Skip to content

LTU-Machine-Learning/tmp-research-demos-cpp-backend

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Vision Hub – Research Demo Platform

This project lets you deploy and visualize research demos in Docker containers, with a modern web interface.

Prerequisites

  • Docker & Docker Compose
  • webcam (V4L2-compatible is a bonus)
  • NVIDIA GPU + drivers + nvidia-docker for CUDA acceleration (optional, but recommended for best performance)

Quick Start

  1. Clone the repo and go to the vision-hub directory.
  2. Copy .env.example to .env and adjust variables as needed.
  3. Launch the stack:
    docker compose up --build
  4. Access the interfaces:

Main Environment Variables

See .env.example for the full list. Key variables:

  • CAMERA_DEVICE: Path to the local camera (e.g. /dev/video0 or /dev/v4l/by-id/...)
  • RTSP_URL: RTSP stream URL to use (default: rtsp://mediamtx:8554/cam)
  • MODEL: YOLO model to use (e.g. yolov8n.pt)
  • IMG_SIZE: Input resolution for inference (e.g. 640)
  • JPEG_QUALITY: JPEG quality for MJPEG stream (e.g. 80)
  • FORCE_CPU: Set to 1 to force CPU usage even if a GPU is available
  • CONF, IOU, MAX_DET: Detection thresholds

Usage Notes

  • Besides global variables, there's always default ones, these are they I use on my own computer
  • For GPU acceleration, ensure Docker is configured with the correct runtime (--gpus all or devices: - nvidia.com/gpu=all).
  • Startup logs will indicate whether GPU or CPU is used.

Custom Demos

Add your own models or demos by creating a dedicated folder and adapting the Dockerfile + app.py.


For questions or contributions, ask me directly at tom.burellier@associated.ltu.se

About

This project lets you deploy and visualize research demos in Docker containers, with a modern web interface.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Astro 60.5%
  • Python 35.4%
  • Dockerfile 2.5%
  • JavaScript 1.6%