Skip to content

Agentic data intelligence tool using LangChain & Pandas for automated dataset cleaning, governance, and quality analysis.

Notifications You must be signed in to change notification settings

TamerDotWork/vesper

Repository files navigation

Vesper Demo

Vesper

Agentic data intelligence using LangChain & Pandas for dataset cleaning, governance, and quality analysis



Vesper Demo

Tip

Vesper transforms raw messy datasets into governed, analysis-ready data using only simple steps.


Vesper Overview

Vesper is an autonomous agentic data analyst built with:

  • LangChain agent orchestration
  • Pandas DataFrame Agent
  • Python execution tool
  • Dataset governance layer
  • Quality measurement engine

It performs real operations on real data:
load → clean → analyze → validate → score → explain

Key Capabilities

  • True Pandas execution
  • Automated cleaning workflows
  • Measurable quality scoring
  • Explainable transformations
  • Reproducible lineage

Use Cases

  • Automated data cleaning
  • Dataset quality governance
  • Exploratory analysis
  • Pre-ML preparation
  • BI readiness

Quick Start

Prerequisites

  • Python 3.10+
  • LLM provider key

Installation

# download source code and access directory
git clone https://github.com/TamerDotWork/vesper
cd vesper

# create virtual environment
python -m venv venv

# activation
source venv/bin/activate

# install dependencies
pip install -r requirements.txt

# run vesper
python app.py

First Run

# copy template
cp .env.example .env
# edit env
GOOGLE_AoPI_KEY=your_google_api_key_here

Note

Results are stored in full logs.


Features

Agentic Data Tools

  • Pandas runtime execution
  • Safe Python sandbox
  • Profiling engine
  • Rule validation
  • Audit logs

Quality Detection

  • Missing values
  • Duplicates
  • Type conflicts
  • Outliers
  • Schema drift
  • Inconsistent categories

Multi-Agent Flow

  • Planner → strategy
  • Pandas → execution
  • Validator → quality
  • Reporter → insights

Recommended models:

  • OpenAI GPT-4o
  • Claude Sonnet
  • Gemini Pro
  • Local Llama 3

Documentation

See the documentation website for full guides.


Support

Give us a star on GitHub if Vesper helps you.


Acknowledgements

Built with:

  • LangChain
  • Pandas
  • Gemeni

Live Demo

Live testing link on Render:

https://vesper-y3bz.onrender.com/

Warning

Always review AI-applied transformations before production use.

Vesper Banner