Skip to content

NL-BioImaging/biomero-workflows

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

BIOMERO Workflows

This repository lists BIAFLOWS-compatible workflows that can be run in BIOMERO. These workflows are containerized image analysis tools that can be executed on Slurm clusters via the BIOMERO system.

About BIAFLOWS

BIAFLOWS (BioImage Analysis workflows) is a standard for packaging and benchmarking image analysis workflows. These workflows can be integrated with BIOMERO to run automated image analysis on OMERO images using HPC resources.

BIOMERO-Tested Workflows

These workflows have been tested and confirmed to work with BIOMERO:

Workflow Tool/Program Description License Repository
NucleiSegmentation-Stardist5D StarDist (Python) Nuclei segmentation using StarDist with versatile nuclei pre-trained model for 5D images. Uses 2D stardist to segment nuclei in all z and time slices. For large images, automated tiling is applied. Apache-2.0 maartenpaul/W_NucleiSegmentation-Stardist5d
Segmentation-micro-sam micro-SAM (Python) BIAFLOWS container for micro-sam (in development). Apache-2.0 maartenpaul/W_Segmentation-micro-sam
SpotCounting-CellProfiler CellProfiler Spot counting using CellProfiler pipeline. Unknown maartenpaul/W_SpotCounting-CellProfiler
NucleiSegmentation-Cellpose Cellpose (Python) 2D nuclei segmentation using Cellpose version 0.7.2. A generalist algorithm for cell and nucleus segmentation. Unknown TorecLuik/W_NucleiSegmentation-Cellpose
CellExpansion Python Cell expansion workflow. GPL-3.0 TorecLuik/W_CellExpansion
CountMaskOverlap Python Counting granules in cells by providing input in 1 directory with suffixes on pairs of masks. GPL-3.0 TorecLuik/W_CountMaskOverlap
Measurements-Nuclei-CellProfiler CellProfiler Nuclei measurements using CellProfiler. Apache-2.0 Cellular-Imaging-Amsterdam-UMC/W_Measurements-Nuclei-CellProfiler
Measurements-CellProfiler CellProfiler Cell measurements using CellProfiler. Apache-2.0 Cellular-Imaging-Amsterdam-UMC/W_Measurements-CellProfiler

Additional BIAFLOWS Workflows

Warning

The workflows listed below have not been officially tested with BIOMERO. Some may require additional configuration or may not be compatible. Workflows that require training/prediction with models stored in Cytomine may not work without additional setup.

Workflow Categories

Nuclei Segmentation

Workflow Tool/Program Description License Repository
NucleiSegmentation-UNet U-Net (Python) 3-class U-Net segmentation for nuclei. Unknown Neubias-WG5/W_NucleiSegmentation-UNet
NucleiSegmentation-CellProfiler CellProfiler Nuclei segmentation using CellProfiler 2.2.0. Unknown Neubias-WG5/W_NucleiSegmentation-CellProfiler
NucleiSegmentation-ilastik ilastik (Python) Nuclei segmentation using ilastik and Python. Unknown Neubias-WG5/W_NucleiSegmentation-ilastik
NucleiSegmentation-MaskRCNN Mask R-CNN (Python) Nuclei segmentation using Mask-RCNN deep learning model. Unknown Neubias-WG5/W_NucleiSegmentation-MaskRCNN
NucleiSegmentation-DeepCell DeepCell (Python) Nuclei segmentation workflow using DeepCell 1.0. Unknown Neubias-WG5/W_NucleiSegmentation-DeepCell
NucleiSegmentation-Python Python Python script to segment nuclei. Unknown Neubias-WG5/W_NucleiSegmentation-Python

3D Nuclei Segmentation

Workflow Tool/Program Description License Repository
NucleiSegmentation3D-ImageJ ImageJ Segment clustered nuclei using a 3D filter, thresholding and a 3D binary watershed. Unknown Neubias-WG5/W_NucleiSegmentation3D-ImageJ
NucleiSegmentation3D-ilastik ilastik (Python) 3D nuclei segmentation in ilastik. Unknown Neubias-WG5/W_NucleiSegmentation3D-ilastik

Spot Detection

Workflow Tool/Program Description License Repository
SpotDetection-Icy Icy Spot detection using Icy software. Unknown Neubias-WG5/W_SpotDetection-Icy
SpotDetection-IJ ImageJ/FIJI Spot detection in FIJI using a LoG filter and the detection of minima. Unknown Neubias-WG5/W_SpotDetection-IJ
SpotDetection-Dmap-IJ ImageJ Macro Distance map based spot detection ImageJ macro. Unknown Neubias-WG5/W_SpotDetection-Dmap-IJ
SpotDetection-MATLAB MATLAB Spot detection using MATLAB. Unknown Neubias-WG5/W_SpotDetection-MATLAB

3D Spot Detection

Workflow Tool/Program Description License Repository
SpotDetection3D-Icy Icy 3D spot detection protocol from Icy. Unknown Neubias-WG5/W_SpotDetection3D-Icy
SpotDetection3D-IJ ImageJ 3D spot-detection with ImageJ. Unknown Neubias-WG5/W_SpotDetection3D-IJ
SpotDetection3D-Hessian-IJ ImageJ 3D spot detection using the determinant of the Hessian. Unknown Neubias-WG5/W_SpotDetection3D-Hessian-IJ

