| Documentation | Latest Release | Blog | Slack | Discussion Forum |
FlashInfer is a library and kernel generator for inference that delivers state-of-the-art performance across diverse GPU architectures. It provides unified APIs for attention, GEMM, and MoE operations with multiple backend implementations including FlashAttention-2/3, cuDNN, CUTLASS, and TensorRT-LLM.
- State-of-the-art Performance: Optimized kernels for prefill, decode, and mixed batching scenarios
- Multiple Backends: Automatically selects the best backend for your hardware and workload
- Modern Architecture Support: Support for SM75 (Turing) and later (through Blackwell)
- Low-Precision Compute: FP8 and FP4 quantization for attention, GEMM, and MoE operations
- Production-Ready: CUDAGraph and torch.compile compatible for low-latency serving
- Paged and Ragged KV-Cache: Efficient memory management for dynamic batch serving
- Decode, Prefill, and Append: Optimized kernels for all attention phases
- MLA Attention: Native support for DeepSeek's Multi-Latent Attention
- Cascade Attention: Memory-efficient hierarchical KV-Cache for shared prefixes
- Sparse Attention: Block-sparse and variable block-sparse patterns
- POD-Attention: Fused prefill+decode for mixed batching
- FP8 GEMM: Per-tensor and groupwise scaling
- FP4 GEMM: NVFP4 and MXFP4 matrix multiplication for Blackwell GPUs
- Grouped GEMM: Efficient batched matrix operations for LoRA and multi-expert routing
- Fused MoE Kernels
- Multiple Routing Methods: DeepSeek-V3, Llama-4, and standard top-k routing
- Quantized MoE: FP8 and FP4 expert weights with block-wise scaling
- Sorting-Free Sampling: Efficient Top-K, Top-P, and Min-P without sorting
- Speculative Decoding: Chain speculative sampling support
- AllReduce: Custom implementations
- Multi-Node NVLink: MNNVL support for multi-node inference
- NVSHMEM Integration: For distributed memory operations
- RoPE: LLaMA-style rotary position embeddings (including LLaMA 3.1)
- Normalization: RMSNorm, LayerNorm, Gemma-style fused operations
- Activations: SiLU, GELU with fused gating
| Architecture | Compute Capability | Example GPUs |
|---|---|---|
| Turing | SM 7.5 | T4, RTX 20 series |
| Ampere | SM 8.0, 8.6 | A100, A10, RTX 30 series |
| Ada Lovelace | SM 8.9 | L4, L40, RTX 40 series |
| Hopper | SM 9.0 | H100, H200 |
| Blackwell | SM 10.0, 10.3 | B200, B300 |
| Blackwell | SM 12.0, 12.1 | RTX 50 series, DGX Spark, Jetson Thor |
Notable updates:
- [2025-10-08] Blackwell support added in v0.4.0
- [2025-03-10] Blog Post Sorting-Free GPU Kernels for LLM Sampling, which explains the design of sampling kernels in FlashInfer.
Quickstart:
pip install flashinfer-pythonPackage Options:
- flashinfer-python: Core package that compiles/downloads kernels on first use
- flashinfer-cubin: Pre-compiled kernel binaries for all supported GPU architectures
- flashinfer-jit-cache: Pre-built kernel cache for specific CUDA versions
For faster initialization and offline usage, install the optional packages to have most kernels pre-compiled:
pip install flashinfer-python flashinfer-cubin
# JIT cache (replace cu129 with your CUDA version)
pip install flashinfer-jit-cache --index-url https://flashinfer.ai/whl/cu129flashinfer show-configimport torch
import flashinfer
# Single decode attention
q = torch.randn(32, 128, device="cuda", dtype=torch.float16) # [num_qo_heads, head_dim]
k = torch.randn(2048, 32, 128, device="cuda", dtype=torch.float16) # [kv_len, num_kv_heads, head_dim]
v = torch.randn(2048, 32, 128, device="cuda", dtype=torch.float16)
output = flashinfer.single_decode_with_kv_cache(q, k, v)See documentation for comprehensive API reference and tutorials.
git clone https://github.com/flashinfer-ai/flashinfer.git --recursive
cd flashinfer
python -m pip install -v .For development, install in editable mode:
python -m pip install --no-build-isolation -e . -vBuild optional packages:
# flashinfer-cubin
cd flashinfer-cubin
python -m build --no-isolation --wheel
python -m pip install dist/*.whl# flashinfer-jit-cache (customize for your target GPUs)
export FLASHINFER_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 10.3a 11.0a 12.0f"
cd flashinfer-jit-cache
python -m build --no-isolation --wheel
python -m pip install dist/*.whlFor more details, see the Install from Source documentation.
pip install -U --pre flashinfer-python --index-url https://flashinfer.ai/whl/nightly/ --no-deps
pip install flashinfer-python # Install dependencies from PyPI
pip install -U --pre flashinfer-cubin --index-url https://flashinfer.ai/whl/nightly/
# JIT cache (replace cu129 with your CUDA version)
pip install -U --pre flashinfer-jit-cache --index-url https://flashinfer.ai/whl/nightly/cu129FlashInfer provides several CLI commands for configuration, module management, and development:
# Verify installation and view configuration
flashinfer show-config
# List and inspect modules
flashinfer list-modules
flashinfer module-status
# Manage artifacts and cache
flashinfer download-cubin
flashinfer clear-cache
# For developers: generate compile_commands.json for IDE integration
flashinfer export-compile-commands [output_path]For complete documentation, see the CLI reference.
FlashInfer provides comprehensive API logging for debugging. Enable it using environment variables:
# Enable logging (levels: 0=off (default), 1=basic, 3=detailed, 5=statistics)
export FLASHINFER_LOGLEVEL=3
# Set log destination (stdout (default), stderr, or file path)
export FLASHINFER_LOGDEST=stdoutFor detailed information about logging levels, configuration, and advanced features, see Logging in our documentation.
Users can customize their own attention variants with additional parameters. For more details, refer to our JIT examples.
Supported CUDA Versions: 12.6, 12.8, 13.0, 13.1
Note: FlashInfer strives to follow PyTorch's supported CUDA versions plus the latest CUDA release.
FlashInfer powers inference in:
FlashInfer is inspired by FlashAttention, vLLM, stream-K, CUTLASS, and AITemplate.
If you find FlashInfer helpful in your project or research, please consider citing our paper:
@article{ye2025flashinfer,
title = {FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving},
author = {
Ye, Zihao and
Chen, Lequn and
Lai, Ruihang and
Lin, Wuwei and
Zhang, Yineng and
Wang, Stephanie and
Chen, Tianqi and
Kasikci, Baris and
Grover, Vinod and
Krishnamurthy, Arvind and
Ceze, Luis
},
journal = {arXiv preprint arXiv:2501.01005},
year = {2025},
url = {https://arxiv.org/abs/2501.01005}
}