Skip to content
/ GCA Public
forked from uf-aiaos/GCA

An R package for genetic connectedness analysis using pedigree and genomic data.

Notifications You must be signed in to change notification settings

HaipengU/GCA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GCA: An R package for genetic connectedness analysis using pedigree and genomic data.

Updates:

  • Maintenance transition: Starting from July, 2024, the GCA R package will be maintained by the AIAOS Lab at the University of Florida. The AIAOS Lab will handle all future maintenance, updates, and support for the package.

Installation

GCA is currently available on GitHub and can be installed using devtools package:

  1. Install devtools package from CRAN.
install.packages("devtools")
  1. Load the devtools package.
library(devtools)
  1. Install GCA package from GitHub.
install_github('uf-aiaos/GCA')

Note: For Apple Silicon (ARM64) users, if you encounter the error Could not find tools necessary to compile a package, it can be fixed using the following command.

# Check the version of gcc installed by homebrew
ls /opt/homebrew/bin/gcc* 

# Create a symlink `gcc` under /usr/local/bin/ and point to the gcc installed by Homebrew (gcc-14 in this case). 
sudo ln -s /opt/homebrew/bin/gcc-14 /usr/local/bin/gcc

# Restart the terminal and then install the package using `install_github('uf-aiaos/GCA')`.
  1. Load GCA package.
library(GCA)

Fail to load documentation (e.g., ?GCA) after reinstalling GCA.

.rs.restartR() 

Documentation

Vignette

Contact information and help

Reference

Haipeng Yu and Gota Morota. GCA: An R package for genetic connectedness analysis using pedigree and genomic data. BMC Genomics, 2021. 10.1186/s12864-021-07414-7

License

This project is primarily licensed under the GNU General Public License version 3 (GPLv3).

About

An R package for genetic connectedness analysis using pedigree and genomic data.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 95.8%
  • C++ 4.2%