Object Tracking

Workflow Tool/Program Description License Repository
ObjectTracking-MU-Lux-CZ Python Object tracking algorithm. Unknown Neubias-WG5/W_ObjectTracking-MU-Lux-CZ
ObjectTracking-Octave Octave/MATLAB Nuclei tracking in 2D time-lapse with Octave tracker (adapted from Matlab LOBSTER version). Unknown Neubias-WG5/W_ObjectTracking-Octave
ObjectTracking-ImageJ ImageJ Macro Object tracking workflow using ImageJ. Unknown Neubias-WG5/W_ObjectTracking-ImageJ
ObjectTracking-PAST-FR ImageJ Macro Object tracking using PAST FR method. Unknown Neubias-WG5/W_ObjectTracking-PAST-FR

Nuclei Tracking

Workflow Tool/Program Description License Repository
NucleiTracking-ImageJ ImageJ Track nuclei in a time series using 3D-object segmentation with watershed. Unknown Neubias-WG5/W_NucleiTracking-ImageJ
NucleiTrackingTrackmate-IJ TrackMate (ImageJ) Using Trackmate to track non dividing nuclei in a 2D time-lapse. Unknown Neubias-WG5/W_NucleiTrackingTrackmate-IJ

Particle Tracking

Workflow Tool/Program Description License Repository
PartTracking-ImageJ ImageJ Macro Particle tracking based on linking closest intensity minima detected from LoG filtered time-lapse. Unknown Neubias-WG5/W_PartTracking-ImageJ
LogPartTrack_IJ ImageJ Macro Particle tracking in 2D time-lapse based on linking closest regional intensity minima with user-defined noise tolerance and maximum linking distance. Unknown Neubias-WG5/W_LogPartTrack_IJ

Filament and Neuron Tracing

Workflow Tool/Program Description License Repository
FilamentTracing3D-ImageJ ImageJ (Python) 3D filament tracing with ImageJ. Unknown Neubias-WG5/W_FilamentTracing3D-ImageJ
FilamentTracing3D_Rivuletpy Rivuletpy (Python) Filament tracing using Rivuletpy (or Rivulet2) developed by RivuletStudio. Unknown Neubias-WG5/W_FilamentTracing3D_Rivuletpy
NeuronTracing_vaa3d_app2 Vaa3D (Python) Neuron and tree 3D segmentation using all-path-pruning 2.0 (APP2) of Vaa3D. Unknown Neubias-WG5/W_NeuronTracing_vaa3d_app2
NeuronTracing_vaa3d_mst Vaa3D (Python) Trace 3D neuron with Vaa3D MST (Minimal Spanning Tree) simple algorithm. Unknown Neubias-WG5/W_NeuronTracing_vaa3d_mst
NeuronTracing_vaa3d_fastmarching_spanningtree Vaa3D (Python) Trace 3D neuron with Vaa3D BJUT Fast Marching Spanning Tree algorithm. Unknown Neubias-WG5/W_NeuronTracing_vaa3d_fastmarching_spanningtree
Neuron3dTree_vaa3d_most Vaa3D (Python) Tree 3D segmentation using MOST Vessel Tracer of Vaa3D. Unknown Neubias-WG5/W_Neuron3dTree_vaa3d_most

Pixel Classification

Workflow Tool/Program Description License Repository
PixCla-UNet-GlaS U-Net (Python) Pixel classification for GlaS challenge with UNet. Unknown Neubias-WG5/W_PixCla-UNet-GlaS
PixCla-PSPNet-GlaS PSPNet (Python) Neural network PSPNet on GlaS dataset. Unknown Neubias-WG5/W_PixCla-PSPNet-GlaS
PixCla-UNet-Tuned-GlaS U-Net (Python) UNet tuned on a validation set for pixel classification. Unknown Neubias-WG5/W_PixCla-UNet-Tuned-GlaS

Landmark Detection

Workflow Tool/Program Description License Repository
LandmarkDetect-ML-LC-Train Python (ML) Machine learning landmark detection training. Requires model storage. Unknown Neubias-WG5/W_LandmarkDetect-ML-LC-Train
LandmarkDetect-ML-LC-Pred Python (ML) Machine learning landmark detection prediction. Requires model storage. Unknown Neubias-WG5/W_LandmarkDetect-ML-LC-Pred
LandmarkDetect-ML-MSET-Train Python (ML) Machine learning landmark detection (MSET) training. Requires model storage. Unknown Neubias-WG5/W_LandmarkDetect-ML-MSET-Train
LandmarkDetect-ML-MSET-Pred Python (ML) Machine learning landmark detection (MSET) prediction. Requires model storage. Unknown Neubias-WG5/W_LandmarkDetect-ML-MSET-Pred
LandmarkDetect-ML-DMBL-Train Python (ML) Machine learning landmark detection (DMBL) training. Requires model storage. Unknown Neubias-WG5/W_LandmarkDetect-ML-DMBL-Train
LandmarkDetect-ML-DMBL-Pred Python (ML) Machine learning landmark detection (DMBL) prediction. Requires model storage. Unknown Neubias-WG5/W_LandmarkDetect-ML-DMBL-Pred

Using These Workflows in BIOMERO

To use these workflows with BIOMERO:

  1. Ensure the workflow is packaged as a BIAFLOWS-compatible container
  2. Add the workflow configuration to your Slurm configuration file (slurm-config.ini)
  3. The workflow can then be launched from OMERO.web through the BIOMERO interface

Additional Resources

Contributing

To add a new workflow to this list, please submit a pull request with:

  • Workflow name and description
  • Link to the repository
  • License information
  • Category placement

License

BIAFLOWS workflows have varying licenses. Tested workflows include Apache-2.0 and GPL-3.0 licenses, while many Neubias-WG5 workflows do not have explicit license files (marked as "Unknown"). Please check individual repositories for specific license information before use.

About

Gather workflows that can be used in BIOMERO

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •