Skip to content

EMob-Lab/mfd_scaling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mfd_scaling: Hierarchical Scaling and Variogram-based Imputation

This repository contains the Python notebooks and code used in the paper: "Maiti, N., Seppecher, M., & Leclercq, L. Scaling Methods for Estimating Macroscopic Fundamental Diagrams in Urban Networks with Sparse Stationary Sensor Coverage, Transportation Research Part C: Emerging Technologies (2025)" PDF.

The repository provides two main components:

  • Hierarchical Scaling: A method for scaling traffic variables from an LD-equipped subnetwork to non-equipped links using road hierarchy information.
  • Variogram-based Imputation: A geostatistical approach for estimating missing traffic states based on spatial dependencies captured by empirical variograms.

Variogram

Hierarchical Scaling results

Contents

  • hierarchical_scaling.ipynb: Jupyter Notebook demonstrating the hierarchical scaling methodology, including:

    • Link hierarchy classification
    • Scaling factor estimation
    • Network-wide traffic state extrapolation
  • variogram.ipynb: Jupyter Notebook implementing the variogram-based imputation approach, including:

    • Empirical variogram estimation
    • Model fitting and parameter calibration
    • Kriging interpolation for traffic state imputation

Requirements

The notebooks are written in Python 3 and require the following packages:

  • numpy
  • pandas
  • matplotlib
  • scikit-learn
  • scikit-gstat
  • networkx (for graph-based distance calculations)
  • geopandas (optional, for visualizing spatial data)

Install dependencies via:

pip install -r requirements.txt

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •