Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions CoolPlot/Plot/Common.py
Original file line number Diff line number Diff line change
Expand Up @@ -277,8 +277,8 @@ def calc_sat_range(self, Trange=None, Prange=None, num=200):
warnings.warn(
"An error occurred for the critical inputs, skipping it.",
UserWarning)
xcrit = np.NaN
ycrit = np.NaN
xcrit = np.nan
ycrit = np.nan

X = np.empty_like(one)
Y = np.empty_like(one)
Expand All @@ -302,8 +302,8 @@ def calc_sat_range(self, Trange=None, Prange=None, num=200):
warnings.warn(
"An error occurred for inputs {0:f}, {1:f} with index {2:s}: {3:s}".format(one[index], two[index], str(index), str(e)),
UserWarning)
X[index] = np.NaN
Y[index] = np.NaN
X[index] = np.nan
Y[index] = np.nan
err = True
self.x = X; self.y = Y
return
Expand Down Expand Up @@ -361,9 +361,9 @@ def calc_range(self, xvals=None, yvals=None):
warnings.warn(
"An error occurred for inputs {0:f}, {1:f} with index {2:s}: {3:s}".format(vals[0][index], vals[1][index], str(index), str(e)),
UserWarning)
vals[2][index] = np.NaN
guesses.rhomolar = np.NaN
guesses.T = np.NaN
vals[2][index] = np.nan
guesses.rhomolar = np.nan
guesses.T = np.nan
err = True

for i, v in enumerate(idxs):
Expand Down
8 changes: 4 additions & 4 deletions CoolPlot/Plot/SimpleCycles.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,8 +75,8 @@ def TwoStage(Ref, Q, Te, Tc, DTsh, DTsc, eta_oi, f_p, Tsat_ic, DTsh_ic, Ts_Ph='P
p = np.zeros_like(T)
s = np.zeros_like(T)
rho = np.zeros_like(T)
T[0] = np.NAN
s[0] = np.NAN
T[0] = np.nan
s[0] = np.nan
T[1] = Te + DTsh
pe = PropsSI('P', 'T', Te, 'Q', 1.0, Ref)
pc = PropsSI('P', 'T', Tc, 'Q', 1.0, Ref)
Expand Down Expand Up @@ -219,8 +219,8 @@ def EconomizedCycle(Ref, Qin, Te, Tc, DTsh, DTsc, eta_oi, f_p, Ti, Ts_Ph='Ts', s
s = np.zeros_like(T)
rho = np.zeros_like(T)

T[0] = np.NAN
s[0] = np.NAN
T[0] = np.nan
s[0] = np.nan
T[1] = Te + DTsh
pe = PropsSI('P', 'T', Te, 'Q', 1.0, Ref)
pc = PropsSI('P', 'T', Tc, 'Q', 1.0, Ref)
Expand Down