Skip to content

NimaTorbati/ACS-SegNet

Repository files navigation

ACS-SegNet: An Attention-Based CNN-SegFormer Segmentation Network for Tissue Segmentation in Histopathology

This repository contains the implementation details of the ACS-SEGNET model.

image

Citation

Our paper preprint is available on arXiv: https://arxiv.org/abs/2510.20754

BibTex entry:

@article{torbati2025acs,
  title={ACS-SegNet: An Attention-Based CNN-SegFormer Segmentation Network for Tissue Segmentation in Histopathology},
  author={Torbati, Nima and Meshcheryakova, Anastasia and Woitek, Ramona and Mechtcheriakova, Diana and Mahbod, Amirreza},
  journal={arXiv preprint arXiv:2510.20754},
  year={2025}
}

Results

Table 1. Segmentation results on the GCPS dataset

Method μIoU (%) μDice (%)
DGAUNet [15] 75.95 ± 0.20 86.33 ± 0.13
SegFormer [13] 70.90 ± 0.38 82.97 ± 0.26
ResNetUNet [17] 75.65 ± 0.08 86.13 ± 0.05
TransUNet [6] 74.84 ± 0.10 85.61 ± 0.09
CS-SegNet 76.68 ± 0.15 86.80 ± 0.06
ACS-SegNet 76.79 ± 0.14 86.87 ± 0.09

Table 2. Segmentation results on the PUMA dataset

Method μIoU (%) μDice (%)
DGAUNet [15] 44.35 ± 1.76 53.69 ± 1.91
SegFormer [13] 46.78 ± 2.58 58.25 ± 2.01
ResNetUNet [17] 58.42 ± 1.98 71.58 ± 1.21
TransUNet [6] 62.43 ± 2.47 74.63 ± 1.91
CS-SegNet 63.67 ± 1.23 75.55 ± 1.71
ACS-SegNet 64.93 ± 2.28 76.60 ± 1.36

Example Predictions

image

Acknowledgements

This project has been conducted through a joint WWTF-funded project (Grant ID: 10.47379/LS23006) between the Medical University of Vienna and Danube Private University.

Academic Research Use: This work is provided "as is", without warranty of any kind.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages