Skip to content

GaoangW/HSCL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hierarchical Semi-Supervised Contrastive Learning for Contamination-Resistant Anomaly Detection

Requirements

Training

# Train for class 0 on CIFAR-10
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 train.py --dataset cifar10 --model resnet18 --mode simclr_CSI --shift_trans_type rotation --one_class_idx 0 --optimizer 'adam' --lr_init 0.001 --batch_size 256 --epochs 250 --pollute_ratio 0.05

Testing

# Test for class 0 on CIFAR-10
python eval.py --mode ood_pre --dataset cifar10 --model resnet18 --ood_score CSI --shift_trans_type rotation --print_score --ood_samples 10 --resize_factor 0.54 --resize_fix --one_class_idx 0 --load_path "logs/cifar10_resnet18_unsup_simclr_CSI_shift_rotation_one_class_0/last.model" 

Citation

@article{wang2022hierarchical,
  title={Hierarchical Semi-Supervised Contrastive Learning for Contamination-Resistant Anomaly Detection},
  author={Wang, Gaoang and Zhan, Yibing and Wang, Xinchao and Song, Mingli and Nahrstedt, Klara},
  journal={arXiv preprint arXiv:2207.11789},
  year={2022}
}

Acknowledgement

The code structure is built on https://github.com/alinlab/CSI. We thank authors of CSI [1] to provide the source code and the solid work.

Reference

[1] Tack, J., Mo, S., Jeong, J. and Shin, J., 2020. Csi: Novelty detection via contrastive learning on distributionally shifted instances. Advances in Neural Information Processing Systems, 2020.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages