This is a benchmark for networks with a variety of activation functions. NAFBee provides network information and accuracy. User can obtain the accuracy without training. NAFBee is used for RBFleX-NAS.
Singapore University of Technology and Design (Sep 2021 intake)
Linkedin: https://www.linkedin.com/in/tomomasa/
Github: https://github.com/tomomasayamasaki
- python 3.x
- PyTorch
conda create -n myenv python=3.8
conda activate myenv
conda install -c conda-forge transformers=4.5.0 tokenizers=0.10.3
conda install -c conda-forge huggingface_hub
conda install pandas
conda install scikit-learn
- CIFAR-10 for VGG19
- SST-2 for BERT
# VGG19
import json
from models import *# BERT
import json
from BERT_model import BertModelfile_path = "NAFBee_VGG19.json" #or "NAFBee_BERT.json"
with open(file_path, "r") as json_file:
nafbee = json.load(json_file)info = nafbee["1"] #you can input numbers from 1 to 11.
print(info)
#{'network': 'VGG19', 'activation': 'ReLU', 'accuracy': 91.06}info_network = info["network"]
info_activation = info["activation"]
info_accuracy = info["accuracy"]if "VGG" in info_network:
model = VGG(info_network, info_activation)You can see a program to get the model. You can add any program using the model on Pytorch such as training or scoring.
python NAFBee_VGG19.py #VGG19python NAFBee_BERT.py #BERTIf you use NAFBee, please cite the following paper:
XXXX