BEAM: Boosted Enhanced Sampling through All-Atom Simulations Guided by Machine-Learned Collective Variables
Version: 0.1.0 (Prototype for CSSE@GT Fellowship)
Author: Lan Yang
Contact: lyang430@gatech.edu
BEAM is an open-source toolkit that accelerates biomolecular conformational sampling by learning collective variables (CVs) from fast coarse-grained (CG) simulations and applying them to guide all-atom (AA) enhanced sampling.
The Challenge: Selecting effective collective variables for enhanced sampling is a major bottleneck in computational biophysics. Traditional geometric CVs (RMSD, contacts, etc.) often fail to capture the true slow modes of complex molecular processes.
The BEAM Solution:
- Run fast CG simulations to explore conformational space
- Use machine learning to automatically discover low dimensional CVs
- Map learned CVs to AA systems for enhanced sampling
- Analyze and validate results
Stage 2: CG → CV Pipeline
- Load and preprocess CG trajectories (MDTraj)
- Train TICA to learn slow CVs
- Save trained models (.pkl)
- Basic REAP-compatible interface
- API placeholder for automatic parameter suggestion
Stage 3: AA Analysis
- Load and analyze AA trajectories
- Transform AA data into CG-learned CV space
- Visualization of CG/AA projections overlay
- Train TICA on AA data for refined CVs
- Generate REUS window suggestions
- API placeholder for Quantitative CG/AA comparison
Visualization
- TICA projections
- Free energy landscapes
- CG/AA overlay
- Residue-level contribution plots
- Timescale plots
Stage 1: CG Model Evaluation
- Automated CG model quality assessment
- Sampling coverage metrics
- Initial trajectory evaluation
Enhanced Automation
- Automatic lag time selection (VAMP-2 cross-validation)
- Automatic dimensionality selection (kinetic variance)
- ITS-based convergence analysis
- Cross-validation frameworks
Advanced Analysis
- Quantitative CG/AA CV comparison
- Cross-scale consistency metrics
- Residue-level correlation analysis
Extended Method Support
- VAMP, PCA, autoencoders
- Multiple CG force fields
- Additional enhanced sampling interfaces (Weighted Ensemble, etc.)
Production Quality
- Unit tests
- Additional examples and tutorials
- Full API documentation
- Performance optimization
- Python >= 3.7
- numpy >= 1.19.0
- matplotlib >= 3.3.0
- mdtraj >= 1.9.0 (for trajectory handling)
- deeptime >= 0.4.0 (for TICA/VAMP)
# Clone repository
git clone https://github.com/LanYang430/beam.git
cd beam
# Install dependencies
pip install -r requirements.txt
# Install BEAM in development mode
pip install -e .from beam import load_and_preprocess_cg, train_cg_tica, plot_tica_projection
# Load CG trajectory
cg_features = load_and_preprocess_cg(
'cg_traj.dcd',
'topology.pdb',
'reference.pdb'
)
# Train TICA
tica_model, cg_cv = train_cg_tica(
cg_features,
lagtime=50,
dim=2,
save_path='cg_tica_model.pkl'
)
# Visualize
plot_tica_projection(cg_cv, title="CG Collective Variables")from beam import (
load_and_preprocess_aa,
transform_aa_with_cg_tica,
train_aa_tica,
plot_cg_aa_overlay
)
# Load AA trajectory
aa_features = load_and_preprocess_aa(
'aa_traj.dcd',
'topology.pdb',
'reference.pdb'
)
# Transform with CG model
aa_in_cg_cv = transform_aa_with_cg_tica(aa_features, 'cg_tica_model.pkl')
# Load CG CV for comparison
import pickle
with open('cg_tica_model.pkl', 'rb') as f:
cg_model = pickle.load(f)
cg_cv = cg_model.transform(cg_features)
# Create key overlay figure
plot_cg_aa_overlay(cg_cv, aa_in_cg_cv, save_path='overlay.png')For complete workflows, see examples/ directory.
beam/
├── beam/ # Main package
│ ├── __init__.py
│ ├── cg_pipeline.py # Stage 2: CG → CV
│ ├── aa_analysis.py # Stage 3: AA analysis
│ └── visualize.py # Plotting functions
│
├── examples/ # Example notebooks
│ ├── demo_stage2_cg_pipeline.ipynb
│ └── demo_stage3_aa_analysis.ipynb
│
├── data/ # Demo data
│ └── (synthetic trajectories)
│
│
├── README.md # This file
├── requirements.txt # Python dependencies
├── setup.py # Installation script
└── LICENSE # MIT license
- CG → CV learning pipeline
- AA analysis workflow
- Core visualization utilities
- REAP interface
- Demo notebooks
- CG model evaluation (Stage 1)
- Automatic parameter selection
- Software robustness improvements
- Performance optimization
- Enhanced documentation
- Advanced CV comparison metrics
- Support for additional ML methods
- Additional enhanced sampling interfaces
- Production-ready release
- Community-facing tutorials
If you use BEAM in your research, please cite:
@software{beam2025,
title={BEAM: Boosted Enhanced sampling through Machine-learned CVs},
author={Lan Yang},
year={2025},
url={https://github.com/LanYang430/beam.git}
}MIT License - See LICENSE file for details
Supported by CSSE@GT and Schmidt Sciences.
For questions or issues, please contact: lyang430@gatech.edu
BEAM: Making enhanced sampling accessible through data-driven collective variable discovery