCFDdOnSJT366KOKjY3NcCzyDovFok2bNmnnzp2SpAoVKsjZ2VkhISE6f/687RhJ+vbbb/X5558rPj7etmo68iBHp5o7TVoLxc6dO03hwoVNq1atTJkyZWzzahuTvv/gzJkzzQMPPGD69etnoqOjjTEZ16eA4137Lej1gzm//vpr07p1a9OlSxfz66+/2rb36tXLHD58+LbWidx17WsXecuPP/5oPDw8zIIFC8zRo0eNMf+8brdt22buvfde07RpU9O+fXtTuHBhWi7ymbRrabVazeLFi83DDz9sjh8/7uCqcDPnz583jz32mClTpoxtTaa1a9caDw8P8+STT5pVq1aZTZs2mSFDhpjixYubvXv3Orhi/BvGVDjAtm3b1KxZM40cOVJvvvmmFixYoJEjR+rpp5/WjBkzJElJSUlyc3OTJM2aNUsffvihWrVqpZkzZ9r6FcJx0lqbUlJS5OLiopSUFJ09e1bt27fXfffdpxEjRqhGjRq247/66iv169dPDz74oF5++WXbGAsAuS8lJUUDBgxQ0aJFNWPGDFvLRUpKipydnWWxWLR7924tW7ZMcXFxGjhwoGrVquXospFNadfVGKNLly6pWLFiji4JmUi7TpK0adMmTZ8+XXv27NGnn36q+++/X7///rv69u2rS5cuyWKx6K677tKCBQtUr149xxaOf0WocIANGzZo+fLltgBx4cIFLVu27KbBYu7cuWrfvr0qVqzoqLLx/9ICxeHDh7V48WKdOXNGvXr1kr+/vz788EMtXrxY9erV05AhQ1SzZk3bee3bt9euXbv08MMP68MPP1ShQoVomgdug6SkJDVu3FitW7fWtGnTJKX/YBMXFydPT0+lpKTIyclJTk70DM6vrr2ucLy0v5eSlJycLFdXVyUkJMjDw8N2zObNmzVp0iSFh4dr6dKlatCggc6dO6fz588rKSlJ3t7eKlGihKOeArKBd04HaNGihS04GGNUvHhx9ejRQ++8846WLl2qwYMHS5Lc3NyUmJgoSXr++ecJFHlA2hvknj171KZNG505c0blypXT/fffL0l68cUX1b9/f23btk0zZszQgQMHJF39prRy5cp67bXX9M4776hw4cL84QNyUdr3ZcYYOTk5qW7dujp16pRiY2MlyfaN9v79+zV8+HCdPXtWLi4uBIp8jvfVvMXJyUnHjx+XMUaurq767bff1K5dOx09etR2jL+/v9544w1VrFhRvXr10r59+1SiRAlVqlRJ1atXJ1DkIy6OLuBOl/YG6OnpqR49ekiSRo4cKWdnZ02dOlXu7u6OLA/XSWuhaN++vXr37q13333Xti+tK1S/fv0kXW1dCg4OVps2bXTixAn9/PPP2rx5s0qVKuWo8oEC7/pvqi0Wi1xcXOTv76/XXntN/v7+6tGjh0qVKiWLxaLPP/9cGzZssH2BAyDnJCYmqkePHoqKitKxY8eUmpqqK1euqF+/flqwYIHty1J/f389/fTTCgwMVNu2bfXjjz/appVF/kGoyEPSgoWTk5Oef/55ubu7a+LEiY4uC//P/P8c9wsWLNADDzyg4cOHp9vv4uJia8no16+f7r77bn366ad67733VKpUKX3xxRcECiAXpQWKDRs26Ouvv1ZKSopq1KihgQMH6oUXXtDJkyc1fvx4rVmzRp6enkpISNDq1au1fv16+fr6Orp8oMBxc3PT5MmTNXDgQPn7+2vz5s16//33NXz4cPXu3VuLFi1SpUqVJEnVq1e3dfO+dl0u5B+MqciDLly4oK+++kr+/v6qVq2ao8vBdR588EFVr15d8+fPz7AvLVSk9RlNSEjQpUuX5OzsTBMucBusXLlSgYGBeuyxx5SSkqK9e/eqcePGWrBggSTpo48+0t69e7Vt2zbVqVNHAwYMYFA2kEOuHUNx7batW7cqICBAJUuW1ObNm7Vp0yaNHDlSqamptmAxbtw4nTx5UtOmTWOQfT5FqMijGGyW91itVsXHx6tp06bq2rWrxo8fb+vydL3Ro0fr8ccfZ7YK4Dbatm2bnnrqKQ0fPlwDBgzQgQMH1KJFC124cEGPPPKIVq5caTs2bW0DxlAAOSMtUERHR+vYsWNq2rSpbV9ycrL++OMP9ezZU6VKldKWLVu0ZcsWjRw5UmvXrlXDhg21f/9+bd68WXXq1HHgs4A9eDfNowgUeY+Tk5OKFCmixo0ba9GiRTp06JBcXFxs3aLSHD16VJs2bVJKSooDqwUKrrRAYIyx/SxJ4eHhat++vQYMGKDIyEg98sgjevTRR/Xhhx9q9erVtvFOkpjlCchhTk5OOnHihGrXrq1mzZqpdevWGjFihNasWaP4+Hg1btxYn332mRISEtSoUSM1bdpUP/30k+bOnau+fftq165dBIp8jndUIJs6duyolJQUvfXWWzp8+LAsFku6EPjRRx8pMTGR2bqAXJD2beiff/6pV155RU8++aSmTJkiSXr22WfVr18/paamasCAAXrwwQcVGhqqLl26qHz58goNDVWvXr0c/AyAgstqtap8+fKqVq2aLl26pL///ludOnVSy5YtFRAQoKNHj2rkyJG6cOGC2rZtaxuDOGDAAFWuXNnR5cNOhAogE2ktD9d+C5rmqaeeUkBAgH766ScNGDBAGzdu1Llz5/S///1PgwYN0vTp0/Xhhx/Ky8vrdpcNFGhpgWLXrl1q3ry5/vrrL7m7u2vEiBGaNGmSJKlRo0b666+/dOLECfXp00fS1W9QmzRpoo8++kjjx4935FMACrQKFSroiy++UK1atVS2bFkNHDhQEREReuONN3TkyBG99957eu655+Th4aE1a9aoW7dukiR64hcMzP4EXGfRokX6448/NHXqVDk7O6cbeJb286RJk+Tp6ally5apVatWKlGihLy9vVWsWDGtX7+eqfCAHJb22tu9e7f8/f316quv6p133pHVapWXl5eio6NtEyR4eHgoMTFRX375perVq6fJkycrIiJCU6dOZQY2IJdVqVJFEydO1ODBg/XWW2/pnXfeUY8ePdSjRw+dP39e33zzjQ4cOCAXFxeNGjVKEl2+CwoGagP/z2q1Kjk5WUOHDtXmzZvVsWNHjR07NkOwSE1NlbOzsyTp8OHDCg8PV1RUlOrUqaPKlSvzoQXIJSdOnND999+v1q1b6/PPP7dt79GjhyIiIpSQkKCKFSuqW7duunz5siZPnixnZ2clJSXphx9+UP369R1YPXBnOXjwoF5++WVJUnBwsFq2bJlu/40mOkH+RagA/t/JkydVtmxZnTt3TlOmTFFYWJjatGmj8ePH37DFAsDtc+zYMf3nP/+Rr6+vhg0bpgceeEDvvvuuxo8fr+DgYPn6+mrKlClyd3fX+++/Ly8vLx08eFD169dX+fLlHV0+cMc5ePCgXnnlFRljNGrUKDVr1szRJSEXESoASV9++aVef/11LVmyRM2aNdP58+f17rvvat26dTcMFgBuv7QPKW5ubvL29taqVav08ccfq3379pKk48ePq1KlSpozZ4769+/v4GoBHDx4UEFBQYqNjdW0adPSTTWLgoVPR4CurmZep04dDRkyRJs3b9Zdd92l4cOHq1WrVlqzZo3eeustpaamysnJKdPB2wBuj6pVq2rGjBmKj4/XkiVLNGzYMLVv317GGCUnJ8vFxUV16tSxLTbJ92aAY1WtWlWTJ09WuXLlVKZMGUeXg1xESwXw/9avX68ZM2bo2LFj+uCDD2wtFpMmTdLatWvVunVrjR8/Xi4uLunGVQC4/Q4fPqwXX3xRzs7OCg4O1oMPPihJGjVqlD755BOtX7+eLk9AHpKUlCQ3NzdHl4FcRKjAHe/a1cvXrl2rmTNn6vjx45kGi7Zt22rMmDEMLgPygGv7a0+cOFE///yzRo8erd9++41B2QBwmxEqgOusX79eU6dO1YkTJ9IFiylTpuiLL77QM888Y5sGD4BjpfXX3rp1q86dO6fNmzerQYMGji4LAO44hArcsdJaKLZv325bLKtnz54qWbKktm7dqgkTJigyMtIWLM6dO6f3339fAQEBrJYN5CEREREaNmyYJkyYoHvvvdfR5QDAHYlQgTva8uXLNXDgQNWvX1+HDh1S8eLF1bdvXw0aNEjr1q3TzJkzdfLkSU2ePFktWrRI11UKQN6RnJwsV1dXR5cBAHcsZn/CHWvHjh0aNGiQ/vvf/+rHH3/UmjVrtHPnTl25ckWS1KpVKwUFBalIkSIaNWqUEhISHFwxgBshUACAY9FSgQLv+taFtN+/+OILzZ49W2vWrFFERIQefvhhPfTQQ5o3b54k6fTp0/L29tamTZtUsWJFlStXzlFPAQAAIE+jpQIFmtVqlcViUUxMjLZt26bt27fbAsbJkyfl6emp1NRUtWvXTu3atdOcOXMkSatWrdKcOXOUmJio5s2bEygAAABugnkxUWClrX69f/9+Pf/88ypWrJgKFy6szz//XM7OzurYsaPGjx+vQoUKaeDAgZoxY4bt3LCwMEVGRioxMVHu7u4OfBYAAAB5H6ECBZIxRk5OTtq3b5+aN2+uF198UQMGDFC5cuXk5OQkY4zuueceDRs2TO+//76tJeLo0aOaN2+ePvnkE23cuFGenp4OfiYAAAB5H2MqUGCdPXtWXbp00f3335+uFeLaMRZHjhzRwoULNW3aNJUoUUIlSpRQUlKSPv30UxbPAgAAyCJCBQqs/fv3q3PnzgoNDVXz5s3l5JR+CFFauEhOTtbRo0e1efNmVapUSVWqVFGZMmUcVDUAAED+Q/cnFFg7d+7U8ePH9eCDD8pisdjGWKSxWCy6cuWK9u7dq8aNG6tatWoOrBYAACD/YvYnFFgVK1aUi4uLVqxYIUkZWiokKTQ0VG+++aaSkpJud3kAAAAFBqECBVaFChXk6empjz76SMePH7dtv7bH37Fjx9SgQQMWzgIAALADoQIFVtmyZTV79mz9+OOPeuutt7R//35J/3R7GjFihL788ksFBgamWxwPAAAA2cNAbRRoVqtV8+bN00svvaQqVarI399fHh4eOnnypLZs2aLVq1czyxMAAICdCBW4I2zdulWTJ0/WoUOHVKxYMTVr1kx9+/ZV1apVHV0aAABAvkeowB0jNTVVzs7Oji4DAACgwGFMBe4Y187+RJYGAADIObRUAAAAALALLRUAAAAA7EKoAAAAAGAXQgUAAAAAuxAqAAAAANiFUAEAAADALoQKAAAAAHYhVAAAAACwC6ECAAAAgF0IFQAAAADsQqgAAAAAYBdCBQAAAAC7/B9mTkgZ3r9LLQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "CellSAM vs Cellpose - Cyto3 Comparision by Data Type\n", @@ -1351,20 +1224,6 @@ "plt.show()" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -1374,7 +1233,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1382,8 +1241,8 @@ "from pathlib import Path\n", "import numpy as np\n", "\n", - "cellsam_path = Path('/home/ulisrael/AllCell/livecell/cellsam')\n", - "cellpose_path = Path('/home/ulisrael/AllCell/livecell/cellpose')\n", + "cellsam_path = Path.cwd() / \"livecell/cellsam\"\n", + "cellpose_path = Path.cwd() / \"livecell/cellpose\"\n", "\n", "\n", "c1 = \"#fdbb84\"\n", @@ -1425,20 +1284,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAJRCAYAAADRdhTRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOxhJREFUeJzt3XtcVXW+//H3BmEjXjAlLnlQVDRFTRTC8JqFUjqZ3UQbB8PLeLw0FqNN5BzRtOhiSjko6aT2K2+jNXO6mI0xWnLUsTSdLmZpKk4CSiYoIBjs3x+Ou74BBYIs3Lyej8d6DPu7vmvvz2JWi7ff9V1r2xwOh0MAAAD/4WZ1AQAAoH4hHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEgyvkgQceUHBwsNFms9k0Z84cS+qB6+DYQm3hWKpbc+bMkc1mU25urtWl/KJGtfEmmZmZlu+sr6+v2rRpU6P3OHz4sJ555hlt2bJFJ06ckKenp7p3766RI0fqt7/9rRo3blxL1aIq6sNxJV29x9Ynn3yiuXPn6sMPP1ROTo5atWql0NBQDR8+XA8++GCF24wcOVIbNmzQI488oqeffrrc+m3btmnQoEGSpFdeeUVjxowp16dv377asWOHunbtqk8//bR2d6oG6sPxVNNjyapz1NVwLD3wwAN6+eWXK1z3zjvv6Lbbbvul3bwqLVmyRN7e3nrggQdq9X1rHA4yMzPV5frrVXj+fG3Uc9m8vbx04ODBy/4P7+2339Z9990nu92uuLg4devWTSUlJcrIyNDMmTP12WefadmyZbVcNSqTmZmpLl26qLCw0OpS5O3trQMHDlxVx9aOHTs0aNAgtWnTRhMnTlRAQICOHz+uXbt26fnnn6/whJ6fn68333xTwcHBWrt2rZ566inZbLYK39/Ly0tr1qwpd0I/evSoduzYIS8vr1rdn5rKzMzU9Z276HyRtceTV2NvHfzi8o4lq85RV9OxZLfb9ec//7lce48ePar8HlebJUuWyNfXt/6Fg9zcXBWeP68XegQrpKk1/7I+dK5Iv9t/VLm5uZf1H92RI0c0atQotW3bVv/4xz8UGBjoXDd16lQdOnRIb7/9dm2WjF+Qm5urwsJCLVy6QiEdO1tWx6GvvlDC5HFX3bH1xBNPyMfHRx9++KFatGhhrDt58mSF27z22msqLS3VihUrdMstt+iDDz7QwIEDK+w7dOhQvfHGG8rNzZWvr6+zfc2aNfL391fHjh313Xff1dr+1FRubq7OFxWq7T2J8rq2ZqNAl+v8qUwdey35so4lK89RV9Ox1KhRowpHIFB9tTbnIKRpY3X38bZkqWkoeeaZZ3Tu3Dm99NJLxn90zn0LCdH06dOdr1999VWFh4ercePGatmypUaNGqXjx49X+3MvXX/64osvNHLkSDVv3lytWrXS9OnTdf4nIzHff/+95s2bpw4dOshutys4OFiPPfaYiouLjX4fffSRYmJi5Ovrq8aNG6tdu3YaN26c0aesrEwpKSnq2rWrvLy85O/vr0mTJtWrk/klIR07q1uPnpYtNQ0mVh1bhw8fVteuXcudzCXJz8+vwm1Wr16twYMHa9CgQerSpYtWr15d6fvfeeedstvt2rBhg9G+Zs0ajRw5Uu7u7tWuuS54XdtG3td1smSpSSip7nEkcSxVpCrnvoSEBLVq1UoOh8PZ9uCDD8pms+mFF15wtuXk5Mhms2np0qXOtsWLF6tr167y9vbWNddco4iICK1Zs6ZcHWfOnNEDDzygFi1ayMfHR/Hx8eVGSatyzg8ODtZnn32m999/XzabTTabTTfffHNt/KqYkChJb775ptq3b68+ffr8Yt8nnnhCcXFx6tixoxYuXKiHHnpI6enpGjBggM6cOXNZnz9y5EidP39eycnJGjp0qF544QX99re/NfpMmDBBs2fPVq9evbRo0SINHDhQycnJGjVqlLPPyZMnNWTIEB09elSPPvqoFi9erF//+tfatWuX8V6TJk3SzJkz1bdvXz3//POKj4/X6tWrFRMTowsXLlzWPqBiVh1bbdu21Z49e6p8zf/EiRPaunWrRo8eLUkaPXq0Nm7cqJKSkgr7e3t7684779TatWudbfv379dnn32m+++/v1q14pdV5ziSGvaxlJubayx5eXnOdVU59/Xv31+nT5/WZ5995txu+/btcnNz0/bt2402SRowYIAkafny5frd736n0NBQpaSkaO7cuQoLC9M///nPcjWOHDlSZ8+eVXJyskaOHKlVq1Zp7ty5Rp+qnPNTUlL0X//1X+rcubNeeeUVvfLKK5o1a1a1f2cVqZUJiVez/Px8ffPNN7rzzjt/se+xY8eUlJSk+fPn67HHHnO233333erZs6eWLFlitFdVu3bt9L//+7+SLg4RNm/eXEuWLNGMGTN0ww03aP/+/Xr55Zc1YcIELV++XJI0ZcoU+fn5acGCBdq6dasGDRqkHTt26LvvvtPf//53RUREON9//vz5zp8zMjL05z//WatXrzb+wxs0aJBuu+02bdiwgZN7LbHy2JoxY4Zuv/12hYWFKTIyUv3799ett96qQYMGycPDo1z/tWvXym63O2sdNWqUZs+erU2bNmnEiBEVfsb999+vO+64Q8ePH1dQUJBWr16t9u3b66abbqpynfhl1TmOpIZ9LBUUFOjaa6812gYOHKht27ZV+dzXr18/SRf/+Hfr1k15eXn65JNPdM899+iDDz5wbrd9+3a1bNlSoaGhki7OCenatWu5EZCK9OzZUy+99JLz9bfffquXXnrJOXGzquf8ESNG6I9//KN8fX1r/XJKgx85yM/PlyQ1a9bsF/u+/vrrKisr08iRI41kGhAQoI4dO2rr1q2XVcPUqVON15cm+GzatMn434SEBKPf73//e0lyXmu8NOz31ltvVToCsGHDBvn4+Gjw4MHGPoSHh6tp06aXvQ8oz8pja/Dgwdq5c6eGDx+u/fv365lnnlFMTIxat26tN954o1z/1atXa9iwYc5aO3bsqPDw8J8dDh4yZIhatmypdevWyeFwaN26dc5/LaL2VOc4khr2seTl5aUtW7YYy3PPPSep6ue+a6+9Vp07d3YGgf/7v/+Tu7u7Zs6cqZycHH311VeSLoaDfv36OSdatmjRQv/+97/14Ycf/mKd//3f/2287t+/v7799lvn/9dVPedfSQ1+5KB58+aSpLNnz/5i36+++koOh0MdO3ascH1FKboqfvp+HTp0kJubm44ePSrp4r8E3NzcFBISYvQLCAhQixYtdOzYMUkXE/I999yjuXPnatGiRbr55ps1YsQI3X///bLb7c59yMvLq/RaYWUTjFB9Vh9bN954o15//XWVlJRo//79+utf/6pFixbp3nvv1b59+5z/4jlw4IA+/vhjxcXF6dChQ87tb775ZqWmpio/P9+5Lz+t6b777tOaNWsUGRmp48ePM+p0BVTnOJIa9rHk7u6u6OjoCtdV59zXv39/5x/o7du3KyIiQhEREWrZsqW2b98uf39/7d+/36jxD3/4g9577z1FRkYqJCREQ4YM0f3336++ffuW+6yfTki95pprJEnfffedmjdvXuVz/pVEOGjeXNddd12VrqeVlZXJZrPpnXfeqXCSTNOmTWulpspu+ams/cfrN27cqF27dunNN9/Uu+++q3Hjxum5557Trl271LRpU5WVlcnPz6/SFP/TITlcvvpybHl6eurGG2/UjTfeqE6dOik+Pl4bNmxQUlKSpIsT1yTp4Ycf1sMPP1xu+9dee03x8fEVvvf999+vtLQ0zZkzRz169HD+kUDtqc5xJHEsVaY6575+/fpp+fLl+vrrr7V9+3b1799fNptN/fr10/bt23XdddeprKxM/fv3d27TpUsXHTx4UG+99ZY2b96s1157TUuWLNHs2bPLzSeobJLljydBSr98zr+SGnw4kKRf/epXWrZsmXbu3KmoqKhK+3Xo0EEOh0Pt2rVTp06dau3zv/rqK7Vr1875+tChQyorK3M+uaxt27YqKyvTV199pS5dujj75eTk6MyZM2rbtq3xfjfddJNuuukmPfHEE1qzZo1+/etfa926dZowYYI6dOig9957T3379uWhTnXA6mPrpy7NRcnKypJ08WS0Zs0aDRo0SFOmTCnXf968eVq9enWlJ/R+/fqpTZs22rZtW4UPukHtqOpxJHEsVaY6575Lf/S3bNmiDz/8UI8++qiki5MPly5dquuuu05NmjRReHi4sV2TJk0UGxur2NhYlZSU6O6779YTTzyhxMTEaj2voTrn/CsVIBr8nANJeuSRR9SkSRNNmDBBOTk55dYfPnxYzz//vO6++265u7tr7ty55RKew+HQt99+e1mfn5qaarxevHixJOn222+XdPE+YOnizNQfW7hwoSRp2LBhki4OSf20rrCwMEly3v4ycuRIlZaWat68eeXq+P777y/7jgtUzKpja+vWreXeR/rhWub1118v6eL11KNHjyo+Pl733ntvuSU2NlZbt27ViRMnKvycS7d3JSUl6Te/+U21akTVVfU4ksSxVInqnPvatWun1q1ba9GiRbpw4YLz0kD//v11+PBhbdy4UTfddJMaNfrh39c//b16enoqNDRUDoej2neBVfWcL10MJFfivF1rIweHzhXV1lvV+Wd36NBBa9asUWxsrLp06WI8fWzHjh3asGGDHnjgAU2fPl3z589XYmKijh49qhEjRqhZs2Y6cuSI/vrXv+q3v/2tZsyYUe3PP3LkiIYPH67bbrtNO3fu1Kuvvqr777/f+VSvHj16aOzYsVq2bJnOnDmjgQMHavfu3Xr55Zc1YsQI5yNIX375ZS1ZskR33XWXOnTooLNnz2r58uVq3ry582AbOHCgJk2apOTkZO3bt09DhgyRh4eHvvrqK23YsEHPP/+87r333hr9PmvToa++uKo/36pj68EHH1RhYaHuuusude7c2fl569evV3BwsPNfb6tXr5a7u7txsvmx4cOHa9asWVq3bl25yVGX3HnnnVWeSW+186cyr8rPrupxdKkvx1J51T339e/fX+vWrVP37t2dcwJ69eqlJk2a6Msvvyw3J2LIkCEKCAhQ37595e/vrwMHDuhPf/qTMTmzqqp6zpek8PBwLV26VPPnz1dISIj8/Px0yy231OA39R+OGjp27JjD28vLIcnSxdvLy3Hs2LEa7cuXX37pmDhxoiM4ONjh6enpaNasmaNv376OxYsXO86fP+/s99prrzn69evnaNKkiaNJkyaOzp07O6ZOneo4ePCgs8/YsWMdbdu2Nd5fkiMpKcn5OikpySHJ8fnnnzvuvfdeR7NmzRzXXHONY9q0aY6ioiJj2wsXLjjmzp3raNeuncPDw8MRFBTkSExMNOrau3evY/To0Y42bdo47Ha7w8/Pz/GrX/3K8dFHH5Xb12XLljnCw8MdjRs3djRr1szRvXt3xyOPPOI4ceJEjX6HteXYsWMOb29vy48rSQ5vb++r7th65513HOPGjXN07tzZ0bRpU4enp6cjJCTE8eCDDzpycnIcDofDUVJS4mjVqpWjf//+P1t7u3btHD179nQ4HA7H1q1bHZIcGzZs+NltBg4c6OjatWtVfjV14tixYw6vxtYfT16Na3YsVfU4cjga3rE0duxYR5MmTX6xX1XPfampqQ5JjsmTJxvt0dHRDkmO9PR0o/3FF190DBgwwNGqVSuH3W53dOjQwTFz5kxHXl6es8+lc/6pU6eMbVeuXOmQ5Dhy5IizrSrnfIfD4cjOznYMGzbM0axZM4ckx8CBA3/xd1AVNoejgvGianKFLzSxwpw5czR37lydOnXKeGwoLqoPx5V0dR5bKK8+HE8cS7ha1MplhTZt2nDAo9ZxXKE2cTwBVceERAAAYCAcAAAAQ63MOQAAAK6DkQMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsJBDTkcDuXn58vhcFhdCgAAtYJwUENnz56Vj4+Pzp49a3UpAADUCsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAABDI6sLAC7JyspSVlZWtbcLDAxUYGDgFagIABomwgHqjRdffFFz586t9nZJSUmaM2dO7RcEAA2UzeFwOKwu4mqWn58vHx8f5eXlqXnz5laXc1WraOSgqKhI/fr1kyRlZGSocePG5bZj5AAAahfhoIYIB1dWQUGBmjZtKkk6d+6cmjRpYnFFAOD6mJAIAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGHoKECmVmZio3N9fqMlRUVOT8ed++fRU+58AKvr6+atOmjdVlAMAVwXMOasgVn3OQmZmpLtdfr8Lz560upd7y9vLSgYMHCQgAXBIjBygnNzdXhefP64UewQppau2/1M+XlunuXQclSa/fdL283K2/EnboXJF+t/+ocnNzCQcAXBLhAJUKadpY3X28La2h8PtS589dmzeWdyN3C6sBgIbB+n+GAQCAeoVwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwMCtjKg3cs5f0MniC0bb+dIfbmX8LL9QXu7lb2X0s3vI38vjitcHAA2Fy4WD1NRUPfvss8rOzlaPHj20ePFiRUZGVtr/zJkzmjVrll5//XWdPn1abdu2VUpKioYOHVqHVUOSVmee0qJDWZWuv3vXlxW2PxwSqIRO112psgCgwXGpcLB+/XolJCQoLS1NvXv3VkpKimJiYnTw4EH5+fmV619SUqLBgwfLz89PGzduVOvWrXXs2DG1aNGi7ouHft3mWg32b1Ht7fzsjBoAQG1yqXCwcOFCTZw4UfHx8ZKktLQ0vf3221qxYoUeffTRcv1XrFih06dPa8eOHfLwuPgHJjg4uC5Lxo/4e3F5AADqA5eZkFhSUqI9e/YoOjra2ebm5qbo6Gjt3Lmzwm3eeOMNRUVFaerUqfL391e3bt305JNPqvRH17l/qri4WPn5+cYCAIArcZlwkJubq9LSUvn7+xvt/v7+ys7OrnCbr7/+Whs3blRpaak2bdqk//mf/9Fzzz2n+fPnV/o5ycnJ8vHxcS5BQUG1uh8AAFjNZcLB5SgrK5Ofn5+WLVum8PBwxcbGatasWUpLS6t0m8TEROXl5TmX48eP12HFAABceS4z58DX11fu7u7Kyckx2nNychQQEFDhNoGBgfLw8JD7j26P69Kli7Kzs1VSUiJPT89y29jtdtnt9totHgCAesRlRg48PT0VHh6u9PR0Z1tZWZnS09MVFRVV4TZ9+/bVoUOHVFZW5mz78ssvFRgYWGEwAACgIXCZcCBJCQkJWr58uV5++WUdOHBAkydPVkFBgfPuhbi4OCUmJjr7T548WadPn9b06dP15Zdf6u2339aTTz6pqVOnWrULAABYzmUuK0hSbGysTp06pdmzZys7O1thYWHavHmzc5JiZmam3Nx+yENBQUF699139fDDD+uGG25Q69atNX36dP3hD3+wahcAALCcS4UDSZo2bZqmTZtW4bpt27aVa4uKitKuXbuucFUAAFw9XOqyAgAAqDnCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGBpZXQCAupWVlaWsrKxqbxcYGKjAwMArUBGA+oZwADQwL774oubOnVvt7ZKSkjRnzpzaLwhAvUM4ABqYSZMmafjw4UZbUVGR+vXrJ0nKyMhQ48aNy23HqAHQcBAOgAamossDBQUFzp/DwsLUpEmTui4LQD3ChEQAAGAgHAAAAAPhAAAAGFwuHKSmpio4OFheXl7q3bu3du/eXWnfVatWyWazGYuXl1cdVgsAQP3jUuFg/fr1SkhIUFJSkvbu3asePXooJiZGJ0+erHSb5s2bO+/7zsrK0rFjx+qwYgAA6h+Xulth4cKFmjhxouLj4yVJaWlpevvtt7VixQo9+uijFW5js9kUEBBQl2UCTpmZmcrNzbW6DBUVFTl/3rdvX4W3MtY1X19ftWnTxuoygAbJZcJBSUmJ9uzZo8TERGebm5uboqOjtXPnzkq3O3funNq2bauysjL16tVLTz75pLp27Vpp/+LiYhUXFztf5+fn184OoMHJzMxUly5dVFhYaHUphkvPO7Cat7e3Dhw4QEAALOAy4SA3N1elpaXy9/c32v39/fXFF19UuM3111+vFStW6IYbblBeXp4WLFigPn366LPPPtN//dd/VbhNcnLyZT1dDvip3NxcFRYWauHSFQrp2NnSWs4XFWnkHbdKkv7yZrq8LB45OPTVF0qYPE65ubmEA8ACLhMOLkdUVJSioqKcr/v06aMuXbroxRdf1Lx58yrcJjExUQkJCc7X+fn5CgoKuuK1wnWFdOysbj16WlpD4Y8eghTavYe8eQgS0KC5TDjw9fWVu7u7cnJyjPacnJwqzynw8PBQz549dejQoUr72O122e32GtUKAEB95jJ3K3h6eio8PFzp6enOtrKyMqWnpxujAz+ntLRUn3zyCc+QBwA0aC4zciBJCQkJGjt2rCIiIhQZGamUlBQVFBQ4716Ii4tT69atlZycLEl6/PHHddNNNykkJERnzpzRs88+q2PHjmnChAlW7gYAAJZyqXAQGxurU6dOafbs2crOzlZYWJg2b97snKSYmZkpN7cfBku+++47TZw4UdnZ2brmmmsUHh6uHTt2KDQ01KpdAADAci4VDiRp2rRpmjZtWoXrtm3bZrxetGiRFi1aVAdVAQBw9XCZOQcAAKB2uNzIAYCfdzI7Sydzso228+d/eELi55/ul5dX+ecc+PkHyC+AybpAQ0A4ABqYNf/vJb3w7BOVrh/5q1srbP/dzFl66JE/XqmyANQjhAOggbk/bryiY4ZVezs/f76DBGgoCAdAA+MXEMjlAQA/iwmJAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGBpZ+eFlZWV6//33tX37dh07dkyFhYW69tpr1bNnT0VHRysoKMjK8gAAaJAsGTkoKirS/PnzFRQUpKFDh+qdd97RmTNn5O7urkOHDikpKUnt2rXT0KFDtWvXLitKBACgwbJk5KBTp06KiorS8uXLNXjwYHl4eJTrc+zYMa1Zs0ajRo3SrFmzNHHiRAsqBQCg4bEkHPz9739Xly5dfrZP27ZtlZiYqBkzZigzM7OOKgMAAJZcVvilYPBjHh4e6tChwxWsBgAA/Fi9vVuhoKBAH3zwgdVlAADQ4NTbcHDo0CENGjTI6jIAAGhw6m04AAAA1rDsOQctW7b82fWlpaV1VAkAAPgxy8JBcXGxJk+erO7du1e4/tixY5o7d2613zc1NVXPPvussrOz1aNHDy1evFiRkZG/uN26des0evRo3Xnnnfrb3/5W7c8FAMBVWBYOwsLCFBQUpLFjx1a4fv/+/dUOB+vXr1dCQoLS0tLUu3dvpaSkKCYmRgcPHpSfn1+l2x09elQzZsxQ//79q/V5AAC4IsvmHAwbNkxnzpypdH3Lli0VFxdXrfdcuHChJk6cqPj4eIWGhiotLU3e3t5asWJFpduUlpbq17/+tebOnav27dtX6/MAAHBFlo0cPPbYYz+7PigoSCtXrqzy+5WUlGjPnj1KTEx0trm5uSk6Olo7d+6sdLvHH39cfn5+Gj9+vLZv3/6Ln1NcXKzi4mLn6/z8/CrXCADA1cBl7lbIzc1VaWmp/P39jXZ/f39lZ2dXuE1GRoZeeuklLV++vMqfk5ycLB8fH+fCl0MBAFyNZeFgwIABxmWFN954Q0VFRXX2+WfPntVvfvMbLV++XL6+vlXeLjExUXl5ec7l+PHjV7BKAADqnmWXFTIyMlRSUuJ8PWbMGO3bt++yr/v7+vrK3d1dOTk5RntOTo4CAgLK9T98+LCOHj2qO+64w9lWVlYmSWrUqJEOHjxY4WOb7Xa77Hb7ZdUIAMDVoN5cVnA4HDXa3tPTU+Hh4UpPT3e2lZWVKT09XVFRUeX6d+7cWZ988on27dvnXIYPH65BgwZp3759XC4AADRYlo0cXAkJCQkaO3asIiIiFBkZqZSUFBUUFCg+Pl6SFBcXp9atWys5OVleXl7q1q2bsX2LFi0kqVw7AAANiaXh4N1335WPj4+kH/6V/+mnnxp9hg8fXuX3i42N1alTpzR79mxlZ2crLCxMmzdvdk5SzMzMlJtbvRksAQCgXrI0HPz0AUiTJk0yXttstmo/RnnatGmaNm1aheu2bdv2s9uuWrWqWp8FAIArsiwcXJr8BwAA6hfG2AEAgIFwAAAADIQDAABgIBwAAAAD4QAAABjqVTiYMmWKcnNzrS4DAIAGrV6Fg1dffZWvQAYAwGL1KhzU9PsVAABAzdWrcAAAAKxXr7546ezZs1aXAAA1lpWVpaysrGpvFxgYqMDAwCtQEVA99SocAIArePHFFzV37txqb5eUlKQ5c+bUfkFANREOAKCWTZo0qdw3yhYVFalfv36SpIyMDDVu3LjcdowaoL4gHABALavo8kBBQYHz57CwMDVp0qSuywKqjAmJAADAQDgAAACGehsODh8+rFtuucXqMgAAaHDq7ZyDc+fO6f3337e6DABXuczMzHrxWPaioiLnz/v27atwQqIVfH191aZNG6vLQD1jWTh44YUXfnb9N998U0eVAHBVmZmZur5zF50vKrS6FMOluxbqA6/G3jr4xQECAgyWhYOHHnpIgYGB8vT0rHB9SUlJHVcEwNXk5ubqfFGh2t6TKK9rrf3jV3ahWF+99JAkqeP4FLl52C2tR5LOn8rUsdeSlZubSziAwbJw0LZtWz399NMaOXJkhev37dun8PDwOq4KgCvyuraNvK/rZGkNpSU/XFZoHBgid8/6cVkBqIhlExLDw8O1Z8+eStfbbDa+iAkAAAtYNnLw+OOPq7Cw8uuAoaGhOnLkSB1WBAAAJAvDQWho6M+u9/DwUNu2beuoGgCoPRfOfqsLZ7812kovFDt/Lsw6JPcK5hx4NGslj2atrnh9wC+pt7cyAsDVKvfDt5S97f9Vuv7QfyYm/lTAzXEKvGXsFaoKqDpLwsFtt92mOXPm6KabbvrZfmfPntWSJUvUtGlTTZ06tY6qA4Ca8b3xV/LpHFXt7Rg1QH1hSTi47777dM8998jHx0d33HGHIiIidN1118nLy0vfffedPv/8c2VkZGjTpk0aNmyYnn32WSvKBIDLwuUBXO0sCQfjx4/XmDFjtGHDBq1fv17Lli1TXl6epIt3KYSGhiomJkYffvihunTpYkWJAAA0WJbNObDb7RozZozGjBkjScrLy1NRUZFatWolDw8Pq8oCAKDBqzcTEn18fOTj42N1GQAANHj19lsZAQCANQgHAADAQDgAAAAGS8NBaWmpPvjgA505c8bKMgAAwI9YGg7c3d01ZMgQfffdd1aWAQAAfsTyywrdunXT119/bXUZAADgPywPB/Pnz9eMGTP01ltvKSsrS/n5+cYCAADqluXPORg6dKgkafjw4bLZbM52h8Mhm82m0tJSq0oDAKBBsjwcbN261eoSAADAj1geDgYOHGh1CQAA4EcsDweSdObMGb300ks6cOCAJKlr164aN24cj1MGAMAClk9I/Oijj9ShQwctWrRIp0+f1unTp7Vw4UJ16NBBe/futbo8AAAaHMtHDh5++GENHz5cy5cvV6NGF8v5/vvvNWHCBD300EP64IMPLK4QAICGxfJw8NFHHxnBQJIaNWqkRx55RBERERZWBgBAw2T5ZYXmzZsrMzOzXPvx48fVrFkzCyoCAKBhszwcxMbGavz48Vq/fr2OHz+u48ePa926dZowYYJGjx5tdXkAADQ4ll9WWLBggWw2m+Li4vT9999Lkjw8PDR58mQ99dRTFlcHAEDDY2k4KC0t1a5duzRnzhwlJyfr8OHDkqQOHTrI29vbytIAAGiwLA0Hl76V8cCBA2rXrp26d+9uZTkAAED1YM4B38oIAED9Ynk44FsZAQCoXyyfkMi3MgIAUL9YHg74VkYAAOoXS8PBhQsX9PjjjystLU0dO3a0shQAAPAfls458PDw0L/+9S8rSwAAAD9h+YTEMWPG6KWXXrK6DAAA8B+Wzzn4/vvvtWLFCr333nsKDw9XkyZNjPULFy60qDIAABomy8PBp59+ql69ekmSvvzyS2Pdj+9eAAAAdcPycMDdCgAA1C+Wzzn4OSdPnrS6BAAAGhzLwoG3t7dOnTrlfD1s2DBlZWU5X+fk5CgwMNCK0gAAaNAsCwfnz5+Xw+Fwvv7ggw9UVFRk9PnxegAAUDfq9WWFy5mQmJqaquDgYHl5eal3797avXt3pX1ff/11RUREqEWLFmrSpInCwsL0yiuv1KRkAACuevU6HFTX+vXrlZCQoKSkJO3du1c9evRQTExMpXMXWrZsqVmzZmnnzp3617/+pfj4eMXHx+vdd9+t48oBAKg/LAsHNpvNGBn46evLsXDhQk2cOFHx8fEKDQ1VWlqavL29tWLFigr733zzzbrrrrvUpUsXdejQQdOnT9cNN9ygjIyMGtUBAMDVzLJbGR0Ohzp16uQMBOfOnVPPnj3l5ubmXF8dJSUl2rNnjxITE51tbm5uio6O1s6dO6tUzz/+8Q8dPHhQTz/9dKX9iouLVVxc7HzN10oDAFyNZeFg5cqVtfp+ubm5Ki0tlb+/v9Hu7++vL774otLt8vLy1Lp1axUXF8vd3V1LlizR4MGDK+2fnJysuXPn1lrdAADUN5aFg7Fjx1r10YZmzZpp3759OnfunNLT05WQkKD27dvr5ptvrrB/YmKiEhISnK/z8/MVFBRUR9UCAHDlWf6ExNri6+srd3d35eTkGO05OTkKCAiodDs3NzeFhIRIksLCwnTgwAElJydXGg7sdrvsdnut1Q0AQH3jMncreHp6Kjw8XOnp6c62srIypaenKyoqqsrvU1ZWZswpAACgoXGZkQNJSkhI0NixYxUREaHIyEilpKSooKBA8fHxkqS4uDi1bt1aycnJki7OH4iIiFCHDh1UXFysTZs26ZVXXtHSpUut3A0AACzlUuEgNjZWp06d0uzZs5Wdna2wsDBt3rzZOUkxMzPTeTeEJBUUFGjKlCn697//rcaNG6tz58569dVXFRsba9UuAABgOZcKB5I0bdo0TZs2rcJ127ZtM17Pnz9f8+fPr4OqAAC4elgeDkpLS7Vq1Sqlp6fr5MmTKisrM9b/4x//sKgyAAAaJsvDwfTp07Vq1SoNGzZM3bp1q/FTEgEAQM1YHg7WrVunv/zlLxo6dKjVpQAAANWDWxk9PT2dzxkAAADWszwc/P73v9fzzz9f7e9SAAAAV4bllxUyMjK0detWvfPOO+ratas8PDyM9a+//rpFlQEA0DBZHg5atGihu+66y+oyAADAf1geDmr72xkBAEDNWD7nAAAA1C+WjxxI0saNG/WXv/xFmZmZKikpMdbt3bvXoqoAAGiYLB85eOGFFxQfHy9/f399/PHHioyMVKtWrfT111/r9ttvt7o8AAAaHMvDwZIlS7Rs2TItXrxYnp6eeuSRR7Rlyxb97ne/U15entXlAQDQ4FgeDjIzM9WnTx9JUuPGjXX27FlJ0m9+8xutXbvWytIAAGiQLA8HAQEBOn36tCSpTZs22rVrlyTpyJEjPBgJAAALWB4ObrnlFr3xxhuSpPj4eD388MMaPHiwYmNjef4BAAAWsPxuhWXLljm/pnnq1Klq1aqVduzYoeHDh2vSpEkWVwcAQMNjeThwc3OTm9sPAxijRo3SqFGjLKwIAICGzfLLCpK0fft2jRkzRlFRUfrmm28kSa+88ooyMjIsrgwAgIbH8nDw2muvKSYmRo0bN9bHH3+s4uJiSVJeXp6efPJJi6sDAKDhsTwczJ8/X2lpaVq+fLnxjYx9+/bl6YgAAFjA8nBw8OBBDRgwoFy7j4+Pzpw5U/cFAQDQwFkeDgICAnTo0KFy7RkZGWrfvr0FFQEA0LBZHg4mTpyo6dOn65///KdsNptOnDih1atXa8aMGZo8ebLV5QEA0OBYfivjo48+qrKyMt16660qLCzUgAEDZLfbNWPGDD344INWlwcAQINjeTiw2WyaNWuWZs6cqUOHDuncuXMKDQ1V06ZNrS4NAIAGyfJwcImnp6dCQ0OtLgMAgAbPsnAwbty4KvVbsWLFFa4EAAD8mGXhYNWqVWrbtq169uzJty8CAFCPWBYOJk+erLVr1+rIkSOKj4/XmDFj1LJlS6vKAQAA/2HZrYypqanKysrSI488ojfffFNBQUEaOXKk3n33XUYSAACwkKXPObDb7Ro9erS2bNmizz//XF27dtWUKVMUHBysc+fOWVkaAAANluUPQbrEzc1NNptNDodDpaWlVpcDAECDZWk4KC4u1tq1azV48GB16tRJn3zyif70pz8pMzOT5xwAAGARyyYkTpkyRevWrVNQUJDGjRuntWvXytfX16pyAADAf1gWDtLS0tSmTRu1b99e77//vt5///0K+73++ut1XBkAAA2bZeEgLi5ONpvNqo8HAACVsPQhSAAAoP6pN3crAACA+oFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgMHlwkFqaqqCg4Pl5eWl3r17a/fu3ZX2Xb58ufr3769rrrlG11xzjaKjo3+2PwAADYFLhYP169crISFBSUlJ2rt3r3r06KGYmBidPHmywv7btm3T6NGjtXXrVu3cuVNBQUEaMmSIvvnmmzquHACA+sOlwsHChQs1ceJExcfHKzQ0VGlpafL29taKFSsq7L969WpNmTJFYWFh6ty5s/785z+rrKxM6enpdVw5AAD1h8uEg5KSEu3Zs0fR0dHONjc3N0VHR2vnzp1Veo/CwkJduHBBLVu2rLRPcXGx8vPzjQUAAFfiMuEgNzdXpaWl8vf3N9r9/f2VnZ1dpff4wx/+oOuuu84IGD+VnJwsHx8f5xIUFFSjugEAqG9cJhzU1FNPPaV169bpr3/9q7y8vCrtl5iYqLy8POdy/PjxOqwSAIArr5HVBdQWX19fubu7Kycnx2jPyclRQEDAz267YMECPfXUU3rvvfd0ww03/Gxfu90uu91e43oBAKivXGbkwNPTU+Hh4cZkwkuTC6Oioird7plnntG8efO0efNmRURE1EWpAADUay4zciBJCQkJGjt2rCIiIhQZGamUlBQVFBQoPj5ekhQXF6fWrVsrOTlZkvT0009r9uzZWrNmjYKDg51zE5o2baqmTZtath8AAFjJpcJBbGysTp06pdmzZys7O1thYWHavHmzc5JiZmam3Nx+GCxZunSpSkpKdO+99xrvk5SUpDlz5tRl6QAA1BsuFQ4kadq0aZo2bVqF67Zt22a8Pnr06JUvCACAq4zLzDkAAAC1g3AAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwOBy4SA1NVXBwcHy8vJS7969tXv37kr7fvbZZ7rnnnsUHBwsm82mlJSUuisUAIB6yqXCwfr165WQkKCkpCTt3btXPXr0UExMjE6ePFlh/8LCQrVv315PPfWUAgIC6rhaAADqJ5cKBwsXLtTEiRMVHx+v0NBQpaWlydvbWytWrKiw/4033qhnn31Wo0aNkt1ur+NqAQCon1wmHJSUlGjPnj2Kjo52trm5uSk6Olo7d+6stc8pLi5Wfn6+sQAA4EpcJhzk5uaqtLRU/v7+Rru/v7+ys7Nr7XOSk5Pl4+PjXIKCgmrtvQEAqA9cJhzUlcTEROXl5TmX48ePW10SAAC1qpHVBdQWX19fubu7Kycnx2jPycmp1cmGdrud+QkAAJfmMiMHnp6eCg8PV3p6urOtrKxM6enpioqKsrAyAACuLi4zciBJCQkJGjt2rCIiIhQZGamUlBQVFBQoPj5ekhQXF6fWrVsrOTlZ0sVJjJ9//rnz52+++Ub79u1T06ZNFRISYtl+AABgJZcKB7GxsTp16pRmz56t7OxshYWFafPmzc5JipmZmXJz+2Gw5MSJE+rZs6fz9YIFC7RgwQINHDhQ27Ztq+vyAQCoF1wqHEjStGnTNG3atArX/fQPfnBwsBwORx1UBQDA1cNl5hwAAIDaQTgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYCAcAAAAA+EAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADAQDgAAgIFwAAAADIQDAABgIBwAAAAD4QAAABgIBwAAwEA4AAAABsIBAAAwEA4AAICBcAAAAAyEAwAAYHC5cJCamqrg4GB5eXmpd+/e2r1798/237Bhgzp37iwvLy91795dmzZtqqNKAQCon1wqHKxfv14JCQlKSkrS3r171aNHD8XExOjkyZMV9t+xY4dGjx6t8ePH6+OPP9aIESM0YsQIffrpp3VcOQAA9YdLhYOFCxdq4sSJio+PV2hoqNLS0uTt7a0VK1ZU2P/555/XbbfdppkzZ6pLly6aN2+eevXqpT/96U91XDkAAPVHI6sLqC0lJSXas2ePEhMTnW1ubm6Kjo7Wzp07K9xm586dSkhIMNpiYmL0t7/9rdLPKS4uVnFxsfN1Xl6eJCk/P78G1dcv586dkyR9klegwu9LLa6m/jlccF7Sxd9TTf5/v/R7/vRfH6uwoKBWanMVXx/+UlLt/Y4LT3yl0pKiWqnNlRTn/ltSzX/P9VWzZs1ks9msLuPq5HAR33zzjUOSY8eOHUb7zJkzHZGRkRVu4+Hh4VizZo3Rlpqa6vDz86v0c5KSkhySWFhYWFjq+ZKXl1fzPy4NlMuMHNSVxMREY7ShrKxMp0+fVqtWrUiouKrl5+crKChIx48fV/Pmza0uB6ixZs2aWV3CVctlwoGvr6/c3d2Vk5NjtOfk5CggIKDCbQICAqrVX5LsdrvsdrvR1qJFi8srGqiHmjdvTjgAGjiXmZDo6emp8PBwpaenO9vKysqUnp6uqKioCreJiooy+kvSli1bKu0PAEBD4DIjB5KUkJCgsWPHKiIiQpGRkUpJSVFBQYHi4+MlSXFxcWrdurWSk5MlSdOnT9fAgQP13HPPadiwYVq3bp0++ugjLVu2zMrdAADAUi4VDmJjY3Xq1CnNnj1b2dnZCgsL0+bNm+Xv7y9JyszMlJvbD4Mlffr00Zo1a/THP/5Rjz32mDp27Ki//e1v6tatm1W7AFjGbrcrKSmp3GUzAA2PzeFwOKwuAgAA1B8uM+cAAADUDsIBAAAwEA4AAICBcADgipkzZ47CwsKcrx944AGNGDHCsnoAVA3hAKjnfu4PanBwsFJSUlRSUiJfX1899dRTFfabN2+e/P39deHCBa1atUo2m63c4uXlZWyTnZ2tBx98UO3bt5fdbldQUJDuuOOOcs8GAeB6XOpWRqCh8vT01JgxY7Ry5Uo9+uijxjqHw6FVq1YpLi5OHh4eki4+BfHgwYNGvx8//vvo0aPq27evWrRooWeffVbdu3fXhQsX9O6772rq1Kn64osvrvxOAbAMIweAixg/fry+/PJLZWRkGO3vv/++vv76a40fP97ZZrPZFBAQYCyXngciSVOmTJHNZtPu3bt1zz33qFOnTuratasSEhK0a9cuZ78zZ85owoQJuvbaa9W8eXPdcsst2r9//5XfWQBXFOEAcBHdu3fXjTfeqBUrVhjtK1euVJ8+fdS5c+cqvc/p06e1efNmTZ06VU2aNCm3/sffJXLffffp5MmTeuedd7Rnzx716tVLt956q06fPl2jfQFgLcIB4ELGjx+vDRs26Ny5c5Kks2fPauPGjRo3bpzRLy8vT02bNjWW22+/XZJ06NAhORyOXwwTGRkZ2r17tzZs2KCIiAh17NhRCxYsUIsWLbRx48Yrs4MA6gRzDgAXMnr0aD388MP6y1/+onHjxmn9+vVyc3NTbGys0a9Zs2bau3ev0da4cWNJF+coVMX+/ft17tw5tWrVymgvKirS4cOHa7AXAKxGOABcSPPmzXXvvfdq5cqVGjdunFauXKmRI0eqadOmRj83NzeFhIRU+B4dO3aUzWb7xUmH586dU2BgoLZt21ZuHV9jDlzduKwAuJjx48crIyNDb731lnbs2GFMRKyKli1bKiYmRqmpqSooKCi3/syZM5KkXr16KTs7W40aNVJISIix+Pr61sauALAIIwfAVSAvL0/79u0z2n46nH/JgAEDFBISori4OHXu3Fl9+vQp18fhcCg7O7tcu5+fn9zc3JSamqq+ffsqMjJSjz/+uG644QZ9//332rJli5YuXaoDBw4oOjpaUVFRGjFihJ555hl16tRJJ06c0Ntvv6277rpLERERtbLvAOoe4QC4Cmzbtk09e/Y02iobEbDZbBo3bpwee+wxJSYmVtgnPz9fgYGB5dqzsrIUEBCg9u3ba+/evXriiSf0+9//XllZWbr22msVHh6upUuXOj9n06ZNmjVrluLj43Xq1CkFBARowIABxm2RAK4+fGUzAAAwMOcAAAAYCAcAAMBAOAAAAAbCAQAAMBAOAACAgXAAAAAMhAMAAGAgHAAAAAPhAAAAGAgHAADAQDgAAAAGwgEAADD8f+D7ZjoPgLAJAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", @@ -1492,27 +1340,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "576 576 576 576\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJMCAYAAADng8XUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXeYZGWd9n+fyjl37p7pCUweZgaGOAzDIMGVVTGB4oriBboYllfWhO6KrLjs62/NivuKuiYQxbCrggERBCQ7zBAm93TO3dXdlcMJvz+qzulU4aTqqpr6fq6rr5mqOuc5p7uqznnu5/4GRhAEAQRBEARBEARBEARB6I6h2idAEARBEARBEARBEKcrJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiCIFeA973kPuru7Fz3HMAw++9nPVuV8iNMH+mwRekGfpZXls5/9LBiGwdTUVLVPhSCICmOq9gkQBHH6MTAwUPVJRCgUwqpVqzSN0dPTgy984Qt4+OGHMTIyAovFgu3bt+Oaa67B+973Ptjtdp3OlpBDLXyugPr9bL388su444478Pzzz2N8fBzBYBBbtmzBG97wBnz4wx8uuM8111yDBx54AB//+Mfxf//v/132+mOPPYb9+/cDAH70ox/hH/7hH5Zts2fPHjz11FPYunUrXnnlFX1/KQ3UwudJ62epWteoevgsvec978EPfvCDgq/97ne/w2tf+9pyv2Zdcvfdd8PhcOA973lPtU+FIIgFkOgmCEJXBgYGsHnjRiRSqaqeh8Nmw5Fjx1RPaB988EG87W1vg9VqxfXXX49t27Yhk8ngySefxMc+9jG8+uqr+Pa3v63zWRPFGBgYwObNm5FIJKp9KnA4HDhy5Ehdfbaeeuop7N+/H6tWrcJNN92E1tZWDA4O4plnnsFXv/rVgkIpEongN7/5Dbq7u/GTn/wE//Ef/wGGYQqOb7PZcN999y0TSn19fXjqqadgs9l0/X20MjAwgI2bNiOVrO7nyWZ34NhRdZ+lal2j6umzZLVa8Z3vfGfZ8zt27JA9Rr1x9913IxQKkegmiBqDRDdBELoyNTWFRCqFr+3oxnpXdZzgk7Ek/ulQH6amplRNZnt7e/H2t78dq1evxp///Ge0tbVJr33wgx/EyZMn8eCDD+p5ykQZpqamkEgk8KVvfQ/rz9hUtfM4eeIobr35vXX32fr85z8Pr9eL559/Hj6fb9FrExMTBff5xS9+AY7j8L3vfQ+XXnopHn/8cezbt6/gtq973evw61//GlNTUwiFQtLz9913H1paWnDGGWdgZmZGt99HK1NTU0glE1j9lttga9IWtaCW1OQA+n9xl6rPUjWvUfX0WTKZTAUdc4IgiJWGcroJgqgI6112bPc6qvKjVex/4QtfQCwWw3e/+91Fk1npd1u/Hrfccov0+Mc//jHOPvts2O12BAIBvP3tb8fg4KDi44r5fUePHsU111wDj8eDYDCIW265BaklkQMsy+Jzn/sc1q1bB6vViu7ubnzqU59COp1etN0LL7yAK6+8EqFQCHa7HWvWrMF73/veRdvwPI+vfOUr2Lp1K2w2G1paWvD+97+/pkSSyPozNmHbjl1V+9Eq+Kv12erp6cHWrVuXiSQAaG5uLrjPvffei8svvxz79+/H5s2bce+99xYd/41vfCOsViseeOCBRc/fd999uOaaa2A0GhWf80pga1oFR/uGqvxoEftKP0cAfZYKIefad+uttyIYDEIQBOm5D3/4w2AYBl/72tek58bHx8EwDL71rW9Jz33961/H1q1b4XA44Pf7sXv3btx3333LzmN2dhbvec974PP54PV6ccMNNyyL6pFzze/u7sarr76Kv/zlL2AYBgzD4JJLLtHjT0UQhEZIdBMEQSzhN7/5DdauXYsLL7yw7Laf//zncf311+OMM87Al770Jfyf//N/8Mgjj+Diiy/G7OysquNfc801SKVSuOuuu/C6170OX/va1/C+971v0TY33ngjPvOZz+Css87Cl7/8Zezbtw933XUX3v72t0vbTExM4IorrkBfXx8++clP4utf/zre+c534plnnlk01vvf/3587GMfw549e/DVr34VN9xwA+69915ceeWVyGazqn4HojDV+mytXr0af/vb32TnVI+MjODRRx/FO97xDgDAO97xDvz85z9HJpMpuL3D4cAb3/hG/OQnP5GeO3ToEF599VVcd911is6VKI+SzxHQ2J+lqampRT9zc3PSa3KufXv37kU4HMarr74q7ffEE0/AYDDgiSeeWPQcAFx88cUAgHvuuQf/9E//hC1btuArX/kK7rjjDuzcuRPPPvvssnO85pprEI1Gcdddd+Gaa67B97//fdxxxx2LtpFzzf/KV76Czs5ObNq0CT/60Y/wox/9CJ/+9KcV/80IgtAfCi8nCIJYQCQSwfDwMN74xjeW3ba/vx+333477rzzTnzqU5+Snn/zm9+MXbt24e677170vFzWrFmD//3f/wWQCxX1eDy4++678dGPfhRnnnkmDh06hB/84Ae48cYbcc899wAAPvCBD6C5uRn/+Z//iUcffRT79+/HU089hZmZGfzxj3/E7t27pfHvvPNO6f9PPvkkvvOd7+Dee+9dNKHdv38/Xvva1+KBBx4g0aQT1fxsffSjH8Xf/d3fYefOnTj33HOxd+9evOY1r8H+/fthNpuXbf+Tn/wEVqtVOte3v/3t+MxnPoOHHnoIV199dcFjXHfddXj961+PwcFBdHV14d5778XatWtx/vnnyz5PojxKPkdAY3+W4vE4mpqaFj23b98+PPbYY7KvfRdddBGAnKjetm0b5ubm8PLLL+Mtb3kLHn/8cWm/J554AoFAAFu2bAGQy7nfunXrMse+ELt27cJ3v/td6fH09DS++93vSgXn5F7zr776avzLv/wLQqEQhdUTRI1BTjdBEMQCIpEIAMDtdpfd9pe//CV4nsc111yzyElpbW3FGWecgUcffVTVOXzwgx9c9FgsTPTQQw8t+vfWW29dtN0///M/A4CUyymGf/72t78t6lg/8MAD8Hq9uPzyyxf9DmeffTZcLpfq34FYTjU/W5dffjmefvppvOENb8ChQ4fwhS98AVdeeSU6Ojrw61//etn29957L6666irpXM844wycffbZJcOCr7jiCgQCAdx///0QBAH333+/5G4S+qHkcwQ09mfJZrPh4YcfXvTzxS9+EYD8a19TUxM2bdokCey//vWvMBqN+NjHPobx8XGcOHECQE50X3TRRVKBOJ/Ph6GhITz//PNlz/Mf//EfFz3eu3cvpqenpfda7jWfIIjahZxugiCIBXg8HgBANBotu+2JEycgCALOOOOMgq8Xcn3ksHS8devWwWAwoK+vD0DOuTIYDFi/fv2i7VpbW+Hz+dDf3w8g5+i85S1vwR133IEvf/nLuOSSS3D11Vfjuuuug9VqlX6Hubm5ormYxQojEcqp9mfrnHPOwS9/+UtkMhkcOnQIv/rVr/DlL38Zb33rW3Hw4EHJoTty5AhefPFFXH/99Th58qS0/yWXXIJvfvObiEQi0u+y9Jze9ra34b777sO5556LwcFBipKoAEo+R0Bjf5aMRiMuu+yygq8pufbt3btXEr5PPPEEdu/ejd27dyMQCOCJJ55AS0sLDh06tOgcP/GJT+BPf/oTzj33XKxfvx5XXHEFrrvuOuzZs2fZsZYW0vP7/QCAmZkZeDwe2dd8giBqFxLdBEEQC/B4PGhvb5eVr8jzPBiGwe9+97uCxX1cLpcu51SstU6x5xe+/vOf/xzPPPMMfvOb3+APf/gD3vve9+KLX/winnnmGbhcLvA8j+bm5qKu09LQTEI9tfLZslgsOOecc3DOOedgw4YNuOGGG/DAAw/g9ttvB5AruAUAH/nIR/CRj3xk2f6/+MUvcMMNNxQc+7rrrsN//dd/4bOf/Sx27NghiS9CP5R8jgD6LBVDybXvoosuwj333INTp07hiSeewN69e8EwDC666CI88cQTaG9vB8/z2Lt3r7TP5s2bcezYMfz2t7/F73//e/ziF7/A3Xffjc985jPL8rWLFYdbWLwNKH/NJwiidiHRTRAEsYS///u/x7e//W08/fTTuOCCC4put27dOgiCgDVr1mDDhg26Hf/EiRNYs2aN9PjkyZPgeR7d3d0AcoWMeJ7HiRMnsHnzZmm78fFxzM7OYvXq1YvGO//883H++efj85//PO677z68853vxP33348bb7wR69atw5/+9Cfs2bMHdnt1Wrw1EtX+bC1FzPUfHR0FkJvk33fffdi/fz8+8IEPLNv+c5/7HO69996iQumiiy7CqlWr8Nhjj0n5qIT+yP0cAfRZKoaSa58oph9++GE8//zz+OQnPwkgVzTtW9/6Ftrb2+F0OnH22Wcv2s/pdOLaa6/Ftddei0wmgze/+c34/Oc/j9tuu01Rv3El13wS5gRRm1BON0EQxBI+/vGPw+l04sYbb8T4+Piy13t6evDVr34Vb37zm2E0GnHHHXcscyQEQcD09LSq43/zm99c9PjrX/86AODv/u7vAOT62AK5SrUL+dKXvgQAuOqqqwDkQhOXntfOnTsBQGozc80114DjOHzuc59bdh4sy6quwE4UplqfrUcffXTZOMB8rujGjRsB5PJV+/r6cMMNN+Ctb33rsp9rr70Wjz76KEZGRgoeR2yjdPvtt+Nd73qXonMk5CP3cwSAPktFUHLtW7NmDTo6OvDlL38Z2WxWChHfu3cvenp68POf/xznn38+TKZ5L2vp39VisWDLli0QBEFxVwi513wgJ/Tpuk0QtQc53QRBVISTsWTdHnvdunW47777cO2112Lz5s24/vrrsW3bNmQyGTz11FN44IEH8J73vAe33HIL7rzzTtx2223o6+vD1VdfDbfbjd7eXvzqV7/C+973Pnz0ox9VfPze3l684Q1vwGtf+1o8/fTT+PGPf4zrrrsOO3bsAADs2LED7373u/Htb38bs7Oz2LdvH5577jn84Ac/wNVXX439+/cDAH7wgx/g7rvvxpve9CasW7cO0WgU99xzDzwejzSJ27dvH97//vfjrrvuwsGDB3HFFVfAbDbjxIkTeOCBB/DVr34Vb33rWzX9PfXk5ImjdX38an22PvzhDyORSOBNb3oTNm3aJB3vpz/9Kbq7uyW38d5774XRaFw0iV/IG97wBnz605/G/fffv6yok8gb3/hG2ZW1q01qcqAujy33cyRuS5+l5Si99u3duxf3338/tm/fLuVcn3XWWXA6nTh+/PiynPMrrrgCra2t2LNnD1paWnDkyBF84xvfWFRUTi5yr/kAcPbZZ+Nb3/oW7rzzTqxfvx7Nzc249NJLNfylCILQBYEgCEJH+vv7BYfNJgCo6o/DZhP6+/s1/S7Hjx8XbrrpJqG7u1uwWCyC2+0W9uzZI3z9618XUqmUtN0vfvEL4aKLLhKcTqfgdDqFTZs2CR/84AeFY8eOSdu8+93vFlavXr1ofADC7bffLj2+/fbbBQDC4cOHhbe+9a2C2+0W/H6/8KEPfUhIJpOL9s1ms8Idd9whrFmzRjCbzUJXV5dw2223LTqvAwcOCO94xzuEVatWCVarVWhubhb+/u//XnjhhReW/a7f/va3hbPPPluw2+2C2+0Wtm/fLnz84x8XRkZGNP0N9aK/v19wOBxV/1wBEBwOR919tn73u98J733ve4VNmzYJLpdLsFgswvr164UPf/jDwvj4uCAIgpDJZIRgMCjs3bu35LmvWbNG2LVrlyAIgvDoo48KAIQHHnig5D779u0Ttm7dKudPsyL09/cLNnv1P082u7bPktzPkSA03mfp3e9+t+B0OstuJ/fa981vflMAINx8882Lnr/ssssEAMIjjzyy6Pn/9//+n3DxxRcLwWBQsFqtwrp164SPfexjwtzcnLSNeM2fnJxctO9///d/CwCE3t5e6Tk513xBEISxsTHhqquuEtxutwBA2LdvX9m/AUEQlYcRhAIxQgRBEBoYGBjA1NRUVc8hFAotqwhb63z2s5/FHXfcgcnJSYRCoWqfTs1RC58roD4/W8RyauHzRJ8lgiCIxoDCywmC0J1Vq1bRRJLQHfpcEXpCnyeCIAhipaBCagRBEARBEARBEARRIUh0EwRBEARBEARBEESFoJxugiAIgiAIgiAIgqgQ5HQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhSHQTBEEQBEEQBEEQRIUg0U0QBEEQBEEQBEEQFYJEN0EQBEEQBEEQBEFUCBLdBEEQBEEQBEEQBFEhGk50C4KASCQCQRCqfSoEQRAEQRAEQRDEaU7Die5oNAqv14toNFrtUyEIgiAIgiAIgiBOcxpOdBMEQRAEQRAEQRDESkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQJLoJgiAIgiAIgiAIokKQ6CYIgiAIgiAIgiCICkGimyAIgiAIgiAIgiAqBIlugiAIgiAIgiAIgqgQVRXdjz/+OF7/+tejvb0dDMPgf/7nf8ru89hjj+Gss86C1WrF+vXr8f3vf7/i50kQBEEQBEEQBEEQaqiq6I7H49ixYwe++c1vytq+t7cXV111Ffbv34+DBw/i//yf/4Mbb7wRf/jDHyp8pgRBEARBEARBEAShHEYQBKHaJwEADMPgV7/6Fa6++uqi23ziE5/Agw8+iFdeeUV67u1vfztmZ2fx+9//XtZxIpEIvF4v5ubm4PF4tJ42QRAEQRAEQRAEQRSlrnK6n376aVx22WWLnrvyyivx9NNPF90nnU4jEoks+iEIgiAIgiAIgiCIlcBU7RNQwtjYGFpaWhY919LSgkgkgmQyCbvdvmyfu+66C3fcccdKnSJBEKcZfX19+Od//mdkMhls2LABX/ziF6t9Sg3NkSNH8KlPfQosy+oy3saNG/Gf//mfuoxFFOauu+7CU089pctYZrMZ//Ef/4ENGzboMh5RnuPHj+MTn/iE7O/c/v37ceutt8ra9n//93/xne98R8vpLcJqteLLX/4yurq6dBuTIAhCD+pKdKvhtttuW3Txj0QidDEmCEI2Tz/9NH75y19ig8uG3/3udyS6q8x9992HPz74W+zxOzWPFc6w+O1vf4tPfOITaGpq0uHsiEJ87ctfgisRwxqnVfNYD01GcPnll5PoXkF+85vf4KHf/Br7gu6y2/Yl0njx+edli+4f/vCHeObZ57Hz7HO0niYEQcBvf/sLvOlNb8I73/lOzeMRBEHoSV2J7tbWVoyPjy96bnx8HB6Pp6DLDeRWPa1W7Td6giAak2w2CwB4z+pmfOrVAQiCAIZhqnxWjcvzzz6LC/xOfG/3es1jDSTS2PPYK3juuedw1VVX6XB2RCFmIxF8YF0Lbuhu1jzWzkdfwezsrOztM5kM3vTmN2NycrLstq+59FLcddddGs7u9OTUqVNY55H3nfvZ0BT++aV+pFIp2Gy2sttPTU3hoksuxZfu/p4ep4otqwKYmprSZSyCIAg9qauc7gsuuACPPPLIoucefvhhXHDBBVU6I4IgTndE0W0zGhY9JqrDwRcPYJvHoctYXXYLvFYLXnzxRV3GI5aTSqWQSmfgMRt1Gc9jNmFmZkb29n19fXjowQfh8Tdh7YatRX+SaRY/+tGPdDnH042ekyfQZZH3/q1y5EyO3t5eWdtPTk3B5w+oPrelBAJBWQssBEEQK01Vne5YLIaTJ09Kj3t7e3Hw4EEEAgGsWrUKt912G4aHh/HDH/4QAPCP//iP+MY3voGPf/zjeO9734s///nP+NnPfoYHH3ywWr8CQRCnOSzLwsAwMBty7nY2m4XFYqnyWTUmk5OTGJ+axuautbqMxzAMNrlsizpiEPoiutIekz6i22syKhLdExMTAIBPfOZOrN+wqeh2P/zuf+Hz//pximQpQM/xE9jvkHfNW50X3T09Pdi8eXPZ7WfCYfgDQU3ntxCfP6Do80EQBLFSVNXpfuGFF7Br1y7s2rULAHDrrbdi165d+MxnPgMAGB0dxcDAgLT9mjVr8OCDD+Lhhx/Gjh078MUvfhHf+c53cOWVV1bl/BuBH/3oR2hra0Nra2vRn7a2NmlhhCBON7LZLMwGA0z5ibheBbwI5Rw7dgwAsM5VPmxVLusdFhwh0V0xJNGtk9PtNjKYm5uTvb2YkhZqKh3aHgo1IZvNKgpdbwQ4jkP/0BBW2eWl6bVYzbCZjOjp6Sm7rSAICIfD8Pr8Wk9TwuvzIxwO6zYeQRCEXlTV6b7kkktQqk3497///YL7UCjgyvHII4/AZLHi2nfeUHSbn933ffz5z3/G9ddfv4JnRhArQzabhck4L7opvLx6nDp1CsC8m6YHqx1W/Ka/jxzOCjHvdOsz3fAYGcwqEFUTExMwGo3weH0ltwuGcqJ8fHwcfr9+IrDeGRwcRJZlsVpmETwDw6DLaZe+q6VIJBLIZDLw+nwaz3Iej9dHopsgiJqkrgqpESvPwMAAduzajQ/e+omi2xw9/PKiiARinldffRVXv/71SKdSsrZfs3YtHnviCZr81xA5p3txeDlRHQYGBhCwW2E36hek1W63IBKLIxKJwOv16jYukUN0pXVzuk1G9CgMLw81NcNgKP2ZCear109OTmLTpuJh6I2G6Fh3K1joWm01oWdB6mAxxAUZr1dfp7vv5Jhu4xEEQegFiW6iJAODg7j0yh0lt2nv7MKf/3Bohc6ovnjppZdwsrcXH1zbCpOhtJA+EUviob/+FfF4HC6Xa4XOkCgHy7IwMuR01wJjY2NosembT99sNUtjk+jWH1F0u3XK6faYTYpCwCcmJhAMlW8HJ24j5oATOU6dOgUDw6DDLv97t8phwdMnTpTdTnwf3R6P2tNbhtvjoRQBgiBqEhLdRFEEQcDQ4CDa2jtLbtfW3omhwUEKzyxANBoFA+ATG9vL/m0emZjDQ2OziEajJLprCNHpNuXfPsrprh7T09Pwm/QtReK35G6DFJJaGSKRCADApdP75jYZEJuLyt5+fHxcCh0vhdfnh8lkWtaWtNHp6elBu8sOS5lIgYWsdlhx78l+8DxfMsJAWpDx6LfY5fZ4MUeimyCIGqSuWoYRK8vk5CTS6TTaO7tKbtfe2YV0Ok1tOgoQi8XgtJhlLUY485PSaFT+hJKoPNlsFiYDI0UqkNNdPSJzc3DpfNcSHVhRHBL6EolE4LKYYdBpQdZlMiISjcnefmJiAoFQqOx2BoMBwVATie4l9PT0YJVVmT+z2mFFOpPByMhIye2kBRm3W/X5LcXlctM9lCCImoSc7jrhG9/4Bg4ePKh6/7e85S34u7/7O0X7iHna7R1lRHf+9YGBATQ3l3cUGoloNAqnWd7XzGk0SvsQtUM2m4WJYSi8vAZIJRNwKXDc5GDLL6Ykk0ldxyVyRCIRuGVeA+XgMhkRTybBcRyMxvIh6+MTE9iwbZessYOhJlo8XsKpE8exUUFoOZALLwdygr2zs3iknHivc7l0FN1uDxKJhOzPB0EQxEpBorsO4HkeH/3nf0arxYhAPv9QCf2xJE6dPKlYdPf39wOALKdb3H737t2Kz+90JhaLwSUzl1EMv4zF5Ls4ROXJ5XST6K4FOJaDUecUFmNedHMcp+u4RI5oNAqHTvncAKTraSwWk5WDPykzpxsAAqEmyulewqneXlzRpiznuss+36t73759RbcTRbfDqV86ldPpBCD/80EQBLFSkOiuA4aHh5HOZHDHmevxmmblN5H/ODqM38goarKUgYEB2Ox2+APBktv5A0HYHQ6qYF6AaDQKh8xKyw5yumuSbDYLMzMfXk453VWEAfgSbSbVIA5H9SgqQywWg0vHavNO4/ziZDlRlc1mMTMzIyunG8j18p4YG9J8jqcLMzMzmI1EsXqdvEULEZvRgDanHb29vSW3SyQSsFgsMOnUTg4A7I6c6I7H4yS6CYKoKSinuw4QW3ao7U272mnF4Ogo0um0ov36+/vR2bmq7GSUYRh0dHRJzjgxTywWg7NM1XIRcrprk5zTDclhJdFdPSwWK7I6i25xPItF36roRI5YLAaHzGugHBwKrpNTU1MAICunG8iFl4+T0y0hzj3EcHElrLKbpf2LEY/H4ciLZL1wOOdFN0EQRC1BorsOOHXqFACgU2FelcgquwWCICgWxf39/WjvXCVr2/bOVSS6C5AT3fK2tRsNYEBOd63BsizMDAMzie6q4/J4kOD0Fd1xNhdWLoalEvoSjURkXwPlIIaXy7lOiqHioSZ5Tncw1IQpyumWEOceYri4ErqsZpwq06s7kUjAZneoOrdi2B0OaWyCIIhagkR3HdDb24s2px02lSF6q/IOeblQr6X09fejo0ue6O7oWoU+Et3LiEUissPLDQwDu9lEK/Q1RjabXeR0U0539fB6vYjw+oruSJaTxib0Jx6Lwa5jeLk9X0hPznVSEt0yc7qDoWaEw2H6jufp7e2Fx2qR2uopYbXDgr7eUyW3SaVSsNltak+vIFarTRqbIAiiliDRXQf09vaiy6a8gJpIm80CI8MoFt0DCp3uARLdy4hGIlIOohycZhOFl9cYLMvCxDAwU0531QmFQpjJ6lvwLJxlpbEJ/YnF5Ne1kIPdpFx0B4JyRXduO6pgnuPUqVPoUpnW1uWwYnxquuT7lEwmYbPZ1Z5eQUTRTd0ICIKoNUh01wG9J0+iy6a+0IjJwKDT5VAkumOxGMLhMDq6SlcuF+no6kI4HCbBuIR4LAqngsq9TpOR/oY1Rk50A0Zm/jFRHVpbWzGeVFabohwTqZyr2dLSouu4RI54LKar6BbHkiu6HU6nFHJcjmB+4YVEd47enh50WdRVnhdD0vv6+opuk06nYTbrW0vBYrVIYxMEQdQSJLrrgL6+XnSqyKlaSIfVWPLmtxQxP7tDptMtbqfkGI1ALBZXFFrpMBoop7vGYFkWRkBqGUaiu3p0dnYikWUxl9XvPRhNZdAUCMBq1XaNJQqTTCT0DS/PjyUnZ3diYkJ2aDkAqco5tQ3L0dvTgy4VRdQASPuVWuzPZDKSSNYLS17EZzIZXcclCILQConuGieTyWB0YlJ1ETWRTpsZfadKVxJdiCieleR0A6BiakuIxeOKwssdBgPldNcYouimnO7q093dDQAYTOg3oR5MZtC9plu38YjFJFMp1fVICmFmGBgYRlb48OTkJPxB+WkDgSA53SI8z6N/aAirVC74t1jNsBgNZUW3yaQ+da4QZguJboIgahMS3TXO4OAgBEHQLrrtFvQrdLpNJhNaWttlbd/S2g6TyUSiewnxZEJReLnDQK1Oag02m4WJmXe6OU7fnGJCPuvXrwcA9CX0Cx3tT2WxfsNG3cYjFpNMpnR1upl8wUm5oltuPjeQazdls9vJ6QYwOjqKLMuqzuk2MAw6y/TqZllWEsl6YTKbpbEJgiBqCRLdNc7AwAAAoEOj6G63WTA+NS07z6m/vx/tHZ0wGuUJRqPRiPaOThLdC+A4Dql0Rll4uYFBjMLLawqWZWE2MDBRIbWqEwwGEfT50BPXrzLxyXgaGzZs0G08YjHJdBo2g75TDZvRKEt0j09MSO61XILBEDndmI9207Lg32E1lVzsZ1kWRoO6nPFiiOPRdZogiFpDfXUuYkUYHBwEALTaNIru/I1zeHgYa9euLbu9kh7d0jGoV/ciRMdaSREhh9GASRLdNQWbzcLGMJLTTeHl1WXLli043ntEl7HCGRbTyTS2bNmiy3jEYgRBQDqTgVVHpxsAbEaDLNE9NTWFHbsvUDR2INiEqakptad22qCH6O60mXH8VPG2YRzHwSBzYV8u4ngUkZTj97//fdFoA5PJhHe84x1wuVwrfFYE0ZiQ6K5xBgcHEbBZNYfnteVF++DgoCzR3dffj87V6xUdo6NzFfr6T6o6v9MRtaI7TtXLawqWzcLMMFL1cprMVZdtO3bgz4df0mWsI5FcMa7t27frMh6xGDGyypqPEtELq9EgK2pranJSsdMdIKcbQG7h3W+zKkqPWkqn3YI/lliI53keBp2jIMTxeJ7Xddx6ZGxsDFdddRUYQYCBWf4dzPI8ZmZm8PGPf7wKZ0cQjQeFl9c4Q0NDaNUYWg4A7fk+36JzXo6B/n60yyyiJh2ji3p1L0QS3QomLXaTAfEE5XTXEmyWhZHJ5SgyoLDFarNjxw6cnIsjxWmfVB+OJmGzWnDGGWfocGbEUkRhbNFZWFkYpqzozmQymJubgz+gUHSHQpgg0Y2BgQF0qMznFumwWzA9O1u0TokgCGAKiEEtiOMJgqDruPXIz3/+cxgAvPiaM3HqtbuW/VzV5sdP77uv2qdJEA0DOd01zsjwMFrN2icsDpMRbosZo6OjZbdNp9MYHR2V3S5MpKNzFUZHR5FOp6n9DuZFt7KWYUYk4uVb4RArB8uxUuVyk8FATneVOeuss8AJAo5Ek9jlc2oa65W5BM7cfiZMJroVVoJ50a2vsLIYGKRSpfP6p6enAeREtBL8gSAOv3RA9bmdLgz096NN49xDrEUzODiITZs2FdxGZ81NonsB9997Ly4OeeC3FL6+vb7Vj3988RCOHz+uW12Lubk5/PWvf1309/d6vbjooot0GZ8g6hlyumuckcFBtFr1aanR6rBiZGSk7HZDQ0MAgPbOLkXji9uL+zc6Yh9ZJeHldqMBcRn9Z4mVI+d0z4tuyumuLtu3b4fJaMRLc9ojQl6KZ3DOeefpcFZEIcS2TbqLboYp+z0U87IDgaCisf2BEKYppxsDfb3osGmbe7QvSGsrht7aWBR7eoet1xv9/f346zPP4I1tvqLbXNrshctixk9+8hPdjnvnnXfiqquuwt///d9LP3v37sWRI/rU4SCIeqaxr0p1wMjICJp1Et0tZiOGh4fLbicWQ1PjdC/cv9FRI7odRgMSqfIFgoiVg2Wzkug2GBhyuquMzWbDju3bcHBW2+JUJMuhJxLD7t27dTozYimi6DbrbGeamPJ9mCXRraBlGAAEQyFMT083/Pd8aHhYEs1qacnPXcQuLEthGEb33GtRdOsdtl5v3HfffXCYTbiyxVd0G7vRgNc2eXDvD3+oW2TAyZMnccHeS/DsK7149pVePPjoswCAnp4eXcYniHqGRHcNw/M8xqendRPdIbMR4zKcbvEG2d7RqWh8cftiN9hGQ014ud1oQCqdoSIwNQTHcVIRNSNDorsWOO/CPXgxpq1t2KG5OAQBOP/883U6K2IpkujW2XU0KxDd/kBA0dg+fwCCIGB2dlbt6dU90WgUc9GY5q4pVqMBTQ5b0cV+g8FAortC3PvDH+KyJk/ZQnhvag/gxKlTeOGFF3Q5bl9/P7rXrkdTSyuaWlqxccs2mM1mMmMIAiS6a5pwOAyO4xCy6pNvGLKYMDZWPqe7v78fTc0tsNpsisa32mxoam6hi2se0elWKroX7ktUH57j5sPLSXTXBOeffz565uKYyagvave3mTh8Hjf16K4g86JbXwFkhlC2kNr09DSMRiPcHq+isf3+oLR/oyKK5Da79gX/NpulaMqZ0WgEr/P1lMsXumzkOg0vv/wyXj16FFe3+ctue2HQjZDdqluI+UB//6IoSYPBgLaOTqkFHUE0MiS6a5ixsTEAQJNOTneT1YzxiYmy2w0ODip2uUXaOzplV0g/3RGFs02F6C5W7ZVYebIsuyi8nKqXV58LL7wQAPDirPrvyd/m4jj/ggsaPvezkojfFZPe4eUGRhJXxZienobPH1DsePryzngji25RJLdatXdOaTEbMFxEdJtMJnC8zqI7P14ji+6f/exn8Fot2NfkKbutycDgqmYPHrj/fs1RB7OzswiHw+havXrR812r1xTtFU4QjUTjXpXqALFXaLBI5UmlBC0mzEVjyGQysFiK30z7BwbQ1qGsiJpIW0cX+im8HEBOdFuNRkmwycGWFwDJJOV11wo8x0FcN6Hw8tpg7dq1aA4G8fxMDJc2e/HtU+O4p29c1r43dbfgxjXNODCXxMcu2lvhM21s5kW3vuOamPKLX1NTU/D7lYWWA5D2mWrgYmpiwdUWjYXUAKDFasLLRRbiTSYTWJ0LU4rjNbLo/vlP78flIbfsVn1Xtfrxg2eP49lnn8UFF1yg+riisF61es2i51etXoMjL1NHAIKgJf4aRioEo5PoFscpt4I/MDCguHK5SHtnF+V050kmk7Ap6NENzDvdJLprB47jYMgvnJDorg0YhsGevXvxwlwumiTGchhLZWX9xFgOx6IpRNIZ7Nmzp8q/yemNJLp1Di83MUxZsRYOhyXXWgnevOgOh8Oqzu10YGRkBF6rRVFqVDFarBaMjhauJWOxWMCy+orurFgxv4SxcDpz9OhRHD1xEq9r9cne59yAC0G7Ff/zP/+j6dinTp0CAHSu6l70fNfqbpzq6aE2bkTDQ6K7hpmamoKRYeBRKNyKITrmpVbwBUHA0OAg2lSGl7d1dGJwYIAursg53XaF752NcrprDo7jpfBYEt21w0V79+LQbAIZnofLZESrzSzrx2Uy4vmZGExGI84999xq/xqnNaLoNkJf0W1kmLJiLRwOw+tTLrqtViscTmdDi+7R0VG02K26jNViM2MyPFMwMsFisSCTLl0QTymZbL6OgFmftLx647e//S3sJhMuCpUPLRcxMgwuC7rwm//5laZjnzhxAh6PF4FgaNHzq9esQyQSaejoEYIAKLy8ppmamoLfbtWtCqdfhuiemZlBIpFAW7tK0d3eiWQyiZmZGQRUuAynE8lkUlE+NwDY8mWySXTXDizLwoDc4omRAeV01wgXXXQRkiyLV+YSeN/aFrxvbYvsfT98sBe7du6E0+ms4BkSYo6oQeecbiMD8Fzp/NPpcBjtXWtVje/z+RtadI+NjaHJrI8n02QxQRAEjI+Po6OjY9FrVqsV2azOojvd2E737x96COcHXIqjFC5p8uKnL57AwMAAVq1S1i5W5MSJE+heu27ZnLV77Xrp9aYmZS38COJ0gpzuGmZmZgZes37rIuJYMzMzRbcRi6BpKaS2cJxGJpFISDnachG3T6W0tUMi9IMXeEk0GCrQV5ZQx65du2C3WfH8jPJias9HUti7b18FzopYiBgVonN0ORgwYLnSi1/hcBhef/nqzYXw+QMNXUhtfHQEIZNOojtfCHaiQBFXm82GdFrfe10mk6tqb7fbdR23Hkin03jyr3/F3qBL8b57gm4wDPDoo4+qPv6JEyewas26Zc+v7l4rvU4QjQyJ7hpmdnYWXp1ufACkMPVS/UelqqXtHUW3KYW4H4nuvNOtcLZJOd21x8I+3QaAwstrBLPZjPPOPU+x6B5JZjAcS1A+9wow73TrO66RKf89nAmH4fWpE90er6/k4vTpzsTYGEI6dk0BgPHx5YUObTYbUjrf60QRb1PY8vR04Pnnn0c6k8F5AeWi228xYZPXhb/85S+qj3/s2DGsO2PjsucdTifaOzpx7Ngx1WMTxOkAie4aZmZmBl4dZysmAwOXxVxyMjE0NASj0Yim5lZVx2hqboXRaJT6fDYyyWQSVoXvn41Ed83BcbxUgd5ITndNcdHFF+OFSEJRDYnnZ2K5fS+6qFKnReSRRLfOOd0Mw0Dgi7/ngiDkFq29PlXje3y+kovTpzsTk1MI6dg1BSgsuu12e9l+60oRRbzD4dB13Hrg2Wefhd1kwha3ut/9bLcNzz31lKp9Z2ZmMDExgbXrzyj4+pr1G0h0Ew0Pie4aJjI7C5eOTjcAuM0mRCKRoq8PDw9LwlkNomAn0Z0X3YyygnLUMqz24HhOcuoMMhw2YuXYs2cPppNp9CXkT9z/NhPD+u5uNDc3V/DMCADSYojORjeYBWMXIplMIpPJwOPzqRrf6/Uj3KBON8dxCM/NIaiT0201GuCymAvWkrHb7Ugm9a1fIoruRgwv/9vf/oZtXofqbgE7fE4cPn4c8bjylB1RUK9dt6Hg6+vWb8DhI0dUnRdBnC6Q6K5hInNzcOtUuVzEZTYiGo0WfX1oaAit7e2ajtHa3i6FqTcyKRXh5SYDAyPDUE53DcHzguTUGUBOdy1x/vnng2EYyb2WwwuRFC68+OIKnhUhIgljvVV3bvCiL4kutcfjUzW019e44eXhcBiCIMCvYz2ZgNWCycnJZc87HA4kEwldr6miiG9Ep/ulAwewyam+6vwmtx2CIODw4cOK9z18+DAYhikYXg4A6zZswskTJ5DVuS87QdQTJLprmEhkDk6dnW6X0VDW6W5ubdN0jJbWdgyS6M6LbuXvn81sItFdQ/A8v8jpJtFdO/h8PmzZsAEHZOZ1J1gOh+diuPDCCyt8ZsRCVtrpFkW3V6XT7fH4EJmbU7VvvSMWkAvoFF4OAH6zsWA1eJcrl3usZ153Iu/SNlpnApZlcbynBxtc6nPZxX2PqHCkDx8+jK7V3bAViTA4Y+NmsCyLkydPqj4/gqh3SHTXMPFYHC6VYd7FcBoYxGLFXaHhkRG0tmpzulta2zA6OqppjNOBRCIOqxrRbTRQeHkNkQsvF51uCi+vNc6/6CIciMpbpDo0lwDHCzj//PMrfFbEQpQl2cijVCtNyelWm9Pt9TZsTrcojn1m/eYeXiNTsBq8KLoTCeXhzMWIx2MwGo2wWvXpM14vDA4OIsuyWONUL7odJiNanXZVVcZfffVVrN+wuejr6zdskrYjiEaFRHcNk0gmFfdaLIeNmV8JLsToyAiaNYru5tZ2jI6MaBrjdCCVTMFqVO7xWI1GEt01RC68PAc53bXH+eefj2NzccTZ8oshB2fjcNrt2LZt2wqcGSGhs+ouN5womN0ej6rx3R4v0ul0Q16HxbB6PduV+kwGzJZwuuMljAClJOIxOJ3OkosypyO9vb0AgFUObf3JV9nN6OvrU7zfy6+8gg2bthR9PdTUjGCoCa+88oqGsyOI+oZEdw0Tr4DodhgNRW9w6XQa4XAYLZrDy9sQDocbPkQ6nUqpcrqtBkb3iq6EegRBWOB0U053rXHeeeeBFwS8NFe+INPBuQTOOWe36kKRhDIqKnxKjD2XDw13u72qhhbFeqlUrNMVUXR7dHS6PWYjZgo43W63G0BOKOtFPBZTvdhSzwwMDAAA2mzaRHe7xYT+U6cU7TM7O4vhoSFs3LK15HYbN28l0U00NCS6axSO45DJZqUWUnphMxoQL3KDGxsbAwA0NbdoOkZzS67dWKEWIY1EOp1SldNtNRhIdNcQvCBQTncNs2XLFjhsNhyaKx+ieiiWxu5zz1uBsyKAedGt9zemnNMdiURgMBjgUJnXK4r1RhTdc3NzMBsMiouAlsJrMhUM1xdFdzSq3985Go3A04Cie2hoCAG7VfOcsdVmxrDCmjyikN6wqbTo3rBpC156+WXV50YQ9Q6J7hpFFF1K+zyXw2JgkE4VFnSS6G5R16NbJJQX7eJ4jUoqlVYVXm4xUPXyWoLneakQFOV01x5GoxG7du4s63RPp7MYjiWwe/fuFTozwpBfdBR0ji/nBQHGEp09IpEI3G6PaqfdlReDjSi6I5EIPFazrlEKLpMB0QIRdqI4jpXoqKKUWDTakKJ7dHQUrRpdbgBotZoxMj5eslDhUl566SWYzeailctFNm7ZjpMnTiCR0LdNHEHUC/ol7RC6IopuiwqntBRWgwGZIi6qXk53E4luAEA6k4HFoNxpsTAg0V0jCIKwKLxcfI6oLc465xw8eLi0g/JyJDfRO/vss1filAjMi25e568ML8yPXYhIJAJnPl9YDS53TrTNNWAF80gkAqdJ36mhy2REpIDo9npzEQXRqH5/52hkDj5v8bSChx56CA899JAux7r22muxd+9eXcbSyujoKJp06HbTZDUjlU4jEolI7085Dh06hPUbNsFiKS36N2/bDkEQ8Morr+Dcc8/VfK4EUW+Q6K5R5kV3BZzudGFBNzY2BqPRCH8gqOkYgWAIRqOx4SuYp9JpWAzKJ34WBhReXiOIAltyuim8vCY566yz8I1vfB1xloOziAN6OJKE2+nE2rVrV/jsGhdRGHM6L1QJEGBgSotuUTirQRTsUR0d2HohFovp3qrUYTIgk80im83CbDbPP+9wwGQyIapjREEsGkFHa1PR1//tc3fiwEuvwuZr1nScZHgUwyMjtSO6h4fQqUObt2Zb7v0ZGxuTLboPHjqETVu3l91uw8YtMBgMOHToEIluoiEh0V2jsCwLADDpLLpNDAO2SJXf8fFxSTBrwWAwIBAMYWJiQtM49U7O6VZRvZyhQmq1gii6pZxukNNdi+zYsQOCAByNJnG2v/BC1+FIAmdu317SISX0RbyX6P2V4QTAVKK6djQa1eZ0u8Rc48YT3fF4HA6d5x2O/OcgHo/Dt6B3OsMw8Pn07YkemZvD1k1nFH19eGQU/rNeh44rbtJ0nP5ffQFDw7XTpWVsZBRnWXUQ3Zac6B4dHcXGjaXDxYFcutXLL72Ey656U9ltbXY71p2xEQcPHtR6mgRRl9Dso0aRRLfO1V9zopst+NrExASCoeIrxEoIhpoaWnTzPA+W41RVL8/l3VN4eS0gutpM3utmQE53LbJ582YYjQYcjRZv8XQsmcX2nTtX7qQISXSzOqtuVhBgNBYXGLFYDM68cFaD1WaD0WhETMdWVvVCPB6HXWfRLXZhKZTL6/X5EJmb0e1Ykcgs/H5/wdcEQcDE+BjM7oDm45hdAYyO1EY0nyAIGJucQLPVXH7jMjRZ551uOZw4cQLJZBJbt++Utf3mbWfiRRLdRINCortGEYWxUWfRbTQwyLLZgq+R6NaPTCYDADCrmLyQ6K4dloaXMyCnuxax2WxY370Gx4qI7iwvoCeSoP7cK4wpnxvM6Z7TLZR1utVWLgdyDqzL5W5IpzuZTMKmc6c3sRJ6ob7nfr8fcwUqm6tlbnZ2kZu+kEgkgkw6BbNLu+g2uQOYnFBWcKxSzM3NIZXOSKHhWnCZDHCYTRgZkefiv/jiiwCAzTLCywFg6/YdeOnQISpISjQkJLprFNFN03nBuWR47OTkJPzBkC7H8Td4eLmWnHyLgSla7I5YWZZ+D8nprl22bN+Ok4lMwdf6E2lkeR5btmxZ4bNqbETRrb/TjdJOdzwOp1N9eDkA2B1OxOPl29CdbqQSCd27pohtrAoVCA34/Zib1cfp5nkekbniTrfYxtTkKvy6EsxOPzKZdE1UuBcFcqtVe/VyhmHQarcqEt2dXavg88tbyNiyfSfi8ThOnjyp5TQJoi4h0V2jLHXY9B278POTU1MI6iS6g8EQpqandRmrHhGdbjXV5y0GA1UvrxHI6a4fNm3ejJ4iovtkLPd92rRp00qeUsNTMdHNCzCXqJQci8Vgd6h3uoFcka9GDC/PZNK6d00RI77E++JCAoGAbqI7GpkDz/MIBgsXgxVFty5Od34MccxqMjw8DABo0cHpBoAWi1G26D5w4AC2bN8he+yt+W0PHDig6twIop4h0V2jzE/29ZXdpUTD9NQUfBorl4v4AkFMT03pMlY9Mi+6lb9/ZoYpODkhVp55V5tyumudjRs3YiSeRJJb/v70xlNwORxobW2twpk1LmKlar2rl7MLxi5EPB6Hw+HQdAy7szGd7nQ6rXstGXO+0nyhAqGBQACzM2FdjjM7kxPvxZxuMfrO5PRpPpbZlRujFkT30NAQAKBVJ9HdZjFhsK+v7HaCIODFF1/EFpn53ADg8wfQ2bWKRDfRkJDobjAYhikougVBwPT0NPwyQ4TK4Q8EMTU11bCuoJTTrWLyYjYwyBRp60asLNLi14Lw8kb9TNc669evBwD0xZdP7PsSaZyxbh0YncUEURpRGGd1btRdTnQnEgnNTrfd4WhI0c1mWVW1SEohjleoiGswGNRRdOei60KhwhF7ExMTYAxGGG3aUg8AwOTwAcil5VWbwcFBNDlsukUotNksGBocLLtdf38/wuEwtp25S9H4W87cKeWCE0QjQaK7RhHb2gjQd7LCCwKMxuVveywWQzabhb9IWJZS/IEAWJZtyPA8QGt4OYNstnCxO2JlofDy+kHsvz2YXC66B1JZrNuwYaVPqeGx5EPAdRfdglBSdCcTCdjtdk3HsNscBQt/ne6wLKt7LRljfrxCxbOCwSBmwvqkos2Ew9KYhZicnITV5QWjgzg12t1gGENNiO6hoSG02bTnc4u02c0YHhsrG9UlutXbztypaPxt23fhwIEDdC8lGg4S3TWK6MjoPFcBv2Dshczkw7K8Xu0FRhaOI47baGipXm42MMhkSHTXAiS664fW1lZYLRYMJpaL7qE0i+41a6pwVo2NKLr1zunOCIDVai36eiKRgN2uMbzcYS/Y4up0h+d5GHRPa8uNV0h0h0IhpFIpJHSIKhAd81KiW4/QcgBgDAZYXN7aEN2Dg2g16zedb7VZkGXZssVwDxw4gKbmFjS3tikaf+uZOzEzM4M+GSHsBHE6QaK7RhGdbl7nyYogCNLYCwnnV4i9RXKhlCKOI47baGjL6TYgk6Wc7lpgWXg5Q6K7VmEYBl0dHRhOLf7u8IKAkXgSq1evrtKZNS6i6M7ovHqcFebHXgrP80ilUrDZtDndVpu9IcPLBYHX3ekWr5+Frp1iKPjMjHa3Ozw9BafTWTTKYXp6Ggab+v7tSzE7PJiugYKxQwMDaNWhR7eIOFa5Ymq5Imo7FY8vFlOjEHOi0SDRXaOIoXOszvN7VgDMpuUXZ3K69UUU3WoK0pDTXTsUKmhIort2WbV6NUZTi7874QyLDMejs7OzSmfVuMyLbn2LD2b54uHlYucHq92m6Rg2mx1J6iKhC+LVs5ToDk9rL7wanp4qms8NAFNTU2DsHs3HETHYa0N0j42N6tKjW0Ssgl5OdL/44ouKQ8sBoLm1Dc0trSS6iYaDRHeNUslWKyaTcdnzc3NzAACP16vLccRxxHEbDTEnW00hNRPDIFug4Ayx8hQML6fq5TVLR1cXxjOLQ1jH8iK8o6OjGqfU0Eg53XqHl/N80fBySXRbtYluq9XWkK0bGYbRuZIMpPEKRdk1NTUBAMI6dDsJT08hWEJ0T06HYdJRdDM2N6aq3KWFZVlMzcyiWUenO2jJjVWqMvvY2BjGxsYUtQtbyOZtO6iCOdFwkOiuUSpW9VUQYCrgEMzOzgIA3B59RLc4jjhuoyGJbhVxehYDgyxLTnctsEx0U3h5TdPW1oaJJaJ7Ip2VXiNWlkqFl2d4oazo1hpebrM3qug26F9LRkrTWX4/1NfpnkRLc3Px18MzMNq1Vy4XMdpcmJ6Z1W08NYhdYoIWk25jmg0M/DZrSdF98OBBAMBWFeHluf12SGMQRKNAortGqVQBmqwgFMyFm5ubg81uL1kRVglmsxk2u71hRbcUXq5CdJsYBpksOd21xHzLMGo5Vcs0NzdjKr04p3sqn6rRXGIyTlQGhmFgMZuRLtA7XQtpGU63pUShNTlYrTakG1B0m00m3WvJiCK+0PzC4XDA5XJhelp7QbLw9FTJ7/nc7AyMOuZ0G+1uhMPVTaET6+b4zfqJbgDwW0wl0wMPHjwIt9uDzlXqamVs2XYmRkZGyhZrI4jTCRLdNYo4odA7Fy7D8bAVCLuLRCJwu/ULuwIAt9uDaDSq65j1gpbwcrOBAc/zZdt1EJWnWE97ojZpbm5GPJNFcoHIC2dYeN2uooW3iMpis1qQ1tvp5oqL7nQ6V72+VHVzOVisVmmsRsJoNumf1pYfz2hcntoGAKGmJkzrUAV8empSCldfiiAIiEUjMOnsdM/Nzeo2nhpEY8NjLvy3VYvHZCxpmhw8eBCbtm4vmDIgh83bdkjjEESjQKK7RqlUWF6aF2CxLZ+MRKNROF363YwAwOlyNbzoVut0LxyDqB3I565txFZBs5n5SJGZDItQIFCtU2p4bFar7ovHaZYrWqFaFMpmjYssZrO5IUW3xWzRP8IuP48pFknX3NysS3j59ORkUac7kUiA4zgYrE7NxxExWp2IVXmOI86xXAVq9WjBaWRKzt8OvfQSNm/drnr81WvWwu5w4OWXX1Y9BkHUGyS6axSDwQCL2YxUBcLyCvUvzYlu/cKuAMDpcje86FZVSM1AortWWFq9nPp01zb+fKvCOXY+r3s2y8HvJ9FdLWxWm65OtyAISHMcbLbChdKkdo0WjU63xSqN1UhYbfq+X8B8Ib1i0QetLS2YmtQWZpxOpRCJzKGlpaXg62JRV6NVW//2hRhtDiQTcbBVLHyaTCYBAHajvtN5OzM/9lJSqRSOHzuGjVu2qR7fYDBgw6YtJLqJhoJEdw1jt1mR0tkhSPE87I7lN51YLAaHQ78VYABwOl2IxWK6jlkviDdho8rq5QvHIKrPwj7dRO0iie4FNREiWQ4+crqrhtVm1XXxOJUXhOVEt9b6JGaLpSGdbqvNpnsOvvj+FxPdzc3NmJ4sXrRLDmJOeDGnOxKJANBXdBvyY1XTXJA+7zrfnMwMU7SmweHDh8HzPDZu3qrpGJu2bMehl17SNAZB1BMkumsYu82mu9Od5FFQdCcSCd1Ft93uQCKR0HXMekEKL9cgusnprj6U011feDy5uhQxdv66GeV4eHy+Kp0RYbPZdF08TufHKi+6tYeXsyzbcN93u8OBlM6/s/j+F0sJaGlpwfSUtpxu0Skv5nSLBoBBT6fb4lg0djXguFxUj1HnBWEjw4DnuIKvHT58GABwxqYtmo5xxsbNOHrkiPQ7EMTpDonuGsZhty8qCKQHaSFXLXQp8Xi8oBjXgt3hQDwe13XMemHe6Va+r9hmjJzu2oFZ8i9Rm7jydSkSCyZxCQFwu/VNnSHkY3c4dF08Fu+JxQSctOCpsZqzyZRzyhvtOmy325HWeZ0hVeY9a8mHl2tZ4JiakCe6jRZtreQWYsiPVU3RXbFFIQZFq9gfPnwYbe0dmovvnrFxM1KpFPr7+zWNQxD1AonuGsbhdOkuuhO8AKdzuaMdTyQqIrpjDSy6TQZDwb6k5RCFeqNN9mqRwk43VZWvVcRrW3yB0x3n+ILXPGJlcOgsussJOKmehklbeLko2hst4sjpdCKp8yVOnMcU+x62tLQgnU4jGo2oPobodBerXi453ZbCERJqMFirL7rFivB635V4QYCpSHG2w4cPY92GTZqPsX5jboxXX31V81gEUQ+Q6K5hXG4X4nqLbpaT3KCFJJNJ2AoUWNOCze6QeqY2GtlsVlXlcoDCy2uReaebvO5axmg0wmqxLFqsTHF8wegeYmWwO5xI6hhenuJyC2HFRLcUZWTS5nSLor3RrsNOpxMJvecdHA+DwVA0JaC1tRUAMDWhPq97cmIcwWCwaC6/WBTMYNZWYG8hBlMuhaGaaXSm/Oe8Em3eTEUWro4dP461687QfIzWtg7YHQ4cP35c81gEUQ+Q6K5hnC43Eqz+N79Cq82pVEpzX9OlWK3WhhXdLMvCqLJ/pVh8jfKcqk9Bp1vnyr6EvtitVinvF8i1SSwm0IjK43A6kdLxNibmBxdbSBFFt9ZCaqJob7TrsNvtRpzV93eOsRxcDnvRyC8xJHxyXL3onp4cR3OR0HJgXhgbzDo63fmxqim6K9VeNsMXbrvHcRxO9fSge+16zcdgGAbda9bhxIkTmsciiHqARHcN4/Z4dHe6Y1m2oNOdE9363YwAwGq1Nazo5jhOVRE1YN7pbrTJHkHogdVqkdxQIFd4S+8FRUI+DodD1xxhMby8nOg2GLX1LRbDdhstzcftdiOa1fd3jrE8PCVakkpOt4YK5lOTE2jLj1OIZDIJxmAEY9QWAbEQg7n6TrcYPZDRudNNRigcTTI4OIhMJqOL6AaA7rXrSXQTDYN+Vx9Cd9xuN0Z0DBkSBAHxTLZgUaFUKgWL3k63zYZUkT6Ppzu5nG6VoltjIbWjR4/iySefLLnNpZdeirVr16oav5Gg6uX1h9ViRXZB3n2G4yU3iFh5HA4Hkjq6cMkyoluq5mzQKrrzYbsNJro9Hg/imSw4QVDV8rIQMZaDx+MteUybzYbJfHj5d771VXzvW1+TNfZ7b/4n3HjzLZicGMe67q6i26VSKRg1VrRfCpMPL69mazlRdKe5xd+xb58axz198hYxbupuwfvWLo4SSAtCwXSA3t5eAMCqNfrMH7q61+DhB/9Hl7EIotYh0V3DuN1uxDj9JisJjoeAwpV8s5kMLBZ9RbfZbGm4fDgRlmVhUDlhEQupqf3bffSjH8WDDz5Ycpt3vvOd+PGPf6xq/EaEWfYfolYxm03g+Iz0mOVJdFcTh8Oha46wbNGtMadbKlCls4NY6/jy7fViLAevxgrwIpEsB0+zr+jrDMOgpbUVE+NjuWNHoxgbHZE1dizfI3tqYhwXnre76HbpdBpGk77XAYOx+qJbdKOXtuWLsRzGUvLmELEC6QSpImk5YqXxjo7iCxxK6OhchaHBQXAcJ33nCOJ0hUR3DePxeBb1m9VKNH9hLSS6M5kMLBZtOXBLsVjMUs/URoNlWdXh5VpzuienpvDWd1yPL3zt/xV8/eb3vB3T09OqxiYA8rlrG4PRiOyCaASW56ViQ8TK43Q6de3CkShTCVsUyQaVNTVExP0bVXTPZXUU3SwHnz9QcpvW1lbJ6Xa53Whta5c1tis/n5kYH0NbW1vR7VKplK6h5QDAGI1gGENtiO4l3zGXyYhWm7w5natAlfJSorupuQXWIkXxlNLZtRrZbBajo6Po7OzUZUyCqFVoJlLDeDwexHTMrRIFvNe7PMwrk8nArHPoldlsaVjRzXGcaqfbAG2ie3Z2FtvzE6dCeLw+DJw6pmrsRkUsAERGd+1jNpnBZeZFN8cL5KBUEafTiaSOhbkSHAezyVS0UJookrW+54YGdbr9fj+AnOjWizlOwNpgsOQ27W1tUvXyG2++BTfefIvs8ZOJBKLRSEnRnc1mYdDYRq4QBpOpqhF9Ygj4UtH9vrXLQ8aVkOIK18IYHh5Ga1uH6nGXIi6uDA8Pk+gmTnuokFoN4/V6EclkdcshFZ3uQqI7m81qDsdbisncuE43x3Eacrrnx1DD7MwMPF5f0dc9Xi9mZmZUjd1oFPzuUU53TcMYmEXRCJwgaHY9CfU4HA4kdMyLTnI8HPbiLpsokotVypaL+JlptIKWouie1XHBf47jpXGLkXO6x1SNLzrkLSWql2ezWTAa8/wLYTDWhuhO61y9PM3zBZ3u0dFRNLcWX9xQijjW6OiobmMSRK1CM5Eaxuv1guV53ULzItnioptlWd1DMI1GY8NNWERYloXa27sR6gupCYKA2dlZeEuKbh/mZmdVnl1jwiz5l6hdDAYj+PzCiLhoolWAEepxOp1IsRw4nRarEiwPp71433We53V5v8UxGq1wYiCQCwPXU3TPZlhp3GIsDC9XiijWSzndLMuCqUDEC1Mjonup062VNMsVLKQ2MjqK5pbiVeKV4g8EYTKZMDIiL4efIOoZEt01jJhbFdEpNC+SF3G+JaHHPM9DEAQYdF4FNhiMEASh4cLzAI3h5RpyulOpFDKZDDwlwsu9Xh9mSXTLgqqX1x8MwyzLuyenu3qILSr1WjxOcDycrsL53EDu+6mL6EZjim6v1wuj0YiZjD7zDkEQMJPOoKmpqeR2bW1tmJ6aVHXfEwuwlRLdHMdVxOlmGENV5zgVc7q5wqJ7anISgWBIt+MYDAYEgiFMTU3pNiZB1CpVn4l885vfRHd3N2w2G8477zw899xzJbf/yle+go0bN8Jut6Orqwsf+chHTtte0GI4VkSn3KpIloPBYFhWSE2q9qrzKnCj9jkFcgsZatutiNXL1Uw+xLBxd6n2LF4f0uk0kg3azk0N5JPWF6JOEqeh5HRXD7HgWVynoqBxjoPT6Sr6um6iu0GdboZhEPR5Ec7o494mOR4plkOwTE53a2sreJ7H9OSE4mNMjo/BbDaXdNNzwlj/KS/DGKoa0SfmXad1FP6CICBTJKc7HA7DWyZVQClenx/hcFjXMQmiFqmq6P7pT3+KW2+9FbfffjsOHDiAHTt24Morr8TEROGL7n333YdPfvKTuP3223HkyBF897vfxU9/+lN86lOfWuEzXxl0d7qzHDxO5zLXR6/CM0sRj9NokxYgJ5iNKud9Wpxu0cEuFV7uzqcXkNtdnsJOd+NFbtQTJLBrC1F0J3QSJkmOl9zzYujyGcgP0Yj3r6ZQCOGMPovl0/lxyjndra25kGXRtVbC5MQ4WlpbS77vPM8DFbg2MIbqim6TyQSDwYCMjk636JovFd2ZTAaxWAw+X+lUAaX4/AHqqEI0BFUV3V/60pdw00034YYbbsCWLVvwX//1X3A4HPje975XcPunnnoKe/bswXXXXYfu7m5cccUVeMc73lHWHa9XFrbu0IO5LAe/b7kDWqm8x0YX3erDy+fHUIokun3FV6JFQU6iuzzSZ5eZ/6cRP88EoRZRIOvVqzvO8nB5PLqMRRSmqaVFEstakSu6xdBwNXnd5dqFAfnrNlOBKW8NLPLZLBZkdHS6RQG/NLw8mu+J7tb5++dye6SxCeJ0pmqiO5PJ4G9/+xsuu+yy+ZMxGHDZZZfh6aefLrjPhRdeiL/97W+SyD516hQeeughvO51ryt6nHQ6jUgksuinXphv3aHPzW8uyyIQWB7iJVV7VVltuyjM4vEbCY7j1BdSy9/E1fzdxPByT4FieSJiZXOqYC4fqZBaDUywiNKs9KJIT08P3vKWt+Af/uEfkEgkVvTY9YAkunUKL0/wgtSbmagMza1tCOv0fomiu7m5ueR2LS0tYBhGldM9MT6G9jKi+3TGZrXq6nSLAn6p0x2LxQAADkfxmgpqcDgc0tgEcTpTNdE9NTUFjuOWtXhoaWnB2Fjhi+51112Hf/u3f8NFF10Es9mMdevW4ZJLLikZXn7XXXfB6/VKP11dXbr+HpXEbrfDZrXo5nTPZjn4S+RV6S0oGjUnDhCdbnX7imJdi9Pt8fiKbuOh8HLZLP3sktNd++RyenP/ZxY8Vykef/xx/PKXv8S9996LEydOVOw49YoouuM6heAmeJQNLye00dzcjKmsPqJ7Kp3LDS/ndJvNZoRCIUyqCi8v73RXkmrfE2xWq67Vy1N50b20ZVg8Hs897yjePUANdocTURLdRANQ9UJqSnjsscfw7//+77j77rtx4MAB/PKXv8SDDz6Iz33uc0X3ue222zA3Nyf9DA4OruAZayfg9enWumOO40uK7krRiO4gz/Oqv1xac7otFgtsBfprini9fmlbQh5iJePG+yTXI8KyyIRKTooXtguqZuugWkUS3bo53byUJ14MXd7vBl5ba2lpwWRan8/yZDqLgNcLs9lcdtvWtjZVTvfUxLiUE16M3LWgAm+qIFS9O4LdbkdSx4jCFCdI4y56Pl+02FqgqrkWrDYb0um0rmMSRC2ib2NmBYRCIRiNRoyPL87fGR8vfvH813/9V7zrXe/CjTfeCADYvn074vE43ve+9+HTn/50wQuf1WotWIGxXvAH/JhN6RMGPMsJ2FpCdFd7tfZ0guM4DaJ7fgylzM7OwuP1lVzosNntMJvNFF4ug4KF1HRuzULoiyAIyxZHSHRXD91zujl+WQeOhTAMo8v7zecLJlZbUFWD1tZWhJMpsLwAk8a0s6kMi9YlEY3FaG9rw8TEqKLxOY7D1OREWaebYRigAkUwBYGv+mfE4XQiGdcvtUVs7+dY4miLnWhMRn2lg9lkasguN0TjUbUrhcViwdlnn41HHnlEeo7neTzyyCO44IILCu6TSCSWXdzEitunq2AMBkOY1amgyUyWLdhSo1JuUKUKtNUDPM+rLqRm1PB+zM7Oli1ywjAMPF4fiW4ZSJ/h/GOGOX2vNacLAs8vuuZUOiVgodDOZDIVO069YjabYbVYENepC0csy62I6G7k+1dLSwsEAFM6tA2bSGfR0lbahRZpa2tTHF4+PTkBnufLim6DwVCRzhNCDTjdbrdbt0gSAIjlv6tLv2fitc4kI2pBCUaTiRYsiYagqleKW2+9Fffccw9+8IMf4MiRI7j55psRj8dxww03AACuv/563HbbbdL2r3/96/Gtb30L999/P3p7e/Hwww/jX//1X/H6179e93ZXtUKgqQkzeuV0p7NScbaFSDcMneeloiNY7RtSNdDkdC8YQymi010Oj9eLubk5xeM3GoVbhpHornUWyiS9RFgxFgptEt2FcTkc0kReK/FstmRON4lu7YgCdiqtfcF/MsujraNT1ratra2KRbcYjl5OdJtMJqASRV15Pjd2FfH4fIjq9P0C5kW3p8gCfqXq/xDE6U5VrxTXXnstJicn8ZnPfAZjY2PYuXMnfv/730vF1QYGBhYJtn/5l38BwzD4l3/5FwwPD6OpqQmvf/3r8fnPf75av0LFCQQC6NchnDXD84hlsggWCC8X/8Z6VxkXx2tE0c3zvOY+3Wqrl4s526Xwen2U0y2D+Yl37jEVUqt9VnqhZGEuIuUlFsblciHGaRdwLC8gxXIlRffCVpVaJvPiZ6YR71+igJ3QIa97MsvhwjL51guPOzkxrui9UyK6K+F08zxbddEdCAZxitPvGjebN3qWmjSVnCs24veMaDyqe6UA8KEPfQgf+tCHCr722GOPLXpsMplw++234/bbb1+BM6sNgsGgLk63eBEtJbrVOKulEMdrxIspz/Oqi25pzel2l6hcLuLyeCm8XAFMgf8RtQm/JKe70gsl6XQabrcH0WhEKjRELMblciKRDGseR6yAXiq8XC/R3ciLxlL7Lh1E93gyLbuyeFtbW67N69wsvL7yi8cAMDk+BoZhyrYkM5lMEHRY+FmKwHFVj7QMBoP4m47h5TMZFk67fVk9pErNFfklKUEEcbrSeHeTOiMYDGJGhxvfTD4vvKTTrfOFVGjgSYum6uVQn9M9Ize83OPFLIWXl6XQe8BXwC0h9GXh/K3Sk7lkMgmvzwcAJLqL4PZ4ENNBFIh5q3JEt1Y3rpHvXyaTCU0BP8ZS2tIlEiyHWCYrW3SLRXSVVDCfnBhHKBQqWx3dbDYDvL5zHADgORYWi0X3cZXQ3NyMqbR+qS3TmSyaQ6Flz4t/Y07nomdstvp/Q4JYCarudBOlCYVCmEtnNFcRncm3HQsVuJAyDAOj0QhO5xsSy7EwGo0NuYKprWXY/BhKmZ2dhTvfh7sUHq8PJ0YGFI/faCwrpAYKL691Vjq8PJFI5Ba6BgeQTCYrdpx6xuPxIj6g/f5SrMDTQha6cVrCfsXrbyPevwCgra0d45F58fvtU+O4p2+8xB7z3NTdgvetbcF43jBQ4nQDOSF9xsbNsvaZGB9Dq4zxzWYzeJ3FoiAI4DlWVju0StLW1oZwKo0Mz8OiwyLReDqL9q41y5635VuFpdP6Li6m0ylpbII4nSHRXeOIInk2yyJkVX9hF53uQqIbyK1s692ygWOrn+tULXLVy9XtK+6mRnRH5ubgdssR3V7K6ZbB0mJKVL28/qi0ZIrH43A4nbA7HIjH4xU+Wn3i9noxqUPLsDgn3+kWNDrd4vW32qHD1aKjqwsTB4akxzGWw1hKXtSduDgibt/R0SFrv3nRrcTpHkObjJxxi8UCntW30KEYrl5t0d3Z2QlBAMZTWXQ5tLfIHUmzWLV69bLnxXBzvWtXZDJp2Oq4tS9ByKUxFVEdIYrkcEab6A5nWBgMBvjyYZBLMZlMYHVu2cCybMNOWLTkdIsCT2nelCAI+erl5UW32+1FhMLLy0JOd/1TaaMyHo/DbnfC6XQhFotV9mB1itvtRp8OWRlynG7xnqM175TPR3416j2srb0dLzw7/6a5TEa02uTNQVym3N9MdLrb29tl7ed0OuF2uxVVMJ+aHMfWTRvKbme1WsGx+s5xhLyIr7ZL293dDQAYSmZ0Ed1DaRYX58dciNi3O5nUryc4ACQT8WU9wQnidIREd40jie6sNhd6JsPC7/EUnUCYTCZwOhcZYdls1VeAqwXPcaqdbiBXwVypuEsmk2BZtmyfbiDnPM3OzmouNnS6s/Q9YDDfCo+oDyq9RjIXicDt8cDpciEajVb2YHWK2+1GXIfqykrCy7XWXmjkQmpAzp1+cEE9mfetzYWMK2E8lYU7L6Tl0tLaiskJeWHsQK6QWtv+fWW3y4nujK73PJ7LSmNXk9WrV4NhGPQn0rggKP9vXYgMz2MklsSaNcvDy8X3MR7T9zoXj8XQ0dqk65gEUYs05t2kjhBFtxgerpbpDItQaHkRNRGz2YxMRt9V4Gy2+rlO1SKX063+xm5gGMXh5WK4uEdG9XKP14tsNks5qGVY1jKswj2fCX1Y+BYJqGxe7tzcHFxuD9weL+YoeqQgbrcbMR0KdcoppCYuLGstDCo65Y3qdLe3t2MikQKrYZFxLJVBa4syod6qQHQLgoCJiXGpAFspbDYbIAi6VjAX2NoQ3TabDava23Eqrj3XeiCRAScI2LBhefSA0+kEwzCI6xzRE4tFFS3MEES9QqK7xvH7/TAYDAhrFN0zWRZNTcVbalgsFrA6h15ls5mGrUgpLGlbpBQGynO6xQm/LKfb4120D1EYqVdv/t005J6s3gkRZTEsEdiVjuaYnZ2F1+eDh9rwFcXtdiOuQ+vLGMvBbDKVFDm6hZc3uOju6OgALwiY0rAYP57OorOrU9E+ba2tssPLY7EoUsmkLNFtt9sBAAKrXz4ynx+rFkKjN2/bihNx7b/biVhuIX7Tpk3LXmMYBh6PB9GIvvOGWCQCr4y0OIKod0h01zgGgwFBnxfTGkV3OMMhVGLF2Ww2I6NzcQw228Dh5TynKZdUk9Mto2WY250T5iS6S0M53fUHwxiw8B2q9LsVnp6Gzx+Azx/AdFh7L+rTEbfbjZgOkVRxjofb6Sy5jV6im2vwnG4xD1tu8bRCjGc4dHStUrRPa2srpiYnZG0rOuJyqqOLolvPYmpCNr1o7GqybfuZOJbQ/rsdiyYR8HqLLmT4AwHM6ry4ODs7g0AgoOuYBFGLkOiuA0LBoGanO8wJaGoqnjNjsVp1d7ozmTQsDVqRUuCFZY6bEtTkdJPTrT9Lw8vBADyJ7pqGMTCLRXcFnW6WZTEzM4NAIAR/MISJCXliodFwu93I8jzSGiuYx1gObper5DZixwytNUp4rsGrl+crjo+n1c8LxjKc7MrlIkrCy6fGx6V9yiGJ7qyOTnc2s2jsarJjxw4MRhOY01j/53A0iZ27dhW9Zvr9fszN6ie6BUHA3OwM/H6/bmMSRK1CorsOCDU1a87pDmfZou3CgFxOkt5OdyadrnquU7XQUr0cyIk89eHlMlqGecjplsNSp9sA5REIxMpiMBik900QBAionHCampqCIAgINTejqbkFkyS6CyIVYNIouuMsB1eZ3E+9nG6xhWajtr1samqCyWjEWEqdeyoIAsYTKVWiOzw9hayMbipia7EWGXnjYgi4vqI7tWjsarJr1y4AwKsRbXVaXo5lsPOss4q+HgwGMROe1nSMhUSjEbAsi2CweM0hgjhdINFdBzS1tmJaYz7cdCpTUnRbLBZkdG4Zls1mGzanm+c5TV8uNQW75ubmwDAMnM7SThBATrdcpArGi/p0k+iuZQwGI8RC2eI3qFJO98jICAAg1NyCpuYWTExMSGKNmEdc5BOrj6slxvLweEtH8ogimdco8Bu9kJrBYEBbc7Pq8PKZLIc0x8luFyYiCujpqfILWJMT47BarbLygZ35tARRKOuBOJazTMrDSrBp0yY47XYcmo2rHmM6ncVQLIFzzjmn6DbNTU0IT0+pPsZSwlO5sUpFYhLE6QKJ7jogFAphRkO7lSTHI5FlS17UbDYbMin9bkYAOd1aJvpqCqlFIhG4XG5ZLW6crpxbRKK7NEvfg9z7QuHltYzBYACfl9viW1Up4TQ8PAwAaGvrQEtrO3iex+joaEWOVc+ITrd20c2VrVkhvtdaFz84joXBYGjolortnZ0YVym6x/MOuRqnG4CsEPOpyQm0trbKeo8kpzujp+iunUJqRqMRu3efjRfn1PfQfjEv2M8777yi2zTpLLpnwiS6icaBRHcd0NTUpKmQmpgPXuqiZrfZkM7oG16eTqfgqIFcp2og8Nqql6vN6S4XeiliNBrhcrtJdJdhWXg5w0DgtVdhJiqH0WCQxDaXf/8qJbr7+/thsVgQam6RCkYNDAxU5Fj1zLzo1pjTzQtla1boldPNcVzDutwiHV1dGFM59xjL54KrdbqnZKRqTE6Mo1lmSzJXvhaArqI7kwvlrgWnGwAu2HMR/hZJqi72+bfZOFpCIXR3dxfdprm5GdNTkyrPcDniWM3NxbvrEMTpAonuOqCpqQlhlXlVADCdrxpbSnTncrp1drozjet0C4IAgwbVraZKdiQSkZXPLeJyeRCJRBSeWWMxH16ee5x7X6p3PkR5DCajJLZFiScn+kMNvb29aO/sgsFgQGfXauk5YjFieHlco9Md5wVprGLoVr2cZRs2n1uko6MDE1l1CyWiQy6nsvhCRPElp4L51OSE7D7gkujWM7w8k4LVZq+ZxZk9e/ZgIpFCv8oq5s/PJbBn796SkQOtra2YCU/LyrmXw+TEOAwGQ8n0R4I4XSDRXQc0NTUhybJIqJywTMtwum02G1JJfUV3OpWGzWbTdcx6QWshNTUtw3Kiu3zlchGX202iuwxL+3TnRDfldNcyRuN8Trcovislnk6ePInV3esAAE6XC03NLejp6anIseoZ0emOag0v5wRprGLM53RrbxnW6KK7vb0dY0l1EXBjqSyagwHFbUMtFgv8fr+s8PLpyXFZRdSABeHlafXh10vhMsmaCC0X2bNnDxiGwbPhqOJ9UxyPgzNx7L344pLbieH/cnLu5TA5MY7m5uaaWbggiEpCorsOEMWy2hBzWeHldjvSOjvdqVSyJlppVANe4AENsluN0z03NweXS77odns8FF5eBnHhQ1z4ZxiAo+rlNY3ZZJbaulU6vPzY8eNYs2699Lh77XocO3asIseqZ0SXUY/q5XJFN6s1vJycbnR0dGAunUFSxfs2ns6gtVWZyy3S3NIiS9RNT03KFt1GoxFWmx1cRlt174Xw6YSswqUrhd/vx45tW/FMOKZ43xdn40hzHC655JKS24mie3xMn9oVE+NjaJHR8o0gTgdIdNcBeohup91eUgDbbDbdRXc6nWpYp1sQtOV056pkKw8vl5vTDeSKqUWjylfEGwlqGVZ/mMxmsJLozj1XCdGdyWRw8sQJrNuwSXpu/YZNePXwYd2PVe8YDAY47XZENXbhiGVZ+aJbY/gry1JOt5iPPaGiV/dEmkXnqlWqjtva0lI2vFwQBExNTijKBXa6XODT+oluLpMs+3lcaS55zWV4ei6heP7w9HQUfo8H27dvL7md+JmYHB9TfY4LmRgbRYfCvH+CqFdIdNcBWkX3dIZFU5keiHa7HWmdq5enU6mGdbo153SrKKQWiUbhcisIL3dReHk5lrYMM1BSd81jMpskh1sU30pDXOVw7NgxcByHMzZulp47Y+NmHDt6lNqGFcDtciKuIeRbEAREM9myIke3nG6OnG4xH1tNBfOJLI82lWKqpaUF02VEdywWRTqdlu10A7l7HpfRL7ycTyfg9tSW6N6/fz+GY0nFed1Pzcaxb//+sgtNYii4bk732IjiCvcEUa809h2lThALTIgF0ZQync4i1Fw6zMtutyOV0m8FGGjw8HJOW0632pZhTpf8UDeny42hPn1Wq09XJNGdf0xOd+1jMpmRFUU3XznRfejQIQDApq3zztCmrduRTqdx7NgxbN26Vfdj1jMulwsxVv09JsUL4AUlOd3avqcsy8JIohuAOqd7PJ1VXLlcpLm5GS+9UjpiZHoyV/Vaiej2ejxI6Ox0+1vkL3SvBPv27YPBYMBT0xF0O+W14UqwHA6EY/jSZZeV3dZgMKC1rQ3joyPSc9/51lfxvW99Tdax3nvzP+HGm2+RHo+PjykutkcQ9Upj31HqBKvVCo/LKeVmK2U6w6K5pXTOjN1uRyqpr+hOJhpXdAuCoLFPt3KnOxaNSv235eB2U3h5OaRCavn3Uk3YP7GymMxmpPJ6i61gIbUDBw5gVfcaeBZ0DNiy7UzpNRLdi/F6vIiryDUVEXt8l6teTjnd+uHz+WCzWqSe23LhBQGTybRqMSWnLdXU5Li0rVw8HjeGInFV51SQTAIeT23lI3u9Xpx79tl4YugkrlslT3Q/OxNDlufxmte8Rtb2nZ2dGFsgumPR6KLHpYgtmHNks1lMjI2iq6tL1r4EUe809h2ljmgKhjClMuc6zAnYVubGZLfbkdRZdDey040q5XQryS+jnO7ySIXU8o9zEQgkumsZs9kMUW5V0ul+4YUXsO3MXYue83h96F67Ds8//zze9a536X7Mesbt9SA2ob6HuSi6Vyynm2MbPqebYRi0NTcrdrrDGRYsz2sW3TzPF233J4ryUgVil+LzecFNTqs6p0IImWTZRaBqcNmVV+Lu/3wJvCBIC8aleHIqio7WFmzatKnstgDQ1dmJsdFh6bHL7UZrm7yohoV1ZyYnxiAIAjo7O2XtSxD1DonuOqGppRnTw6dU7Tud5cquBjscDv3Dy5OJhhXdmgupQZnoFgQBsVhMkdPtdLkWrToTy5l3upH/V3kEArGymM1msPm3KFuhnO5sNosXXngBH7nt9mWv7TjrHDzz7LO6Hu90wO3xaqpeHmdz+65YTjc53QCAlrY2TAwra4M3mVbXo1ukubkZPM9jdiaMQLBw/+bpqUkYDAYEy9SrWYjX4wEyg6rOqRB8Ol6bovuyy3DnnXficCSJbd7yLc2enEngNW94k+zovI6ODhw89LL0+Mabb1kUMi6X0eEhaTyCaASokFqd0NzSinBWZXh5KlN2NdjhcCCVTOomKHieRyqVgtPp1GW8emOlRXc8HocgCIpzuqPRKInIEsw73flCalCea0+sLBaLZd7prpDoPnToEJLJJHadfe6y13adfS4Ovvii7pFD9Y7b40FMw1cnxilzunleayE16tMNAO2dXZjMKPtbTqRz30Al+dYLEecr4empotuEp6YQCoWKOuGF8Hq9EHQspMal4vB6veU3XGHOP/98OGw2PDFVvlDqVDqLw7NRXCYjn1ukq6sLIyNDmucOouim8HKiUSDRXSc0NTcjzCq/wGV4HtFMVpboBqBbXrdYCV0ct9HgBUFLm27F1ctjsVyupBKn2+Vyg2VZpNNpxefXKMxXL4f0L4nu2sZsni+klqlQePmTTz4Jq9WKbTvOWvba7vMuRDabxXPPPafrMesdt9uNuIbUDLlOtyiUsxrDyzmWwsuBXF/mSVbZNU90ultV9l+WOrZMFs/rnp6aQEhBaDmQE91cSr+c7mwyVpOi22q1Yu/evXhSRg2Fv07not3k5nMDOZGciMcRmZtVe4oAgNGRIbhcrpr8GxJEJaBl3DqhubkZ01kW3z41jnv6xmXtc1N3C17f7gdQPu9JFMfJZAJ2HYRyMplYNG6jkXO6tRRSU+Z0S6LbKd/pduSjEGKxWMP2Uy/HspxuhgGn0UEjKovFYkFWDC+vkOj+y1/+gh1nnQOr1brstY1btsHj8eLxxx/Hvn37dD1uPeN2uxFn1X935OZ0i0KZ1xhezpLTDSAnnCcUtgybTGfhdbtU31ckpztcwukOT6O5iqJb4FiwmVTNCsbLrrgCn3n0UaQ5HlZjcX/tr9NRbN5whqJK86vy/ddHhgbh9flVn+Po8BA6u7o0FZ0liHqCnO46oampCdOpDGIsh7FUVtZPjOWkiudycroBIJnQ54Ykim7K6dY2hlxE0e1QEM7vyAt0KqZWHFF0G5n58HIKx69tLBaL5HBn8+9fIXGsFp7n8fjjj+O8C/cWfN1oNGL3+Xvw2GOP6XbM0wG32y0JZzWIgr1cypJe1ct5Et0AciHi4VQanILr3kQ6ixYFVcWX4vP5YDQaS4eXT08pKqIG5ER3JhnT5RrOpePSmLXIpZdeiiTL4sW50nO6p2YTeM0VVyoaWxLdw9ry44eHBtC9erWmMQiiniDRXSc0NTUhkWVhNRrQajPL+nGZjJhKKxPdqZS6CulLSSZyoruhc7o1hZdX3ul25fO/43EdW6icZlD18vrDYrFIudyZ/L96iu6XXnoJ4XAYF+7dX3SbC/buw1NPPaXb9fR0QKvTHed4uByOsjm88063Dn26Kbw8V9RMEDCjoGXpVIZFa6v63ssGgwGhUKik6J4JTyMUKlxkrRherxcCz4HPav9eio55rYruHTt2wO/x4Kmp4ovqw8kM+qMJ7N9f/FpWiNbWVpjNZgwPaRPdI8NDWE2im2ggaBm3ThBXdN/Y7scH18nPk/rV8PSi/YshiuOEzk53Q4tuDfsr7dOtxekW9yWWI4nuBdXLKae7trFYLEjnBZcYXm6xWHQb/09/+hNsNht27l5eRE3kwr378fnUJ/DUU0/h0ksv1e3Y9Yzb7UY8k5XdxmgpcZaDy1k+XUmvnG6e50h0Y74Y2lSGRcgqL01jOsuhVUG4ciGCoRBmwsXbe82ocLp9Ph8AgEvFYLRoi8KrdafbaDTi4ksuwTNPPVZ0m6fz+dxK02AMBgM6u7owMqS+BSAADA8OYNW1b9M0BkHUE+R01wlSYZG0spC56QwLh81WNrdaCi+P61PZUxyncXO6+RWtXi6JbocC0e2Yz+kmCrOsejkDyumucaxWKzL59y1TAdH9x4cfxjnnX1TSPd+4eStCTc14+OGHdTtuvSNG1iRUOtAxlpfGKIVuOd0sCzOFl0tRclMKenVPs3zZ6LpyNJVwugVBQHh6SpXTDUCXvG4umbtvikK+Frl43z68OBuXFiGX8mw4iq2bNylquybSvXo1hgfVi+54LIbZmTA53URDQaK7ThBvYGEFIV5ATnQ3ybigio606FBrRXTMG9XphiBoKg6iNLxcDBG3KxDdYsE8Ci8vznxOd+6x0ggEYuWxWq1SLrfeOd3JZBJPPP44LrqktHttMBiwZ9+l+OMf/6jLcU8HxAJocYWVsEXiHAe3u3xPZIZhdCl4yHPkdAPzc49pBXOP6Qyr2IVeSigUwsx0Yac7EY8jnU4rFovzTrcOojs/Ri2L7r179yLFcng5Unhe93w0hYsvURZaLrJ69WoMa3C6xX1JdBONBInuOkG8gU0pFN1hmTc/0ZHWO7y8UZ1uQFPHMFV9us1msyJHT3S6SXQXZ75l2LzTTTndtY3VakUm7+ykdXa6n3zySaRSKezdf3nZbfdechkOHDiAyRJtjxoJqYaEyrzuOMuXrVwuYjQawWl0ujkS3QBy75vFbJa94C8IAsLJtGbRHQwGMTsTLvja7ExOjCt1uiXRndRePJRL5ZzuWg0vB4CdO3fCbrPibzPL7/HhDIueuTj27Nmjauzu7m5NTre4L4luopGg2Kk6wWq1wu10YjqjLE9tKpNFk4xemZLTndApvLzhC6npMYYy0a0ktBwAbPnK8iS6i7O0kJoBFF5e61itVqTywi7DCzAZjbqJpz/84Q9oaWvHxs1by2570b6cG/7www/juuuu0+X49YwomGMqxXCc4+DylHe6gZzo1hpeTjndORiGQVMgINvpjrI8sjyvWBAvJRQKYaZIy7CZcE6Mq3a603o43THYHU7d2xHqidlsxjm7d+PAycPLXjs4m/sbXHDBBarG7u7uxuTEOFLJpDSXUMLQYD/MZrOiVmWFOHHiBMLh+cWZjo4OdHZ2ahqTICoFOd11RFMwqDi8PMwKaJKRW2WxWGA0GnVzuhOJOIxGo665lPXESud0x+NxRaHlQC4E1u5wkOguwbzTjfy/FF5e61itVvCCAE4QkOZ5WHW8Bv3+D3/ARfteIyt1pLm1DZu3bscf/vAH3Y5fz2jN6U7wgFuB6NbudPMkuvMEQyHZ1ctFY0AXp3t2puBrM3kHXKmwdzgcMJpMkkutBS4Vg6eGXW6R8y64EAdjy6u1H5yNI+T3Y82aNarG7e7uBqC+bdjwYD+6Vq3S9B0Lh8PYvHkzzj//fOnnrN27VY9HEJWGRHcdEWpuUpRXBQDhLCfr5scwDJxOp359uhNxuFwuTXnN9QyvtWUYlInuRCIBu0P5arPd7kBCp+iG0xFJdOeXUKhlWO0j5m9neAEZXtBNdI+MjODVV17BxZdeJnufvfsvwx//+EdaqMEC0a02p5sXZBVSA/JOt8aIFAovn6epuRnhrLy5hyjO1RTnWkggEEAsGkUmk1n2mhheHggEFI3JMAw8Hq9UBE0LXCoGr9eneZxKs3v3bozEkssK4b0USeDsc3arnqOJonuwv0/V/oP9fViTH0MtfX194DgO3W/7F2z64D1ov/xGTI6P05yGqFlIdNcRzS2tyguppbOyV5ydTqduF6tEItGwoeUijAavW+mNUI3TDeRW/ukGVZxCTje1DKttRNGd4nhkeB5Wqz6i+49//CMYhsGei+W3ANu7/3KMjY3h5Zdf1uUc6hlRMMdU5nQnOEH2PSUnurV9T6mQ2jzBpibMylwsmc3m3l+tolvcf65AXvfszAxMJpPsRZiFeH1+3ZzuYMCveZxKc9ZZZwEAXllSTO3VeAZnna3eFe7s7ITJZMLgQJ+q/YcG+lW77CIjIyMAANfq7bC3rIWjYxMAYHh4WNO4BFEpSHTXEU3NzZjm5DsmWV7AXDojW3Q7nE4k4vq0j0rEY4p6Rp9u6OFsKXW6bTab4mPY7BReXoplOd0MwJHormkWOt1pXoBNp8rlDz/8MLZu34lAUH5I6+5zL4DNZqPWYZiv76E2vDxXvXzlCqnxAoWXiwSDQczIFN0zWf2cbgCYm5td9trczAyCwaAql9bv9+kkuuMI+GtfdK9duxZOux1Ho0npuXCGxVg8iZ07d6oe12g0omvVKgypFN2DA32aRffQ0BAYgxEmZ+59MHtC0vMEUYuQ6K4jmpqaEM7In0iIrrhc0e1yucjp1glBEDTldItjyCUXXq787223O5BMJstv2KAsq14OfRZUiMohLj6leR5pjodFB9EtCAL+/Oc/48J9ytrrWG027D5/D/70yCOaz6HeMRqNsFmtSKoU3UmWU+h0a/uektM9TyAQkBzscsxmWNhtVlWLwEuPCaBgBfPZ2TD8CkPLRYIBvy7Vy4V0DH6/T/M4lcZgMGDr1q04tkB0i//ftm2bprHXrlmDgb5exftFInOYnQlrFt2Dg4OweUNg8t9Ti6dJep4gahES3XVEU1MTptPL85uKEVZY0MTpdCKpk+uZjMdJdK9gTncymYTNpjyn22a3keguQaHwcoCEdy0jTvbFnG4134ulHDlyBGNjY4pCy0Uu3HsJHv/LX5DNKus8cTricjjUtwzLsrLDiQ0Gg+acbp7nYTDQFAkA/H4/5mR2TpnLcvDrUGDMn3eRC4nuuZkZ6XWlBPx+8DpUL+dTMdXnsNJs2bYNJ5LzqYknYimYjEacccYZmsZdu3Ythgb7Fe83lM8DX7t2rabjDw4OwuyZn98aLDZYXT4MDKhvZUYQlYTuKHVEU1MTYpks0jKdAqVOt9vl0rV6uVtFvtXphKbq5Qp3VhtebrXZKae7BIUKqS18nqg95sPLeaR5Hja7NscNAB577DGYzWacfc75ive94KJ9SCQSeOGFFzSfR73jdDgQV+F0c4KAlEKnW3N4OYluiUAggFgmi6yM6IHZLAu/T7sYFQXt3Ozs8mPMzqgO7fb7/RDS+uR014vo3rRpE3piSWmxuCeewrrubs3tztauXYtBFU73QH+vtL8WTvX2wehZ3J3H4msm0U3ULHRHqSPE9hhyq4iKlc7lttVwOp1I6OV0N3h4uR6NuhU53amUOqfbZienuwTie8AscbpJdNcu4uJTrpCaAJtVu+h+/PHHsX3nWarqVGw9cxecLhf+8pe/aD6PesflcqoKLxcrnssunKVDaz9BINEtIva3jsqIUoiwnOrQ74VYrVbY7XbMFWgbNjen3un2+Xy6VC/PJqLS36XW2bBhA2KZLKbyc8K+RBpnbNqkedy1a9dibm624HtUisH+XrhcLs293Ht7+2DxtSx6zuBpQW9fn6ZxCaJS0B2ljhAda7kVzMMZFmaTCR6ZvU2dTieSSb2c7lhDi26tOd1KK58nk0lY7WpEN4WXl2Le6c4hhplTeHntIjrdaT7fp1uj0y0IAp588knsPn+Pqv1NJhN27T4PTz75pKbzOB1wOF2qCqmJ+8i9pxgMBghaq5eT0y0hiss5GQv+c1kOPh1EN5APay9QSC06N6dadPv9frAaC6kJHAs2nawbp1t0lAcTaQDAQJrDuvXrdRtXdK7lMtDfhzVr12pqKcuyLMbGRpaJbou3GadO9akelyAqianaJ0DIR43obgoEZF/YqGWYfmgVZUpzulOplCQ2lGC12TE1TqK7GDzPg8F8CzfDgueJ2mRhTneaE+BSUWBwIUNDQxgeHsZZu89TPcau3efhJ9//dr7Wg7qJ5iuvvIKjR48uem79+vWaKhCvNC63C4lR5WHfiXyouBLRrbllGIluCW8+Rzsio5halBfQopMD7PP7EY3MLXs+MjerSXRnElEIPA9G5fsrivZ6Ed1iwbKBZAa7fAKG4knNRcwAYN26dblxe09h+46zZO830HsK6/P7qmVwcBA8x8Hib1v0vNXfhsEXfkPfX6ImIdFdR0jh5XJFd5ZFMCQvnxvIhe4ldcrpTibiqnponk5o6tOtcPuUyvByq82GdDqteL9Gged5KaQcmBffJLprl3mnm0dmwWO1PPfccwCAnWedo3qMnWedg6//57+jt7dXdR7j6994NfpO9Sx6rrmlFeNjo6rPa6VxutyqcrqVOt0Mw2j+jmpZIDndEEW3nPDyKCdI22vF5/MhUiCne25uVnVot8/nAwQBXDoBk13dHEWsfl4v4eUejwdetwujyQzCGRYplsOqVas0j+v3++Hz+dCvMK97cKAX5559taZj9/bmjmnxty563uJvRTabwejoKDo6OjQdgyD0hkR3HeFyuWAxm5U53Wuay2+Yx+l06tazOREnp3slx0inUrCqKaRmtSKVSiner1HgeX7RxFv8n9YiTUTlWOR0C4Jm0X3gwAG0tLWjubWt/MZF2LZjFwDgxRdfVCW6BUHA8OAg2q94H0K7rwIAhA/9CUMPfh2ZTAYWi0X1ua0kTpcLsyoujUkVoltzTveS734jo0h0s5xuotvv8yGyxOlmWRaJeFz1MUR3mkvF1IvuVHzRWPVAZ3sHRlJhjKRyVeg7Ozt1GXftunUYVBBezrIshgb6JZdcLT09PWAYAyzeJeHleee7p6eHRDdRc1DsRR3BMAxCAT9mZIruGZZHU0tL+Q3zuFwu3VqGJeKxhne6tSR1M4zy8HI1E2+r1UaiuwQ5p3v+MeV01z4Lq5dneGjuF3zw4EFs3nqmpjGamlvQ3NKKgwcPqto/HA4jm83A6m+D0eaC0eaSJpfj4+Oazm0lcTgcSKjony0WUnM4HLK2ZxgGArQWUhMoPDWP2+0GAMTZ8tED8Swnu45MObxe77LwcvGxWpd5XnSr79UtOt31JLo7VnVhLJXFeCrXdra9vV2XcdevW4eBvlOytx8dHgLLsrqIbru/GQbT4grs1gWimyBqDbqj1BnBYEh29fIwyyuqDpnL6Y7rUPVVQCLR2H26eUFbyzBATU63cnFhsVqRofDyogiCsCi8XGwdRqK7dllUSE0Hp/vVV1/Fhk2bNZ/XGRs349VXX1W178jICADA5A5Kz5k9uWv78PCw5nNbKZxOJ5JqRLcKp1trBwlBADndeaxWKyxmM2JynO5MVhLpWvF6vYhGI4vHj0Sk19QgiW4NFcxFwV4v4eUA0NbegSmWx2SGBcMwaFFgyJRi3bp16O+VL3D78wJdq+g+2dMDk2959JHBbIXd30yim6hJKLy8zmhuaUH4qLwcvpkMq0h0u1wusCyLTCajaaKayWTAsmxDi25AY59uhdun02lYVLxnFou28HJBEDA0NIRsNlvwdYZhsHr16rp1jHKF1JaHl1NOd+3CMAwsZjPSYsswDU53MplEf38/1q7fqPm81p2xEc89pa5t2Oho7ppvXii68/8XBXk94HSqaxlWlfByUE73QtxOZ9l8/AzPI8vzuoruWBGnW63oFoUyp6GCOZuMwWg01lU0X0tLCx7LcphIZxHy+2Ay6TP9X7duHUZHhpFOp2XNG/t7e2A0GjXnlB89dhzmQOExzP52nDhxQtP4BFEJ6nMm3MCEmpsRlhHiJQgCwqkMgsFg2W1FxAmN1mJq4v71dEPSnRXM6WZZFhzHwWJRIbqtFk2F1H79619j1apVWLduXcGftWvX4q677lI9frXJ5XTPPxb/TzndtY3NaplvGaZhAfHUqZwr071GmysDAKvXrEPvqVOqFmxEYb1QdJvsHhiMJkmQ1wMOh0OV6E7l/2ZyF1D0EsskuudxOZ1lne640n7qZcg53YvDwGP5x9UU3VwqBo/XV1efj+bmZkyncoXUmpvkF9gtx7p163KL7wN9srYf6DuFVatXw2w2l9+4CIIg4FRPD6yBwjnbZn87jhw7rnp8gqgU5HTXGcFgEC/LEN0Jjkea4xQ73QAQj8fg86vvsxmPxxaN14jkKt+uzLEymVyOlsWqPKdbq9M9ODgIg8mMtf9QWFiPPPhVDA0NqR6/2iytXi7+n8LLaxurxYI0zyPNaRPdAwMDAIDO1as1n1PnqtVIp9OYmJhAa2tr+R0WMDw8DKvLtyh/kTEYYPOG6iq83OFwICkjRHkpSY6H3WZVFDGjR5oUMY/L5UQyPVtyGzENQK97v8fjQTQyt6iSfDSac7rVuulGoxFOtxtsUltOt8frU71/NQiFQohlshhLZRDqkl9gtxximHhfbw/WnVE+Iqi/t0dzaPnY2BiSiThag4VFtzXYiVNPPU4dCIiag0R3nREKhTAro1fmTD7vW2lONwAkNfbqFvdv5PDylezTLTrVapxuq8UKlmVV35wikQjMNifca3cVfN3kDmJubnmf1XpheU73/PNE7WKz2vJ9urWJ7uHhYRgMBjS3qK9cLtLanpsgDg0NKRbdIyMjsHiWRy2Z3MG6Ci93OBxIyKxJspAkx8OuoGYFTbT1x+F0IZEIl9wmzirrp14Oj8eTS3lLp6XuHLGYNqcbAHxeP9h8TvfEXx/AxNM/l7Vf8wVvRfOet4FLxRAI1E8RNWB+LtgTT2Nrk36iu6OjA1arFQO98oqpDfT1Yv++vZqOeezYMQCALdRV8HVrsBPxWAxjY2Noa9N+7SYIvSDRXWcEg0GEU+XDgcW2YmrCy0WnWi3i/o0sugGNfboVTBolp1tF9XJzfp9sNqtq/0gkApOtxPtstiMSUe8oVJtcTvc8lNNdH1itFmT4FDIcpymne3x8HP5AUJf8x1B+ojsxMaF43+GRERhcy6/lBmcAQ3XkdNvtdrA8D5YXYDLIv8YlOR4Ou13RsWhhTF9cLhcSo6UX/MXUAblV5sshutnRaGRedEejMBqNmr7XXp8PE/liaFw6gWxkStZ+XDpnKHDJKALtPtXHrwaBQC56sT+RxsUK5oXlMBgM6F6zRlYFc0EQMNDfi3Xr3qPpmMePH8+1C/MXFtS2UK4d2rFjx0h0EzUF5XTXGcFgECmWK5sXN5PhpO3lIoaE6eV0N3p4+UqNIYpus1lNeHluH7V53dFoFAZL8cmw0erAXCRS9PVaZ2magOh6k+iubaxWa87pZjlNTvf09DT8GlJtFhIIhKQxlTI4NAxTAdFtdocwOFg/olsUYymF358Ux8PuUCa6ye3WF4fLhVSZyvNJXlnBu3KIrcdiC/K647Eo3G63pvc3GPBL1cuNVgfMnpCsH6M19/kV0nEEA/pcF1YKUXSnOF73Vmfr161Df1/5Xt1TkxNIxOOaw8uPHTsGR6h9WbswEYu/DYzBiOPHKa+bqC0ULd/zPI+//OUveOKJJ9Df349EIoGmpibs2rULl112Gbq6Cod6EPohiuiZDAu7vbjIEsPLq+l0N7LoBrRXL1csulU41aZ8MZNi1cfLEY1GwZQT3XODqsauBXieh3HB5E78L7lotY3VakM8zkEANInuSCQCl049h602GywWi6p0i+HhYZg3LM+XNHuCGD1SP+Hl9rxbneR4uExG2fslOR52tz7uKaEOu8OBiXKiu0JOd2LBnCQei8GlsTp6KBgAN5pbrGre8zY073mbov35dKyuenQDi8Px9W51tm7dOjz0uz+U3W5Ap3ZhR44cgSnQWfR1g8kCR7AdR48e1XQcgtAbWU53MpnEnXfeia6uLrzuda/D7373O8zOzsJoNOLkyZO4/fbbsWbNGrzuda/DM888U+lzbmjE1cqZMnlxsxkWFrNZ0YqzuG1Co+hOxuOLxmtEBEFYsT7domBWUw1UFOqicFdKJBIBLMUnWAaLHZFofYeXg1qG1R1Wuw3RfH6pljDUeDwOu10/sedwOJFQGEnEcRymJsalvtwLMbtDiEbmFI9ZLUTRnVJYwTzFK3O69VoUo8W1eex2O9Jl/hzi+2pXmApQDHHhXszjBnKL+lpbkvl8PiCjvksLl6w/0b1QaGvJhy/EunXrMDjQV/a+ONjfBwBYs2aNpuMdPnIM1mBpk88U6MCRI0c0HYcg9EaW071hwwZccMEFuOeee3D55ZcXnNz39/fjvvvuw9vf/nZ8+tOfxk033aT7yRLzzvVspozozrII+pW1tJgX3domcPG86NZrtbse0Vq9XJXTrUZ058Oz1IruublI2fDyhROmemNZeDkovLwesFltiOa7PGhxutPptKoChcWwWK2KUzkmJibAcdyidmEiC3t1r1+/XpdzrCSS6FYRXq7kfqJH1WI9en2fTtjt9rLh5en861oWuhYiiut4bN4ISMTjmhf0/X4/+JT6+xKbjOruFleahddBj07ROyJr165FOp3G+NgI2tqLO9AD/b1obm7WFAWZSqUwONCHzh1vKrmdNbQKrx5+TvVxCKISyHK6//jHP+JnP/sZXve61xWd2K9evRq33XYbTpw4gUsvvVTXkyTmmXe6Sxc0mclyCChciRWLk+jRp9tut8NolB8+eDqiNbxcLqLTbSqS31QKreHlc9GolOdWCIPFsWjCVG/wPC8JbYDCy+sFi80m9RTWIrp5nodBx+sYYzAoXrCRenQXcro9wUXb1DrzTrey70/O6ZYvtHQR3ZpjlU4vbDabJKqLkeaU9VMvx3xHlfk5STweg0cHp5tNqLsvCTyPTB063Qu/D1ojBZaydu1aAPNOdjEG+3qxJr+tWo4fPw6e52ENrSq5nS3UhaHBfiSTSU3HIwg9kSW6N2/eLHtAs9msOV+DKI7X64XBYMCsjPDyQFB+uzARl8slOdVqicfjDZ/PLWDlCqlJoluF0y1WZWZZ5W18ACAajZVxuu1IJRPgOOW9eWuBpU43s+B5onax6iS6dUfF50bsw212Fw4vB+pRdCsNL8/lFMtFEARoCjVCbnf6ns9jtVqRLrNglOYFmIxG3Rbc5+vMzM9JEjrML/x+PzLJqKr3l88kAEGoO9G9EL3nZ93d3QCAoYH+ktsNDvRhnUbRLeZp25pKh5dbm1ZDEAQqpkbUFLpVL4/H43j88cf1Go4ogsFggN/jwUy58HKWg19FWwin06k9pzsRh6OB87kBIKe5NbQMU7DtvNOtvK2RWaPTHYtGYSwhukVBHqtTtzvndM9D1cvrA5vNhogO4eVmsxmsyu9GIdS05hsZGQFjMMLkXJ6HabA6YLLaJWFe64gOaDnxtpS0oMw9zdXU0B5eTt/zecSOAKXI8DysKgp6FsNsNsNisSxyupMJncLL2SyErPKuHWJ/73oLL1+I3qLb4XCgtbUVA/2lK5gP9vdqzuc+cuQIrG4/TI7Seem2plXS9gRRK+gmuk+ePIn9+/frNRxRAr/Ph7ky4eWznICAGtHtcmkOL0/EYw1dRA1YWadbdKm1hJerdbrj8RgMpcLL86/Vs+heGJZHhdTqA6vVqovTbbVakU6n9DotZDJpVaLb5gmAMSx3DxmGgdUTqjunu1yY8lIygqCoOJcgCDAYtE1vGIOBnO4F5ER36etehhd0Fd1A3ghYMCdJ6CC6RcHMpZTfl7h8Lng9O92VqLezursbwyWc7kwmg7HREX1Ed5nQcgAw2d2weQI4fPiwpuMRhJ5Qn+46xB8MYK5MePkcy0v530rI3eC0FVJLJBINL7oBbdGNSvadF93KQ/pMxpw7rsbpFgQBiXiZ8PL8a9E6rWC+tAo95XTXB3qJbqfTiVRSn8rgue+LcsEwMjJSsIiaiNEVwOjoqNbTWxEkp1theHmaF5Q53TyvWXQbSHQvwmq1IlPmfcvwAsxm5RFXpXA4nYvyclPJpGbRKApmVo3ozjvdJLoXs3bNGgwO9BV9fWRoEIIgSKHoannp5VdhkSG6AcASWo3D5HQTNYTsq2M5AVevOZv1SCAYwuzQqZLbzGVZVTcFt8u1aFVZDYl4DK4GF916TNYUO90qcrqNGnK6M5kMOI4rE16emyhrrRNQLSinuz5pamqS/h9UEfEj4na7EdNpwSiZSIDnecWVg4eHh8E4i99/je4QBgaHtJ7eiiAK59+Nz+D2I4Oy9rmpuwVpXlC0eMLpILopvHwxZrMZ2TJ/j6zAw6pjtX8gt/C1KLw8mdAsGiWnO6n8uy264/UcXq5XobuFdHd34/Enniz6+tBgzgVfvXq16mNwHIeekyfQdNk+WdtbQl14+ZVXVR+PIPRGtuhOp9O4+eabsX379oKv9/f344477tDtxIji+AMBDJQIzxMEAXOpjCrRrZfT3fCF1HTo0y0XUTAbCoSflkMseKPG6RZDxkVhXQhDnTvdS6uXU8uw+uDf/u3f8K53vQsejwcdHR2qx/F6vYhE5nQ5p2h0ThpTCQNDIzC7u4u+bnYHMTj0gpZTWzFE4RxneYyl5F1zYiyHNM8rzunWWkjNYDCQmbAAs9mMbBmnm62A022325FKzqd4pJJJXXK6AZXh5XmhTqJ7MatXr8bY6AhYli1YX2ZkaBAMw6Crq3QBtFKcOnUKmUwaNplOt61pNU69+Lui50QQK43sT+HOnTvR1dWFd7/73QVfP3ToEInuFcLv9+NltvjNL8nxyPK8KtHtcrkwNagtPzCZiKMl2K5pjHpHqxOqpE/3fHi58puKMR9ermZyOS+6y4eXnzZON4WX1wUmk0lR141iBAIBzM3O6NKCanZmRhpTCaOjI7Dt3F30dbM7iInxMV3OsdIYDAaYTSaYGAatNnmROS6TERlOWXg5z3GaK2gbDEZaXFuA2WwGW9bpFlRFXJXC4XAguSDFI5nQ7nRLojupXHSzqRicbnddt0SthOhetWoVOI7DxPgo2juWC+uR4UG0trZqSvcRi6LZmuW55bam1WCzWfT09GDjxo2qj0sQeiF7ln7VVVdhdna26OuBQADXX3+9HudElMHn82GOLS6SxNfUrMQuLVqiBiqklkNbn275e4uCWc0kQNxHi+iWU728nkX3Yqd7/nni9CcYDCKbzSIej8Hl0tbbdjYcBqBMdGcyGcxMT2FViZxuszuIVDKBubm5unDfrBYLzgm48O2z5bcW/VrvhKLJOs/zMKqI/FmIQUVP9dMZs9kMAQAvCFIXh6VwgrrF31I47HakU/M53clkQlFRvULYbDZYLFawKRXh5ckYvB6fpuNXG7POCyNATnQDwPDgQEHRPTw4gK5V8hzqYhw5cgRmm7Ng+8RCLKxgTqKbqAVkXx0/9alPlXy9q6sL//3f/635hIjy+Hw+REu0DItk1Ytul8uFhEaBRIXUVLXjXTqCYqfboEJ0G4w5GalGdItCunR4ee61+q5ePv+YoZZhDYWYGx6emtIsusPhqUVjykGsSl6qkJrZM9+ru15Ed7nWU0vJcLyynG6OA6O1kJrRSOHlCxDFdJYXYDUWFt0sL0jRU3pht9uRSuXCy1mWBcuymkU3AHh8PlVON5eKIljHRdSAyohuMWx8bLRw+8Kx0WGs0hBaDuTEs615teyIHpMrAIvDjSNHjuDqq6/WdGyC0AOqXl6H+Hw+RNIZ8EVEmRbRvbRoiRqSiXjD53QDVXC6NeR0Vyq8nDEYYTRb6tbp5nm+4DtBorsxCIVygnYmL5i1EJ6egtFoVHRdlkS3p7izIwryemkblhPdCquXc5xi0W00apveGA0kuhci3itKvXOcIMCis6Cz2WxI5Z3udF586xEe7fP5VbYMiyMYqG/RXYk0FI/HA7fbjbGRwqJ7fGQYnZ2dmo7x0iuvwhyUL9wZhoGtaRW1DSNqBtl3pYsvvnhRePmvf/3rRW0ciJXD5/NBQK4YTSGiGsLLXS6XZoEUj5Po1h5+LN/pFieGapxuUahrcrrNpSfDJqu9bkX30veAwssbi+bmZgDA1OSE5rGmpyYRCoUUVdUeHs5NYEs63flQS3HbWsdisSjq083yAnhBUNTfnNMjp5uc7kWIf0+2xHvHCQIMKlpXlsJutyOTF9vpdEp6Tit+v091IbWA36f5+KcjHZ2dGC0iukdHhzUVtRQEAcePHZVdRE3EFOzCy6+S6CZqA9l3/yeffBKZTEZ6/A//8A910xv0dEOsfhspktctPq+0NQ2gn9Pd6OHlgLbVZCX7iq6rmhY5Bg1Ot1jl3mAu7ToYzba6Ft0GKqTWsIhO9/SUDk731CSa8iJeLsPDwzCarTDai4e2G8wWWF3e+hHdVmVOt7itUqdbTTeHhRhJdC9CiopCKdGtrrZIKWw2myS2xX/1cLpDAXVONzLxuu7RXUk62tsxMbZcF8RiUcRjMU2ie2RkBPFYTMrTlosttBonjh+nezZRE6iOv6IPcPUQxXS0iOiOZnOr/GqEr8vlQiqVUj3Z4DgOqVSq4UW35u+HoNzpVjPZEYW6mnBpOTnd4uv1KrqpZVhjYzab4fP5EJ6e1DxWeHoKTSF5BYBEhoeHYfM1lV2Es3hC9SO6LVZkFTjdmfx1UEkeqh5Ot9FklOplEAvCy0u8dTwEzQXslmK1WpFOpwEA6VRaek4rfr8fggrRzadiJLqL0N7ejonx5aJbFOLt7eq72hw9ehQAYA0pywu3NXUhEY9haGhI9bEJQi8op7sOEZ3uWBHRHWM5eJxOVU6rKJbVVjAX92v08HJAY043w8gW3aIAVPN+SxMpFSIykUjAaLaAKTPJYszWuhXdS/utk9PdeARDIcyEpzWPMxOeVlREDcg73a7ioeUijDOIwcH6mFRaLZaSIcpLEbdVIrRYloVRYxVtyulezLzoLv7e8UJusUJPrFYrMqLozjvduonutLqWYfVQsLAatBdxusfzz7W1take++jRozAYTbD6lQl3MRz92LFjqo9NEHqh6K70hz/8QRJ8PM/jkUcewSuvvLJomze84Q36nR1REMnpzhYPL/e41VXaFcVyIh6D2608PD0Rjy0ap1FZKtZUjKBIdDMMo0p0ixV+1eZ0m0oUUZOOYbZJoej1xtI+3eIqJTndjUMwGMRMvt2XFmZmwjhz6yZF+/QPDMIooz2O2dOE/sFBtae2opitFsm9loPoisvN6RYEASzLam5dZTSZkI5rd7pZlpXaudVzb2cpKqrENrwgqEpzKoXVakUmkxPd4r96iW4upXwxOJuIktNdhJaWFkxOTuTvm/M3zqnJcQBAa2ur6rGPHj0KR6gTjMLvkMXXCoPRhGPHjuGyyy5TfXyC0ANFd6V3v/vdix6///3vX/SYYRhaGV4B3HlBHSvyt46zHFxun6qxRadbrTOZiCcWjdPIaCkQqqR6Oc/zqidzBiY3QVLj3CYSCRjMMibCpvp1unmeX9STVpxIkNPdOAQDAUTmZjSPMzcTVjxZHxwcgnnV+WW3M3tCGHr5ObWntqJYKxxeLi6IaW1dZTKZdAkvf/Nb3orf/Pp/8da3vQ0P/OxnmserFpLoLuV0A2CYSojuXD2hbP5fPUS3z+dDNqGsTzefTYPLZkh0F6GlpQXJRALxeGxRi8XJ8XHYbDZp7qqGI0ePwhhQnhPOGI1whDrJ6SZqAtlXR57ny/6Q4F4ZRBe5ePVyHh6vcpcamBfLSdWiO7ZonEZlJauXL11VVoKWnO5EIlGyXZgIY7LWrdO9tGUYs+B5ojHwer2IRiKax4lFo4rCUnmex+joMCze8iHpFm8zwlOTUu5rLWOyWJBVcH1kFTrdolDWnNNtNCGTzWoaAwCG863cRkbqu/CstOBYYhuhAoXUrFYrsvn3IZvJSs9pxe/3I5uKQ1Awb+WSOZFO4eWFEZ3sqYnF3R6mJifQ0tKiqbjssWMnYFXQLmwhxkAHjpLoJmqAqud0f/Ob30R3dzdsNhvOO+88PPdc6dX62dlZfPCDH0RbWxusVis2bNiAhx56aIXOtjYwGo1w2u1FC6nFWQ4er0/V2HrldDe86C45NZGDMqdbbUifFuc253SXn/wYzFZEY/XpdC9NExArmZPobhzcbjfiMWWO2FIEQUAsFlXk9ExMTIDNZmH2lBfd5rwwr4diQRaFOd1ZhU63KNBM5tpwusVra71fM+bvFcW3EaB+AbgYFosF2WzO4c7k/1XSPq4YonDmFOR1s/nCa+R0F0asWbG08GR4ekpx54aFpFIpDA8NwBZS1+fbGujAkaMkuonqU1XR/dOf/hS33norbr/9dhw4cAA7duzAlVdeiYmJwj1RM5kMLr/8cvT19eHnP/85jh07hnvuuUdTG4J6xe1yFnW647wAt4p2YcC8i55U6Uwm4lRIDdDudDMKxtDidDManW7GJEd025BIJBWPXwvwPI+Fvo1YvZzCyxsHh8OBVL5PsFqy2Sw4joPD4ZC9z8DAAADA4is/WbV4mxftU8uYLRZF4eXitnJFtyiUTSb51c4LYTKbqXr5AmQ53Zi/p+iFxWKRCqmJ4eVKKtkXQxTOXFK+6BZzwEl0F0YU3UsLT86Ep9CssIjkQk6dOgVBEGBVEV4OANZgJ0aGBusiEog4vdG2FKyRL33pS7jppptwww03AAD+67/+Cw8++CC+973v4ZOf/OSy7b/3ve8hHA7jqaeeki663d3dK3nKNYPL6USCKzwRTPDqRe98TnfuRvSdb30V3/vW18ru996b/wk33nwLOd0LUJKXvWxfBbvyPK86gVyr083IdLoTM3UcXr6wT/eC54nGYGGfYLWoqbrc398PYF5Ql6KuRLfZDCVB22z+2iS3MJrkdGsspGYyGqWxtCDkFw1K5ULXA/Oiu/jvIQjqumiUwmw2z4eXZ/UX3WwqCrnfSgovL00wmOu0MD01tej5mfA0tmw8Q/W4J06cAJATz2qwBjvA8zx6e3uxaZOyYpYEoSdVE92ZTAZ/+9vfcNttt0nPGQwGXHbZZXj66acL7vPrX/8aF1xwAT74wQ/if//3f9HU1ITrrrsOn/jEJ4rmEaXT6UWrWxEdcvNqAafLjXiksJBJ8Lxq0b3U6Y5FoxgbHSm7XyyauxmR051Dj/nVijjdGkR3PJGAYCwf5mcw129ON7UMI8xmM1iN4ouT3Ff5t9z+/n6YrHYY7eWjlgxmK2zugCTUaxmTyVSyAvZSOLXh5To43XqI7tMFOfcYQeZ2SjCbzRAEARzHSd9DPUS3FF6uyOnOzXPI6S6M2WyGx+PB3Ozibg+z4TBCofJdGIpx8uRJmKx2mFzq/u7WYM4hP3HiBIluoqpUTXRPTU2B4zi0tLQser6lpQVHjx4tuM+pU6fw5z//Ge985zvx0EMP4eTJk/jABz6AbDaL22+/veA+d911F+644w7dz7/auFwuJGYKi+EEx6t2mi0WC0wm03y/bbcbrW3l+yK68rmKiUQcJpNJVc4Vz/O47PIr0NtXfOLodNjx4G9/g9WrVysef6XR1KcbdSC643HZOd3JVP2Gly/O6c49oqKRhBLE75eS72l/fz9sgVbZ+5h9zejr61NzeiuK2WwGq+Byw6oU3VqFmcmkj+gWnWFaqFOH+D6y2SyyrH6iWwovTykQ3ckYLBYr7PbyBUQbFX8ggNmZxd0eZmdnEAgEVI/Z09MDe7Bd9TzH7ArCaLbi1KlTqs+BIPRAk+j+wAc+gH/7t3/TtIKlBJ7n0dzcjG9/+9swGo04++yzMTw8jP/v//v/ioru2267Dbfeeqv0OBKJoKtLXQXEWsLpdiHJFfYLEqx60Q3kQsPFKuQ33nwLbrz5Ftn7JhNx1cc+evQoHv3zI/DvuBxmd4ELtCCg/+lf4I9//CNuuukmVcdYKZb2d1Y+QB2I7kQSBrO3/DFMVqTqVHRzHAfjgr8t9eluPHIpBtrcOzVdAnp7e2F0t5TfMI/R04JTvb2Kz22lMZlMULJkxfHqwsvNGott5Qp4kdO9lJVeO5BEN8uCyxeP1UN0u91uGAwGKWRcDlwqBre3/D2vkQkEApidnRfdgiBgVkW7xIWcOHkSBm+b6v0ZgwH2QBt6enpUj0EQeqBJdP/4xz/GRz/6UVWiOxQKwWg0Ynx8fNHz4+PjUtuBpbS1tcFsNi8KJd+8eTPGxsaQyWQKuqtWq1WX9hK1hsPpQqRIMZokyyoq2LMUl8ulOhw4kUioDi1/9tlnAYZB11UfhtFWWLgneg/gqaeeqg/RrWF/hlEmhKshupOJJAy28vmmBosVaY2FqKpFMaebRHfjkMlkNAs4c76fvRIRd7KnF2b/BtnbW/yt6Ol5RvG5rTQmk0lyr+UguuJyW1HpltOtQ1oBMJ/TXe9Ot95h43IR30eOYxcUydMepGkwGOD2eBU53WwyCp+PQstL4ff5EJ2blR4nEwmwLKtJdJ/s6YWldaem8zJ6W0h0E1VHU5lJLTcRi8WCs88+G4888oj0HM/zeOSRR3DBBRcU3GfPnj04efLkognv8ePH0dbWpksLiXrC6XQiUWTen8hqE90OpxNJlS3Dkok4HCqd7qeffhqu1jVFBTcA2Do2469P1/7EEtAeXi6XnMDXNiFSVUgtmQRjlpHTbbKCzVdvrjd4npfahAHkdDciyWQSVqtN0xhWW25/uYuZgiCgv78PVr98d8fqb8PIyFDNu7NGoxGcgsuNmNO90k63mXK6awLxfc91AGBhMBh0WwDw+vxgFeV0xxAIkOguhc/nQ2RuTnocicwCALwqIwR4nsfw4ICia2EhzL5W9PTWfs0L4vSmqi3Dbr31Vtxzzz34wQ9+gCNHjuDmm29GPB6Xqplff/31iwqt3XzzzQiHw7jllltw/PhxPPjgg/j3f/93fPCDH6zWr1A17HY70gWEUpYXwAmCJtHtdDoRj6sT3fG4+vDyx5/8K6ztm0tu4+zaihPHjiIcDpfcrtro4WqspNOthlQyCYOslmG5yW8yWX8h5hzHLbpIin+uelxAINQRjUalmhVqMRqNsDsciMXkTfAnJiaQSiZg8ReO+iqExd8GnuMwODio9jRXBLWiW67Tncm3lbLIWBAshclslsbSQr073CLVcrrF953nOLAsq4vLLeL3+6TiaHLgklEE/T7djn864vP5JKENQBLgakX3yMgIstkMLD75qTaFsPhbMdDfd9p8H4n6RNPVKxqVf7EqxLXXXovJyUl85jOfwdjYGHbu3Inf//73UnG1gYEBKRcOALq6uvCHP/wBH/nIR3DmmWeio6MDt9xyCz7xiU9oOo96xG63I1UgvDyVz/PWUujDqdHpViO6Z2ZmcOzIYax609+XPrdVWwHkXPGrrrpK1TmuBALU51kDygupVYNkKgmbjEJqYi/vZDJZd1XteZ5fJLqNFF7ecMzNzcHl1p7H6fF4MTs7K2tbMQzSGihfxFJE3Lanpwdr165VfH4rRU50KwkvVye6Ned0my26iG6Rep/sV+v8RZHNcix4jpP9OZBDMOBH/5h8p1tIxxEIdOt2/NMRj8cjdbMBgFg01zFIregW2yBafPIXIAth8bUgmYgjHA5Lrc0IYqWpap9uAPjQhz6ED33oQwVfe+yxx5Y9d8EFF+CZZ+ojvLiS2O12SWAvJJUXAzab+nBIt8sltf5SSiIeh1uFsBLbxLlWbSu5ncXfBpsngL/+9a+1Lbo15nSLY1QaLTndmXQKdhlteQym08fpNix4nmgMpqan0dy+SvM4Xp8f09PTsrY9efIkgNz1Ti4WbzMYgxE9PT24/PLLVZ3jSmA0GsGV6PW8FF5hTrcolLW2DDNbLEin05oKVQLz19Z6F93VYqHTzfF6i+4A+D75Fa2FdIzahZXB4/EgHpsX3fF8dI/HU771YSEk0e0tXz+mFKJTPjAwQKKbqBpVDS8n1GOz2ZAu4HSneb2cbnWF1JKJhCqn+8knn4TNE4CljLPDMAxsnVvx+BNPqjq/lWSlcrqrRSqVkt0yTNy+3uA4DguneNQyrPGYmJhAMNSkeZxgqAmTk5Oytu3p6YHNE4TRIv86zhhNcARaa75YkNFoRJEaoAVRGl6eTqcBABarPsXvxOJdauFJdGtivvK/oLvT7ff7IaSVtQwj0V0at9u9yOmO5p1ut8oUnYGBAZjtzpK1fuQginZRxBNENSDRXadYrVakCzjdmXyynJaK7U6nE4mE/BvRQpJJdeHlf3n8Cdg6t8pyFJyrtuH5556TJle1iB7zq1qepHEcB45lZeV0M/XudC/4SBpJdDcc42NjCDVpc1kAINTcgtHRUVnbnjz5/7P331GSZPWZN/6ET1fetqnuam9npsfhRggWjUCLE1qBEIvTYHYFYoVZVlp+8oh3Ja10kECLYIUYzb46u8yAFvRKIIFghJmBQYz37X35qsystOHj90fmjaqsShPmRlVk1f2cM6enMyNu3K7MirjPfb7mfMcNyGYIAztx9uw53+dtJDXR7cPpXnWeF9zw8pA53ZIsNYwXFNfp9rPTwHAhn7tlWbV0H57esrW/vx+2j+rlRrXIRHcHat1vyu73nhg4QVPLrl+/DqU//P1XTPWDF0RMTU2FHovBCMqmh5czgpFIJKA1WfhrFMLLa6I7mNMdpJCapml45OGHMfJT7/Z0fGbvDZjSNTz66KN4yUteEmSakRNWMPvJ6d4MiGvNe6leXj8mzpskrbBMs6FPt8AKqW0risUiCoUCxnasCOC/+uyncPdnP+3p/He971fxnvd9EAAwvmMnnn/6cU/nnT57DuLALt/zlQd24kzMRTfP874KqRGB7lVsuU536D7dijte0OKgANwdWMdHSH23EkWElut0OzZs26budHutXu5YJgy1wkR3B9LpNCzLgq5pUBIJlMslSJIUuLf6tevXwWf8tyVeC8fzSPSPxL7QJGNrw0R3l6IoCvQmC3+9vpseZsGx0YXUHn74Yei6hszeGzwdnxw/CCmRwgMPPBBr0R2m2GvcRTdxrYmL3Y7udrpNiKtbhjGne1tx/fp1AMD4+IoALhWLmJ2Z9nT+6jDL8R27cP3aNU85wufPnUP6Nm/3w9Uog7tw6clvUncEaSIIgi/5GTSnO6zTTZ6hYTcLyaaB3SQyjdEZ8j12bBu2HS6/fi0DAwPQK0U4tg2uw++LWXfEt4LoDlunoB1k/VeplKEkEqiUS6E2ra5euw4xQycHW8wMYXra272bwYgCak/lCxcu4BWveAWt4RgdkGUZhmWvE2aGQye8vFoJJpCqlarvG+wDDzwAMZFCcuyAp+M5QUBq93F87/vfDzLFDSFs7+y453S7TrcH0d3VhdRMyxXaAHO6txsk/2/XxEohtUxPD8Z37PT03+pWYzt3T0BV1Y553UtLSygs56EM+Xe6laFd0DXV3SyIIxzH+QovJ0d6FQkrOd3Bn4HAitMdNrycdDqI8yZqnFnJ6bZr4piy6HYcG7beObLPqhbdc7qdKJ9fZP1XrdZ+pqqqhhLdM9MzkHoGqcyNTw9gioluxiZCzekulUr43ve+R2s4RgckSYIDwHLQ4MQZdVsgaCgPsPFO9/cfeADp3cfB+QgbS+05iQce/EpsHZ2wy6u4O91EdPtxursyvNwyGwqpifUFX9jiSozu4MqVK+B5viG8/D3v+6AbMu6HXbv3uGOOjrbOUTx3rhYeHlR0A7Wc8D17wldcjwK/9+sg4eU8z4fu57w6vDwMROBsh406B/Q3jFd32LAdus97IqDNaglCon3OsVXdOk63ZVlU+52vJpVKAVhZI6jVCpL11/ziOA4WFuYwfjMlp7tnCNevn6UyFoMRBM+/dZ/+dPscNlacYGMhoW+6bUPkV2SBTkl0VwKK7opP0W3bNh78wQ/Qc9vP+7pOeu8NmPmXe/Dss8/ihhv8h2FGTdiWYRsluoNew3W6ha3dMsw0TIirKqmx8PLtxeXLl7Fj565Q91PC7j17AQCXLl3C7bff3vK4lR7dAXK6+8fBcXysI89qOd3ROd26rje43EFz8En187BON7lXmOyeEYjVopt2WDQR0Fa1AAy07wNtqVvH6TZNM1Q0ZDuI6K7W285WK5XA3XRyuRxMw4CYofMzlzKDmD83R2UsBiMInkX3hz70IezYsaNlrnDYBxPDH2SXcm1BGrKYCbNITKVSMAwDhmH4Goeck/Kxq/nss8+iVChgfM8JX3NM7zoKXhDxwAMPxFd0h8np5jbW6fa7kHGdbi8tw7rY6TatxkJqACDyPBPd24RLly5h18ReKmP19Q8g09ODK1eutD3u/PnzSPQMQlD8u0O8KCE5OO665XGE4zhfkUDkWD9OtyKv3JeC5uATpztsq0NXdLPomEBsiOhWO5sM5hZzuqOCFPHVNLX+pxZYdM/N1QSylKbzMxfT/cjnsjBNMzKnn8Foh+dv3d69e/FHf/RH+IVf+IWm7z/xxBO49dZbqU2M0R4ihs0WOd1hnW6glpMjSX2ezyM5PH6c7gcffBC8ICK9+5ivOfJyAumdh/DgD36A97///b7O3QjCOt1kDC9EVRClHSs53R6+Z7wAjuO71uleL7o5GIaxSTNibCSXLl/G7j3eak10guM47J7Yi8uXL7c9Lmi7MILYvwPnY9yrm+M4Xy0V/W4+qqra4HSTHHwvrM7BJ2OEDi+vi+3tsFEXZXh5q7+HYcXpLnY4suZ0C6IYrpJ9TIjyu0gENvm90TQVqYCim9S/oOV0i+l+OI6DxcVFjI+3j2xgMKLAs+i+9dZb8eijj7YU3bUHaXxzULcaZJdurei26uHlYXbxXNFdKaO314foroek+3G6f/CDHyC98yB42X+Ls8Tu4/j+Aw/6Pm+jCB1ebnuvdhv0dy9seDnnIbyc4zgIktydTrdpunncBIE53duGq1eu4AU/QS9Me9fE3o5O97nzFyD07wh8DWlgB86di7no9uF12/AntDRNawidDZqDryjEsQt33zLM2gad2eUbda7j7PG4bqCvr7a+MVUPortaQm9ff1f9+1qxEU63Wt9k11Q1cCi7K7pT3teh7RDT/QBqxSqZ6GZsBp4rUnz84x/Hm970ppbvHz9+HJcuXaIyKUZnSPuUtblxVv2RGKaXpZuT47OCOTnez07wAz/4IRK7jvu6DiG95wSmrl2NXQsIImTDPJz9hJfTWAT4HYMsRHkP4eW147pTdBuG3lCoEKgVU2NO99ZH13XMzs5i564JamPu3LUblzuI7ouXLkHpkF/aDmVgBy5duhDbTfAg9ys/56iq6oaGh4HkdIcNLzcNA5woueK722n3rYqyF3kU32dBEJDp6XWLpLXDqhbR19dPfQ6bQZSimwhsXSdOt+YKcb8sLi6C4/iORe68IqZr4r1TBwkGIyo8i+7jx4/jtttua/m+JEnYu5dO7hujM0RU22ueQyTHm4rornZuo7EacrxXp3tubg5XL19CeiKY6M5M1PLAf/SjHwU6Pypc0R1iDA7+IkeiXOw0w4/TDQCCKIdevG4GptlYSA2o5XSz/Mytz9TUFBzHwc5du6mNuWPXbky1aeelqioW5mYhDwR3uuWBHSiXSsjlcoHHiJoo71aapkEJuMhfDU2nm5eTW8fpbvPhOQ7Ah1h7eLk+bfr7BzyFl5tqEUNDdFpXbTYbKbp1XQvsdGezWcjpno491L0iJmvpI3G+NzK2NvHrtcTwhCu61yxfiFALI7pXh5f7wW94+b/+67/WrhdQdEu9w0gOjG1J0c3D385+2PDywE63h5ZhAMCJUlc63aZhQFrzs5FYTve2gETQjHnMB/bC+I5dyOfzqFSab2iS0HO5P7jTLQ+MAUDH3PGtSs3p9nZfagetQmqGbkCQU9CN7i42uxJe3vpZ46C7wsuBWl63pXpxuksYHuz+ImpAtEVaXdGt6fU/w4luMdVLbW7EMc9ms9TGZDD84El0/8zP/IwnYVMsFvFHf/RH+MxnPhN6Yoz2kEqua6uXkyzgMA++FafbZ3h51V94+Y9//GMkegch9bXuWdsJZcdh/Ohffxz4/Ciw67nYYauX2x5zujcjvHylT7c3p5vvUqfbMJo53Ux0bwdmZmYAAKNj9HL/RupjkbHXsiK6g98T5b6xhrHiSJSR75qmQVYoON2J8E634zjQNRW8koKhdbfo9lo9nrbojjpNYnBwAKYHp9vRSluicjkQrdNN6gkZ9U0mw9ADi+5cLgdBoRNaDgAcL0BOZpjoZmwanqptvelNb8LP//zPo6+vD6973etw2223YefOnUgkEsjlcnjuuefw4IMP4h//8R/xmte8Bn/8x38c9by3Pa1CvUi4udcHZDOI6FZVf6KbHO/Z6f7xj6HsOBxug2DXETz20L2wbTvUv5kmK053iJxuAI7jvZBaUIIuaDRNAy+I4HhvERWc0J1Ot2EakLjG26TEcrq3BQsLCxBFEX399Bbag0PD7tgHDqyvin716lWA4yD3jgS+hpjuhyDJuHbtWuAxoiZKM3Rt9fKgiKIIQRBCbRaS+4SgpKDqGvWWVxuJl/By24lOdHMcB57nqYvwocEB2Nevdp6HunVEt9cN/SBwHAdZlt02wn5bz64mn88DAVontkNMZrC8vEx1TAbDK55E97vf/W687W1vw5e//GXcd999+Mu//Ev3S8txHI4fP45XvepVePjhh3HsmL/WT4xgtAr1In8P8+AjLR/UFiGQrSDHe+nJ6DgOHnnkUSRveq3/Ca4iufMwpkslnDt3DkeOHAk1Fi3IooAP43SDg7M2Yb/VsZuwiNM0zVu7sDpdK7oNEyLX+O9kTvf2IJvNon9gkG6LosFaTujS0lLT969fv45EzyA4IXj3CY7jkOgbwfU2ueNbGVVVkUgEa1G0FiWRCCW6SfSXUM8lDVNUarMhm9rt5JqNcBv+Tcd0I8c4cBxHXTAODAwA2nMdj7O2kOiOGkmSVpxuXQ8uupeXwSt0W7QJSrom5hmMTcDzk11RFLztbW/D2972NgDA8vIyqtUqhoaGQvWEZgSj1a4z+ftmhpd7Ed3Xr19HPpfF/p2H/E9wFakdBwEAjz32WGxEt7tICDGGn/ByYONbhmmaBsFjPjcAoEtzunVDh8g37rRLHOfu4jO2Lvl8Hj299PIJAaCnp1Y9t5XTMjU1Bal3OPR1hJ5hTE1NhR6nG6mqKpRkT+cDPaAodEQ3KeBUqVS6VnSvFG9t/cywEa6eTDNWO91+C4x6YWBgAJbWuX6NUS12vei++dQpPP7EE57WaGGQJMktHGgaRuAaC/nlAniFbvE6TkmhWOycTsBgREHgLcm+vj6Mj48zwb3JRGFyiqIIURR9h5dXqxWIoujpO/HUU08BAJLj60Ms/SCm+pAcGHPHiwP0wsu9O91hFyJBCqn5cbrBd6voNqCscW5kJrq3BeVyGak0vXxCAEjV612Uy80X+dPT0+DT4ReZfHoA12PWSpEQ5F7l5xxVValULwfCi25SMI/0Gfa7kR0nWtWRWU0UhdTcyDGep/KsW8vAwADMSnsR5tgWjGq560X3t++/H88//zzGxsYivU5NdNc6fJhm8PDyYrEEQaYbXs5JSZRKnQvnMRhREDyGjbGlSSaTUH22DNPUqucd1KeeegpSMhOqiBpBHt2HJ598MvQ4tFjZmQ8+BgfAtqMrdrLuegEKqXktogYAEMSuLKSmGyakNXkCEs9E93ZAVdXABYBawXEcFEVpKb6mZmYh9gRvF0aQeoYwPf1s6HGiwHEc8D42JP12cqDVpxsAlETrz8oLRHQLddHdarOlGyCiu131csuJ2OnmeepFwPr7+6FXim3z7Ul18/7+fqrX3mgGBwcxOBh92zNJWulLHyanu1wqgR+lGxnCyQksFwpUx2QwvBKPylMM33RahITdDU6lUlCr/kRStepddD/77LNIjk5S2RVXRvbi6Wc652RtFO7OfIgxeJ87+psRXu4rp7sLq5dblgXbtiGvEd0yBya6twGmaUIMkVvdCkEUW6aOzM3NQUyHd9PEdD8W5udCjxMFNXHj/fggG4K0QrgVJREqQoc4alKm9pl2s+gmYtps88ywQF90E5HN8wJ4Phqn27Et2HrrzRVLLbvHMjojSRIss+Z0W5YVWHRXqhXwMt1QeF5KoFLp3ogTRnfDRHeX0iqEmXdzvcM9mBKJhO/wck1VPYvup599DtLQRJCprSMxsgfXr12JzYKGSsswALYVfcuwMH26OcH7g5QXJFTV7govJ4ttiWu8TUoI10aI0R04TjtPLzitQmQdx0F2aQliui/0NcR0H5bzOZj1hW+ccBzHV+INOdbrM01VVSiUclYTIQupkWeSWBfd3RzWSlpBtQsvtxzHPY4W5HnK8zx4no+mkBrQtle3VW8pxkS3NwRRbHC6g34n1GoVvEQ32oiXEiiX/UVxMhi08CW6LcvC97//fVb5Lwa0EnbcmveDkkgmoWn+FhuqWkXCY+Xy8+fOQRmmJLrr4v38+fNUxguLu0gIkdPN+yykttHURLf34iicKEHtMqFKhLWy1unmaxtMjK2NJEmwLPqi1WyxCK1UKtA1FWKqP/Q1yBhx7EfrOI67OewFv6K7Wq1CodCnG6hVLw8TXu463T1DDX/vRrwUUovW6a6Jbtrh5a7obtOr26wLcia6vbG6kJplmoG+E47jQFOr4P0UbPUAJ0oo++zMw2DQwpfoFgQBr3zlK5HL5aKaD8MjK053I0QfhBVsyWTS9w6/pmmenO75+XlUyiUoQ7uCTq8BuT7OuXPnqIwXllafjR84cLD85HRTDrnrhK7rgI/QW06Qui4km3z/14WX8zzULi6IxPBGIhEutLgZtm1D07SmueKkjZhIofK2mOptGDNO2Lbtz+n2+UzTVJWa6JZDFlIjVZKJ6C50cS4p2ShqG17uIDqnW+DB80JkotustnO6t0ZO90YhiiLs+udkWmag8HLTNGv3CsqimxdlFqnG2DR8h5efPHkSFy9ejGIuDB+QB5GwxjEg4eZhw8trhdT8h5d7yaW7dOkSAEAeCF8wCKhVhpUSKVy+fJnKeGGhEl7O+ateHpYg4eXgvS+ueFGC2qXh5fKa6uUKzzGnexuQTqdRKdN1Jqt1hyWTWV8VnbjSQiq86CZ9oePqdPu53fA+n2nVapVaTncikQzldC8vL4MXRLd6eTeLbiKcTLv152A6DvWONlGHlxMhbbdpG2apJXAch17KLQS3KoKwsjliW1Ygp5s8f311SfFAzQDorrUIY+vgW3R/4hOfwEc/+lF87Wtfw8zMDAqFQsN/jI3BDbla8zox5cLuBicUxfeNSdNUJD0sdq5cuQIAkPvotK3gOA5K/5g77mbjFlILIYb9VuzdaDRNA3zkdHNC97UMc51uofFzVJjTvS3o7+/HMuVUqkKhNl6zMFWStiUkwrcpExK11mSt+oFvJn6dbj/PNMdxauHl1AqpKaiE+F0vFAqQkmlwPA8pkY7l5+EV4mAbbZ5LpgPqopt87gIvQBDFSKqXAysh5E3noJaQ6el1K7gz2iOKIkzidAcMLzfq4emcj819L3CC6I7NYGw0vr/Nr371qwEAr3/96xvcMdJugfYNkdEcV3SvEXbE+Q4tuhMJ6D5FkqZ5c7qvX78OUUm6C0Ma8D3DuD41RW28MKzkdAeH5zjPhdSAEAI9cPVyHZzf8PIuFd2JJk636rPeAaP7GBoaQj6XhRXQqWlGvu48Dw0NrX+PiG4l/H2RCPc41l+xbXtdhFY7/ERvkZBUmjnd+aXgVeDz+TzE+mchJTNdLbo3y+kmxQB5QWhwUGkhyzISyVTbnG6rWkRvb/gCh9sFQRDc8HLLsgKlHLiim3IHCY4X3HxzBmOj8f1t/s53vhPFPBg+cXd/16xdBEpOt6IoyJd85nSrGgZ6Oud0z8zMQOkdphIWTRB7hnD12nVq44XBDS8PMQYPuA+tTtD8OXpF0zVfuVacsFLNtFtwRbfQKLoTAnO6twPj4+OwbRvZpUWMjNKJypmfm3XHXguJFKOxGclLCXC8EEuRZ9u2ryggP3VKSCg4zfDyMBE6y8vL4OufJ59Ix3ITxCtETLdzug2bvugmaxlRFCEItXZ77XpqB6G3r89tC9Z0DmoZI6yImmdIwTvHceA4TqBNS7fzAkc3uoCLoC4Ag+EV36L7ZS97WRTzYPhkRXRH43QrigIj62/BZugaFKW/43Hz8/MQ0p2P84OY6sf81dNUxwxKq3x7P3Ac17ZK7Gajqho4wfvClhclVLvM6SYL+LXVyxWeR7XMnO6tzs6dOwEAczPT1ET33OwMgNaimxclKtV6OY6DlEi5hbziRNDwci+im2yU0QwvD5PTncvlwCk1p5tPZLpadMty7XvZrpCaYdvucbRY63QDwd3TVvT29mG5Q3j5wEA/tettdYjT7a5TA4hu17ygHdIfQV0ABsMrge5a+XweX/jCF/D8888DAE6cOIF3vetd6Otj4TcbBXkQiWuEHfl72P6sSoCcbl1vXpV3LQsLC+AS4YsFrUZM9yGXXaQ6ZlDIgybMRnzsW4bpOjjBe+5pN1Yvd10zvonTrTGne6uzd+9eAMD01DWcvOlmKmNOXb+KHTt2NBUmxWIRUiJF5ToAIMY0h9iyLPA+7o2kkJqXjeQVp5tOn24l4b+Lx2qWslnw9XQBTsnEsrCdV8iz3WgTXh6F6HadbkFc6RVOWXQPDPQj2y68XC1hkFLh1+2AKAiwHXvFgAghusPFDK6H45joZmwevreQHnnkERw4cAB/+qd/imw2i2w2i09+8pM4cOAAHnvssSjmyGhC6/ByiqLbpzOpt2iFs5alXN6trksLMZFBuVSKRdgQjT7dAsfF+sGgazp4n326uy2Pyl3Arw0v5zlUWfXyLc/o6CiSySSuX6VXoPH61cvYOznZ9L1CoUAln5vAK8lY9oW2LAuCj3ujn0JqrtNNMac7TCrJ0lIOQrJW8VpIZLCY7d52q0RMa21Et2ZF53QLogi+fi8Ou75Zy9BAP6w21cuhV1iPbh+QKvPOqsrzgaGcPueAbmoCg+EH378JH/7wh/H6178ely9fxle+8hV85StfwaVLl/Da174WH/rQhyKYIqMZpMiEyK91umt/hn0oybLs25k0DMPTA3d5uQBBoefoAHDdhDiEU1JpGQbvOd2bgaZpPgupiTAMPdYV2ddCRHdyjehOCjwqqtpV/xaGfziOw779+3H54gVqY165dAGHDh5s+l6pVIKg0HFoAYCX4xte7sfpJhvJfnK6lSStnO5wfboXl5bcDWYh2YPFxfj1TfcKx3GQRBFamwKfumVRy6cnrA5RFuvPHNrVpwcGBuBolZbv21qJRXL6YG14eRDR7Qpj2s9Z9txmbCKBnO5f//VfbwjtEUURv/Zrv4ZHHnmE6uQYrXFF99rw8vpqJuxDSZZl32MYuu5JdFcqFfAS3QczLynu2JtNq3x7P/AcYNkxFt26Ds5H/0yu3l6sm1p1tMrpJs53mMU4ozs4cvgwLl08R228i+fP4fDhw03fKxaL4CR6ohtSMpaiuxZe7sPpXnVeJ9zih5TCy8P26c7nshBTNadbTPUhl+ve8HIAUGQZegun23Ec6JbtKdrND4ZhgOM4CEKtZRgQvmbNWvr6+uBo7XK6y0x0+4AXBNi2DdsJHl6+4kbTFt2bU3yWwQACiO7e3l5cvXp13evXrl1DTw/dkGFGawzDAM9x6xYvRITTEN2mz2rThunN6dY01Vflay+Q4kNhFki0cMPLQ9zXBR/t9zbDcTV03Vf/TL4uurupV3e5XEZKEtc9oInzHYcNHka0HD16FBfPnaEy1tLiAvK5LI4cOdL0/VKpBMj0RDcnJWIruv0swf0UB40kvDxgVIthGCgVC67oFpI9KORzXR0hk1AU6C0iDkjYOW2n2zRN1+QRpWg2b/v6+mC3cbpNJrp9IdTDy+0Q4eXkM3cop9k5jgVBpNMCksHwi+/fhDe/+c1497vfjfvuuw/Xrl3DtWvXcO+99+I973kP3vKWt0QxR0YTDMOA1ORGRkt0S5L/vsqGrntqF2KaJv3ei0I0O+BBcIuHhMjp5uHvYRN45zbgebqhg9/iTnelUkGySbEeJrq3DydOnMDM9BQKhfAFyc6dWSk82ozlQgE8RdEtKEkUijHN6Q4QXu6nkJqSoOO2JhLJmoMboAgkKZpGcrrFVB8sy4plcTuvJBQFagunW6s/r2g73aZpumJbjOg539fXB6Pa/HfFsSwYaoWJbh/Ucrotdw0TZH2yIropr+lsy/0eMRgbje9v3p/8yZ+A4zi84x3vcPOGJUnC+973PvzhH/4h9QkymmMYBiRhveiWKYWXS5Lk+8FmmqYn0V27EVMO76HUKo0Gbh5TmJxujoPVJnduszF0HbLPnG4AXVXBvFwuI9VkRzxVD5Url9sU3mFsCYhAPnf6Odz6gheHGuvs889CkiQcOnSo6fvLhSJ4md7CnpeTWC7MURuPFqZp+kq9IQLdS50S2uHlRECqqupbTC4t1fK3V8LLa38uLi6iv7+fyvw2mkQyAc1uHk2mWjUxnkxSTJFAbS1DRBIJL6e9edvf3w+jWmra/5sUWGOi2zscx8GxnVBON1lLOhbdonmOZbnfIwZjo/H1m2BZFn70ox/hd3/3d5HL5fDEE0/giSeeQDabxZ/+6Z9S3+FktEbX9eZOd13phRU3kiT5LsbmVXTX+i5GUxwjSO4QbVZEd5jq5d5bhtEIV/Q7hmH4Cy8norvbwsvXFlEDgFT9NSa6tz7Hjh2DIAg48/yzocc68/yzOHL0aMt7ZLFQhCDTKzAZ10JqlmX5WniQ+6iX55HrdFMMLweC1W9YXKy1sBTT/fU/+xpe70YSiSTUFpvBxOmOQnQTkSSJ0URM9fb2wrEtOMb655NVDztnots7PM/DcVbWFUFEN0lVdCy6n7VtGVBkplUYm4Ov7R5BEPDKV74Szz//PPbt24cbbrghqnkxOmAYxrrK5QAgcbWbW1jRLYqi7xZP1qrcq05jU9+9tFcqnG42Ky3DgiPAe043gMBh4kHD0g3d8FlILRqHIkrK5TLSTeJgmejePiiKgsNHjuD0s8+EHuv0c0/j1E03tXy/WCyCH2kULPM/+DLmH/pbT+OPvviNGL3jTe7fBSWFUil+ots0TbfLhhfEIDndlPKKlbpjHqRWyMLCAgA0FFJb/Xo3kkqnUC02F91EjEchuslGlShF8xwhgtrSKuDlxu8Oc7r9w3EcbNta1cnF/zqDmHi0Rbdj6pAot7VjMLziO8bi5MmTuHjxIvbt2xfFfBge0XUdcpPdQ5rh5YbPQmqm5U10K7ICg/bupVnbZKBdxCUItKqX+3G6w1bj9ON0O45Tc7p9hZd3XyG1UqmEVJONrZTIu+8ztj6nbroJzz/7ZKgxbNvGmeefxVt+4Y0tjykWC0ivcbotrQKj4M0ZtdYUghKUFMpbwOkm+15eRbckSdQ2X1eHl/tlcXERHC9ASNQKzBLR3c1OdyqVbul0V+uvp1J024EahhF5IbXe3trGiKWVIfUMNrxnq+WGYxidcft019cVQdYnPM9DlCR3bUcLxzSQorwxxGB4xbfo/sQnPoGPfvSj+P3f/33ceuutSKfTDe+zG9PGUBPdTZxuSuHlpM+iH7w63alUCjmdbrsluz4e7Qd+EGjkdPMc57llWBjRTc7zI7pJmCcR0l7gu9DpLhWLSDX5sabrC3omurcHp06dwt//wz/U+ksHCJMEgMuXLqBSLuPUqVNN33ccB+VyCb2JxvuXoKQg9Q57uoagNJ7LKynoulZ7VsTI2TFN09fCQ/ARXq6qKjWXGwgXXr6wsAAl3VdPp6pF+8ipni53utOotBLddvSiO8rwcgBNK5iz8HL/cBwHx3HcQmpBN8ESiSRsne5GvW2oSKU3f53I2J74Ft2vfvWrAQCvf/3rGxb6ZOEfh0JW24GW4eWURDfP874/S8uyPC1Ke/t6sdimPUcQbL02Xhza1tHJ6fZeSG2jRTf5bvkR3d1YSK1ULKCvWU533emOY74sgz6nTp1CuVTClUsXse/AwUBjPP/0k+5YzVBVFZZprhPOo3e8qSFk3A9krGKxiKGhoUBjREGtkJr340Uf0VuqqlIrogasFGQLIrrn5+chZhqFmpTu72rRnc5kMNviUVE1a8+rtUZMWGrh5bVNo6gKqa043a1FNzOUvFMrpLbSpzvo+iSZSsE2KBs0hob0ABPdjM3Bt+j+zne+E8U8GD7RdR0y1yS8nFLLMEEQAoluLzuag/19OHeNrktoVUtIpTOenPaoWQkvDz6GwHmvxL55otv77nU3hpcXlwvY1aR6ucBxSIoic7q3CTfV87Cff+bJ4KL72aexa9cujIyMNH2fbODwNAup1UV3oVCIl+g2DDdP2wt++3TTdPVJQbagOd18slF0C6k+zM/PU5nbZpBOp1FtsRdciSine3XLMCmi8HKyWU/yt1dja2VwHBeLKLpuged52E648HIAyGR6UNb9/+61w9Iq6Otrfh9mMKLGl0IxDAMf//jH8bnPfa5l2xPGxlALL1//OqloTiW83EefaACewy+Hh4fhnAtfDXg1ZrWAgYHBzgduAK7oDtWnm4PlJ6c74LXIw9DPZ02+W3wAp7ubwssLxQLSTUQ3AKRlkTnd24SxsTHs2LEDzz/7NF79sz8faIxnn37SFe/NKBQKANaHiIdBUNINY8cF0zCg+FiEiz7DyxMURR/p9x1ks3B2dg58qr/hNW4LiO5Ki2cFEd2ZTIbqNQ3DWOnTXQ8vpx0xRUS3ra0XeJZWRSqTCV03ZTtRq14ermUYAPRkMihQjoqEqaKH8neUwfCKL9EtSRKeeuqpqObC8IGu600/PFIVNqyjSG6SXl1Ux0fLrtHRUdjVH4aa31rM8jLGR7zlPkYNjfBykedgeqzwvnlO99ZuGVYqlZDpa/5vzIgCE93biFOnTuHZp4MXUzv97FN497vuavm+K7oT9EJzBaUmPuP2PbUsy1e9C799umm1CwNWnO4g4eWzc/MQexvNCTHdj+nZaSpz2wwymUzLnO6KZUESRer1A3Rddx1uSY7G6VYUBaIkwdLXCzxbr6Anw0LL/UDCyx07nNPd19eLa7n1n4nXrg5rOzoAgKNXWKoAY9Pwvf30tre9DV/4wheimAvDB5qmNS2kxnEcZIEPvRPsV4z5aQ0xPj4OvbAUfHJNMEtZ7N65k+qYQSGLQzFEzzAeiG1ON1nwBMnp7ianu1gqu0XT1pIRhdg5iIzoOHXqFE4/+3Sgcxfm5zA3O4Obb7655TEr4eX0XNrV4eVxwtB1t/aIF/w63TRFnywHr14+vzAPKT3Q8JqYHuhqpzuTyaBsNg/zr5g20hFUhW5oGRZRITWO45BOZ2CpzXO608wZ9QWN6uUAMDQ4AEtdn8ZFujp0+q9Zjr6tltHf3x9oPgxGWHwnwJqmibvvvhvf/va3m1Yv/+QnP0ltcozW6LqOVpJHEgQqhdQA7yHjfm6uO3fuhF4pwtbVdT0xg2KXFrF7941UxgrL2pZhf3lxDp+/POfp3PdOjuE/7B+rFVLzGPJt23ao0DdSadQrrtPN+8/p7pZCapZloVSpoFdqnvuV4bnYOYiM6LjpppswOzOF7NIiBof8RdQQsd4uvJx8l6iGl8srhdTihGH6y+n2Lbrrbb5oELR6uWVZyGeXsCu9vpDa3MIClTaPm0E6nUalheguWzYylIuoAaR6ee35QTZUoniOpNMZWE3yh21dRW/v5hdo7SbWhpcHrV7e398P6OfWve61q0Oz+6mpllglesam4Vt0P/PMM7jlllsAAGfPnm14rxsfIt2KrmmQWvy4ZZ6e0x3FeRMTEwAAvbCAxPBEoOusRV9ecMfdbNaK7pJpYVb1tjNfMleKsFmW5Wlx5jgOEKYneH1X2iuu0y16d5S6zekmRdIyLXK6MzxQWF7eyCkxNhFSdfz5Z5/GHT/5b3yde/q5p5FOp3HgwIGWx5DvG9VCavUNzbgV/DMN018hNd676NY0DTLF8HJRFMHzvO+0mKWlJdi2DTGz1unuh2HoKBQKXbnwz2QyKOsGbMdZlz5VMi2kM/TFaS28vPasicrpBmr/tlxT0V1FzxBzuv3AcRxs2/YVAdmMwcFB2E2c7qBdHRzbhl4uYnAwHvV/GNsPVr28S9F1rWWInsRzsc6dnZycBADouVkqotvSqtBKeezduzf0WDQgi0Mi1zKigPGEt1BsIvJWV+ztVJHdtu3AO8lACKfbR04332VONwnJzbTIEegRBWTz+Q2cEWMzOXjwIJLJJE4/F0R0P4MTJ0+2jRgql2tVk3mJnkvL8QIESUGlQrkQUUgMw3Dvb14gAt1ryzCaOd0AICuKb6ebhJCLa8PL6yJ8bm6uK0U3KThWsex1G5Jl00LPAP1cWcMwINUdbvJnJKK7J4PFJjndll5Fb0886sV0CzWn24aDcOHlg4ODMCv0InUsrQzHsWPVzYGxvaDaX2l+fh6jo6M0h2S0QNc0pFos4iSej7WjuHv3bgiiCC03Q2U8PV8bZ9++fVTGCwtxukl/2f+wvxYy7gdyrhfR7ThO4OqggH+nO4joRj0UvVtE93Ldxe5p4XT3iAIu5HIbOSXGJiIIAk6cOIHTzz7j+9wzzz2DO178wrbHlMtlCJIMLsTvcTNEJeEK+rhgGsFyur080zRNg0wxLx4AEkrC9yb23FwtnUha43STv8/Pz+Pw4cN0JriBENFdMq11ortk2eiNYCNB1/V1LcOiMBV6MxnYi002VwxW7dovJLzcCRlePjQ0BK28DMe2qdwbzcqyOy6DsRl4/hanUiksLCy4f3/Na16DmZkV0TQ3N4cdO3bQnR2jJZqmQWqxeyjzXGhxQ5xPPw6o1+NFUcTExF5o2alAc1uLtlQbJy5t7NxCaiFCvgUfeYxhc7p5nvfVkz1Q9XKOAy+Isd4MWk2+