Codes to generate analysis and figures for Quantifying Institutional Gender Inequality in Contemporary Visual Art
The data for reproduction can be found on Harvard Dataverse. After download the data, please put artists_gender_recog_xx.csv under the processed_data folder and the rest under the raw_data folder.
To generate all results and figures of the main paper, run ./remove_birth.sh.
In this shell script, it contains the following steps:
python 01-00-data_processing.py -t 0.6 -f: create merged dataframes (shows_with_person_with_gender, career_start_end, sales_with_person), filter data and print out basic information.
python 01-01-data_selection.py -t 0.6 -f -y 1990 -a: select data based on the career start year we select, create corresponding selected dataframe. Generate Figure 1.
python 03-00-gender_preference_assign.py -t 0.6 -f -y 1990: assign institution to gender inequality category
python 03-01-gender_preference_stats.py -t 0.6 -f -y 1990 -p neutral -a and
python 03-01-gender_preference_stats.py -t 0.6 -f -y 1990 -p balance -a:
Basic statistics (count) of gender inequality category under gender-neutral and gender-balanced criteria. Generate Figure 2a, 2b 2c, Figure 3a, 3b.
For Figure 3a, 3b, further run
cd plot_country_preference
python plot_map_color.pypython 04-artist_career_gender_preference.py -t 0.6 -f -y 1990 -p neutral -n 10 -a: assign co-exhibition gender to artist, and further analysis. Generate Figure 5
python 05-00-sales_data_prep.py -t 0.6 -f -y 1990 -p neutral -n 10 -a: prepare sales data and output auction bias. Generate Figure 6a.
python 05-03-logit.py -t 0.6 -f -y 1990 -p neutral -n 10 -a: logistic regression model. Generate Table 2, Table 3 and Figure 6b, 6c.
python 03-03-gender_preference_scatter_boundary.py 1990
python 06-network_viz.py 1990 generates the gml file of the network and we further process the visualization file.
# process and get Men Artists/Women Artists/Ratio
python 01-00-data_processing.py --threshold 0.6 --remove_birth
python 01-00-data_processing.py --threshold 0.8 --remove_birth
python 01-00-data_processing.py --threshold 0.9 --remove_birth
# select, and get Selected Men Artists/Selected Women Artists/Ratio
python 01-01-data_selection.py -t 0.6 --remove_birth -y 1990
python 01-01-data_selection.py -t 0.8 --remove_birth -y 1990
python 01-01-data_selection.py -t 0.9 --remove_birth -y 1990Results are printed in the command line.
For Men Exhibitions/Women Exhibitions/Exhibition Ratio
python 01-01-data_selection.py -t 0.6 --remove_birth -y 1990
python 01-01-data_selection.py -t 0.8 --remove_birth -y 1990
python 01-01-data_selection.py -t 0.9 --remove_birth -y 1990
For Man-overrepresented Institutions/Woman-overrepresented Institutions/Gender-neutral Institutions
python 03-00-gender_preference_assign.py -t 0.9 --remove_birth
Results are printed in the command line.
python generate_neighborhood_csv.py -f -p neutral
python generate_neighborhood_csv.py -f -p balance
The codes for panel d is in SI_codes/MultiscaleMixing/Art Gender Network Multiscale.ipynb
cd SI_codes
python 02-01-time_trend.py -f
cd SI_codes
python career_start_year_stability.py
Run python 04-artist_career_gender_preference.py -t 0.6 --no-remove_birth -y 1990 -p balance -n 10 --no-save
Run all scripts under SI_codes/solo_exhibitions
python 05-03-logit.py -t 0.6 --no-remove_birth -y 1990 -p neutral -n 10 --no-save
python 03-01-gender_preference_stats.py -t 0.6 -f -y 1990 -p neutral
python 03-01-gender_preference_stats.py -t 0.6 -f -y 1990 -p balance
cd SI_codes
python 03-01-gender_preference_expert_grade.py -p neutral
python 03-01-gender_preference_expert_grade.py -p balance
Panel a, b: python 04-artist_career_gender_preference.py --remove_birth -p neutral -n 15
Panel c, d: python 04-artist_career_gender_preference.py --remove_birth -p neutral -n 20
Run no_remove_birth.sh
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
