This Python script generates word clouds from text files, allowing users to visualize the most frequent words in a document. The project uses natural language processing techniques to preprocess text and create visually appealing word cloud visualizations.
- Text preprocessing (lowercase conversion, stopword removal)
- Word cloud generation with customizable appearance
- Support for custom background masks
- Visualization using Matplotlib
Before running the script, ensure you have the following installed:
- Python 3.7+
- pip (Python package manager)
- Clone the repository:
git clone https://github.com/YourUsername/word-cloud-generator.git
cd word-cloud-generator- Install required dependencies:
pip install matplotlib numpy wordcloud nltk pillow- Download NLTK resources:
python -c "import nltk; nltk.download('stopwords'); nltk.download('punkt')"-
Prepare your text file (ensure UTF-8 encoding)
-
Modify the script to specify your text file path:
- Replace
/content/text.txtwith the path to your text file - Customize word cloud parameters as needed
- Replace
-
Run the script:
python word_cloud_generator.py- Change background color
- Modify color scheme (colormap)
- Use a custom mask image for word cloud shape
- Adjust text preprocessing settings
- matplotlib
- numpy
- wordcloud
- nltk
- pillow
You can customize the word cloud by modifying parameters such as:
background_color: Change the background colorcolormap: Adjust the color schemecontour_color: Set the outline colormask: Use a custom shape for the word cloud

