Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions class02/class02.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,31 +14,31 @@ This class covers the fundamental numerical optimization techniques essential fo

The class is structured around 1 slide deck and four interactive Jupyter notebooks:

1. **[Part 1a: Root Finding & Backward Euler](part1_root_finding.html)**
1. **[Part 1a: Root Finding & Backward Euler](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part1_root_finding.html)**
- Root-finding algorithms for implicit integration
- Fixed-point iteration vs. Newton's method
- Application to pendulum dynamics


2. **[Part 1b: Minimization via Newton's Method](part1_minimization.html)**
2. **[Part 1b: Minimization via Newton's Method](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part1_minimization.html)**
- Unconstrained optimization fundamentals
- Newton's method implementation
- Globalization strategies: Hessian matrix and regularization

3. **[Part 2: Equality Constraints](part2_eq_constraints.html)**
3. **[Part 2: Equality Constraints](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part2_eq_constraints.html)**
- Lagrange multiplier theory
- KKT conditions for equality constraints
- Quadratic programming implementation

4. **[Part 3: Interior-Point Methods](part3_ipm.html)**
4. **[Part 3: Interior-Point Methods](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part3_ipm.html)**
- Inequality constraint handling
- Barrier methods and log-barrier functions
- Comparison with penalty methods

## Additional Resources

- **[Lecture Slides (PDF)](ISYE_8803___Lecture_2___Slides.pdf)** - Complete slide deck
- **[LaTeX Source](main.tex)** - Source code for lecture slides
- **[Lecture Slides (PDF)](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/ISYE_8803___Lecture_2___Slides.pdf)** - Complete slide deck
- **[LaTeX Source](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/main.tex)** - Source code for lecture slides

## Key Learning Outcomes

Expand Down
14 changes: 7 additions & 7 deletions class02/overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,28 +35,28 @@ By the end of this class, students will be able to:
The class is structured around four interactive Jupyter notebooks that build upon each other:


1. **[Part 1a: Root Finding & Backward Euler](part1_root_finding.html)**
1. **[Part 1a: Root Finding & Backward Euler](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part1_root_finding.html)**
- Root-finding algorithms for implicit integration
- Fixed-point iteration vs. Newton's method
- Backward Euler implementation for ODEs
- Convergence analysis and comparison
- Application to pendulum dynamics

2. **[Part 1b: Minimization via Newton's Method](part1_minimization.html)**
2. **[Part 1b: Minimization via Newton's Method](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part1_minimization.html)**
- Unconstrained optimization fundamentals
- Newton's method for minimization
- Hessian matrix and positive definiteness
- Regularization and line search techniques
- Practical implementation with Julia

3. **[Part 2: Equality Constraints](part2_eq_constraints.html)**
3. **[Part 2: Equality Constraints](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part2_eq_constraints.html)**
- Lagrange multiplier theory
- KKT conditions for equality constraints
- Quadratic programming with equality constraints
- Visualization of constrained optimization landscapes
- Practical implementation examples

4. **[Part 3: Interior-Point Methods](part3_ipm.ipynb)**
4. **[Part 3: Interior-Point Methods](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part3_ipm.html)**
- Inequality constraint handling
- Barrier methods and log-barrier functions
- Interior-point algorithm implementation
Expand All @@ -65,9 +65,9 @@ The class is structured around four interactive Jupyter notebooks that build upo

### Additional Resources

- **[Lecture Slides (PDF)](ISYE_8803___Lecture_2___Slides.pdf)** - Complete slide deck from the presentation
- **[LaTeX Source Files](main.tex)** - Source code for the lecture slides
- **[Demo Script](penalty_barrier_demo.py)** - Python demonstration of penalty vs. barrier methods
- **[Lecture Slides (PDF)](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/ISYE_8803___Lecture_2___Slides.pdf)** - Complete slide deck from the presentation
- **[LaTeX Source Files](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/main.tex)** - Source code for the lecture slides
- **[Demo Script](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/penalty_barrier_demo.py)** - Python demonstration of penalty vs. barrier methods

## Key Concepts Covered

Expand Down