7mL3Si1EtySw8PJtxg033ICzz/trdWgYBs6deR433ti+3oSqqhAoutwEXpQD9ZiOEsM0fTrdtT83I6cbCOZ0E9G9zumu/312dpbO5DYYIrrL5vpN2rJpozeCAlW6rkOuh5dzHAdRjOY5kunJwNabie7qutpFjPaQjfywLcNGRkbg2FbTYmpBMMvL7rgMxmbg+TdBVdUGQfX9739/3cPcr0BjBMfQWrsFUoActLX4vVn6rYJ97Ohh6IvXg01uDdrSdaR7emJzIyWLw1Atw3y4O7VidyHCy+u70l5ZKaTmL1CGF6VYpz2sppPT3SsKWI5ZVWhGtNxwww04d+Y5XxtUly+eh2EYuOGGG9oep2kaeNF7NwCv8KIcu+gS0zBcIe0FEvXjKbxc09yK47SQZf8/w7m5OYhywm3bRhCSPeAF0RXl3cZqp3stZcdx36eJvqpPN1ALMY/iO92TyQDm+ueTbahMdPuE53nYlrXSPjWg6CaRs2Y5T2VeZJy4rBUZ2w+qsWyskNrGoel605ZhACBxXOidYL+tHnyL7mPHYGavBZvcGtSFqzhy5Ghsvn9EdLeKRPAC6U3rZYFfE90bV0iNLHj8igRelLrP6W4luiUBy6WSr58bo7s5efIkVFXFtSuXPZ9DnPETJ060Pc4wDLfuAU04Cp0saGOaliukvSD5DS+n7HRLshwovFzuWV+sieM4KD0DXSu6SX/jZqK7ZEUkulcVUgMAKaLnSCqVAsz1TretM9HtF0EQYNvhw8vHxmppeUaJTiqXWc6B53kMD7McfcbmQDeBjLFhtCukJvPhc2eDim6vIuT48eOoLM3ANsIvCI2lq7jhxPHQ49DCLaQWYg/AT5uc0OHlnL/w8pU+3T6d7i4LL5d4Hkmh+S2yVxRg23bsKkMzooMI57OnvYeYnz3zPMbGxjou8izLCtWBoCU+f7c3AsM0fG1IchwHgeO8Vy+X6G5eyLISSHSvrVxOEDPdL7qLTcLLi6YVSXE4XdfdAmpAdE53Op2GY6z/nC1DY6LbJzzPw3bCh5ePj48DAMxSlsq8jGIWg8MjoQrPMhhh8PybwHFcw8J+7d8ZG4tptF64iAhf3dOyLF+fMTnWq+g+ceIEHMeGunglzDTh2Daq81dw8uTJUOPQhFTnDfP74Se83LKsUA+RwIXU/IaXC90TXp7L5dCXkFt+hn2S6B7H2B7s2LED/f39OHfmtOdzzp1+rqPL7RLR8zRuz2nD8JfTDQCix+Kguq7Tz+mWFd8ib2ZmBlyqv+l7XLIfs10vups43Yblvk8TwzAgrSomKknRie5mOd2WrtZccIZnBEGohZfblvv3IPT09EBJJGEU6Yhus5TF2Ki/orYMBk08r5odx8Hhw4fdB3ipVMLNN9/s7mCxfO6NxTBMiC0adYsUwsuDCDlBEDy7KmQhWp27hNSO4AXQ9OU5mFo1VqLbNE2IIStt+sljtCwLfBjRLQjBRLfP8HJOFGMX6tqKfD7vCutmkAJr+Xx8WtUxooXjOBw7fhznzz7v+ZwL587glXe+ouNxPM8DUTxDHSd2ots0TV/VywFAFLyL7tWhyDSQZMn3fWt6Zg5Spnk7TDEziOmZ7iykpigKFFleF17uOA6KurEhTrcsRxNenkwmYa3J6XYcByYT3b4ha0HbCie6OY7D2PgOqMVFKvMyikvYs28XlbEYjCB4Ft1//dd/HeU8GD4xDAMS1/zjE7nwTneQ3s+CD/HW09ODiT2TUGcvBpmeS3X2AgB0rA68kRiGAbFFWLJX/ISXW5YFngvXMixQ9XKfTjfXZU53b4se3QDQXxfdzOneXhw/dgz/+vBjno41TROXL57HsWO/0vFYSZLgWJ1/1/3iWKbbZikuGKbpu7ODxHsLLzdi4nTPzs1CPNb8mSRlBjBz6TkaU9sUejNpFNaIbtV2YNr2xuR0RxRenkqlYK1xuh3TABwHySTdNnRbHUEQYJnmSqpdCFNg966deL64RGVedjmLnTuPURmLwQiC51XzO9/5zijnwfCJbhiQ+OY7+jLC53QHcU8FUfS0MCLcfOpGfPfZsKL7IvoHBmPVrs4MsKhci9+WYWGcbj8RCkDtu8ULou++mRzfPTnduVwOfW3cOBZevj05duwY/s8Xv1gvXtj++3/18kUYhoFjxzov8hKJBCyTvpCwTT12giGI6PYTXi6K/jYDOyFJ/gqpWZaF7OICdjYppAYAYs8gFubn4MQwCsELfb29KK0pOEbCzaNwuo1VfbqB6MLLk8kkLL3xc7brznfcfofijiAIMC0TthWukBoA7JnYjWf+1Xt0UTuM5QXs3r2bylgMRhDoPp0YG4ZpmS0LdYk8ByPkQ6mWR+XPIREFn6L75pvxze88EGrxoc5ewM03n4rV4sUwjNDh5ZLP8PJwOd3+RLemab6LqAHd5XRnFxcw0KJHN7BS1TybpZNrxugOjh49imqlgtmZKezc1Tx8mHDh3Bn3nE6k02mYaoXKHFcTx3xUwzR9VS8HvKdMrQ1FpoEo+QtnXlxchGVZEDPNRbeUGYSua8jn8xgYaF5sLc709fXjm+dOY05d+ZmUIhTdq/t0A/4/D68kk0nYlgnHtsDVW3A69Y0wJrr9IYoibMuCWY/eCbMRNjExAevbD4Sek20aUItZTEy0v28zGFHCRHeXYhhm60JqXK1CbBhM02zYXfaCKEm+RPepU6egFXMwiouQe4P1TdTnL+CWV//7QOdGhRlgUbmWjSykJgj+w8uFID2Fu6h6eXYpi31tRLfIc+hVZOZ0bzOOHDkCALh4/lxH0X3x/FlkMhlPUTi9vb2wLRO2oYOnlJPsOA4MtRJJcaugWJYFx3ECON3eRHeQzeJOSJK/WhSzs7V8balnqPl4dTE+OzvblaL7bb/0S/i7r/xfrN1ufM2tPR370QfBMAxI8mqnOxrRnUgkANSiQwS5JrLtejVz8h7DG6IowlrVpzus6K7m5+HYtu/outUYxSXAcZjoZmwqTHR3KabVutepyHGoGuHyAw3D8H2jFEV/ourmm28GAFRnzgcS3Wa1iMrSjDtOXDAMI3R4uVg/3XNO90aHlwdY2HKC/4JEm0Uum0Vfpv33v1+WsLREJ9eM0R1MTk5ClmVcPH8WP/Gy9gXSLp4/h8NHjniKwiHiy1KL4KXmYs0vtlaBY1sYHGzuuG4G5Pngt5CatIlOtyTJUMtVz8fPzMzUzmvRMoyI8ZmZGU+pB3HjQx/6ED70oQ9t2PVqKQMrzxtRjCZiighrx9ABIrrrTjcT3f4Q66mGFoWc7j179sA2DZjlPKQWKRte0PNz7ngMxmbB+nR3Ke3y4miFl0ctuvfs2YO+/gFUps/5nR6AmlgHEEvR7XdRuRa/1ctDOd31XWmv6LoeKLwcvNg14eVL+Vzb8HKgVkyNhZdvL0RRxP4DB3Dp/NmOx166eA5H6854J0gfb7OcDzO9BszKcsPYcYDcz6Jwum3brrnolJ1uUZJ8PU+J6G4VXi7WhQM5jtGe9dXL5UicbqVegM+2Vj5rx6pdh4luf6w43TXRHaaYI+kOoi/Ph5qTvsxEN2PzYU53F0IWF616nfLg3FyaoARxDPxWFeU4Drfeegsem66J5/kffBnzD/2tp3NHX/xGOHCQSKbckM+4QMfp9i66TdMMJ7p5wVdagKZpgZxuCCK0LnC6q9UqqqqGAbmD0y1wzOnehhw5fBiXL17oeNzlC+fx2p95pacxx8fHAQBGMYvk+IFQ8yMY9Yq/ZOw44DrdfquXe3C63bEpV2sXRQmGj/vj9PQ0lExfy3ukICchJdOYnp6mNcUti+M4ME2zMadbjDa83FmVmucYzOkOgiiKMA1jZZMtRHi5K7rzs0jv7lwfoxV6bhYDQ8Oxq3HB2F74/k2wLAv33HMP7r//fszPz69rEfUv//Iv1CbHaI6bJ9PG6TZDhpfruu47N04S/YcP33brrXjosf8FALC0CoyCt36MllaBlp3CjTfeGEpwRoGu66Gdbrmeu+Tl50nD6fYjumtOd5DwchGqqnY+cJMhQrq/TZ9uAOgXeSwthNt9Z3Qfhw4dwpe+3H5zsFBYxuLCPA4dOuRpzB07doDjOBiU+tECgFFYAIBYVesli3AhgkJqbnsike7zQPR5f5yenobc2z66QOkdZqLbA+Tnvrq+jChFk6bkOt2rugjYdadbppyysNURRRGGabjh5WFEd39/P9I9PdBz4SJD9Pwc9u3bF2oMBiMsvn8TPvjBD+Kee+7Ba17zGpw8eTJWVaO3C+7iosWPXgDcm11QNsLpBmqh4dXcf4dZXoagpCB1WKwQBCUFfe48bn/ja31dbyOo9VDfaKc7+EPNb3h5rXp5sJxuVY1/eDkR3Z2c7gFZxMUFeiKJ0R0cPnwY169drVVVbnGPvHzxvHusFxRFwfDomJt3SAM9P4d0T0+sCqmRZ5ff+6PAda5v4Qq0CMLL/YjuqelpcOn2uad8ehBTU1Nhp7blcaMX1hVS855j7xXyu+ysihIk/69Q7v2+1ZEkCZZpugV9w0SfcByHyb37MJubDTUnMz+Lg7d7ux8zGFHhe6V+77334ktf+hJe/epXRzEfhgeIQOJbhZdzHEwfIqoZmqb53t2VZX/9TIGVfOzK7HmM3vEmjN7xJk/nWXoVU//8P2OXzw2Q8PJwY8g+crpN04QQYidZDFBILZDoFiVoesn3eRuNK7o7ON2DkogsCy/fdhw6dAi2bePalUs4cKh5agsR3QcPHvQ87v59+3A2pJuzGi03i32T+6mNR4OgOd0S1/leaFIo2tQMURB8hTNfvXYdYk/7zWOhZwjXrjPR3Qmyid9QSE2SUC4vU78WEdaNottoeI/hDam+UWXVW8mFTfk4dPAArj1zLdQY5vIs9u//mVBjMBhh8V1ITZZlXwsJBn1ISH+rCD2Bw7qwf79omgbZ54NGVhTfovvQoUNIptJuUTSvqHOXAMeJpejWdR1SSNHt2+nmw4WX+1lUapoGBHDWeUGC1gVO9+Jizb0e7OB0D8oiFnM5OI6zEdNixATy/Lt8qXVe95VLFzEyMoL+/n7P4x49chhWjl7IsZGdwtGj8XJ2glYvF+E9vDxMKGszeJ+bklNTU5A7iG6pZxjXmejuSLM8fUmSoEeQ073idK/K6aZQCGw7IkkSLMuCrtee92F/Jw8c2A9rObjTbZsGqrl57N8fr01IxvbDt+j+z//5P+NTn/oUW2huImQBIKC1021Tcbp9im7Zv+jmeR433ngjqrOdCxOtpjp7AYIo4sSJE77O2whoFFIji1Iv4fpBeqqvRvQZXq6qKsAHDC/vgurli4uLEHkePWL72+OALEI3DJRK8XfvGfTYuXMnkskkrrQppnb54nnsP+CvINqRI0dQXbhK7dmqL13zXD19owhcvdyD0+0+F0Ok2jS9to/7o2maWJyf65gmJfeNYG52JvTm+FZnpRBXY8uwKAqpEWHdzOlmOd3+ID+vaqUCSZJCp6EeOHAA1ewsnIDrWn15Do5jM9HN2HR8P50efPBBfOc738E//dM/4cSJE+t2AL/yla9QmxyjOeRB3eo+xnMIXb1c0zRIfkW3kghUKOuWm0/h2a/+k69zKjPncfjw0ViGfem6jrCPaMlHeHmQ9m6rEYSNcbo50X/6wWawuLiIwYTccaFAnPDFxUX09PRsxNQYMYDneew/cABX2jrdF3D8iLciaoTjx4/DqJZgFBch946EmqNZLUFdXsTx48dDjUMb143226cb3nO6aYeX8z66O8zOzsK2bUh9o22Pk3qHYRg6FhcXMTra/tjtjBtevtrpjqhlmCu67RVhR0Qec7r9QX5eRHSH5cCBA7AtE3phHsrADt/n69laBBGL0mVsNr6d7v7+fvzcz/0cXvayl2F4eBh9fX0N/zGiZyW8vHXLsLBuiaqqvttkKAHCywHgpptuQnn+WkPV0E4YC5dwy803+b7WRqBrGiTfv1mNCBwHgeM8Od1GyEJqouTPOVBVFbzof1uBFyXoXSC6FxYWMKR0XigM1UX3wsJC1FNixIyDBw7g6uVLLd+/evmS7wXeDTfcAABQ5y6HmVp9jIsNY8aFoC3DRJ7r2CvbfS5SFt2CIHh2pK9fvw4AHauXk00VcjyjOW7hvdWi22c1ea80dbrtaFIWtjrE6S6XS9RENwBoS8FSMrTsNERJilUnB8b2xPed5K//+q+jmAfDB0RQt9J1PAcqoru/Z8DXOUoigXwx5/taN9xwAxzbgrpwFakdnReqjuOgOncZN974Dt/X2gh0TYNMoaq/JPDewssNA8me4A82QfC3iKlUVXABRHctvDz+LcMWFhYw2CG0HFhxupno3n4cPHgQ//erf9f0vVKpiMWFeXeh6JXJyUmk0hlUZy+g99DtoeZXnbsIUZJwJK7h5X6dbo6D1uFe6BYY5UPueK6B53nP4eXXrtWKPXV0uvtG3ONvueWWcBPcwjTr8+y3BolXyDUanG7bAsdxsWtLGndWwsvLVKIR9+7dC0EUoWWD1bzQlqawd+8+9jkyNh26TyfGhuCGl7d4nwPghMwVq1SrvnO6FSWBStV/Kw+Sl63OX/Z0vLE8D0Mt4+TJk76vtRHouhY6pxsAJN6b6DZM03dP9dWIPhcxqqaBC3A9XpTdwipxZnF+HgNMdDPacODAAVy/eqXpZtXVSzWX2a/TTepbVGbOhZ5fZeYcjh1fn/612YRyug2PTjdHd1nD8bxnp/vatWsQlSSERKbtcWKqH7wouSKd0ZxmottvZJZX3Gs4K5+1Y9uhOoNsV4jorlQqvlvPNkMURUzsmYSWDeZ069lpHPGZ7sNgREGgu8nf/u3f4ktf+hKuXr26ThQ89thjVCbG6EyrnFOupRz3TrVaDRReXg0guvv6+jC+c5dn0V2tHxe3fEWCpmmQKbgtsken2zCM0IXUDMO7A61WVfDJAE631B053fNzc7i1Q+VyAJB5Hr2K7FY7Z2wfDhw4ANM0MTN1HRN7Jxveu3L5onuMX26/7VY8fe/fhZ6fMXcBL/iZnww9Dm2IWBKCFFLT2wutlVon4Z9/q+F53nNh0qtXryIxMNZxDhzPI9k/iqtXr9KY4palWe910Wdklldcp3t1PRzbAh+iM8h2xRXdlMLLAeDo4YN46FIw0W3mp3Ho4AupzIPBCINvZfDpT38ad911F8bGxvD444/jBS94AYaGhnDx4kX823/7b6OYI2MNXkLHw4aXV6tVJJJJX+ckkslAohsAThw/BnXR266/tnAViWQKe/bsCXStqDE0HYrP8MlmeHa6Q4puyW9Ot6YF6tPNizJMw4h9xd6FhXk3X7sTQ4qE+fn5iGfEiBukCi4R2Ku5duUSenp6MDzcPq+3GbfeeivKC9dgqcEr4tuGjvLsJdx6662Bx4iKwC3DPNS3cEU3hXvvajjOe42Uy1eugO/xVgRP6GWiuxOu6F71fBMlCWYETjcJPXYanG6LhSQHYCWnm054OQAcPnwYVn7G93mOZaG6NI3Dh+PVPpGxPfEtuv/iL/4Cf/mXf4k///M/hyzL+LVf+zV861vfwq/+6q9ieXk5ijkyAhA6p7taRSLhU3QnklADiu5jR4/CzHoT3eriNRw6fJh67h4tNF33vahshsTznpxhwzAghQiBE332PVVVFbzk/0FK8sDj7Hbbto2FbA5DsrdNhSFJYKJ7G7J3717wPI9rV9YXU7t65TL27d8fyHG9/fZaLndlOniIeXX2AmzLxG233RZ4jKhwK4z7/NGIXOc+3W6tE8rPBT+i++LFyx3zuQli3yguXLocYmZbn2YV6UWf3Ta84l5jteh2bPBCPNcZcYa42+VSkZrTfejQIVSWphpy7r2gL8/BtkwcOsTCyxmbj++7ydWrV/GSl7wEAJBMJlEsFgEAb3/72/HFL34x0CQ+85nPYHJyEolEAi984Qvx4x//2NN59957LziOwxve8IZA193KhA2xq1arUPyK7hBO9+HDh1FdmvZ0QzVyUzh+NF4Fglaj6xokGuHlPOdZdIcLL/fndGuaGtjpBhD4O7IR5HI5WJbl2ekeFDnMzc5GPCtG3JAkCRN79jStYH718kXs37cv0LhHjhxBMpVGZepM4LlVps9AlCTceOONgceICrcadYCc7k7FzIgwph1ezvnoBnL16hXIfWOejpX7x3H58uUQM9v6NAsvF0TBc2E7P5DNmoZ6OLYNgYWX+2YlvLxMrcf5oUOHYJsG9GV/m9wkgpKJbkYc8K0MxsfHkc1mAQB79uzBj370IwDApUuXArmr9913Hz7ykY/gd37nd/DYY4/hpptuwqte9aqO7tHly5fx0Y9+FC996Ut9X3Or0Orn7SCcyw3UhFEqlfJ1TjKZCiyoVm6onYtSGdmpWPdb1DUdMgWnW+Y7uzsA6dMdIrzcZ99TbQs73eS+M6R4E93DsoQFJrq3Jfv37cP1q5fXvX796uVA+dxAzW279dZbUZk6HXhelanTOHnDjdTCOmkStHq5yHEwOxRSI1AX3R6d7kKhgOV8DrLHPsJy/xgW5+divQm52TQtpBZRyzA3QmLVZ+04Tmwj6uLM6pZhNMPLAf9tw7TsFGRZwcTEBJV5MBhh8H03ecUrXoG///u/BwDcdddd+PCHP4yf/umfxpvf/Gb83M/9nO8JfPKTn8R73/te3HXXXTh+/Dg+97nPIZVK4e677255jmVZeOtb34rf+73fc3PrthNeFhVhFh6O44TK6Q6y+UI+Rz3XPmfHNnRU8wux/tx1nY7oljhvTreu66F2kyW/1csD9+mOv9NNRPeIx/DyYUVk4eXblP37969zui3LwtS1q9gX0OkGgBe/6IXQZ4OHl+sz5/DiF74g8PlR4jqXgaqX0w8p9gTHeXqeEtda6ffudAPAlStXAk9tq0O+L6tDvP22uPTKirhevX5xqG/ibAdWF1JTKDnde/bsgSTJ0DzW/iFoS1OY3Lef5eYzYoFv0f2Xf/mX+I3f+A0AwK/8yq/g7rvvxrFjx/Dxj38cn/3sZ32Npes6Hn30Udx5550rE+J53HnnnXjooYdanvfxj38co6OjePe7393xGpqmoVAoNPzX7ZCHQKtyVGF9blWtVbL2ndNdF+lBRNXevXvBcVxH0a0vzwFAqEVt1Gi6Tqd6OQfPfbolKYTolmVP1wFqGzK6FrBPdxeI7rm52vfLj9M9t7gYuoYCo/vYt28frq1xumdnpmAYRqj702233YZKdhZGKef7XEstozR/BS94wRYT3Vzn8PLN5tKl2gaMV6dbGRhvOI+xHvKZN/TpFqIJLyfrqobwcscBmOj2zerw8jCpb6sRBAGT+/b7drr1pes4FuN0RMb2wnf1JZ7nG8JtfvEXfxG/+Iu/GOjii4uLsCwLY2ONO8NjY2M4fbp5eN2DDz6IL3zhC3jiiSc8XeMP/uAP8Hu/93uB5hdX3IdDi/dtB+BD7OpVKhUAQDJAeDkQLDRdURQMj451DC8n+Tx79+71Nf5GohuG75zFZsg+nG5RCl5ITfLRyoscxwcQ+eScOIvu+fl5yAKPXtHb78+wIkI3DCwvL6O/vz/ayTFixb59+5DPZTE/O4NUptaX+cLZM+57QXGLqU2dQd+RF/k6tzJzDnCcWBZRA8KFlxuGN3eT+gaY5yJqFyHICsTMgKfjpd5h8IKIixfXV8Bn1CDienXbLiGi8HKgSYQgCy8PxEqf7jISFNNcjh09gu8+f93XOWZuCkeOvILaHBiMMAS6mzzwwAN429vehhe/+MWYmqrtOv3N3/wNHnzwQaqTW0uxWMTb3/52fP7zn/fcjuVjH/sYlpeX3f+uXfMXmhJH3IIfLdYCDsJVcHVFdzKY6Cbn+2ViYgJ6oX2orlEX5bt27Qp0jY1AoxZe7i3/uRZeHvzB5ienmwhmXvR/PXJOnEX33NwcRpIJzyGFw/UwdBZivv0gdSVedMN+3LhvFDfuG8Uvvfn1EAQh1Kbg5OQk+voHUJk+6/vcytRZJJIpHDt2LPD1o8QNF/Z5nsBxMK32QsvdjKYsuh3HW4jxxYsXkRzc6fnewfECkoPjzOluQ7Pq5YIgRCa6azgt/p/hFSK6bdumVkgNAI4cOQwz693ptk0dlewsK6LGiA2+7bH/+3//L97+9rfjrW99Kx5//HFXFCwvL+O//bf/hn/8x3/0PNbw8DAEQXBDOglzc3MYHx9fd/yFCxdw+fJlvO51r3NfI705RVHEmTNn1hWwURQllgVlwkAEtd1icWF7XCS0gojmIDndq8/3y56J3bjwTPsbqlFcwsDgUGw/U8dxoBsGFAptRmSuVrSsE7quQwrxYJMlGYbH8HIimLkAhdRI8bW4i26vlcuBmtNNzmN9QLcXt99+O772ta+hVGrsqb17927fkT6r4TgOt912Kx697j+vuzJzFqdOnYpt/qJpmhA85kivRuTQ0emOTHR7zOs9f/48hL7165Z2CP07cP78haBT2/I0Cy8nrrfXzRDfrPn+sJxu/6wW2rRahgG1grvV7CxsU/dUV0bLTgOOw57NjNjgW3R/4hOfwOc+9zm84x3vwL333uu+fscdd+ATn/iEr7FkWcatt96K+++/3237Zds27r//fnzgAx9Yd/zRo0fx9NNPN7z2m7/5mygWi/jUpz61baoTuqK7xfs2EGrRFVR0k3D0crkc6Lo7d+yA/a9PtT3GKC5hfNxbztxmQHKjaTjdCs+7+fWtcBynJrpDPNgkWfKc002+G0EKqRGhHnRTZiOYm53FsOj9syNO99qNQ8bWh+M4vOY1r4lk7NtuvRU/fPSvfZ9nzF3A7S//2QhmRAfTNCEF2JD00jLMfS7arZ6MwbBt21Pk2NlzFyCP+mvTJg/swNlz54NObctDPnNu1c+ffBaWZTWIcWowkR2a1aKbpkFy+PBhOI4NLTuN5Ohkx+O1pVooOnO6GXHB9x3rzJkz+Mmf/Ml1r/f19SGfz/uewEc+8hG8853vxG233YYXvOAF+LM/+zOUy2XcddddAIB3vOMd2LVrF/7gD/4AiUQCJ0+ebDif5FGufX0rQwS11WJH33IcKqI7lUr7Om91TncQRkZGYJaX2x5jlvPYscNbddjNgER+0GoZttxBdJOw8FDh5ZL3QmpueLmU8H2dbnC6Z2emMenD6e6XBEg8z0Q3gyo333wzqrk/gllehpju83SOpVdRXriGU6dORTu5EBiGASFA6pPAcTA6hBSvFMLa+PByy7Jw9epljB/9GV9jK4O7cPGpb0Xn2nY5ZANlda9sd/0TleheAyuS6Z/VnwttpxuoVST3JLoXryOVzjSNnGUwNgPfd6zx8XGcP38ek5OTDa8/+OCDgdo4vfnNb8bCwgJ++7d/G7Ozszh16hS+8Y1vuMXVrl69ygpZrIE8dFqHl9PK6fbpdIcMLx8ZGYFWyrddgNjVZYyNxjNfEVgtuimEl/NcR6fbddbDhJcriudCaq7THUDkk5zuODvd87NzuF3xvkjgOA4jqQQT3Qyq3HTTTQCA6txF9Oy/2dM56twlwHFiLbpN0/RduRyo9+n26nQ7lJ1uy2pwWptx7do1mIYBZdBfrRFlcCc0tYqZmRns3LkzzDS3JMTpXm0ikPZhtCMaACKwV38/vfVoZzTCcRwkSYJhGFRF944dO5BMpT1XMNeyUzh46BDb0GLEBt+i+73vfS8++MEP4u677wbHcZiensZDDz2Ej370o/it3/qtQJP4wAc+0DScHAC++93vtj33nnvuCXTNbmbF6W7+vuU4EMXgNzoSHq74bhkWLrx8aGgItmXC1qsQlOY5kY5axNDQUKDxNwK6TjffUQyT98PkdEuSDMuyYFlWxwiJlfBy/6Kb43kIkhJb0e04DmYXFjCyf8TXecOyiNnZ2YhmxdiOHDp0CLKSQHXWu+iuzl0Ez/M4fvx4xLMLjmmaviuXA6SQWnvRvdoBpYmX++L587UQcWXQn3BWhmoi/dy5c0x0N4EI61bh5ZHQoLmZ6A5KFKKb4zgcOHAQM1lvFcyN7BSOveAoteszGGHxLbr/63/9r7BtGz/1Uz+FSqWCn/zJn4SiKPjoRz+K//Sf/lMUc2SsgYTutAsvD9NCioT/bnR4+cBArdWKVS22FN1mtegeF0eIM61QcLoVgYOmtXe6XdEdok+3rMjuWJ0KQK043f7DywFAlBOxDS8vFotQNQ0jPpxuABgROcwx0c2giCAIOHrsGK7Pe28npc5dxr79B5FIBPvd3Agsy4LABcjp5mrntouCciPAaItuu7PoPnfuHHhBhNzvL4xV7t8BcBzOnz+Pl73sZWGmuSUhont15B7PReN0E3HNrVbdHOe5ZRyjESK2aYpuADh29DCuPuqtDoKRm8ahQ6/rfCCDsUH4VmYcx+E3fuM38F/+y3/B+fPnUSqVcPz4cWTqfUoZ0ePu9LYT3UJw0b1Z1cv7+mq5i5bW2ik3q2X3uDhC3elWvTndcr1YyV999lO4+7Of9jT+u973q3jP+z7o5oPruu5ddAeoXg7UwtKDRkJEDXGrfYtuWcT5KX+9QxmMTtx0w0lc+t6jno/XFi7jplM3RDij8IRxuoGa0GolgMlmNO12UrYHp/vcuXNIDu4A57OWCi/JSA2M4dw5/5XqtwNECPNNnG7aDrQr4ldt6nAcF0kY+3YgKtF98OBBfO3b3+t4nKVXUc0vuK0dGYw4EFiZybIc6zC2rQzHcRAFAWaLZ47pIJTTXalUkEgkfOeF8zyPRCIRWHT39vYCACy1+fmObcPQKujp6Qk0/kZARDAVp5vnoOkeRXc9vLxULGJ2ZtrT+KVisXadumD3ktdNBHOQQmrkvLiL7lG/oluR8MNZltPNoMvx48dx799+1XORLX3pGo4fj6aaOi0sy0KQ/Ugi1E3T7Ci6bZuu022aZkfhcObMGYgDwcLDpcFdOMtEd1Pc8PLVQjjCKvX1C6y8yPEsvDwgUYnuQ4cOoZqbh21obTf/9dwMADDRzYgVnpXZu971Lk/H3X333YEnw/COJIkwWzwMTNsJFW5cE93+XG5CIpkKLLpJtIRtNA+ptk0NcJxYi24SXk6rZZimta8q7or8unDO9PRgfIe3xV+m/nMkTrcX0V2pVMALIriAkRS8tPWc7lFFwuzVWVaBmEGVI0eOwKiWYJaykHra17Gw1DLU5UUcPRrv/MWghdT4eshvuzxesrgnHR1oYRqdRffpM+cgjwSLMpAGduH06bOBzt3qNBXdEfVjX7nWatHNnO6giBGJ7gMHDgAAtNxM2wrm2lLNfGCimxEnPK+c77nnHuzduxc333wz2/mLAaIgwmjRGsVwHPeGF4RKpeIWRfNLIpEMnLNLQpttvYXoNmqi0G9V9Y2EptMt8xxUj4XUiHB+z/s+iPe874P+ruNDdJfLZYhK8J8/JwWPhIia2dlZJEQBPaK/z25EkaAbBnK5HAYHByOaHWO7ceTIEQCAuni9o+gm/WjJOXGlltMdJLx85fxWuLVOKIeXW5bZtjWVaZq4cuUSdhz7t4HGV4Z24+LT3/LcD3w70WwjM2rR3RhezsOhXA1/u0B+Z6IILwcAvUOvbi07jVQ6g9HRUarXZzDC4Fl0v+9978MXv/hFXLp0CXfddRfe9ra3sQXmJiKJ7Z3udIhq1tVqFYlksPDhRDK4qCJi2jabu7tO/fXuEN10nG61Q/9s93ohiieRQmqd2pMBQKlUghCwiBoAQIy30z2cVHy71cNK7TY6NzfH7okMahw4cAAcx0HLXkfPvpvaHqvWW+iQPrZxJajoJu64F6ebdk53pwrMly9fhmWavtuFEZShXdDUKqampjAxMRF0mluSjRTd7ndrjdNtmhFVSd/iRBVePj4+DkVJQMvOtD1Oz01j3779LPqMESs8b6t+5jOfwczMDH7t134N//AP/4CJiQn8wi/8Ar75zW8y53sTkKQ2TjfC3egqlYpbidwvyWQqsNNNqu46LUV3LWyQhFLHEbd6uUDH6bZtu+0icq3THeg69XO9iO5yuQxeDuF0y0kU67nkcWN2dhYjsv+weZIDztqGMWiiKAp27ppwwyTboWenMDA4FOsik0A9JzvAGpjnVnK6WxFVeLlh6FDabGKTImiJ4WCCWRne3TAOo5FWops25LvF8Ss1AzheoF4Nf7tAnO52USJB4Hkeeyf3uTnbrdBzMzh08ADVazMYYfGlDBRFwVve8hZ861vfwnPPPYcTJ07g/e9/PyYnJ1EqlaKaI6MJsiS3drqxUlgrCNVq1a2G7RclEbwllCAI4DgOjtV80WTXXw/zb4ualZZhFJzuunBvJ4bd64XYiCAuudfw8qDtwoBaIbViKZ5O99zsLEZE/58byQGfm2PF1Bh0OXTwAPRcZ9GtZadxoAtyFy3LcvOz/eAlvFwQBAiCAMNoHx3kF0PXIXUQ3YIkQ+odCTS+0j8OXhBx9izL6/ZDVE736p7g4Hjqhfm2C0Rsd6r8H4RDB/d3vC9ay7M4cGA/9WszGGEIbMfxPF8TSI7T9kHIiIaa090818iwnVBOt6qqgQupKUq4PsyiKMFp8ZBzrNpONO1wJZqstAyjU7189ZjtrhcmvFxRvIvuUqkELmDlcgAQ5ASKxXhu0M1OTWFE9v/dSgs8UpKImZn2O+8Mhl8OHToIa7nzZo6Zn8XhLnB1glYv5z2ElwO1DVndw33MD4ahQ27zzDl37hySQzsbxZoPOEFEcnCcOd0+2Yjwco4X3P7wDH8QsR2F6N6/f3/b+6JjW6hmZ7Fv3z7q12YwwuDrKaFpGr74xS/ip3/6p3H48GE8/fTT+B//43/g6tWrrE/3BiPJMvSWhdTCucFhRHcikfQUptwKUZLgtFpY1Qua0A5XoomqquAABDBM10GKsXlxusOElxOX3MtmSblcBsQQTrecRCnGOd1+24UBtXDHkaTCnG4Gdfbt2wetQxglABj5ma5YYFqWhSBLcN6D0w3U7mW0nW5d093Up2acOXsWQn+wdmEEcWAnc7p9QjvM3A0vX9WZg4Saswrm/okqvByo3ReruZmWmyFGcQm2ZXbFPZGxvfD82/D+978f9957LyYmJvCud70LX/ziFzE8PBzl3BhtqC0uCk3f0x0nVLhxtVqFkggYXp4M53TzAu+K67U4dneI7qQkUlkQeHG63fDyME63j/DyQrEIXgmW7w/URHe5HD+n27ZtzC0tYWQkWDGkEUlkOd0M6uzbtw96uQBLLUFINN/Ytk0d1eXFrlhg2raNILdGwUPLMKD2XNRUuk63pqlQlNbV48+ePQ9l562hriEP7MKZs8+HGoMRjpXw8sacbqB9f3hGc0gl/ih+bpOTk7B0DWY5DykzsO59PTfrHsdgxAnP6uVzn/sc9uzZg/379+N73/sevve97zU97itf+Qq1yTFaI8tKG6fbCe10ZwYC5qcpCZRywQtl8e1adNTDzuNcjVLTNMgUiqgB3nK6q9UqFMV/xe2G69TDy71EKCwXiuCl9Q85rwhyEsUYiu6lpSVYluW7RzdhROQwO9M595bB8ANZNGr5OaTGm4tufXkecJyuEN1hne5OjqOSSEDX6YpuXddaOt2GYeDatSvYdcPrQ11DGdqFy499vfbzYeKugbVuZlSh3qQAX0Of7rroNgwj1gVc40wU3+e9e/cCAPTlueaiux56To5jMOKCZ9H9jne8I9ZiZ7shK3LLnG7dCim6NQ2DAcOVZVnp2Fu6HRzHAS0equTVOPcyVVUVCqWHjNfwciKag0KK5nkR3cViCUJf8FBKXkmiUi43bQWzmRCXekQJFkUxrEh4coqJbgZdiJDWczNIjTfP2e4mV8e27YB9ujn3/HYoigJVDR5p1Qxd11sKritXrsC2LMiD4cLL5cGdMAwdU1NT2LNnT6ixthKkbtBqyN83JLxcEBreY3iH1GGIyukGAD03h/Suo+ve1/Pz6B8YRDqdpn5tBiMMnleY99xzT4TTYPglkUi0dbrD7Mqqqho4XFlJJELldNdosZMd0cOWJqqqQqZQuRxYCS/vJLqDVpon8DwPRVE8pQWUSiXww2FyulNwHAflcjlWdSBIPvaIIuEvL87h85e95We/d3IM/2H/GEYVEfPzLKebQZfR0VEoSgJ6rvV3S8/Pgef5rujxbFlWgNrlcEPSO4WXJ5NJaKGfP42o1SqSyeY1Ti5cuAAAUEKKbnL+hQsXmOhexUaKbtfpbhFezghGFKJ7YGAAiWQKxvJ80/f15Tns2cNcbkb8iG9yLKMtSiLZUnRrlh1KdGua1rZaaztkWfaUG9yKOAtqL6iq6jrUYSEV0Nv9PKvVatsiP15RFG+bJeVSEckQOd1Cvd1YqVSKlehecbollEwLs6q3Xr8l03LPm1+aY+GhDKpwHIfdE3tQaFOpV8/PYnR8R6y7OhBqTrf/80hOdyenO0Fl07cRTW19j7148SJ4QYTcOxrqGnL/GMBxuHjxIv7Nv/k3ocbaSpCottWRUVGLbgirRbfY+B7DM+RziuJ5yHEcdu3ajUIL0W0WFjB5lG1eMeIHE91diqwoKLQML7dChZfruh7YPZVlGbpOt3psN1ET3ZScbsGb0x200nzDtTwuVsulEjJhCqnVzy0WixgfHw88Dm1mZ2eRkSUkBR4ZUcB4wpuAyYi1BcWwIsG2bSwuLmJsbCzKqTK2Gfv3T+LH11oX6dPzczjaBaHlQE00B9mS9JrTnUomoWmURbemtXS6L168iOTAmBuGHBRelJHsH3Wdc0aN1ULb/f/6d4C2mFtxuleHlzPRHZao0gH37p3AYzMLTd+ziovYs+cFkVyXwQgDE91dSiKRwGKLQD3NskI53bquB25BJcsKDCa6qYyV8JjTLVNwuhOJzlXndV2HYejg5eAiX6ifWyrFq5ja3NwcRhK1jar/sL8WMu4H0mpsdnaWiW4GVfbv24cfPXN/y/et5TkcvOnmDZxRcBzHCRRezq9xOVuRSqWgVisBrtCaduHlly5dgthPZ/NQ6h/H5cuXqYy1VSCCzbIs9//Jxktk4eVNWoYx0R2cqKIX90xM4JFzDzd9T19ewK5dwTqRMBhREt+KVIy2KErz6uWO40C37FAhx4auQwwYqiiFDC/vdlRVhUzpIeMlp5tmeHkn0V0s1qrSC5Sc7jgxOzuLETm4czIs1xZqrFc3gzaTk5PQ8q2/V8byXFcUUQPqLcMCnEfO6ZTTnUqlUK3QLaRWqZRbFmQ6f/ESxJCh5QSxbxTnL16iMtZWYXV4OcF2ona6V4WXM6c7NFGlW+3evRtGcb3Tbesq9EqRiW5GLGGiu0tRFAV6k01/IsTDOt1B8wNFUYzuAdUF+d6apiFBaZrec7ophJcnk55FNw2nu1Bo3mN+s5ibmcGIGPx2OFx3upnoZtBm37590CtFmNX10SG2oaOaX+gq0R3kt4zcUj053So9p9swDJimiVSq+Ubj1atXIVNyuuW+MVy9epXKWFsF191etdliW3bDe7RYcbpX1j4spzs8UYWX79ixA1oh66YbEIziEgAw0c2IJSy8vEtJJBLQmyxAiOgO436apglRDPbVEEUxukqfEfXnpIlarVILLxd5DiLPd3S65ZAtwwB4ql6+4nTXXJ/5H3wZ8w/9rafxR1/8Roze8Sbw9XNj53TPzOCWgD26ASAp8OiRJSa6GdRx2+PkZyAmDzW8R/rRdkOPbqAmmoPcHv2El40tf7wAAJKfSURBVFcq9ER3tVJ2x133XrWK3NIi9vSNULmW1D+K67MzMAyjK4ribQTEJV0d4UDCy6MT3aud7tr/b+c6NUEhYeVRhZfv2LEDtmXCrBYgpfvd14no3rFjRyTXZTDCwER3l5JIJKBZ64vKaPUHUqjwcsOAKAZ1uqVtvSusVqvIUBLdAKCIgofw8uDh3oREItmxkBpxp3ml5lZbWgVGYdHT+JZWWwjzcgLguNg53fPzcxgeCNd6bSQhu1XQGQxa7N+/HwBQOPtjWGvc7srMOQDdI7rDhpd3KqSWTqdRLZcDXKE5lTai+/r16wAAuY9OeLncOwLHcTAzM8PahtVxnW5n5XMnAnxjCqnV1kFMdAcnStENAGZxqVF0l7IN7zMYcYKJ7i4lkUhAa5LTTSO83DTNwA80gUJ4eWszI/5Od7VawSDFHXiF59s60JVqFcN9Q6Gvk0imfDvdgpKC1DvsaXySB85xHKREKlZOt2VZWMjmMDK+O9Q4w7KA+fnmLUwYjKAMDw9jdGwMM/ff3fT93r5+7N4d7ru7UXRyqltB1u2dzs9kMlSdbjJWT0/PuvempqYAwPM9sBNSb80xv379OhPddcg6JLe0BKseQVcqFhreowUR1g3h5SynOzBRtXYjkIKlRimH1QlvZikHSZLR19cXyXUZjDAw0d2lKIriutqroeF0W5YFIWB4Oc/zHd2IdtRu0C0WVvWbeFQ5QjTQqioSNJ1ugd+QnO5EIoFKtb0QJu40EdCjd7wJo3e8yfe1xEQ6Vk730tISbNvGkBwupHNI4DE3O0NpVgxGDY7jcPbMGSwtLTV9f2BgIHA60EbjhHS6O4nudDqNSpleZ4RKvctCs0Jq09PTAACph5Lo7qltns7MsHsIgfzcX3778YbXE4lEZNXLeYG1DKNJ1KLbLOUaXjdKOQyPjEZ2XQYjDN3xpGasI5FIQDPXV3JVrfA53ZZlBXe6BaFjhdl2cDzfMXc7zjdTTVOhCPQ2BWShc043jerliUQSy9n2Lq0bXh6ikBpQE+1xEt3EnR5Rwt0OhxQRT02zBTODPn19fVvCuan1W/Z/nlfRnclkUC6XGvo6h4GElzcT3TMzM5ASKQhK+E1PABCSPeBFiYnuVdx55534+te/vm7jeWJigvq1Vpzu9aJ7O3dkCUtU67VUKoVkKg2znG943azksXuMTsoHg0EbJrq7lFpO93pxG9bpXilSEkx0k/Ns2w7kSPNtRLcTUasQmqiqCkWg6HTz7Z3uSqUChVL18k5hmYVCAVIiVdsYCQGvpGMVXk5E96Ac7nY4LEtYXFjfwoTBYNSo9ekO7nV3iqLKZDKwLAu6pkGhsBlZrjvdzcLL5+fnIfcMhL4GgeM4KD0DLEVlFZIk4dWvfvWGXMvN225oGVaLfmJOd3CiNEmGhkdgVJYbXjPLyxjfQ6e4IYNBm/jG6TLakkgkoFs27DUClYjuoDndTsgQ7mZ9Nf2e7zgtFlYRVS2liabpbqsvGig81zbXWq1WkWzRzsYPSQ8twwqFAsQQPbpdpCSWl5c7H7dBrDjdIcPLZREL2Wzg7z6DsdWpiW7/eF23E3FcKtHZ1CvXx2kmuhcWFiAk+6lchyCm+1kHhE1C13XwotQgEnkWXh6aKEX36OjIOqfbUQsYGWGimxFP4qteGG0hTvbaYmpaPbw8mQzmfoYVDJzH1i6tEAURsJuHp3eF061p1FqGAYDMeenTTSe8vOrB6RYS68Ms/cIrKSzHKLx8YWEBiiAgHTItYFiRYJhmrDYUGIztRG9vL4AVhzosZJxMJrPuvcWlJSCxXoyHgUv0IpvNUh2T4Q1d1xvyuYGVSuYsvDw4UYrukaFBmGtq0djVAoaGwheXZTCigInuLmVFdDe6wmHDy8NWnAwrugVRhNNKdNvRtAqhiappVHO6FZ7rnNOdpNMyzIvTzcvhr8UrKeTy8RGm8/PzGEoqoRcHQ/XwdBYeymC0JkwhtU64TneRzqZesVRAJpNpGl21sLAIIUlXdPPJHswvemvDyKCLYRjg17RKZeHl8WZ4eBiO2ii6zQoT3Yz4wnK6uxQiqlXLBlY9J4jzHdb93CzRLYoi9Fai26q1DJGkcGHAUaLpOmSaTjda77JblgVd1+lUL08mPIluUAgvF5Q0CtkrocehxeLioiuYw0BywhcXF3H48OHQ4zEYjEY6PVeI012iVDOiVCy6Y64lm8tD7B9b9/r8D76M+Yf+tuPYoy9+47ruD2Iig1z2WrDJMkLRzOlGfbOF9en2z0YUvB0cHIS9SnQ7jgO9XMDAAL1aCwwGTZjo7lJI+Li+Nry87nQHDS8nBBXNYZ1yWZJQtprvKjt2vEW3bdswTBMK5ZxutYUYJiI5kaQQXp5MdSykll9epuJ0C0oKxZiFlw9QKH5HhPtClxRTMwwDf/zHf4xSqQRFUfDhD3+4pcBgMOJAp+cKqfBeLNG5v5SKBfS2qBpfLBTAj61Pt7G0CoxCZ7fa0tbfb3klheX5+EQBbSd0XW+oXA7Uvm+8KDHRHYCNEN39/f2w1JVUEsfQYFsmE92M2MJEd5fS4HSvQrVscBwXWJiGdapJddmgN1xFUeC0aDlGnO6gReKihjjSVHO6eQ7lFuHlRCQnKYSXJ5MpWJYFwzBafndy+WXwSviHGa+ksFyMz8JycX4OQ1L4lIV+acXp7gYeffRR/MZv/AaS/SOo5hdw8uRJ/PzP//xmT4vBCAzZNCoW6NxfioVCy42ocrmEjLx+w1NQUpB6O/fuFppEDQlyEuV6mzLGxtIsvBwABFFi4eUxZWBgAEZlxek26653f3//Js2IwWgPE91diiu61+V0O1BkadPCw0M73YoM22q+q+yYtQefLMuBxo4aIrppVy/PthDdK043nerlQE3It+oHvLxcgDC4O/S1hEQa5VIpVD94mizOz+MAhfBykefQr8hd43ST3PMD7/0Mnvvkv2e56IyuJ5lMQhRFapE0xcJyS9FdrVTQK6+PKBu9403rwsa9wkuJjgUtGdGg67pbOG01nCAypzsAG9HFo6+vD6ZWhWNb4HgBdj16hIluRlxhhdS6FCK614WXWzaSSvBwY1Iwxm7hNnfCCdnWK5lIuOJ63diWAUEQIIrx3CsiBc9o5nQrPA+tg9NNpXp5Xbi3CzEvFgoQmiwy/SIotZDMuPTqXlxawoBE5zs1oEhYWlqiMlbUzM/PAxwHMdUPJdPPRDdjQwiyFPd6Dsdx6Ovroye6iwUMNFnA27YNw9DBi3Q3gDlJga6zStmbQSvRzTPRHVvIhpil1QwIS600vM5gxA0muruUluHlto1EInj4Ncdx4HkeVotiZp0wLRM8zwd2ulPJBByz+QPONjTIITYUoiYKp1vmOahae9GdSoVv45WoO93tiqkVi8vgKbQMi5PodhwHS7k8BmQ6jnu/JHSN6J6bm4OS7gMnCKw/MGND4DgumOh2Vs7vRF9/PwqFfICrrKe4nG/qmrnhxmsLb4WEF0SYhuGmaTE2Dl3Xm36enCCy8PKYQroV2FotJcOq/0leZzDiBhPdXQoJB27WpzsZ0vkURRFWQKfbsqxQTnQqlYLdRnTTcHWjYkV008zp5ltWL3ed7pBF84DG8PJm2LaNcqlEpU83yWWMQz/rYrEI07KoOd2DAoelLsnpnp2dhZSp5ehz6QHMzM5u8owYW52a6A7udXsS3X19KFK6txSLhabpNqZZqy/SzBkNBV/b/GOie+MxDGNdITUA4AWW0x0EEl4eZZg5EdeWXjMLbF1teJ3BiBtMdHcp7Z3ucMJUEARY9UWFX+yQebqpVAowm4tM29SpFA2LiqgKqela800IN6ebRnh5ve1Yudy8iA9xpYlLHQbilhdiUMGcuNL9tMLLJQFLXZLTPTMzAz49CAAQ0wOYmp7Z5BkxtjoczyPIGpyc4kV0D/T3UyukVlhebup0hy0Y2gqOqy3Jgm56M4JjGAbQNKdbYKI7pqTTtbWErRHRXfszk8ls2pwYjHYw0d2lrLQMW1NIzbJDC1NJkmC2yKvuhGm2rn7thVQqBRjNw6ltQ0UyFV/RTfK+aIeXay1y/Nzq5VTCy2s/11bh5UQg0xDdZIw4iO5sNgsA6KcUXt4nicjVx4w7U9MzEDI10S31DGGGiW5GxAQOL191ficGBgawnM8HuMqaazoOlvO5pu2HomqH5Phw9Bl0MQwDHL/+OcDxzOmOK67orq8ZbUOFIAixLbbLYDDR3aWQtllrw8tV24ESsm+zJEnQ9WAPGV0PL7rtVk63riKTCS/6oiK68PLmTjfVlmGp9jndRCDzTdrc+CVO4eW5XA4APae7XxKQy+eojBU1U9MzkHpWRPf83OyGVJxlbF+Cikk/Od39/f0oLIf/HayUyzBNs6nTTQqFOg7lMHAnXCFSRnB0XYfTLF1AEFghtRBE+UxZEd21tZelV5FIJtmmFSO2sDt7l8JxHBRZXhdertm2GyocFFmWQzndYXYZM5mMm5ezFttQkUl3g+im63TrLXbZiehWKISXJztUL3edbgo53Xy9AnocCqkR0d1HoU93bRwR2fzmbyZ0wnEczM3OQOoZAgCIPYPQdc11/hmMKOB5HkFkql13gL2I0YGBASwv5wNcpRFSjK2Z003qljhWsDSsVjj1sPI4tFLcbtTCy5s53ayQWhiiFN2peuQjEd2OoUEJuf5lMKKEie4uJqHITfp026FDsGVZht6ieFcndE2DGMLpzmQysFqJbl1Fb098c3VWwsvp7bJKbUR3tVpFIpGg4op0ahnmim4KLcM4noeUSMfG6eYA9Ii0RLcATdfbVoGPA7lcDrqmQuodBgDIPbU/p6amNnNajC0Ox3Gwg+R0+3C6BwcHUaBwb8nXN+QGBwfXvUeiuRyLrhhzLAOSJDOnbhPQdb1pITXwLKc7DFGKblLPhnS8sU0dSSa6GTGGie4uJqEoTcLLw1ezVhKJwL1CdV1z882DkMlkYKrNhZ+jV2NdIIM43RLlPt2GaTatZlupVFyxHBZZlsHzfEuxSFxpnkJONwCIiVQsnO7l5WX0KDJ4SotcIt7jsKHQDiKuidgm4nt6enrT5sTY+vA8Hyinm9z9PDvd+VzoxX6hnhfeKqdbSSRbdtoIim3oVCKXGP4xTLNpTjd4wa1Wz/BPlKJblmsbVCQl0TZ1Kt1cGIyoYKK7i0koifXh5Y7j5nsHHjeRgKY2d5s7oalqqGramUwGlqHBadYn3FBj3QoiKqcbQNOd9kqlEmqDYzUcxyGRTHZ2uhU61xMS6VgUUlteXkYPpXxuAOiRukt0E7Et9QwBHMecbkakBA4vd7yHlw8ODsKyLJRK4Tb18vmsO14zksmkWzWZFrZeRSrGKVRbGV1vXkiNOd3xheM4yLLibn45po5EyPUvgxElTHR3MUpCgbbGAdUdhBZiiUSiZW/oTui6Hkr0EyebtH5Yja1XYu10R1G9XKo7sM0KudScbnq7uslkqmXLsEKhAFFONF+UBICXU7EQpvl8nlo+NwD01Z3uPIXqyVEyNTUFcJyb080JIhKZASa6GZEiCEJA0b1yfieISF7OhSumRsLLmxVSA4BMT2/T51QYLL2CTCa+G8tbGcM0m4eXc8zpDgJJkYi6OKcky3DqNYgc04CSYKKbEV+Y6O5iEokkNKvxhqbZTui+zalkEqoabDFRrVaQDpFTTkS11cRBsPVqrJ1ushsuUczHI053K9FNs295MplsW71cStLb8ODkZCzCywuFAjICvc8rUxfdcXDx2zE1NYVEz0DDIlPqG2aimxEpPM/DCrAGt3200iKiO5db8n+hVSzns+jr63OLpq2lv68PlloKdY212GoZ/f19VMdkeMNk4eWRELXolhXFFd22ZTKnmxFrmOjuYpKp5DqnW7Od0E53KpUKLLpVtepWlAzCitO9PszZinlONxHGFDWc65o3izyoVqtUne5Eor3oFii0C3ORkrEQpsViERmK6QBEdMdhQ6Ed169fd0PLCXx6CNevX9+kGTG2A7Wcbv+L8CBOdz6k053LZjHQIrQcAIaHBmFW6f6em9UihgfX55Azosc0TIBbvyTmeNYyLAyRO92SBMeubYo4lgGF9ehmxBgmuruYZDK5LqdbtezQOd2pVApqJaDoroQT3cTJtpqE7RlqJdZOt67rkAWeauVZkWuf0x22PdxqEqlUy5zuYrEIjkLlcoKgJLFc2HxhWsjnkRbo3Qa7yenm00MNr0m9w7h6jTndjOgQBCGQ023VF+5eRPfQUO17nQ/tdOfcsZoxMjIMm7LodtQiRkZGqI7J8Ear8HKOF2BaTWrMMDwRuegWJbd1n2NbkOXg3XMYjKhhoruLSSRT0O214eU2Fae7UgkWNletlkNdn4jqtQVqHMuEbRpIx7jIjGEYkCj3V5XbFFKrOd303OdEItG2ejlN0c3LqXiI7uVlVyjTQOI5KIIQe6f76rWpdU631DOMqWkmuhnRIQgCgsgXy4fTnclkIEkSciF7zueySxhq43SPjIzAqeZDXWMtdnWZie5NwjRNcE2cbtQ7iDCCsSE53fXCu45luu38GIw4wkR3F5NIJqGtuaFpphU6pzuTybR0PDtRLpdDudGtCqlZWm0+cXe6abYLA1ac7mbhbeVKJfRnvZpEsrXTXSgUAYmm0x2PlmHlUhEpik43AKQlEaUS3VxP2kzPTEPqWSO6e4eRW1pkoZSMyBAEIVCfbj/VyzmOw9DQEPK5cKI7n8tieHi45ftjY2MwSuFC2NeiF7MYHx+nOibDG5ZlAU2+Xxwv1ELPGYGIWnQLgrDS7ca2WtZgYDDiABPdXUwikYC6phSsalqhw8szmQwq5WCioVIuhcq7dguprRHdRITH3ekWKVYuBwCxk9NNM7w80aZlWLFINaebl5MoB/yO0aRcrlAX3UlRaFkFPg7ouo7s4gKk3jXh5fVK5jMzM5sxLcY2QBTFgE53beHu1cUaHBpCPhsuvDyXXWobXj4+Pg6tmIdDKfTYNnTo5QIT3ZuEZVlNC6lxHA/LDlJznwFsRHi5uCK6HctTNAyDsVkw0d3FJBIJ6KvuZ7bjwKAQXp7JZFAO6NRVyuVQwjiZTILjONh6Y59wIsLj7HQbhkG1cjmwUgm9WfXUSqWCRIj8+bW0Dy8vgZfoueq8kgz8HaNJuUJfdKdEPtaie3Z2FsCKyCYQET49Pb3hc2JsD2pOt/9FOJG1XhfUw0NDyFFwutuJ7l27dsFxbBilcNchGMVFd1zGxmNZVsvwcovldAdmI5xukE0R22ZONyPWMNHdxSQSiYbwcq0etxc25LinpyewC1kqFdHb2xv42jzPI5lKrQsvt42aCI+z022aJgTa4eUdnW56QlhJJFFpJbpLJfAKxfByOQVdUzd9MVOuVpGimNMNACk+3qKbiGpxrejOMKebES2iKMIMEV7uWXQPDyMfIqfbcZyOTvfu3bsBAMbyfODrrMYoMNG9mTi23bx6OSfAMpno9gsR25GLblGA4xCn22ZONyPWMNHdxSSTSairwp5I+7CwQqy3txeVctm3ILIsC5VyOZToBoBkKr3O6SZ/j7PojsLpFts43Srt8PJk6/DycqkEgabTXS/Ktpm5z47jQNU0JCk73QmeaxkxEAdcpzvTWCRKSPWCF0QmuhmRIYqiGyruB9NnePnw8DCyS4u+r0MolYowDKNtUbM9e/YAAPTCQuDrrEZfnmsYl7Gx1MLLmzwLOA62w8LLgxK16OZ5HnCv4Xiq+8BgbBbs29nFKIrSUL1cs+g53UCtyJQfyPFhQ8CTyZTrbBO6QXSbpgk+ItG9MTndCaiq2vS9crnkCmUa8HKiPu7mOcKk97lCOTpB4dDy5xgHZmdnwfECxFRfw+scxyHRO8RENyMyak53ANFdf855DR0dHh5GLhtcdOeWltxxWtHf3490JgM9Nxv4OqvRc3PoHxiM9TNuK2M7rZxuHrbFRHdQNiS8nFzDcZjTzYg1THR3MYlEApoVjdMNAMXCsq/zisVCw/lBSaVSsA2t4TXy9zA9wKPGNE36Tnf9N7RZ1EGtZRjF6uWJZEuHtlqtuEKZBrxUK/a3mU43EcYJyjvjCb4WhRBXZmdnkegZaOrqiJkB1wlnMGgjiqIroP1AQtL9iO6lEE43EeztRDfHcZic3A89T+f3RcvPYN/+/VTGYvjHblUsjeNYn+4Yw/M8HBKJ4DjgKK/BGAyaMNHdxUQluvv7+wEAhULB13mF5eWG84OSTjcT3TWBFLZIXJSYpgmB8g1fQOvw8mq1CoVy9fJmYtE0TZiGQVd0x8DpJqJbpu108zyqAVvubQSzs7MQM837D3PJPszOzm3wjBjbhcBOd4Cc7mqlEnjzK1t3ujv1zD54YD/0HJ3IEDM/i0MHmOjeLGzbbl5IjeNWhS8z/BK10801fD4svJwRb9i3s4upie6VHVgSah62ZRgRzb6d7gId0Z1KJmGbjaLbMXXwPA9ZlkONHSWWZUGkvMlKCrOtFd2WZcE0Tarh5UqyefVyIox5in26SSX0zcx9Jv2oZcoPaZnnYMS41/X8/Dy4ZPNoFCEzgNl5OoWhGIy1SJIUzOm2a2GjXhfUxKHOBgwxJ/ng7QqpAcChQwdh5emIbiM3jYMHD1IZi+Efx3FqAnsNHMcFqrjPqBG56K5dhVws0msxGGFhoruLSSQS0FZV1SSud1g3uK+vlutZWM77Oo+IbnJ+UFLJRBOnW4eSSMY6dKiW0013TOLrrBXdbmg05fBykue8GlJcjYSE04CI7s10uonolmhXnOc4aPr6n2NcmJ2bh5Dub/qelB7A3BwT3YxoqIlu//mxpuNA8tFlgDjUJDfbL7nsInp6ejpuYB88eBCV7Cwca30kkh9sQ0M1N89E92bSQnQDXOvQc8amw3HcKqObhZcz4g0T3V1MIpGA5Tiuc0CrZdjAwACAlXBxryzn8wAoON2pFByz0Sm0TT20gx81lmWBdgkPUphtbU43cYgVhWLLMCUBwzDWXSsa0V2LWIiD001bdEs8B0OLs9O9sK6IGkFI9Yaq+sxgtCNMeLkoeO+/S0R30O/y0uIihtrkcxMOHToEx7aghQwx17JTAIDDhw+HGocRlibPAibiYk2DyObARDcj1jDR3cUQEUrahpE/w4pTRVGQTCaxnM/5Om85n0MymQwt+hVFAazGat2OqUPuBtFNO6e7heh285Flej8TJVEba60QdkW3SC+0nzjdrVqUbQSkIjztz6zmdAcT3Z/97GfB8zw4joMkSfja175GdW4AsLS02FJ0i6k+VMqlphEPDEZYZFmGEaAolWk7kDwWUQNWwsuXloK188ouLXbM5wZWRLK2eC3QdQja4vWG8RgbT9Rh0NsNIn7Zz5XBWIGJ7i6GiFuSy02rZRhQc7vzPkV3Pp9zXfIwJBKJ9aLbMqBQFJhRYFkW/fBybmXs1ayEl1PM6a675msFF7kWR7OQmqg0jL0ZkJ+pQP0z4+AEDEd84IEHsP/gYfy3T34Gff0DeOihh6jOzbZtFJbzEFPNc7rJ60sBw3IZjHZIkgTDsn0vxHXHgSx769EN1FpLJpNJZBeD53SPehDdu3btQjKVhloXzUFRF6+ht6+/bbV0xubBhKN/NtZxZp8PoztgoruLIY42yeXWKDndADAwOIjlXNbXOYV8Dv0URLcsy4DdmCNnWwYUCpsJUWLbNvVfqFbh5W6PaYruPxHda4Uw+TtNp5sTBHC8EBPRTXdxwHOAGTDH89y5c7jl9hfhF9/+Lhw+ehznzp2jOrfl5WXYtg2hRSE1sf56Nuvvd5/B8IIsy3AAWD7XyIbtQJb83X+GR0aQywbP6fbidHMch8NHjkBdvBLoOgR18RqOHDnCQmNjCvtc4kvts2GfD6M7YKK7iyGONgkrp1W9HACGBgd9O925XBbDHaq9ekGWZTjmWqfbhCR5dzo2g0hEd/3PtTvtUYSXk/D9teHlUYhuABAkORaim6f8wBY4DnaAEFrHcXD27FnsO1ArpjR54BBOnzlDdW65XO13Wkz2NH1fqL9OjmMwaELu4YZP59CwbUiS9/ByoJbXvbQYbXg5AJw8fgxmPSc7KObSNZw8cTzUGAxGnNio6AAWhcDoJpjo7mLWhZfbNniepyJOh4aGkPfpduWzWSrhcbIsw1njdNfCy+PbLgyo9/mkPCbfIi/KFd0UnW7Sjm1teDn5OyfQ3fQQRHlTc4fJz5R2SgAPBKp2Oz09jUKhgIOHjwIADh46grNnzqyLcghDvl7sUEhmmr4vJGqvM9HNiAJyjzF8tg0zHAeSz/v/6MgIsgFzupcWFjyL7qNHj0KdvxJ48e84DqqLV3Hs2LFA5zPoUHNMm3yGTNSFYiOiBFYuwRxvRrxhoruLIaKbhJVrlo2ELFO5yQ0NDSGf8xeal88tdexr6gVJkta1YHEsC5KPnL7NIAqnm3ySa0UcEatRON0tRbdI9+fPi9KWLdgV5HfwmWeeAQAcOlJzvA4dPQ5N03DhwgVq83JFt5Ju+j4R3cs+OxcwGF4gUViGz00pw3Z8d2oYHR0NVL1c0zQUiwWMjo56Ov748ePQKwWY5WAbVUZhAaZaYaJ7s+G4FgKbtaEKAnO6GYz1MNHdxZAFDHG6dduh5gbXRLdPpzuXpSe67UZ3z7FNyDEPL3ccJwKnu/ZnS9Gt0HP/WxVSI621OB8te7zACaI7NgN4+umnkUqnMbF3EgBw9PhJAMBTTz1F7RqFQgEAwCeai25eksELonscg0ET4nTrvsPLHfdcr4yMjAQqpJbLLrrne+H48dommTofLK+bnMdE9+bSUlg7AM+zpXJcWSu6mQhnxBl2J+liXKd7VSE1hZIIGxkZQc5neHk2u0QlvFwUxSZO9/YU3WS8tQ8SIlZp9ukmrvlaIUz+zlMOL+dEaUuK7qCP/CeeeAJHjp1wF3jDI6MYGR3DE088QW1uxWIRACDIqZbHSIm0exyDQRNXdPsML9dsx3etkpGRkUBONxHqXkX3gQMHIEoS1MWrvq8FAOrCVSiJJCYnJwOdz6ADz/OAsz4Cw2FOdyii/tnV7iQcuRgT3YxYw0R3F7M+p9tBklKF7+HhYRSLBc+iSNM0lIpFKqK7mdMN2/LVMmYzcBwHG/VsJm603zzHdpCf79rPnPSzBi9QuxYAcLywqaKbiFuf6/+O2A7ABXBGHnv8cRy/4VTDa8dP3kRddHO80DZVQFCSKJVK1K7JYBBWorP8hZfrtu27e8Xo6Cjy+dzK/csjpPia1/BySZKwf/9BqPOXfV2HoC5cwaFDhyEIdO+vDH/wPN9csDk2+2xCELnodpzVSd1MdDNiDRPdXQxZwJDq5ZptUyusRcQzCbXrBDmORnh5zeleG15uQaAc3hwJlO/3XItCakSs+m2j045WTrdpmjWhRvnhyfEC1SJhfiELKZvyh2Y5ju9FWrlcxpnTp3HyxpsbXj9508147LHHqM2tXC5DUpJtP0teTjDRzYiEoE63bju+n23Eqc75dLuX6sXXvDrdAHDDDSegL17zdR2CsXQFN95wItC5DHrwHN88p9txILDw8pjDrfmTwYgn7E7SxawUUluV001ZdHvNiSPHeXUH2iGKYpOcbst3y5jNIKpN3VaiW6QYci+1qF5eE90R3Cp4wbcLRRMijE3KVrcNQPQpup944gnYto0bblovumdmZjA9PU1lbuVyGYLc3jHkpQQqlQqV6zEYq1lbh8Qruu34drqJaPbbNiy7uIhUKoVUqnUKxlpOHD8OPUCvbsdxoC5cY/ncMaDmdDcJL693hWH44z/+x/+IN7zhDXjhC18Y6XVYTjejm2B3ki5mbaieZtlIJJJUxnYXLB5dAnKcH3egFaIowl4bXt4lIV5R3e/XOpO6roPneao/EyLg1wphy7LAUw4tBwCO4wO11qLFitNNF8txwPuMynj00UehKAoOHW3s1XvDqVsAAI888giVuVUqFfBSh405UWGimxEJZKNYtXyGlwO+N5TJBrDXZxhhaXEBIz43j48fPw61kIVZ8VeA0CznoJeXceIEc7o3G14QgLXrDgCOY0EQ47/2iBu/9Eu/hK9+9auR1yqohZfX/8Jyuhkxh4nuLkYURQiC0FC9PJmkLLoX5z0dnw0QkteKmtPduCjjbItK//HIoex0kwfIWtFtGIbvar6dkMTWopuLQHSD29zw8qA9gzthBugi8Mgjj+DoiRvWfcd37NyN4ZFRaqK7Wq2C8yC6q9UqlesxGKsJ6nRrtuMKdq+QZ5HfXt3ZpUXfzzHiVKsL/oqpscrl8UEQhKZON+zu2PDfrji2Aw4sp5vRHTDR3eUokuS6BlqAYjOtyGQySCQSWFrwtmDJLi4ikUggnW7eisgPgiDAXlu93LZi/+DjOC4yp3sthmFQDS0HVpzutTndtQJxEcTNc9ymOt0ropvuHHTbgeSzi8DDjzyCG266dd3rHMfhxI03UxPdqqqCF9uLbk6UmNPNiISV4p8+nW4HvkV3Op1GMpn0/AwjLC0uYMyn03348GHwPA/VZ4i5ungVgijiwIEDvs5j0EcQhPUFXAE4ju07XYixcThYVUiNVZlnxBwmurscRZYbqpcnfOShtYPjOIyOjnpuubK0uICxsTEq4oxUL2/YsXTsrnC6aWtuMt7an6tpmhDbVKAOgiDUiqWZ5poNjwh3EjZzVzpoz+BOGI7jq5VbqVSqFVFbk89NuIFiMTVVVYEOoe+cKKOiqlSux2CsZm0dEq/ojv96JRzHYXhkxH9O99KCb6c7kUhgYs+kb6dbW7iG/fsPdsWzbasjiiLQZDPIsS1IYvzryWxXWE43o5uIhej+zGc+g8nJSSQSCbzwhS/Ej3/845bHfv7zn8dLX/pSDAwMYGBgAHfeeWfb47c6CUVZyel2/Oe9tWPEh+jOLi36zoNrhUgecKsfgF2Q083zfGSie20hF8MwVn5OFBFFsXlxs4ic7s18QAYNde2EbtuQfTjdTz/9NBzHwYkbbmr6/vEbbsLc3BxmZmZCz03TNEBoPzdekKCqWttjGIwgBHW6tYCpU342jglLiwuBCoKeOHHMdwVzfekqTp443vlARuQ0K+AKALAtiF1QxHW74tgOVlcvZ6KbEWc2XXTfd999+MhHPoLf+Z3fwWOPPYabbroJr3rVqzA/3zyX+Lvf/S7e8pa34Dvf+Q4eeughTExM4JWvfCWmpqY2eObxQFEUqCSn2/Gf99aO8bExLC54y+leWpzHKIV8bmBFdDvOygPQsczYuwE8z1MvykX04FrRbZomhAhEtyCK65xuANFUiIsqbN0jQYs6dUK1HSRT3tMsnnzySYiiiINHmud1HjtxIwDgqaeeCj23muju7HSvrWDPYNCARJf4/Z1TLTvQs210ZMR3TvfSon+nGwCOHzsGM3vd1zn60jUcPXrE97UY9JEkEY69/tnn2BYLL48xtfDyVX9nopsRYzZddH/yk5/Ee9/7Xtx11104fvw4Pve5zyGVSuHuu+9uevz//t//G+9///tx6tQpHD16FH/1V38F27Zx//33b/DM44G8yunWKTvdo6OjngupLS7MY2xsjMp1XdG9usiWbW5Lp9uuP0Caiu4I2piIoriuuBnHcbUHG3U2V3QT54y66Hbgy5V7+umnse/AoZa/uxN7J5FKp/H000+HnltVVcGLHZxukTndjGjgOA4JRfYdXq5ZViDRPTIy4svp1lQVpWIxkOg+cuQIKkszsE2988EALL2Kam4eR48e9X0tBn1IWttaHMukXrSUQRuW083oDjZVdOu6jkcffRR33nmn+xrP87jzzjvx0EMPeRqjUqnAMAwMDg42fV/TNBQKhYb/thKJRKIhp5u+6PbmEiwtzFPp0Q2sEt2rHoBOF1Qv5zgOFmVtSuTgWnFqWVYk4eUCL6xzunmej8zp3sz+p6IoQhJFVCmL7qrt+Orx+9xzz+Hw0dYhpjzP49Dho3juuedCz01VNXAdRDcnSMzpZkRGQlZ8b3RVzWCi288zDACWQnThOHLkCBzHhrbkLepOW7runsfYfCRRbNzoJ9jRPGsZlFizNNkqTne5XMYHP/hBvOc978F73/tePProo5s9JQYFNvVOsri4CMuy1jmkY2NjOH36tKcxfv3Xfx07d+5sEO6r+YM/+AP83u/9Xui5xhUloUBbJtXL6YaXj/kIL1+g6HSTXWXHWsktdqz4i25BECIIL3fcsVdjWVatryhlhCZOtyAI0VQZd5xNj15IJRNQKf/bVJ/5p6dPn8ab3npX22P2HzqC5z3eE9uhaho4of3cOFGGzkQ3IyKSPn/nHMeBalqBcrpHRkaQXfTudJNjg2wgHz58GEBNTCfH9nU8Xqvnf5PzGJuLJElN+3SjCzb8tzON3VW2Tk73Aw88gE9/+tOYzCRxuVSFIAi49db1HU4Y3cWmh5eH4Q//8A9x77334qtf/WpLsfmxj30My8vL7n/XrvkrdBJ3kolkQ59u2k53pVxGpVxue1y5VEK1UqEmuskDbnV+lWPHP8RLFEXYlMOwiXPeTHQLEfTO5nl+ncAWBAGO1STPOyRODByETCqNiklXdFcsGz09PZ6OLRaLmJ2dxb4Dh9oet2//IZw7ezb03NSqCr5D1XtekKBqrHo5IxqSiQQ0HyFBplPbfAxaSG15Ob+uDWIrSCh6ENE9OjqKTG8v1EVved3q4nUMDA5hYGDA97UY9FEUuWGj38VhojvO1EQ2CS/fOk73+fPnIQs8vvvSY3jNeD/OnTmz2VNiUGBTRffw8DAEQcDc3FzD63NzcxgfH2977p/8yZ/gD//wD/HP//zPuPHGG1sepygKent7G/7bSiirwst126YquomI7uR2k/fpO92rRHcXFFITBIF6eLnVwul2HAdcBKHZzUS3JEmwmzkAYbE3/zNNZ9IoUw4vL5sWMpmMp2MvXLgAANi7b3/b4/bs24elpSUsLy+HmltVVTuHl4syNCa6GRGRTCZ9Od0kFD2o0w3AczE1IrqDhJdzHIeDBw9B81hMTctOMZc7Rsiy3Lx6uWVSXVcx6NLYWnbriO6LFy9iIpOCwHHYm1Jw8fz5zZ4SgwKbKrplWcatt97aUASNFEV78Ytf3PK8//7f/zt+//d/H9/4xjdw2223bcRUY4uSWAnV0ywrItE91/Y48j6tnO5mots29dg/+ERR3DDRbdt2JPnQXAvRDcdpnu8WAsc2N93p7sn0oGzS/XeVddOz6L506RIAYPeeybbH7dm7r+H4oKjVKnip/e8RLyvQWSE1RkQkkylfdRTI8y2U6PYYYr64OI90Oh3oWgBw9PAhmNlpT8dauWkcOdw+woWxcSiyDDSJ6HIsI/ZRdtset47a1imkduXKFeyUa+u+XUkF12dmoknzq/PYY48hlUrhta97XWTXYMQgvPwjH/kIPv/5z+N//a//heeffx7ve9/7UC6XcdddtRzHd7zjHfjYxz7mHv9Hf/RH+K3f+i3cfffdmJycxOzsLGZnZ1EqlTbrn7CppDMZfHt+GZP/9Bjyqo502nurok5sltNNxLWzqgqsbRpdIbppB2GbddG91hG2bTuSBwwHbt2NvVmOPQ3i8Jn29PWhRFF0m7aDqml6Di+/fPkyEskkhkfab1jtmtjrHh+GcqUMXmpf94GXFBiG3rxfO4MRklQ67auQGhHofooTEshG8JLHCubZxUWMhNg8PnjwIIz8jKdjtew0Dh1iojsu1Jzu9fc8JwYRWYztx/T1axiTa6bEeEKCaVktWynT4OzZs6hWq/jOv/xLZNdgbHIhNQB485vfjIWFBfz2b/82ZmdncerUKXzjG99wBdzVq1cbHL3Pfvaz0HUdb3zjGxvG+Z3f+R387u/+7kZOPRZ8/OMfx8tf/nIANTd07c8lDENDQ+B53pPo5nkeQ0NDVK5LhJi9SuRZRrc43XSt7lai24moxzXXJCdq9efBg16hPsfcfAehf3AQBYrh5cW6gO/v7/d0/NWrV7Fr10THz3J4ZBSJRAJXrlwJNb9qpYJUR9Fdc/lKpRLLN2VQJ5lO+3K6qxscXh4ktJxw8OBBVPMLsHUVvNz698xSy9BKeRw4cCDwtRh0kVs63Sy8vFvYGoHlNRbn53FKqUm0obr4XlhY6Jh6GxRS92Kzow+3OrH46X7gAx/ABz7wgabvffe73234e1inZ6tx+PDhyPLCBEHAyMiIJ9E9MjJCrRI1KYrnGLWbgGPbsLvgwSeKIgyf/Wc7QWp8NbsRRiO614/ZLPKABpapU622H4S+vj5MUYzYIqK7r6/P0/FXrlzBzt17Oh7HcRx27poIJboty4JarUBQ2osXQak5isVikYluBnVS6TRyPu6TYXK6Sai41/Dy7NIiRkOIbiKitfwskqOTLY/TctMNxzM2H0VRmovuGGwOM7yxlcLL88sF9I7U7nm9Um1tHbamSztIm9CtkhMfVzY9vJwRb8bGx7HYIaRlcWEeYxR334gQs+sij4i9oHl2G4UkSa4zTQsy3kbuPq696ZKfu01bdBv6pn+m/f39KFCsXl4w/Dndly5fxu49ez0du3NiTyjRXSwWAQC80j4FhYjuQqEQ+FoMRitSqRRUH7fJaj3dJWjq1PDIiFsgrRPZpYVQTvf+/bWCiHqufYi5nq29v29f59ZijI1BlmU41vpnXDfUk2FsPaqqioRQk2jJ+p/VajWy66mq2vAnIxqY6Ga0ZXxsDAvzs22PWZyfo5bPDayIPCK2bVNreD2uyLJM3ekm4zV76Ee1I7l2t5jkUtoGveJajm3D0tVN/0z7+/tRMOhl4hd8hpdfvnTJzdfuxO6JvbgYopBaLpcDAAjJ9kXeyPv5fD7wtRiMVqRSKag+7pNhcrqBeq9uz6I7XHj5+Pg4ZFmBnmv/zNRys0ilMxgeHg58LQZdFEVpWrckDrVHGN7YSi6tZVsQ62sxoV4pzjTpt24lVCoVAIBhGJFeZ7vDRDejLWNjY1habO90Ly3OYzwC0W0bav3P7nC6IxHdju2OvZYoHjDNcsWJw2Tr9HZAyUaK1yrfUTE4OIi8Rq9gWF433XE7kc1mkc/nsXfSm9s1sXcSFy9cCPy5Ly0tAQDEZPsib0L9/Ww2G+g6DEY7UqkUqgHCy4OK7tGRkY7PMMLSQjinm+d57N6zF1onpzs/gz179m6pcNhuR1EU2Ob6Z4HFRHfXsJV+mziOc3PUyZ9RdKwhrI5sY1Fu0cFEN6MtY2NjnnK6aTrdK85q3emui++gi66NQpIkGJRbOhARv7aQGsdxEYnu9U73iuimF9pEBDzNavtBGBwcRNU0fRV2akfeMMFxnKec7rNnzwIAJvcf9DT2vgOHUCgUsLDgrSjUWhbrea1iur/tcWKyNveg12Ew2pFOp1Hx0X6wElJ0Dw8Pe3K6dV1HsVgI7T4f2D8JPd++zaaRn8PBAyy0PE4kEommKVR2FxRx3fbUl0JbyemWJQk6aQdstzZfaEEi4QC24R4lTHQz2rIZolsQBMiyssrprrmicRfdsixDo9zLWq+L7rU3W57nIxLd6/t/EzearuiuNoy9WRBHOk8pxDxnWOjv6fG0I3369GkANTHthQOHjgAAnn/++UBzm5urCYFOopsTBCiZfszOtg+RZTCCkEqlUPFRR6Fi1u5JQYXPyMgIcvUoj3bksovu8WHYNzkJu9BedFuFeUxOToa6DoMuzZxux7LgOPamF/xktKbBJOC2TjG1ZCLhRvmoVm2tF2W059zcHMbGdwBgG+5REovq5Yz4MjY2hlKxCLVaRaLJL7xaraJULFIV3QCQSCZdYUZc0c0WaJ1IJBIwKLafAlZE99oFpyAIsCkLfKDW/3utYCQ9py2KopuM5bWfdVSQNnc53cSORPhd5KxuYmioc2g5ADzzzDPYs3cSKY9u/+T+g5AkCU8//TRe9rKX+Z7b9PQ0lHQfeLHzv1PuGcLMjLd+wwyGH9LpNKo+cgarlo10Mhl4MT0yMoJstrPoJhXOw4ruvXv3Qsu33qh2HAdafg5793qr5cDYGBKJBAy1gun7/9p9zalXM2eiu0vYOkY30qkUKlbNcKrW13pRRgZOTU/j5E23YG7265iamorsOtsd5nQz2jI6OgoALd1u8jpt0Z1Kp12xTRzvzQ5F7oSiKDBsGzZFB5qEFa0V3TzPw7Lpi27LstaJ7lQqBUEQYKllatex62P19vZSGzMIZIG9pNNxurO6gdFRb78Ljz/+OI6evNHz2JIk4dCRY3jiiScCze369euQe72FzvKZIVy7dj3QdRiMdqTTaVQN03OkTsWykU4Fd3iGh4eRz2VhddikJMI8bHj53r17oZeXYWnNNykttQRDrWDPns6tAhkbxy233IKJiQkI57/n/ide+gH2HziIEydObPb0GC2obcatZD9vFac7lc64qTXkzyjXwFevXMHxkzcimUqF6pLCaA9zuhltIWJ6cWGuaWujxYW5huNokU5nUHCd7niEIneCCGPNdpAU6Nz42zrdlPPHAcC2rHXtyTiOQ6anl6rotrTaWF6rfEcFWWBnaYluw8JwfaOqHbZt49FHH8W73/chX+OfvOkW/PjhhwPN7cqVK+B7vAkKsW8UFy9dDnQdBqMdqVQKDgDV432yallIhQirHBkZgeM4yOeyGBpu7WLn6nnfYUU3EdNGYR7CyPpnpr5c26hmTne8eOlLX4orly5u9jQYPuH4VfVtmhSC7VYSiQT0Yu3fpdXXgVFFXJTLZczMzGDP5H7sndyPCxcuRHIdBnO6GR1YEd3Nne6lxYWG42jRk8m4YpuEIsfd6SY3RJ2iGCZO99qbrSiKsCJo62BaZtOe4L19/bDUErXrkLG8FByLkp6eHiiyTM/pNh2MeBDdZ86cwfLyMk7d9gJf45+69XY8+8wzbs9tP5y/cAnSwA5Px8r947h85dKWKkzDiAdk87RieovUqVg20pngaShEROc6hJhnlxYhSVLo6JuJiQkAgN4ixNyoi25yHIPBCA7P87UKsHW2iugWRAFW/d9Foiejql5OirruP3gI+w4ccuvNMOjDRDejLW74bYvCCovz8+A4jnq/0d7ejCu2ba0CUZJiX0GUCGONYtswzWoeXi6KIswIcrpNs7noHhwcgKX6F3qtsKolyLKy6W3gOI7D6NAQFim1DVvQTU8bUA888AAEQcCpW2/3Nf5tL3wJbNvGj370I1/n2baNy5cuQhnY6el4ZXAnSoWC22aMwaAF2Twte6x/UTZtpDPBN1zJM6xTBfNsdgkjIyOhF+27du0Cx3EwCs2fmfryAgRRpL5RzWBsRxrCyx0bgiBs6nxooVZVyHztXiTXxbamaZFc65lnngEAHDxyDIeOHsczzzzDNtwjgoluRltEUcTQ0BAWF1uI7sUFDA0NNRVqYejt7YWtVQDUwstTqXi73MBKZUmVYjE11XaQUOR1C0FRFGEa9PpLE0zDaPpZDg8NwqrSc7rNahG9mxxaThgbG8MiBafbcRwsVjVPi+nvfve7OHnjKWR8OngHDh3B8Mgovvvd7/o67/r169A0FcrQLk/HK8O7AazsgDMYtCBOd9ljBfOqZfv+PVmNm0LSQXTnlhYxWC+sGAZJkjA8OgZ9ufkz0ygsYGxsx5YRBwzGZlLr5GI3/H0rsLS4iH6pthYbkGv3CtL2kzaPP/449uydRE9PL46duAELCwuskGpEbI1vJyNSRkZHsbTQvAXK0sKcp3Bav/T29AD1AmqWVkVPz+YW3PJCJKLbspFU1ufxyLJMXXQ7jgPTNJv2ghweGoJdLVC7llUpYGgw/AKXBmM7d2KBgtNdNG1oltVRdDuOg3/5l3/Bi37i5b6vwXEcXviSl+Lb99/v6zzSZiwx4q14U2JoN8BxgduTMRitIE531WOkTtmykQkR8t3f3w+e5zuGl+eySxgNWbmcsHv3bhjF5gtko7CAPXtYaDmDQQOe5wGS0ufYWyK8vFqtYmpuDntStQjHiWTtz/Pnz0dyvYcffhgnb7oFAHDyppvd1xj0YaKb0ZHxNr26FxcXqC1UVtPb2wtHrzvdWgWZTW4t5QVXdFPM6VYtG8kmxTNkWYZu6NSuAwBGXcRLkrTuvaGhITgUw8vNagEjI3RTEoIyNj6OJSt8KBUJUe8kup966inMzc3hjpe9ItB1fuJlP4VHHn4Y2WzW8znPPvssRDkBuX/c0/G8pCA9tBPPPvtsoDkyGK1wc7o9bk5WnHBFNAVBwODgIHIdfl9yuSy1NKk9E7tbhpebhUXsZaKbwaCCwPNYCS93tkQEySOPPALbtnFDbwoAMCCL2JVJ+U4r84KmaXjkkUfc+jI7d01gfMcu/OAHP6B+LQYT3QwPjI6OtgzNyy4uRJKbtjq83NLK6OuLv9OdStVukFWq4eU2UunUutdlWYahUxbd9fGaOt3DwzAry9SuZZXzGBulv1kThB07dmBeCx9ePlcX3Tt2tC9W9s1vfhPJVAq3v+iOQNd56SvuhG3b+Pa3v+35nKeeegrJsUlwPkLvpJFJPPnUU0GmyGC0xA0v9yq6bSd054rBoSHksh3Cy7NLGKIQXg4Au3ftgl1q7qxbpSXs2uUtzYPBYLRHEISG6uVbIbz8H/7hHzCUVHCsd6XmzUv7k/ja//d31HOtf/zjH0NVVbzgxT8BoBZNd/uL78B3fKawMbzR/d9ORuS0Fd1Li24vb5r09vbCJKJbr6K/N/5OdxSiu2rZ7rirURQFpmlSbRum65o79lpGR0ehFXPUbviOWojkexOEnTt3Yr6ihu6vPl8X3Tt3ti9W9k//9E940R0vC1wYcOeuCRw+ehz/9E//5PmcRx97AvLIPl/XSYwdwBNPPMkKqjCoEqh6ecjOFcPDw55yummJ7l27dkEvrL+e4zjQlheY6GYwKMELK+HljmN1vejWdR1/c889eO1oL4RVofI/u3MQ5y9dxve//32q1/vmN7+J/oFBnLjhlPvaHT/5Cjz6yCOR5ZDPzc3hm9/8Jr71rW+hUqlEco240t3fTsaGMDY2htPPPYOb9o+t++/M889G4nT39PTAqJaQe/Z7MHLTm97P2QtRie5kC9ENADrFapZEdDfrBTk6OgrbMqn16jbLebeq8GazY8cOGLaNXMhianOqgXQyiZ42qRCFQgEPPvggXn7nq0Jd62U/9Up84xvf8LTpomkaTp9+Dsmdh3xdI7njILJLi5iamgo6TQZjHYlEAjzP+6hebrX9nfLC8NBQ5/Dy7BK18PJdu3ZBLxdgG433Z1srw9SqHTfmGAyGN0RBWCmkZltdH17+13/915hbXMA79zauj+4Y6sGRvjT+4P/5f6he7//7+7/Hy37qlQ0/t39z56vgOA6+/vWvU70W4T3vfS9+5md+Bq985SvxqU99KpJrxBW6JacZW5L3vOc9SKfTTRf4PM/jLW95C/VrHjx4ELZp4PJ9H6///c3Ur0GbKER3zeVZH1pJRLeqVpGg1HZL1/SGsVdDNlbMcg5iMlyop2Pb0Iq52LTMIQvgOc3AkLI+n90r85qBHePt/03f/va3YZomXv5T4UT3y+/8GXz+M3+GJ598EjfffHPbY5966imYhoHUjsO+rpHaWTv+kUcewe7duwPPlcFYDcdxyKSSnquXlw0zdHj50NAQrk490/L9aqUCVVWpOt0AYBQWGzoGGMWlhvcZDEY4JFGEY9fWLk6XtwwrFAr43d/6LfzsjkEcyjSu6ziOw4f3j+GXv/Ut/PM//zNe+cpXhr7e6dOn8czTT+NX/vNvNLw+MjaO2174Ytz3pS/hne98Z+jrrOXhRx7F4Kmfhjp7AQ8//Aj18eMME92MjoyPj+PDH/7whl7z1a9+NYrFIqx6hdveENVrNwri4HgtEOSFaovKvaRom6ap1K6lqtWGsVczPl4rwGUUl5AYDlcEyFKLsC3THXOzIQvgOdXA8RBfs1lVx+5D7YXtN77xDew/cAgTeyeDXwjArS94MVLpNL7xjW90FN0PP/wweEFEcvwA5n/wZcw/9Lcdxx998Rsx8pI3ItE7hIcffhhveMMbQs2XwVhNJp1GxUP1csdxqInufK61053LLbnH0cAV3cWlRtFdqF2HOd0MBh1ESQLs+r3EtpoWgu0WPvaxj6GQz+G//sSxpu+/erwfLxruxa/88i/jyWeeaZp66Ie/+Zu/QV9ff1MT4HX/7s34+P/vP2Nubo6qQbK4uIi5mWlM/sS7ICR78djjj1Mbuxtg4eWM2JLJZNDX14e+vr6uaAPBcRzSSe8OjhfKDprmM7qV0qv0RXez8HIikM2S94rZrTCK2YYxN5vx8XHwPI8ZNVxhulnDwq6J9i257r//fvzEy38q1HWAWrG7F77kJ3G/h9Zh//qv/4r0jgPgJRmWVoFRWOz4n6VVwHEcEjuP4KGH6FdMZWxvMpkMSh7uk6rtwHbCF1IbHh5Gvk14OXmPlugmonpt2zDidDPRzWDQQRQEOHXR7VjdG17+3e9+F3/xF3+BXzs4jl3J9cVsgdoa8w+PT+Da1av42Mc+Fup6pmninnvuwWv/3S9AabLme93PvQmiKOKee+4JdZ21PFUvzpocP4Dk+AFcuXwRxSK9zjhxh4luBoMimVTKc/9ZL1St5gtOV3TXhTKVa9ULWjRzunt6epBIplzBHAay8OxU5XujEEURY8NDmFXD9eqe1a22YaNXr17FxYsX8eKXvjzUdQgvfunL8MMf/hBah7z+B3/wEJSdRwEAgpKC1Dvc8T9Bqe2gJ3cfx48f/rEbccJg0KAn04Oyh0JqpfoxYXO6BwcHsbycb/k9zuXoiu5W90ujuIie3r6m91gGg+EfURRdp9uxrdrfu4x8Po93vPWtePFwH+6abF9g9kAmgf96eAc+/elP41vf+lbga/7d3/0dpqen8e/f8e6m7/cPDOLVP/vz+J//839Sff4/88wzECQZyuAuJMdqxV2fe+45auPHne77djIYMSadSaNs0RPCZbt55V4SVqRW6VV+VKvVhrFXw3EcxsZ3oFps3gbHD8T9iYvoBmrhoDML1wKf7zgOZstqW9FN+l7e9sKXBL7Oam5/0R2oVqt4/PHH8aIXvajpMYuLi7h44Rz2nnojAGD0jjdh9I43eb5GeuIYZr5dwrPPPosbb7yRyrwZjJ6+XpTmr3Y8jpboHhoaguM4WM7nMDi0vlhaPks3vJzcL+ce/yaqcxfd1ytTZ7FnB3O5GQxaSKvCy50uDC93HAfv++VfxvLiAr58x1HwHqI63zU5in9ZLOKdb3sbnn7uuUD3rU9/+tO47UUvwbGTrZ/r73j3L+OrX/o/+NrXvoaf/dmf9X2NZjz//PNIDU+AEwQo9VTF06dP44UvfCGV8eMOE90MBkUymQxKyyVq45VNu+mCkwhxmu0WqnUB36o9z8TuXXg2H76FhFFYQv/AYNMw9s1iYu8kZq5fCnx+VjehWRYmJlrnuz/88MPYM7kPQ8N0qrYfO3EjZFnGww8/3FJ0P/TQQwCA9J4Tga6R2nUEHC/ghz/8IRPdDGr09Q/gG/PLuP177R0Oo168M2xND7IozeeyzUV3PgdBENDX1xfqOqt5z7t+Cf/w9X8EUFh5cf84/t0b6CxeGQwGEd21ziOO1X2i+7777sO9992HPz+1r2VY+Vp4jsMnb9iDV/7wDN7/vvfhvi99ydc1H3vsMTzwwAP4H1/4322Pu+mW23HzbS/An/3Zn1ET3afPnIEwUNt4FOQkkgOjOHPmDJWxuwEmuhkMivT29qGyNE1tvLJhthXdVZqiu9JedO+Z2I2nrj8b+jpGYRE7d8areu/uiQk8awTPxZ+uh6a3q/L91FNP4dgJesJVlmUcOnIcTz75ZMtjfvjDHyLRNwy5P1j+vCAnkdl5CD/84Q/xy7/8y0GnymA08Ju/9Vu45dZbPR3b09ODm266KdT1iOhezueavp/P5TA4OEi1dshv/uZv4jd/8zepjcdgMNYjSRJQbxlm22ZXie6FhQV84P3vw2t3DOINOwd9nTuekPH7R3fhA1/+Mn7xq1/Fz/3cz3k+98/+7M+we2IPXvnq13c89l3/8T/hP7337XjyySdD34cB4PnTZ6Acern7d2lwN06fZqKbwWAEINPbixKl/BfHcVDSjaY53eS1Spmeq16plMHzfEsHevfu3bCK3wt9HaOwgMkD4Sqg02ZiYgLTleBF6abrRdjaOd3nzp3Da36Obuu7fQcP4dy5cy3f//4DDyKx61goMZHYfQzfe+DBwOczGGu57bbbcNttt23Y9QYHawvafK656F7OZzEw6G/Ry2AwNh9ZluFYtU1v2zQgy97c4jjwsY99DFalgt+/5Wig81+/YwB/N5PHr/7Kr+BVr3qVp2rm8/PzuO+++/CRj/2Op/z3V732Ddixcxc+/elP4wtf+EKgeRKy2SzmZqax945J9zVlZC8ef6K1cbDVYIXUGAyK9Pb1oWQ5VMZSbQeW4zR1usnNtVwuU7kWAJRLRWQymZYCbWJiAtX8PJwm/dr9YJcWsWdP+yrfG82ePXtQ0g0UjGAbJjNVHbIkYXS0eREU27YxNTWFnbvXi/K/+uyn8JIbD3T8768++6l15+7cPYGr15rnouu6jkceeQTpPScD/ZsI6T0ncfXyJczOzoYah8HYLAYGBgB0droZDEZ3sVZ0d4vT/fzzz+Puu+/GRw6MYVgJNmeO4/A7R3dhbn4Of/7nf+7pnLvvvhs8z+MX3vpLno4XRRFvecd78MUvfhH5fD7QPAmkrk1690pLtNTuY7h86QLm5uZCjd0tMNHNYFCkt7cXZUodw0gRoWZ5hoIgIJVKUXW6y+Vy24JFExMTsE0DZjkf6jpafr6tI7wZkE2AqWqwtmFTqo6JnTvB881vqcvLy7AsCwOD6wuelIpFzM5Md/yv1KStxtDQMLJLzYvbPf7449A1FemJYPncBJIPTvLDGYxuI5lMIplMIpdt/ruynM9isC7MGQxG9yDLMmBZcGwbtmVCUZTNnpIn/uRP/gTjKQX/fmJ9jQk/TKYV/MLOQfzpn/wJdL39+sVxHHzhC1/Av339v0P/gPdNxl946zuh6zruvffeUHP9u7/7O6SGd0EeWCmi27P/FnA8j7//+78PNXa3wEQ3g0GR3t5elCw6qpuI7lZFhHp6elAq0etvWC4VkW7TD3fv3r0AAH15PvA1LK0KvbzsjhUXiOieDtire6qqY89k639TxW3Htj78K9PTg/EdOzv+l2myIaIkkqhWm1fLf+ihhyBIMpI7Dgb6NxHk3hEkB8aY6GZ0NaRtWDOWczlqlcsZDMbGIcsybMuAUy+m1g3h5eVyGff+n/+Dt+4ahCKEl2F3TY5ibnERX//619se96Mf/Qjnz5/Hz//i232NPzq+Az/5ilfif/2//2/gOebzedx735fQe/IVDdGUUmYAvQduxWc/9z/hOHSiROMMy+lmMCjS29uLgmFSGYuEOrcU3b29KFMU3aVisW31XiJM9fws0ruD5SDpy3MNY8WF8fFxiIKA69X2Pa9bMa1b+P+3d59RUV1fG8CfGXov0hQVEFBQUURAwIIRg73EEhv2WF977LHFHiyJRqOJfzXGEjExKmLBboIdpCjSREUB6b0zM+f9QOZGBJEycEH2b61ZK3PrlpuZufuec/ZpZ2L6wfXSH5nyflS+mjUfX82aX63zgrEPDge4/+ABVJtaQihf8+52Ss2scOcuJd2k4dLW0UHWB7qXZ2ZmcF3QCSENh5KSEpioGExUzL2v765du4a8ggIMbiqb75w2Giqw0laHt7d3hQXVvLy8YGDUFF1culf5HIOGjcSiWVPw+vXrat2//fDDDygsKoaeQ9nibXpOwxF4dDkuXbqE/v37V/nYDQkl3YTIkKamJnKKZJN0Z1fQvVx6ruxyuhxXV052VoVT8+jo6EBNXR1FGdUfeyPd19TUtNrHqA1ycnJo3rQp4qvdvbwY/Stovf+v2rzsxuADJcXvPlRt/t79B1Bu1kkm51E1tkKg3zGIxWLIycnJ5JiE1CVdXV1ERoTh1jXfMuuSkxJpTDchDZCSkhIkomJIxA0n6b5z5w6aqanATE1206Y6a6ngn1u3PrieMYazZ8/Cvd/gav2Gu/UZAAUFBZw7dw5z586t0r6xsbH4znMbmjgOgYJG2e9ZDQt7aJp1xKKvF+Pzzz9vMOPyq4O6lxMiQ1paWsgXiVAsqXk3mY8l3VqamsjOyqzxebjzZWVBq4KkWyAQoGVLUxRlVL+gVlFGIuTk5dGsWbNqH6O2mJiZIrYaSXeRRILEvPwKu8xrampCQUEBqak1n+f8XelpqdAtp1tsRkYGXr96CdVmrWVyHtVmlsjPy21U82mST4t5q1a4+/dNTBkztMwrLTUFrVq14jtEQkgVKSkpQVxc2KBaup+FhsJaTbbd4NtqqiI6JgaFheX31nv27BliYmLg1qd6LckaGppwdOkOn490YS/P/AULwBSUYeTqUe56gUCApn1nIzIyArt2lS0Y+ymhpJsQGZImyNKEuSY+1r1cW1sb2VlZNT6PVHZ2JrS1tSvcxryVKYpr0tKd/hbNjFvUy9ZSE7NWiCuq+nWLzy8GY6gw6RYIBGhmbIz4uPIrjVdXfOwbtCynKF1ISAgA1Hg8t5SKkTkAICgoSCbHI6SuHThwAHFxceW+EhISMH581cY5EkL4p6ysDLGomKtgrqKiwnNEHxf35g2aVrNi+Yc0VVYEYwxv374td/2VK1egpKRUra7lUj0+642/b9/+YGJfnmvXruGv06dh9PkMyCmX3ysPAFSbWkDPYQjWrvsW8fHx1Y6xvqPu5YTIkDTpziwWQVexZh+vbJEYqsrKH+xqo62tjVdv4mp0jndlZWR8NOlu1aoVrt95hPSn1ZuvO/fNM7QzN6vWvrXNxMQEVwqKq7xf3L/jwD82zsnC3BwxL6KrFduHvHoRDecuZec7fvr0KYRy8lBq0lwm55FX1YSKtj5CQ0NlcjxC6pp8Pe1hQwipPmVlZTCJGOKikoKiDaGlOyszA5oKsm14kB4v6wMNMTdu3EBnR2co1+ChRNcevbBl3Urcv38frq6uH91eIpFgwcJF0DBpD50Obh/d3qjXJESG3sTq1atrPCd4fUVJNyEyJE1aZdXSraX54Sm8tLW1kVXDeRNLnS8rs8JCagBgb2+P3bt349Wp9dU+j8PopdXetzaZmJggMS8fRRIJFD8w9Vd5pF3SP5Z0t23bFhcuXq5RjO8Si8WIjgrH1MkTyqyLiIiAqp6xTIqoSSk0aYGIyEiZHY8QQgipCWXlknHR4vyS6VMbQtJdXCyCvGLZAqi/vEjEgVeV60k4zdQQ01sZcu8V/i2oWlxctuFAIpHAz88Pk2ZUbSz2+6za2UBLSxu3b9+uVNJ9/vx5hD59Asupuz5Y8PVd8irq0Os6Gkd++x/WrVtX76aWlQVKugmRIWkF3MxiGSTdIjF0tD9c3VJHRwdZMhrTzRhDZkb6R4sJjR8/HkOHDoVEUv1p0Soq1sYnExMTMFbSXdxUrfI/3HH5RTDS1+N+/D+kY8eO2LNnD3Jzciqcmq2yXkZHoaCgAB07diyzLjo6GnJaTcvZq/oUtJsiMvK5TI9JCCGEVBeXdBeUJN0NoXu5QCAodyaTHJEYCZXsbZfzXsOO9GjlJbehoaHIyMiAfReXKsf6LqFQCDtHZ/jduVOp7ff//DM0WrSFukn7Sp+jif0AJN3+DYcPH8aaNWuqG2q9RUk3ITIkbenOkkHSnVksho7Rh5NgHR0dZGakg1UwbVRlFeTno6ioqFLT5miUM1/0p0BaUf3kmxSYVSHpvpuWDRNz649u17lzZzDG8OxpMByculY3TM7T4EAAQKdOZSuUx7yOhYKWbKdlU9QyQGzwA5kekxBCCKmu/1q6s0u9r88UFOQhYmXHRavLy8FIuXK909TlS3dPL/63IaS84Yj37t2DnJwcbO0cqhFtaXYOTjiwZwckEgmEFfQIzMvLw/Vr12HQ+6sqHV9OSRXqll3w19lzlHQTQiqmpaUFgUCATBnM1Z1ZLIJWBUmwrq4uioqKkJ+XB9UPTBtVWRkZadwxG6uWLVuimZER9r6oenX2BRM+nkS3a9cOysrKeBL0WCZJd0igPywsLMp9UJKUnAR5qw41Pse75NW1kZGWStOGEUIIqRekLdsNqaVbWVkZRYUFZZZPb1W6y3hVFP47Y0553evv37+PNm3b1/g+EQA62TsiKysL4eHhaNu27Qe3CwoKQnFxEdRNq34fom7aEU8u/oiCgoIG8RClKijpJkSGhEIhtNTVZdO9XMJgUUESLE2Q09NTa550p1HSraioiNj4+HK7fX1MRU98pRQUFGDbqROCA/2rE14ZwYH+cHR0LHdddlYWdJVr3oX9XXLK6mCMIScn56Nj/wkhhJDaJk3K8hOiS72vz5SUlFGYV/0heuUp/Lelu7x/v39AAGw6dpbJedp3LOlZ5+/vX2HSLZ1eVFmv6j3ulPVNIBGL8eLFiwrP0RDRlGGEyJiOtpZMku5MEaswCW7y7/zM0oS5JtLT00ods7ESCAQQCoVVflWWo4MDngQF1DjO4uJihD0NgYND+d3FigoLIJCX7Tygwn+PV5XpQgghhJDaYmBgAABIC7oCNTV1qMmgNbe2Kakoo0BS9Yf7FZG2dL+fdBcWFuJZaCjadbCVyXk0NbVgYtYKgYGBFW735s0bKGvoQqhQ9cJ2CloG3DE+NdTSTYiM6ejoIjO95vMMZhSLKhxjLU2QpQlzjc6VllrqmKR2ODg4YPfu3SVThmhpV/s4UeHPUFBQAHv7stOFEUIIIY2BmZkZ4uPjkZOTAx0dnQ9OsVqfqKqqoaAGxWjLUyAuOd773evDw8MhFoth3c6m1PL/7duFQ/t2V+rYU2bNw1ez5nPvrdraICQkpMJ9YmNjoaClV6njv09BowkgECA2NrZa+9dnlHQTImO6enrISKr5E7rMwuIKk249vZIvtPS0lBqfKz09raRrPHUbrlV2dnYAgGdPQ+DUtUe1jxP6JBgCgQC2trblrldSVgErlm2LtOTf4zWEMXOEEEIah6ZNZTtTR21T19REtki2SXf+v0m3qqpqqeXPnj0DAFi2KV3sNSc7GwlvK9c4lJOdXeq9ZRtrnP79SIX7hEdEVHsGFaG8AlR1DBH5CU5RSkk3ITKmq6eHt+KafaHmiyXIF4kqbHnW0NCAgoIC0lNTa3QuAEhPTYWenl6VukqTqmvdujWUlJQQVsOkOyw0BOYWFlD/wNRjWlraEP1bWEZWxAU5kJOTaxDd9wghhJD6SFtbG3Ey7l6eUSyChppamSKnz58/RxM9/TI969Q1NGDUtFmljq3+3ow1ZuaWePv2LXJzc8u9HyguLkZAwGNoOY+u2j/iHYqG5rhz916196+vKOkmRMZ0dXXxTFyzL1Rp9fOKxnQLBALo6+sjNbXmLd1pqcnQ09ev8XFIxeTl5WHdti0iwkJrdJzIsFB0sLH54PqmzZriVVbN/794V1FWCvQMDOnBDCGEEFJNBgYGuC2Duj/vSikUwVC/bHfu169fw7h5izLLv5o1v1SX8aowbt6SO7a1ddnpUm/evIm83By0sKh+8TZ1c3vcu7QHKSkpXK/OTwEl3YTImK6uLjJqOGVYxr9fyB8bY91ETw9pMki6U1NToP8JfbHVZ+3btcOziLAaHeN5ZDjcek774PrWFuZ4fv9Zjc7xvsK0OLQzN5fpMQkhhJDGxMTEBHE5+RBJGOSFApkc801+IVpalU2AExMToWdgJJNzSOkZlkxrlpSUVG7Svf/nn6FmaAKVppYl2935A0n3/qzUsQ2cR8Cg60jotHNF/OWfcPjwYSxZskR2wfOMmiwIkbEmTZogvbC4RsdIL/p4SzdQ8sQ0LSW5RucCgLTUFK4KKKld1tbWeB4RXq2pyQAgMyMdSYkJ5f7YSbVv3x4FSS+rfY7yiJJfwaZ9O5kdjxBCCGlsrK2tUSyR4EVu2bm6qysiX4S27duXWZ6ZmQkNTU2ZnQcANDQ0uWO/LzIyEmfPnIGu4xcQCEoeKIgL81CclVKpl7gwDwAgr6YFHRs37Nj5PQoKZPd34hsl3YTImK6uLnKLilFUg+qU0pbyj7V0GxkaIlUWSXdKMiXddcTa2hpZWZlISUqs1v4vnkdyx/kQe3t7FOVlozBVNtU/xQW5yE2MoWrphBBCSA107twZAoEAARm5MjleWpEI0Zk5cHR0LLNOJBZDTihXzl7VJy9f0klaLC7bRX7Lli1Q0mwCXds+3DI5JVUoaOpV6iWn9F8hOIPuo5GYmIAjRyou2taQUPdyQmSMm8qrSAxD5eo910ovEkEgEEBbW7vC7QwMDHD/waNqneNdqSnJ0Kcx3XXCysoKAPDieRT0Dave7Ss6qiTptrS0/OA2Tk5OEAqFyHkVAmW9suO5qirn9VMwJkG3bt1qfCxCCCGksdLS0oJj5864GRuNMS1qPqzvVnJJi7Obm1uZdSoqKigoyK/xOd6Vl5fLHftdSUlJOHb8OAw+mwyhgiK33KDrSBh0HVnl8yjrtYBO2+7YtmMnpk+fzrWcN2TU0k2IjHFTedVgXHd6sRi6WlplKlG+z8DAoMYt3RKJBKkpyTD8d5wOqV3m5uaQk5PD86jwau3/PCocJiYmFVYR19LSQmd7B2RH+1c3zFKyn/ujqXFztG7dWibHI4QQQhqrYSNH4mZKFrJkUFDNOyEDzo6OaNasbDVyI0NDJCW+rfE53pWcmAAAZe4Zz5w5A7FYgiZ2fWV2Lt3OAxAdFYng4GCZHZNPlHQTImP/tXRXP+lOKxJBV/fDc3RLGRoaIiMjHUVFRdU+V3paKsRiMSXddURRUREWlpZ4Xs1ialHhYWjbtu1HtxsyeBByo/0hKa7+/xsAwBhDbtR9DBk08JN40kwIIYTwycPDA8WM4c+4mk35+iavEDeTMjFp6tRy17dp06ZGNWTKExH2DAKBoExvu4CAAKg3bQV5VS2ZnUvdpAMgECAgIEBmx+QTJd2EyBjX0l2DpDu9SFSpKbyMjEq6J6emJFX7XCnJSaWORWqfTfv2CH/2tFr7RoY9RftyCqa8b/jw4SguyENW1MNqnUcqLz4CeanxGDFiRI2OQwghhBCgWbNm+HLklzjwOgXFNZiz+5eXidDW0sS4cePKXe/s7IyMjPQaT1P6Lv/7d9Dexgbq6uqllhcVFUEgpyCz8wCAQE4OQqFcjRqW6hNKugmRMW1tbQiFQqTVqHu5CPoGH295lrZOJ1ezKNe7+1JLd93p1KkTwp6GVPnpc0Z6GuJi38DW1vaj21pZWcGmQ0ekh1yrZpQl0oOuQd/AEK6urjU6DiGEEEJKrFi5ErE5+fCKrd60r3H5Rfg9Ng0Lv178weFm3bp1g7q6Oq5c9K5JqJyioiLcuHoJ/fv1K7OuXbt2yEt4AXGh7MaQ58VFQCIWoV27T2PmFEq6CZExoVCIJtpaSKtJ93Ixq1RLd9OmTQHULOmWVtGmlu6607lzZ2RlZeLli+dV2i8ksKSLVWWriE+ZPAlZEfcgyi07tUdlSERFyHx6HRMnjOcqlhJCCCGkZmxsbDB2zGjsjE5EjqjqY7u3RcZDS1sb8+fP/+A2ysrKGDFiBE7//lu51car6tplH6SnpcLDw6PMulGjRoFJREh+cKbG55FK8juJliam6Nq1q8yOySe6iyKkFug1aYK0oqxq759eLP7odGEAoK+vD4FAAF+fc0hJql4X8zu3r0NTUxOqqqof35jIRJcuXSAQCPD44X20Mv9wFfL3BTy6D11d3Qorl7/Lw8MDS5cuQ2qgLwy7fVnlODPD/FCUm4UpU6ZUeV9CCCGEfNiWrd/hr7/+wo/P32KFVfNK7/c4PQen41Lxyy+/QENDo8JtZ8+ejV9//RW+F86h/+Bh1Y6VMYaD+3ahR48e5Q5xa9myJebNnYvde36CVhtnqBiaVftcAJAWcgMZYXfws5fXR4sKNxSUdBNSC/T0DZD+Kq3a+6cWFldqCi95eXnY2dnhz99/w5+//1bt8/Xq1ava+5Kq09bWRnsbGzy4+w9GjBlf6f0e3fND9+7dK13QTE9PDyNGjMC5qz4wcBkBgbBqnZvS/H3QrXuPCucEJ4QQQkjVtWzZEstXrMSmDesxsrkeLNSVP7qPmDGsCo9Hpw4dKvVA3MHBAW5ubtizYwv6DhwKYRXvA6T+vnEVgf4PcfHixQ9us2nTJvheuYpXXutg/tWPkFfVrNa58hKiEee9A2PGjsXIkVWfbqy+ou7lhNQCfSMjpFZzKogiiQRZhUWVnjf70aNHkEgkNXpdu1azcb+k6tx69cK9f25Welx3Xm4uHj+6X+UHJP/3f7ORlxJX5enD8hNfIOtlMObO+b8q7UcIIYSQylm6dClaNG+BteGxlbofOP46BU/Ss7F3//5KtwBv3LgR4c+e4sypE9WKUSwWw3PjanTr1g19+354SjAVFRWc9z4HRXEeYk6urdbsKUWZyYg58Q3atbXG/w4c+KRmTaGkm5BaoKenhxSRBAXiqr8SC4q5Y1SGQCCQyYvUrT59+iA+LhZRlZw67P6dv1FUVIQ+ffpU6TwuLi7o0NEWKQ/OVmm/5PtnYWjUFF988UWV9iOEEEJI5aioqGDXnj34OykTlxMzKtw2vUiEbc8TMHnyZDg7O1f6HE5OThg5ciS2b16L3JycKsf454nfEPY0BNu2bfvo/WKrVq1wwec8CuIj8OasJ5hEUunziAty8erESjRRV8bFCz6f3LBH6l5OSC1o2rQpQtOzYekbWKNjkE9Xz549oaqqiuu+F9Da6uPzbl/3vQBzc3O0bt26SucRCARYuGA+Jk+ejILUWCg3+fi4MVFeFjKfXMe6NaugoCDbKUAIIYQQ8p+BAweif9++2OB3G730taAkV36b6I6oeEgUFLF169Yqn8PT0xPW1tb46QdPLFm1vtL7ZWVlYvvmtRg3bhycnJwqtY+LiwtOnDiOESNGQFHXGE3dJn90HyYRI+bPTRDmpuDKvXto1qxZpWNsKARMljOmNwBZWVnQ0tJCZmYmNDWrN9aAkI9JS0vDpUuXqjwllJS6ujqGDBlCLdCfuOHDhyP61Wuc8f2nwu3EYjFcOphjvMc47Nixo8rnKSgoQDPj5pBv7Yrm/T/eXTzRzwvJN39FbOwbGBgYVPl8hBBCCKm88PBwtG/XDt+0aYZpZmWncH2ZW4DP/nmGLVu/w5IlS6p1jrVr12Lr1q3w9QuEiVmrSu2zcfVSeB09hMjIyConwlu2bMHKlSthNmY9tK0rrkAef+0gkv1O4vLly/j888+rdJ6GgpJuQgjhyYkTJzBu3Dj88zgcxi1MPrjdw7t+GD3kc9y9e7dKXcretWLFCuzY9SO02rt9dNvsiDsYObg/jh6tfnE+QgghhFTeV199hbMnjuFud2uoypcerz0/+BUeiBXw/OVLKCt/vOBaefLy8mBlZQXrDp2w/1evj27/4nkk+nbvjPXr12PFihVVPh9jDEO/+AKXr95E69kHoKBZ/rDJ7BeBiD6yBJs2barWeRoKSroJIYQnWVlZMDAwwNcr1+Gr2Qs+uN2apQtw6+oFxMTEVLvyaFxcHEaM/BJ5efkf3VZRUQGHDx0sd1oQQgghhMjeq1evYGFhjjVtjDHF9L9eZq/zCtH9dih+2LULc+fOrdE5pA/7T567CkeXbhVuO338SESFPUF4eHi1E/3U1FRYt20HkV5rmI5eV2a9pLgIkT9NhZ21Of6+fava9zgNASXdhBDCo2HDhiH6ZQzOXr1T7npp13KPcWOxc+fOOo6OEEIIIXVlzOjReHjxPG51s+KGGG4Kj8XJlDzExr+FmppajY4vkUjg6OgIJpTHHxdufnAYY8DDexg5oBeOHz+OsWPH1uic0kTfcsr3UDftUGpdot8pJN44iKdPnsDKyqpG56nvPt3HCYQQ0gCMGjUKIUGPEfPyRbnr79/5G8lJiRg9enQdR0YIIYSQujRr9my8yM7Dtsh4XE/KhG9iBva/SMSESZNrnHADgFAoxKZNm/D40QP8fePqB7f7wXMjbGxsZHLvMXr0aLS36YCkf46XWi4RFSH13ilMnjTpk0+4AUq6CSGEVwMHDoSqqiounDtd7voLZ/+EmZkZHBwc6jgyQgghhNSlbt26obW5OX6MTsAk/+f4KiAaAoEAU6dOldk53N3d4dilC/bt2lbu+uBAf9y5fQOrV6+WSXdvoVCIJYu/RmaUPwrT4rnlmWF+KMxOx9dff13jczQElHQTQgiP1NTUMGDAAFzy/qvMOpFIhCsXvTFy5EiqZE8IIYR84oRCIYKePEF8fDz3Sk1NRYcOHT6+cyUJBAIsXbIED+/5ITQkqMz6wz/vQatWrTBs2DCZnXPEiBFQUVVD+tNb3LKMp7fg4NilUbRyA5R0E0II70aMGIHQJ0GIfR1Tarn/g7tIS03B8OHDeYqMEEIIIXVJRUUFTZs25V46OjoyP8eQIUPQvHlznPjtYKnl6WmpuHz+DGbNmgU5ObkP7F11qqqq+Pzz3sh9/hAAIBEVIyc6AMOHfSGzc9R3lHQTQgjP+vXrB0VFRVy77FNq+bXLPmjWrBns7e15iowQQgghnxp5eXlMmDABF878gcLCQm65z9k/IRaLMWHCBJmf0/3zz5HzJgySogLkxUVAVFQAN7ePT2P6qZDnOwBCCGnsNDQ00MPVFadOHEF+fh63/PL5MxgwYMAnPYUGIYQQQure2LFjsXnzZvjdvg439/4AgIvnTsOtd28YGBh8ZO+q69q1KyRiEfLeRiE3NgzKKqqwtbWV+XnqK0q6CSGkHpg8aRLmz5+PQ/t2ccvk5eUxbtw4HqMihBBCyKeobdu2sLC0xPXLF+Dm3h+ZGenwf3AXe/furZXztWvXDoqKSkgLvor8hBfo2LEj5OUbTypKzSeEEFIPjB07FsnJyUhJSeFeCQkJcHV15Ts0QgghhHxiBAIB+vfrB98L55CclIhzp70gFovRr1+/WjmfgoICOtnZIdX/AvJiw+Di7FQr56mvBIwxxncQdSkrKwtaWlrIzMyEpqYm3+EQQgghhBBCSJ3z8fHBoEGDuPeWlpaIjIystfMlJycjOjoaANChQweoqqrW2rnqG0q6CSGEEEIIIaSRkUgkuH79OgoKCgAA1tbWsLCw4DmqTxMl3YQQQgghhBBCSC2hMd2EEEIIIYQQQkgtoaSbEEIIIYQQQgipJfUi6d67dy9MTU2hrKyMLl264OHDhxVu/8cff8DKygrKysqwsbHBxYsX6yhSQgghhBBCCCGk8nhPur28vLBo0SKsXbsWjx8/RseOHdGnTx8kJSWVu/3du3cxZswYTJ06FYGBgRg6dCiGDh2Kp0+f1nHkhBBCCCGEEEJIxXgvpNalSxc4ODhgz549AEqq6LVo0QJz587F8uXLy2w/atQo5ObmwsfHh1vm5OQEW1tb7N+//6Pno0JqhBBCCCGEEELqCq8t3UVFRQgICEDv3r25ZUKhEL1798a9e/fK3efevXultgeAPn36fHD7wsJCZGVllXoRQgghhBBCCCF1gdekOyUlBWKxGIaGhqWWGxoaIiEhodx9EhISqrT9li1boKWlxb1atGghm+AJIYQQQgghhJCP4H1Md21bsWIFMjMzudebN2/4DokQQgghhBBCSCMhz+fJ9fT0ICcnh8TExFLLExMTYWRkVO4+RkZGVdpeSUkJSkpKsgmYEEIIIYQQQgipAl5buhUVFdG5c2dcv36dWyaRSHD9+nU4OzuXu4+zs3Op7QHg6tWrH9yeEEIIIYQQQgjhC68t3QCwaNEiTJw4Efb29nB0dMQPP/yA3NxcTJ48GQAwYcIEGBsbY8uWLQCA+fPnw9XVFTt27MCAAQNw8uRJ+Pv745dffuHzn0EIIYQQQgghhJTBe9I9atQoJCcnY82aNUhISICtrS0uX77MFUt7/fo1hML/GuRdXFxw4sQJrFq1CitXroSlpSXOnj2L9u3b8/VPIIQQQgghhBBCysX7PN11jebpJoQQQgghhBBSVz756uWEEEIIIYQQQghfKOkmhBBCCCGEEEJqCSXdhBBCCCGEEEJILaGkmxBCCCGEEEIIqSW8Vy+va9K6cVlZWTxHQgghhBBCCCGkodPQ0IBAIPjg+kaXdGdnZwMAWrRowXMkhBBCCCGEEEIauo/NjNXopgyTSCSIj4//6NMIUr6srCy0aNECb968oSnXGgC6Xg0PXbOGha5Xw0PXrGGh69Xw0DVrWOh6yQa1dL9HKBSiefPmfIfR4GlqatIHswGh69Xw0DVrWOh6NTx0zRoWul4ND12zhoWuV+2iQmqEEEIIIYQQQkgtoaSbEEIIIYQQQgipJZR0kypRUlLC2rVroaSkxHcopBLoejU8dM0aFrpeDQ9ds4aFrlfDQ9esYaHrVTcaXSE1QgghhBBCCCGkrlBLNyGEEEIIIYQQUkso6SaEEEIIIYQQQmoJJd2EEEIIIYQQQkgtoaSbEEIIIYQQQgipJZR0E0IIIe+g+qKE1L7w8HD4+fnxHQYhhNQJSroJIYSQf0kkEggEAsTHxyMwMJDvcEgViMVivkMglSSRSLBmzRocOnSIe08IkQ16cFw/UdLdyKWlpeH58+d4+vQpfUgbiJycHLpWDRxdv/pJIpFAKBTi6dOnsLOzg5eXFwC6Xg3B8+fP8b///Q8AJd8NgVAoRJMmTRAbG8u9J/VXbGws/vzzTxw6dAghISF8h0MqIH1wnJubi8zMTGRkZPAdEvkXfcs1Yk+fPkXv3r0xbNgwdOjQAXPmzMGbN2/4DotUIDw8HB07dsSJEyf4DoVU0qtXr7Br1y6sW7cOx44dAwAIBAKeoyLvkybcwcHBcHZ2hqamJn799VeEh4fT9arnnjx5Amtra8yaNQuJiYmQk5PjOyRSDunDK5FIBAAYNGgQUlNTUVxcTA9K6rEnT56ga9eu+PHHHzFv3jwsWbIEz5494zssUg7p71hoaChGjRoFFxcXjB49GkeOHOE7NAJKuhutiIgIuLm5oW/fvjhy5Aj++usv/Pbbb7hw4QLfoZEKnDx5Ei9fvsT//d//4ejRo2XWU4tc/fLkyRN069YNPj4+uHjxIr766its2LCB77DIe6Q3KiEhIXB2dsa8efPg6+sLfX19+Pr6AqDW0/oqODgYXbp0wZgxY+Do6Ih9+/ZRV+V6qqCgAAAgLy8PADAyMkJERAQiIyPpQUk9FR4ejs8//xweHh64ePEiAgICcO/ePURGRvIdGnkPY4zrqdW9e3eYm5tj4cKF0NTUhJeXF3Jzc0ttS+qegNFfvtHJycnBjBkzoK6ujp9//hmMMQgEAixZsgT37t3D33//DYFAQK079dC5c+dw/fp1mJiYYNmyZTh06BAmTJgAoCQpoBuX+iMmJgZubm4YPnw4tm7dipycHPz+++/44Ycf4OPjg1atWvEdInnH48ePYW9vj2+++YZ7MDJ27FgEBAQgIiKC5+hIeYKCgtC9e3csWLAAGzZswIQJE/D06VP4+/tDKBRyv22Ef9HR0Zg8eTIMDAzQoUMH9OrVC4WFhfD09MSaNWvQtWtXiEQiLiEn/MvNzcXMmTOhqqqKn376CUKhEAKBAMOHD4eLiwsAwNzcHEOHDuU3UMKJi4tD7969MXToUGzZsgUAcO3aNezcuRO//PILlJSUoK+vDwD0/cgD+nZrhDIyMlBQUIDhw4eXWm5mZoYrV65Qwl2PGRoa4vr16wgICEB8fDy++uoraGtr4/bt22jZsiXmz5/Pd4gEJT9mf/zxBywsLPDNN99AIBBAQ0MDnTt3RnJyMgoLC/kOkbzn+fPn+Prrr7Fhwwau5Xv16tVwd3fHvn37MGvWLL5DJO+Ii4uDnZ0dli1bxj0kWb16NZycnLB7924sWLCAfsfqkcTERAwePBiBgYG4ffs2Dh8+DJFIhLi4OOjo6KBr166Ql5enh8f1RHZ2NjQ0NDB8+HCYmZlx12Tjxo04c+YMhEIhYmJikJeXh4CAAOrBVU/ExMRg0KBBmD59Orfs1q1bCAoKgrOzM4yNjWFjY4MDBw7Q9yMfGGk0Xr16xYqKihhjjAUGBnLLRSIRY4wxb29v5uLiUmqf169f11l8pCyxWMz9t0QiYW/fvmX29vYsNTWVMcbY+vXrmVAoZBoaGuzZs2d8hUneERcXx6KiotjNmzfZ5s2bueUSiYQVFhYyMzMzdufOHR4jJJWVmZnJevXqxUaMGMF3KKQc586d4/5bIpGw7Oxs9uWXX7JBgwaxoqIiJpFIeIyOMMZYWFgYe/78eZnlb968YVFRUWzjxo3M0dGRTZ48mVsnvSch/Hj79i2zs7Nj9+/f5+4ZGWPM39+fKSoqsrNnzzLGGCsoKGALFixgLi4u3D0J4Yf0uy43N5e9fPmSW75582amqqrKDh8+zK5du8YOHjzImjdvzg4dOsRTpI0bjeluJMLCwmBmZgYPDw8wxmBrawugZCyj9AlmUVERkpOTuSIn69atw4oVK0qNAyF15+XLl9i/fz9EIhFXjdLIyAhqamqIiooCAERFRUFdXR35+fl48uQJzxE3bowx5ObmwtnZGadPn0bPnj2xYsUKbp1AIICioiKEQiHy8/O5/a5du0ZjUHlW3t+fMQZNTU0sW7YM3t7eVO+inggKCsLixYsBAIMHD+aWCwQCqKurY+LEifDx8YGfnx+15PAsODgYbdu2xfnz57ll7N8RjU2bNoWFhQUWLFgADw8PPH78mGudo5ZufsXGxuL169cIDQ2FgoICd806d+6M6OhoDBkyBBKJBEpKSjAzM0NWVhYUFRV5jpoAJcM4VFRUuPfGxsY4c+YMJk2aBDc3NwwdOhQqKiqIj4/nMcrGi5LuRiAoKAj29vYwNjZGfHw8kpOTAfxXdEFKIpFwY6rWrl2L9evXY9GiRVBTU+Mr9EYrJCQE1tbWWLt2LcRiMYRCIYqKigAA2traeP36NebPn49r167Bz88PK1euxOjRo3Hq1CmeI2+8BAIB1NTUMHToUBw8eJCbCke6TiQSITc3FyKRiPtRXLVqFdzd3ZGQkMBX2I2WSCTibiaLi4tLrZM+5AIAOzs7uLq6wtvbGxKJhB6Q8Cg4OBguLi4Vjvvt06cP+vXrh/379yMnJ6cOoyPvkl6rpUuXYsGCBdxy6edKTk4OYrEYampqmDx5MmbMmIErV65g7ty5PEVMpOzt7TF27FisXbsWqampEAgE3HelsbExgP+meIuMjESHDh2goKDAW7yk5HPl4+ODjh07IiIigvtNmzBhAtzd3bntFBQUYGZmBlNTUwBUUK2uUdL9iQsODkbXrl3xzTffICgoCEFBQTh8+DCA/378pB86ZWVlmJubY+3atfjuu+/g7+8POzs73mJvrKRTFo0ePRr6+vrYunUrAHA/aq6urvDw8MBff/0FHx8f2NjY4Ntvv8W3334LGxsbPkMnKGl9EwqFePDgAYD/ql6/WytBVVUVW7Zswa5du/Dw4UM0a9aMt3gbmzt37gAoqaAsEAjg6+uLcePGYdKkSfjtt9+4h1zS66anp4f+/fvjwIEDSEhIoPmEeSJN4hYsWMB9J5ZHTk4OPXv2xJ07d5CamlqHERKpyMhI2NnZYfny5di6dSvEYjHOnTsHT09PnD9/HmFhYQD+S7zV1dXh4eGBVatWYeHChTxH37hJHyqOHTsWWlpaXA8f6X2i9DesoKAAq1atwqlTp/DNN99ASUmJn4AJACA9PR0vX77E9u3b0aNHD+5+8f2k2tPTEy9evED37t0B0PSldY6XTu2kToSFhTGBQMBWrlzJLVu4cCFzcnJisbGxZbY/e/YsEwgETFtbm/n7+9dlqORfQUFBTE1NjX3zzTeMMcY8PDxYz549WWFhIbfNjRs32NixY1lQUBBfYZJ/fWjMaN++fVmXLl3KXWdnZ8ccHByYoqIie/ToUW2GR95z9epV1rp1a7Zu3TrGGGMPHjxg8vLybMaMGczR0ZF16dKFzZkzhxUXFzPGGDeeMTExkfXo0YNFR0fzFntj9uzZM6apqcmWLFlSavnZs2fZgwcPuPfvfh6bNm3KZs6cWWcxkv/8+OOPTCAQsIsXLzLGGPvss8+Yra0ta9GiBWvVqhVzcnJiV65c4baXXjcag8+/d+vIuLu7M1dXV+699PqcPXuWTZ48mRkbG7PHjx/XdYjkPU+fPmVycnLMwsKCnTx5stxtAgIC2Pz585mOjk6pmk6kblHS/YmSSCRs7969bOfOnaWW+/j4MGVlZXb16lVuO6n79+8zMzMzKsjFk5cvXzKBQMAl3Iwx9vDhQyYQCNiJEydKbZudnV3X4ZFy5Ofnl3ovfThy584dZmJiwv744w9unUQiYWlpaUxLS4vJy8uzkJCQOo2VlCTP8+bNY05OTuzbb79lnp6e7IcffmCMlRSg+e6775iDgwObOXMml3iLxWImFotZVlYWn6E3ajNnzmRCoZD99ddfrKCggDHG2IYNG5iWlhYLDg4uta1YLGYikYjt2LGDRUZG8hFuoxUVFcWio6NZYWEhW7duHRMIBMzU1JQNHz6cu6+4ffs2Gz58OOvTpw9LSUnhOWISFhbGtm7dyv75558y6wICApiBgQH7/fffSy2Pjo5mW7duZVFRUXUVJmGlH4i8KyEhgc2aNYsJhUK2e/fuMtsmJiayNWvWsP79+9N9B88o6f6Evds6+m5yPWzYMObi4sIyMzPL7EM3lvw6evQo998ikYgVFxezL7/8kg0ZMoRlZmZ+8EuX1L3Xr18zCwsLtnr1anb37t1S6xISEljnzp3ZjBkzuGXSa3fs2DEWFhZWp7GS//7+KSkpbMGCBaxnz56sTZs2pVoGsrOzucT7//7v/0pV7iX8kUgkbOjQoczGxoZdunSJrV+/nhkYGHAtqeWh78q6lZ+fz1xdXdmWLVsYYyX3Ehs2bGAuLi5lWtaOHz/O1NTU6HuwHti1axfT1tZmJiYmbMKECez27dvc915SUhJzdXXlfsfEYjF3L0kV5uuW9PssKiqKLV26lM2cOZPt37+fW5+YmMhmzpzJlJSUym1US0xMZGlpaXUbNCmDku5PVHk3HNIP4K+//srMzc3ZvXv3GGMlX57UvYs/H/ubHzx4kGloaHBPKOlmsn7w9/dnW7ZsYc2bN2dWVlbsyy+/ZIGBgdwPm5eXF1NTU2O3bt0qtR9dP368+zl7+/YtW7RoEdPR0WFTpkwptV1ubi7bvn07s7CwYIsWLarrMMm/3r59y27fvs28vb25ZYMHD2YGBgZMQ0ODnT9/njFGv1n1ibu7e6mpv9LT09njx4+5BgBponb79m3Wtm1bmpK0noiKimJHjx5llpaWzMLCgjk6OrLLly+zoqIiduXKFSYnJ0dDoXgkvWcICgpiBgYGrF+/fqxPnz5MVVWV7du3j9suOTmZTZkyhSkrK7Pr168zxujhSH1DFWE+IS9fvsTdu3cBlFSWZO8VUJAWTPDw8ICSkhK+//57ACXFTKTrqKhC3QoLC8OyZcu4ivLvVkaWXr8pU6agY8eO+PbbbyESiaiQE88iIyOxYMECbN68Gc2bN8eDBw+wbNkyhISE4IsvvsCgQYPg6+uLVq1aoXfv3rh16xYAcFPx0fXjh0AgwD///IOAgAAYGRlh+fLlmDJlCgICArBhwwZuO1VVVcycORPz5s3DnDlzeIy48QoNDcWQIUOwc+dOHDx4EHl5eQCAc+fOwd3dHbq6uigoKEBBQUGpysqEH9LvtoEDByIpKQlAyW+ZtrY2OnXqxE0nJZ0KzNvbG7q6utDU1OQn4EYuOTkZjx49woEDB3D37l3Iy8vDw8MDISEh2LJlC4yNjTFu3Dh0794d9+7dg729Pby8vLgZVEjdkUgkEAqFCAkJgbOzM6ZOnYqLFy/ixIkTGDhwINLS0rj7Rj09PezatQtjxozB0KFD4evrS9Pv1Tc8J/1ERsLDw5muri4zNDRkvr6+3PL3WwGkT72OHz/OmjZtyu7fv1+ncZL/FBYWss6dOzNdXV02bdo0lpSUxBgr3RIqvX5btmxh1tbWLCYmhpdYSYmgoCCmr6/PBg8ezEaNGsXk5OTYjz/+yK0/dOgQ+/LLL5mamhobNmwY09HRYaampiwnJ4fHqAljjGVkZLBBgwaxZs2asYCAAMZYyTCABQsWMEdHR7Z+/fpS21MLKj9CQ0OZtrY2W7lyJXv79i23XDrGnjHGdTU/fvx4mboKpO68P/zC29ub6enpsYSEhHI/P1FRUVwPExpbyo+QkBDWqVMn1rZtW6ahocHk5ORY8+bN2ZEjR0ptd/78ebZkyRKmpaXFBAIBc3R0pM8aT168eMF0dHTYhAkTSi0fNmwYc3JyYnZ2dmzkyJFct/L09HQ2evRoZmhoyHJzc/kImXwANbl8ApKSkjB//nzY2dnhs88+w6JFi3D58mUAKNMKIH3qZW1tDS0tLTRv3pyXmElJS7aqqiocHBwQHR2NFStW4O3btxAKhWXmAp47dy4iIyNx4MABnqIl0ifN06ZNw7lz53DixAnMmjULz58/R3Z2NgBg8uTJ8PLywvHjx2Fubg45OTnExMQgLS2N5+gbL+n3n5aWFpYuXQpnZ2eMGTMGAQEBMDQ0xPLly+Hi4gJfX18sX76c2496/dS9jIwMzJ07F+PGjcOmTZtgZGQEoOQaysvLc9O4nTlzBubm5ti+fTt+//13FBYW8hl2oxQREYHx48dj0aJFOHnyJF68eAFFRUVYW1ujqKgIAoGg1O9YSEgIPD09ce3aNdy4cYOmt+RBWFgYunfvDnd3d3h5eSErKwsnTpxAp06dMGnSJOzbt4/bduDAgfD09ERwcDA2btyIo0ePQllZmcfoG6/Q0FCoqalBRUUFwcHBAICtW7fi0qVL+OyzzzB69GjcvXsXixcvxtu3b6GtrY2ffvoJgYGBUFVV5Tl6Ugq/OT+RheDgYNa/f39248YN9vDhQ+bh4cHatWvHLl26xBgr22IjfU+tb/xbt24dO3LkCNu/fz9zcHDgCpacOXOGa0WQ9k7YuXMnFZ7hyevXr5menh4bOXJkqeWjRo1itra2zMrKivXp04cdPnyYWycWi1lSUhJ79epVHUfbeL3bS0TaMvp+68zdu3fZkCFDWOvWrUu1eH/11Vesd+/eLDk5ue4CJqW8evWKmZubs4sXL1ZYl0SqZ8+erGvXruUWBSW168KFC2z27NnMycmJdezYkRkaGrI2bdowgUDAVq1axW337nV89OgRi4+P5yPcRi8/P58NGzaMzZ49mzFW+rP07NkzNm7cOCYUCrmxwIz9d+2o1w//fv/9d2ZnZ8dmz57N5syZw/T19Uv1an3y5AkTCATs2LFjPEZJPoaS7k9EaGgo99/3799n48aNK5V4M/Zf8kZF0/gjvTmU/u1XrFjBpk+fzhhj7IcffmA9evRgZmZmTEVFhWVnZ5ebRJC69/LlS+bg4MAGDx7M/Pz8GGMlXf5VVVXZhg0b2P/+9z9mbW3NLC0tuXlLqYAJP16+fMkyMjIYY4zdu3ePdevWrcz82nfv3mXu7u7MysqKPX36lDFWUt01ISGhzuMl//H29mYCgYArRlhe4p2Xl8fOnTvHvX/z5k2dxUcYi4uLYz4+Ptw1kn7P+fv7s9u3b7OJEycyV1dXtmnTJm4fmgWAf4WFhczGxoZ7MCyRSMo8EGnTpg3XhZkKfvJPep+Yl5fHGCuZ+aRDhw5MRUWF/fTTT9x2IpGIhYWFMSsrq1KJOKl/qHt5AyctYNK2bVtuWZcuXTBv3jzY2tpi8eLF8PX1BQAsXrwYPj4+VDSNJ48fP4apqSnCw8O5Zb169eIKz8yfPx95eXlITEyEu7s7VzRN2qVSXl6el7gJYGpqiuPHj6OoqAienp6YNm0avv/+e5w5cwarVq3C1KlTcfnyZTx//hyPHj0CACpgwoPi4mJMmTIFVlZWyMjIQF5eHgoKCjBt2jS8evWK287Z2Rljx45FREQE3NzcEBgYCAMDAxgaGvIXfCP16tUreHt7AwBat24NRUVF/PHHHxCLxeUWHTx9+jS2b9+OrKwsAKAhUnUoNDQU/fv3h5eXFx4+fAjGGPc9Z2dnhx49emDbtm2wsbGBt7c3PD09AQAKCgp8ht2opaSkIDs7G6mpqYiMjOSuhUAgKPX5sre3h5ubG+7fvw/GGBX8rAcEAgGuXr2KYcOGoaCgAOPGjcOaNWvQpk0bBAQEIDAwEEDJvcaJEycgkUjQrl07nqMmFaFPVQMUHh6Ob775BjExMWVu7KVjqBwdHTF//nzY2tpi6dKlGDBgAHbt2kU3KDwJDg5Gz549MXHiRFhZWXEPPIyNjfH8+XMUFxdj8uTJiIuLw6xZs5CRkYEZM2YgJSWFkrd6wtLSErt27UJ+fj6OHz+OpUuXwt3dHYwxFBcXQ05ODh06dICuri7foTZaCgoK2L17N1q0aIFevXrBzs4Onp6eEIvFmDhxIl68eMFt26ZNG7i7u2Po0KHQ0NDgMerGKz4+Hg4ODli+fDm8vLxgYWEBKysrHDhwoNTDyXc9efIEHTt2pLGKdSw0NBTdunVD7969sXz5cvTp06fUg3uBQACxWAx9fX2sWrUKzs7OOHjwIDdLCql7b968ga2tLSIjI6GpqQlzc3N4e3sjNTW11HbS+0YtLS3o6+tTgwxP9u3bh1u3bpWqheDv749mzZpx4+mHDx+OJUuWICgoCLt370ZUVBS2bNmCbdu2wcvLC8bGxnyFTyqD55Z2UkVFRUXMwcGBCQQCZmlpyRYvXsxOnTpVZhupO3fusGbNmjEdHR0WHBxc1+ESxlhYWBjT1NRky5YtY4yVHieVnJzMunTpwnr27MmMjY3Zs2fPGGOMbdq0ifXp04fGv9VDz58/Z+7u7qxfv37s77//5pavXr2amZmZ0dyzPJF2xROLxSwsLIx16dKFOTs7s/T0dHb9+nVu/G9UVBQTiURszZo1bOrUqSwrK4vnyBuvmzdvMqFQyBwcHNjAgQOZt7c3CwoKYoaGhqxXr16lZtfIyMhgy5YtY8bGxlTboo6lp6eznj17siVLlpRZl5OTw1JSUhhjJZ9BaXfz+Ph4tmzZMvby5cu6DJW84/bt28zU1JS7Jt9++y0TCATswIEDpWr6SL87J0yYwGbPns3EYjENP6xD0r91mzZtWMuWLdmdO3e4+/iFCxeyyZMnM8ZKD1k7fvw4c3JyYubm5kxZWZn5+/vXfeCkyijpboA8PT3Zzp072ZUrV9jatWuZjo4O8/DwYD/99FOpL8ri4mK2cOFCpqyszJ48ecJjxI1XUFAQ09bWZmpqauzQoUPcuOx3x0tNnDiRmZqackWdpFJTU+s0VlJ5kZGRrG/fvqxPnz7s8ePH7LvvvmPKysrceG5S+6SfoXcLpb37wPHrr7/mprpJT09nt2/fZr1792YCgYA5ODgwNTU1mraoHpgyZQqztbVlw4cPZ5999hk7cuQIu3z5MjMyMmIGBgasf//+bMyYMczd3Z01a9aMPmM8iI2NZe3bty9VI+aff/5hGzduZK1bt2YdOnQoNVZYmhxQXQt+nT9/npmZmZUqyiqd0tLT05NFREQwxhhLSUlhq1evZjo6OvRAq469P3be1dWVtWrViv3zzz+MMcbmzp3LpkyZwq1/9x7/t99+Y/b29vQ71oBQ9/IGyMHBAevWrYOOjg7WrVuH0NBQWFhYYPHixXBxccGBAwcQGRmJ5ORk3L17F3fv3kX79u35DrvRCQwMRNeuXTF58mSMHj0aBw4cwM8//8yN1ZaOx//+++/h5+cHOzs7AP919aJuyvWXpaUldu/eDQUFBfTt2xerVq2Cn58fOnXqxHdojYZQKERcXBwmTJiAmzdvAvhv7Kinpyd+/fVXHDhwACKRCL169UKHDh1w4cIF/O9//8PUqVMRHBxM0xbxSDrN1/Dhw2Fra4tp06ZBR0cHhw8fRnZ2NkJCQjB69GgUFBQgLS0N3bt3x99//02fMR4kJSUhJycHaWlpKCgowL59+7Bw4ULcvn0bn3/+OVxcXDBlyhRcvnwZAoGAGxJFQ6PqXnZ2NgoKCgCUfMYKCwtRXFwMsVgMOTk57Nq1C2PGjMGyZcvg7OwMGxsbDBo0CEePHsX169dhZWXF87+g8ZBIJBAKhXj16hX27NmD6Oho3Lp1C/r6+vDw8EBgYCDy8/PRsmVLAEBWVhby8/PBGENcXBzGjx+PW7du0e9YQ8J31k+qZ/HixWzcuHFcK8+oUaOYlZUVmzhxIuvRowdTUFBghw8fpqlUeBIbG8tUVVXZwoULGWMlXSPHjRvHnJ2d2d69e7kWb+rC1bCFh4ezwYMHcxWwSd2Kjo5mzs7OrH///qWqyuvq6rKrV68yxkqmw7G1tWW2trbUe4Rnr1+/Zn/99VepZUlJSczKyort2bOHJSYmsmHDhrFu3bqx8+fP8xQlYYyxFy9esL1793Lvx48fz9TV1ZmZmRlTVlZm27dv5773UlNTWbt27di6dev4Cpewki79Li4u7Oeff2aMlUw9amlpyRgraVF9t9v4n3/+yb777ju2YMECduzYMZraso5JW7hDQkJY69at2RdffMHOnDnDrbe3t2dWVlasffv2XI8tQ0NDZmJiwmxsbJiNjQ0NjWqABIwxxnfiT6ruzz//xM6dO+Hn54fp06fDx8cH169fR7t27RAREYFLly7h888/p0qGPGCMISIiAmlpaXBxcYFIJIK8vDwyMzMxZ84cREdHw8PDA9OnT4e8vDz3tJM0TMXFxVSdl0dRUVGYN28elJSUYGBggLNnz+LYsWNwd3fntgkPD0f//v1hYGCAu3fvQiAQULGgOvbmzRt06tQJaWlp6NevHyZOnAhbW1u0bt0a58+fx7Zt23D69GmkpKRg1apVyMzMxKhRozBt2jQAJd+rdM3qhkgkwubNm7Fnzx4sXboUixcvBgCcOnUKYrEYzs7OMDU15bZPS0vD4MGDMXXqVEyePJmnqAkADBw4EDExMVixYgXi4uLg6+uLa9eulbttfn4+VFRU6jhCIhUeHg4XFxfMmDEDc+fORbNmzUqt79OnD65evYq1a9fCzc0NeXl5kEgkUFdXh5GRESwsLHiKnFQXJd0NmKurK/z8/GBkZISLFy+iY8eOfIfU6EVGRmLv3r2Ii4uDi4sLFi1aBOC/xOxDiTfdUBJSfZGRkZgzZw78/PywYcMGfP311wBQ6oGWdLocMzMzPkNttGJiYjBixAgoKCigsLAQdnZ2uHr1KlauXAltbW0cPXoUs2fPRr9+/fDs2TPMnz8fKioqOHbsGDQ1NfkOv9F58eIFDhw4gDNnzmDSpElYvnw5AJR5SMwYw5o1a3Dy5Elcu3YNJiYmfIXcaL169QoXLlxAnz59YGFhgS+//BKvX7+Grq4uLl++DCcnJ2RnZ0NdXR1isRgFBQVgjMHY2BinTp2ChoYG3X/UsYKCAkyYMAEGBgbYs2cPt7y4uBixsbFQVVWFoaEhBgwYgPDwcHh5ecHe3p7HiIks0MS/DZA0QVu2bBkSEhLw3XffoWPHjpS48Sw4OJgb36aiooLly5dDIpFg8eLFUFBQgEgkgpaWFvbs2YM5c+bg5MmTyM/Px4IFC2jsGyE10Lp1a+zbtw+zZ8/G9evX0aVLF3Tr1g1CoZBLElq3bs13mI2aiYkJTpw4wX0v9u/fn5vKUltbGxcuXEBycjLc3NzQtm1b7NmzB2pqapRw1zHp56VVq1aYNWsW1NXVsW/fPmhqamL27NmlEu779+/j5MmTOHbsGK5evUoJNw+ePHmCESNGoF27dmjevDksLCxw6tQpjB07FidPnoSTkxN69OgBNTU1KCoqgjGGvLw8qKurY8CAAfT54om8vDwSEhLQo0cPbpmvry8uX76MQ4cOQVNTE05OTrhw4QL69u0LNzc3+Pr6wsnJiceoSU1R0t0ASRPrzp07QyKRICAgAEOHDqWEm0chISFwdnbGwoULsWnTJkgkEujp6SEuLg4FBQVQVlaGvHzJx01LSwt79+7F+PHjceXKFUyZMgU6Ojo8/wsIadjMzc2xZ88ezJs3Dxs3bsTq1avRtWtXGrpRj1haWmLz5s1YuHAh9u/fjx9//BE+Pj548uQJRCIRRo0axSUGbdq04TvcRiU7Oxvy8vJQUVHhema1bNkSWVlZSEpKwo4dO5Cfn8/1Ijly5Ah++OEHNGnSBLdu3aJirTwIDw+Hq6trud2TT5w4AXl5efj7+6NTp04YOnQolJSUeIyWvCsvLw/JyckICQlBREQE/vrrLxw5cgTt27fHhg0boK6ujvXr12Pjxo24fPkyevfuDT09Pb7DJjVE3csbuGPHjmHmzJm4ceMGHB0d+Q6nUXrz5g3s7Ozw2Wef4dSpU9zy0aNHIyIiAgUFBTA1NcWYMWMwYcIEbn1WVhZycnLKjOMhhFRfVFQUFi1ahJSUFHz//ffUMlAPRUVFYc6cOQCANWvWoGvXrjxH1Li9ffsWI0aM4GbaUFdXBwBs3boV27dvx/fff4/w8HCcPn0a06ZN4xJvPz8/tGnTBvr6+nyG3yhV1D05Li4OSkpKaNq0KaZPn45bt25hzZo1GDp0KHdtCf9u3LiBPn36wNjYGGlpadi2bRvc3NxgYWGB4uJiDBw4EE2aNMGJEyf4DpXICDUBNHCfffYZHBwcKHHjkVgshpmZGQoLC3Hnzh0AJTcr58+fx/Dhw7F48WLExMRg48aNCA4O5vbR1NSk60aIjFlaWmLbtm1o3rw5fb7qKUtLS+zZswdCoRAbNmyAn58f3yE1ak2bNoWOjg52796Ns2fPAgB27NgBT09PnDhxAuPHj8e0adMwdOhQHD58GOvWrQMAdOvWjRJunki7J787xZevry+WLl2Kjh07wtHREcOHD8cvv/yCnj17YvHixbh48SKPEZP39erVCy9evMDp06fx4sULzJgxgyuOJicnBy0tLZibm0MikXBTyZKGjVq6PwHS7suEP9IKyoqKijAwMIC3tzeOHj3KVVB+/fo1TE1NsX//fkyfPp3naAn59BUVFUFRUZHvMEgFqFcCv8orwBUVFYXWrVvj6tWrOHPmDFxdXbntY2JisH37djx48ACXL1+Gjo4ODWvjSVZWFrp06YLu3bvj66+/LtU9uUePHlz35ClTpmDNmjWYNGkS1qxZg1atWvEdOvmIoqIibNiwAYcOHcKtW7dgaWnJd0hERijpJkRGyqugzBiDSCRCUlISBgwYgFWrVmHEiBF8h0oIIfVCeHg4Vq9ejR07dqBly5Z8h9NovFuAa+LEiRgyZAgAYNy4cfj999+xZMkSbNmypVQxQqBkOJV0ej7Cr8p0T9bT08Px48f5DpVU0rFjx/Do0SN4eXnh0qVL6NSpE98hERmiQmqEyMj7FZQdHR3RvXt3KCgo4Oeff+aeTBNCCClhZWWF48ePU6+EOlRRAa7jx49DIBDA29sb7du3x4gRI6CiosIl3i1atOAxcvIuaffkpKQkmJiYlCq0Je2e3KpVK0jb1qhXQv0WERGBgwcPQkdHBzdv3oS1tTXfIREZo5ZuQmRM2tWcMYYtW7bg6tWrWLt2Le7evUtPLQkhhPDmYwW4lJWVYWRkhBkzZnAFuL744guoqqryGDWpCuqe3HAlJSVBSUkJWlpafIdCagG1dBMiY5aWlti9ezcWLVqEvn37Ij09Hffu3aOEmxBCCK8qMz+wo6MjTp8+jenTp+Prr7+GgoICvvzySx6jJpX1fvdkSrgbFhq28WmjpJuQWmBpaYnt27dj6dKl2Lx5M9q1a8d3SIQQQhq5ys4PvH79evzyyy8oKiqCvb0932GTSqDuyYTUb9S9nJBaVFxcDAUFBb7DIIQQQgBQAa5PGXVPJqT+opZuQmoRJdyEEELqEyrA9emi7smE1F/U0k0IIYQQ0shRAS5CCKk91NJNCCGEENKIUQEuQgipXZR0E0IIIYQ0UlSAixBCah91LyeEEEIIacSoABchhNQuSroJIYQQQgghhJBaIuQ7AEIIIYQQQggh5FNFSTchhBBCCCGEEFJLKOkmhBBCCCGEEEJqCSXdhBBCCCGEEEJILaGkmxBCCCGEEEIIqSWUdBNCCCGEEEIIIbWEkm5CCCGEEEIIIaSWUNJNCCGEEEIIIYTUEkq6CSGEEEIIIYSQWkJJNyGEEEIIIYQQUkso6SaEEEIIIYQQQmrJ/wN0bAdsttTYkQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", @@ -1521,9 +1351,6 @@ "from pathlib import Path\n", "\n", "\n", - "cellsam_path = Path('/home/ulisrael/AllCell/livecell/cellsam')\n", - "cellpose_path = Path('/home/ulisrael/AllCell/livecell/cellpose')\n", - "\n", "cellpose_generalist_path = cellpose_path / 'general/'\n", "cellsam_generalist_path = cellsam_path / 'general/'\n", "cellsam_fewshot_path = cellsam_path / 'general_FS_10_FT/'\n", @@ -1556,7 +1383,7 @@ "\n", "# Load cell types\n", "celltypes = pd.read_csv(\n", - " '/home/ulisrael/cellSAM/paper_figures/metadata_LIVECELL.csv', \n", + " Path.cwd() / \"metadata_LIVECELL.csv\", \n", " header=None\n", ")\n", "celltypes_array = celltypes.values.flatten()\n", @@ -1667,13 +1494,6 @@ "plt.show()" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -1683,20 +1503,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAJRCAYAAABBUxDvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPClJREFUeJzt3XtYVWX+/vEbUE6iOEpCOgjmEZJE8RBW0oHEtIwyT2kSHqckLVILaySzBjNFLS1HJ7VpNPk6pVkZZeQhFfOAWqaZmgmpgEwJ4gEM1u8Pf+56Eg0Q2Kjv13Xta9rP+qy1PovZcu+1nr0XDpZlWQIA4P9ztHcDAIDqhWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBlQLjz76qPz9/Y0xBwcHvfDCC3bpB1cHXlflU8PeDVyL0tPTlZOTY9cevLy81Lhx48vaxoEDBzRlyhStWrVKR44ckbOzs4KCgtSnTx8NHz5cbm5uFdTtOQsXLlR0dLTtuYuLixo3bqyuXbvq73//u7y9vSt0f1caXlfl980332jixInasmWLsrKyVL9+fQUGBqpnz5564oknKnx/1R3BUMXS09MV0LKlTp05Y9c+3F1dtWfv3nL/I/7444/Vu3dvubi4aNCgQWrdurUKCwu1fv16jR07Vt9++63mzp1bwV2f8+KLL6pJkyY6c+aM1q9frzfffFMrV67Url275O7uXin7rO7S09PVslWAzpw+Zdc+XN3ctfe7PVfU62rjxo2644471LhxYw0bNkw+Pj7KyMjQpk2bNHPmTIIBlS8nJ0enzpzRa2381cyj4t/5lMb+/NMatfNH5eTklOsf8MGDB9WvXz/5+fnpiy++0PXXX29bNnLkSO3fv18ff/xxRbZsuOeee9S+fXtJ0tChQ1W/fn0lJibqgw8+UP/+/Sttv9VZTk6Ozpw+Jb9ecXK97vLesZfXmWPpOvRewhX3unr55Zfl6empLVu2qG7dusay7OzsCt/flYA5Bjtp5uGmIE93uzwuN5CmTJmi/Px8vfXWW8Y/XtuxNWum0aNH257/5z//UUhIiNzc3FSvXj3169dPGRkZl9XD7915552Szv1ikaRff/1VkyZNUtOmTeXi4iJ/f3+NHz9eBQUFxnpbt25VRESEvLy85ObmpiZNmmjw4MFGTXFxsWbMmKEbb7xRrq6u8vb21ogRI/TLL79UWP8VyfW6xnJv2MIuj8sNJHu9rg4cOKAbb7zxglCQpAYNGhjPFyxYoDvvvFMNGjSQi4uLAgMD9eabb16wnr+/v+69916tWbNG7du3l5ubm4KCgrRmzRpJ0vvvv6+goCC5uroqJCRE27dvL3PflYlgQJl9+OGHuuGGG9S5c+c/rX355Zc1aNAgNW/eXImJiXryySeVkpKiLl266Pjx4xXSz4EDByRJ9evXl3TuLGLChAlq166dpk+frrCwMCUkJKhfv362dbKzs9W1a1f9+OOPevbZZ/X6669rwIAB2rRpk7HtESNGaOzYsbrllls0c+ZMRUdHa9GiRYqIiNDZs2crpH+cY6/XlZ+fn7Zt26Zdu3b9ae2bb74pPz8/jR8/XtOmTZOvr68ef/xxzZ49+4La/fv36+GHH9Z9992nhIQE/fLLL7rvvvu0aNEiPfXUUxo4cKAmTpyoAwcOqE+fPiouLi5T35WJS0kok7y8PB0+fFj333//n9YeOnRI8fHxeumllzR+/Hjb+IMPPqi2bdvqjTfeMMZLKzc399ylkzNntGHDBr344otyc3PTvffeq507d+rtt9/W0KFDNW/ePEnS448/rgYNGmjq1KlavXq17rjjDm3cuFG//PKLPvvsM9tlKUl66aWXbP+9fv16/etf/9KiRYv08MMP28bvuOMOdevWTUuXLjXGUX72fF2NGTNG99xzj4KDg9WxY0fddtttuuuuu3THHXeoZs2aRu3atWuNye+YmBh169ZNiYmJGjlypFG7d+9ebdy4UaGhoZKkwMBARUREaNiwYfruu+9sl9v+8pe/aMSIEVq3bp1uv/32UvddmThjQJnk5eVJkmrXrv2nte+//76Ki4vVp08f5eTk2B4+Pj5q3ry5Vq9eXa4ewsPDdd1118nX11f9+vWTh4eHli1bpkaNGmnlypWSpNjYWGOdp59+WpJs16jPXzb46KOPLvrOf+nSpfL09NTdd99t9B8SEiIPD49y948L2fN1dffddys1NVU9e/bUzp07NWXKFEVERKhRo0ZasWKFUfv7UDj/BiUsLEw//PCDcnNzjdrAwEBbKEhSp06dJJ279Pn7OZjz4z/88EOZ+q5MnDGgTOrUqSNJOnHixJ/W7tu3T5ZlqXnz5iUu/+O7sdKaPXu2WrRooRo1asjb21stW7aUo+O59ziHDh2So6OjmjVrZqzj4+OjunXr6tChQ5KksLAw9erVSxMnTtT06dN1++23KzIyUg8//LBcXFxs/efm5l5wnfm8a3VisjLY+3XVoUMHvf/++yosLNTOnTu1bNkyTZ8+XQ899JB27NihwMBASdKGDRsUHx+v1NRUnTplfgIsNzdXnp6etud/nIA/v8zX17fE8eo0b0UwoEzq1Kmjhg0blup6bHFxsRwcHPTJJ5/IycnpguUeHh7l6qFjx47G5Z+SODg4/Ony//73v9q0aZM+/PBDffrppxo8eLCmTZumTZs2ycPDQ8XFxWrQoIEWLVpU4jauu+66cvWPC1WH15UkOTs7q0OHDurQoYNatGih6OhoLV26VPHx8Tpw4IDuuusutWrVSomJifL19ZWzs7NWrlyp6dOnXzBHUFJvlxq3LKvcfVc0ggFldu+992ru3LlKTU01TpX/qGnTprIsS02aNFGLFi2qpDc/Pz8VFxdr3759CggIsI1nZWXp+PHj8vPzM+pvvvlm3XzzzXr55Ze1ePFiDRgwQEuWLNHQoUPVtGlTff7557rlllsq5UtVMFW319X5Nx9Hjx6VdG5yvKCgQCtWrDDOBq7GS4rMMaDMxo0bp1q1amno0KHKysq6YPmBAwc0c+ZMPfjgg3JyctLEiRMveDdkWZb+97//VXhv3bt3lyTNmDHDGE9MTJQk9ejRQ9K50/Y/9hQcHCxJto+19unTR0VFRZo0adIF+/n1118r7FNVOMder6vVq1eX+G79/HxVy5YtJf32Tv/3tbm5uVqwYEGZ9ncl4IzBTvbnn75i9920aVMtXrxYffv2VUBAgPEN1Y0bN2rp0qV69NFHNXr0aL300kuKi4vTjz/+qMjISNWuXVsHDx7UsmXLNHz4cI0ZM6aCjuqcNm3aKCoqSnPnztXx48cVFhamzZs36+2331ZkZKTuuOMOSdLbb7+tN954Qw888ICaNm2qEydOaN68eapTp44tXMLCwjRixAglJCRox44d6tq1q2rWrKl9+/Zp6dKlmjlzph566KEK7f9ynTmWfsXu216vqyeeeEKnTp3SAw88oFatWtn2l5SUJH9/f9ttWLp27SpnZ2fdd999GjFihPLz8zVv3jw1aNDAdlZx1bBQpQ4dOmS5u7pakuz6cHd1tQ4dOnRZx/L9999bw4YNs/z9/S1nZ2erdu3a1i233GK9/vrr1pkzZ2x17733nnXrrbdatWrVsmrVqmW1atXKGjlypLV3715bTVRUlOXn52dsX5IVHx9ve75gwQJLkrVly5ZL9nX27Flr4sSJVpMmTayaNWtavr6+VlxcnNFTWlqa1b9/f6tx48aWi4uL1aBBA+vee++1tm7desH25s6da4WEhFhubm5W7dq1raCgIGvcuHHWkSNHyvgTqzyHDh2yXN3c7f66cnVzv+JeV5988ok1ePBgq1WrVpaHh4fl7OxsNWvWzHriiSesrKwsY90VK1ZYN910k+Xq6mr5+/tbr7zyijV//nxLknXw4EFbnZ+fn9WjR48Ljk2SNXLkSGPs4MGDliTr1VdfLcdPq3I4WFY1mvG4RlwtNztD9cLrChWFYAAAGJh8BgAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgKIFlWcrLy5NlWfZuBQCqHMFQghMnTsjT01MnTpywdysAUOUIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABjsHgyzZ8+Wv7+/XF1d1alTJ23evPmitd9++6169eolf39/OTg4aMaMGZfc9uTJk+Xg4KAnn3yyYpsGgKuYXYMhKSlJsbGxio+PV1pamtq0aaOIiAhlZ2eXWH/q1CndcMMNmjx5snx8fC657S1btuif//ynbrrppspoHQCuWnYNhsTERA0bNkzR0dEKDAzUnDlz5O7urvnz55dY36FDB7366qvq16+fXFxcLrrd/Px8DRgwQPPmzdNf/vKXymofAK5KdguGwsJCbdu2TeHh4b814+io8PBwpaamXta2R44cqR49ehjbvpSCggLl5eUZDwC4VtktGHJyclRUVCRvb29j3NvbW5mZmeXe7pIlS5SWlqaEhIRSr5OQkCBPT0/bw9fXt9z7B4Arnd0nnytSRkaGRo8erUWLFsnV1bXU68XFxSk3N9f2yMjIqMQuAaB6q2GvHXt5ecnJyUlZWVnGeFZW1p9OLF/Mtm3blJ2drXbt2tnGioqKtG7dOs2aNUsFBQVycnK6YD0XF5dLzlkAwLXEbsHg7OyskJAQpaSkKDIyUpJUXFyslJQUxcTElGubd911l7755htjLDo6Wq1atdIzzzxTYihUtPT0dOXk5FT6flB5vLy81LhxY3u3AdiN3YJBkmJjYxUVFaX27durY8eOmjFjhk6ePKno6GhJ0qBBg9SoUSPbfEFhYaF2795t++/Dhw9rx44d8vDwULNmzVS7dm21bt3a2EetWrVUv379C8YrQ3p6ugJattSpM2cqfV+oPO6urtqzdy/hgGuWXYOhb9++OnbsmCZMmKDMzEwFBwcrOTnZNiGdnp4uR8ffpkGOHDmitm3b2p5PnTpVU6dOVVhYmNasWVPV7V8gJydHp86c0Wtt/NXMw83e7aAc9uef1qidPyonJ4dgwDXLrsEgSTExMRe9dPTHX/b+/v6yLKtM27dHYDTzcFOQp3uV7xcAKsJV9akkAMDlIxgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgqGHvBgBUrfT0dOXk5Ni7DVwGLy8vNW7cuNK2TzAA15D09HS1bBWgM6dP2bsVXAZXN3ft/W5PpYUDwQBcQ3JycnTm9Cn59YqT63WV944TlefMsXQdei9BOTk5BAOAiuN6XWO5N2xh7zZQTTH5DAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAw2D0YZs+eLX9/f7m6uqpTp07avHnzRWu//fZb9erVS/7+/nJwcNCMGTMuqElISFCHDh1Uu3ZtNWjQQJGRkdq7d28lHgEAXF3sGgxJSUmKjY1VfHy80tLS1KZNG0VERCg7O7vE+lOnTumGG27Q5MmT5ePjU2LN2rVrNXLkSG3atEmrVq3S2bNn1bVrV508ebIyDwUArho17LnzxMREDRs2TNHR0ZKkOXPm6OOPP9b8+fP17LPPXlDfoUMHdejQQZJKXC5JycnJxvOFCxeqQYMG2rZtm7p06VLBRwAAVx+7nTEUFhZq27ZtCg8P/60ZR0eFh4crNTW1wvaTm5srSapXr95FawoKCpSXl2c8AOBaZbdgyMnJUVFRkby9vY1xb29vZWZmVsg+iouL9eSTT+qWW25R69atL1qXkJAgT09P28PX17dC9g8AVyK7Tz5XppEjR2rXrl1asmTJJevi4uKUm5tre2RkZFRRhwBQ/dhtjsHLy0tOTk7KysoyxrOysi46sVwWMTEx+uijj7Ru3Tr99a9/vWSti4uLXFxcLnufAHA1sNsZg7Ozs0JCQpSSkmIbKy4uVkpKikJDQ8u9XcuyFBMTo2XLlumLL75QkyZNKqJdALhm2PVTSbGxsYqKilL79u3VsWNHzZgxQydPnrR9SmnQoEFq1KiREhISJJ2bsN69e7ftvw8fPqwdO3bIw8NDzZo1k3Tu8tHixYv1wQcfqHbt2rb5Ck9PT7m5udnhKAHgymLXYOjbt6+OHTumCRMmKDMzU8HBwUpOTrZNSKenp8vR8beTmiNHjqht27a251OnTtXUqVMVFhamNWvWSJLefPNNSdLtt99u7GvBggV69NFHK/V4AOBqYNdgkM7NBcTExJS47Pwv+/P8/f1lWdYlt/dnywEAl3ZVfyoJAFB2BAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMBAMAwEAwAAAMdg+G2bNny9/fX66ururUqZM2b9580dpvv/1WvXr1kr+/vxwcHDRjxozL3iYAwGTXYEhKSlJsbKzi4+OVlpamNm3aKCIiQtnZ2SXWnzp1SjfccIMmT54sHx+fCtkmAMBk12BITEzUsGHDFB0drcDAQM2ZM0fu7u6aP39+ifUdOnTQq6++qn79+snFxaVCtgkAMNktGAoLC7Vt2zaFh4f/1oyjo8LDw5Wamlql2ywoKFBeXp7xAIBrld2CIScnR0VFRfL29jbGvb29lZmZWaXbTEhIkKenp+3h6+tbrv0DwNXA7pPP1UFcXJxyc3Ntj4yMDHu3BAB2U8NeO/by8pKTk5OysrKM8aysrItOLFfWNl1cXC46ZwEA1xq7nTE4OzsrJCREKSkptrHi4mKlpKQoNDS02mwTAK41djtjkKTY2FhFRUWpffv26tixo2bMmKGTJ08qOjpakjRo0CA1atRICQkJks5NLu/evdv234cPH9aOHTvk4eGhZs2alWqbAIBLs2sw9O3bV8eOHdOECROUmZmp4OBgJScn2yaP09PT5ej420nNkSNH1LZtW9vzqVOnaurUqQoLC9OaNWtKtU0AwKXZNRgkKSYmRjExMSUuO//L/jx/f39ZlnVZ2wQAXBqfSgIAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYAAAGGqUdYXi4mKtXbtWX375pQ4dOqRTp07puuuuU9u2bRUeHi5fX9/K6BMAUEVKfcZw+vRpvfTSS/L19VX37t31ySef6Pjx43JyctL+/fsVHx+vJk2aqHv37tq0aVNl9gwAqESlPmNo0aKFQkNDNW/ePN19992qWbPmBTWHDh3S4sWL1a9fPz333HMaNmxYhTYLAKh8pQ6Gzz77TAEBAZes8fPzU1xcnMaMGaP09PTLbg4AUPVKfSnpz0Lh92rWrKmmTZuWqyEAgH1V6KeSTp48qXXr1lXkJgEAVaxCg2H//v264447KnKTAIAqxvcYAACGMn2PoV69epdcXlRUdFnNAADsr0zBUFBQoMcee0xBQUElLj906JAmTpxYIY0BAOyjTMEQHBwsX19fRUVFlbh8586dBAMAXOHKNMfQo0cPHT9+/KLL69Wrp0GDBl1uTwAAOyrTGcP48eMvudzX11cLFiy4rIYAAPbFp5IAAIYyBUOXLl2MS0krVqzQ6dOnK7onAIAdlSkY1q9fr8LCQtvzgQMH6ujRoxXeFADAfi7rUpJlWRXVBwCgmmCOAQBgKPNfcPv000/l6ekp6dxfc0tJSdGuXbuMmp49e1ZMdwCAKlfmYPjjl9tGjBhhPHdwcODWGABwBStTMBQXF1dWHwCAaoI5BgCAgWAAABgIBgCAgWAAABgIBgCA4bKD4fHHH1dOTk5F9AIAqAYuOxj+85//KC8vryJ6AQBUA5cdDNwvCQCuLswxAAAMZb4lxh+dOHGiIvoAAFQTnDEAAAwEAwDAQDAAAAwEAwDAYPdgmD17tvz9/eXq6qpOnTpp8+bNl6xfunSpWrVqJVdXVwUFBWnlypXG8vz8fMXExOivf/2r3NzcFBgYqDlz5lTmIQDAVaVCg+HAgQO68847S12flJSk2NhYxcfHKy0tTW3atFFERISys7NLrN+4caP69++vIUOGaPv27YqMjFRkZKTxF+RiY2OVnJys//znP9qzZ4+efPJJxcTEaMWKFZd9fABwLajQYMjPz9fatWtLXZ+YmKhhw4YpOjra9s7e3d1d8+fPL7F+5syZ6tatm8aOHauAgABNmjRJ7dq106xZs2w1GzduVFRUlG6//Xb5+/tr+PDhatOmzZ+eiQAAzinT9xhee+21Sy4/fPhwqbdVWFiobdu2KS4uzjbm6Oio8PBwpaamlrhOamqqYmNjjbGIiAgtX77c9rxz585asWKFBg8erIYNG2rNmjX6/vvvNX369Iv2UlBQoIKCAttzbvEB4FpWpmB48skndf3118vZ2bnE5YWFhaXeVk5OjoqKiuTt7W2Me3t767vvvitxnczMzBLrMzMzbc9ff/11DR8+XH/9619Vo0YNOTo6at68eerSpctFe0lISNDEiRNL3TsAXM3KFAx+fn565ZVX1KdPnxKX79ixQyEhIRXSWHm9/vrr2rRpk1asWCE/Pz+tW7dOI0eOVMOGDRUeHl7iOnFxccaZSF5ennx9fauqZQCoVsoUDCEhIdq2bdtFg8HBwaHUN9Xz8vKSk5OTsrKyjPGsrCz5+PiUuI6Pj88l60+fPq3x48dr2bJl6tGjhyTppptu0o4dOzR16tSLBoOLi4tcXFxK1TcAXO3KNPn84osvqnfv3hddHhgYqIMHD5ZqW87OzgoJCVFKSoptrLi4WCkpKQoNDS1xndDQUKNeklatWmWrP3v2rM6ePStHR/OwnJycVFxcXKq+AOBaV6YzhsDAwEsur1mzpvz8/Eq9vdjYWEVFRal9+/bq2LGjZsyYoZMnTyo6OlqSNGjQIDVq1EgJCQmSpNGjRyssLEzTpk1Tjx49tGTJEm3dulVz586VJNWpU0dhYWEaO3as3Nzc5Ofnp7Vr1+rf//63EhMTy3KoAHDNuuy7q16Ovn376tixY5owYYIyMzMVHBys5ORk2wRzenq68e6/c+fOWrx4sZ5//nmNHz9ezZs31/Lly9W6dWtbzZIlSxQXF6cBAwbo559/lp+fn15++WX97W9/q/LjA4ArUamDoVu3bnrhhRd08803X7LuxIkTeuONN+Th4aGRI0f+6XZjYmIUExNT4rI1a9ZcMNa7d+9LXs7y8fHRggUL/nS/AICSlToYevfurV69esnT01P33Xef2rdvr4YNG8rV1VW//PKLdu/erfXr12vlypXq0aOHXn311crsGwBQSUodDEOGDNHAgQO1dOlSJSUlae7cucrNzZV07tNIgYGBioiI0JYtWxQQEFBpDQMAKleZ5hhcXFw0cOBADRw4UJKUm5ur06dPq379+qpZs2alNAgAqFqXNfns6ekpT0/PiuoFAFAN2P222wCA6oVgAAAYCAYAgKHMwVBUVKR169bp+PHjldAOAMDeyhwMTk5O6tq1q3755ZfK6AcAYGflupTUunVr/fDDDxXdCwCgGihXMLz00ksaM2aMPvroIx09elR5eXnGAwBw5SrX9xi6d+8uSerZs6ccHBxs45ZlycHBQUVFRRXTHQCgypUrGFavXl3RfQAAqolyBUNYWFhF9wEAqCbKfUuM48eP66233tKePXskSTfeeKMGDx7MLTIA4ApXrsnnrVu3qmnTppo+fbp+/vln/fzzz0pMTFTTpk2VlpZW0T0CAKpQuc4YnnrqKfXs2VPz5s1TjRrnNvHrr79q6NChevLJJ7Vu3boKbRIAUHXKFQxbt241QkGSatSooXHjxql9+/YV1hwAoOqV61JSnTp1lJ6efsF4RkaGateufdlNAQDsp1zB0LdvXw0ZMkRJSUnKyMhQRkaGlixZoqFDh6p///4V3SMAoAqV61LS1KlT5eDgoEGDBunXX3+VJNWsWVOPPfaYJk+eXKENAgCqVpmDoaioSJs2bdILL7yghIQEHThwQJLUtGlTubu7V3iDAICqVeZgOH931T179qhJkyYKCgqqjL4AAHbC3VUBAAburgoAMHB3VQCAgburAgAMZQ6Gs2fP6sUXX9ScOXPUvHnzyugJAGBHZZ5jqFmzpr7++uvK6AUAUA2Ua/J54MCBeuuttyq6FwBANVCuOYZff/1V8+fP1+eff66QkBDVqlXLWJ6YmFghzQEAql65gmHXrl1q166dJOn77783lv3+U0oAgCsPn0oCABjKNcdwKdnZ2RW9SQBAFSpTMLi7u+vYsWO25z169NDRo0dtz7OysnT99ddXXHcAgCpXpmA4c+aMLMuyPV+3bp1Onz5t1Px+OQDgylPhl5KYfAaAK1uFBwMA4MpWpmBwcHAwzgj++BwAcOUr08dVLctSixYtbGGQn5+vtm3bytHR0bYcAHBlK1MwLFiwoLL6AABUE2UKhqioqMrqAwBQTTD5DAAwEAwAAAPBAAAwEAwAAAPBAAAwlOu220VFRVq4cKFSUlKUnZ2t4uJiY/kXX3xRIc0BAKpeuYJh9OjRWrhwoXr06KHWrVvz7WcAuIqUKxiWLFmi//u//1P37t0ruh8AgJ2Va47B2dlZzZo1q+heAADVQLmC4emnn9bMmTO5NxIAXIXKdSlp/fr1Wr16tT755BPdeOONqlmzprH8/fffr5DmAABVr1zBULduXT3wwAMV3QsAoBooVzBwl1UAuHrZ/Qtus2fPlr+/v1xdXdWpUydt3rz5kvVLly5Vq1at5OrqqqCgIK1cufKCmj179qhnz57y9PRUrVq11KFDB6Wnp1fWIQDAVaXcwfDf//5Xffr00c0336x27doZj9JKSkpSbGys4uPjlZaWpjZt2igiIkLZ2dkl1m/cuFH9+/fXkCFDtH37dkVGRioyMlK7du2y1Rw4cEC33nqrWrVqpTVr1ujrr7/W3//+d7m6upb3UAHgmlKuYHjttdcUHR0tb29vbd++XR07dlT9+vX1ww8/6J577in1dhITEzVs2DBFR0crMDBQc+bMkbu7u+bPn19i/cyZM9WtWzeNHTtWAQEBmjRpktq1a6dZs2bZap577jl1795dU6ZMUdu2bdW0aVP17NlTDRo0KM+hAsA1p1zB8MYbb2ju3Ll6/fXX5ezsrHHjxmnVqlUaNWqUcnNzS7WNwsJCbdu2TeHh4b814+io8PBwpaamlrhOamqqUS9JERERtvri4mJ9/PHHatGihSIiItSgQQN16tRJy5cvv2QvBQUFysvLMx4AcK0qVzCkp6erc+fOkiQ3NzedOHFCkvTII4/o3XffLdU2cnJyVFRUJG9vb2Pc29tbmZmZJa6TmZl5yfrs7Gzl5+dr8uTJ6tatmz777DM98MADevDBB7V27dqL9pKQkCBPT0/bw9fXt1THAABXo3IFg4+Pj37++WdJUuPGjbVp0yZJ0sGDB+36pbfzN/O7//779dRTTyk4OFjPPvus7r33Xs2ZM+ei68XFxSk3N9f2yMjIqKqWAaDaKVcw3HnnnVqxYoUkKTo6Wk899ZTuvvtu9e3bt9Tfb/Dy8pKTk5OysrKM8aysLPn4+JS4jo+PzyXrvby8VKNGDQUGBho1AQEBl/xUkouLi+rUqWM8AOBaVa5gmDt3rp577jlJ0siRIzV//nwFBAToxRdf1JtvvlmqbTg7OyskJEQpKSm2seLiYqWkpCg0NLTEdUJDQ416SVq1apWt3tnZWR06dNDevXuNmu+//15+fn6lPj4AuJaV6wtujo6OcnT8LVP69eunfv36lXk7sbGxioqKUvv27dWxY0fNmDFDJ0+eVHR0tCRp0KBBatSokRISEiSdu913WFiYpk2bph49emjJkiXaunWr5s6da9vm2LFj1bdvX3Xp0kV33HGHkpOT9eGHH2rNmjXlOVQAuOaU+3sMX375pQYOHKjQ0FAdPnxYkvTOO+9o/fr1pd5G3759NXXqVE2YMEHBwcHasWOHkpOTbRPM6enpOnr0qK2+c+fOWrx4sebOnas2bdrov//9r5YvX67WrVvbah544AHNmTNHU6ZMUVBQkP71r3/pvffe06233lreQwWAa0q5zhjee+89PfLIIxowYIC2b9+ugoICSVJubq7+8Y9/lPht5IuJiYlRTExMictKepffu3dv9e7d+5LbHDx4sAYPHlzqHgAAvynXGcNLL72kOXPmaN68ecadVW+55RalpaVVWHMAgKpXrmDYu3evunTpcsG4p6enjh8/frk9AQDsqNzfY9i/f/8F4+vXr9cNN9xw2U0BAOynXMEwbNgwjR49Wl999ZUcHBx05MgRLVq0SGPGjNFjjz1W0T0CAKpQuSafn332WRUXF+uuu+7SqVOn1KVLF7m4uGjMmDF64oknKrpHAEAVKlcwODg46LnnntPYsWO1f/9+5efnKzAwUB4eHhXdHwCgipUrGM5zdna+4PYTAIArW5mCobTfDbjY31MAAFR/ZQqGhQsXys/PT23btrXrXVQBAJWnTMHw2GOP6d1339XBgwcVHR2tgQMHql69epXVGwDADsr0cdXZs2fr6NGjGjdunD788EP5+vqqT58++vTTTzmDAICrRJm/x+Di4qL+/ftr1apV2r17t2688UY9/vjj8vf3V35+fmX0CACoQuW+u6p07vbbDg4OsixLRUVFFdUTAMCOyhwMBQUFevfdd3X33XerRYsW+uabbzRr1iylp6fzPQYAuAqUafL58ccf15IlS+Tr66vBgwfr3XfflZeXV2X1BgCwgzIFw5w5c9S4cWPdcMMNWrt2rdauXVti3fvvv18hzQEAql6ZgmHQoEFycHCorF4AANVAmb/gBgC4ul3Wp5IAAFcfggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYCAYAAAGggEAYKgWwTB79mz5+/vL1dVVnTp10ubNmy9Zv3TpUrVq1Uqurq4KCgrSypUrL1r7t7/9TQ4ODpoxY0YFdw0AVye7B0NSUpJiY2MVHx+vtLQ0tWnTRhEREcrOzi6xfuPGjerfv7+GDBmi7du3KzIyUpGRkdq1a9cFtcuWLdOmTZvUsGHDyj4MALhq2D0YEhMTNWzYMEVHRyswMFBz5syRu7u75s+fX2L9zJkz1a1bN40dO1YBAQGaNGmS2rVrp1mzZhl1hw8f1hNPPKFFixapZs2aVXEoAHBVsGswFBYWatu2bQoPD7eNOTo6Kjw8XKmpqSWuk5qaatRLUkREhFFfXFysRx55RGPHjtWNN974p30UFBQoLy/PeADAtcquwZCTk6OioiJ5e3sb497e3srMzCxxnczMzD+tf+WVV1SjRg2NGjWqVH0kJCTI09PT9vD19S3jkQDA1cPul5Iq2rZt2zRz5kwtXLhQDg4OpVonLi5Oubm5tkdGRkYldwkA1Zddg8HLy0tOTk7KysoyxrOysuTj41PiOj4+Ppes//LLL5Wdna3GjRurRo0aqlGjhg4dOqSnn35a/v7+JW7TxcVFderUMR4AcK2yazA4OzsrJCREKSkptrHi4mKlpKQoNDS0xHVCQ0ONeklatWqVrf6RRx7R119/rR07dtgeDRs21NixY/Xpp59W3sEAwFWihr0biI2NVVRUlNq3b6+OHTtqxowZOnnypKKjoyVJgwYNUqNGjZSQkCBJGj16tMLCwjRt2jT16NFDS5Ys0datWzV37lxJUv369VW/fn1jHzVr1pSPj49atmxZtQcHAFcguwdD3759dezYMU2YMEGZmZkKDg5WcnKybYI5PT1djo6/ndh07txZixcv1vPPP6/x48erefPmWr58uVq3bm2vQwCAq4rdg0GSYmJiFBMTU+KyNWvWXDDWu3dv9e7du9Tb//HHH8vZGQBce666TyUBAC4PwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMBAMAAADwQAAMFSLYJg9e7b8/f3l6uqqTp06afPmzZesX7p0qVq1aiVXV1cFBQVp5cqVtmVnz57VM888o6CgINWqVUsNGzbUoEGDdOTIkco+DAC4Ktg9GJKSkhQbG6v4+HilpaWpTZs2ioiIUHZ2don1GzduVP/+/TVkyBBt375dkZGRioyM1K5duyRJp06dUlpamv7+978rLS1N77//vvbu3auePXtW5WEBwBXL7sGQmJioYcOGKTo6WoGBgZozZ47c3d01f/78Eutnzpypbt26aezYsQoICNCkSZPUrl07zZo1S5Lk6empVatWqU+fPmrZsqVuvvlmzZo1S9u2bVN6enpVHhoAXJHsGgyFhYXatm2bwsPDbWOOjo4KDw9XampqieukpqYa9ZIUERFx0XpJys3NlYODg+rWrVvi8oKCAuXl5RkPALhW2TUYcnJyVFRUJG9vb2Pc29tbmZmZJa6TmZlZpvozZ87omWeeUf/+/VWnTp0SaxISEuTp6Wl7+Pr6luNoAODqYPdLSZXp7Nmz6tOnjyzL0ptvvnnRuri4OOXm5toeGRkZVdglAFQvNey5cy8vLzk5OSkrK8sYz8rKko+PT4nr+Pj4lKr+fCgcOnRIX3zxxUXPFiTJxcVFLi4u5TwKALi62PWMwdnZWSEhIUpJSbGNFRcXKyUlRaGhoSWuExoaatRL0qpVq4z686Gwb98+ff7556pfv37lHAAAXIXsesYgSbGxsYqKilL79u3VsWNHzZgxQydPnlR0dLQkadCgQWrUqJESEhIkSaNHj1ZYWJimTZumHj16aMmSJdq6davmzp0r6VwoPPTQQ0pLS9NHH32koqIi2/xDvXr15OzsbJ8DBYArhN2DoW/fvjp27JgmTJigzMxMBQcHKzk52TbBnJ6eLkfH305sOnfurMWLF+v555/X+PHj1bx5cy1fvlytW7eWJB0+fFgrVqyQJAUHBxv7Wr16tW6//fYqOS4AuFLZPRgkKSYmRjExMSUuW7NmzQVjvXv3Vu/evUus9/f3l2VZFdkeAFxTrupPJQEAyo5gAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgKFaBMPs2bPl7+8vV1dXderUSZs3b75k/dKlS9WqVSu5uroqKChIK1euNJZblqUJEybo+uuvl5ubm8LDw7Vv377KPAQAuGrYPRiSkpIUGxur+Ph4paWlqU2bNoqIiFB2dnaJ9Rs3blT//v01ZMgQbd++XZGRkYqMjNSuXbtsNVOmTNFrr72mOXPm6KuvvlKtWrUUERGhM2fOVNVhAcAVy+7BkJiYqGHDhik6OlqBgYGaM2eO3N3dNX/+/BLrZ86cqW7dumns2LEKCAjQpEmT1K5dO82aNUvSubOFGTNm6Pnnn9f999+vm266Sf/+97915MgRLV++vAqPDACuTDXsufPCwkJt27ZNcXFxtjFHR0eFh4crNTW1xHVSU1MVGxtrjEVERNh+6R88eFCZmZkKDw+3Lff09FSnTp2Umpqqfv36XbDNgoICFRQU2J7n5uZKkvLy8sp0PPn5+ZKkb3JP6tSvRWVaF9XDgZPnzirz8/PL/P//leD8a/TUkX0qKjxt525QHgU5P0kq/2u0du3acnBwuGSNXYMhJydHRUVF8vb2Nsa9vb313XfflbhOZmZmifWZmZm25efHLlbzRwkJCZo4ceIF476+vqU7kD94Zld6udZD9REWFmbvFipVxopEe7eAy1Te12hubq7q1KlzyRq7BkN1ERcXZ5yFFBcX6+eff1b9+vX/NFmBy5GXlydfX19lZGT86T9WoCLUrl37T2vsGgxeXl5ycnJSVlaWMZ6VlSUfH58S1/Hx8blk/fn/zcrK0vXXX2/UBAcHl7hNFxcXubi4GGN169Yty6EAl6VOnToEA6oNu04+Ozs7KyQkRCkpKbax4uJipaSkKDQ0tMR1QkNDjXpJWrVqla2+SZMm8vHxMWry8vL01VdfXXSbAIDfsexsyZIllouLi7Vw4UJr9+7d1vDhw626detamZmZlmVZ1iOPPGI9++yztvoNGzZYNWrUsKZOnWrt2bPHio+Pt2rWrGl98803tprJkydbdevWtT744APr66+/tu6//36rSZMm1unTp6v8+IBLyc3NtSRZubm59m4FsLH7HEPfvn117NgxTZgwQZmZmQoODlZycrJt8jg9PV2Ojr+d2HTu3FmLFy/W888/r/Hjx6t58+Zavny5WrdubasZN26cTp48qeHDh+v48eO69dZblZycLFdX1yo/PuBSXFxcFB8ff8GlTMCeHCzLsuzdBACg+rD7F9wAANULwQAAMBAMAAADwQD8fwsXLqwW31+pqD4cHBxst4r58ccf5eDgoB07dlz2dnH1IxhQLTz66KNycHDQ5MmTjfHly5dX2bfP+/btq++//77S97N69Wp1795d9evXl7u7uwIDA/X000/r8OHDlb5voDQIBlQbrq6ueuWVV/TLL79U+b7Pnj0rNzc3NWjQoFL3889//lPh4eHy8fHRe++9p927d2vOnDnKzc3VtGnTKnXfQGkRDKg2zv/CTEhIuGTd+vXrddttt8nNzU2+vr4aNWqUTp48aVv++0so59WtW1cLFy6U9NtllaSkJIWFhcnV1VWLFi264BLOCy+8oODgYP3zn/+Ur6+v3N3d1adPH9vddyVpzZo16tixo2rVqqW6devqlltu0aFDh0rs+6efftKoUaM0atQozZ8/X7fffrv8/f3VpUsX/etf/9KECROM+k8//VQBAQHy8PBQt27ddPToUduyLVu26O6775aXl5c8PT0VFhamtLS0S/7c/mjXrl2655575OHhIW9vbz3yyCPKycmxLb/99ts1atQojRs3TvXq1ZOPj49eeOEFYxvfffedbr31Vrm6uiowMFCff/75BT//jIwM9enTR3Xr1lW9evV0//3368cffyxTr6haBAOqDScnJ/3jH//Q66+/rp9++qnEmgMHDqhbt27q1auXvv76ayUlJWn9+vWKiYkp8/6effZZjR49Wnv27FFERESJNfv379f//d//6cMPP1RycrK2b9+uxx9/XJL066+/KjIyUmFhYfr666+Vmpqq4cOHX/TS19KlS1VYWKhx48aVuPz3oXTq1ClNnTpV77zzjtatW6f09HSNGTPGtvzEiROKiorS+vXrtWnTJjVv3lzdu3fXiRMnSnXsx48f15133qm2bdtq69atSk5OVlZWlvr06WPUvf3226pVq5a++uorTZkyRS+++KJWrVolSSoqKlJkZKTc3d311Vdfae7cuXruueeM9c+ePauIiAjVrl1bX375pTZs2GALusLCwlL1Cjuw91evAcuyrKioKOv++++3LMuybr75Zmvw4MGWZVnWsmXLrN+/TIcMGWINHz7cWPfLL7+0HB0dbbc8kWQtW7bMqPH09LQWLFhgWZZlHTx40JJkzZgxw6hZsGCB5enpaXseHx9vOTk5WT/99JNt7JNPPrEcHR2to0ePWv/73/8sSdaaNWtKdYyPPfaYVadOnT+tW7BggSXJ2r9/v21s9uzZlre390XXKSoqsmrXrm19+OGHtrHf/xzOH/P27dsty7KsSZMmWV27djW2kZGRYUmy9u7da1mWZYWFhVm33nqrUdOhQwfrmWeesSzr3M+iRo0a1tGjR23LV61aZez3nXfesVq2bGkVFxfbagoKCiw3Nzfr008//dOfBeyDMwZUO6+88orefvtt7dmz54JlO3fu1MKFC+Xh4WF7REREqLi4WAcPHizTftq3b/+nNY0bN1ajRo1sz0NDQ1VcXKy9e/eqXr16evTRRxUREaH77rtPM2fONC73/JFlWaWeSHd3d1fTpk1tz6+//nrjz91mZWVp2LBhat68uTw9PVWnTh3l5+crPb10fwtk586dWr16tfFzbNWqlaRzZ2Xn3XTTTcZ6v+9j79698vX1Ne6E3LFjxwv2s3//ftWuXdu2n3r16unMmTPGflC92P1eScAfdenSRREREYqLi9Ojjz5qLMvPz9eIESM0atSoC9Zr3LixpHNzDNYf7vRy9uzZC+pr1ap12b0uWLBAo0aNUnJyspKSkvT8889r1apVuvnmmy+obdGihXJzc3X06FHjlvAlqVmzpvH8j8cUFRWl//3vf5o5c6b8/Pzk4uKi0NDQUl+eyc/P13333adXXnnlgmW/762kPoqLi0u1j/P7CQkJ0aJFiy5Ydt1115V6O6haBAOqpcmTJys4OFgtW7Y0xtu1a6fdu3erWbNmF133uuuuM96579u3T6dOnSpXH+np6Tpy5IgaNmwoSdq0aZMcHR2Nvtq2bau2bdsqLi5OoaGhWrx4cYnB8NBDD+nZZ5/VlClTNH369AuWHz9+vNTfX9iwYYPeeOMNde/eXdK5Cd7fTxz/mXbt2um9996Tv7+/atQo36+Bli1bKiMjQ1lZWbabXm7ZsuWC/SQlJalBgwb8vYkrCJeSUC0FBQVpwIABeu2114zxZ555Rhs3blRMTIx27Nihffv26YMPPjAmn++8807NmjVL27dv19atW/W3v/3tgne+peXq6qqoqCjt3LlTX375pUaNGqU+ffrIx8dHBw8eVFxcnFJTU3Xo0CF99tln2rdvnwICAkrclq+vr6ZPn66ZM2dqyJAhWrt2rQ4dOqQNGzZoxIgRmjRpUqn7at68ud555x3t2bNHX331lQYMGCA3N7dSrz9y5Ej9/PPP6t+/v7Zs2aIDBw7o008/VXR0tIqKSvf3yu+++241bdpUUVFR+vrrr7VhwwY9//zzkmS7ZDZgwAB5eXnp/vvv15dffqmDBw9qzZo1GjVq1EU/YAD7IxhQbb344osXXLa46aabtHbtWn3//fe67bbb1LZtW02YMMH2jl6Spk2bJl9fX9122216+OGHNWbMGLm7u5erh2bNmunBBx9U9+7d1bVrV91000164403JJ2bB/juu+/Uq1cvtWjRQsOHD9fIkSM1YsSIi27v8ccf12effabDhw/rgQceUKtWrTR06FDVqVPH+NTRn3nrrbf0yy+/qF27dnrkkUc0atSoMn0Ho2HDhtqwYYOKiorUtWtXBQUF6cknn1TdunWN29xfipOTk5YvX678/Hx16NBBQ4cOtX0q6fwt7t3d3bVu3To1btxYDz74oAICAjRkyBCdOXOGM4hqjNtuAxfxwgsvaPny5dxGogw2bNigW2+9Vfv37zcmz3FlYY4BQLktW7ZMHh4eat68ufbv36/Ro0frlltuIRSucAQDgHI7ceKEnnnmGaWnp8vLy0vh4eHc2uMqwKUkAICByWcAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgOH/AenMPImTgATuAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "cp_mean = 1- 0.8612\n", "cs_mean = 1- 0.8723\n", @@ -1723,32 +1532,11 @@ "# fig.savefig(\"mean_error_neurips_dataset.svg\", format=\"svg\", dpi=300)\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { "kernelspec": { - "display_name": "cs_vvlab", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -1762,9 +1550,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.16" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 5dcb9555dbd53db3328d86d34a3d5d0a156ab27d Mon Sep 17 00:00:00 2001 From: Ross Barnowski Date: Tue, 18 Feb 2025 13:43:17 -0800 Subject: [PATCH 5/7] Add more cruft to .gitignore. --- .gitignore | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/.gitignore b/.gitignore index a20fd7a..ddb3e5b 100644 --- a/.gitignore +++ b/.gitignore @@ -2,6 +2,7 @@ __pycache__/ build/ *.egg-info/ +*.ipynb_checkpoints/ # Documentation cruft docs/_build @@ -10,3 +11,6 @@ docs/sg_execution_times.rst # Editor cruft *.swp + +# Apple cruft +*.DS_Store From 00c2fecaf7e12c2cf16b81b0ffb9613785805b6f Mon Sep 17 00:00:00 2001 From: Ross Barnowski Date: Tue, 18 Feb 2025 13:43:56 -0800 Subject: [PATCH 6/7] Rm apple cruft. --- paper_figures/eval_results/.DS_Store | Bin 6148 -> 0 bytes paper_figures/eval_results/cellpose/.DS_Store | Bin 6148 -> 0 bytes paper_figures/eval_results/cellsam/.DS_Store | Bin 6148 -> 0 bytes paper_figures/livecell/.DS_Store | Bin 6148 -> 0 bytes paper_figures/livecell/cellsam/.DS_Store | Bin 6148 -> 0 bytes 5 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 paper_figures/eval_results/.DS_Store delete mode 100644 paper_figures/eval_results/cellpose/.DS_Store delete mode 100644 paper_figures/eval_results/cellsam/.DS_Store delete mode 100644 paper_figures/livecell/.DS_Store delete mode 100644 paper_figures/livecell/cellsam/.DS_Store diff --git a/paper_figures/eval_results/.DS_Store b/paper_figures/eval_results/.DS_Store deleted file mode 100644 index 60daaffa0271b888460600c8c0b2039e90a66acc..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6148 zcmeHKOHRWu5FM9FgtF;^1xsI{HwaZYK{-H4Qb1KAM~c|z25<>Jmte~gI15YOcuYu| zRAPlHG*gYAGoG<0&yn3BBD1{D7esR+ilB^>6Eq{j|g3!flVC_7PpI4=E_Rm=JR>Xr*uh@7B1zn+4k+`0a+$$h81Gt^J`>1-I>O_!*-dU)~a?#xrVpJexY^-?vDoT`d4 zpbRJjhsFRO?~v$JP+Mg{8BhjV2KaoiP{uf5Bj}F~G`<7?PGRes#=my*rs$P+Mg{8R#=`B#(2x|1bB~ z|NS6+QU;WPf5m{ACaYwLR|Ow;=V>nO+;q4Dknr^A{s#%2fJuC2#>RNWFVFUpmB4Y)YW8O*k;l3 zRm0z8fWO@~74%3;vJ`#4>2WyP*euIyo5RW*;%NE&dK!C_KX@#zzV470gwqaHbV)bR zTe_gSyesP5+8SFb9tyWt_0jc+Qha;xDMm{)Hb}F_D@^qri_sokBheD=J+!11Cmd!q zed_aza%&{FjdMmBe(M|N=_ut~Rg?i`KpE&|fDc&6Xy2o@%78MU46GU8^C5vUrh=_U zcXXg}B>->;vlH~Wmf)B~FcoY)VgzD*DA0!*DKU%>hdmL$RIv5v!^ueTVPs_^6^e1I zWB$aslSw^ls|+XuAp=|fam@GsS%3W>2I-SBpbY#g2Fx&ggd}gu=NNFM1KSv4caIJzskTTZ!B?8 diff --git a/paper_figures/eval_results/cellsam/.DS_Store b/paper_figures/eval_results/cellsam/.DS_Store deleted file mode 100644 index 24d014507f44a5a13dc52485c69a9e3773fbea24..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6148 zcmeHK!A`?440WIq(~!`P9DC-%b_c0Ug&!#53UoySsapqVJNFOx0qz{Q@D=7WTrpKsC)4Z&5jPRN9`uO&F zw#=*8z-w|pzuE_;!8sMAO4oEj8ElWbzI`c&k0ig=IV|VseUk+i3cPxe0@toJs)CX? zjtfcXG6`*Zz}G5ZXV8MCeCmd^oQ_xdh56UVGs%DHoMFzt`-XY?kHxu~Y%c@6!6B`E zL9@nyF<=b*Fu>!1yNsFhaK%v^(4Y#)^qzEr=0_lTe_9I(=d|2}ggd zeu-i&DBa-Eu@*!R#Qq3)8q632f6Bl& DxIBrC diff --git a/paper_figures/livecell/.DS_Store b/paper_figures/livecell/.DS_Store deleted file mode 100644 index 5404f13ba2ccccc8944a76483fdd93338706104d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6148 zcmeHKOHRW;4E2;s1a;FT%UL2;L|h=P!Uf0$NI!x_qC~3L&vjU^L*f8PoQvnNl{8H& zu|lY_E6>1}JifbZr%hydxG$*12$~d{ga71{WbtDtD@S=-*wA9d!w$*c5jJ(b8 z9~qE`yQVEw`0YKvbyK&J@a+vSp#z_~$@5j!tl}DlkH@#~#c{vQul(AVwCK;g0qC_=`%X*HOwb)J|@P1F<=aw3j?UxEXhpJMq|Jj zFa|mX`1|0YjG1B(jGqn+u>}B5VUB`1_YxfA6*I*kh!u#FP@sf5Z84mL!|v5DQw)L< zPEMN-rzbn@P+UA6`}^olE)%rT7%&Eg3|z?Noa_I?>HdEhWLL(3F>qE4xM^PGOWcyy x*3r#zt@Y3+C=2@q!7c=oSc>7xrT7{e1$NI9V5S%ZVS(5mfk=Z5#=xI4@B?XuPuBnd diff --git a/paper_figures/livecell/cellsam/.DS_Store b/paper_figures/livecell/cellsam/.DS_Store deleted file mode 100644 index 7adebf0a61057a987aeb823c8b2b5f9f53658aae..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6148 zcmeHKK~BR!475w77IDdu-43p6Ys?R}XD3+8xKp zfIPbit?7}Tp?lA-+30pJC;f<~Ez4!yE-{1r_*T7tUJXU94v5-3$=kABZ6=Fm-Tlxl z-B1Oa(=3e_`i5F$}n7P{wO*J|4RQyiW*a4tEUi!AA^fHtBfBkd+-%au>XTTZwR}ApDtjal# yWVN+-IH|P(dIuGexTv^G!621l#7ZeXhbDnP$N*RvMn!la{v(iRaN`X8DFff5?p5&s From 475a4fab2e7e5ebb76cf09ae9e75820c008fbab1 Mon Sep 17 00:00:00 2001 From: ulisrael Date: Tue, 18 Feb 2025 14:01:12 -0800 Subject: [PATCH 7/7] updated pths so each section can be run independently --- paper_figures/paper_figures.ipynb | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/paper_figures/paper_figures.ipynb b/paper_figures/paper_figures.ipynb index fba57f0..09882c1 100644 --- a/paper_figures/paper_figures.ipynb +++ b/paper_figures/paper_figures.ipynb @@ -399,6 +399,7 @@ "metadata": {}, "outputs": [], "source": [ + "cellpose_path = Path.cwd() / \"eval_results/cellpose\"\n", "cellpose_individual_path = cellpose_path / 'individual'\n", "\n", "# load results from txt files\n", @@ -614,6 +615,9 @@ "c3 = '#deebf7'\n", "c4 = '#3182bd'\n", "\n", + "cellsam_path = Path.cwd() / \"eval_results/cellsam\"\n", + "cellpose_path = Path.cwd() / \"eval_results/cellpose\"\n", + "\n", "cellsam_generalist_path = cellsam_path / 'general'\n", "cellsam_individual_path = cellsam_path / 'individual'\n", "\n", @@ -838,6 +842,7 @@ "c3 = '#deebf7'\n", "c4 = '#3182bd'\n", "\n", + "cellpose_path = Path.cwd() / \"eval_results/cellpose\"\n", "cellpose_generalist_path = cellpose_path / 'general'\n", "cellpose_individual_path = cellpose_path / 'individual'\n", "\n", @@ -1061,6 +1066,8 @@ "metadata": {}, "outputs": [], "source": [ + "cellsam_path = Path.cwd() / \"eval_results/cellsam\"\n", + "cellpose_path = Path.cwd() / \"eval_results/cellpose\"\n", "\n", "cellpose_generalist_path = cellpose_path / 'cyto3'\n", "cellsam_generalist_path = cellsam_path / 'general'\n",