Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 13 additions & 3 deletions kornia/geometry/boxes.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,9 +392,19 @@ def filter_boxes_by_area(

def compute_area(self) -> torch.Tensor:
"""Returns :math:`(B, N)`."""
w = self._data[..., 1, 0] - self._data[..., 0, 0]
h = self._data[..., 2, 1] - self._data[..., 0, 1]
return (w * h).unsqueeze(0) if self._data.ndim == 3 else (w * h)
coords = self._data.view((-1, 4, 2)) if self._data.ndim == 4 else self._data
# calculate centroid of the box
centroid = coords.mean(dim=1, keepdim=True)
# calculate the angle from centroid to each corner
angles = torch.atan2(coords[..., 1] - centroid[..., 1], coords[..., 0] - centroid[..., 0])
# sort the corners by angle to get an order for shoelace formula
_, clockwise_indices = torch.sort(angles, dim=1, descending=True)
# gather the corners in the new order
ordered_corners = torch.gather(coords, 1, clockwise_indices.unsqueeze(-1).expand(-1, -1, 2))
x, y = ordered_corners[..., 0], ordered_corners[..., 1]
# Gaussian/Shoelace formula https://en.wikipedia.org/wiki/Shoelace_formula
area = 0.5 * torch.abs(torch.sum((x * torch.roll(y, 1, 1)) - (y * torch.roll(x, 1, 1)), dim=1))
return area.view(self._data.shape[:2]) if self._data.ndim == 4 else area

@classmethod
def from_tensor(
Expand Down
37 changes: 37 additions & 0 deletions tests/geometry/test_boxes.py
Original file line number Diff line number Diff line change
Expand Up @@ -278,6 +278,43 @@ def apply_boxes_method(tensor: torch.Tensor, method: str, **kwargs):
self.gradcheck(lambda x: Boxes.from_tensor(x, mode="xyxy_plus").data, (t_boxes_xyxy,))
self.gradcheck(lambda x: Boxes.from_tensor(x, mode="xywh").data, (t_boxes_xyxy1,))

def test_compute_area(self):
# Rectangle
box_1 = [[0.0, 0.0], [100.0, 0.0], [100.0, 50.0], [0.0, 50.0]]
# Trapezoid
box_2 = [[0.0, 0.0], [60.0, 0.0], [40.0, 50.0], [20.0, 50.0]]
# Parallelogram
box_3 = [[0.0, 0.0], [100.0, 0.0], [120.0, 50.0], [20.0, 50.0]]
# Random quadrilateral
box_4 = [
[50.0, 50.0],
[150.0, 250.0],
[0.0, 500.0],
[27.0, 80],
]
# Random quadrilateral
box_5 = [
[0.0, 0.0],
[150.0, 0.0],
[150.0, 150.0],
[0.0, 0.5],
]
# Rectangle with minus coordinates
box_6 = [[-500.0, -500.0], [-300.0, -500.0], [-300.0, -300.0], [-500.0, -300.0]]

expected_values = [5000.0, 2000.0, 5000.0, 31925.0, 11287.5, 40000.0]
box_coordinates = torch.tensor([box_1, box_2, box_3, box_4, box_5, box_6])
computed_areas = Boxes(box_coordinates).compute_area().tolist()
computed_areas_w_batch = Boxes(box_coordinates.reshape(2, 3, 4, 2)).compute_area().tolist()
flattened_computed_areas_w_batch = [area for batch in computed_areas_w_batch for area in batch]
assert all(
computed_area == expected_area for computed_area, expected_area in zip(computed_areas, expected_values)
)
assert all(
computed_area == expected_area
for computed_area, expected_area in zip(flattened_computed_areas_w_batch, expected_values)
)


class TestTransformBoxes2D(BaseTester):
def test_transform_boxes(self, device, dtype):
Expand Down