library(variancePartition)
# load calcVarPart() for glm fit
# must load variancePartition first
source("https://raw.githubusercontent.com/GabrielHoffman/misc_vp/master/calcVarPart.R")
# geta dataset with two categories
data = iris[iris$Species %in% c("virginica", "versicolor"),]
data$Category = sample(c("A", "B", "C", "D"), nrow(data), replace=TRUE)
# fit logistic regression
form = Species ~ Petal.Length + Category
fit.glm = glm(form, data, family=binomial())
# Run variance partitioning
calcVarPart(fit.glm)
# Fit Gaussian model forwith both functions
#-----------------------------------------
# Show values are the same
form = as.numeric(Species) ~ Petal.Length + Category
fit.lm = lm(form, data)
form = as.numeric(Species) ~ Petal.Length + Category
fit.glm = glm(form, data, family=gaussian())
calcVarPart(fit.lm)
calcVarPart(fit.glm)-
Notifications
You must be signed in to change notification settings - Fork 1
GabrielHoffman/misc_vp
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
About
Variance partitioning for logistic regression
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published