Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 38 additions & 1 deletion MCF_Net/dataloader/EyeQ_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,11 @@
from PIL import Image, ImageCms
import os
from sklearn import preprocessing
from typing import Optional, Callable
import pandas as pd

import torchvision.transforms as T


def load_eyeQ_excel(data_dir, list_file, n_class=3):
image_names = []
Expand Down Expand Up @@ -63,10 +66,44 @@ def __getitem__(self, index):

if self.set_name == 'train':
label = self.labels[index]
return torch.FloatTensor(img_rgb), torch.FloatTensor(img_hsv), torch.FloatTensor(img_lab), torch.FloatTensor(label)
return torch.FloatTensor(img_rgb), torch.FloatTensor(img_hsv), torch.FloatTensor(
img_lab), torch.FloatTensor(label)
else:
return torch.FloatTensor(img_rgb), torch.FloatTensor(img_hsv), torch.FloatTensor(img_lab)

def __len__(self):
return len(self.image_names)


class InfrenceDataSet(Dataset):
def __init__(self, img_paths: list, pre_transform: Optional[Callable] = None,
post_transform: Callable = T.ToTensor()) -> None:
self.img_paths = img_paths
self.pre_transform = pre_transform
self.post_transform = post_transform
srgb_profile = ImageCms.createProfile("sRGB")
lab_profile = ImageCms.createProfile("LAB")
self.rgb2lab_transform = ImageCms.buildTransformFromOpenProfiles(srgb_profile, lab_profile, "RGB", "LAB")

def __getitem__(self, index):
image_name = self.img_paths[index]
image = Image.open(image_name).convert('RGB')

if self.pre_transform is not None:
image = self.pre_transform(image)

img_hsv = image.convert("HSV")
img_lab = ImageCms.applyTransform(image, self.rgb2lab_transform)

img_rgb = np.asarray(image).astype('float32')
img_hsv = np.asarray(img_hsv).astype('float32')
img_lab = np.asarray(img_lab).astype('float32')

img_rgb = self.post_transform(img_rgb)
img_hsv = self.post_transform(img_hsv)
img_lab = self.post_transform(img_lab)

return self.img_paths[index], (img_rgb, img_hsv, img_lab)

def __len__(self):
return len(self.img_paths)
70 changes: 70 additions & 0 deletions MCF_Net/run_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
import os
import argparse
from tqdm import tqdm
from typing import List, Dict
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as T

from networks.densenet_mcf import dense121_mcs
from dataloader.EyeQ_loader import InfrenceDataSet


def get_paths_to_imgs(base_dir: str, file_extension: str) -> List[str]:
img_paths = []
for root, _, files in os.walk(base_dir):
for filename in files:
if filename.endswith(file_extension):
img_paths.append(os.path.join(root, filename))
return img_paths


def infere_img_labels(img_paths: str, batch_size: int, model_save_path: str) -> Dict[str, np.ndarray]:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f'Device: {device}')

pre_transform = T.Compose([T.Resize(224), T.CenterCrop(224)])
post_transform = T.Compose([T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

dataset = InfrenceDataSet(img_paths, pre_transform, post_transform)
dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=4)

model = dense121_mcs(n_class=3)
loaded_model = torch.load(model_save_path)
model.load_state_dict(loaded_model['state_dict'])
model = model.to(device).eval()

output_metric = {}
for img_paths, (imagesA, imagesB, imagesC) in tqdm(dataloader):
_, _, _, _, result_mcs = model(imagesA.to(device), imagesB.to(device), imagesC.to(device))
for img_path, result in zip(img_paths, result_mcs.detach().cpu().numpy()):
# Normalize results to add up to 1
output_metric[img_path] = result / result.sum()
return output_metric


def infere_img_quality(base_dir: str, path_to_save_file: str, model_save_path: str, file_extension: str,
batch_size: int) -> None:
img_paths = get_paths_to_imgs(base_dir, file_extension)
labels_dict = infere_img_labels(img_paths, batch_size, model_save_path)
labels_df = pd.DataFrame(data=labels_dict.values(), index=labels_dict.keys(), columns=['Good', 'Usable', 'Reject'])
labels_df.index.name = 'Path'
labels_df.to_csv(path_to_save_file, sep='\t')


def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Script to get image labels')
parser.add_argument('--base_dir', help='Directory where all images are saved', type=str, required=True)
parser.add_argument('--model_save_path', help='Where pretrained model is stored. Available on Github.', type=str,
required=True)
parser.add_argument('--path_to_save_file', help='Where to store the results (tsv)', type=str, required=True)
parser.add_argument('--file_extension', help='Define stored file format', type=str, required=False, default='.png')
parser.add_argument('--batch_size', help='How many images to process at once.', type=int, required=False,
default=16)
return parser.parse_args()


if __name__ == "__main__":
args = parse_args()
infere_img_quality(**vars(args))